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Isotropic Jacobi Fields, and Jacobin Equations

on Riemannian Homogeneous Spaces1),2)

Isaac Chavel, Minneapolis (Minn.)

§ 1. Introduction and Préliminaires

Let il/bea locally symmetric Riemannian manifold, Le., assume the covariant
derivative of the Riemannian curvature tensor vanishes identically on M. Then along
any géodésie, Jacobi's équations of géodésie déviation assume an extremely simple
form [10, p. 17], from which one dérives a complète géométrie picture of M. In par-
ticular one that knows if M is also complète and simply-connected then M can be

represented as GjH, where G is the component of the identity of ail isometries of M,
and H is the compact isotropy group. Furthermore, if GjH is of strictly positive
curvature, then ail Jacobi fields along any géodésie emanating from P0 n(H)9 where

n.G^GjH is the natural projection, are isotropic, i.e., they are generated by the

1-parameter subgroups of H. For the détails, see [10].
In this paper we let M be a normal Riemannian homogeneous space G/H, (cf.

définitions below) which is not necessarily symmetric, and dévote our attention to
the solving of Jacobi's équations on GjH. In particular we show that the solving of
Jacobi's équations along any géodésie emanating from P0 n(H) is équivalent to
solving two Systems of ordinary homogeneous differential équations with constant
coefficients, (cf. § 5 and équations (16)—(18)). A brief sketch of this approach has al-

ready appeared [10, p. 26-7] whereas hère we give ail the détails. We then use thèse

équations to find a point QeSp(2)jSU(2), which is conjugate to P0 n(SU(2))9 but
not isotropically conjugate to Po (cf. Définition 2). In [2] we carry out a similar cal-
culation for the space SU(5)j(Sp(2)xT) and show that there exists a point Q' in
SU(5)j(Sp(2) x T) with the same property. Using Theorem 4 below, we are then able

to state:

Theorem 1 : Let GjH be a simply connectée! normal Riemannian homogeneous space

ofrank 1 such that every point Q conjugate to P0 n(H) is isotropically conjugate to
Po. Then GjH is homeomorphic to a Riemannian symmetric space ofrank 1.

We now turn to the basic définitions and notations used in the sequel:
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Ail manifolds will be of finite dimension ^2, and infinitely differentiable; and ail
parametrized curves will also be infinitely differentiable. If <j> is a differentiable map of
one manifold into another, then we write the induced linear map from the tangent
space at x to the tangent space at (f> (x) as dcj)x.

If M is a manifold with affine connection A, we then dénote covariant differentia-
tion along a parametrized curve x(t) in M by D/dt, and the torsion and curvature
tensors ofA by T'and B, respectively. F will always dénote an affine connection without
torsion ô/dt covariant differentiation along a parametrized curve x (t)with respect to F,
and R the curvature tensor of T. If M is a Riemannian manifold, we dénote the
induced inner product by < >, the Levi-Civita connection by F, and R will then be the
Riemannian curvature tensor.

G will always be a Lie group, H a closed subgroup, GjH the space of left cosets of
H, n:G-*GjH the natural projection given by n(x) xH, xeG, and t the induced
action of G on GjH given by x(x)(yH) xyH, x,yeG. The Lie algebras of G and H
will be denoted by g and r) ,respectively. An affine connection on G/H is said to be

invariant, if it is invariant under t(x) for ail xeG.
G/H is said to be a :

(a) reductive homogeneous space if the Lie algebra g admits a vector space
décomposition g ï) + m such that [m, ï)] c m. In this case m is identified with the tangent
space of Po 7i (H) ;

(b) Riemannian homogeneous space if GjH is a Riemannian manifold such that
the metric is preserved by t(x) for ail xeG;

(c) normal Riemannian homogeneous space if the metric on GjH is obtained as

follows : Let there exist a positive definite inner product < > on g satisfying
<[*> y\ z> <*> [.y? z]> f°r ^11 x, y, ze g, and let m be the orthogonal complément of
ï). Then, the décomposition (g, I)) is reductive, and the restriction of the inner product
to m (which is identified with the tangent space at Po n (H)) induces a Riemannian
metric on G/H (referred to as normal) by the action of G on G/H.

For any décomposition of g r) + m, then for Zeg, we let ZX) and Zm dénote the

projections of Z onto I) and m, respectively.
The basic définitions and theorems concerning affine connections and homogeneous

spaces can be found in [5; 7; 8], Unless otherwise noted, we use the summation
convention for repeated indices. Also the torsion and curvature tensors are minus those

in [5; 7].

§ 2. Isotropic Jacobi Fields on Homogeneous Spaces

Let M be a manifold, A an affine connection on M, c: [0, fl-^Ia géodésie in M,
and Po (t(0). A géodésie variation of a is a l-parameter family of geodesics x(s, e)

in M, where s is the family parameter, and the géodésie a corresponds to e 0. The

vector field rf(s) dxlds(s, e)|e=0 will be called the Jacobi field along a induced by the
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variation x(s, s) ofa. A point Q g(s0), 0<s0<fî,onG will be said to be conjugate to
Po along g if there exists a Jacobi field rj(s)^O along g such that n(0) rj(s0) 0.

Now we assume that M is a homogeneous space G/H, with an invariant affine
connection A. Then Ha G is a group of affine transformations of G/H leaving Po n (H)
fixed. Hence for any heH, %{h) maps geodesics emanating from Po into geodesics

emanating from Po. Let h(s)c:H be a 1-parameter subgroup of //, a(^) a géodésie
such that <t(0) Po. Then the action of h(e) on a induces a géodésie variation of a
given by x(x, e) T (/*(>)) (or (s)).

Définition 1: The géodésie variation x(s, s) T(h(s))(a(s)) will be called
isotropic, and will be said to be induced by the 1-parameter subgroup h (s). Similarly,
the Jacobi field n of an isotropic géodésie variation will also be called isotropic.
(Clearly, rç(0) 0.) When speaking of isotropic Jacobi fields, we shall always assume
that they are not identically zéro.

Lemma 1 : IfQ g (s0) is a zéro ofthe isotropic Jacobifield induced by the l-parameter
subgroup h (s) ofH, then ail the geodesics i(/î(e)) a meet at Q; and Q is conjugate to Po

along each ofthe geodesics T(h(e)) a.IfQ is not a zéro ofa given isotropic Jacobi field,
n, induced by the l-parameter subgroup h(e)c:Hf then for sujficiently small e,

QïT(h(e))(Q). [3, p. 326; 9, p. 116].

Proof: For ail x, Lie's first theorem (applied to the transformation group
t (h (a)) : G/H-+ G/H) implies

- (s, s)\s=E0 dx(h(eo))l- (s, e)\E=0
de \de

dt(h(80))(t,(S)),

for ail e0, where dT(h(s0)) is the non-singular tangent map of T(h(s0)). Hence rj(s0) 0

implies dx/ds(s0, e) 0, which implies the orbit of Q under t(h(s)) is just Q. It is now
also clear that Q is conjugate to Po along each géodésie ofthe variation. The second

statement foliows from the non-singularity of dx(h(s)) for ail e.

Définition 2 : If Q e a is the zéro of an isotropic Jacobi field along, a we say that Q
is isotropically conjugate to Po along g.

Corollary 1 : IfQeG/H is isotropically conjugate to P0 n(H) along g, then Q is

isotropically conjugate to Po along any géodésie (which is not left fixed by the l-parameter

subgroup in question) passing through Po and Q.

Lemma 2 : Let GjH be a reductive homogeneous space where G is a subgroup of
GL(n), the group ofnxn nonsingular matrices, and let A be an invariant affine connection

on G/H, whose geodesics emanating from Po, are the images under the natural
projection n:G-*G/H of l-parameter subgroups exp(^^), where Xem and g I) + m,
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[ï), m] c m. If thefirst zéro of an isotropic Jacobifield along a géodésie a emanating
from P0 n (H) has path parameter value a, then the set ofnumbers kcc, k ± 1, ± 2,...
constitute the complète set of zéros ofthis Jacobifield.

Proof: Since the geodesics emanating from P0 n(H) are the projections of
1-parameter subgroups of G9 the géodésie a can be represented by the matrices

a(s) esB, where Bem. Let the 1-parameter subgroup h(é) be given by h(e) eeA9

Aefy. Then (since r(h)(xH) hxh~1 H for ail heH) the géodésie variation of a
induced by h(e) can be written as x(s9 e) eeAesBe~£A which implies dxlds(s,s)
eBÂ(AesB —esBA)e~eA9 i.e., the zéros of rj(s) dxlde(s, e) \e=0 are given by the
solutions of

A esBAe~sB. (1)

One easily sees that if s a solves (1), then k<x solves (1) for ail k= ± 1, 2,... Also
if a and a0 solve (1) then so does a — a0, which implies the lemma, cf. § 8.

We remark that the converse of Lemma 2 is false, i.e., there exist non-isotropic
Jacobi fields whose zéros are the intégral multiples of the first zéro. cf. § 7.

Before turning to Jacobi's équations of géodésie déviation on G/H, we give a

résume of results which we will need without providing any proofs. The reader is

referred to [1, p. 182-6; 7; 8, p. 41-52].

§ 3. Invariant Affine Connections on Homogeneous Spaces

We first note that if A is an invariant affine connection on G/H, then its torsion
and curvature tensors, T and B, respectively, are also invariant. We shall assume G/H
to be reductive, with a fixed décomposition: g î)+m5 such that [ï), tn]czrri. To any
reductive homogeneous space there are associated two invariant affine connections
which we now describe:

(A) Let x(s) be any 1-parameter subgroup of G generated by an élément Xem
and let x* (s) be the image of x(s) be the projection n:G-*GIH. Then there exists one
and only one invariant affine connection without torsion, F - called the connection

of Cartan - having the property that x* (s) described above is a géodésie.

(B) Let x(s), x*(s) be as defined above and let Yem. Then there exists one and

only one invariant affine connection, A - called the canonical connection - having the

property that parallel displacement of Y at Po along the curve x* (s) is the same as the

translation dt(x(s))Po(Y)by the 1-parameter subgroup x(s).
Note that by (A) and (B), the connections A and F hâve the same geodesics. From

this one*ean easily show that
F yl-(i)7\ (2)

whereby we mean that in any coordinate neighborhood (x1), i=\,...,n on G/H,
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Lemma 3 : Let A and F be the canonical and Cartan connections, respectively. Then

at P0 n(H),for X, Y, Zem we hâve

R (X, Y)Z [IX, y],, Z] + i [[X, Y]m, Z]

Furthermore,
DT^DB^O, (4)

i.e., the covariant derivatives ofT and B vanish on ail of GjH.

Lemma 4 : Let GjH be a compact normal Riemannian homogeneous space ; then the
Riemannian metric has the Cartan connection for its Levi-Civita connection. We shall
henceforth refer to F as the metric-Cartan connection. Furthermore the Riemannian
sectional curvature at P0 n(H) ofthe 2-section, \i, spannedby the orthonormal vectors
X and Ye m is given by 2, 7]J|2, (5)

where \\ || is the length of a vector in g with respect to the inner product. In particular,
GjH has strictly positive curvature if and only if \_X, F] ^Ofor ail linearly independent
X, Fem.

Remark: Furthermore, it is known that GjH is a symmetric homogeneous space
if and only if [m, m]c:I), which implies G/H is a symmetric homogeneous space if
and only if the Cartan and canonical connections coincide.

§ 4. The Jacobi Equations of an Affinely Connectée Manifold

Theorem 2: Let M be an n-dimensional manifold with affine connection

A, g: [0, /?]->M a géodésie; and let x(s, e) be a géodésie variation ofa, where s is the

path parameter along each géodésie, s is the family parameter t and g (s) x (s, 0). Then
the Jacobifield r\(s) dxjde(s, e)|e=0 satisfies JacobVs équation

^^ + ^(T(A^)) + B(A5f/)^ 0 (6)

where À(s) is the velocity vector field of a. [6, p. 33-4; 10, p. 126].
We note that (/) the vector field sû(s) is a solution of (6) satisfying rç(0) 0; (ii)

one can show that any vector field rj (s) solving (6) is the Jacobi field of a géodésie
variation of a; and (iii) if M is a Riemannian manifold and F the associated Levi-
Civita connection, then jT=O and (6) reduces to the classical Jacobi équation

^ )X 0. (7)
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Henceforth we shall assume that DT=0, i.e., the covariant derivative of T
vanishes identically on ail of M. Then (6) reads as

^n + TU ^i) + B(A, if) A 0. (8)

Let (ea(s)), a=l,..., n be n linearly independent yl-parallel vector fields along a.

Setting rj flaea, T(X, Y) (T(X, Y)\ea9 B(X, Y)Z=(B(X, Y)Z\ea9 where X, Y, Z
are any vector fields along a, one then obtains

rj: + Taprirp + Kaprjp 09 (9)
where

a, j8=l,...,«, and the prime dénotes differentiation with respect to 51. Note that
DT=0 implies that Tap is constant along any géodésie.

Suppose F is the connection on M defined by

r A-(±)7\ (il)
Then F has no torsion, and one readily shows that both A and F hâve the same

geodesics.

Lemma 5: Let (fa(s)), a= 1,..., n be a F-parallel n-frame along the géodésie g. Then

L(s) aap(s)ep(s) (12)

implies
a'aP(s) (-ï)aay(s)TPy(s). (13)

Proof: Note that F A-(Jt)Timplies that ÔÇ/ds =DÇ/ds -(i)r(£, A), where <J is

any vector field along cr. Then for each a= 1,..., n,

ds

{a'aP + (i)aayTPy}ep

which implies the lemma by the linear independence of (ep(s)), /?= 1,..., n for ail s.

Lemma 6: Lef T be the Levi-Civita connection of a Riemannian metrie on M, and

let F be related to A by (11), where DT==0. Then it is possible to choose an orthonormal

frame (ea (s)), a 1,...,«, which is A-parallel along a ifand only if(ea (0)), a 1,..., n, can
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be chosen orthonormal such that TaP is skew-symmetric. Furthermore, when thèse conditions

are satisfied Kafi can be chosen symmetric.
Proof: If (ea(0)), a=l,...,«, is an orthonormal frame such that TaP is skew-

symmetric, then setting/a(0) £?a(0), a=l,..., n, we see that (/a0))5 a=l,..., n, is an
orthonormal frame since parallel transport of vectors with respect to F préserves
their inner product. By (13), since TaP is a skew-symmetric matrix, aaP(s) is an
orthonormal matrix for ail s. Therefore the frame (ea(s)) is orthonormal. The argument is

réversible and the first part of the lemma is proven.
To prove the second part of the lemma, one notes that by direct calculation, using

DT=0, that

Y), Z) + \T{T(Z, X), Y) + iT(T(Y, Z), X)
(14)

We choose (ea(s)), a= 1,..., «, to be an orthonormal frame parallel with respect to A.
The orthonormality will then imply that

(15)

Therefore by the skew-symmetry and symmetry properties of T, B, and R we hâve

ep) A> + i<ea9 T{X, T(A, ep))>

ep) A> + i<ea, T(A, ey)} TyP

which implies the lemma by the symmetry of <ea, i£ (y, e^) y} and skew-symmetry of Ta/?.

Définition 3 : A connection A on M is said to be locally reductive if DT=DB=0
on ail of M.

Theorem 3 : Lef M be a compact orientable Riemannian manifold with Levi-Civita
connection F and a locally reductive connection A related to F by (11). Then TaP and

Kap of (9) (with respect to A) can be chosen skew-symmetric and symmetric, respec-
tively.

Proof: Since A is naturally reductive, by a theorem of Nomizu [8, p. 60], M can be

locally represented about any PoeM as a reductive homogeneous space G/H with A
for its canonical connection and P0 n (H). Let x (s) be the 1-parameter subgroup of G

projecting onto a, where <t(0) Po. The éléments of x(s) leave A, and therefore T, and
therefore F, invariant which implies by a theorem of Yano [11] that x(s) is a 1-parameter

group of isometries. Therefore if (ea) is an orthonormal frame at P0 n(H),
then the subgroup x(s) moves (ea)9 preserving orthonormality ,in parallel manner
with respect to A, the canonical connection - and the theorem is proven by Lemma 5.
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§ 5. Jacobi's Equations in a Normal Riemannian Homogeneous Space

If GjH is a normal Riemannian homogeneous space which is not symmetric, then

contrary to the symmetric case, Jacobi's équations (7) when written with respect to
the Levi-Civita connection does not necessarily hâve constant coefficients RaP nor is

there necessarily séparation of variables as in équations (6), (7) of [10]. In order to
solve Jacobi's équations we therefore turn to the canonical connection.

The metric-Cartan and the canonical connection hâve the same geodesics, and
therefore équations (7) and (8) written in the metric-Cartan and canonical connections,

respectively, are identical - as one can verify directly by substituting one into
the other using (11) and (14). Since, as noted in Theorem 3, the frame (ea(s)) can be

chosen orthonormal and transported in parallel manner with respect to the canonical
connection, the solutions of (9) when written with respect to the canonical connection
can be made to differ from the solutions of (7) written with respect to the metric-
Cartan connection by multiplication by the orthogonal matrix obtained by solving
(13) (at worst they differ by a non-singular matrix.) Hence one obtains the conjugate
points of the metric-Cartan connection by solving the Jacobi équations in the canonical

connection which (since DT=DB=0) has only constant coefficients.
To be more explicit, we shall let ea(0) Qa, a 1,..., n, where (Qa) is the natural

basis of m, and where the coordinates about the identity e of G are chosen such that
(Qa) is an orthonormal basis of m. Let x*(s) be a 1-parameter subgroup of G such

that n(x(s)) <j(s) is the géodésie a. For each oc=l,...,«, let ea(s) dx(s)Po(Qa),
P0 n(H); then by the définition of the canonical connection, ea(s) is a yl-parallel
vector field along a. Since G is a group of isometries, ea(s)) form an orthonormal
frame for each s. By Lemma 3, (15), and the natural reductivity of A, we hâve

ff. + <&,, [A, e/,]m> ri, + <&,, [[A, Q,]5, A]> i,, 0, (16)

a, /?= 1,...,«, where A is the unit velocity vectory of a at Po. To solve Jacobi équations
relative to the Riemannian parallel frame fa(s), a=l,..., «, satisfying/a(O) £)a, one
lets A=(aap) be the matrix defined by

(17)

where ^=(Tafi)=«Qa, [A, e,]m». Then setting r\ f\Ja, one has by Lemma 5,

§ 6. The Homogeneous Space Sp(2)/SU(2)

Theorem 4: If GjH is a simply connected normal Riemannian homogeneous space

of dimension ^ 2 having strictly positive sectional curvature, then with two exceptions
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Sp(2)1SI)(2), SU(5)/(Sp(2)xT), G/H is homeomorphic to a Riemannian symmetric
space ofrank 1 [1, p. 226] ("Rank l" is équivalent to saying that X, Fern, [X, Y] 0
implies X and Y are linearly dépendent.)

We shall consider the example M=Sp(2)/SU(2), where Sp (2) is the symplectic
2-group and SU(2) is the spécial unitary 2-group. Now an élément of the Lie algebra
®p (2) is skew-Hermitian of the form

«11 «12 «13 «14>

«12 "«11 «14 ~«13
-«13 -«14 «33 «34

«14 «13 -«34 ~«33>

where an,a33 are pure imaginary, and the rest are arbitrary complex numbers. Let
iSi, ï=1,..., 10 be matrices in Sp(2) such that

Si • «ii — «22 * > otherwise atj 0

S2:a33 =- a44 i,
S3:«i2 - «21 1>

S4:a12= a2i i,
S5*«34 - «43 U
*^6*«34 «43 Jï

7*«13 «31 «24 «42 ^
»

J^8*«13== «31 «24=:: «42==^>

S10:a14= a41 — a23 — a32

Setting

91/72(73 s6 - s8) e6 Vi s

V S7 Ql0 S6

we hâve (i) {gl5..., 2io} are linearly independent and therefore form a basis of ®p (2).

(ii) Furthermore, if for an innerproduct on Sp(2) we take {A, B}= -| trace (AB),
then {ôi,..., ôio} is an orthonormal basis of ©p(2); also (iii) the inner product is

invariant under A d(Sp(2)). (iv) Finally, one can show that t) linear span {g8, Q9, Q10}
is Lie isomorphic to SU (2) and therefore the group H generated by H is analytically
isomorphic to SU(2).

The décomposition we hâve chosen follows Berger [1, p. 234]. Note that the

représentation of SU(2) in ®p (2) is not the canonical one, but rather an irreducible
one. Berger also shows that if A", 7emc:®p(2)Jnt span{g1,..., g7}, and X9 Y are
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linearly independent then [X, Y~]^0; therefore by Lemma 4, M=Sp(2)JSU(2) has

strictly positive curvature. Note that Berger's theorem says that M cannot be given

any metric so that with respect to the metric it becomes a locally symmetric space.
(To see that M is not symmetric with respect to the given metric, one can easily show
that [m, m]ct:I).)

We note that the pinching of Sp(2)jSU(2) has been calculated by Eliasson, and
is 3V [4]

§ 7. Two Geodesics in Sp(2)/SU(2)

We shall now show that the géodésie a generated by Q2eSp (2) has a Jacobi field
which vanishes at s a along the géodésie and does not vanish at s 2a; also no other
Jacobi field along the géodésie vanishes at s —oc. Hence, by Lemma 2, there exists a

non-isotropic Jacobi field vanishing at a point where no isotropic Jacobi field vanishes.
Since Sp (2)1SU(2) is not Riemannian symmetric, we shall solve Jacobi's équations

written with respect to the canonical connection. Then for the values of Ta/Î, KaP along
o-, we hâve T13= -T31 -T46 T64=T57 -T75 l and the rest of the T's are
zéro ; an àK33 9, K66 K71 -f otherwise KaP 0. To solve (9), we solve the associated

eigenvalue problem:
0 dQt(X2I + XT + K)

X2

0

— X

0

0

0

0

0
X2

0

0

0

0

0

X

0
X2 + 9

0

0

0

0

0

0

0
X2

0

X

0

0

0

0

0
X2

0
—~~ A

0

0

0

— X

0
X2 + |

0

X

0

0

0

X

0
X2 H

Using the method of undertermined coefficients one shows that the gênerai solutions
of (9) along a, such that rj(0) 0 can be written as:

\ + <x2(9jJ0s + si

rj3(s) ai(-

rjs(s) a6(l - cos

cos

a5 y
/lôs)}

(19)

M t—7=s + sinx/-|s

+ a5 {- Vf
(s) a6 (Vf sin ^/f s) + a7 { - ,/f (1 - cos
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where o^,..., <x7 are arbitrary constants. We consider the set of points of a conjugate
to Po n (H) coming from the Jacobi fields spanned by the two solutions correspond-
ing to aK <5lïC and ctK ô2K, k=1,..., 7. Then the arc length at the conjugate points
are the zéros of the déterminant

1 - cos^/lOs 9yJTÔs + si

— sin^lOs 1 — cos^/

Setting u yj10 s, the problem becomes that of finding the zéros of/(w)
1-cosw + fwsinw. Clearly f(2nk) 0 for ail /c=l,2,.... Now f'(u) i{ll sinw +
+ 9wcosw}, which implies/'(27iÀ;) 97cÀ;>0 for ail k =1, 2,... Also there exists an
£>0 such that: 0<w<s implies/(w)>0, and therefore there exists a, 0<a<27t such

that/(a) 0. Of course, a^7r/2, n, 3n/2. We now show that/(2a)^0:
tan a

/ (2 a) 2 sin a {sin a + 9 a cos a}, and therefore / (2 a) 0 implies a —,

which implies/(a) — (cos a—1)2/(2 cosa)/0, which implies a contradiction. Therefore,

any Jacobi field rj with (ai)2 + (a2)2>0 such that rç(oe) 0 is not a isotropic. By
looking at (19), one can show that the number of linearly independent Jacobi fields

vanishing at a is exactly one. Since this Jacobi field is non-isotropic, the point a (a) is

also non-isotropic.
Now we show that the converse of Lemma 2 is false (§2). Indeed, for the géodésie

a generated by QteSq(2) the constants Tafi and KaP are: -T23 T32 T45= -T54
T67=— T76 l; K44 K55 6; and the rest are zéro. The associated characteristic

polynomial is then :

A6 (A2 +1)2 (A2 + 4) (A2 + 9) ; and a basis of solutions of (9) such that rj (0) 0 is given by

t\l (S) a2 0 """ C0S S) ~~ a3

rj3 (s) a2 sin s + a3 (1 — cos s)

y* (s) a4 (cos 2s — cos 3 s) + a5 (sin 2 s — sin 3 s) (20)

yj5 (s) _ a4 (sin 2 s — sin 3 s) + a5 (cos 2 s — cos 3 s)

t]6 (s) a6 (1 — cos s) + a7 sin s

rj7 (s) — a6 sin s + a7 (1 — cos s).

One sees that there are more than 3 linearly independent solutions whose zéros are intégral

multiples of a fixed real number; since dimSU(2)~ 3, there exists at least one such

non-isotropic Jacobi field.

§ 8. Added in proof

The proof of Lemma 2 is incorrect, viz, the proof only concerns itself with what
happens in G, not in G/H. The Jacobi field rj(s) of the variation is not given by
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dx/ds(s, e)|e=0> as stated in the proof; it is given by rj(s) dn(dx/de(s9 e)|£=0)- Hence
there may be more zéros than we hâve accounted for.

Theorem 1 remains true nevertheless, since by the Remark at the end of [2], one
can show that the isotropic Jacobi fields along n(esQ2)9 (?2G®P (2) are spanned by the
three Jacobi fields having constants of intégration, cf. (19), ak CjSJk, 7 1, 4, 7,

respectively, where Cj are constants. The rest of the discussion of n(esQl) follows as
stated.
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