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The Real Cohomology of Differentiable Fibre Bundles

Paul Baum1) and Larry Smith2)

Throughout algebraic topology one very often studies fibre bundles
£ (E9 p, B, G/H, G) where G is a compact connected Lie group and Ha G is a closed
connected subgroup, Eand B are differentiable manifolds and/? : E^B is a differentiable
map. Typicaliy one tries to compute the cohomology of the total space from a know-
ledge of the cohomology of the base B, the fibre G/Hand some invariant of the bundle.
The usual procédure involves calculating with the Serre spectral séquence. However
this does not take full advantage of the fact that ^ is a fibre bundle, for we hâve a
classifying diagram

G\H GjH

where Ç(G, H) (BH, q, BG, G/H, G) is a universal bundle. Using techniques of
Eilenberg and Moore [8] we shall show

Theorem : If B is a Riemannian symmetric space [5] and R is the field of real
numbers then //*(£; R) and Toth*(Bg.R) (H*(B; R)9 H*(Bh; R)) are isomorphic as
algebras.

This extends results of Borel [3] and Cartan [6]. Borel [3] further shows how
the map q*:H*(Bg; R)-+H*(BH; R) can be computed from information on the
Weyl groups of G and H.

It is well known [4], [13], [15] that H* (BG; R) is a polynomial algebra (over R) on
even dimensional generators. Therefore for the above resuit to be of use we must hâve
available a fairly simple technique for Computing Tor^ (B, A) when A is a polynomial
algebra. This is the objective of the first section. The second section gives a proof of the
above resuit. The final section gives an example to show that the technical assumption
that B is a Riemannian symmetric space is essential.

We shall assume that the reader is familiar with the material of [1] or [8] or [13]

or [16]. Our notation will be that of [12].
We wish to thank Prof. J. C. Moore for many useful discussions.
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1. The Tvvo Sided Koszul Complex

Throughout this section the ground ring will be a fixed field k. ® will always

mean ®*.
Suppose that _ f -,

Of course if the characteristic of k is not 2 then of necessity deg(xf) will be even.

Dénote by
li:A® A-*A

the multiplication map of A, Note that \i is onto.

Lemma 1.1:

Proof: Let

Then clearly Jcker/j. Thus there is a natural map of algebras

A®A A®A
y • A

Let [jcf®l], [1®*/] dénote xt®\ and 1®^ as éléments of A®AjI. Then the mono-
mials in [x^Y],..., [xn®l], [1®^],..., [l®xw] generate A®AjI as a ^-module.
Since [xf® 1] [1 ®xj /= 1,..., n it follows that the monomials in [xy ® 1],..., [xn® 1]

generate /l®yl//as a fc-module.

Next recall that the monomials in xu..., xrt are a fc-basis for A. Since a ([xf® 1])
xi51 1,..., n and a is a map of algebras it follows that a maps a A>generating set for
A®AjIm a one-one-onto fashion to a A>basis for A. Hence a must be an isomorphism.

Since everything in sight is of finite type it follows that in each degree / and ker/j
hâve the same dimension (finite) as vector spaces over k. Since /cker/i it follows that
/=ker/*. D

Now note that xl®\ — \®xu...,xn®\ — l®xn is an ESP-sequence in A®A
generating the idéal ker/j. (See [16], also called an E-sequence in [1], or an S-sequence
in [10]). Therefore we hâve the Koszul complex [1], [10], [12], [16], [18]

d{a®ui®b) axt® 1 ® b - a® 1 ®xtb, i 1,..., n

d(a®l®b) Q d a dérivation

S1 is given a bigraded structure by requiring that

(-l,degX|), i 1,..., w, dega (0, dega) ail aeA.
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Wethenhave[10; 7], [16; §2.1]

H°{ê2) A® /1/ker j* A,HP{£2) 0, p # 0.

Thus ê2 is a A®A resolution of A. We will refer to ê2 as the two sided Koszul
complex by analogy with the two sided bar construction.

Proposition 1.2: IfA is any A-module then $2®AA is afree resolution ofA as a
A-module.

Proof: Since ê2 is a free /1-module we hâve a spectral séquence (see [12; page
400]) Er=>H(£2®AA), E2-=TovA(H(ê2), A) Tota(A, A) A i.e. E\. 0/7^0which
implies

H°(é>2 ®AA) A, Hp{ê2 ®AA) 0 p * 0.

Since ê2®AA is obviously a free yl-module the resuit foliows. Q

Corollary 1.3: If(BA, AA) is given then

TorA(B,A) H(B®E\uu..., un]®A; d) where

d(b®l®a) Q, d(b®ui®a) bxi®l®a-b®l®xia,

Acknowledgment : The existence of the two sided Koszul complex was sug-
gested to us by Prof. J. P. May.

We shall hâve occasion to consider the case where A is a differential yl-module.
In this case we shall need :

Proposition 1.4: IfA is a differential A-module then $2®AA is a proper projective
resolution ([12], [16]) ofA as a differential A-module.

Proof: We must show the following
(i) $2®AA is a proper projective /1-module.

(ii) S2®AA is a resolution of A.
(iii) If dA dénotes the differential in A then

ZA (&2 ®AA) is a resolution of Z (^4).

HA {ê2 ®AA) is a resolution of H (A).

To see (i) observe that £2®AA=A®E\uu..., u^\®A as a /1-module. Since k is a
field it foliows that E2®AA is a proper projective /1-module [13], [16]. (Moore does

not use the adjective proper.)
(ii) is just Proposition 1.2.

To obtain (iii) we note that there is a décomposition of vector spaces,

with dA given by dn:Qn&Rn+1 (see [12; page 398]) and so we see
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which is a resolution of Z(A) by Proposition 1.2.

Finally since k is a field the Kunneth theorem gives

which is a resolution of H (A) by Proposition 1.2.

We can now proceed in the obvious fashion to compute Tor^ (B, A) when B, A are
differential yl-modules.

2. Difforentiable Fibre Bundles

Suppose that £ (E, p, B, G/H, G) is a differentiable fibre bundle with classifying
diagram

GIH=G/H
ï l
l i

Let us assume that G is a compact connected Lie group and Hc G is a closed connected

subgroup. In addition assume that B is a compact Riemannian symmetric space. (We
recall that a compact Riemannian symmetric space M is an analytic manifold with a
fixed Riemannian metric such that each point xeM is a fixed point of some involutive
isometry of M.)

Throughout this section the ground field k will be the field of real numbers R. If X
is a topological space we shall write H* (X) for H* (X; R). Our goal is to prove

Theorem 2.1 : Under the above conditions there is an isomorphism ofalgebras

H* (E) s TorH*(Bc)(tf* (B), H* (BH)).

The proof of Theorem 2.1 will be accomplished with the use of deRham co-
homology for manifolds modeled on separable Hilbert spaces (see [7], [9], [14]). For
the convenience of the reader we will recall some of the important facts that we
shall use.

IfMis a Riemannian manifold modeled on a separable Hilbert space then R* (M)
dénotes the deRham cochain algebra of M. The differential (exterior derivative) is

denoted by d. We then hâve [7] that the algebras H*(M) and H*(R#(M), d) are

naturally isomorphic.
If M is a compact Riemannian manifold then the Riemannian metric g on M

induces an inner product in R* (M) by
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dega deg/?(«,]») Ua/?*,

The adjoint of d relative to this inner product is called the coderivative and is denoted

by(5.

Définition : A form <xeR* (M) is said to be

closediff d(a) 0

coclosed ijf ô (a) 0

harmonie ijf d(a) 0 ô (a).

Theorem 2.2 (Hodge): If M is a compact Riemannian manifold then each

cohomology class aeH*(M) contains a unique harmonie form oleR* (M).
Let M be a Riemannian manifold and dénote by I(M) the group of isometries

of M. Then I(M) is a Lie group and acts on the algebra R* (M) of differential forms
on M.

Theorem 2.3 (E. Cartan [5]): If M is a compact Riemannian symmetric space
then the harmonie forms on M are precisely the I(M) invariant forms. Therefore the

a product of two harmonie forms is again harmonie.

Proof of Theorem 2.1: Let
GIH=G/H

ï 1

E->BH

be the classifying diagram for £. Following Eells in [7] we may assume that BH and

BG are differentiable manifolds modeled on separable Hilbert space. By differentiable

approximation we may then assume that ail the maps are differentiable.

Following [8] (see also [1], [16]) we then hâve a natural isomorphism of algebras

H*(E)^TorR#iBG)(R* (B), R# (BH)).
Now we know [3] H*(BG) P [xu xn~] n rank G,

H*(BH) Ptyl9...,ym\ m mnkH.

Choose représentative cocycles a1?..., aneR* (BG) for xu...,xn. Since the
multiplication in R# (BG) is commutative the map Xi-xx^ /=1,..., n extends to a unique

map of algebras a : H* (BG)-+R# (BG). If we think of H* (BG) as a differential algebra
with zéro dirferential then a is a map of differential algebras inducing an isomorphism
in homology.
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In a similar manner we construct a map f}:H*(BH)-*R# (BH).
Consider the diagram

r*(bh)£r,(bg)Zr*(b)
/jÎ î« Figure A

H*(BH)CH*(BG)f-tH*(B)

We do not claim that the left hand square commutes. However using this diagram we
can make R# (BH) into an H* (BG) module in two différent ways, i.e. by means of the

maps pg* and q*ol. We can also make R* (B) into an H*(BG) module by means of
the map/# a.

Hence there are two différent torsion products which we shall dénote by

Pe*TorHHBc)(R*(B),R*(BH))

Q*aTorH.{BG)(R*(B),R*(BH))

We claim that thèse two torsion products are isomorphic. To see this set PQ*(Xi) tii
Q^a(xi) rjfi f #a(xj) Çj. Let dB dénote the boundary in R* (B) and dH the boundary
in jR# (BH). Then using the two sided Koszul complex of the previous section we see

*(B)) H(R*(B)®Elu «J ® R*((R*(B), R*(BB)) H(R*(B)®Eluu «J ® R*(BH))
where

® p) dBa ® 1 ® p + a ® 1 ® dHp

d{\ ® ut ® 1) ^ ® 1 ® 1 + 1 ® 1 ® rji
and similarly

^«TorH+(Bo) (K#(B), R*(BH)) H(R*(B) ® E [i?lf..., t>J ® R*(BH))
where

d(<x ®l®j8) dBa®l®j8 + a®l® dH P

Now since Figure A certainly commutes when we pass to homology it follows that for
each i we can choose Afei?# (BH) so that ^1=^ +^^'

Define a map

T:R*(B)®E[uu...9un]®R*(BH)-+R*(B)®Elvl9...,vn~]®R*(BH)

by r

and requiring that T be a map of algebras. A direct computation shows that T is a

map of complexes. As T'1 is readily defined we see that jTgives an isomorphism of
algebras



The Real Cohomology of Differentiable Fibre Bundles 177

T%c.TorH.(BG) (R*(B), R*(BH))^e,JoTH.(Ba) (R*(B), R*(BH)).

We then hâve algebra isomorphisms

TorR*(Bo)(R*(B),R*(BH))
«î Tora(l,l)

e*JorH.iBa)(R*(B),R*(BH))
« T r

fie.TorH.iBa)(R*(B),R*(BH))
«î Ton(lJ)

TorH.iBG)(R*(B),H*(BH))

Recall now that we assumed B to be a compact Riemannian symmetric space.
Define a map d:H*{B)-+R* (B) by a -» the unique harmonie form contained in a,

It follows from the results of Hodge and Cartan stated above that 9 is a map of
algebras inducing an isomorphism in homology. Consider now the diagram

R*{BG)UR#{B)

H*(BG)->H*(B)

As above this leads to two torsion products

f,JorH.(Bc}(R*(B),H*(BH))

which are seen to be isomorphic by an argument analogous to the one above. This
gives us a string of algebra isomorphisms

H*(E)*TorRHBG)(R*(B),R#(BH))
ÎTor«(l, 1)

(BG)(R*(BlR*(BH))

fe^Bc)(R*(B),R*(BH))
î Tor, (1, fi)

f*JorHHBc)(R*(BlH*(BH))

gf.TorHHBb)(R*(B),H*(BH))
ÎTor,(e, 1)

Toth.(Bg)(H*(B),H*(Bh))

which complètes the proof.
If in Theorem 2.1 we set B=point then we obtain a resuit of Cartan [6] as

restated by Baum in [2]. If we set H= 1 in Theorem 2.1 then we obtain a resuit of
Borel and Hirsch [4].
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3. An Example

Of ail the hypothèses of Theorem 2.1 probably the least satisfying is the as-

sumption that B be a Riemannian symmetric space. However this is an essential

assumption as the following example will show.

Let Y=S2 v S2 v S2. Let/, g, Ael72(7) represent the homotopy classes of the
inclusions

S AS v*v*c7

Let t:S4-> Y represent the Whitehead product [/, [g, /z]]ei74(F) and let X= YUte5
where e5 is a five cell. Massey and Uehara [11] hâve shown that there are
indécomposable éléments zl9 z2, z3eH2(X; Z) and weH5(X; Z) with the triple product
<z1? z2, z3> defined and

<z1? z2, z3> w # Oetf*(X, Z)/tf*(X, Z) zt + z3H*(*; Z)

Also from [11] we shall need

Lemma3.1: Suppose that f:A-*B is a continuons map. Let u, v, weH*(B; Z)
such that

(i) uv 0 vw, (ii)/*(M) O=/*(w) then

<u9v9

Proof: See [11] Lemma 5 on page 369.

Now X is a 5-dimensional simplicial complex and so we can imbed X in Rn. Let
B be the double of a regular neighborhood of X in i?11. Then B is a smooth manifold,
but not a Riemannian symmetric space. Z is a retract of B. Thus there are classes

xl9 x29 x3eH2(B; Z) and yeH5(B; Z) with <jcl5 x2, *3> defined and

<*i, x29 x3> yï OeH*(B, Z)/H*(S, Z) xA + x3#*(£, Z).

We now construct an S1 x *S1 bundle over i? as foliows. Choose maps

fi:B-*K(Z,2) CP«3 Bsl i 1, 3

representing the classes xl9 x3. Form the diagram

S1 x S1-——--= - S^S1
i i
E > Esi x Si
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which is the classifying diagram of a principal S1 x S1 bundle £, over B

Proposition 3 2 //*(£, k) and TorHHBsixSl k) (H*(B, k), fc) are not isomorphe
as vector spacesfor any field k

Proof Consider the Eilenberg-Moore spectral séquence [1], [8], [16] {En dr} of
the above diagram with k as coefficients It has

Er=>H*(E,k)
E2 TorH,(Bsl x sl k)(H*(B k)9k)

Clearly it suffices to show that E2 # E^
By direct computation we hâve

E°2 * H*(B,k)IH*(B,k)x1+x3H*(B,k)
Now the map p* H* (B, k)-*H* (E, k) is given by the composition

H*(B9 k)->H*(B, k)i(xu x3) E\ * ^E°J c H*(E, k)

Now we claim that /?*(j) 0 For we know that y (xl9 x2, x3} and p*(xl) 0

p*(x3) and so by Lemma 3 1 /?*(j) 0

But y^0eH*(B9k)l(xi9x3) and hence the map e E% *-^E^* is not a mono-
morphism Therefore E2¥=Ea0
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