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Continuons Forms in Infinité Dimensional Spaces

(Quadratic Forms and Linear Topologies IV)

By Herbert Gross and Vinnie H. Miller1) in Bozeman, Montana

Professor Dr. Gottfried Kôthe dedicated to his 6Oth birthday

Introduction

Let E be a &-vectorspace supplied with a symmetric, non-degenerate, bilinear
form <P:ExE-+k. In [4] the class of topologies making $ continuous was briefly
considered. It was found that there is a "coarsest" such topology associated with each

totally isotropic subspace H of E; this topology we dénote by x0H. As we shall see

in Chapter III, thèse are fairly canonical topologies for the form 4>. It is our intention
to utilize thèse topologies in framing and answering questions of a strictly algebraic
nature concerning infinité dimensional vectorspaces (E, #). In particular we shall
be concerned with groups of orthogonal automorphisms of such vectorspaces
(Chapter IV) and with the possibility of orthogonal décompositions (Chapter V).

The defining neighborhoods for the x0H topologies are given in Chapter II below,
and some of the elementary properties of such topologies are developed. Also in

Chapter II the ^//-complétions of spaces are discussed. The given form # extends

uniquely to a form $: £ x Ë-+k on the completion Ë of E. If $ is non-degenerate then
$ is nondegenerate ifand only ifH is orthogonally closed (H1 x H). t0//-complétions
coincide with the locally linearly compact spaces with continuous forms.

In Chapter III the Clifford algebra C($) associated with a linearly topologized
space (E, 0) is discussed. The fruitfulness of Clifford algebras in the study of finite
dimensional spaces and their orthogonal groups is well known. Starting from a linear

topology t on (E, $) it seems désirable to construct linear topologies x on the
associated Clifford algebra C(4>) in such a way that x' will induce the initial topology x

on E if E is thought of as embedded in C(#). We first extend x to suitable topologies
p

on the tensor products ®E and then, by the usual sum and quotient opérations, to a

topology x' on C(#). The construction discussed hère will make use of the projective
p p

tensor product topology ®t (of t) on ®E introduced in [6]. It is shown that the

resulting topology on C(#), denoted by ®x, induces the initial topology x on E if and

only if t is finer than some x0H topology. Surprisingly enough, this condition is also

seen to be équivalent with the condition that ®t on C(3>) be Hausdorff. Thèse natural
requirements for topologies on C(#) thus lead us again to the topologies x0 H. The

x) The second of the authors was partially supported by the National Aeronautics and Space
Administration.
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main resuit of this chapter is the theorem saying that multiplication in C(<P) is ®t-
continuous when (E, 0) is of denumerably infinité dimension and t t0//, H ortho-
gonally closed. Under thèse conditions C(<P) with the ®t topology is in fact a topo-
logical algebra. Topologies can be given which are finer than some t0H for which
multiplication fails to be continuous, both in the denumerable case and in higher
dimensional cases. Whether multiplication in C(<P) can be ® r-continuous for suitable x

is an open question in the nondenumerable case.

In Chapter IV of the paper we investigate in some détail the algebraic structure of
groups of t<j>//-continuous (orthogonal) automorphisms of spaces (£", <P,x0H). The

spaces treated in this discussion are those which are either of denumerable dimension

or else x0 //-complète. For a large number of underlying fields it turns out that the
full orthogonal group of a x# //-complète space coincides with the group of ail x0H-
continuous automorphisms; (//has to be a maximal totally isotropic subspace of E).

In the last part we discuss some examples of nondenumerable spaces (E, <P), some
of which were suggested by topological investigations. For example, it has long been

known that spaces of nondenumerable infinité dimension do not in gênerai hâve

orthogonal bases. Topological considérations point to classes of spaces (E, #) which
do not even contain an orthogonal summand of infinité dimension less than that of the
whole space. Clearly such spaces admit no infinité orthogonal décompositions what-

ever.
Some of our theorems hâve obvious extensions to the more gênerai case of £-

Hermitean forms over arbitrary fields (of any characteristic.) In many cases examples

illustrating the more gênerai context were not at hand; we hâve therefore not con-
sidered thèse possible generalizations hère.

I. Notations and Définitions

1.1. In the following E will always be a vectorspace over some commutative field k
and <P:ExE->k will be a symmetric, bilinear form. We assume throughout that
charA:^2. If # is nondegenerate we say that £"is semisimple. ||x|| is <P(x, x). Subspaces

H of (£, #) are usually endowed with the induced form <P\HxH- Hc\HL is called the

radical of H (rad H). His totally isotropic if Ha H1 and anisotropic when ||x|| =0
only if x 0. The subspace His called orthogonally closed (1-closed) if H11 H and

orthogonally dense (1-dense) if H1L E. If H is 1-closed and F finite dimensional
then H-{-Fis 1-closed. A semisimple space (E, #) which possesses no proper 1-dense

subspace is of finite dimension. (This is proved by showing that $ induces an epi-

morphism of E onto £*, the algebraic dual of E.) In particular, if every subspace of a

semisimple space is 1-closed then the space is finite dimensional. Bases of a vectorspace

are algebraic bases throughout; k(ea\ei dénotes a fc-space with basis vectors ea.

If A®B is an orthogonal décomposition (for some <P) we write A®B.
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1
1.2. A Witt décomposition of (E, #) is a décomposition E=(R®R')®G, R and R'

totally isotropic subspaces spanned by the two halves of a symplectic basis {ra, r'a}a€l

ofE:R=k(ra\eI, Rf k(r^)aeI, ^(f^ rp') — à*p (Kronecker), and G with an orthogonal
basis. The following theorem is often used ([10], Theorem 7): Let {E, $) be a semi-

simple space of denumerably infinité dimension, and let R be an orthogonally closed
i

totally isotropic subspace of E. Then E admits a Witt décomposition E=(R@R')®G.
We shall frequently find ourselves in the following situation: Let E=R®Rf be a space

ofdenumerably infinité dimension with R and Ri totally isotropic;further let {ri9 rl}t ^t^n
beaset ofvectors with rteR, r-eJR' and ^(rf, rj) <5fj. Then we can extend {rh rfj}i^n to a

symplectic basis {rh r'i]i^1 of E whose two halves span R and R! respectively.
1.3. Terminology and conventions concerning linear topologies are consistent

with [4] and [6]. We should like to recall that the "orthogonal" F1 for Fa(E9 #) is a

subspace {xeE; x J_F} of E; whereas the "orthogonal" F0 is a subspace of some
dual G of E, viz. {xeG; <F, *>=0} where <, > defines the duality between E and G.

a(E, G) dénotes the weak topology on E induced by G.

1.4. We conclude this chapter with a few words about the underlying fields. We
shall usually assume later that the spaces (E, 0) admit infinité dimensional totally
isotropic subspaces, a requirement on the form #. However, there is an impressive list
of fields k such that every infinité dimensional A>space (E, <P) admits infinité dimensional

totally isotropic subspaces. Choosing <P diagonal, it is clear that such fields are

necessarily non-formally real. Ail fields in the following list hâve the property that
there is an integer m, depending only on k, such that every form <P in m +1 variables

over k has a non-trivial zéro. Finite algebraic extensions K of fields with this property
are again of this kind, mn in lieu of m will do, m the appropriate number for k and

n [K:k], (mn is not, in gênerai, the most économie choice; see for example the end of
item 2 in the list below.) Fields for which there is such a number m are called ortho-
normal in [14]. (The name is derived from the fact that every semisimple space (E, #)
of denumerable dimension over such a field possesses an orthonormal basis [10].)
In particular, the following fields are orthonormal.

(1) A Kneser field k is a non-formally real field of characteristic unequal 2 for
which gk k*/k*2, the multiplicative group of nonzero éléments modulo square
factors, has finite order o(gk). Ail Kneser fields are orthonormal; they hâve m o(gk)
(see [5]). When o(gk) is finite it is necessarily a power of 2 as ail of the group éléments

are of this order. For every n^O there are Kneser fields k with o(gk) 2n; spécial

examples are the algebraically closed fields, the finite fields, and the local fields.

(2) A further class of orthonormal fields which does not fall into the previous

category is the class of ail transcendental extensions of finite transcendence degree r of
finite fields and algebraically closed fields. Hère m is 21 +r and 2r respectively (see the
second lemma in [13]). Hence also orthonormal are the function fields in r variables
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over a constant field k which is finite or algebraically closed; it foliows from [13] that
2i+r and 2r respectively will do for m in this case.

(3) Finite or infinité non-formally real algebraic extensions of the rationals are
orthonormal; hère m 4 by Hasse-Minkowski theory.

II. The x0H Topologies

Throughout Chapter II, (E, 4>) will be a semisimple space over an arbitrary
(commutative) field k with characteristic unequal 2; k invariably carries the discrète

topology.

II. 1 Elementary Properties

Définition 1 : Let if be a totally isotropic subspace of (E, <P). The linear topology
defined by the neighborhood filter {HnF1} of OeE, F running through the finite
dimensional subspaces of E, will be denoted by x0H (cf. [4], 2.3).

As the notation suggests the topology dépends in a fundamental way on the form
as the foliowing corollary shows, (cf. Theorem 17 below).

Corollary: Let x be a linear topology on (E,<P). The form <P:ExE-+k is x-
continuous if and only if x is finer than some x0H (x^x#Hfor a suitable H).

Indeed if # is continuous then it is continuous at (0, 0)eExE, i.e. there is a t-
neighborhood H with <P(H, H) (0), k being discrète. Furthermore, for arbitrary
fixed x, <P(x, y) is continuous in y; thus there is a x-neighborhood Vx with $(x, Vx)

{0}, i.e. Vxck(x)1. Taking finite intersections we see that ail the HnF1 are x-

neighborhoods of OeE, and therefore x^x0H. The converse foliows by the same

argument, noticing that # is continuous if and only if it is continuous at (0, 0) and

separately continuous.
It is easy to see that the topology x0H is discrète if and only if H is finite dimensional.

The only spaces of interest in this connection are therefore those (E, <P) which
admit infinité dimensional, totally isotropic subspaces H (see 1.4). We finally notice
that the semisimplicity of (E, <P) implies that x0H is always Hausdorff.

Since every totally isotropic H is contained in a maximal totally isotropic
subspace F, the x0 V with maximal V are precisely the coarsest linear topologies making
$ continuous.

We remark that in contrast to the locally convex case, continuity of <P at (0, 0) does

not imply continuity of $ on E x E. We shall illustrate this by an example. In Chapter
IV we shall describe semisimple spaces (V® W, 0) of the foliowing kind: V will be a

totally isotropic space spanned by an infinité basis {^}ie/, and for we W, if $(w, vt) 0

for infinitely many tel then w 0. On such a space V® W we now define a linear

topology t as follows: For every finite subset Gclletl-G be its complément in /and
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let FG=k(vl)lei-G- T is defined by taking the sets {FG} as a zero-neighborhood basis,
G running through the finite subsets of/. x is Hausdorff as nFG=(0); further $ is

continuous at (0, 0) as ail FG are totally isotropic. However, for 0# we W9 #(w, >>) is

not continuous in y. Otherwise #(w, FGo) (0) for suitable FGo, i.e. #(w, ^ 0 for ail
ieI—G09 and thus w=0 contrary to our assumption.

We now turn to the comparison of certain x0H topologies.

Lemma: Let V and H be totally isotropic, L-closed subspaces of (E, <P). We hâve

x0 V=x0(VnH)^x0H if and only if dim V/Vn H is finite.
Proof: If x0 F> x0 Vn H then there is a finite dimensional F such that F=> VnH^>

VnF1. And therefore dimF/Fn/f^dimF/FnF^dimF.
Conversely since H=>VnH, x0H^x0VnH and x0VnH^x0V. It remains to

show that x0VnH^x0V. By hypothesis V=(VnH)®G with G finite dimensional
and Vn H 1-closed. So dim(Vn H)1/(Vn H)1n G1 ^dim EIG1^ dimG is Mite; Le.

(Vn H)L {(Vn H)Ln GL)®K for finite dimensional K. Therefore Vn H=(Vn H)11
((VnH) + G)nK1= VnK1. From which we conclude that x^VnH^x^V.
Theorem 1 : Let V and H be maximal totally isotropic subspaces of (E, <P). The

following are équivalent:
(i) t0V=t0H
(ii) t0 V and x0H are comparable

(iii) V/VnH and H/VnH are of the same finite dimension

(iv) V/VnH and H/VnH are finite dimensional.

Proof: (i)-*(ii) is trivial. If (ii) is the case we hâve for instance t0 V^t0H. Hence

V=(VnH)®G for finite dimensional G by the preceding lemma. (If V is totally
isotropic then so is VL\ so V= V11 for maximal V.) We set H= (VnH)®Gf and
claim that G®Gf is semisimple. Indeed if xemdG®G' then x is isotropic and xLV
and xLH as G®G'LVnH. Hence xeV and xeH as both V and H are maximal.
Therefore, x=0 since (G® G') n Vn H= (0). Since G is finite dimensional, G®Gf semi-

simple, G and G' both totally isotropic, we hâve dim G dim G'. This proves (ii)-»(iii).
(iii)-»(iv) is trivial, (iv)—>(i) is a direct conséquence of the previous lemma.

We consider an example which shows that the assumptions on V and H can not be

weakened in the previous theorems. Let E=V®Vf be of denumerable dimension,
Fand V totally isotropic for #, <P(vi9 Vj) ôtj for {tfj^i and {vfi}i^1 bases of Fand V
respectively. Let H=k(v1 + vi)i>i. Fis maximal, in particular ±-closed; further Hc V
and dim F/ VnH=dim F/H=l. Nevertheless we do not hâve x0V=t0H. For if
x0H^x0F, we should hâve /f=> VnF1 for some finite dimensional F. Since V^>H^>

Vn Fx wesee that dimH/Vn F1 is finite; further Vn F1 is 1-closed as both Fand F1

are ±-closed. Hence H is ±-closed (1.1). This is a contradiction as it is easily verified
that H11= F##. We see that x0H is strictly finer than x0 Fin spite of the fact that H
falls short of F by only one dimension.
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Let TeD(E, <P), the orthogonal group of (E, 0). Tis x0 F continuous if and only if

Theorem 2: Let H be a totally isotropic L-closed subspace of {E, 0). Let Te
£)(£, 0). T is r0H~continuous if and only ifT(H)/Hn T(H) isfinite dimensional. T~lis
x0H'Continuous if and only ifH/HnT(H) isfinite dimensional.

It seems natural to call a subspace LczE almost invariant for T9 TeD(E, 0), if
L n T(L) is of finite codimension in both L and T(L). It is straightforward to verify
that ail Twhich leave L almost invariant form a subgroup of D(E, <P). In particular,
if L is totally isotropic and l-closed, then the previous theorem shows that the group
of ail T leaving L almost invariant is the largest subgroup of O(E, 0) consisting
of T0L-continuous automorphisms. A T<p//-continuous Tdoes not, in gênerai, hâve a
continuous inverse. Let E=V®V be the space of denumerable dimension of the

previous example, V=k(vi)i^1, Vf k(vf)i^1. The index map 2/->4/, 61 + 27—1->
4/+7, 7=1, 2, 3 and i^l defines an orthogonal automorphism leaving V and V
invariant. If we set H=k(v4i)i^il then ris t0//-continuous but not open. This cannot
happen in the case of maximal totally isotropic spaces:

Theorem 3 : Let V be a maximal torcdiy isotropic subspace of (E9 0), and let

Te£)(E, 0). The following are équivalent.

(i) T is x0 V-continuous

(ii) T'1 is t0 V-continuous

(iii) VjVnT(V) and T(V)/Vn T(V) are of(the same) finite dimension.

Proof: This is an immédiate conséquence of the lemma above and Theorems 2

and 3.

We conclude this introductory section with an example which will be of importance
later on.

Lemma : Let H* be the algebraic dual ofthe k vectorspace H, and let 0 be defined on

E=H®H* by 0(h*, h) h*(h), H and H* both totally isotropic for 0. Then H* is

almost invariant under any TeD(E9 0). In other words, every TeD(E, 0) is t0H*-
continuous. (We note that E is semisimple, and both H and //* are maximal totally
isotropic subspaces.)

Proof: Forfixedre£)(£, 0) we set D H*nT(H% H* D®K9 T(H*) D®S.
In particular SnH* (0) and D1K®S. Let {st}leI be a basis of S. We décompose st

into st^ht + h*9 hteH, hfeH*. Since SnH* (0), the hl9 iel9 must be linearly
independent. We put S=k{h)ieI and hâve dim£=dimS. We hâve DIS since DIS
and DczH^czH*1. For arbitrary /**g//*, we décompose /** into d+k9 deD, keK.
For every heS, 0(h*-k, h) 0(d9 h)=0 so h*(h) 0(h*9 h) 0(k, h) k(h). Thus K
possesses a subspace isomorphic to S* and dim^^dim5* dimS*.

Applying T'1 to the décompositions given above for H* and T(//*) yields
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exactly as above we obtain dimr^S^dim^"1^)*, so dimS>dim#*. But this
combined with the inequality of the previous paragraph shows that K and S are of the

same finite dimension.
As we shall see later (IV, Theorem 21), the subspace H is by no means left almost

invariant by £)(£, #).

II.2 Complétions

Let V be a totally isotropic subspace of E and equip E with the topology t t0 V.

In several of the theorems which follow it will be convenient to consider the following
décomposition: E=V®Hi®H2 with V1=Hl®V, V=k(va\ei, #i £(^ia)aej,
H2 k(h2(X)(X6K9 #=#i©#2- Such a décomposition is of course always possible.

The symbol ~ will dénote completion. The topology t under considération is

always %& F. Thus f dénotes the completion of the t0 V topology.
In this chapter, V will dénote the topological dual of V.

The first theorem shows that the problem of completing E reduces to that of
completing V.

Theorem 4: Ë— V®IL r\H is the discrète topology.
Indeed, every algebraic complément H of a linear zero-neighborhood is a discrète

topological supplément.
The completion is only of interest if # induces a continuous bilinear form on E.

The next theorem guarantees that this will be the case.

Theorem 5: The quadratic form Q:E-*k extends to a unique continuous function
Q:E-*k. Q is quadratic, Vis totally isotropic and, with respect to the associatedbilinear

form $, H1LV. ï^x$Wfor some totally isotropic subspace Wof(Ë, $).
Proof: Although Q is not a uniformly continuous function it can still be extended

to E provided that for ail f-Cauchy Systems <^> of éléments of E which converge to
x in Ethe directed Systems (Q(xp)y hâve one and the same limit in k (see [12], page 17).

Let <t;a + ha} and <t;^ + /^> be two directed Systems in E both conveiging to xeE.
Since both are Cauchy and V is a f zéro neighborhood, ha equals some fixed h for a

sufficiently large and h'a h for sufficiently large a. And since both directed Systems

converge to x, (Va + K — v'^ — h'^ is also Cauchy so h h'; in particular <^a~^> is

Cauchy.
Now consider (Q(va + ha)}. For a and fi sufficiently large, Q(va-^ha)-Q(vp + hp)

vp+h) 2^(va, h)-2<P(vp, h) 2$(v(X-Vp, h) 0 since we may assumepi V. Therefore (ôO^ + ^a)) is a Cauchy System in the complète Haus-

dorff space k so has unique limit A. Similarly lim Q(v'a + h'a) X'.

By computations similar to those above, Q(va + ha) — Q(v'a + h'a) 0 for a sufficiently
large. So X Xf. Therefore Q extends uniquely to a continuous function Q:E->k.



Continuous Forms in Infinité Dimensional Spaces 139

If two continuous functions mapping the topological space X into the Hausdorff
space Y agrée on a dense subset D of X then they are identical. Applying this well
known resuit gives immediately that Q is quadratic, Fis totally isotropic and $(v, hx)

0, veV.h^eH^
Since Q is continuous, t>t$ JFfor some totally isotropic Wby II. 1.

The results to this point are of an existential nature. In the next three theorems
the form of the completion is made moie précise and a Computing formula is given
for $.

Theorem 6: (V,t\p) (H2*,g(H2*,H2))soE=H2®Hwiththe a (H2*, H2) topology

on H* and the discrète topology on H.
Proof: Fis t0 Flinearly bounded, since for arbitraiy VnF1, F finite dimensional,

dimV+(VnF1)/VnF1 dimV\VnF1 dimV+F1/F1^dimE/F1 ûimF. There-

fore Vis f linearly compact, Fis topologically isomorphic to F'* and ï\v o(V, V')
(see Kôthe [12], page 101).

To complète the proof we show that F' is in fact H2, but first we prove a useful

Lemma: IfE= V1®H2 with Fc F1 and(ViH2y a dual pair for <f> then r0 V\v
a (F, H2). ît is not necessary to assume that E is semisimple.

Proof of the lemma: g(V,H2) has a zéro neighborhood basis of sets G° {veV;
<P(h2, t?) 0 for ail h2eG}= VnG1, G a finite dimensional subspace oîH2. The sets

VnG1 are in the t^ V\v zéro neighborhood basis. In fact for an arbitrary set VnF1
in the t0 V\v zéro neighborhood basis, Fbeing finite dimensional is contained in some
V1 + G so VnF1=>VnV11nGL=VnG1. So the sets VnG1 are even a zéro

neighborhood basis for t0V\v.
Returning to the proof of the theorem we show the lemma applies. <F,/f2> is a

dual pair foi 4>, for if <P(v, h2) 0 for ail h2eH2 then h2e F1 so h2 0, and if <P(v, h2)

0 for ail ve V then since v is also orthogonal to F1, vLE which implies i; 0 by the

semisimplicity of E. By the lemma, T0F|F a(F,if2) and under thèse conditions

V'=H2.
Each élément h2 oîH2 corresponds to a function on Fnamely $hl with $h2(v)

<P(h2, v). The 4>h2 are linear, and they are even continuous since <P is separately

continuous. $h2 extends uniquely to a linear continuous function Wh2 : V-*k. V' {¥h2 ;

h2eH2}=H2 so F'*=#*. We also hâve v(h2) v(Wh2) Wh2(v)9 (see [12], page 101).

Combining with the earlier resuit, F^F'*=tf2* with topology f <r(F, F')
(t(H},H2). This complètes the proof of Theorem 6.

Applying the same proof technique to an arbitrary dual pair gives the

Corollary: If <VU F2> is a dual pair, the completion of (Vuo{Vu F2)) is

(v;,°(y*,v2)).
Theorem 7: The unique bilinear form $ of Theorem 5 has $(v, h2) v(h2) for
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ve f=H* andh2eH 2. f t$ F. (Ë, $) is semisimple if and only if V is L-closed. If V
is a maximal totally isotropic (resp. L-closed) subspace ofE then V is a maximal totally
isotropic {resp. L-closed) subspace ofE.

Proof: To define the extension $ of our bilinear form # it suffices to specify
$(v, h2) since other values are known from Theorem 5. We take as définition
$(v, h2) Wh2(v)=v(h2) and define $ symmetrically and on sums bilinearly. This
results in the gênerai formula $(û + hl+h2, û'

h\ +h2). The associated Q has Q(u + hl + h2)

To show Q is continuous, let x û + hl+h2 be arbitrary in E. h2ek(h2fi)fi€B for
some finite set B. If veVB=Vr\k(h2p)P€B then Q(û + h1+h2 + v) 2(û + v)(h2) +
Q(hl+h2) 2û(h2) + Q(h1 + h2)==Q(û+h1+h2). And by Theorem 6, FBis a space in
the f zéro neighborhood basis. So Q is continuous.

Finally, Q agrées with Q on £, for if ve V then Q(v + hx + h2) 2v(h2) + Q(h1+h2)
2#(t>, *2) + fi(A1 + A2)s=e(»+*i+*2) since *(», A2) ç|>fJ2(t;)=n2W.
Thus g is the unique function of Theorem 5, hence in particular quadratic.
We turn our attention now to the completion topology. The conditions of the

lemma apply to (E, $). For (H*)1^=H2*®H1 since if <P(v + h1 + h2,û) û(h2) 0

identically in û then h2 0, while from Theorem 5, $(v + hu û) 0 for ail ûeH*. And
Qî2,H2y is a dual pair for $ since $(û, h2) û(h2). Applying the lemma, o(H2*,H2)

t# Py is the completion topology on V. Since the topology on /fis discrète and the

sum V®His topological, the completion topology is t# V.

We now détermine the conditions under which (Ë, $) will be semisimple. First we

prove that $ is nondegenerate iff Ht is semisimple.

lfH1 is semisimple we must show that x û + hi+h2LËimplies x 0. Hh2 were
not zéro there would be a v in V with l #(i?, h2) $(v, h2) $(v, û + hi + h2), so

h2 0. If Je û + hl9 with hx ^ 0 then by the semisimplicity ofHx, there exists an h\ e H l,
with 1 <P(hu h'î) $(h'1, û + hx) so ht =0. Finally if w#0 then there is an h2eH2 with
$(#,/î2) m(/i2)=1 som 0. Conversely ifHt is not semisimple then there is a,nh[eHi
with h\LHv Let ^eff* with **'1(A2) *(Ai, A2)« For arbitrary û + hx+h2 in £,
^ =-^hf(h2) + ^(/îi,/i1+/î2) 0, so ^ is degenerate, and

Hence dim(radjfiT1) dim(radJÊf).
The proof of the following lemma now shows that $ is nondegenerate if and only

if V is ±-closed.

Lemma: Ht is semisimple iff V is L-closed; in fact dim(radH1) dim(rad£f)

Proof: V1=V®Hl so F11 (F+H1)1= V1

Since V11=V®(r2idHi), F= F11 iff radi^ =(0).
To complète the proof of the theorem, sufficient conditions will be given for F to

be an orthogonally closed or a maximal totally isotropic subspace. As observed above,
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i?1$=V1®Hi. If Fis 1-closed then H t is #-semisimple, so Ht is $-semisimple,
therefore V is 1-closed.

For V a maximal totally isotropic subspace of E9 Hl must be anisotropic. So if
û+hxeVL then Q(iï+hl) Q(hl)ï0 unless ht 0. Therefore Fis a maximal totally
isotropic subspace of (Ë, $).

A normal form for the décomposition of (Ë, $) is given by

Theorem 8: Ë=(G\®G2)®GX with G2, G* totally isotropic, dimG^dim/Jf and
* g2)=gUg2)for ail g*2eG*2 andg2eG2.
Proof: FromTheorem6,Ë=H*2®H2®H1 withJF/2 k(h2a\eKandifi k(hla\ej-

As usual let <Ph dénote the function//2->/: with <Ph(h2) <P(h, h2). Put G1=k(hla —

<Phl<x) and G2 k(h2a — ^<Ph2a\BK. The dimensions of Gx and G2 are clearly as

specified. Every élément û + ht + h2 of E can be written in the form (û + <Phi + \ <Ph2) +
(*i —#fci) + (*2 —i#*2) anc^ *e sPaces ^2*» G and G2 hâve (0) intersection so Ë=
H2®G2®GX. The remaining relationships are verifîed by routine calculation. Ex-
tending each h*2eH2* by zéro to ail of E we obtain h**. h*^>h**\G is a topological
isomorphism H*-+G*.

In the next theorem we show that the completion of the (E, t0 V) spaces coincide
with the locally linearly compact spaces on which the form $ is continuous.

Theorem 9 : If (E, f) is a locally linearly compact space and if the nondegenerate,
bilinear form $ is continuous (Le., t^t0F for some totally isotropic V) then E is f-
complete and ï x^Dfor some linearly ï-compact DaV. Further x^D — x^V ifand only

j/dim V/D isfinite. Conversely if(E, $, x0 W) is complète then E is locally linearly x0 W-

compact.
Proof: Since E is locally linearly ï-compact, there is a linearly ï-compact zéro

neighborhood U. V is T-closed so D=VnU is linearly ï-compact. And for finite
dimensional F, DnF1=VnUnF1 is a ï-zero neighborhood. Therefore x^xoD.
But (D, t0D|d) is a linearly topologized space and D with the finer ï|D topology is a

linearly compact space, so x^D\D= x\D (Kôthe [12], page 98). Since D is both a ï and

a x0D zéro neighborhood, E=D®D0 is a topological sum and Do is discrète for
both topologies (Kôthe [12], page 96). Therefore x x0D.

To demonstrate that xmD x# V we apply the lemma to Theorem 1.

Conversely, if (E, x0 W) is complète then since Wis x0 W-closed, W= W. But Wis
also linearly x0 fF-bounded as we hâve already shown in Theorem 3. Hence W= Wis

linearly t0 JF-compact, which shows that (E, x0 W) is locally linearly x0 JF-compact.

The proof gives the following interesting corollaries (cf. [9]). The first is an

immédiate conséquence of Theorems 8 and 9.

Corollary 1 : If(E, ï) is locally linearly compact and <È> is continuous then E has a
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X

décomposition (D*®D2)®Di of theformgiven in Theorem 8 with D* the locally linearly
compact D of Theorem 9.

Corollary 2 : If(E, t& W) is complète and A is a semisimple x0 W-closed subspace

ofE then either A is discrète or AimA > ||A:1|K°.

Proof: By the previous theorem, (E, t0 W) is locally linearly t0 FF-compact. Since

A is closed, A is locally linearly compact with respect to the induced topology. Also <P

is continuous when restricted to A, so the previous corollary applies and A (D*®
(D2®D1)) with the t0D* topology on A. If dimD2<K0 then dimZ>*<X0, an(* the

topology on D* would be discrète. Since D* is a linear zéro neighborhood, D2 -f Dl is

a topological complément of D*. And the topology on D2 + Dx is discrète as well. In
this case t0D* is the discrète topology.

If on the other hand dim/)2^K0 then ||Z>;||> ||A:||Ko, so dimA^dimD*2^\\kf°.

ED. Clifford Algebras

III. 1 Canonical Topologies on the Clifford Algebra

With the tensor algebra T(E) defined as usual over the vector space (E, #), let Q
be the quadratic form associated with 3> and let / be the two-sided idéal generated by
the éléments x®x-Q(x) in T{E). Then the Clifford algebra C(E) is by définition
T{E)jL The équivalence class ofxt ® • • • ®xn will be denoted by xx°- • -° xn. IfE=k(ea\ej
with J asymmetrically ordered by <, then for S={ai9..., aw}, a1<---<an let es

eai°"'° ean. The es together with the scalar 1 are a basis for C(E) (for a proof see [1]).
In particular if xl9...9 xn are linearly independent éléments of E, then xt° •••°xn#0.

Iff:E-+E is an isometry of (E, $) onto itself then/extends to an algebra homo-
morphism g:T(E)-*T(E) which is the identity on k and has g(x1®---(g)xn)

f(Xi)®'"®f(xn). Since /(x)°/(x) g(/(^)) g(x), / similarly induces an algebra

homomorphism/r. C(E)-+C(E)withh\k= l|kand h(xï°-"° xn)=f(xl)o'"°f(xn). Further
let E hâve basis (ea)aeI then (/(O)aei is als0 a basis for E. Basis éléments eix°'"°ein of
C(-E)are mapped by h onto a complète set of basis éléments/^) °--o/(eIn) of C(E),
so h is bijective. Thus every isometry/of £ induces an algebra isomorphism h of C(E).
Conversely, if h is an algebra isomorphism of C(E) which maps E onto E and is the

identity on k then the restriction of h to E is an isometry, for <P(h(x), h(x))
h (x) ° h (x)=h (x ° x)=h (# (x, x)) 3> (x, x). Because of this canonical relation between

the isometries of E and algebra isomorphisms of C(E), we shift our attention to the

problem of topologizing the Clifford Algebra.
Starting with a linearly topologized space (E, t), there are many ways of con-

p

structing linear topologies on the tensor products ®E. Hère we shall consider two
î

tensor product topologies, the xe topology, corresponding to the e-product of
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Schwartz and the "projective" topological tensor product topology corresponding
to that of Grothendieck. Thèse topologies hâve been studied in [6].

A linear topology on the tensor products extends canonically by taking the direct
sum topology on the tensor algebra and then the quotient topology to a linear topology
on the Clifford algebra. If this extension is to be useful it must induce the initial
topology when restricted to E. We now investigate whether this is the case for either
the s-product or the projective tensor product extensions.

Since it will quickly become apparent that the e-product topology is not suitable

in the sensé just mentioned, we shall describe it only briefly. For further détail the
p

reader is referred to [6]. The xe topology is the finest linear topology on ®E for which
i

p p
the canonical multilinear map \\ Ei-*®Ei is uniformly continuous. For each/?, xe has

i i
a neighborhood basis at zéro of sets

Ûp= Up®E®E®'-®E + E®Up®E®---®E+"-+E®E®E®-~®Up

each summand containing p factors and the Up running through a zéro neighborhood
basis for the topology x on E. A zéro neighborhood basis for the tensor algebra

00

consists of sets Û= ® Ûp and a zéro neighborhood basis for the Clifford algebra of

the sets aÛ where a is the canonical map T(E)-+C(E). Thèse extensions aswell as

the e-product topologies on the tensor products will be denoted by xe.

Theorem 10: If(E,x) is discrète then (C(E), xe) is discrète. If(E, x) is not discrète

then (C(E)9 xe) is trivial.
Proof: If (E, x) is discrète then (0) is in the zéro neighborhood basis for t. In the

expression for Ûp in the preceding paragraph taking Up (0) for every p gives Û=(0)
and (x(tf) (0). Since (0) is thus in the zéro neighborhood bases for (C(E), xe), the

latter is discrète in this case.

On the other hand if (E, x) is not discrète and a(Û) a(Ui + U2®E+E®U2 +

U3®E®E+~-) is an arbitrary set in the zéro neighborhood bases of (C(£), xe) then

every élément of the form xt° x2o- • -° xn is in a Û. For since t is not discrète, there is an

élément y^O in Un+2, and since E is semisimple, there is a zeE with 4>(.y,z) i.
y0z+z0y=l,andsoxi0'--0xn=y0z0xl0'''0xn+z0y0xl0>--°xne(iÛ. <7(ï/)isthus seen

to be a subspace of C(E) containing a set of generators of C(E), hence a{Û) C{E).

In this case xe is the trivial topology on C(E).
So requiring that the xe topology on C(E) induce the initial topology x on E would

leave for considération only the uninteresting cases where x is discrète or trivial. For

this reason the xe topology will not be discussed further.
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P

We now turn our attention to the projective tensor product topology ®t on the
p i

tensor product ®E. In [6] it is shown that there is a unique linear topology on E®E
i

with the following properties: (1) the canonical bilinear map co2:ExE-*E®E is

continuous and (2) if/is a bilinear continuous map ofExEinto a linearly topologized
&-vector space G then the induced linear map E®E-+G is continuous. The proof

p p p
extends to ®E. ®x is by définition this unique topology. Clearly ®t is the finest

i i i
p p p

linear topology on ®Efor which œp: fj E->®Eis continuous. If x is Hausdorff so is
i 11p

®t (for détails see [6]).
i

2

A neighborhood basis at zéro for the ®t topology is given by the subspaces
i

Û2 U2®U2 + £ M®^2*+ E ^2x®Mwitht/2xandC/2runningthrougha zéro
xeE xeE

neighborhood basis of t. This is so since œ2 is continuous if and only if it is

continuous at (0, 0) and is separately continuous at (x, 0) and (0, x) for every xeE. If
œ2 is to be continuous for a topology x on E® E then every set in the f zéro neighborhood

basis must contain a space of the form Û2. Conversely, the spaces Û2 define a

linear topology on E for which œ2 is continuous. The same reasoning applies for any^,
p

so a zéro neighborhood basis for ®t consists of the sets
i

ûp=up®-®up + X S lx~\®vpx®-®upx

+ Z I [xl®[y']®upxy®-®upxy
x,y e E perms

+ -+ I S [Xl]®^]®-®^-!]®^»,,,...»,.,,
xt, Xp - i 6 E perms

with the subscripted ETs running through a zéro neighborhood basis for x and

and with similar meanings for the other E symbols. Henceforth in this chapter
perms

E E will be abbreviated by E and Ûp will be written simply
Xi,...,xqeE perms

up®-® up + £[*] ® upx®-® upx +
'Ztx']®[y']®Upxy®-®Upxy + -.

Taking sums and quotients, the projective tensor product topologies induce linear
opologies on T{E) and C(E), both denoted by ®t.
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We should like to remark that it is the requirement of separate continuity for cop

which is responsible for the complexity of the Ûp's and the subséquent difficultés in
the proof of Theorem 18 below.

We now détermine for which topologies t on E the induced topology ®t|£ is

equal to t.
Theorem 11: If E has a zéro neighborhood basis of subspaces no one of which is

totally isotropic then ®t|e is trivial.

Proof: Let
î

an arbitrary space from the zéro neighborhood basis for ®t on C(E). We claim that
an arbitrary élément x of E is an élément of o{Û). For Ux is not totally isotropic so

there exists a yeUx with Q(y)^O. X=l/Q(y)y°y°x a((l/Q(y)) y®y®x)eû3cz
o{Û). But this implies o(Û)nE=E for arbitrary g(Û), hence the assertion of the
theorem.

On the other hand, if the conditions of Theorem 11 are not met then some linear
neighborhood V of zéro is totally isotropic. Intersecting V with the spaces of the zéro

neighborhood basis gives a zéro neighborhood basis for totally isotropic subspaces.

In this case we hâve

Theorem 12: Let (E,x) hâve a zéro neighborhood basis {Ua} of totally isotropic
subspaces. Then ®t|£ t ifandonly ifE=[J U^.

a

Proof ofnecessity: Let xeE. We shall show xe\^J U^. For x 0 this conclusion is

immédiate so suppose x^O. Since t is Hausdorff there is a l/a with x$Ua; ®t|je: t so

there is a Û with a(Û)nEcUa; Û=U1 + U2®U2 + YJ[x]®U2x+U3®U3(S)U^
£ [x]®U3x®U3x + Y, [x]®[y]®U3xy-i—. Suppose by way of contradiction that

x$U^xx. Then there is a yeU3xx with cj)(x,y)=l; therefore x <P(x, y) x x°y°x +
y°x°xea(Û) which, since xeE, implies xe Ua a contradiction. Weconcludexel/31^.

Proof of sufficiency: Since each (r(Û)nE=G(U1 + '-)nE=>U1, ®t|jE<t. Now

suppose Ux is an arbitrary space in the t zéro neighborhood basis. We shall construct
Û such that u(Û)r\EcUl. First take V^U^ for ail n. By hypothesis for every x there

m

is a Ux such that x±Ux. Take UnXl Xm=Unn0 UXt and Û=UnXl
i=i

U2x+-. We first note that a{ £ [xj®---®^]®^ Xm®'~®Unxi JCJ

perms

*([xi\®...[xm]®Unxl Xm®~'®Unxl Xm), because if ueUnXi Xm
then wt= -x^u,

l^i^m. So every élément of a(Û) is of the form t= Y ti°u^ u.eU^ Suppose by
finite

way of contradiction xeo{Û)nEbxxt x$Uv Let (ea\eA ^ a basis for the vectorspace

Ul. The set (x, e^eA being linearly independent can be extended to a basis for E.
n n m

Since xea(Û)9 by the remarks above x is of the form £ f,ow,= Y *i°( Z Ke*)
i=i t=1 j 1
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n m

Z Z KJti°e(iJ' Multiplying through by eaioea2o'"oe<Xm gives x°^1°-°eam=0 since
1 1 j=i
U± is totally isotropic. But this is not possible since xoeaio'-°eam is an élément of a

basis of the Clifford algebra. Hence a(Û)nEczUx. ,".®t|e t.
As an immédiate consequency of the construction in the proof of Theorem 12

we hâve for future référence the

Corollary: If(E, t) has a zéro neighborhood basis of totally isotropic subspaces

{Ua} then (T(E), ®t) has a zéro neighborhood basis ofsets Û such that t in o{Û) implies
t ]T tj°ej with the e} linearly independent éléments from a single totally isotropic Ua.

finite
Next we shall describe the topologies for which the conditions of Theorem 12 are

realized.

Theorem 13 : If(E, t) is a linearly topologized space with a zéro neighborhood basis

of totally isotropic subspaces Ua and E={J U^ then T^T0Uafor every ce. Conversely,
a

if (E, t) is a linearly topologized space with t ^ t0 Vfor some totally isotropic subspace

V of E then % has a zéro neighborhood basis of totally isotropic subspaces Ua and

a

Proof: To show T^T0l7ao, let U^nF1 be a set in the i0Uao zéro neighborhood
basis, F=k(xl)l^l^n. Since 2s U U* there exist zéro neighborhoods Uat with

n a

Uao nD Uai c: Uao n F1 proving the contention.

Conversely suppose t^t^F. The spaces VnFjj~ with Ffi a finite dimensional
subspace of E are by hypothesis part of a zéro neighborhood basis {Ua} for t. Since

VnFjf- is totally isotropic the Ua may be chosen totally isotropic. But the (VnFp-)1
already cover E since £=(J Ffi and ^cF/jLic(Knf/)i. Therefore E={J U^.

fi oc

It is interesting to note that when t t0 V, F of infinité dimension and codimension,
the t®t topology on E<g)Eis strictly finer than the xe topology. This will be proved at
the end of this chapter at which time certain lemmas and theorems will be available to
make the proof easy.

The topology on C(E) can only be considered admissible if continuous orthogonal
automorphisms of E induce continuous algebra isomorphisms of C(E) and
conversely. The projective tensor product topology has this essential property as the

following theorems shows.

Theorem 14: Letfbe an orthogonal automorphism of(E, 0), g the corresponding

algebra isomorphism ofT{E) (with g(x1®~-®xr)=f{x^)®~-®f{xr)),and let h be the

corresponding algebra isomorphism of C(E) (with h(x1o'-'oxn)=f(xi)o--°f(xn)).If
V, V totally isotropic, then fis x-continuous ifand only ifh is ®x-continuous.
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Proof: Suppose/is t-continuous. Let Û=Ul + U2®U2 + YJ M®l/2jc+--- beaset
in the T(E) zéro neighborhood basis. For every Un (resp. Unf(x)f(y) there is a Vn

(resp. Vnxy such that f(Vn)czUn (resp. f(Vnxy )c[/n/w/(y) g{V)=g{V^
^2®^2+lM®^2*+"-^i + tf2®^2+£[/(*)]®^^
continuity of g.

Clearly h<r ag so ha(f) ag(f)ca(O)9 and h is likewise ®T-continuous.
Conversely if h is an algebra isomorphism of C(E) with /z|£=/and h\k= l\k then

we already know h\E=fh an orthogonal automorphism of E. Since t^t0 V, t= ®t|e,
so the continuity of h implies the continuity of h\E.

Applying the theorem to/"1 and h"1 gives the

Corollary: With the hypothesis of Theorem \A,fis open ifand only if h is.

Although not essential, it would be désirable to hâve a Hausdorff topology on
C(E). We first consider separate continuity of multiplication in T(E) since this resuit
will be used in the proof of Hausdorff Later in the chapter the subject of continuity of
multiplication will be discussed in more détail.

Theorem 15: Multiplication is separately continuous in (T(E), ®t). p

Proof: First consider multiplication on the left by S=x1®~-(g)xpe®E. For
1

q p+q p+q
every q the map Y\E->Yl E~*®E with (.Fi'---'^)-K*i'---> XP> ^î»---»^)-^^®---111 q p + q

®*p®j;i®***®3;g is continuous and so induces a continuous map ®2s-> ® E with
î i

p + q

y1(g)'~(g)yq-+x1(g)'-®xp®yl(S)'"®yq (by the définition of <g)E). Addition gives a
i

®t continuous map T(E)-*T(E) with t->s®t. The argument readily extends to
multiplication by a sum of such s's.

Using Theorem 15 we can prove the

Coroljlary: IfAisa two sided idéal in (T(E), ®t) then À, the topological closure

of A is also a two sided idéal.

This follows from the separate continuity of multiplication.
With the corollary above we are in a position to prove (C(E), ®t) is Hausdorff for

Theorem 16: t^t0V for V some totally isotropic subspace of E if and only if
(C(E), ®t) is Hausdorff.

Proof: Using Theorem 13 it suffices to show that (C(E), ®t) is Hausdorff iff x

has a zéro neighborhood basis of totally isotropic subspaces Ua and E=\J l//. The
a

topology ®t on C(E) was obtained by quotients from the ®t topology on T(E).
Under thèse circumstances it is well known (see for example [12]) that (C(E), ®t) is



148 HERBERT GROSS AND VINNIE H. MILLER

Hausdorff iff /=/ (/ the two sided idéal in T(E) generated by the éléments x®x —

Q(x), or equally well by the éléments x®y +y®x — 2&(x, y).)
Suppose ®t is Hausdorff. 1=1 is a proper idéal in T(E) so in particular —1^7.

Therefore there exists Û= Ï7i + C/2® *72 + Z M® ^2jH— in the usual zéro neighbor-
hood basis for T(E) with — 1 + Û disjoint from /. We claim U2 is totally isotropic.
For if this were not so there would be an x e U2 with || x || ^ 0. Put y jc (21| x || ~1 then

y is also in U2 and &(x,y) %. So x®y+y®x— le(— 1 + Û)nl, contradiction. We

may therefore assume that ail the Ua are totally isotropic.
We claim in addition that for each xeE, xÀ.U2x. If not there would be a ye U2x

with <P(x,y) i, and then x®y+y®x— le(— 1 + Û)nl as before; contradiction.
•¦•£=U ua\

a

To prove the converse we assume E=\J U^ for some totally isotropic zéro
a,

neighborhood basis {Ua}. By the corollary to Theorem 12 proved earlier, T(E) has a
n

zéro neighborhood basis of sets Û such that ïî-teo{Û) then t Yj tj°ej w^h the e}

linearly independent éléments from a single totally isotropic zéro neighborhood Uao.

We claim this implies 1 §§/. For if 1 el then 1 + Û meets /, and so l+a(Û) meets (0)
n

say in 1 + f. We hâve 0=l + *=l+ £ tj°ej- Multiplying by eYo--oen gives
i=i

0 e1°---°en which is impossible since the ej are linearly independent.
Thus it is clear that 1£J; in particular I^T(E). But C(E) T(E)jI is a simple

algebra and 7c7, so 7=7. Thus ®x is Hausdorff.
Summarizing some of the properties of the t0 V topologies we hâve the following

Theorem 17: If(E, t) is a linearly topologized space and x is not the trivial topology
then the following are équivalent:

(i) t ^ t0 Vfor some totally isotropic V
(ii) <j)\ExE-*k is continuous

(iii) t has a zéro neighborhood basis of sets Ua with E=[J U^
(iv) ®t|£=t
(v) (C(E\®x) is Hausdorff.

III.2 Continuity of Multiplication

We turn our attention to the question of continuity of multiplication in (C(E),
®t0 V). For denumerable (E, 0) we shall establish the remarkable fact that (C(E)9

®t0 V) is a topological algebra for closed F, (Theorem 18). It is not clear whether a

similar resuit holds in the nondenumerable case. For t strictly finer than x0 V, we
shall give an example of a denumerable (E, <P) for which multiplication fails to be

continuous in (C(E), ®x). First we prove
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Lemma: IfE=k(eXei then the sets

eK perms ea ep perms

form a zéro neighborhood basisfor ®t on T{E) when the subscripted U's run through a
zéro neighborhood basisfor t.

We shall again wnte £ to mean £ £
eaep perms

Proof: Clearly each ®t zéro neighborhood contains such a 0. Conversely, put
Vn=Un and for xl9x29...,xmek(ea\€A> A finite, put FmjCl Xw f| l/,,^ eam.

Then

<xteA m i m

[xj®---®^]®^^ Xm®---®Fn:ci Xw

so t? contains a ®t zéro neighborhood.

Theorem 18: IfdimE=tt0 and V is a closed totally isotropic subspace ofE then

(T(E), ®t0 V) and (C(E), ®x0 V) are topological algebras.

Proof: Since dim£'=K0 and Fis closed and totally isotropic there is a decom-
i

position of E into (V®V')®G with V=k(vl)l>i and Vf k(v[)t>1 both totally
isotropic and 0(vl9 Vj) ôir The t0V topology has a zéro neighborhood basis of sets

k(vX>n since for F fixité dimensional, EcV+kiv'X^ + G so VnF1^VnV1n
k(v[)^nnG1= Fn/r(t;[)l1^n A:(^)l>n. We shall need an enumerated basis for E, so let

E=k(el)l>1 with vt e2l for f^l. Then the sets U* k(et)l>n are a t^F zéro
i even

neighborhood basis. (They are not distinct. In fact Uf k(vl)l>o> Ut= ^t ^{vX>u
etc.). The advantage of this numbering is that ît yields the following simple criterion:

ete U* iff ete V and /> n. The 17* will be referred to as *-sets in the rest of the proof.
To show multiplication in T(E) is continuous at (0,0) let £/'= l/1'+l/2'®iy2' +

X! [^i]®^r2e<"<— ^e a set m tne (^(^)' ®T) zero neighborhood basis. We must find
1^® Fc t/'. Clearly it suffices to find F® Fc Ûcz Û'. With this in mind we shrink Û'
somewhat, in order to make it more manageable, as follows. Choose inductively sets

Un which are *-sets and such that ^cU^nUf and UncU1nU2n — nUn-1nUil
n [/*. Dénote by Ufem the set f) f) U^eji 6jt em (i.e., the intersection of ail sets

^'nen eJtem f°r which m is the largest e-subscript). Define the sets UHem by induction

on m to be *-sets contained in Unn UnCi n — n Unem_
1 n U^nU* with Unei a *-set

contained in UnnU^feinUf. Since the 17B and t/Mem are *-sets there are functions

gn with Un=U*(0) and ^/nem= (7*(m). As a conséquence of the construction we hâve

U*i0)=UnczU* so
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andl7*(m)=l/B,mc:l/*so

Also if 0 < /^y then Unej^UneiczUn so l/*a)czU*(0c 17*(O) therefore

gn(0)<gn(i)^gn(j) ht 0<i^j.
Take

U2 ® U2

IW ®U3ei® U3ei

with UneiiL...etrn~ ^neik where ik i
To define V we shall make use of a function used in enumerating NxN9 N the

nonnegative integers. For n9 meN put f(n, m)=:2-{n + in){n + m+l) + n-\-\. Then

f\Pi9 iti\)^ fy^i'i fft2) iff either n± -\-nti<c/î2 + wî2 or n^ +/Wj =w2 + /w2 and jî± ^n2. For
our purposes it suffices that/hâve the property that for any two pairs (ni9 mt) and
{n29 m2)9f(nl9 m^) and/(«2,/w2)are comparable, and for only finitely many (nl9 mx)

is/(«l5 m^)<:f{n29 m2). We now define the Vq for our V. For prescribed q9 ej^9 ej >

let

ail p, in^0 with

P

nm i/,*,(i)np n

where7m max(>/1', ...,j'm). Finally take the expression for Vq to be the same as that for
Vq€Si,...eim. withjm replaced by 0 throughout. gpp+q is defined iteratively by glp+q(jm)

gp+q(jm),andgl+q(jm)=gp+q(g^^^
as usual. The reason for the choice of each part of Vae.. e. will become apparent in
the cases we consider in showing that F® Fc t/.

Let s' eil,<S)-t'®ein>®ein'+l®t"®ei *^p with e^eFpe ....*>*„'> ^+1^^^/?- Let

t=ejlf®'"<S)ejq' with ^e^e^',.,*^, m+l^fc<^. Let i1<:i2^'-<iin be the
subscripts ïl9...9ïn in their natural order and ïb+i<---</p the subscripts ïn+l9...9 ïp in
their natural order. Since ein+le Vpeiy'...e£n'c ^*> 4+i > 4 giving the combined ordering

h <••• </„</„+!< ••• </p. Similarly lety^< ••• ^jm<jm+i< ••• ^jq be the natural order
of they'fc. Note that ^n+1,..., eip9 ejm+l,...9 ejq are ail in F.

We now show s'®t'eÛ. The gênerai nature of the next steps in the proof is this.
Let lt<;l2<~-<ls<ls+i<-~<lp+q be the subscripts il9...9 ip9 jl9...9jq arranged in
order. Let ls+1>in9jm. Then els+1, els+29... are ail in F. We show that we can always
choose s so that ela+1e U*+q(ls) Up+qteijt.^feia. Then ela+2, els+39...9 elp+q are also in

perms
We assume without loss of generality that/(/?, in)^f(q,jm) hence in andym will

not play symmetric rôles in the sequel. Sincejm=max(7i,...,/'„;), by the définition of
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f°r l#^£j+«(*«)• In particular from the second of thèse conditions we

Case A: in or jm is the immédiate predecessor of jm+1 in the ordered list of
subscripts. Since as noted above eJm+ te U*+qiin) and U*+qUm) in thèse cases s'®t'e Û.

Since in<jm+i the only other possibility is thatym+1 is the immédiate successor of
some i5, s>n.

Case B: /„<••* <yw</s-^---^/s^./m+1^'-- Note that only /-subscripts occur
between /s__fc and ia. lfis_k>gp+q(jm) then eia_ke U*+qUm) (by the basic définition of the

•-sets), and we're done. Similarly if it>gp+q(it-i) for any t with s-k<t^s then

^it^U^+qçit_t) as desired. If on the other hand none of thèse alternatives occurs then

*s<£p+,(d-i)and is-i<gp+q(is-2)^c. So is^gp+q(is-1)^g2p+q(is-2)<"'<gkP+q(h-k)
^gkpX1q{Jm)^gPP+q(Jm)'> thèse inequalities follow since gp+q is nondecreasing. But then

*M<gPp+tUm), so as noted earlier ejm+leU*+qiisy
Case C: jm^ ••• ^in^in+1 < ••• <4^7m+i < **' • The proof is the same as for Case B

but with in replacingy'm throughout.
In the case where ïn+i /i (resp.jm+1=71) take /w=0 (resp.ym 0), and the proof

goes through as above. This would be the case when eil>®~-®eip,eVp®-~®Vp (resp.

JJpqqIn every instance s'®t'eÛ. Now a product of two arbitrary éléments of V is a

sum of terms of the form s ®t' hence also in Û, completing the proof that
multiplication in (T(E), ®t) is continuous at (0, 0).

In Theorem 15 it was shown that multiplication in (T(E), ®t) is separately
continuous. Thus (T(E), ®t) is a topological vector space with continuous
multiplication, hence a topological algebra.

We now prove that continuity of multiplication in (T(E), ®t) implies continuity
of multiplication in (C(E), ®t). Let m:(s, t)^>s®t be the multiplication in T(E) and

a the canonical map: T(E)->C(E) T(E)IL Then a° m\T(E)xT{E)^C(E) is

continuous and constant on équivalence classes modulo /, so it induces a well defined

map m:(a(s), o-(^))-^cx(5i)0or(/)which is in fact multiplication in C(E). Given a(s)°

a{t)eO, (9 open in C(E\ there exist (9(s) and 0{t) containing s and t respectively with

(7°m(0(s)x(P(t))cz(P. Since m°{axa) a°m, m(a((P(s))x(7((P(t)))c:0 and so m is

continuous.

Multiplication need not be continuous in (T(E), ®t) for t>t0F even when

dimis K0 and F is a maximal (hence 1-closed) totally isotropic subspace as the

example below will show. The next lemma will be used in the example and in the next

theorem.

Lemma: Let E=V®W with V=k(eXei and ^r=^W«ej have a topology for
which there is a neighborhood basis at zéro composed ofsets of the form UL=k(va)ae u
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L running through some of the subsets of I. Let

a e IuJ

IW ® [>,] ® uBem9f ®-® unexep +

l/B e<x c [/„, l/n ea e/J
c= Un

e<x n Un ep n • • • and ail subscripted U 'sfrom the zéro neighbor-
n- 1

hoodbasis. Ifeao$Uneoci and eai$Un then eai®( ® eao)$Ûtt, eao and eai éléments of the
î

basis {ea}a€juJ.
Proof: The summands of Ûn are of thèse types: either of the form [ea,]®>l with A

containing a factor Une^- or of the form Un ,-®2?, or of the form [eJ®C with
Since by hypothesis [eao]$UneiKi-9 [eûtl]®>4c:F=[eai®^1®--®^fi_1; some
While L7w_®5and [ea]®CcG=[eyï®ey2®--®eyn; y^aj. é?ai®eao®---®ea
and ÛnaF@G concluding the proof.

Example: Let E=F0^with K=fc(u,),M and W=k(wi)&1 both totally iso-

tropic and 0(vi9 Wj) ôij. Take for t the topology with neighborhood basis at zéro of
sets 17** k (v2n t)i ^ i • As proved in Theorem 18, the x0 V topology has a zéro neighborhood

basis of sets U* k(vt)i>n. Each 17** contains some 17* (for example l/**=>
U*) but not conversely, so t is strictly flner than x0 V.

In the zéro neighborhood basis for (T(E)9 ®t) consider any set 0= Ut-\-U2(S)U2 +
X [Vi\®U2Vl + Yj W®^2w,+ - °f t^e gênerai form given in the preceding lemma
and in particular with L/n=l/** and Un Vi

C/** n l/j**. Let ^=^ + 72®^ +
with the subscripted F's from the t zéro neighborhood basis, and suppose by way of
contradiction that F®Fcz£?. Vt U** k(v2qi)izi for some q. For i odd, v2qieVl

butv2q^Uq+1. H Uq+1v2qicz f] Uffi =(0),soVq<k H ^+1^2gt.Thereisanodd/1,
i odd i odd iodd

and a vjoeVq such that vjo$Uq+itV2q And since /j, is odd, t^^Ug+^Therefore by
the lemma v2qii®Vjo®'-®vjo$Ûq+l. On the other hand v2<iil®Vj0®~'<8)Vj0eV1®
Vq® • • • ® Vq c Ûq+!, a contradiction.

Examples can be given with F orthogonally closed and totally isotropic, t>t<j> V
and dim K> Ko for which multiplication is not continuous. The state of affairs when

t t0 V and dim F>K0 is an open question.
In this chapter two topologies were considered on the tensor product E®E. It is

apparent from a comparison of the neighborhood basis at zéro that Te^t®x. In [6]

it is shown that tc t®t when t is the weak topology. On the other hand using several

of our earlier results it is now easy to show that xe is strictly coaser than t®t for t a

t0 V topology, V of infinité dimension and codimension.

Theorem 19: Let E= V®H hâve topology r0 V, V totally isotropic and of infinité
dimension, H=k(ho^)<xeI also of infinité dimension. Then tc<t®t.

Proof: Since card/^K0 there is a bijective function/mapping / onto its finite
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subsets. There is a neighborhood basis at zéro for the x0V topology of sets Ua

Vnk(hp)jen<x). For if F is finite dimensional then VnF1^ Vn(V+k(hp)fiefia))±
Vnk(hp)jefia). Let V=k(vy)yeC. Û2= V® F+£ [vy]®F+£ [ha]®Ux is a space in
the t®t zéro neighborhood basis (see the lemma to Theorem 18). Suppose by way of
contradiction that Û2^E®U+ U®E, Uin the t0 Vneighborhood basis at 0. r0 Vis
Hausdorff but not discrète since dim F^K0, so there is a Uao with U<£ Uao i.e., some

vai e U, vXl $ Uao. Then /*ao® t>ai, hao in the basis for H is clearly in E® U+ U®E but by
the preceding lemma it is not in Û2. Thus Û2 contians no ie zéro neighborhood so

Te<T®T.

IV. Groups of r0//-continuous Automorphisms

In this chapter (E, <!>) is a semisimple fc-space possessing infinité dimensional
totally isotropic subspaces (cf. 1.4). In particular every maximal totally isotropic
subspace is then of infinité dimension, ©(is, #) is the (full) orthogonal group of
(E, <P); kd is the additive group of a J-dimensional linear space over k. We write (x, y)
for <P(x, y).

We shall discuss groups of T0#-continuous automorphisms of (E, $) under the

following spécial assumptions : (A) //is a maximal totally isotropic subspace of (E, <P);

(B) the space (E, 4>) is either of denumerable dimension or else (E, <P) is t0 //-complète.
Under thèse conditions (E, 0) admits a décomposition :

E (H ®H)®G, H and H totally isotropic, G anisotropic. (1)

Corresponding to the two cases in (B) we hâve either dim//=dim//=K0 or else

//=//* the algebraic dual of H, and $(h*,h') h*(h% h*eH*, h'eff, (1.2 and
Theorem 8).

Since H is assumed maximal, the collection of ail x0//-continuous Tin ©(£, 0).
form a subgroup (see Theorem 3) denoted by £(//, #). The discussion of this group
will proceed by describing in a geometrical fashion the groups and factors of a normal
séries. We shall therefore start out with the investigation of various spécial subgroups

oïX(H, <f>).

IV. 1 We start by assuming that dimJei=K0. Let il be the subgroup of ail

TeO(E, 0) with the property that H and G are left pointwise fixed under T and

T{H®H)aH®Ë (hence T(H®ff) H®H). The restriction of thèse Tto the space

H®H form a group which we identify with 51. In other words in the study ofR we may
assume that <7 (0). We are going to describe 51 in some détail.

Let TeR. We set T= 1+L. For xeff, LxlH, so LxeH. We hâve L a linear map
H®R-*H with L(//) (0). For every zeH®H, we hâve ||z|| ||rz|| \\z + Lz\\, hence

(z, Lz) 0. Since charA:^2, the last condition is équivalent to

(Lx,y) -(x,Ly) for ail x,yeH®H. (2)
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(L is "antiselfadjoint" or "skew".) Since imLaH and H is totally isotropic we see

that the map T= 1+L-+L is a group isomorphism of 51 onto the additive group of
linear maps L:H®H->H satisfying (2) and L(i/) (0). The spaces H and H are
spanned by the two halves of some symplectic basis, H=k(hi)i^l, H=k(h'i)i>li

<P(hh hj) ôij. With respect to this basis the matrix of L is of the form J where

A is a denumerable eolumn- and row-finite skew matrix, A — 'A, fA the transpose of
A. Hence we hâve the group isomorphism

5t^fcKo, dim£ K0. (3)

We now turn to the discussion of the transformations Te${, T— 1 +L. By (2) we

see that KerL=(ImL)1, and in particular KerL is ±-closed. We hâve the following
séquence of subspaces in H®H:

(0) clmlc (KerL)x= (ImL)Xic Hlx= H c KerL
(Ker L)11 (lmL)1cH®H. (4)

We shall prove that T= 1 + L in uniquely determined up to orthogonal similarity by
the dimensions of the three spaces ImL, (ImL)11/ImL and (ImL^^ImL)11 (cf. [11]
for a similar theorem on selfadjoint L). Further we shall see that H®H is the orthogonal

sum of finite dimensional subspaces that are invariant under T= 1 + L if and

only if (ImL)11/ImL^(0).
It will be convenient to hâve the following two examples at our disposai. (I) Let

(2s0, #) be an orthogonal sum ®Pt of hyperbolic planes Pi k{hh /rj), iel, I either
i

denumerable or finite and even. We set H=k(hi)I, H=k(h'i)l9 and define an auto-
morphism T=\+L as follows: L(H) (0), Lh'2i-.1=h2i Lh2i= —h2i-i. L (and

consequently T) leaves the pairs i^i-i®^/ invariant. It is also easy to see that

(Lz,z)=0 for ail zeEo. We have (ImL)xl/Im 1,^(0) in this case. (This of course

automatically takes place when H®H is an orthogonal sum of finite dimensional
invariant subspaces, whatever A\mH®H may be.) (II) In order to obtain an example
with (ImL)^(ImL)11 we consider a space (El9 W), Ei=E0®k(h0), Eo as before (i.e.

V\Eo=<P) with denumerable /; further ÎP(A0, Af) 0 (z>0), V(h0, h[)= 1, (/>0). Since

/is not finite, (El9 W) is easily seen to be semisimple. Defining L on Eo as before and

setting Lho 0 we have again (Lz, z) 0 for ail zeEv However, this time we find
(lmLf1 k{h^1=k{h^0 lmL®k{h0\ i.e. dim(ImL)11/ImL=l.

Theorem 20: Let E=H®H be the sum of the totally isotropic spaces H and H, E
semisimple and of denumerable dimension. An automorphism TeR (the automorphisms

leaving Hpointwise fixed) is uniquely determined up to orthogonal similarity by the

dimensions dlf d2, d$ of the three spaces:
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Im(r—1), Im(r— l)xl/Im(r—1), Im(T— l^/ImCr—l)11

(Le. ifT and T hâve the same invariants dif i 1, 2, 3, then T= ATA'1 for some orthogonal

automorphism.2) Further, if d2 0 then E is an orthogonal sum E=E00®E0
where Eoo is leftpointwisefîxed under T, dimE00 d3, Eo is (andis transformed) as Eo
in the example above, and d\mEQ 2dx. Conversely, if E is of the particular form

i
Eo q®Eq then d2 0. On the other hand, ifd2 C ^ 0 then E is an orthogonal sum Eo 0®
E2 where Eoo is left pointwisefixed under T, dim E00 d3 and E2 is the orthogonal sum

of t replicas of a space E1 which is (and is transformed) as Ex in the example above ;

Proof: Again we write T= 1 + L. We first reduce the gênerai case to the case with
KerL (ImL)11 by splitting off an orthogonal summand Eoo of /s with dim E00 d3

(cf. (4) above). The 1-closed subspace (ImL)nc^ induces a décomposition by 1.2

i
as follows: £=((ImL)11®S)®(U1®Ul) where S+ Û^H, (lmL)11®U1=H. Hence

i
KerL=(ImL)111 (ImL)-L1®((71©£71). Soputting£"00 1/!©^,Eqo is left pointwise

fixed and dimE00 d3. We may therefore concentrate on the semisimple space

(ImL)11©^ (We note for later that its orthogonal supplément Eoo is uniquely
determined up to orthogonal isomorphism by d3 since Eo 0 is a sum of hyperbolic
planes). Denoting the restrictions of Tand L to the subspace (ImL)11©5r again by

'T" and "L" we are now in the situation where, in addition to (4), (ImL)x±

The subspace (lmL)®S of the semisimple space (ImL)11©^ is itself semisimple.

(Quite generally rad^ + ^cirad^11*^).) We set (lmL)L1 ImL®R and dis-

tinguish two cases jR (O) and R^(0). Note that dimR d2.

Case A: R (0). We shall décompose ImL©5 into an orthogonal sum of four
dimensional subspaces which are invariant under L. Let {^}£eM be a basis of S and

assume that we hâve already constructed 4-dimensional semisimple subspaces Fl9

F2i..., Fn_1 which are pairwise orthogonal, invariant under L and of the following
shape:

F k xt, L yi9 L xt) k (yi9 Lxt)®k (xi9 - L yt),
xt and

the two dimensional summands being hyperbolic planes with bases as indicated. Let
n-l

em be the first basis vector of S not contained in K= ® Ft. We shall construct a four
1

dimensional semisimple subspace FnczKL which is invariant under L (and again of
n

the same shape as the Ff's with i<n) such that eme ®Ft. In this fashion we construct an
1

2) As the proof will show, we can always find such an A with A(H)=H; thus A e %(H, <£).
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orthogonal sum ®Ft of invariant subspaces Ft such that Se® F.. Since L(S) lmL
we then also hâve lmLcz®Fi, hence ®F; (ImL)©S. It thus remains to show how to
construct Fn. Since K is finite dimensional and semisimple we hâve (ImL)©S=
K&K1, and we décompose em accordingly, em — e'm + enm9 e'meK, e^eK1. By 1.2 the

space K1 is of the form K1 R1®Rl with i^dmL, J^cS. Since eme£, 5 totally

isotropic, we hâve em— ]T (A^n-//^,-)-!/^ xf, jfe»S by assumption about the spaces
î

Fi(i<n). In other words e^eS and thus ^ei^. Since KerLnS=(0) we hâve 0#
Le^ and e'^eK1 impliesLe'lneK1n(lmL) Rl. Since furthermore K1 Rl®Rl is

semisimple (both i^ and Rt are totally isotropic), thereexists yeRt with (LeJJ,, j)= 1.

It is readily checked that Fn k(y, é'm, Ly, Le^) k(y, Le^)®k(e'^, -Ly) satisfies ail
the induction assumptions.

Case B: R¥"(0), (ImL)11 (ImL)©i?. We shall prove the assertion of the

theorem for the spécial case d2 dimR 1. Example I, discussed earlier in this section,

may then be taken as représentative. It follows from Witt's theorem in the denumerable

case that any semisimple space E= VL1®S of denumerable dimension, V and S both
totally isotropic with dim V11/V=c¥:0 is an orthogonal sum of c replicas of a semi-

simple space Fq1®^ of denumerable dimension, Vo and So both totally isotropic
such that dimFo±/Ko 1 and V=® Vo (see [8], the application following Theorem 4).

c

It is therefore sufficient to discuss the case where dimi?=l, (ImL)11®5'=(ImL)©
S®k(r). In contrast to the former case where we hâve set up directly a canonical
form for ImL©^, this time we shall prove uniqueness up to orthogonal similarity by
considering a second map T= 1 + L with the same invariants dt as for T and then

proceed to give orthogonal décompositions as follows :

ImL©S= ®Ft <B[k(y,Lx) + k(x,~ Ly)]

ImL®5= ® Ft ®[k(y,Lx) + k(x,- Ly)]

as in case A but in addition we hâve

(r,y) (r,y) and (r,x) (f,x) (5)

for ail summands in the décompositions above. Note that we shall automatically hâve

(r, Ly) (f9 Ly) and (r, Lx) (f, Lx) as ail thèse numbers are zéro, the vectors

belonging to the totally isotropic spaces (ImL)11 and (ImZ)11 respectively. If A is

the linear extension of the map sending r into f and y, x, Ly, Lx into y, x, Ly, Lx
respectively, then A is an orthogonal isomorphism, and we havçL°A A°L (and

T°A=A°T). A can be extended to ail of E by extending it to the orthogonal suppléments

of (ImL)lx©5 and (ImZ)11©»? respectively (cf. the beginning of our proof).
Assume then that we hâve already constructed the spaces F1,...,Fn_l and
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Fl9 Fn_ j such that (5) holds for thèse summands As in case A, we find an Fn such
n

that ©F, contains one more prescnbed basis vector of S We hâve to construct a
1

suitable matchFn for Fn such that (5) holds agam for the spaces Fn and Fn We hâve
1 n-l

Fn k(yn, Lxn)®k(xn, -Lyn)9 yn and xn in S Let R= ® Ft Furthermore let R±o be
î

the orthogonal of R m (lmL)®S, (lmL®S) R®R±0 Smce the orthogonal of
(ImL)©*? in (lml)®S®k(r) îs (0), we cannot hâve f±R±0 or else, for suitable x in
ImL, r — x would be orthogonal to ail of (ImL)® S (since Ris finite dimensional and
semisimple) Hence there exists yneRLo with (yn, r)^0 Further, by I 2, the space RL°
îs of the form i?Xo jR1®^1 with ^dmî and 1?! a S Since flImL, hence /

we may even pick yn in Rt c= £ with (>>„, r ^ 0

Thus if we should hâve (ym r)#0 in Fw then we hâve foundj^e»?with (yn,

Replacing yn by a suitable multiple we may assume (yn, r) (yn, r) On the other hand, if
ît should be the case that (yn, r 0 then we simply pick some yn m the infinité dimensional

space (R®k(f))1n5 In either case we hâve found yneSv/ith(yn,f)=(yn9 r)
Since ||Lj;J| =0 and ^lo JR1+JR1 îs semisimple, there îs an Xoe^cS with

(x0, Lyn)= 1 The space G k(yn, x0, Lyn, Lx0) îs semisimple It remains to adjust
i

the value (x0, r) Again by I 2 the orthogonal of (R®G) m (ImL)®S îs of the form
R2®^2 W1*h i?2c=Ini L, R2^S As before we cannot hâve re(R2®R2)1 Hence we
find zeR2c:S with (r, z)^0 xo + Àz îs isotropic for every X and (xo + Xz, Lyn)
(x0, Lyn) 1 Since (f,z)#0we may pick A such that (x0 + Xz,r) (xn, r) We then put
xn x0 + Xz for this choice of X and Fn k(yn, xn, Lyn, Lxn) enjoys ail the required
properties

It îs to be observed that in the construction of the spaces Ft and Ft we hâve to
alternate between the rôles of the spaces (ImL)©£ and (ImL)©»? so as to make sure
that ©F, and ®Ft exhaust the spaces (ImL)©^ and (ImL)©»? respectively In other

»+i
words, in the next step we first construct Fn+i according to case A so that © Ft

i
contains one more prescnbed basis vector, after that we find a suitable match Fn+1

such that (5) holds by the immediately preceding construction This complètes the

proof of Theorem 20

For any T=l + Le5l we hâve T2 1+2L Hence T and T2 hâve the same

invariants dx Therefore T2 A °T°A~1 for a suitable orthogonal automorphism A by

Theorem 20 with A(H) H Thus T= A ° T° A '1 ° T~i and we hâve the

Corollary. R is contained in the commutator subgroup of%(H, 0)
IV 2 There is at least one nondenumerable case for which Theorem 20 can be

salvaged, namely for the spaces H®H where H is of denumerable dimension and
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Theorem 21 : Let H* be the algebraic dual ofH, H ofdenumerable dimension, both

H* and H totally isotropic for $ and <P(h*9 h) h*(h). Let R be the group of those

orthogonal automorphisms of H*@H which leave H* pointwise fixed.
(i) Every TeSi is uniquely determined up to orthogonal similarity by the invariants

dlf d2 andd3 of Theorem 20;
(ii) Si is contained in the commutator subgroup of%(H*, $).
Proof: For fixed T=l+LeR we set F=(KerL)nHy H=V®S. We hâve a

i
canonical décomposition H*®H=(V*®V)®(S*®S). Furthermore KerL //*0F

Hence (ImL)11 (KerL)1 S* and (lmL)L S*1
Thus dim(F*+ F) dim(ImL)1/(ImL)1-L rf3. Furthermore V*+ Fis left pointwise
fixed by Usinée F* + VczH*+ F=KerL. As in the previous case we are left with the

semisimple space S*®S=(ImL)1L@S. If S is finite dimensional then dimS=dimS*
and S + S* is an orthogonal sum of an even number of hyperbolic planes which are
left pairwise invariant under L. Nothing remains to be proved in this case. If S is of
denumerable dimension, then the semisimple subspace (ImL)©*S of (ImL)11®*S( is of
denumerable dimension (ImL L(*S)) and admits, as we know by the proof of Theorem

20, an orthogonal décomposition

(ImL)e S 0 [k(xi9Lyt)® k{yh- Lx,)] x^eS
»

<&(xh Lyi) <P(yh — Lxt)=l. Consider a second automorphism T=l+L with the

same invariants dh i=l,2, 3. There is a similar décomposition lmL®S=@[k(xi9
X i

Lyù®k(yi,-Lxù],${xhLyù ${yi,--Lxï)==l. Let A0:S^S be the isomorphism
which sends xt and yt into xi9 y{ respectively; and let A%:S*-+S* be its transpose:
(A%s*)(s) s*(Aos) for ail s*eS*, seS. The isomorphism >4:5f*e5'->5*e(Sdefined
by A\s* A* and^|s ^4^1 is orthogonal,andwehaveL0 A A°Z. Since the invariant
d3 is the same for T and T, A can be extended to ail of H* + H in a trivial fashion. This
concludes the proof of Theorem 21.

IV.3 In this section let (E, #) be a semisimple space of the following sort:

E (H ®H)®G, H and H totally isotropic, G anisotropic. (6)

Dimensions are arbitrary. The spaces H and H form a dual pairing under the form
<, >induced by #. Let furthermore ZH be the subgroup of £)(E, <P) of those

automorphisms Twhich leave H invariant, T(H)czH. It is readily verified that this implies

T(H)=H; the fact that G is anisotropic is however crucial. We shall investigate hère

the group %H. For.arbitrary fixed Te%H and ail h'eHv/e set Th' Tthf + T2h' + T3 h'

with Tih'eH, T2h'eH and T3h'eG. Since T(H) H we hâve T(H1) H1, in par-
ticular T(G)aH®G. For ail geG we set Tg=T4g+T5g where T^geG and T5geH.
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The linear map TA;G-+G is orthogonal, injective and epijective, Le. r4eO(Cr, $\G).
We now define a map T*:E-+E by linear extension of T*\H T\H, T*\H Tt and
T*\G T4. It is easy to check that T* is orthogonal, injective and epijective. We put
T=T*~ioT.Thas the following properties

for ail/ie/f, Th h

forall/Te/?, TW W + L^h! + L2hf where L^eH and L2WeG (7)
for ail geG, 7"g g + L3g where L3geH.

Let ï0 be the subgroup of XH consisting of ail T of the form (7). The maps satisfying
(7) satisfy the conditions

(r-l)ff (0), (r-l)Gctf. (7')

Conversely, if (T-l) #=(0) then the orthogonality conditions give (T-1)
for any subspace .Sc^1. In particular, (T— 1) Ha H®G which is équivalent to the
second équation in (7). We thus see that (7) and (7') are équivalent descriptions of
the subgroup XocXH. Since r(#) H and thus T(HL) H1 H+Gïor the éléments

of XH9 it is easily seen from (7') that %0 is an invariant subgroup of XH.
We may summarize our réduction thus far as follows. Every TeXH is of the form

r=T*°f, TeX0, and T* has the properties T*\H T\H, T*\^=T1 and r*|G T4.

Since r*eX0 implies T* 1, we hâve XH/X0 isomorphic to the group of ail T*. This

group can conveniently be described as follows. Fiist of ail, every T* can be identified
with some élément in £)(H®H, <f>)x£)(G, <f>|G) since T* leaves both H®H and G

invariant. As Truns through XH, T*|G r4 runs through the whole group O(G, <P|G).

On the other hand, since the restriction T*\H+1! leaves both H and H invariant, the

orthogonality conditions imply that T*\H is the transpose of (r*^)"1 with respect to
the dual pairing <//, H}. T*\H and T*\h détermine each other uniquely. In other

words, if >&(H) is the group of ail a(H, i/)-continuous vectorspace auto-
morphisms of #then r*|^=r1eJ2P(/r), (see [2], §4,1). Conversely, every T1e^{H)
gives rise to an orthogonal automorphism T* of H®H by letting T*\H be the inverse

of the transpose ofTl. Thus T1 T*\ji runs through the whole group &{H) as T runs

through XH. Since T*^T1—T*\û is a homomorphism, we hâve thus shown that the

group of ail T* is isomorphic to ^(H) x O(G, <P\G):

\G) (8)

the group of ail g {H, //)-continuous vectorspace automorphisms of H.
We now return to the group Xo of ail automorphisms T satisfying (7). The

orthogonality conditions for thèse Tgive:

(Lx x,y) + (x,Lx y) - (L2x,L2y) x,yefï (9)

(L2fc',g) + (fc',L3g) 0 h'eff,geG (10)
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Conversely, if linear maps LX:Ë-*H, L2:H-*G and L3:G-+H satisfy (9) and (10)
then (7) defines an orthogonal automorphism Fin Zo. We now discuss thèse équations.
Considering the dual pairings </?, H} and <G, G} induced by #, (10) shows that
L3:G-+His the négative transpose of L2:B-+G. Hence L2 and L3 are continuous for
the corresponding weak topologies. On the other hand, every L2 in S£(ït, G) (the
additive group of continuous linear maps R-*G) uniquely détermines a map L3
satisfying (10). Setting Li=^L3°L2 we see that Lx is a particular solution of (9). We
hâve thus shown that the System (9)-(10) has solutions Li9 L3 for prescribed L2e
J?(H, G). In other words, as Truns through Zo, L2 in (7) runs through the whole

group J?(ff, G). It is easily verified using (7) that the map T-+L2 is a homomorphism.
We therefore hâve an epimorphism rj : Z0-+J?(H, G). Assume that Tis in the kernel of
rj; L2 0 for the corresponding L2. Hence L3(G)cHnH1 (0) by (10), and L3 0

also. Further Lt is skew by (9). Conversely if Lt is skew then (L2x, L2y)==0 for ail

x, yeH by (9). In particular \\L2x\\ =0 for ail xeH, and thus L2x Q as G is aniso-

tropic. In other words L2 0 and rbelongs to Kerrç. Thus Kçrrj contains precisely the

maps T= 1+LU Lx any linear map H-^H which is skew:

(Llx9y) + (x,L1y) 0 x,yeH. (11)

If the conditions of Theorems 20 and 21 are satisfied then the group 51 in thèse

theorems is precisely Kerrç restricted to H®H. We therefore put R Kerrç in gênerai
and hâve

(12)

il the additive group of linear maps H-+H satisfying (11). (13)
In a slightly différent way we may account for our normal séries as follows. ZH

can be described by the condition (T— \)HczHfot ail T. We then sélect subgroups of

%H;(T-l)HczH
îi;(r-l)ff (0)

So;(r-l)tf (0), (T-l)CcU. (14)
R ;(T-l)#x=(0)

Since the éléments of XH map H onto H (and consequently H1 onto HL), it is easily
seen that thèse subgroups are invariant in ZH. The séries ZH => %1 => %0 => R is a fortiori
normal. We hâve

XalZi&^iff), Z1IZo^C(G,0\a), %oISi^^{n,G). (15)

Remarks: 1. The éléments of Zo are algebraic; every Te%0 satisfies the poly-
nomial équation (<J — l)3=0, i.e. (T— l)3x=0 for ail xeE; the éléments of the sub-

group 5^ satisfy the équation (f —1)2=0. The proof is straightforward using (7).
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2 If dimE= Ko then 3f(R) m (8) and (15) îs isomorphic to the multiplicative
group of ail nonsingular row- and column-finite denumerable matrices This îs seen

by mtroducing a symplectic basis {/*,, *j},^0 for H®H, îts two halves spanning H and
H respectively Furthermore this matnx group îs generated by ail those TeGL(ff)
for which Ësplits into a direct sum of finite dimensional subspaces HJ k{h'l)tlj_1^l^nj
(7=1,2, the décomposition depending on T In fact every row- and column-
finite denumerable matnx can be wntten as a product of two matrices each of which

appears as diagonal under a suitable décomposition into finite blocks ([16])
3 When H=H* then &{R) îs simply GL(H)
IV 4 The connection between %{H, $) and %H îs a simple one For (E, <P) a

semisimple space we dénote by 3(^> $) (or simply 3) the normal subgroup of
£)(£, <P) generated by ail reflections about hyperplanes of E In other words, the
éléments of 3 are precisely those orthogonal automorphisms of E which leave

orthogonal summands of E of finite codimension pointwise fixed (For a discussion of
3 see [7] We hâve the following

Lemma For every TeX(H, <P), H maximal, there exists aToe% such that To T(H)
H
(E, <P) îs semisimple as usual and hère îs of arbitrary dimension Indeed by II

Theorem 3 we hâve H=(Hn T(H))@F, T(H) (Hn T(H))®G with dimF dim<7

n< Ko F® G îs semisimple, and therefore an orthogonal sum of n hyperbolic planes

M/pg*), 1 <«<» E=(F®G)®(F®G)L, HnT(H)cz(F®G)1 We define To to be the

îdentity on (F®G)L On (F®G) we define To by Togt^ft and Toft=gl9 l^i^n Thus

T0T(H) H Inparticular

%(H9 *)/3(£, *) S %HI%H n 3(£, ^) (16)

We end this section with two theorems which apply whenever the ground field k
belongs to the class descnbed in 14, independently of the form 0 More generally

they deal with spaces of the type (1) with G of finite dimension (In the following,
X*Y dénotes the semidirect product of the groups X and Y See for example [15]

page 212

Theorem 22 Let E be as in(\) with G offinite dimension

(1) IfE is of denumerable dimension we hâve %(H,
(11) IfH=B* we hâve O(E, #)=£(#?, *) and £)(E,
Ro is the quotient of the abehan group 51 (of(l), (13) and Theorem 21) modulo the

transformations in R offinite rank9 ^0 is the quotient of the multiplicative group of
denumerable row- and column-finite matrices modulo its matrices of finite rank, (50 is

the quotient ofGL(H) modulo Us transformations offinite rank

Proof Combining the décompositions of the previous section with the above

lemma we find for every TeX(H, #) a décomposition T= T^ f ° To with Toe%(E, <ï>),
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TeSK, T*\G lG, T*\H and -TJ^ transposes of each other (T*\He3?(R)). One
vérifies that the factors in this représentation are unique modulo transformations T#,
Tf9 Tq of finite rank. We obtain thus a bijectivej : Z/3-»<&0 x Ro (resp.X/3-> ©0 x Ro).
The group structure of S£/3 is readily transferred to the Cartesian product underj:
For S, Te%, S=S*°S°S0, T=T*°T°T0, the coset (S ° T) is mapped into the pair of
cosets (S*<>T*), (§T\ f) undery where ST* T*1 ST*€$i. Further, by the last lemma
in II. 1, we hâve D(E, <P) %(H, <f>) in case (ii). Q.E.D.

Theorem 23: Let %z and Og be the quotients ï|3 and £)|3 in (i) and (ii) of
Theorem 22. For X a group let Kx be its commutator subgroup. Corresponding to (i) and

(ii) respectively we hâve

(j) K^ s K#0*R0,

(jj) KD^ s ^o*5lo,
where in (jj) we make the additional assumption that the field contaim more than three
éléments when dimi?> Ko.

Froof\ We first show that every élément ueSi0 is a commutator of the form
u=[v, s] vsv~1s~1 vsv~1°s~1 where veJ?0 (resp. ©0) se$t0, and vsv~1e$t0. We
choose a représentative Tin m, T= l+Le${. For every yek we hâve Ty= 1 + yLeR.
Let further T*eZ(E, 0) be of the following sort: r*|G lG, r*|H=<j-l|H, T*|H
a"1^^ for O^ctgâ:. Since rr|G=l|G also, we find [T*9 Ty] T^TyTl~lT;l
l+y{a2 — \) L. Thus, if k contains more than three éléments, there is a O^aek with
a2 — l^O, and we may choose y (cr2 — l)"1. For such a choice we hâve [T*, Ty]

l+L=T. T* corresponds to an élément in J?o (resp. ©0) under the isomorphism

j- Ï/3-* ^o*^o (resp. O/3^ ©o *^o), namely the coset (r*). (If dimR= Ko then the
results follows from the proof of the corollary to Theorem 20 and the second part of
Theorem 21 without assumptions on k). On the other hand, let us write (x, y) for an
élément in the semidirect product X*Y9 xeX, yeY. Multiplication goes as follows
(x, y)*(u, v) (xu, yuv) (xu, u~ *yuv). It is straightforward to verify that the commutator

[(1, y) (x9 1)] equals (1, [y, x]) (l, yxy~1x~1). Since we hâve shown that every
ueR0 is of the form yxy~1x~i with yeJ?0 (resp. ©0) and xeR0 we see that every
élément (1, u)e^0*R0 (resp. ©0*5^0) is a commutator. Hence every élément ([yl9
y2], x)eK<z>0*${0 (resp. K$0*R0) is a product of two commutators since ([yl9 y2], x)

[(yi'> 1)> (^25 !)]*(!' ^)-Thus Ktfo*Ro (resp. K®Q*R0) is contained in the commutator

subgroup of ^0*^0 (resp. ©o*^o)- The converse is trivial. Q.E.D.

V. Non-denumerable Spaces

Among the infinité dimensional Espaces (E, 3>), k arbitrary, essentially only the
denumerable case has thus far been treated with success. There are at least two
reasons for this: practically ail of the techniques applied in the finite and denumerable
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case prove to be rather useless when dimis> Ko (e.g. proofs by induction in the finite
case and inductive constructions in the denumerable case); secondly, many of the vital
theorems of the finite or denumerable case actually cease to be valid if dimis> Ko.
For example later we shall give an example of a space E— Vt®V2, V1 and V2 totally
isotropic and of the same dimension, for which there is no symplectic basis whose two
halves span V1 and F2 respectively (whereas for dimi^Ko there is always such a
basis). In the following we shall list some theorems and examples îllustrating features
of the nondenumerable case.

Generalizing an example given in [4], we start by constructing spaces useful for
various examples. Let a and b be arbitrary infinité cardinals; let k be a field of any
characteristic withcard/:^max(a,b), Fand WEspaces of dimension a and b respect-
ively. We shall define symmetric forms <P on F© W by specifying only the values

4>(F, W). This is done in such a way that (E, <P) will be semisimple if in addition we

merely require that at least one of F and W hâve an orthogonal basis for &, isotropic
or not; otherwise <2> may be defined completely arbitrarily on the subspaces Fand W.

We proceed as follows: If char k 2, let /and Jbe disjoint subsets of k with card J=a
and cardJ=b. If char/r^2, décompose k into ^u k2 such that aekt if and only if
— aek2, k1nk2 {o}. Since cardA:1^max(a, b) we may let / and J be disjoint
subsets of kt with card J=u and card J=b. In either case a + /?^0 for aeJ, fieJ.

In Fand Wwe introduce bases F=/c(va)a6/ and W=k(wfi)PeJ. We set

Since detO/fo + ft))^,,^ [1^-^) n(^-^)]l(^+A)" VO provided the

a/s are distinct and the /?/s are distinct, it is easily seen that V1nW=(0) and
WLn F=(0). More precisely, if in £ Àtvai only m coefficients A, are non-zero, and

if vlwp for m différent basis vectors wp then v 0. Under the additional proviso that
one of the two bases, say {va}, is orthogonal we conclude that $ is non degenerate:

x==Tj^iivai + YJlLtjwPJ anci X^-Eimplies xLV9 and hence J] jUjWPjlvai for i sufficiently
large. Hence //, by the previous condition. But then x YdXlv0LeV and xlW
implies x 0. Since VLn W= Vn W1 (0), the construction can of course be inter-

preted as giving dual pairings < F, W} for arbitrarily prescribed dimensions for F and

W. If we choose a^b and F and W totally isotropic for # then we obtain a space

(F+ W, 0) which does not admit an orthogonal basis. This is a conséquence of the

following more gênerai theorem:

Theorem 24: Let (E, #) be a semisimple space spanned by an orthogonal basis. If
Vt is a totally isotropic subspace of E then there is a subspace Ui cz Vt with diml^
dimFx, and E admits a Witt décomposition (cf. 1.2)
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E (U1®U2)®E0

and in particular dimE/Vl >dim Vt. Furthermore

(i) IfE— V1®V2 with Vx and V2 totally isotropic then à\mV1 dimF2 and we may
choose U2 c: V2 in the above décomposition.

(ii) IféimVl ^ Ko and V}1 Wt we may choose Ui V1.

Proof: For finite dimensional Vx the assertion is well known. We assume that
dimP^ is infinité. Let {ev}veL be an orthogonal basis for E. We consider ail those

finite sets of basis vectors ev which span spaces F with Fn Vt 7^(0), furthermore sets

^ of such spaces F with the property that Ft n F2 (0) for Fl9 F2eJr, F1^F2. The
sets &> are partially ordered by c. By Zorn's lemma there is a maximal élément ^~0.
We hâve an orthogonal décomposition E=(®F)®Ei9 Et spanned by the ev not

occurring in the Fin ^0. Since Vt is infinité dimensional we notice that card ^0 is

necessarily infinité. Let ®F=E2. We hâve dim2s2^diml''1; for if dim£I2<dimF1 we

could décompose a basis {t;(} of Ft as follows: vl ell + e2l, ^\^EU e2teE2, and the

projections {e2l} would be linearly dépendent. Therefore there would be a linear

combinationO#]T XivlteEi withj] AivHeFii.c:E1, F* spanned by finitely many basis

vectors ev. This contradicts the maximality of ^0. Hence we must hâve

dim Vt. Since card^0 is infinité and the Fe^0 are finite dimensional, we hâve

card J^q. Hence cardJ^o ^ dim Vt. But by the définition of the sets F and IF we hâve

card«F < dim Vx for ail 3F. Thus card^o dim Vt. We pick a vector vF # 0, %e Fn J^,
for each Fe^0. Since F is semisimple, there exists an isotropic v'FeF with <P(vF,

y^)= 1. We set Ut =k(vF)Fe<Fo, U2ek(vF)Fe^0, For Fe^0 we hâve F=k(vF, vF)®GF.
1

Setting E0 — Ei®®GF we obtain the desired décomposition E=(U1®U2)®E0 of our

theorem. Further since U2nV1= (0), dimF/Fi^dimU2 dim 17! dimVx.
Now to prove (i) assume in addition that £=^©72, V2 a totally isotropic

complément of V1.We hâve just proved that dim V2 ^ dim Vi. Hence dim V± dim F2 dimE.

In order to prove that we may choose Ut a Vx and U2 c F2 we repeat the earlier
device. This time we consider finite dimensional spaces F spanned by some ev, veL,
such that (Fn V1)®(Fn V2) is not totally isotropic. There is a maximal set ^0 of such

spaces F (with respect to c), F1nF2=(0) for Fl9 F2e^"0, Ft4=F2; and we have an

orthogonal décomposition of E, E=(®F)®E1. Suppose that we had dimE/E1<

dimF1=dimF=dimF1. Setting W=(ElnVl)®(E1nV2) we have in that case that
dim£1/^F=dimF/JE'1<dimF1. By the first part of our theorem JFcannot be totally
isotropic. There is &veEi n Vx and a vfeEl n V2 with $(v, î;')4=0. The vectors v and v'

are contained in a space FoczEt spanned by some finitely many ev. Fo qualifies for
membership in #"0 thus contradicting the maximality of ^0. This shows that we must
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hâve dimE/El=dimVl. The proof now goes through as before. This time we may
pick nonzero vectors vFeFnVt and v'FeFnV2 for ail Fe^0. This complètes the

proof of (i).
The assertion (ii) is readily reduced to the denumerable case. Let {Vi}t> t be a basis

of Vi; vt Y, «,•,£,, {e,} an orthogonal basis of E. Hence Vtc:El9 Ei spanned by the

et with af ,#0, *> 1. We now apply the theorem of 1.2 to El. This complètes the proof
of Theorem 24.

An important corollary of Theorem 24 is the foliowing:
Corollary: Let (E, #) be a semisimple space spanned by an orthogonal basis,

F some subspace of E. We hâve dim(radF)^dim£'/F.
We remark that by the reasoning applied in proving (ii) every subspace H of E is

contained in an orthogonal summand Ex ofE, dimi^ =dim//. This trivial observation
has the following conséquences.

Theorem 25 : Let (E, <P) be a semisimple space spanned by an orthogonal basis. Then

(i) E has no subspaces oftheform A®B with A1nB=(0) and dimA <dimB.
(ii) Ail maximal totally isotropic subspaces ofE are of the same dimension.

(iii) If H is a subspace of E with K0^dim/f<dim£', then dimE=dimEjH—

(iv) IfHis 1-dense in E, i.e. H11 E, then dimiïr=dim£t.
i

To prove (i) write E=EÏ®E2 with dimv4 dim£'1 and AaEu hence E2<=-A1. If
dim;4<dimZ?, then B must meet E2 so A1nB^(0).

The reasoning for (ii) is similar. The relationships in (iii) and (iv) follow from an
i

examination of the décomposition E=(H®H0)®E0 with dim#=dim(#©//0).
By (ii) we see that the V® W in our earlier example has no orthogonal basis when

a<b, independently of how (P is defined on F and W.

We now turn from spaces having orthogonal bases to the other extrême, namely
infinité dimensional spaces which possess no infinité non-trivial orthogonal de-

composition.

Définition 2: Let (E, $) be semisimple. (E, 4>) is called solidif and only if every

orthogonal décomposition ®Et of E has ^ (0) with the exception of finitely many /.

Corollary: (E, <P) is solid ifand only ifthere is no décomposition E=F®FL with

F of denumerable dimension.
Indeed every such décomposition E=F®FL gives a non-trivial infinité décomposition

as F admits an orthogonal basis. Conversely let E=®Et with infinitely many

£^(0). Since each non-trivial Et is semisimple we find an orthogonal summand of
denumerable dimension by picking one suitable vector ea. from each of Ko non-trivial
summands Ear
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Finite dimensional spaces are of no interest in this connection. Spaces of de-

numerable dimension are never solid since they hâve orthogonal bases. Non-trivial
examples of solid spaces are furnished by Hilbert spaces over the reals. The following
example is of a différent kind. Let k be an arbitrary field, H an infinité dimensional

Espace, H* its algebraic dual. Define $ on E=H*®H by <P(h*9 h) h*(h), h*eH*9
heH and $(H*, H*) $(H, H) (0); then Eis solid. In view of the corollary above,
the assertion follows from the following more gênerai:

i
Theorem 26: Let (E, $) (H*®H)®G be infinité dimensional, H* the algebraic

dual of H, G finite dimensional, H* and H both totally isotropic and ${h*, h) h*(h),
i

h*eH*9 heH. If À and B are infinité dimensional subspaces of E with E=A®B then

dimA^ \\kf° andA\mB^\\kf°.
We remark that the case dim^4 \\k\\*° does take place: Let H=H0®Hl9 ûimH0

i i
Xo. ThenE=(Ho®Ho)®(H*®H1)®G is a space of the type in Theorem 26, and

Proof of Theorem 26: We endow E with the topology t t<j>H* and consider
a:E-+Ef defined as follows. For xeH*9 yeH and zeG, let a:x-+<Px\H9 y-+4>y\H*9

z~*(&z\g where <Px(h) <P(x, h) etc. a is injective and as usual we make the identifications

g(H*) H*, <j(H) H and a(G) G. On the other hand it was proved earlier
that the restrictions of a are isomorphisms as follows, <r:H*^H' and o.H^H*'
(' with respect to t t0H*). Since G is finite dimensional we see that a:E^Ef is an

(algebraic) isomorphism, and the canonical pairing (E> E'} is induced by <P, i.e.

<x, yy <p(x, a'1 y). (We remark that a is also a topological isomorphism when E' is

supplied with the Mackey topology tc(Ef, E), for tc(£", E) is seen to be precisely the

image topology of t0H* under a). Let F be an arbitrary subspace of (E, t). The t-
closure of Fis F00, ° with respect to any pairing <£, 2T>. Hence F is t-closed if and

only if Fis ±-closed as F0 <x(F1) and F1 (tr(F))° in our case. We hâve thus shown :

If the space E of Theorem 26 is endowed with the topology x x0H* then a subspace

i
FczE is x-closed ifand only ifit is L-closed. Assume then that E=A®B and dimy4 <
\\k\\*0. A is semisimple and ±-closed, hence r-closed, hence discrète by Corollary 2 to
Theorem 9. Therefore any subspace 5c A is T-closed and therefore ±-closed in E.

Since SlA S1 + B, S1a1a S, i.e. Sis orthogonally closed in A with respect to <P\A.

Thus we see that (A, <P\ A) is a semisimple space in which every subspace is orthogonally
closed. Hence A is finite dimensional, (cf 1.1), which was excluded.

Corollary: The spaces of Theorem 26 are solid. The last theorem permits some
observations.

1) Let F and G be vectorspaces over some field, dimF=X0, dimG= 2No. We
introduce bases F=k(fr)reP9 G k(gx)ÀeR, r running through the rationals and A
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running through the reals. We define a symmetric bilinear form $ on F©G by
declaring the summands F and G to be totally isotropic and taking

0 if r<X
if T>k-

It is easily verified that (F® G, 4>) is semisimple. Our space contains an orthogonal
i

summand of denumerabledimension: F®G Et®E2 where

Ei k(fH9 e«)-oo<i.<oo> n an integer
h2 k\Jrn ~~Jrv> eXn ~~ en)~ oo <n< oo, n- KXn<n, n<rn<n+ 1 •

Furthermore if i/ is of denumerable dimension, and if (H*®H, 0) is defined as in
Theorem 26, we see that the Kaplansky-lattices generated by H* and H in H*@H and
by F and G in F® G under the opérations +, n,1 are isomorphic:

F® G H® H'

Both lattices define the same cardinal numbers (dimensions of quotient spaces of
neighboring spaces). Nevertheless the two spaces are not isomorphic, one being solid,
the other not. In the denumerable case isomorphism of two such lattices would
guarantee isomorphism of the spaces (symplectic bases). For the importance of thèse

lattices see [8].
2) Let F be a totally isotropic subspace of (E, #) with V1=V. If dimZs=X0

then V always admits a totally isotropic algebraic complément W. This is not true in
gênerai. Consider the &-vectorspace H*®H9 H spanned by an infinité basis {ht}ieI.
Let KcH* be spanned by the conjugate family of functions h*9 h*(hK) ôlK, (1, Kel).
Thus H*®H=(L®K)®H, L some algebraic complément of K in H*. We define a

bilinear form <f> on H*@H as follows: <P(L, L) &(H, H) (0), <P(Af, h*) ôlK9

i,kgI; *(L,X) (0) and <P(h*, h) h*(h) for h*eH*, heH. (H*®H,$) is semi-

simple, H1 H, and we hâve the décomposition:

H* 0 H K®(L ® k(ht - h*)t).
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Inparticularifdim//= Ko then âimK= Ko and (H* + H, #) is not solid. If1/admitted
a totally isotropic algebraic complément W, H* + H= W®H, thenw>~+#JH,(H>e W),
would be an (algebraic) isomorphism W^H*, and H® W would be a space of the

type discussed in Theorem 26, hence solid.
We remark that there are of course spaces which fall somewhere between the solid

case and the case of orthogonal bases : Theorem 25 (î) says that our earlier examples

F© W(with a<b) and H*-\-H(of Theorem 26) cannot even be embedded in a space
with an orthogonal basis. Thus by taking orthogonal sums of infinitely many copies
of such spaces we obtain examples of this intermediate kind. As we shall prove at
another time, there are spaces admitting of no orthogonal bases which can neverthe-
less be embedded into spaces with orthogonal bases.

î
Clearly if E is solid and E=H®G then H and G are solid. We now prove the

converse.

Theorem 27 : Let (E, 0) be any semisimple space splitting into an orthogonal sum

E=H®G. Assume that E admits a denumerable orthogonal summand, i.e. E=F®F1
with dim F= Ko. Then one ofH and G possesses an orthogonal summand ofdenumerable

dimension.

Proof: Since F is semisimple and of denumerable dimension, F is spanned by an
orthogonal basis ft ht+gl9 hteH, gteG(i^l). Let H0 k(hl\>u G

Splitting offradicals we set ifo H1©radifo and G0 Gl®taàG0. Since

we see that at least one of Ht and Gt is infinité dimensional ; for otherwise F would
contam a totally isotropic subspace Fo with dim F/Fo finite, contradictmg the semi-

simplicity of F. We assume that dimHt is infinité dimensional, i.e. dimif1 Ko. Ht
has an orthogonal basis, Hx =k(h[)l>l, \\h[\\ #0. We shall prove as a first step that we

can introduce a new basis {h"}^ x for Hx such that

K-K-ÏLKjK K K (1)
i

with the following property: For every «> 1 there exists an m such that

h",€k{h^tt for ail i>m, (2)

h, the components in/,=g,+/i, above.

In order to prove this we first express every h[ in terms of the h/.h'^ £ A^'A,.

Put A<1)=A>'. Let AJJ> be the first h\^ with AjiVO, i.e. iï»=k™= ••• =Aj|llp t =0 and

AJÎ^îéO. Take h[2)=h^=h[ for /<«! a.nàh^)=h\1)-kjkntlh(n^ for i>m' Then for

/>«i, h{2)e[hJ]JS:2- Proceeding by induction, we assume that we hâve already formed
the vectors /^C.C-i* C C+i.- with ^""M^W for ail i>nm^, nm^>
«m_2>... and /z<m)=£ klfhj. Let h™ be the first hl,m) with A'^0 and i>nm_v Take
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Then h\m+i)e[hj]j>m+1 for i>nm and nm>nm^l>nm^.2>.... We relabel the séquence
A^,..., Ai^-t, A^}, A<f+1,..., A^f, Ai^+1,... which we obtain in this fashion with Aï,
A'2,.... The A" hâve the property that A"e [hj]J>n for ail i sufïiciently large. Furthermore
(1) is satisfied and the {A"} span ail oîkQt'^H^

Now let A be an arbitrary vector in H. h is orthogonal to almost ail of the h".
n

Indeed, since heHcFQF1 we hâve A — ^/2,/lFfor suitable n. Fory>nwe obtain

j) 0 since #±G and the/, mutually
orthogonal. Furthermore by (2) there exists an m such that h"ek(hj)J>n for ail />m.
Thus #(A, A") 0 for /> m. We hâve:

for every heH, hLh] for almost ail j;
in particular the (symmetric) matrix ${h",h") (3)
is row- and column-finite.

In other words the A" are "almost" an orthogonal basis. We proceed to sélect an
orthogonal family {Af}l>]L of non-isotropic vectors in k(h")^Hl such that (2) holds
for the Af, i.e. for every n^l there exists an m such that

h*ek(hj)J>H for ail i>m. (4)

This we do as follows. Take h* h", hence by (1), ||A?|| ||A"H ||A;|| #0. By (3) there
is an n2^ 1 such that $(h"p, h'[) 0 for all/?^«2.

Case 1 : if there is an r2>n2 with \\h"2\\ ¥>0, we set A* K2.
Case 2: if \\h"p\\ =0 for allp^n2 we proceed as follows. By (3) there is an m2^n2

such that 0(Ap, A^2) 0 for ail/? with l</?<«2. Since H=k(h")l^1 is semisimple,
there must be a />2>/i2 such that <P(A;2, A;2)#0. ||/i;2 + A;2||=2#(A;2,A;2)#0.
Further since m2,p2^n2, <P(h'[, A^2+Ap2) 0. In this case we take A* A^2 + Ap2.

Thèse steps can be repeated, and we obtain an orthogonal family Af, / > 1, ||Af|| #0.
Every h* is of the form

Kt or fc^ + fc;,, Kr.m.p,, (5)

according to the two cases arising in each step. In view of (5), property (4) is clearly
inherited from (2).

Finally we show that the h* span an orthogonal summand H2 of H. Indeed let A

be an élément of if. By (3) there is an m such that 4>(A, A'J) O for ally>m. So #(A, A*)

0 for Mj>m by (5). Hence A-J ||Afir ' *(A, h*) Af1A* for ail 7, i.e. H=H
1

This concludes the proof of the theorem.
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Corollary: The solid spaces (E, <P)form a monoid under the opération of orthogonal

(external) sum.
The last theorem provides us with the foliowing types of spaces. Let (E, 0) be

solid, and put — E=(E,—<P). Let V and W be spanned by the familles {et + e[} and

{el — e[} respectively, where et and e[ run through the corresponding bases of E and
i

— E. Then since ${eiy eK)= —fpfâ, e'K), the (external) sum E®—E îs the sum of two
x

totally isotropic spaces: E@—E= V®W. However there îs no sympletic basis for
E®— jEwith îts two halves spanning F and FF respectively. For such a basis {v,, wt}h

^{vvwÙ — ^ik would give an orthogonal basis {vl + wl9vl — wl}1 for E®—E, hence

E®—E would not be solid. Therefore E would not be solid by Theorem 27. But this
contradicts our choice of E.
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