Paths of Rapid Growth of Entire Functions.

Autor(en): Kaplan, Wilfred
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 34 (1960)
PDF erstellt am:
19.04.2024

Persistenter Link: https://doi.org/10.5169/seals-26624

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Paths of Rapid Growth of Entire Functions

by Wilfred Kaplan, Ann Arbor, Mich. (USA)

In 1957 A. Huber published a paper in which he deduced the following theorem ([1], p. 52):

Theorem. Let $f(z)$ be an entire function, not a polynomial. Let $\lambda>0$. Then there exists a locally rectifiable path C_{λ} tending to infinity, such that

$$
\begin{equation*}
\int_{C_{\lambda}}|f(z)|^{-\lambda}|d z|<\infty . \tag{1}
\end{equation*}
$$

Huber's proof depends on a deep study of subharmonic functions and is quite involved. Because of the simplicity of the result, I have been seeking a simple proof. This I have succeeded in obtaining only for special values of λ : $\lambda \geqq 1$ or $\lambda=1-(1 / n), n=2,3, \ldots$ In this note I present the proof for these values of λ.

As remarked by HUber, there is no difficulty if $f(z)$ has only a finite number of zeros, so that $f(z)=P(z) \exp [g(z)]$, where P is a polynomial and g is entire. The function

$$
w=\Phi(z)=\int_{0}^{z} e^{-\lambda g(z)} d z
$$

is then entire and without critical points. If the inverse function $\Phi^{-\mathbf{1}}(w)$ has no singular points, then it is also entire, so that $\Phi(z)$ has form $a z+b$ and $f(z)$ is a polynomial; hence $\Phi^{-1}(w)$ must have singularities. In particular there must be a functional element of $\Phi^{-1}(w)$ which can be continued from $w=0$ along a finite segment ending at a singularity w_{0}. The segment is mapped by $\Phi^{-1}(w)$ on a path C_{λ} in the z-plane, on which $z \rightarrow \infty$ as $w \rightarrow w_{0}$. Then

$$
\left|w_{0}\right|=\int_{c_{\lambda}}\left|\frac{d w}{d z}\right||d z|=\int_{c_{\lambda}}\left|e^{g(z)}\right|^{-\lambda}|d z|
$$

Thus C_{λ} is the desired path if $P(z) \equiv 1$; by removing a finite portion of C_{λ}, one can ensure that $|P(z)| \geqq 1$ on the remaining portion C_{λ}^{\prime}, so that C_{λ}^{\prime} is the desired path.

Now let us suppose that f has infinitely many zeros and let λ have form $1-(1 / n), n=2,3, \ldots$ We can then assume without loss of generality that $f(z)$ is expressible as $z^{2 n} G(z)$, where $G(z)$ is entire and $G(0) \neq 0$. For moving a zero of f from z_{1} to the origin, or from the origin to z_{1}, is equivalent to multiplying f by $z /\left(z-z_{1}\right)$, or by $\left(z-z_{1}\right) / z$, a factor which approaches 1
as z approaches infinity and which has therefore no effect on the integral in (1). We select k such that $f(k) \neq 0$ and introduce

$$
\begin{equation*}
w=\Phi(z)=\int_{k}^{z}[f(z)]^{-\lambda} d z=\int_{k}^{z} z^{2-2 n}[G(z)]^{\frac{1}{n}-1} d z \tag{2}
\end{equation*}
$$

This equation defines $\Phi(z)$ as a multiple-valued function of z. However, we remark that one branch (in fact, every branch) has a pole of order $2 n-3$ at $z=0$. The inverse function $\Phi^{-1}(w)$ can be considered as the solution of the differential equation

$$
\begin{equation*}
\frac{d z}{d w}=z^{2 n-2}[G(z)]^{1-\frac{1}{n}} \tag{3}
\end{equation*}
$$

such that $z=k$ when $w=0$. We consider the solution along rays $\arg w=$ const., starting with a given analytic branch at $w=0$. By the theory of differential equations, the solution continues to exist as long as the value of z remains within the domain of analyticity of the right-hand member of (3). Trouble can arise as $w \rightarrow w_{0}\left(w_{0} \neq \infty\right)$ only if, as $w \rightarrow w_{0}, z$ approaches a zero of G or z approaches infinity. If $z \rightarrow z_{0}, G\left(z_{0}\right)=0$, then z_{0} must be a zero of first order of G, for by (2) at a multiple zero $w \rightarrow \infty$ as $z \rightarrow z_{0}$. Near a first order zero we obtain series expansions

$$
\begin{aligned}
& w-w_{0}=\left(z-z_{0}\right)^{1 / n}\left[b_{0}+b_{1}\left(z-z_{0}\right)+\ldots\right], b_{0} \neq 0, \\
& z-z_{0}=b_{0}^{-n}\left(w-w_{0}\right)^{n}+\ldots
\end{aligned}
$$

that is, $\Phi^{-1}(w)$ is a single-valued analytic function in a neighborhood of w_{0}. [An illustration is provided by $z=\sin w$ as a solution of the differential equation $\left.d z / d w=\left(1-z^{2}\right)^{\frac{1}{2}}\right]$.

Therefore continuation of $\Phi^{-1}(w)$ can be interrupted at a finite value w_{0} only if, as $w \rightarrow w_{0}, z \rightarrow \infty$. If indefinite continuation were possible along all rays, then $\Phi^{-1}(w)$ would be an entire function of w. But we know that one branch of $\Phi^{-1}(w)$ approaches 0 as $w \rightarrow \infty$, because of the pole of $\Phi(z)$ at $z=0$. Therefore $\Phi^{-1}(w) \rightarrow 0$ as $w \rightarrow \infty$. Accordingly, $\Phi^{-1}(w) \equiv 0$, and there is a contradiction. Hence continuation must be interrupted at at least one value w_{0}, and we obtain the path C_{λ} as in the first part of the proof.

For $\lambda \geqq 1$ we consider two cases: λ rational, equal to $m / n ; \lambda$ irrational. In the rational case the proof for the case $\lambda=1-(1 / n)$ can be repeated with the simplification that, at each zero of $G(z), w \rightarrow \infty$ as $z \rightarrow z_{0}$.

If λ is irrational, we do not need to normalize f at $z=0$. The previous argument can be repeated with slight modification; the differential equation (3) is replaced by the equation $d z / d w=[f(z)]^{\lambda}$ and a solution $z(w)$ can be continued along a ray $\arg w=$ const. unless z approaches the boundary of
the domain of analyticity of $[f(z)]^{\lambda}$, a Riemann surface over the z-plane. Since $|f(z)|^{\lambda}$ has the same value on all sheets of this surface, we conclude that continuation can be interrupted for finite w_{0} only if, as $w \rightarrow w_{0}, z$ approaches ∞ or a zero of f. But since $\lambda>1, w \rightarrow \infty$ as z approaches a zero of f. Hence, if $\Phi^{-1}(w)$ has no singularity at which $z \rightarrow \infty$, then $\Phi^{-1}(w)$ is single-valued, an entire function $\psi(w)$, and

$$
\frac{d z}{d w}=\frac{d \psi}{d w}=[f(z)]^{\lambda}=[f(\psi(w))]^{\lambda}=[g(w)]^{\lambda}
$$

where $g(w)$ is entire. Therefore $[g(w)]^{\lambda}$ is also entire. This is possible with λ irrational only if $g(w)$ has no zeros-hence only if $f(z)$ has at most one zero. Again we have a contradiction. Therefore Huber's theorem is proved for $\lambda \geqq 1$ and for $\lambda=1-(1 / n)(n=2,3, \ldots)$.

Remark 1. The theorem can be strengthened for functions having no zeros. For then $\log f(z)$ can be defined as an entire function; if $\log f(z)$ is not a polynomial, there exists a path C_{λ} on which

$$
\int_{C_{\lambda}}|\log f(z)|^{-1}|d z|<\infty .
$$

Remark 2. In his paper ([1], p. 52) Huber raises the question: Suppose $f(z)$ is entire and that there exists $\lambda>0$ such that

$$
\int_{1}^{\infty}\left|f\left(r e^{i \theta}\right)\right|^{-\lambda} d r=\infty
$$

for all $\theta, 0 \leqq \theta<2 \pi$; does this imply that $f(z)$ is a polynomial? In other words, in the preceding theorem, can C_{λ} be chosen to be a ray?

This question we answer negatively as follows. A theorem of Keldys and Mergelyan ([2], p. 37) implies that, if $g(z)$ is continuous on a closed set E and analytic on the interior of E, then for each $\epsilon>0$ there exists an entire function $f(z)$ such that $|f(z)-g(z)|<\epsilon$ on E, provided the complement E^{\prime} of E is locally connected at infinity. In particular, E can be chosen to be the closure of a domain bounded by a simple path γ which approaches infinity in both directions. On such a set E we can easily construct $g(z)$, not identically constant, such that $|g(z)|<\frac{1}{2}$ on E (for example, $g(z)$ can be obtained with the aid of conformal mapping from the function $\frac{1}{4} e^{\varepsilon}$ in the left half-plane). Let $g\left(z_{0}\right)=a, g\left(z_{1}\right)=b \neq a$. We choose $\epsilon=|b-a| / 2$ and $f(z)$ entire, so that $|f-g|<\epsilon$ on E. Then f is not identically constant and $|f|<1$ on E. Since f is bounded on such a set, f cannot be a polynomial. By proper choice of γ, we can force every ray $C_{\theta}: \theta=$ const. to meet E in a set of infinite length; for example, γ can be formed of two spirals which approach
each other as $|z| \rightarrow \infty$, and E^{\prime} as the set between the spirals. Then

$$
\int_{C_{\theta}}|f(z)|^{-\lambda}|d z| \geqq \int_{C_{\theta} \cap E}|d z|=\infty .
$$

For such a function $f(z)$ it is clear that the path C_{λ} of HUBer's theorem must either lie between the spirals (that is, in E^{\prime}) or be asymptotic to E^{\prime} in the sense that the length of the part of C_{λ} outside of E^{\prime} must be finite; hence effectively there is only one path.

Remark 3. Although the paths $\arg z=$ const. are not generally allowable as a choice of C_{λ}, it appears reasonable that the paths $\arg w=$ const. can serve. For on such a path, not passing through a zero of $f,|f(z)|$ grows steadily in one direction. I conjecture that, for each $f(z)$, a path $\arg f(z)=c$ can serve as C_{λ} for almost all values of c. For a similar reason, it appears probable that the paths $\operatorname{Re}[f(z)]=c, \operatorname{Im}[f(z)]=c$ can also serve as C_{λ} for almost all \boldsymbol{c}.

REFERENCES

[1] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv., 32 (1957), 13-72.
[2] S. N. Mergelyan, Uniform approximations to functions of a complex variable (in Russian), Uspehi Mat. Nauk (N.S.) 7, No. 2 (48) (1952), 31-122. Amer. Math. Soc. Transl. No. 101, Providence, 1954.
(Received April 3, 1959)

