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On the Factorization of Matrices
by Nokbebt Wiekeb, South Tamworth (N. H.)

To Professor Plancherel, the founder of the précise iheory of the Fourier
intégral and the inspirer of my work on harmonie analysis

§ 1. This note will deal primarily with binary matrices whose
éléments are functions of a variable # which is to run between (— n, Jt).

It represents an extension of certain well-known theorems due to Szegô
and the author, concerning scalar functions of ê. The fondamental theo-
rem is the following :

Theorem 1. Let F(&) be non-negative and belong to Lebesgue class L
over (— n, n). Then a necessary and sufficient condition for us to be able
to write

F(&) \<p(ê)\* (1.01)
where ^

(p(&) Saneinlh (1.02)
and x

°

Z\an\*«x> (1.03)
is that °n

$\logF(ê)\d& (1.04)

be finite. It is then possible to choose the coefficients an in such a manner that

Eanzn (1.05)
has no zéros inside the unit circle.

Let (x be an arbitrary real number between 0 and 1. Let it be repre-
sented in the binary scale by the expression :

(x ;x1a2(%3 (1.06)

Let thèse digits be re-numbered :

• Pu Pi P-l ^2 P-2 - - •

and so on. Let
Bn(*) 2pn-l (1.07)

It will follow that the transformation of & which changes Bn(oc) into
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Bn+1(oc) for ail values of oc lying between 0 and 1, and ail values of n,
is a measure-preserving transformation T. We may write

Bn+1(oc) Bn(Toc) (1.08)

This transformation T is not indeed well-defined for ail values of oc but
is well-defined for ail values of oc with the exception of a set of measure 0.

If we start with any fonction q> (ê belonging to L2 and containing no
négative frequencies, we can represent it, as I hâve said before, by the
séquence of coefficients an where :

Z\an\2<oo (1.09)
0

Under thèse circumstances, it can be proved that

_n(*) (1.10)
0

will converge in the mean to a fonction of oc which we shall call f(oc). The
fonction f(oc) will then belong to L2 over the interval (0,1). If we con-
sider the projection of any fonction g (oc) belonging to L2 on the closure
of the set of

-*oc),... (1.11)

this will converge in the mean to 0. It will obviously be the same as the
projection of g on the closure of the set of fonctions B__n (oc), J5__n-i (oc),...
That is, it will be the fonction

(1.12)
!>=0 0

and will hâve as the intégral of the square of its absolute value

Z\S9(P)B-V(p)dp\* (1.13)

This leads us immediately to the closely related

Theorem 2. Lei us assume in gênerai that f(oc) is any function whatever

of the variable oc which lies on (0,1). Let T be any measure-preserving
transformation of oc into itself. Let the projection of f(oc) on the set of functions

f(T-"*)9f(T-"~*x)9... (1.14)

converge in the mean to 0 asn becomes infinité. Then there exists a function
h (oc) which is normalized which is linearly dépendent on the set of functions

f(ac), HT-**),...
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and which is orthogonal to ail functions

*),... (1.15)

It will follow that the functions h(Tna) are a normal and orthogonal
set, and it can be proved that f(ot) will be equal to

00 1

0 0

as a limit in the mean. The function
00 1

0 0

will be analytic inside the unit circle and will hâve no zéros there. Taken
around any circle concentric with the unit circle but of smaller radius,
the intégral of the absolute square of this function will be uniformly
bounded.

The statement in the hypothesis that f(oc) is asymptotically orthogonal
to the closure of

as n becomes infinité is obviously a statement which merely concerns the
autocorrélation coefficients

)i* ¦ (1-18)
0

If then, thèse are of the form

j-in*d# (1.19)jIn -„
we can reduce this case to the particular case in which we hâve derived
/(<%) from <p{§) by means of the B's.

§ 2. Now, let us start with two functions of class L2, fi(&), /2(<*).

Parenthetically, let me remark that thèse both are to belong to L2 and
that we hâve one single transformation T of oc into itself which préserves
measure. Let the remote pasts of both fx and /2 be asymptotically
orthogonal to f1 and /2 which will be the case if Fx(û) and F2(ïï) are
respectively the functions belonging to L2 with Fourier coefficients

(2.01)
and \

(2.02)
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and let
J | d&<oo J | logF2(&) | c»<oo (2.03)

Under thèse circumstances we shall hâve two normalized functions
ht(a) and h2(a) such that hx is linearly dépendent on fx and f^T^oc)
and orthogonal to ail functions /1(î7~n^) where n is positive, and where
h2 will bear the same relation to f2(oc). We shall then hâve two normal
and orthogonal set of functions f^T71^) and f2(Tnoc), but there will not
necessarily be any relation of orthogonality between thèse two sets.

Let us notice that if we put Fi5(^) for the functions with Fourier
coefficients x

J /.(T1**)/*(*)** (2.04)
then °

Ft{&) F1±{&) (2.05)
and

F2(ê)=F22(ê) (2.06)

It is easy to prove that
while

Moreover,

and F22(&) are real and non-negative,

\) =F21{&) (2.07)

can be shown to be non-negative. Let us make the hypothesis

J log dê<oo

(2.08)

(2.09)

Since we hâve made the supposition that the functions f1 and f2 belong
to the class L2, it is not difficult to prove that the functions F^d) ail
belong to the class L, so that the effective part of our assumption is

dê<oo (2.10)

Since however

22 21

it will follow that
log-i^

^11^22 - I Fi, I2 (2.11)

(2.12)
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from which we may conclude that

&) j d#<oo
(2.13)

which are the assumptions we hâve previously made separately for

JFu(tf) and F22(&)

§ 3. I now wish to introduce a lemma of very gênerai character con-
cerning Hilbert space. It is the foliowing :

Let H1 be a closed subspace of Hilbert space and let H2 be another such
closed subspace. Then their common part HXH2 will be a closed

subspace of Hilbert space. If f is any vector in Hilbert space, and if Pxf is the

projection of f on Hx while P2f is the projection of f on H2, then the resuit of
consécutive projection

will converge in the mean to the projection of f on HXH2.
Let us note this H± contains two orthogonal spaces, one of which is

HXH2 while the other contains those fonctions in H± which are orthogonal

to ail fonctions in HXH2. This other part we shall call H*. Simi-
larly, interchanging the rôles of Hx and H2, we separate every fonction
of H2 into a part lying in Ht and a part orthogonal to ail fonctions in
H1H2 which we call H*. Then the successive projection of a vector on
Hx and H2 will be given by its projection on HXH2 plus the resuit of its
successive projection on £T* and Jï*. H* and H* will not necessarily be

orthogonal to one another, but they will at any rate contain no vector
other than 0 belonging to both. If therefore I can prove that when I hâve
two closed subspaces of Hilbert space H* and H\ not containing any
vector in common except 0, then the resuit of consécutive projection of
thèse two will converge in the mean to 0, I shall hâve established my
lemma.

Now let <pn (x) be a set of normal and orthogonal functions belonging
to H* and closed on H* and let tpn (x) be a set of normal and orthogonal
fonctions belonging to H* and closed on H*. Then if I start with any fonction

f(x) on £T* I can write it

ntâ ' (3.01)

If I project this fonction on i¥*, the projection will be

nfm]y>m(x) (3.02)
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projecting this back on H* I obtain

lSVnVmS V>m ?J V,(*) ' (3 .03)
m n p

The resuit of thèse repeated projections will be to change each function

(3.04)
where Qpn will be

Z $ VnVrn $ VmV* • (3.04)
m

That is Qm will satisfy the condition that

QnP^Qm • (3.05)

The operator of double projection will hâve Hermitian coefficients and
will be what is known as a self-conjugate operator. It will also be an
operator which reduces the length of any known non-zero vector in H*.

Well-known theorems of Hermann Weyl prove that such an operator
will hâve a spectrum continuous or discrète. To transform any function
in Hx by such an operator, we expand it in the spectral functions, and
change each function by a factor which is less than one in absolute value.
It is easy to prove that such an operator, when repeated sufficiently
often, will turn any vector of finite length into a vector of length as small
as we choose.

Let us apply this lemma to the two spaces H1 und H2 consisting re-
spectively of ail functions of £2 orthogonal to the functions h1(T~~n(x)

and h2(T-n(x). To form the projections of hx((%) and h2(ot) on this
space is essentially the same thing as taking the projections of fx and /2

respectively on spaces which are respectively dépendent on fx and its past,
but orthogonal to its past and dépendent on /2 and its past and orthogonal

to that past. Let me start with hx and find an expression for the
part of hx which is orthogonal to the past of fx and /2 and form the part of
h2 which is orthogonal to the past of fx and /2. Thèse functions we shall
call respectively kx (a), k2 (oc).

We shall hâve for the projection of hx orthogonal to its own past hx

itself, and hx((x) will be our first approximation in the mean to kx((x).
We shall now take the part of hx which will be orthogonal to the past of
A2. This will be

hx{») - Zh2{T~moc) j Kx1fi)K%(T-™f))d(l (3.06)

We project again to find the part orthogonal to the part of Hx where hx

is orthogonal to its past and will need no new term so that only the
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second term must be taken care of. It is clear that the extra added term
to make the third approximation will be given by

OO 00 1 ______________ 1
i y1 Y1 J% (nn—n^\ f /a (R\h (^P~^R\fJR f h (HP l^R\lh l^P—nR\flR (^K 07\
m=ln=l 0 0

The raie of continuing this séries is now clear, and the terms will alter-
nately contain hx((x), the past of h2(a), the past of Ai(&), and so on.
The signs of the terms will alternate. The coefficient of the first term will
contain one intégral and one sign of summation, that of the second two
intégrais and two signs of summation, and so on. This séries

*l(«)

00

00

— S h2(T~r>

oo

T* Jt i W TU y*/
__/ lv\\JL OC

00 OO

0

l
J h2
0

(T~mp) hx(

1

1

0

S Zhî(T-™*)$h1(T~np)h2(T-mp)dp$h2{T-*>p)h1(T-nP)dp
o ow*=l w=l p=l 0 0

1

0

will be k^oc). kx{<x) is then the part of hx((x) which is orthogonal to the
pasts of hx and h2 so that

0

1

0

1 oo 1

J I *i(«) \2dot - Z | J hMKiT-n^d* |2 (3.08)
0

00

— Z 1

1

x §h
0

00

1 z
i

~W^)A1(:

h2(T-nx)d%

T~m<x)doc |2.

Clearly
(3-09)

is positive, and equally clearly

^ 1 (3.10)
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Therefore
x

Jl *i(«) I2<*« (3.H)
0

lies between 0 and 1, and similarly

0 < 5\k2(oc) \2d<x < 1 (3.12)
o

&x(<%) is that part of h^oc) which is orthogonal to the pasts of both fx
and/2while Jc2((x) is that part of h2(oc) orthogonal to both pasts. Let us
notice that x

(3.13)

is always 0 if n is positive. From that and the measure-preserving charac-
ter of T it results that x

J ki{Tn(x)kj{Tm(x)d(x (3.14)
o

is 0 unless m and n are the same. As yet however, we know nothing in
the case where m and n are the same, except that we may reduce this
case to the case when both m and n may be given the value 0.

There are two cases which now présent themselves. Either kx and k2

hâve a relation of linear dependence or they do not. If they are linearly
independent, they cannot, either of them, be équivalent to 0. Let us

suppose that kx is not équivalent to 0. Then we can normalize it to ob-
tain qi((x). We then form

*i(") - ïiW fa*(P)ii(P)dp (3.15)
o

This fonction is obviously orthogonal to qx. If it is équivalent to 0, kx

and k2 are not linearly independent. If it is not équivalent to 0, it can
be normalized, and thus we obtain q2(oc). Then the fonctions q^a) and
q2(oc) are such that qi(Tmo() form a normal and orthogonal set, any two
of them being orthogonal, unless both i and m agrée.

Continuing on the assumption that kx and k2 are linearly independent,
we can express fx and f2 in terms of this normal and orthogonal set. In
proving this, we can establish that the formai séries for /^(<%) is

S Zqi(T-»cc)UMq,(T-»P)dp (3.16)
?=1,2 w=l 0

By studying the partial sums of this séries and the différence between
thèse partial sums and fi(a), we can see that either the séries converges
in the mean to fi(ot), or we shall hâve the projection of fi(oc) on the
remote past of fx and /2 together not going to 0. Since the latter has

104



been excluded, we shall hâve

1

(3.17)
;=1,2 n=l 0

Under thèse conditions

J/,( 2*»)/,(«)*»
0

cx> 1 1

K=l,2 w=0 0 0

Let us notice that the séries

oo 1

(3.19)
0 0

will converge in the mean to functions belonging to L2, and that this will
be equal to

j n

0 271-a

In other words, if we use matrix notation, the matrices whose Fourier
coefficients are given by the autocorrélation matrices with éléments

belonging to L, can be factored into the matrix product

M-M (3.21)

where ail the éléments of M are the boundary values on the unit circle

of functions of class L2 analytic inside the unit circle, and indeed where
ît will not be difficult to show that the déterminants of thèse matrices
hâve no O's inside the unit circle.

The other case which we hâve not yet discussed is that in which there
is a linear relation between kx and k2. If there is such a linear relation,
at least one of the functions gx or g2 can be expressed linearly in terms of
the other and the past of both. In other words, we hâve a relation such as

f1(oc) cf2(a) + a vector in the past of fx and /2.

Under thèse circumstances

Jh(T«cc)i\(»)d* c J/,(T»*)/,(«)** (3.22)
0 0

plus something that may be approximated by a polynomial, always with
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the same coefficients, of the form

J /,(2*-*«)/,(«)d« (3.23)
0

and where the coefficients do not dépend on n, but merely on i. It
follows that if H(ê) is the Hermitian matrix, of which the autocorrélation

coefficients are Fourier transforms, its éléments will be such that

Hu&) cH2j(ê) + Vl^)Hl9^) + <p*(&)H2j{&) (3.24)

where <px and <p2 are free from singularity inside the unit circle. That is,
the déterminant

\H(&)\ (3.25)

will vanish identically inside of the unit circle, and therefore by a simple
limit theorem, will vanish almost everywhere on the periphery. In other
words, we hâve a situation which contradicts our assumption that

S\]og\H{â)\\d» (3.26)

is finite. We may sum up thèse results in the foliowing words. // the

Hermitian matrix H{&) has Fourier coefficients of the form

(3.27)
o

where fx and f2 bélong to L2, and if

f\log\H(ê)\\dê (3.28)

converges, then we may write

(3.29)

where the éléments of M belong to L2 inside any smaller circle concentric with
the unit circle, and converge in the mean to their value on the unit circle.
Indeed the déterminant of the matrix M wHl be free from zéros inside
the unit circle. ~

% 4. We wish now to establish two further things : one, that any
Hermitian matrix of positive type for which the intégral of the logarithm of
the déterminant converges, can be represented in the manner given above ;

and second, that if the intégral of the logarithm diverges, the matrix
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eannot be factored in the manner indicated. In order to establish the
first of thèse results, let us suppose that a Hermitian matrix H can be
written in the form ^H{&) M(ê)-M{ïï) (4.01)

where M is a matrix belonging to L2. This is what we shall mean by
saying that H is Hermitian and of positive type. I now introduce a
variable a which I represent as before in binary form, but I now split
its digits into two séquences labelled from — oo, oo) according to the
rule

(X ÔCX 0L2 (X3 #4 0C5

0o 7o 0i Yx 0-i r-i 02 7a 0-2 Y-t ¦ ¦ • (* • 02)
I write

BH(a) 2pn - 1 ; /*„(«) 2yfl - 1 (4.02)

I introduce the transformation on « given by

'3 0-iy-i--- • (*.O3)
I put

MiUn ^- f Jf« W e-«»*«W (4.04)

I now define f^oc) when i is one or two by

/,(«) r(if«f.^W + Jf«fllrwM) (4.05)

Then it will not be difficult to prove that H(&) will hâve Fourier
coefficients which can be written in the form

1

J U(T«*) fitodoc (4.06)
o

It remains to prove that if our logarithmic intégral is infinité, no
factorization can take place. However, if the factorization takes place
and the said intégral is infinité, then M(ê) will exist such that ail the
éléments will belong to L2 and will be boundary values of functions
analytic inside the unit circle and

f |log| M(&)\\dê (4.07)

are divergent. However, the déterminant | M (fi) | will be a function
of L2 around the unit circle and without zéros inside the unit circle,
and we need only to appeal to our scalar theorem to show the impossibi-
lity of the vector situation.
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§ 5. Having established our factorization theorem for Hermitian
matrices of positive type, let us examine some of the conséquences of
this for a more gênerai type of matrix. Suppose that H is Hermitian
and of positive type, which simply amounts to assuming that H can be
written in the form ^

~

H(ê) M(d)M(&) (5.01)

and that M is an arbitrary matrix of class L2. Let us notice that

\*, (5.02)
s o that n~

J|log|| H{&) || \dê<oo (5.03)
is équivalent to ~nn

J|log| M(ê) | \dê<oo (5.04)

Then we may write that

H(ê) M*(ê).M*(&) (5.05)

where M*(ê) is a function of L2 around the unit circle which is the

boundary value of a function free from singularities inside. Inside the
unit circle it follows that

Jf-1^) itf*(#)-ïf*(#)(ï/-H#)) =I - (5-06)

However, it is easy to prove that

(M-1) (M)-1 (5.07)

Under thèse circumstances the matrix

M^WM+iû) (5.08)

will be a unitary matrix U{9), such that

U(ê)-ÏÏ(ê) =1 (5.09)

It follows from this that

-Hê) ; (5.10)

or that any matrix H with éléments belonging to L2i is the product of a

matrix of the type M*(&) and a unitary matrix. If then we can prove
that any unitary matrix can be factored into the product

U1{ê)U2{&) (5.11)
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where U1 and U2 are both unitary matrices, but where U1 is the boundary

value of a unitary matrix with no singularities inside the unit circle, and
where U2 is the boundary value of a unitary matrix with no singularities

outside the unit circle, then we shall be able to prove that

M(ê) M*(oc) U'1^) U'1^) (5.12)

Hère the product of the first two factors is the boundary value of a
function with no singularities inside the unit circle, and C/~1(^) has no

singularities outside the unit circle. Thus to establish a gênerai facto-
rization theorem for ail matrices of type L, what remains is the
discussion of factorization theorem for unitary matrices.

§ 6. Every unitary matrix can be written in the form of e%eS and
if such a matrix dépends oni), it can be written in the form e%eS(d\

There is no difficulty in showing that this can be done in such a way that
the éléments of H(&) are bounded. Furthermore, we can write the matrix

H{&) in a Fourier séries ^
Ze%H*Hn (6.01)

We shall put ~°° Z
H1(&) ZHnem* (6.02)

and ~ \~
H2(ê) ZHne%n» (6.03)
""" — 00 ~*

Then clearly ail the eleihents of the matrices H1{&) and H2(&) will
belong to the Lebesgue class L2.

~ ~

Now I am going to suppose that

elXdS^= C71(A,^).Î72(AJ^) (6.04)

where U1 and U2 are the boundary values of unitary matrices respecti-

vely analytic inside the unit circle and outside the unit circle. Then

(6.05)
^U1(?L,ê)-U2(X,^^l + idXH(ê))'(U2(^ê)U2(Xi&))

Now let us put ^
(6.04)

109



Then K(&) will be bounded and can be separated like H into the sum :

K^ + Ktf) (6.05)

where Kx and K2 both consist of éléments belonging to L2 and where they

are respectively boundary values of matrix functions inside and out-
side the unit circle. It then foliows that

c«x+d*>5<*> Dr(A,0)(l + id;i.X1(0))(l + idXK2ê)-U2(X,ê) (6.06)

That is

l (6.07)

_ 2(A, i))

From this stage on the completion of the factorization theorem is easy.
Not only are the éléments of the K'& functions belonging to L2, but they
ail belong uniformly to L2. If we subdivide the range of 1 from 0 to 1

into small parts, we can then easily obtain an estimâte for the error in
factorization which we get by assuming thèse small parts to be infinitésimal
parts, and this error can be made as small as we wish by a sufficiently
fine subdivision of the range 0 ^ A ^ 1. Thus, starting with the
trivial factorization of the identity matrix, we arrive at the case where
X 1, and we hâve factored

U{X) ei€S^ (6.08)

Notice that in (5.09), we hâve factored our matrix with L2 éléments

M(ê) in the form
2x{ê) U-X(ê) ; (6.09)

or what is the same thing, if c is any constant, depending on #, we hâve
factored

M(»)c(â) into M^(ê)U21(&)U-1(ê)c(ê) (6.10)

From this it is easy to show that we hâve factored any matrix M(ê)
with éléments belonging to the Lebesgue class L2 into the two matrices

MX(Q) M*(ê) U^iê) and Jft(#) U^x{â)c

where Mx and M2 hâve their éléments of the Lebesgue class Lz and are

boundary values of matrix functions respectively analytic inside and
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outside the unit circle. This solves the matrix factorization problem for
the binary case. Our necessary and sufficient condition for the factoriza-
bility of M(ê) belonging to L will be

J|log|| Jf(0)|| |c»<oo (6.12)

The factorization problem for matrices of higher order foliows exactly
the same lines but involves a somewhat greater complication of détail.
This complication is only conspicuous in the positive Hermitian case,
where the Hilbert-space theorem on which we hâve rested our proof,
must be called in several consécutive times.

Once the factorization theorem has been established, it is available for
the discussion of the solution of Systems of linear intégral équations re-
presenting extensions of the Hopf-Wiener intégral équations. The author
intends to dévote a further memoir to the discussion of équations of this
type.

Such Systems of équations hâve already been proved by several
authors, including Professor Harold Freeman of the Massachusetts In-
stitute of Technology to be of considérable value in the study of the
mathematical problems of operational analysis, and particularly in the
problem concerning the optimum distribution of tolérances in the
construction of a machine or an operational System.

The author wishes to thank Professor Freeman for calling this faet to
his attention. He also wishes to thank Dr. Masani of Bombay for showing
him the complète scope of the factorization problem, and for pointing
out that it is not confmed to the positive Hermitian case. Nevertheless,
the positive Hermitian case contains the center of the difficulty of the
most gênerai case.

(Received July 29, 1954.)
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