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On Tauber's Theorem
By Atjbel Wintner, Baltimore

It seems to be a gênerai principle that theorems which are ,,Tauberian"
in the sensé of Hardy and Littlewood are mère corollaries of universal
inequalities, whieh are valid for arbitrary (rather than just for convergent)

séries and contain, tberefore, absolute constants. In the présent
note the corresponding refinement of Tauber's own theorem [3] will be
deduced.

Tauber's theorem states that, in order that a séries ax + a2 -j— • be

convergent, its (^)-summability and the Cauehy-Kroneeker condition

a1 -f- • • • -f~ nan o(n) (1)

are not only necessary but sufficient as well. This will be refined as

follows :

There exists an absolute constant, r, having the property that

lim sup 2 anrn — ^ t lim sup
n—>oo

H h nan

holds for every power séries,
00

n=l
which converges for r<l.

It is understood that the lim sup can be oo on either side of the ine-
quality which, however, is then trivial.

A corollary is that, if the Cauchy-Kronecker condition is assumed, then,
since the expression on the right of the inequality becomes 0, the déviation

of the function (2) from the [— 1/log r]-th partial sum of the séries

a1 + a% + • • • must tend to 0 as r -> 1 — 0, whether the séries at +
a2 + • • • be convergent or divergent. Since Tauber's theorem assumes
for (2) the existence of a limit /(l — 0), it is équivalent to the first of the
two cases of this corollary.

Another corollary is that if (1) is relaxed to
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the asymptotic behavior of the partial sums of at + a2 + • • • can be ob-
tained from that of thè function (2) as r -> 1 — 0 :

an f(e-1Ix) + 0(1) as x -> cx> (4)
n=l

(needless to say, (3) implies the convergence of (2) for r<l).
The full content of the theorem is that, if c and G dénote the greatest

lower bounds of the constants, c + e and O + e, which are admissible
as factors absorbed in the 0 of (3) and in the 0 of (4), respectively, then

C^tc, (5)

where r is an absolute constant. For the latter, the proof of the theorem
will supply only the estimate

co

rg 3 + J x-H-^dx < 3 + |) (6)
î

The intégral occurring in (6) will be obtained from an expression eonnec-
ted with the harmonie séries, E n~x, whereas the 3 will resuit from three
dépendent sources (hence, very roughly), as 1 + 1 + 1, one of the
latter being supplied by the fact that, as easily verified by differentiation,

l - e~x)<l if 0<s<l. (7)

The détermination of the true value of r (that is, of the least absolute
constant) seems to be hard. The lower estimate

t>1 (8)

which is quite far from the upper estimate (6), is trivial. In fact, if
an (-l)*,then

X X

x^\ and v «n —\±\ ;

so that, since (2) becomes —f(r)lr (1 + r)~1~> J, the inequality (5)

gives

li-(i±i)I^T$,
which is (8).

There exists an absolute constant, say t*, having the property that
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lim sup \f(r) — 2 an \ ^ T* lim 8UP | nan \

f—>1—0 n^ —l/logf n—>oo



holds for every power séries (2) which is convergent for r < 1. In fact, if
t and r* hâve their least values, then

(10)

since r* belongs to the restriction

(11)

in the same way as r belongs to (3), a generalization of (11). The existence
of r* (which, in view of (10), is implied by the existence of r) has been

pointed out by Hadwiger [1] (actually, he considers another constant,
for which he proves the estimate

0.4858... ^q^ 1.0160... (12)

and for which the inequality
Q^r* (13)

is clear from the définitions).
Needless to say, what the existence of r* reduces to absolute terms is

that particular case of Tauber's theorem according to which the o-form
of Littlewood's condition (11), that is, the strengthening of (1) to

nan o(l) (14)

is sufficient for the convergence of an (J.)-summable séries ax + a2 + • • •.
Thus it is clear that the existence of r*, in contrast to the existence of r,
does not imply Tauber's theorem ; simply because (1), hence (3), is

necessary, but (11), hence (14), is not necessary, for the convergence of

«i + «2 H •

Tauber's own proof [3] of the sufficiency of the necessary condition (1)

(in order that an (^l)-summable séries ax + a2 + • • • be convergent)
first establishes the sufficiency of condition (14), which is not a necessary
condition, and then passes from (14) to the true condition, (1), by addi-
tional steps. This détour to the final theorem is followed by ail the text-
books consulted (Hobson, Knopp, Landau, Widder), even though it just
complicates the proof of Tauber's theorem. A shorter approach can be

read off from a paper of Hardy [2], appearing some time ago. Hardy is
concerned in [2] with a Laplace intégral, which he writes as a Lebesgue
intégral, but his proof, which avoids the détour just mentioned, is valid,
of course, for Stieltjes intégrais as well, and so for power séries (or
Dirichlet séries) also. This possibility of avoiding the détour, and thus
simplifying the traditional approach, will be utilized in the following
proof.
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»(x) £an and fi{x) 2 nan (15)
n=l n=l

where x is a continuous variable (the summations are thought to be

arrested at n — [x]). If r — e~s, then r -> 1 — 0 goes over into
5 -> + 0, and the séries (2) becomes the intégral •

00

F (s) $e~sxdot(x) (8>0) (16)
o

where .F(s) dénotes /(e~s), the function &(#) is 0 when 0^#<l, and

p(x) ftd*{t) (17)
o

by (15). It can, of course, be assumed that

<x(x) <x(l + 0) 0, hence/5(#) =/?(1 + 0) 0, if O^x^ 1 (18)

It is clear from (15) that the theorem to be proved, that italicized after
(1), is équivalent to the assertion that

lim sup | F (s) — <x(s-x) \ ^ r lim sup | P(x) \ j x (19)
X—>O

Actually, only (18), (17) and the convergence of (16) for s>0 will be
used in the proof of (19) ; so that the existence of some absolute constant
will be proved for the case of Laplace-Stieltjes intégrais also (but this is

not of course the point, every ,,generalization" of this kind being auto-
matic indeed).

First, (17) and (18) show that (16) can be written in the form

F (s) ]x~1e-8Xdp(x)
î

where s>0. In view of (18), and since

e8xd(x~1e-8x) — (ara + sx~x) dx

a partial intégration of this intégral gives

F (s) fx~2p(x)e-'xdx + sA (s) (20)
î

if A (s) is an abbreviation for

A(s) fxr1P(x)e-axdx (200)
î
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On the other hand, again by partial intégration,

jx^dp(x) 60(1/8) - P(l) + jx->p(x)dx
1 1

In view of (17) and (18), this relation can be written in the form

«(l/«) *j8(l/«) + far*P(z)dx
i

If this is subtracted from (20), it follows that

F(s) - oc(lls) sA(s) + B(s) - D(s) - sp(l/s) (21)
where

B(s) $x-*p(x)e~8Xdx (22)

and
H9

D(s) J x~2p(x)(l — e~sx)dx (23)
i
J
i

It is seen from (21) that, if

limsup \fi{x)\ jx (24)

is assumed to hâve the value 1, both (19) and (6) will be proved if it is
shown that, on the one hand, the upper limit, as s -> + 0, of none of the
three functions

(25,) s | pills) | ; (252) s\A(s)\; (253) \D(s)\

can exceed 1, and, on the other hand,

oo

lim sup \B(é)\ ^ §x-xe~xdx (26)
«->+o i

But the assumption that the value of (24) is 1 does not involve a loss of
generality. For, if (19) is true when (24) has the value 1, then, for reasons
of distributivity, (19) is true if (24) has any value distinct from 0 and oo,
and so, again for reasons of distributivity, if (24) has any value distinct
from oo ; and (19) is trivial if (24) is oo. Accordingly, it can be assumed

that (24) is 1, i. e., that there belongs to every e>0 an R such that

\p(x)\ <(l + e)x if x>R=Re. (27)

Ad (25J. The upper limit, as s -> + 0, of (25), is (24), which is 1.
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Ad (252). According to (27), the contribution of the range R<x<oo
to the intégral (200) is majorized by

(1 + e) ]e-sxdx<(l + e)je-sxdx (1 + e)/s
R 0

Since s times the contribution of the complementary range, 0^ x^,R,
where R Re, tends to 0 as s -> + 0 when e is fixed, it follows that
the upper limit of (252) cannot exceed 1 + e and is, therefore, not
greater than 1.

Ad (253). It is clear from (23) and (7) that

i/« î/t
\D(s)\ ^ $X-* \ p(x) \ sx dx s $ x-1 \ P(x) \ dx

i î

Hence, from (27),

R 1/8

\D(s) \<s $Mdx + s j(l + e)dx if 1/5>JB
1 R

where M and R dépend on e only. Consequently, the upper limit of (253),

as «s -> + 0, cannot exceed that of

i/ê î/t
s | (1 + e) dx<8 j (1 + e) dx 1 + e

R 0

and is, therefore, not greater than 1.

Ad (26). According to (22) and (27),

| B{s) |< JV2(1 + e) xe~sxdx if 0<5<l/5e
1/8

Hence, in order to prove (26), it is sufficient to ascertain the inequality

00 00

lim sup J x~l e~8x dx <; J x~x e~xdx
s->+0 l/ê 1

But this inequality actually is an equality, since the value of the intégral
on the left is independent of s.
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It remains undecided whether or not the (best values of the) absolute
constants r, t* remain the same if they apply to arbitrary Laplace
intégrais (16), rather than just to power séries (2), and whether the sign of
equality does or does not hold in (10) (in either case). Even the estimate
r* ^ 1, corresponding to the trivial inequality (8), is problematic. Ail
that is clear is that r* cannot be less than

X

lim X nr1 — log x) 0.57...
x—>oo n—1

(in either case). In fact, if nan 1, then the power séries (2) becomes

-—log(l — r), and so, if r in (9) is replaced by e~1/x,

X

lim sup | log(l — e-1'*) + J£ n~~x 1^ T* •

On the other hand,

lim | log(l — e-V*) — — log x) | lim log(l — e) log 1 0
X—>OO £—>0

Clearly, the last three formula lines imply that r* ^ 0.57....

(Eingegangen den 5. Dezember 1946.)
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