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Involutions and Chern numbers of varieties

Olivier Haution*

Abstract. Consider an involution of a smooth projective variety over a field of characteristic not
two. We look at the relations between the variety and the fixed locus of the involution from the

point of view of cobordism. We show in particular that the fixed locus has dimension larger than

its codimension when certain Chern numbers of the variety are not divisible by two, or four.
Some of those results, but not all, are analogues of theorems in algebraic topology obtained by
Conner-Floyd and Boardman in the sixties. We include versions of our results concerning the

vanishing loci of idempotent global derivations in characteristic two. Our approach to cobordism,
following Merkurjev's [16], is elementary, in the sense that it does not involve resolution of
singularities or homotopical methods.

Mathematics Subject Classification (2010). 14L30; 19L41.
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1. Introduction

Let k be a field. The cobordism ring L is defined by identifying the smooth

projective ^-varieties which have the same collection of Chern numbers (indexed
by monomials). Each such number is a geometrical invariant, defined as the degree
of a monomial in the Chern classes of tangent bundle of the variety. Using instead

modulo two Chern numbers yields the ring L2, a quotient of L. Even though the
base field k is arbitrary, the ring L always coincides with the complex cobordism

ring (the Lazard ring), and L2 with the unoriented cobordism ring. We will denote

by |Y] the class of a smooth projective ^-variety Y in either of these rings.
Consider an involution a of a connected smooth projective /c-variety X. Assume

that the characteristic of k differs from two (that restriction may be lifted, see

below). Denote by N the normal bundle to the fixed locus X° in X, by P (N)
its projectivisation, and by P(/V ® 1) its projective completion. Our first result is:

1.1 Theorem. We have pf] [P(N © 1)] and |P(jV)| 0 in L2.

These equalities are just the first in a series of relations in L2, heuristically
asserting that the map P (N © 1) P00 given by the canonical line bundle is bordant

*This work was supported by the Heisenberg grant HA 7702/4-1 from the DFG.
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(in the unoriented sense) to any constant map A -* P°°. A precise statement is given
in (5.1.3). They imply the analogue of a formula due to Kosniowski-Stong [14] in

algebraic topology. Their formula is the basis of a vast collection of results concerning
the fixed locus of smooth involutions of closed unoriented manifolds [14,19] (see

also for instance [12,13,17,18]), many of which could probably be translated into
algebraic geometry. We refrain from doing so, but state the formula in (5.2.2), and

explain in detail how to derive it.

An example of Chern number is the so-called Euler number. Its value for a smooth

projective k-variety Y of pure dimension n is the integer

2n

X(Y) degcn(7y) £("1Y dim<Q Hlet(Y^,Qe),
i 0

where I is any prime number unequal to the characteristic of k, and k an algebraic
closure of k. It is well known that /(A) and x(Xa) have the same parity, a fact which
can be reproved using Theorem 1.1. The relations in L2 mentioned above imply the

following analogue of a theorem of Conner-Floyd [4, (27.4)]:

1.2 Theorem (cf. (6.2.5.(i))). Ifx(X) is odd, then 2 dim ACT > dim X.

Note that Theorem 1.2 is only interesting when dim X is even, because the Euler
number of an odd-dimensional variety is always even. In order to cover the odd-
dimensional case, we really need to look beyond L2. This motivates the search for
relations between X and the normal bundle A in a larger quotient of L than L2.
Since the ideal 2L c L consists of classes of varieties admitting a fixed-point-free
involution (exchanging two copies of a given variety), the largest quotient of L where
the class of X has any chance of being determined by N is L/2. We prove that this
is indeed the case, by giving a formula expressing the class of A in L/2 in terms of
the tautological line bundle 0(—1) -»• P(iV © 1). As in Theorem 1.1, this formula
is part of a series of relations in L/2, which are stated in (5.3.1). However, unlike
Theorem 1.1, this formula is not readily usable for computations, because it involves
the formal group law. One may try to overcome this difficulty by focusing on one

particular Chern number at a time.
This strategy works well in the case of the Euler number, allowing us to prove:

1.3 Theorem (cf. (6.2.1.(ii)) and (6.2.5.(ii))). Assume that dim A is odd. Then:

(0 xiX) x{X°) mod 4.

(ii) Ifx(X) is not divisible by 4, then 2 dim ACT + 1 > dim A.

We could find in the literature no analogue of this theorem in algebraic topology.
To prove it, the idea is to construct an oriented cohomology theory E which captures

just enough information, in the sense that the class of a smooth projective -variety
in E(Speck) is determined by, and determines its dimension and Euler number. We
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then exploit the formula in L/2 mentioned above by considering its trace in the

theory E.

An element of L/2 or L2 is called decomposable if it is represented by a disjoint
union of products of pairs of positive-dimensional smooth projective ^-varieties.
The decomposability of the class of a smooth projective ^-variety is governed by the
value of its so-called additive Chern number. We prove:

1.4 Theorem (cf. (7.3.4)). Assume that the class of X in L/2 is indecomposable.
Then 2 dim Xa + 1 > dim X.

When dimX + 1 is not a power of two, decomposabilities in L/2 and L2 are

equivalent (see (7.3.2.(ii))), and Theorem 1.4 follows from the Theorem 1.1 (and
the corresponding supplementary relations in L2). In this case, Theorem 1.4 is

an algebraic analogue of a theorem of Boardman in topology [2, second part of
Theorem 1]. We are not aware of a topological analogue of Theorem 1.4 when
dim X + 1 is a power of two. As above, the idea for the proof in that case is to
construct an oriented cohomology theory A such that the class of a smooth projective
k-variety in A(Spec k) is determined by, and determines its dimension and additive
Chern number.

All of our results are actually valid when the characteristic of k is arbitrary, provided
that we consider /^-actions instead of involutions. In characteristic not two, those

concepts coincide. A /^-action in characteristic two is an idempotent global
derivation, and the fixed locus Xß2 is the vanishing locus of the derivation.

Of course involutions do exist in characteristic two, and it would be interesting to
cover that case also. The category of smooth projective varieties, crucial for the use of
cobordism theory, seems inadequate in that case, because the constant group Z/2 is

not linearly reductive, and it is easy to find involutions on smooth projective varieties
whose fixed locus is singular. If one is willing to work with singular schemes, it
is possible to obtain results on involutions in characteristic two involving the Segre
class of the normal cone to the fixed locus [9].

Finally, let us explain why we limit ourselves to //.^-actions for the prime p 2.

If ptp acts on a smooth k-variety X, any eigenvalue for the induced /x^,-action on
the normal bundle N to the fixed locus in X must be a nontrivial p-th root of unity.
When p 2, the only possible eigenvalue is —1, so that pp must act trivially
on P(N) (see (4.7) below). For odd primes p, results of the type given in this

paper would necessarily involve the normal bundle N together with its pp-action,
substantially reducing their usability. As an illustration, assume that dim X > 0 and

that k is algebraically closed. In case p 2, the relations in L2 mentioned just after
Theorem 1.1 imply that the number of fixed points, if finite, must be even (see (5.1.4)).
As explained in [10], when p is odd we can only say that this number cannot be one.
The integer which must be prime to p is the number of fixed points counted with
multiplicities determined by the /ip-actions on the tangent spaces (see [10, (4.3.4)]
for a precise formula).
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2. Oriented cohomology theories

2.1. Axioms. We fix a base field k for the whole paper. We denote by Sm^ the

category of smooth quasi-projective ^-schemes. The tangent bundle of A G Sm^ is
denoted by Tx, and the Grothendieck group of vector bundles on A by Kq(X).
2.1.1. Let E be a vector bundle over X G Sm^, and 8 its Ox-module of sections.

We will denote by P (E) or P(£) the scheme Proj^ (Sym 8V). This is the dual of the

convention used in [15].

2.1.2 Definition. A cartesian square in Sm^

W—^Z
J L (2.1.2.a)

fY —X
is called transverse if, for every connected component Wo of W, denoting by
To- Z0, A0 the connected components of F, Z, X containing the images of Wo,

dim Wo + dim Xo dim To + dim Zo-

2.1.3 Definition ([15, Definition 1.1.2]). A functor H from Sm^p to the category
of Z-graded rings, together with a group morphism /„h:H(T) -> H(A) for each

projective morphism / : T -» X in Smg, is called an oriented cohomology theory if
the conditions (i)-(vii) below are satisfied. We write instead of H(/) when / is

a morphism in Sm^, and denote by H" (A) the degree n component of H(A).

(i) If X, Y G Sni£ are connected and /: T —> X is a projective morphism, then /J1
is graded of degree dim X — dim T.

(ii) For any X, Y G Sm^ the natural morphism H (A u T) -> H(A) x H(T) is

bijective.

(iii) If f:Y -> X is a projective morphism in Sm^, then f^(af*x (h)) f^(a)b
for any a G H(T),è G H(A).

(iv) IfA G Sm^, then (idx)* idH(jr)- If,/ : T —» X and g: Z -» T are projective
morphisms in Smfc, then /*" o g'J (/ o g)».

(v) Given a transverse square (2.1.2.a) with / projective, we have h^oe^ g^of^,
(vi) Let E be a vector bundle over A G Sm^ and p: ¥{E) -> A the associated

projective bundle. Denote by s:P(E) -> 0p(£)(l) the zero-section of the

canonical bundle, and write £ o s* (1). Then 1, £r~1 is a basis of
the H(A)-module H(P(2s)) (for the structure induced by p^).

(vii) Let p: V —> A be a torsor under a vector bundle over A G Sm^. Then

Pu'. H(A) -»• H(F) is bijective.
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2.1.4. One sees easily that the axioms of (2.1.3) are equivalent to those of [16, §2],
with the word "tautological" replaced by "canonical" in [16, §2, (iii)]. Moreover it
follows from (2.3.4.a) below that oriented cohomology theories in the sense of (2.1.3)
are also oriented cohomology theories in the sense of [16, §2],

2.1.5. The Chow ring CH is an oriented cohomology theory, see e.g. [6].

For the rest of §2, we fix an oriented cohomology theory H.

2.1.6. If H(Spec k) -» R is a morphism of Z-graded rings, then the functor
H <8>H(Specfc)^ is naturally an oriented cohomology theory.

2.1.7. Let F be a vector bundle of rank r over S G Sm^. Using the notation of
(2.1.3.(vi)) for E Vv and X S, the Chern classes cf(V) G H' (S) are defined

using Grothendieck's method [7] by setting cf(V) 0 if i {0,..., r} and

2.1.8. We will use the simplified notation /*,/*, c,- instead of /J1, ,/H*, cf when no
confusion seems likely to arise. If j : Y -» X is a closed immersion in Sm^, we will
write [Y] j„(l) G H(X).

2.1.9. Let L be a line bundle over X Sm^. Then ci(L) s* o .v*(l), where

s: X -> L is the zero-section (this follows from (2.1.3.(vi))).

2.1.10. If D -» X is an effective Cartier divisor in Sm^, then [D] c\ (0(D)) e H(X).
This follows from (2.1.9), (2.1.3.(vii)), (2.1.3.(v)) (see [16, Proposition 3.2]).

2.1.11. If f:Y ->• X is a morphism in Sm^ and E a vector bundle over X, then

f*ci(E) Ci(f*E) H(F) for all i.

2.1.12. An oriented cohomology theory defines an "oriented Borel-Moore weak

homology theory on Sm^" by [15, Proposition 5.2.4], hence an "oriented Borel-
Moore functor of geometric type on Sm^" by [15, Remark 4.1.10].

2.1.13.Let X G Sm;fc. Then for n large enough, and line bundles L\,...,Ln
over X, we have ci(L\) • c\(Ln) 0 G H(V). This follows from (2.1.12) and

[15, Lemma 4.1.3].

2.1.14. Let L be a line bundle over XG Sm^. By (2.1.13), we may evaluate a power
series inH(Spec k)[[x]] atCi(L) to obtain an element of H(V). If /, gGH(Speck)[[x]],
with g a nonzerodivisor, are such that / gh for some h GH(Spec£)[[x]], we will
write

r
=0 e H(p(£))-

i=0

f(ci(L))
g(ci(L))

h(c\(L)) e H(X).
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2.1.15. (Whitney product formula) If 0 E\ —»• E2 E2 -> 0 is an exact

sequence of vector bundles over X G Sm^, then for all n

n

cn{E2) ]T>0Ei)cn-i(E3) e H(Z).
i=0

This follows from [15, Proposition 4.1.15], in view of (2.1.12).

2.1.16. (Splitting principle) Let £ be a vector bundle of rank r over X e Sm^.
Then there is a composite of projective bundles q: P —> X such that q*E admits

a filtration by subbundles whose successive quotients are line bundles L\,...,Lr.
By (2.1.3.(vi)) the pullback q*:H(X) -> H(P) is injective. By the Whitney product
formula (2.1.15), we have Ci(q*E) cr,'(ci(Li),..., ci(Lr)) for all i 0,..., r,
where a,- is the i-th elementary symmetric function in r variables.

2.1.17. Let E be a vector bundle over X G Sm^. Then the class c,- (E) vanishes for i
large enough by (2.1.13) and (2.1.16), so that the class c{E) 1 + C\(E) + •••
is invertible in H(Jf). If E1, E2 are vector bundles over X e Sm^, then the class

c(F) c(Ei)c(E2)~l H(X) depends only on F E\ — E2 G Ko(X) by the

Whitney product formula (2.1.15). We denote by c, (F) its component in H! (X).
2.1.18. Let F be a vector bundle of rank r over S e Sm^, and p: P(F) —> S the
associated projective bundle. We may view the tautological line bundle &(— 1) as

a subbundle of p*V. The quotient Q p*V/0{—1) has rank r — 1, hence the

Whitney product formula (2.1.15) yields in H(P(F))

r r
0 Cr(Q) J2Ci(P*V)Cr-i(-&(-1))

i—0 i=0

It follows that the Chern classes c;- are the same as those defined in [16, §3],

2.2. Cohomology of the point.

2.2.1. When X is a smooth projective k-scheme, with structural morphism p: X ->
Spec k, we will write in H(Spec k)

p*(l) and |[m] p*(u) for u e H(2f).

When H CH (or CH/p), we will write deg(w) G Z (or ¥p), instead of [wj.

2.2.2. We will denote by Hy c H (Speck) the subgroup generated by the
elements pf], for X a smooth projective k-scheme. It is a graded subring (see [16,

Proposition 2.5]), whose degree n component we will denote by H"

2.2.3 Proposition ([16, Corollary 9.10]). Let E\,..., E„ be vector bundles over
X G Smfc, and i\,..., i„ G M. Then fcil (£1) •• -Cin{En)\ G H/.
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2.3. The formal group law.

2.3.1. A commutative formal group law is a pair (R, F), where R is a commutative

ring and F e F[[x, >']] a power series satisfying

(i) F(x,y) F(y,x) e F[[x,y]],

(ii) F(x,0) x F[[x]],

(iii) F(x,F(y,z)) F(F(x,y),z) R[[x,y,z]].

2.3.2. By [15, Lemma 1.1.3], there is a power series

Fu(x, y) x +h y Y,aijx'yj 6 H(Speck)[[x, y]] (2.3.2.a)

with dij e H1-'-7 (Spec k) such that for any line bundles L, M over X e Sm^

cf(L ®M) cf(L) +h cf(M) e H(2f),

and the pair (H(Spec A:), Fh) is a commutative formal group law. The coefficients ajj
actually belong to Hy by [15, Remark 2.5.8] and (2.1.12).

2.3.3. We say that the theory H is additive if Fh(x, y) x + y. An example of
additive theory is CH, see e.g. [6, Proposition 2.5 (e)].

2.3.4. Let [—1]h(x) e Hy [[x]] be the unique power series such that FH(x, [—l]H(x)) x
For a e Z, we define a power series [a]n(x) H/ [[x]], calledformal multiplication
by a, by setting [0]h(x) 0, and iteratively [a] h(x) FH([a — l]n(x), x) fora > 0,

as well as [ö]h(x) [—l]u([—ö]h0*0) for a < 0. The leading term of the power
series [û]hOO is ax. In particular, there are elements a,- e Hy such that

[-1]h(a) -x + ^a;xI+1 G Hy[[x]]. (2.3.4.a)
i> 1

2.4. Deformation to the normal bundle.

2.4.1 Lemma. Let T -* X be a closed immersion in Sm^, with normal bundle N.
Denote by Y the blowup of T in X; its exceptional divisor is P (N). Write £

Ci(Öp(jv©i)(-l)) H(P(A © 1)) and r] ci(0y(P(A))) H(L). Using the

convention of (2.1.14), for any g H(Speck)[[x]], we have in H(Speck)

U(V) 1 £(0)pf] + g®
I-I]h(C)

K

Proof. Denote by B the blowup of F x 0 in X x P1, and by j:F(N © 1) —» B the

immersion of the exceptional divisor. Then B naturally contains Y and X X x 1
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as closed subschemes. By (2.1.12) and [15, Proposition 2.5.1] (and the proof of [15,

Proposition 2.5.2]), we have

[7] [7] + y* [~1]^} e H(£). (2.4.1.a)

Let p ci(0b(P(1V © 1))) G H(ß). Then p restricts to Ç on P(N ® 1), to rj

on 7, and to zero on X. The statement follows by multiplying (2.4.1.a) with g(p)
and projecting to H(Spec k).

2.5. Vishik's formula. When H is the algebraic cobordism and k has characteristic

zero, the next statement is due to Vishik [22, §5.4] (he mentions that similar
computations were performed earlier independently by Rost and Smirnov). We

reproduce Vishik's proof, with minor alterations required when charfc 2.

2.5.1 Proposition. Let f:Y —> Z be a finite morphism in Sm^ whose fiber over

any generic point of Z is the spectrum of a two-dimensional algebra. Then the

Qz-module X coker(0z —> f*Oy) is locally free of rank one, and we have

/<[y|=P!ä(^))£H(Z,
Cl fi

Proof The 0z-module A f*0y is locally free of rank two, see e.g. [3, §4, n° 5,

cor. de la prop. 8]. The morphism of A-modules 1 <S> id: =>4> —> <A <S>oz A admits

a retraction (the multiplication map of the Oz-algebra A), and it follows that its
cokernel X A is a locally free A-module of rank one. By faithful flatness of
the Oz -algebra A, the Oz-module X is locally free of rank one.

To prove the remaining statement, we may assume that Z is affine by Jouanolou's
trick [11, Lemme 1.5] (in view of (2.1.3.(v)) and (2.1.3.(vii))). Let S° be the

symmetric algebra on the Oz-module A. Consider the morphisms of Oz-modules
v: A -> S2 and pt:S2 -» S2 given by v(a) 1 ©a and pt(a®b) a®b — 1 <g>ab.

Then ker /i im v, andcoker v X®2. This gives an inclusion X®2 im/i C S2.

The induced morphism of N-graded -modules X®2Z&z S'~2 -> is injective,
because locally the 0z-module X®2 is freely generated by a nonzero element of S2

and S* is an integral domain. Its image is the homogeneous ideal â C generated
by im pi. The morphism of 0z-modules A -> A[t] given by a at induces a

morphism of N-graded Oz-algebras S' A[t] whose kernel is d, and which is

surjective in degrees > 1. Thus the closed subscheme of P (Av) Projz 8* defined

by the homogeneous ideal d of S' is isomorphic to Projz A[t] ~ Specz A ~ 7 as

a Z-scheme. We have realised the Z-scheme 7 as a Cartier divisor in P(AV) whose
line bundle is p*X®~2{2), where p: P(AV) —Z is the projective bundle.

The sequence of Oz-modules 0 ^ Oz —r A ^ X 0 splits, because Z is

affine. The corresponding inclusion Oz C Av defines an effective Cartier divisor
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j:P(0z) -* P(«AV) whose line bundle is p*£v(l). Since 0p(,Av)(l) has trivial
restriction on P(0z), in view of (2.1.10) and (2.1.3.(iii)) we have in H(P(,AV))

[Y] c\(p* {!)) [2]h(ci(/>*£v(1)))

Since poj is an isomorphism, we conclude by applying p* and using (2.1.3.(iii)).

3. The universal twisting

3.1. Twisting a theory. In this section H is an oriented cohomology theory.

3.1.1. When R is a Z-graded ring, we denote by /?[b] the polynomial ring over R

in the variables &,• for i e N — {0}. The ring /?[b] is Z-graded by letting bi have

degree—i. If f:R-> S is a group morphism between Z-graded rings, we will again
denote by / the induced group morphism /?[b] -» S [b].

3.1.2. Consider the power series (where bo 1)

n(x) y; bjX1 e Z[b][[jc]].
;'eN

If L is a line bundle over X e Sm^, then jt(ci(L)) e H(X)[b]x by (2.1.13). It
follows from the splitting principle (2.1.16) that there is a unique way to define for

every X e Sm^ a map PH: K0(X) -> H(Z)[b] satisfying

(i) f*PH(E) PH(f*E) for any morphism f:Y -* X in Sm^ and E e K0(X),

(ii) Ph(L) 7i(a (L)) when L is a line bundle over X e Sm^,

(iii) Ph(E + F) Ph(E)Ph(F) for any X 6 Sm^ and E,F £ K0(X).
3.1.3. A sequence of integers a («i am) with m e N is called a partition
if ai > «2 > ••• > «m > 0. We will write |ot| a\ + • • • + am e N. To the

partition a corresponds the monomial ba bai ••bctm Z[b].
3.1.4. Let X e Sm^ and E e Ko(X). Observe that PH(E) has degree zero in the

Z-graded ring H(A)[b], We define the Conner-Floyd Chern class c]J(E) e H'a'(A)
(or simply ca(E)) for each partition a by the formula

PH(E) Y^C%(E)bae H(*)[b].
a

3.1.5. When X is a smooth projective /c-scheme and a a partition, the corresponding
Chern number is

ca(X) deg(C(-7*)) eZ.
3.1.6.When a is the partition (1,...,1) with |a| n, we have ba b" and

ca(E) cn(E) for any X e Sm^ and E e Kq(X).
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3.1.7. Let a (a\,,am) and let « > m. The n-th symmetric group acts on
the ring Z[x\,... ,xn] by permuting the variables. The sum of the elements in the

orbit of xp1 • • • x%" may be written as a polynomial Qa in the elementary symmetric
functions o\,...,om, which does not depend on the choice of n.

3.1.8. Any homogeneous polynomial of degree d in Z\yi,..., yn\, where y, has

degree i, is a Z-linear combination of the polynomials Qa(yi, • •, }'n) for |a| d.

3.1.9 Lemma. Let a be a partition. For any X G Sm^ and E G Kq(X), we have

Cct(E) Qa(Cl(E),c2(E),...)e H(Z).

Proof. This follows from the construction (3.1.2) when E is a vector bundle. In
general, we may assume that X is affine by Jouanolou's trick [11, Lemme 1.5] (in view
of (2.1.3.(v)) and (2.1.3.(vii))). Then there is an integer s such that E + s e Kq(X)
is the class of a vector bundle, and

ca(E) ca(E + s) Qa(ci(E + s),c2{E +s),...)
Qa{ci(E),c2(E),...).

3.1.10 Lemma. Let a be a partition. Then there are elements G Z for all
partitions ß with \ß\ |a|, such thatfor any X e Sm^ and E G Kq(X) we have

ca(E)= J2 K,ßcß{-E) H(A).
101=1*1

Proof. We proceed by induction on |a|, the case a 0 being clear. From the

relation PH(E)PH(—E) 1 we deduce, using the induction hypothesis

-ca(E) J2 cr(E)cs(-E) E ly,eCe(-E)cs(-E).
bybs=ba bybg=ba |e| |y|

y=£a y=£u

It follows from (3.1.8) that QeQs is a Z-linear combination of the polynomials Qß,
for \ß\ I s I + \8\. Thus the statement follows from (3.1.9).

3.1.11. For X G Smfc we set H(X) H(Z)[b] and for a morphism f:Y->X
in Snijfc we set ff f\* (we use the notation of (3.1.1)). If / is projective with
virtual tangent bundle Tf G Kq(Y), for any a G H(Y) we set

f*(a) f?(PH{-Tf)a) GH(X).

3.1.12 Proposition. The functor H, together with the above defined pushforwards, is

an oriented cohomology theory.

Proof. See [15, §7.4.2] or [16, Proposition 4.3],
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3.1.13. We define the power series (where bo 1)

exp(x) xtt(x) ^Z>,xI+1 G Z[b][[x]].
isN

3.1.14. If L is a line bundle over X e Sm^, then cf(L) exp(cJ1(L)) H(V).
This follows from (2.1.9) and (2.1.3.(iii)) (see [16, Lemma 4.2]).

3.1.15. Denoting by exp-1 the composition inverse ofexp, we have in H(Spec k)[[x, >']]

x +h y exp (exp_1(x) +H exp_1(y)).

This follows from (3.1.14) (see [16, Lemma 8.1])

3.2. The cobordism ring.
3.2.1. We will denote by L the subring ÇHy C ÇH(Spec k) Z [b] defined in (2.2.2).
When p is a prime number, we will write Ch CH /p and denote by Lp the subring

Çhf C Ch(Spec/c) Fp[b],

3.2.2. Let X be a smooth projective /c-scheme. Then, using the notation of (3.1.5)

lXl J^ca(X)bae L.
a

3.2.3 Theorem ([16, Theorem 8.2]). The pair (L, Tçh) is the universal commutative

formal group law.

3.2.4 Corollary. The ring L is generated by the coefficients aij of (2.3.2.a).

Proof By construction [1, II, §5], the coefficient ring of the universal commutative
formal group law is generated by the coefficients of the corresponding power series.

Thus the corollary follows from (3.2.3).

3.2.5 Lemma. We have [/?]ch(*) 0.

Proof Since [plchM 0 by (2.3.3), this follows from (3.1.14).

3.2.6 Proposition. The kernel of the surjective morphism L ^ Lp is the ideal

generated by the coefficients of the power series [pjcuOQ L[[x]]. Thus {Lp, Fçh)
is the universal commutative formal group law whose formal multiplication by p
(see (2.3.4)) vanishes.

Proof. Let (T, <f>) be the universal commutative formal group law whose formal

multiplication by p vanishes. By [21, Proposition 7.3], this law admits a logarithm,
that is a power series / e V [[/ ]] with leading coefficient t such that

<S>(x,y) r\l(X) + l(y))eT[[x,y}l
where l~l denotes the composition inverse of /.
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The morphism L ->• F classifying the formal group law (F, d>) is surjective, and

its kernel is the ideal generated by the coefficients of the power series

b]aj(x)eL [[*]].

By (3.2.5), the surjective morphism L -» ¥p factors through a surjective morphism
T Lp. To conclude the proof, we will provide a retraction of the composite
n: T -»• Lj, c Fp[b]. Consider the morphism <p\ ¥p[b] ->• V sending for i > 1,

to the (i + l)-st coefficient of the power series /-1. Denote by e G Fp[b][[x]] the

image of the power series exp G Z[b][[x]] defined in (3.1.13). By (3.1.15), the

morphism n classifies the formal group law (¥p[b], F), where

F(x,y) e(e-l{x) + e~l(y))

so that the morphism cp on classifies the formal group law (T, (p* F), where

<P*F(x,y) <p*e(<p*(e_1)(x) + <p*{e~l){y)).

Here the notation cp* stands for the ring morphism ¥p [b][[x, y]] —> P[[x, >•]], resp.
Fp[b][[x]] —> T [[*]], induced by taking the image of the coefficients under (p. By
construction <p*e /_1, and <p*(e~l) (<p*e)_1 /, hence

<P*F(x,y) rl(l(x) + l{y)) $,

which proves that q> o n idr.

3.2.7 Remark. The rings L and ¥p admit the following concrete descriptions.
Declare two smooth projective ^-schemes equivalent if they have the same
collection of Chern numbers (resp. modulo p Chern numbers), indexed by partitions
(see (3.1.5)). The set of equivalence classes is an abelian monoid for the disjoint
union of /:-schemes. The associated abelian group, together with its ring structure
induced by the cartesian product of A;-schemes coincides with L (resp. L^). In
view of (3.2.3) and (3.2.6) and [21, Theorems 6.5 and 7.8], the ring L (resp. L2) is

isomorphic to the complex (resp. unoriented) cobordism ring.

3.3. Projective bundles. In this section the theory H is either CH or Ch CH /p
for some prime p. We will compute the pushforward morphism along a projective
bundle in the theory H in terms of Chern classes in the theory H. This is a variant of
Quillen's formula for complex cobordism [20, Theorem 1], The reader not interested

in Kosniowski-Stong formula (§5.2) and willing to assume that N is trivial in (5.1.4)

may safely ignore this somewhat technical section (see also (6.1.10)).

3.3.1. Let X G Smfc. Denote by R(F) the set of those elements of H(F)[[y]] whose

y'-coefficient lies in LT' (X) for all i G M. Then R(F) is a subring of H(F)[[y]].
Moreover, if / G R(F) is invertible in H(Z)[[y]], then f~l G R(X). Using the fact
that H7 (X) 0 for j < 0, we see that, for any partition a, the ba-coefficient of any
element of R(F) is of the form ao + 01 y H 1- with cii e H'a'-!(X).
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3.3.2. It follows from the splitting principle (2.1.16) that there is a unique way to define
for every X G Sm^ and £ e K0(X) an element £H(£{y}) e R(2QX satisfying
(see (3.1.2) for the definition of n)\

(i) f* PH(E{y}) PH(f* E{y}) for any /: Y -* X in Sm* and E G K0(X),

(ii) £H(£{y}) n(c^(L) + y) when L is a line bundle,

(iii) £H((£ + £){y}) PH(E{y})PH(F{y}) for any E, F K0(X).

When E, F G K0(X) we set PH(E{y} + F) PH(E{y})PH(F) G R(2QX.

3.3.3. Let L be a line bundle over X G Sm^, and £, £ G Kq(X). It follows from the

splitting principle (2.1.16) (and (2.3.3)) that Pn(E <g> L + F) G H(A') is the image
of PH(E{y} + F) G H(Z)[[y]] under y m- c^(L).
3.3.4. Let X G Sm^ and E, F G Kq(X). For each partition a, we denote by

ca(E{y} + F) G H(2Q[y] the ^-coefficient of PH(E{y} + F) G R(V). Its image
under y 1 is an element ca(E{ 1} + F) G H(V) whose component in W (X) we
denote by ca(E{\) + F)j. Then in H(20[y]

|a|

ca(E{y} +F) £>(£{1} + £)|a|_,y'. (3.3.4.a)
1=0

3.3.5. When a is the partition (1,..., 1) with |a| n, we will write cn(E{y} + F)
instead of ca(E{y) + F) (see (3.1.6)).

3.3.6 Lemma. Let X G Sm^ and E, F G Kq(X). For any partition a, we have in
H(V)[y] (see (3.L7) and (3.1.10) for the definitions of Qa and Xa>ß)

Qa(Cl(E{y} + F),c2(E{y} + £),...) ca(E{y} + F)

x<*,ßcß(-E{y}~ F).
\ß\=M

Proof. Let n |a|. By (2.1.3.(vi)), the morphism p:H(X)[y] H(X x P")
induced by y (->• c\(0(1)) and the pullback along X x P" -»• X restricts to an

injection on the subset of polynomials in y of degree < n. The equalities take place
in that subset by (3.3.4.a), hence it suffices to verify their images under p. By (3.3.3),
this follows from (3.1.9) and (3.1.10) applied to £(1) + £ G Kq{X x P").

3.3.7. Let £ be a commutative ring. We define a morphism Resj,: £[[y]] -» R by

mapping a power series JfieZ aiy' to its T_1-coefficient a~\.
3.3.8 Proposition. Let S G Sm^ and V —> S be a vector bundle of rank r. Denote

by p: P(V) —> S the associated projective bundle. Then for any m > 0

p"(cf(Onv)(\))m) ^ cf(—V) Resj, (y-'-' (expy)'"£H(- L{y})) G H(5).
i'eN
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Proof. Let £ cf (0p<y)(l))- Then cf (0p(F)(l)) exp£ by (3.1.14). Write

(expy)mPH(- F{y})
jeN

where (pj H(S). Since the relative tangent bundle of p satisfies

Tp (p*Vm-l eK0(F(V))

(see e.g. [6, §B.5.8]), we have in view of (3.3.3)

P*(cf(0P(F)(l))m) p* ((expf)mPH(-0?*F)(l))) Y P\i^PjW\
yeN

We have p^(£y) 0 for j < r — 1 (see [6, Proposition 3.1 (a)(i)]) and /?* (£;)
Cy+1_r(— V) for j > r — 1 (this is how Chern classes are defined in [6, §3.2];
that this definition coincides with the one given in (2.1.7) follows from [6,
Remarks 3.2.4 and 3.2.3(a), Propositions 2.5(e) and 2.6(b)]). Using the projection
formula (2.1.3.(iii)), we obtain the required equality

^(cf(Op(K)(l)D £ £W+r-ty'eN ieN

3.3.9 Corollary. Let S be a smooth projective k-scheme and V -» S be a vector
bundle of rank r. Then for any m > 0, we have in H(Spec k)

[cf(0p(F)(l))ml (j-rW(eXpj)mdeg(cf(-U)PH(-U{y}-r5))).
ieN

Proof This follows from (3.3.8) by pushing forward along S -» Spec k.

3.3.10 Corollary. Let V —> S be a vector bundle of rank r, and p: P(F) -> S the

associated projective bundle. Ifcf(V) 0e H (S) for alii > 0, thenfor any m > 0

(we write P" 0 when n < 0)

p^(cf(OnV)Wr) r"1_leH(5).

Proof. By its construction (3.3.2), the element PH(U{y}) depends only on r and

the Chern classes cf(V). Thus, it follows from (3.3.8) that /»R(cf(ôp(K)(l))"î)
depends only on r, m and the Chern classes cf(V). Therefore we may assume that
the bundle V is trivial, and the statement is clear (see [16, Lemma 5.2]).
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4. [L2-actions

4.1. The functor associating to each commutative /c-algebra R the subgroup of
those r e Rx such that r2 1 is represented by a finite commutative algebraic

group fi2- We refer e.g. to [5, I] for the notion of /z2-action on a quasi-projective
/c-scheme X. In the affine case X Spec A, this is the same thing as a Z/2-grading
A /40 © A\ as k-algebra [5, I, 4.7.3.1], In general, the scheme X is covered by
affine /^-invariant open subschemes [5, V, §5].

4.2. Let X be a quasi-projective A:-scheme with a /x2-action. An open or closed
subscheme F of A is called ^-invariant if its inverse images under the projection
and the action x I -> I coincide.

4.3. Let A be a quasi-projective ^-scheme with a /x2-action. The equaliser of the

projection and the action ^2xl -> X is represented by a finite surjective morphism
<p:X -* X//x2, called the quotient morphism (see [5, V, Théorème 4.1]). The
k-scheme X/p,2 is quasi-projective by [5, V, Remarque 5.1]. The Öx/^-algebra
A <p*&x admits a Z/2-grading A Ao © «Ai, where Ox/ß2 (see

e.g. [10, (3.2.2)]).

4.4. Let A be a quasi-projective k-scheme with a /x2-action. The functor associating
to a quasi-projective k-scheme T with trivial /^-action the set of /r2-equivariant
morphisms T ->• X is represented by a /r2-invariant closed subscheme Xß2 of X,
called the fixed locus. Its ideal â C Ox is characterised by the fact that the ideal

(p*S C Ox/ß2 is generated by A\ (using the notation of (4.3)).

It is possible to provide a more concrete definition of the notion of /r2-action, by
distinguishing cases according to the characteristic of the base field:

4.5 Proposition. Let X be a quasi-projective k-scheme.

(i) Assume that char k 2. Then a p.2~action on X is the same thing as a

k-morphism a:X X such that a2 idx- The fixed locus X'12 is the

equaliser of the morphisms idx and o.

(ii) Assume that char k 2. Then a ^-action on X is the same thing as a
k-derivation D: Ox —> Ox satisfying D o D D. The fixed locus Xß2 is the

vanishing locus of the section D' e H°(X, LlwX/k) corresponding to D.

Proof A /r2-action on X is given by a /c-morphism /r2 x X -> X satisfying certain
conditions. In case (i) the morphism /i2xl lul->'lis given by idx Uct,

while in case (ii) the morphism /r2 x X Spec (A: [e]/e2) x X -> X is given by the

pair consisting of idx and Df e H°(X, LlvXjk). To verify the remaining statements,

we may assume that X Spec A.

(i): The correspondence between the grading A Ao ® A\ and the involution
s: A -* A is given by the following formulas:

Ao ker(^—id) im(.v + id), A\ ker(5+id) im(5 — id), s (a) ao~a\,
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where ao e Aq,u\ g A\ are the components of an arbitrary element a e A. The

coequaliser of the ring morphisms id^ and s is the quotient of A by the ideal generated
im(5 — id) A\, whence the given description of Xß2.

(ii): The correspondence between the grading A Ao © A\ and the derivation
3: ^4 —^ y4 is given by the following formulas:

A0 ker3, Ai=im3, 3(a) a.\,

where a\ G A\ is the component of an arbitrary element a A. The section
D' G H°(X, ^x/k) is given by the unique T-module morphism 3':Qa/Ic A

satisfying 3 d'od, where d: A -> SÏA/k is the universal derivation. The vanishing
locus of D' is the closed subscheme defined by the ideal J generated by im 3'.
Since the A-module &A/k is generated by \md, it follows that J is generated by
im(3' o d) imd A\, whence the given description of Xß2.

We will repeatedly use the next lemma without explicit mention.

4.6 Lemma. Let X be a smooth quasi-projective k-scheme with a p,2-action. Then

the fixed locus Xß2 is smooth over k.

Proof. See e.g. [10, Lemma 3.5.2].

4.7 Lemma. Let X be a quasi-projective k-scheme with a p.2-action. The blowup Y

of Xß2 in X inherits a pt2-action whose fixed locus Yß2 is the exceptional divisor.

Proof. Let E be the exceptional divisor in Y. Denote by a: P2 x X -> X the action

morphism. Since the closed subscheme Xß2 of X is ^-invariant, its inverse image
a

under the composite p.2 xf —> fi2 x X —r X is the closed subscheme ß2 x E. The
existence of the morphism ^xF Y and the fact that it is a group action then

follow from the universal property of the blowup.
To check that Y112 E, we may assume that X Spec A. Let I be the ideal

of A generated by Ai. For s G Ai, consider the A-algebra

S(s) {as~n I a G 7", «gN}c .4 [s-1],

with its induced Z/2-grading. The scheme Y is covered by the open subschemes

D{s) Spec(S(5)) for s G A\, and it follows from the universal property of the

blowup that the immersions D(s) -> Y are p,2-equivariant. Let s 6 di. Any
element x G S(sj homogeneous of degree 1 G Z/2 may be written as as~n where

ne N and a e In (1 Ai+r(„) (we denote by r : Z —> Z/2 the reduction modulo 2).
But

I" n A1+rM {(Ar)"A) n Al+rW {A\)nA\ C In+l,

so that as~n~x eS(s), hence xesS(s). Thus D(s)ß2 E fl D(s), and Yß2 E.
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4.8 Lemma. Let Y be a quasi-projective k-scheme with a ptj-action such that
Yß2 —>• Y is an effective Cartier divisor. Denote by f:Y —> Z Y/pt2 the

quotient morphism.

(i) The &z-module X coker(0z f*(9y) is locally free of rank one.

(ii) There is a canonical isomorphism f*Xv~Oy(Yß2).
(iii) The morphism Yß2 -> Z is an effective Cartier divisor whose ideal is

isomorphic to 'iff2.

(iv) If Y is smooth over k, then so is Z.

Proof. As recalled in (4.3), there is a Z/2-grading of the 0z-algebra f*Gy «A

A) © «At such that &z A- Thus X «Ai- We let â Oy[—Yß2).

(i): We may replace Y with any cover by ^-invariant open subschemes. In
particular, we may assume that Y Spec A and that the closed subscheme Yß2

of Y is defined by the ideal / A\A a A of A, for some nonzerodivisor a G A.

Denote by G A and a\ G A\ the components of a, and write a\ ua with
u e A. Since

ao a —ai e/fl^oC/2,
we may find w e A such that ao wa2. Then a wa2 + ua, and since a is a

nonzerodivisor in A, we have

1 wa + u e A\A + uA.

Thus Y is covered by the open subschemes £>(/) Spec(A[/-1]) for / A\
and D(u) Spec(i4[w-1]). The subschemes D{f) are /^-invariant. So is D(u),
because it is the locus in Y where the /^-invariant closed subschemes Yß2 and

Spec(T/ai A) coincide (alternatively, one may check directly that the ideal uA of A is

homogeneous). Therefore we may assume either that A i contains an element/ G Ay,
or that u G Ax.

If f G A\ fl Ax, then f~l G A\, and x h» fx induces an isomorphism of
A-modules A0 -» A\, proving that A\ is free or rank one.

Assume that u G Ax. Since a is a nonzerodivisor in A, so is ai ua. Thus the

morphism of A-modules Ao A given by x i->- aix is injective; its image

ax Ao (ai A) n Ax / D Ai Ai

is a free Ao-module of rank one.

(ii): The morphism of 0y-modules ot: f*X f*A \ -> S adjoint to the inclusion
«Ai C f*â is surjective because f*a: //*«Ai -> f*J is surjective, since the

ideal ffâ of «A is generated by «Ai. The morphism a must be an isomorphism,
because its source and target are locally free modules of rank one by (i).
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(iii): The affine morphism Yß2 -> Z is given by the morphism of 0z-algebras

&z «4>o —> «A -> A/f*â.

This morphism is surjective with kernel /*<! fi ,Af> (<Ai)2, the image of the

morphism of 0z-modules ß\£®2 — (<Ai)®2 -> <Ao induced by the Z/2-graded
tAo-algebra structure on -A. Since the 0z-module Z®2 is locally free of rank one

by (i), in order to prove (iii), it will suffice to prove that the 0z-module (Ay)2 is

locally free of rank one (then ß will have to be an isomorphism). To do so, we

may assume that Y Spec A and moreover, in view of (i), that Ay IA0, for
some / Ay. Then the ideal Ay A of A is invertible by assumption, hence its

generator I must be a nonzerodivisor in A. Then I2 e Ao is a nonzerodivisor in A,
hence in its subring Ao- Thus (Ay)2 /2d0 is an invertible ideal of A().

(iv): By (i), the morphism /: Y —> Z is faithfully flat, so that the statement follows
from [8, (17.7.7)].

5. Cobordism and fixed locus

5.1. Parity of Chern numbers.

5.1.1 Lemma. Let Y be a smooth projective k-scheme with a /z2-action such that Y1X2

has pure codimension one in Y. Then for any m > 0

Ici(0y(T^))m] 0eL2.

Proof. Let f:Y Z Y/p.2 be the quotient morphism. Then Z e Sm^
by (4.8.(iv)) (and (4.6)). As [2]çh(x) 0 6 L2[[x]] by (3.2.5), applying (2.5.1)
yields f*\Y] 0 Ch(Z). Since 0y (TA2) js the pullback of a line bundle on Z
by (4.8.(i)) and (4.8.(ii)), the projection formula (2.1.3.(iii)) implies that

/*(ci(0y(TM2))w) =06 Ch(Z),

and the lemma follows by pushing forward along Z —Spec k.

5.1.2 Remark. Let X be a connected smooth projective k-scheme with a nontrivial

/^-action. Lemma (5.1.1) (for m 0,1) implies that if one Chern number of X or
of X1X2 is odd, then Xß2 must have a component of dimension < dim X — 2.

5.1.3 Theorem. Let X be a smooth projective k-scheme with a p.2-action, and N
the normal bundle to the immersion of the fixed locus X,X2 —> X. Then in L2

[P(iV ® 1)J pf] and Ici(0P(iV®1)(l)r] O form> 1
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Proof. Let Y be the blowup of Xßl in X. Then Y11-2 P (V) has pure codimension

one in Y by (4.7). It follows from (3.2.5) that [— l]çh(x) x e L2[[jc]], hence

Cl(0p(AT©i)(-l)) Ci(<9p(Ar©i)(l))

in Ch(P (N © 1)). The statement now follows from (2.4.1) (with g xm for m > 0)
and (5.1.1).

As a sample application of (5.1.3), we deduce an algebraic version of a theorem

of Conner-Floyd [4, (25.1)].

5.1.4 Corollary. Let X be a smooth projective k-scheme with a /r2 -action, and N
the normal bundle to the immersion of the fixed locus Xß2 -> X. Assume that Xß2
contains no component of X, and that cfH(N) 2CH(Xß2) for all i > 0. Then

every Chern number ofX or of X112 is even.

Proof. Write X'12 as the disjoint union of subschemes Fr having pure codimension r
in X, for r 0,..., dimX. By (3.3.10) (for H CH/2) and (5.1.3), for any m > 0

we have in L2

Mope*®»«)] ip"iip'i jj*1 !m "
rtIn (° lfw>0.

By descending induction on r we deduce that [FrJ 0 for r > 1, and that

pf] fjF0]. Since by assumption F° 0, it follows that fX] =0, and that

IX^2] [F1] + - + |Fdlm2r] 0

in L2.

5.2. Kosniowski-Stong formula. In this section, which will not be used in the rest

of the paper, we consider the theory H CH/2 and use the notation of (2.1.17)
and (3.3.4).

5.2.1 Proposition. Let X be a smooth projective k -scheme ofpure dimension n with

a ^-action, and N the normal bundle to the immersion of the fixed locus Xß2 -> X.
Let a be a partition such that |a| < n. Then

ca(X) deg (c(-V)ca(-V{l} - Tx»2)) e F2.

Proof. Write Xßl as the disjoint union of the schemes F°,..., F", where Fr has

pure dimension n — r, and let V N\pr. Consider the Laurent series

n n—r

fly) EE^"r_i ^eg(ci(~Nr)PH(—Nr{y} - TFr)) e F2[b][b]][y"1].
r=0(=0
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Since PH(—l{y}) n(y)~l (expy)_1y and Ci(—Nr) Ci(—{Nr © 1)), we
have

n n—r

(exp j)"7(j) EE deg (ci(-(Nr © 1 )))Pn(-(Nr © l){y}-7>0).
r=0i=0

Therefore by (3.3.9), we have for any m > 0

Res>,((expy)'n-1/(y)) |ci(0P(Jvei)(l))m] e F2[b].

By (5.1.3), this element vanishes when m > 0, and equals [X] when m 0. Now

(expy)—1 ym-1Jr(y)m-1 y^1 + £gs,mys e F2[b][[y]][y"1]
s>m

where gs,m e F2[b]. By descending induction on m (the case m > n being clear
from the definition of f(y)), we obtain in F2[b]

Res^y^/OO)
SIX] if m 0,
10 if m > 0.

We consider the /^-coefficient of this equation for m n — \a\ >0. Since ca(X) 0

if |a| ^ n, in view of (3.2.2) and (3.3.4.a) we obtain in F2

n n—r |a|

ca{X) E E E Res? (y/'+n_ia|_1_r_i deg (Ci(-Nr)ca(-Nr{\} - 7>r)w_y))
r=0i=0j=0

n n—r

EEdeg {Ci(-Nr)ca(-Nr{l}~ TFr)n_r_i)
r=0i=0
deg (cHV)caHV{l} - Tx»2)).

We obtain the following analogue of the Kosniowski-Stong formula [14]:

5.2.2 Corollary. Let X be a smooth projective k-scheme ofpure dimension n with
a p2-action, and N the normal bundle to Xß2 —> X. Let f Z[yi,..., yn\ be a

polynomial of total degree < n, where each yt has degree i. Then in F2

deg (f(c1(Tx),...,cn(Tx)))
deg (c(-N)f{a(N{l} + TXu2), cn(N {1} + Tx»2))).

Proof By (3.1.8) we may assume that f Qa with |a| < n. In view of (3.3.6), the

statement follows from (5.2.1).
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5.3. Cobordism modulo two.

5.3.1 Theorem. Let X be a smooth projective k-scheme with a ß2-action, and N
the normal bundle to the immersion of the fixed locus Xß2 -+ X. Write

£ C^Op^DC-I)) G ÇH(F(N © 1)).

Then in L/2 (using the convention of (2.1.14))

M 2£

[2]ÇH(£)
and 0

2?'m+i

[2]çh(Ç)JJ
form > 1.

Before proving the theorem, let us clarify its statement. There is a unique power
series v(x) L[2_1][[x]] such that

u(x) • [2]çh(x) x.

The theorem says that |2u(£)] 6 L[2_1] belongs to L and is congruent to [[Zj
modulo 2L, and that i£mv(t)] 6 L[2_1] belongs to L for m > 1.

Proof. Let Y be the blowup of Xß2 in X, and /: Y -+ Z Y/p2 the quotient
morphism. Then by (4.7) we have Yß2 P(N), and by (4.8) the Cz-module
X coker(0z —» /*0y) is invertible and Z Sm^. Let p ci(Xv) CH(Z)
and rj ci(0y(P(V))) e CH(D. Then r] f*p by (4.8.(ii)). It follows form the

projection formula (2.1.3.(iii)) and (2.5.1) (pushing forward along Z -> Spec k) that

ij,m+l

L [2]CH (7)
lßm] e L[2_1] for any m > 0. (5.3.l.a)

Applying (2.4.1) with g xm+1([2]çH(x)) 1 for m > 1 (and H ÇH(—)[2 *])
yields (the elements a,- e L are defined in (2.3.4))

„m+1

[2]çh(??)
ri- i]oi(f)

[2]çh(0

m+1

[2]ch

IT?m+l+i

i> 1
[2]çh(£)

G L[2-1].

This element belongs to L by (5.3.l.a), and the second statement follows by
descending induction on m (the case m > dim X being clear). We now apply (2.4.1)
with g 2x([2]çh(x))~1 and obtain in L[2-1]

V

[2]çh (l) 1*1+2
[2]çh(D

2C

H2]çh(C)
+ Y- IT 2^'+1

1[2]£H(0

This element belongs to 2L by (5.3.l.a) (with m 0), and so do the terms being
summed over i by the second statement. The first statement follows.
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6. Euler number

6.1. The theory E.

6.1.1. The Euler number of a smooth projective it-scheme of pure dimension n is

X(X) degC„(7»eZ.

As mentioned in the introduction, this integer is the alternate sum of the f-adic Betti
numbers, but we will not use this description.

6.1.2 Definition. We consider the functor E ÇH ®z[b]Z[r] where Z[b] Z[t] is

the morphism bi i-> (—1 )ltl, and t has degree -1. It follows from (3.1.12), (2.1.6)
and (2.1.5) that E is an oriented cohomology theory. We have E(X) CH(X)[r]
for any X G Sm^, and /E* /C*H for every morphism f:Y X in Sm^. If / is

projective with virtual tangent bundle Tf G Kq{Y), then for any a G E(7),

.ff(a) g E(X).
ieN

6.1.3. Let L be a line bundle over X g Sm^. Then n(x) e Z[b][[x]] maps to
(1 + tx)~l G Z[t][[jc]], hence in view of (3.1.14)

CZ(L) C(L) hence cCHfjn C\(L)
1

1 +tcfH(L)' 1
1 -tcf(L)'

6.1.4 Lemma. The formal group law of the theory E is given by

x + Y —2txy irr* +e y= —i—72—e zw [*. 7
1 — tzxy

Proof Let L, M be line bundles over X G Sm^. Write / c(L), m cfH(M)
and A cf (L), pt Cj (M) in E(X). By (2.3.3) and (6.1.3), we have in E(X)

cf(L®A/) '+m - VIMl-M"'
1 + t{l + m) 1 + t(X( 1 — tX)~l + /x(l — tpt)~l)

_
A(1 — tfi) + /x(l — tX) _X + p — 2tXp

(1 — tX){\ — t/x) + tX{\ - tp) + tp( 1 — rA) 1 — t2A/x

6.1.5 Lemma. The formal multiplication by a G Z o/t/ie theory E A given by

Proof Let L be a line bundle over X G Sm^. Write / c(L) and A Cj (L)
in E(X). In view of (2.3.3) and (6.1.3), we have in E(X)

ce(l®ö)
al aA(l-fA)-1 aX

1
1 + atl \ + atX(\ — tX)~l 1 + (a — l)tA
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6.1.6. When X is a smooth projective /c-scheme of pure dimension n, we have

ixj x(X)tn eE/C E(Spec/c) Z [/].

6.1.7 Lemma. The subring E/ cZ[r] is generated by It and t2.

Proof. By (3.2.4), this subring is generated by the coefficients j of FE(x, y)
the statement follows from (6.1.4), which implies that atj equals

-2t2i~l if i j > 0,

t21 if i j — 1 > 0,

t22 if j i — 1 > 0,

0 otherwise.

6.1.8. Lemma (6.1.7) implies that 2Z [t] C Ey and f2E/ C Ey.

6.1.9 Lemma. Let V be a vector bundle ofrank r> 0 over S G Sm^ and p:F(V)-x S

the associated projective bundle. Then

p*(1) rtr~1 G E(5).

Proof. For an element F e K0(S), let us denote by Q(F{yj) E(S)[y] the image
of PCE{F{y}) CH(5)fvl (see (3.3.2)). We claim that

Q{-V{y}) tryr + {c^iVy + rf-l)yr+ q,

where q G E(5)[y] is a polynomial in y of degree < r — 2. To see this, by the

splitting principle (2.1.16) we may assume that V admits a filtration by subbundles

with successive quotients line bundles L\,...,Lr. Then

r r

Q(-v{y}) - Fl Q{~Liiy}) n0 +tc^(Li) + ty),
i' l i l

from which the claimed formula follows. Thus (3.3.8) (with m 0) implies that

pE(!) CÇH (yy + rtr-1 + cCH(_F)fr rf-1 Q

6.1.10 Remark. The reader wishing to avoid using §3.3 may instead prove (6.1.9) by

computing directly the image under p of the total Chern class of the relative tangent
bundle Tp (whose class in ATo(P(E)) is p*V(1) — 1), using [6, Example 3.2.3(b),

Proposition 3.1(a)].

Thus



834 O. Haution CMH

6.2. Euler number and fixed locus. The first part of the next statement is well known,
at least when char k 2.

6.2.1 Proposition. Let X be a smooth projective k-scheme ofpure dimension n with
a \i2~action.

(i) We have x(X) x(Xß2) m°d 2.

(ii) Ifn is odd, then we have /(F) /(AM2) mod 4.

Proof Write Xß2 as the disjoint union of the schemes F°,..., F", where Fr has

pure dimension n — r. Let N be the normal bundle to Xß2 —> X and write
£ cf(0p(jvei)(l)) e E(P(N © 1)). By (5.3.1) and (6.1.5), in view of (6.1.8) we

—n

fhave in E//2
-I]B(£)I L, —£(1 — 2t£)-1 r1 -3^n
-2]e(£)J r-2£ (I-3/ÉH 11 -2tflm

Now, by (6.1.9), we have in Ey1

n

iP(iVei)] JV(r + l)[F'
r=0

and [Ç] [P(iV)l X;t'-1r[Fl,
r 1

hence [Xj [F°] +1 [F1] + • • • + tn [F*] in By/2. Applying the ring morphism
Bp —> Z given by t 1 yields the statements, since by (6.1.7) the image of Ey is
contained in 2Z when n is odd.

6.2.2 Lemma. Assume that k is infinite. Let S be a quasi-projective k-scheme and
V —> S a vector bundle of rank r > dim S. Then for every se Z — {0}, we may find
a line bundle L fitting into an exact sequence ofvector bundles over S

0 -» W V 0.

Proof. Let A be an ample line bundle over S. Then for any large enough integer m,
the vector bundle G Vv <g> A®m is generated by its global sections. Fix such an m
divisible by s, and a finite dimensional vector space E c H°(X, G) generating G.
The kernel K of the surjective morphism of vector bundles S x E -»• G is a vector
bundle whose rank is dim E — r. Then

dim K dim S + dim E — r < dim E,

hence the composite F^SxE^Eis not dominant. Thus there is a nonempty
open subscheme U of E such that K D (S x 17) 0. It follows that every k-rational
point of U is a nowhere vanishing section of G. Since U is a nonempty open
subscheme of an affine space over the infinite field k, it admits a /c-rational point,
so that G admits a nowhere vanishing section. This gives a surjective morphism of
vector bundles V -> A®m, so we let W be its kernel and L A®^m^s\
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6.2.3 Lemma. Let S be a smooth projective k-scheme of pure dimension d and
V —> S be a vector bundle of rank r. Then for any 0 < m < r — d, we have

Ic?(0P(K)(D)m] (r eEfc Z[t].

Proof. We may assume that k is infinite. We proceed by induction on m, the case

m 0 being (6.1.9). Let m > 0, and se Z — {0}. By (6.2.2) there is an exact

sequence
0->W-+V-+L®s^0

with L a line bundle. By (6.1.5), we have cf(L®s) e s E(S). The line bundle of the

effective Cartier divisor P(W) -> P(F) is p*L®s{ 1), where p: P(F) —> 5 is the

projective bundle, hence in view of (2.1.10)

[P(W0] cf(0P(K)(l)) +e cf(p*L®s) cf(0p(F)(1)) e E(P(V))/s.

Multiplying with ci(0p(K)(l))'"-1 and projecting to Spec/:, we obtain

(0p(w)(l)r-1] Icf(0P(K)(l))'l e E(Speck)/s Z[t\/s.

Using the induction hypothesis on the bundle W, we deduce that

Icf(0p(K)(l))m] - (r - m)tr~l~mlX\ e sZ[t].

This element is divisible in Z[/], hence vanishes.

6.2.4 Theorem. Let X be a smooth projective k-scheme ofpure dimension n with a

P2-action. If 2 dim Xß2 < n — 1, then x(Xß2) is divisible by four.

Proof. Let N be the normal bundle to Xß2 -+ X and write § Ci(0p(N©i)(l))
in E(P(N © 1)). By (5.3.1) and (6.1.5), in view of (6.1.8) we have in Ey/2

-m (6.2.4.a)

(6.2.4.b)

Let d dim Xß2 and write Xß2 as the disjoint union of the schemes Fn~d.., Fn,
where Fr has pure dimension n — r. Since n > 2d by assumption, for every r
n — d,... ,n, the vector bundle Nr N\pr has rank r > dim Fr. Applying (6.2.3)
for m — \ and m 2 to each bundle Nr © 1 yields in Ey-~"/2

m~tm= E rtr~llFT]- E (r-l)tr-llFr}= E ^iF^j.
r=n—d r=n—d r=n-d
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This element vanishes in Ey-_"/2 by (6.2.4.a). If n is even, the ring morphism

E/ -> Z given by t 1 maps EY" to 2Z by (6.1.7), hence

XW2) x(Fn~d) + • • + X(F") e 4Z,

concluding the proof in that case.

Now assume that « is odd. Since 2d < n — 1, each Nr has rank r > dim Fr + 1.

Applying (6.2.3) for m 2 and m 3 to each bundle Ar © 1 yields in E2fn/2

n-^3J= E (r-l)fr-2|[Fl- E (r-2)ïr"2lFl E
r=n—d r=n—d r=n—d

This element vanishes in E2f^n/I by (6.2.4.b). The ring morphism E/ -» Z given

by t h> 1 maps Ey-~" to 2Z by (6.1.7), hence

X(Xß2) x(Fn~d) H 1- x(Fn) e 4Z.

6.2.5 Corollary. Let X be a smooth projective k-scheme ofpure dimension n with a

p<2-action.

(i) Ifx(X) is odd, then 2 dim Xß2 > n.

(ii) Ifn is odd and /(A) is not divisible by four, then 2 dim Xß2 + 1 > n.

Proof Combine (6.2.1) with (6.2.4). Note that n must be even if /(A) is odd

by (6.1.7), so that 2dim Xß2 + 1 > n implies that 2dim Xß2 >n.

7. Additive Chern number

7.1. The theory A.

7.1.1. We will denote by (0) the empty partition. Let n e N. Taking the partition
a (n) and the theory H CH in (3.1.4), we have a Conner-Floyd Chern class

C(„)(£) £ CH(A) for all A Sm& and E £ Ao(A). Observe that c^o)(E) 1.

If n > 0, then

CW{E + F) C(n){E) + C(n){F)

for every E, F £ Ao(A), and C(„) (L) c\(L)n for every line bundle L -> A. If A
is a smooth projective k-scheme of pure dimension n, its additive Chern number is

the integer

cpoW deg(c(„)(—7») e Z. (7.1.1.a)
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7.1.2 Definition. We consider the functor A CH<g>z[b]Z[t, e\/s2 where Z[b]
Z[t, s\/s2 is the morphism b\ h> et1. The element t has degree —1 and s has degree

zero. It follows from (3.1.12), (2.1.6), and (2.1.5) that A is an oriented cohomology
theory. For any X e Sm^, we have A(X) CH(A)[t, e]/e2, and for any morphism

f: Y -» X in Sm^ we have /A* /C*H. If / is projective with virtual tangent bundle

Tf G K0(Y), then for any a G A(Y),

/*» rdl-s^oWjfl) 6 A(X). (7.1.2.a)

i> 1

7.1.3. Let L be a line bundle over X G Sm^. By (3.1.14) we have

cf (L) cfH(L) + e]TVcfH(Ly+1 G A(A).
i>l

In particular ecf (L)7 £C(L)7 G A(X) for any j G N.

7.1.4 Lemma. The formal group law of the theory A is given by

x +ky x + y + £^((x + y)'+l - x1+1 - yl+1)t' G (Z[t, e]/e2)[[x, y]].
i> 1

Proof Let L, M be line bundles over X e Sm^. Write / c(L), m c(M)
and A cf(L), pt c^(M) in A(A0. By (2.3.3) and (7.1.3), we have in A(A)

cf(L<g>M) l+m+e^^t1 (l+m),+1 X+pt+e tl ((/ +m)'+1—/'+1—m'+1)
i>l !>1

and the statement follows from the last sentence of (7.1.3).

7.1.5. When X is a smooth projective A-scheme of pure dimension n, we have in

A/ C A(SpecA) Z[f,£]/e2

m jC(«)W if « 0,

\cM(X)et" if n > 0.

7.1.6 Lemma. We have

0 ifn < 0,

Z ifn 0,

pet" Z ifn — pi — 1 for some prime p and integer q > 1,

£t"Z otherwise.

Proof We may assume that « > 0. By (3.2.4), the ring A/ is generated by the
coefficients atj of Fa (x y). Now (7.1.5) implies that AL • Ay- 0 when r,jGZ - {0},
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hence the group A~" is generated by the coefficients Now (7.1.4) implies
that

(n + A „
0-i,n+\—i —

I

when 0 < i < n + 1, and a,= 0 otherwise. Thus the statement follows from
the computation

(n
+ 1 1 IP if n pq — 1 for some prime p and integer q > 1, _I <

i J (1 otherwise.

7.2. Additive Chern number and fixed locus.

7.2.1 Lemma. Let X be a smooth projective k-scheme ofpure dimension n with a

P2-action. Let N be the normal bundle to the immersion X'12 -> X.

(i) We have C(„)(A) — C(„)(P(A © 1)) e ¥2, and if0 < j <n

deg (ci(0p(jv®i)(l))7C(„_7-)(7p(jv®i))) 0 P2.

(ii) Let 0 < j < n and assume that n + 1 and n — j + 1 are powers of two. Then

c(n)W C(»)(P(N ® 1)) + deg(ci(0p(Ar®i)(l))7C(„_y)(7|p(jv©i))) G Z/4.

Proof Let z c(0P(;v®i)(-l)). Since z -cfH(0P(Arffii)(l)) by (2.3.3),
we may replace 0p(jv©i)(— 1) by 0p(.wffii)(l) in (i), and thus also in (ii). Let
£ cf (0p(jy©i)(~!))• Let 0 < m < n. Then by (7.1.3) and (7.1.2.a) we have

in Amfn

Kml deg((z + e£Vz'+1)
i > 1 i > 1

hence in A-"

itw»,
Ueg(2") if m «,

(£/" m(mdeg(z")-deg(zmC(„-m)(rP(Arei)))) ifm < «.

Now (7.1.4) implies that we have in Aj~n (note that 0 when i n)

2Çm+l

[2}a(0 r (1 -e£'i(2i - Dr')] in+stn-m(i-2"-m)in
i>i

We combine this equation with (7.2.1.a), and apply (5.3.1). In case m n 0, we
obtain [A] deg(z°) in A®/2 Z/2, proving the lemma when n 0. Thus we
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assume that n > 0 from now on. In case m n, we obtain deg(z") 6 2A® 2Z,
while for m < n we obtain in A^~"/2

et"~m((m+l—2"_m)deg(z")—deg (zwC(„_m)(rP(^ei)))) J*1 ^ °'
v

|0 if 0 < m < n

Taking (7.1.6) into account, we apply the group morphism A/ —>• Z defined by
1 I—>- 1 and fit* i->- 1 if 5 > 0. Then (i) follows by letting m 0 and m j. We now

prove (ii). We have, letting m 0,

c(„)P0 deg(z") + C(„)(P(V © 1)) e Z/4. (7.2.l.b)

This proves (ii) in case j n. Finally, assuming that j < n, observe that the integer

(j + 1 — 2n~j) is odd, hence letting m j,
deg(z") deg(z-/C(„_7)(rP(iVei))) Z/4.

Combining this equation with (7.2.l.b) yields (ii) in case j < n.

7.2.2 Theorem. Let X be a smooth projective k-scheme ofpure dimension n with a

fi2-action. Assume that 2 dim Xß2 < n — 1. Then C(n) (X) is even. Ifn 2q — 1 for
some q > 1, then C(n)(X) is divisible by four.

Proof. If « 6 {0,1}, then Xß2 0, hence P(/V © 1) 0. Thus the theorem
follows from (7.2.1.(i)) when n 0, and from (7.2.1.(ii)) with j 1 when n — 1.

We now assume that n > 2. Let k be the integer such that n 2k or n 2k + 1,

and set / n — k. Let p:P(N © 1) -> Xß2 be the projective bundle, and write
£ ci(0(l)) e CH(P(V © 1)). Since

7p(iv®i) (P*N © 1)(1) + p*TXu2 - 1 e K0(F(N © 1))

(see e.g. [6, §B.5.8]), for any i 0,..., I we have

C(n-i){Tp(N®l)) c(n-i)((P*N © 1)(1)) + P*C(n-i)(TXu2)

in CH(P(A © 1)) (note that n — i > 0). For such i, the element C(„_;)(r^A2) G

CH"-! (Xß2) vanishes, since dim Xß2 < k < n — i. Thus for / 0,..., / we have

in CH(P(V © 1)),

c(n-i)(Tp(N®l)) C(n-i)(fp*N © 1)(1)). (7.2.2.a)

Now, we have in Z[x, y]

(x + y)kxl (x + y)k{{x + y)- y)1 (x + y)n + (l]?(x + y)"'1.
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Expanding the factor (x + y)k on the left hand side yields in Z[x, y]

(X + y)« i^yk~jxl+i - D-1)'" + y)n~l-

From the splitting principle (2.1.16), we deduce, in CH(P(JV © 1))

cM((P"N ® 1)(1)) £ I,,(.'V ® 1)

J'° > fl\
?C(H-i){(p*N<B 1)(1)).

Now C(/+y)(iV © 1) G CH/+y (Xß2) vanishes for any j > 0, because

dim Xß2 <k < / + j.

In view of (7.2.2.a), we obtain in CH(P(JV © 1))

I

C(«)(Tp(at©i)) y^(-l)' j. |?!c(n-i)(7p(iV©i))- (7.2.2.b)

Applying (7.2.1.(i)) and taking the degree of (7.2.2.b) yields C(„)(A) 0 G F2-

Now assume that n 2q — 1 with q > 2. Then / 2q~l, and we have

^
I mod 4

1 if z =0 or i /,
2 if j 2«-2,

0 otherwise.

Thus, taking the degree of (7.2.2.b) yields in Z/4

© 1)) deg (^'c(n_/)(7p(jv©i))) + 2deg (£2<? C(n_29-2)(7>(jv©i))).

Applying (7.2.1 .(ii)) with j /, we get

C(n)(X) 2deg /)(71p(Af©i))) + 2deg (£2<? C(„_2«-2)(7p(jv©i))) g Z/4,

which vanishes by (7.2.1 .(i)) applied with j I and j 2q~2.

7.3. Decomposability in the Lazard ring.

7.3.1. Let R be a Z-graded ring. Denote by Ir the ideal generated by homogeneous
elements of nonzero degrees in R, and set Dec(R) (Ir)2. An element of R is

called decomposable if it belongs to Dec(R), and indecomposable otherwise.
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It is well known that decomposability in L/p or Lp is detected using the additive
Chern number:

7.3.2 Lemma. Let X be a smooth projective k-scheme ofpure dimension n, and p
a prime number.

(i) Ifn pq — 1 for some q > 1, then \X] is decomposable in hp.

(ii) Assume that n pq — 1 for all q > 1. Then JX] is decomposable inh/p if
and only (/[V] is decomposable in ~LP.

(iii) The class |{X] is decomposable in h/p ifand only if

p2Jj ifn pq — 1 for some q > 1,

ph otherwise.

Proof. The degree zero components of h/p and Lp may be identified with Fp, via
the map ] i—> C(o)(X). This implies the statements when n 0.

We now assume that n > 0. In view of (3.2.3) and (3.1.15), it follows from [1, II,
§7] that the subring L of Z [b] is a polynomial ring in the variables y, for i e N — {0},
where y, is homogeneous of degree —7. In addition y,- Vj hi mod Dec(Z[b]) with
Vi I if i lq — 1 for some prime I and integer q > 1, and t>; 1 otherwise. Since
the ring L is generated by the elements y;, among which only y„ has degree —n, we
have

[[X] uyn mod Dec(L),

for some u e Z. Then [[X] is decomposable in L/p ifand only if m ph. Since [X]
uv„bn mod Dec(Z[b]), its ^-coefficient C(nfX) equals uvn, and (iii) follows.

Assume that n ^ pq — 1 for all q > 0. Obviously if [X] is decomposable in L/p,
then [X] is decomposable in hp. Conversely assume that [X] is decomposable
in Lp C Fp[b]. Since [X] uv„bn mod Dec(F/)[b]), it follows that uvn e ph.
Since vn is prime to p, this implies that u e ph, proving (ii).

Assume that n pq — 1 for some q > 1. Since vn ¥p vanishes, so does the
element yn vnbn C F^fb], Since [X] uyn mod Dec(Lp), it follows that

IX] e DecOLp),

proving (i).

Besides the additive Chern number, other Chern numbers are affected by the

decomposability in h/p:
7.3.3 Lemma. Let p be a prime number, and a (oq,... ,am) a partition such

that each a,- + 1 is a power of p. Let X be a connected smooth projective k-scheme

of positive dimension. Then ca(X) ph. /f [X] e h/p is decomposable, then

ca{X) £ p2h.

c(n)(X)
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Proof. Let (p be the ring endomorphism of Z [b] mapping hi to itself if i +1 is a power
of p, and to 0 otherwise. Then every element of Z[b] has the same -coefficient as

its image under <p. Let f : Z [b] F^[b] be the composite of <p with the reduction
modulo p. The functor H CH giy.p,] .frF^fbl defines an oriented cohomology
theory by (3.1.12), (2.1.6), and (2.1.5). If L is a line bundle over X G Sm^ then

by (3.1.14)

cf(L) ^C(L)i+V(^) Y, ciH(L)p"bpq-i G H(X).
i gN qeN

Since CH is additive (2.3.3) and p H(X) 0, it follows that H is additive. Therefore
when i+j > 1, the coefficient a,-j G L of FcH (defined in (2.3.2.a)) lies in the kernel

of f. By (3.2.4), this implies that L -> Z[b] sends homogeneous elements of
negative degrees to pZ[b]. Thus <p{\XJ) G pZ[b], hence the -coefficient ca(X)
of [[X] G Z[b] belongs to pZ. It also follows that <p|i sends homogeneous elements

of negative degrees whose image in L/p is decomposable to p2Z[b], Thus if
|X] G L/p is decomposable, then the ba-coefficient ca(X) belongs to p2Z.

Finally (7.3.2.(iii)) implies the following reformulation of (7.2.2).

7.3.4 Theorem. Let X be a connected smooth projective k-scheme with a ^-action.
If 2 dim XIJ'2 < dim X — 1, then [X | is decomposable in L/2.

References

[1] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in
Mathematics, University of Chicago Press, Chicago-London, 1974. Zbl 0309.55016

MR 402720

[2] J. M. Boardman, On manifolds with involution, Bull. Amer. Math. Soc., 73 (1967), 136—

138. Zbl 0153.25403 MR 205260

[3] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitre 10 (French).

Reprint of the 1998 original, Springer-Verlag, Berlin, 2007. Zbl 1107.13002 MR 2333539

[4] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik
und ihrer Grenzgebiete, N. F., Band 33, Academic Press Inc., Publishers, New York;
Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. Zbl 0125.40103 MR 176478

[5] M. Demazure and A. Grothendieck (eds.), Séminaire de géométrie algébrique du

Bois Marie 1962-64. Schémas en groupes (SGA 3). Tome I: Propriétés générales
des schémas en groupes. Revised and annotated edition of the 1970 French original,
Documents Mathématiques Series Profile, 7, Société Mathématique de France, Paris,
2011. Zbl 1241.14002 MR 232779

[6] W. Fulton, Intersection theory. Second edition, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer-Verlag,
Berlin, 1998. Zbl 0885.14002 MR 1644323



Vol. 95 (2020) Involutions and Chern numbers of varieties 843

[7] A. Grothendieck, La théorie des classes de Chern (French), Bull. Soc. Math. France, 86

(1958), 137-154. Zbl 0091.33201 MR 116023

[8] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des

morphismes de schémas. IV (French), Inst. Hautes Études Sei. Publ. Math., (1967), no. 32,

361pp. Zbl 0153.22301 MR 238860

[9] O. Haution, Involutions of varieties and Rost's degree formula, J. Reine Angew. Math.,
745 (2018), 231-252. Zbl 1408.14023 MR 3881477

[10] O. Haution, Diagonalisable /)-groups cannot fix exactly one point on projective varieties,
J. Algebraic Geom., 29 (2020), no. 2, 373-402. Zbl 07161172 MR 4069653

[11] J.-R Jouanolou, Une suite exacte de Mayer-Vietoris en -théorie algébrique (French),
in Algebraic K-theory, I: Higher K-theories (Proc. Conf, Battelle Memorial Inst.,
Seattle, Wash., 1972), 293-316, Lecture Notes in Math., 341, Springer, Berlin, 1973.

Zbl 0291.14006 MR 409476

[12] S. M. Kelton, Involutions fixing RP7 UFn, Topology Appl., 142 (2004), no. 1-3,197-203.
Zbl 1065.57032 MR 2071302

[13] S. M. Kelton, Involutions fixing RPJ' U F". II, Topology Appl., 149 (2005), no. 1-3,
217-226. Zbl 1066.57035 MR 2130865

[14] C. Kosniowski and R. E. Stong, Involutions and characteristic numbers, Topology, 17

(1978), no. 4, 309-330. Zbl 0402.57005 MR 516213

[15] M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics,
Springer, Berlin, 2007. Zbl 1188.14015 MR 2286826

[16] A. S. Merkurjev, Algebraic oriented cohomology theories, in Algebraic number theory
and algebraic geometry, 171-193, Contemp. Math., 300, Amer. Math. Soc., Providence,
RI, 2002. Zbl 1051.14021 MR 1936372

[17] P. L. Q. Pergher, An improvement of the five halves theorem of J. Boardman, Israel J.

Math., 188 (2012), 431^139. Zbl 1264.57012 MR 2897739

[18] P. L. Q. Pergher, Involutions fixing F" U{indecomposable}, Canad. Math. Bull., 55 (2012),
no. 1,164-171. Zbl 1244.57062 MR 2932997

[19] P. L. Q. Pergher and R. E. Stong, Involutions fixing (point) U Fn, Transform. Groups, 6

(2001), no. 1, 79-86. Zbl 0985.57017 MR 1825169

[20] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull.
Amer. Math. Soc., 75 (1969), 1293-1298. Zbl 0199.26705 MR 25335

[21] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod

operations, Adv. Math., 1 (1971), 29-56. Zbl 0214.50502 MR 290382

[22] A. Vishik, Symmetric operations in algebraic cobordism, Adv. Math., 213 (2007), no. 2,
489-552. Zbl 1129.14034 MR 2332601

Received December 11, 2019

O. Haution, Mathematisches Institut, Ludwig-Maximilians-Universität München,
Theresienstr. 39, D-80333 München, Germany

E-mail: olivier.haution@gmail.com




	Involutions and Chern numbers of varieties

