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Involutions and Chern numbers of varieties

Olivier Haution™

Abstract. Consider an involution of a smooth projective variety over a field of characteristic not
two. We look at the relations between the variety and the fixed locus of the involution from the
point of view of cobordism. We show in particular that the fixed locus has dimension larger than
its codimension when certain Chern numbers of the variety are not divisible by two, or four.
Some of those results, but not all, are analogues of theorems in algebraic topology obtained by
Conner-Floyd and Boardman in the sixties. We include versions of our results concerning the
vanishing loci of idempotent global derivations in characteristic two. Our approach to cobordism,
following Merkurjev’s [16], is elementary, in the sense that it does not involve resolution of
singularities or homotopical methods.

Mathematics Subject Classification (2010). 14L.30; 19L41.
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1. Introduction

Let k be a field. The cobordism ring L is defined by identifying the smooth
projective k-varieties which have the same collection of Chern numbers (indexed
by monomials). Each such number is a geometrical invariant, defined as the degree
of a monomial in the Chern classes of tangent bundle of the variety. Using instead
modulo two Chern numbers yields the ring L, a quotient of .. Even though the
base field k is arbitrary, the ring L. always coincides with the complex cobordism
ring (the Lazard ring), and L, with the unoriented cobordism ring. We will denote
by [Y] the class of a smooth projective k-variety Y in either of these rings.
Consider an involution o of a connected smooth projective k-variety X. Assume
that the characteristic of k differs from two (that restriction may be lifted, see
below). Denote by N the normal bundle to the fixed locus X in X, by P(N)
its projectivisation, and by P(N & 1) its projective completion. Our first result is:

1.1 Theorem. We have [X] = [P(N & 1)] and [P(N)] = 0 in Lo.

These equalities are just the first in a series of relations in LL,, heuristically
asserting that the map P(N @ 1) — P given by the canonical line bundle is bordant

*This work was supported by the Heisenberg grant HA 7702/4-1 from the DFG.
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(in the unoriented sense) to any constant map X — P®°. A precise statement is given
in (5.1.3). They imply the analogue of a formula due to Kosniowski—Stong [14] in
algebraic topology. Their formula is the basis of a vast collection of results concerning
the fixed locus of smooth involutions of closed unoriented manifolds [14, 19] (see
also for instance [12, 13,17, 18]), many of which could probably be translated into
algebraic geometry. We refrain from doing so, but state the formula in (5.2.2), and
explain in detail how to derive it.

An example of Chern number is the so-called Euler number. Its value for a smooth
projective k-variety Y of pure dimension # is the integer

2n

A(Y) = degen(Ty) = D _(—1) dimg, HL (Y, Qo).
i=0

where £ is any prime number unequal to the characteristic of k, and k an algebraic
closure of k. It is well known that y(X) and y (X ?) have the same parity, a fact which
can be reproved using Theorem 1.1. The relations in L, mentioned above imply the
following analogue of a theorem of Conner-Floyd [4, (27.4)]:

1.2 Theorem (cf. (6.2.5.(i)). If x(X) is odd, then 2dim X° > dim X.

Note that Theorem 1.2 is only interesting when dim X is even, because the Euler
number of an odd-dimensional variety is always even. In order to cover the odd-
dimensional case, we really need to look beyond IL,. This motivates the search for
relations between X and the normal bundle N in a larger quotient of I than LL,.
Since the ideal 2I. C L consists of classes of varieties admitting a fixed-point-free
involution (exchanging two copies of a given variety), the largest quotient of I. where
the class of X has any chance of being determined by N is IL /2. We prove that this
is indeed the case, by giving a formula expressing the class of X in IL/2 in terms of
the tautological line bundle @(—1) — P(N & 1). As in Theorem 1.1, this formula
is part of a series of relations in L /2, which are stated in (5.3.1). However, unlike
Theorem 1.1, this formula is not readily usable for computations, because it involves
the formal group law. One may try to overcome this difficulty by focusing on one
particular Chern number at a time.

This strategy works well in the case of the Euler number, allowing us to prove:

1.3 Theorem (cf. (6.2.1.(ii)) and (6.2.5.(ii))). Assume that dim X is odd. Then:
(1 x(X) = x(X?) mod 4.
(ii) If x(X) is not divisible by 4, then 2dim X? 4+ 1 > dim X.

We could find in the literature no analogue of this theorem in algebraic topology.
To prove it, the idea is to construct an oriented cohomology theory E which captures
just enough information, in the sense that the class of a smooth projective k-variety
in E(Spec k) is determined by, and determines its dimension and Euler number. We
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then exploit the formula in L. /2 mentioned above by considering its trace in the
theory E.

An element of L/2 or L, is called decomposable if it is represented by a disjoint
union of products of pairs of positive-dimensional smooth projective k-varieties.
The decomposability of the class of a smooth projective k-variety is governed by the
value of its so-called additive Chern number. We prove:

1.4 Theorem (cf. (7.3.4)). Assume that the class of X in L/2 is indecomposable.
Then 2dim X% + 1 > dim X.

When dim X + 1 is not a power of two, decomposabilities in I /2 and IL, are
equivalent (see (7.3.2.(ii))), and Theorem 1.4 follows from the Theorem 1.1 (and
the corresponding supplementary relations in ;). In this case, Theorem 1.4 is
an algebraic analogue of a theorem of Boardman in topology [2, second part of
Theorem 1]. We are not aware of a topological analogue of Theorem 1.4 when
dim X + 1 is a power of two. As above, the idea for the proof in that case is to
construct an oriented cohomology theory A such that the class of a smooth projective
k-variety in A(Speck) is determined by, and determines its dimension and additive
Chern number.

All of our results are actually valid when the characteristic of k is arbitrary, provided
that we consider p;-actions instead of involutions. In characteristic not two, those
concepts coincide. A pap-action in characteristic two is an idempotent global
derivation, and the fixed locus X #2 is the vanishing locus of the derivation.

Of course involutions do exist in characteristic two, and it would be interesting to
cover that case also. The category of smooth projective varieties, crucial for the use of
cobordism theory, seems inadequate in that case, because the constant group Z /2 is
not linearly reductive, and it is easy to find involutions on smooth projective varieties
whose fixed locus is singular. If one is willing to work with singular schemes, it
is possible to obtain results on involutions in characteristic two involving the Segre
class of the normal cone to the fixed locus [9].

Finally, let us explain why we limit ourselves to u p-actions for the prime p = 2.
If up acts on a smooth k-variety X, any eigenvalue for the induced p p-action on
the normal bundle N to the fixed locus in X must be a nontrivial p-th root of unity.
When p = 2, the only possible eigenvalue is —1, so that @, must act trivially
on P(N) (see (4.7) below). For odd primes p, results of the type given in this
paper would necessarily involve the normal bundle N together with its u ,-action,
substantially reducing their usability. As an illustration, assume that dim X > 0 and
that k is algebraically closed. In case p = 2, the relations in L, mentioned just after
Theorem 1.1 imply that the number of fixed points, if finite, must be even (see (5.1.4)).
As explained in [10], when p is odd we can only say that this number cannot be one.
The integer which must be prime to p is the number of fixed points counted with
multiplicities determined by the u,-actions on the tangent spaces (see [10, (4.3.4)]
for a precise formula).
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2. Oriented cohomology theories

2.1. Axioms. We fix a base field k for the whole paper. We denote by Smy the
category of smooth quasi-projective k-schemes. The tangent bundle of X € Smy is
denoted by Ty, and the Grothendieck group of vector bundles on X by Ky(X).

2.1.1. Let E be a vector bundle over X € Smyg, and & its @ x-module of sections.
We will denote by P(E) or P (&) the scheme Projy (Sym &V). This is the dual of the
convention used in [15].

2.1.2 Definition. A cartesian square in Smy

Wtz

el lg (2.1.2.2)
Yy x

is called transverse if, for every connected component Wy of W, denoting by
Yo, Zy, Xy the connected components of ¥, Z, X containing the images of W,

dim Wy 4+ dim X¢ = dim Yy + dim Zj.

2.1.3 Definition ([15, Definition 1.1.2]). A functor H from szp to the category
of Z-graded rings, together with a group morphism fM:H(Y) — H(X) for each
projective morphism f:Y — X in Smyg, is called an oriented cohomology theory if
the conditions (i)—(vii) below are satisfied. We write fi' instead of H( ) when f is
a morphism in Smy, and denote by H” (X) the degree » component of H(X).

(i) If X,Y € Smy, areconnectedand f:Y — X isa projective morphism, then f,/
is graded of degree dim X —dim Y.

(ii) For any X,Y € Smg the natural morphism H(X U Y) — H(X) x H(Y) is
bijective.

(iii) If ;Y — X is a projective morphism in Smy, then fE(af} (b)) = fH(a)b
forany a € H(Y), b € H(X).

(iv) If X € Smy, then (idy)s« = idyx). If /:Y — X and g: Z — Y are projective
morphisms in Smy, then fH o gll = (f o g)iL.

(v) Givenatransverse square (2.1.2.a) with f projective, we have hlloe}; = gfo 1.

(vi) Let E be a vector bundle over X € Smy and p: P(E) — X the associated
projective bundle. Denote by s:IP(E) — Op(g)(1) the zero-section of the
canonical bundle, and write § = s7; o s{(1). Then 1,£,...,£ 7! is a basis of
the H(X')-module H(IP(E)) (for the structure induced by p})).

(vii) Let p: ¥V — X be a torsor under a vector bundle over X € Smy. Then
pi:H(X) — H(V) is bijective.
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2.1.4. One sees easily that the axioms of (2.1.3) are equivalent to those of [16, §2],
with the word “tautological” replaced by “canonical” in [16, §2, (iii)]. Moreover it
follows from (2.3.4.a) below that oriented cohomology theories in the sense of (2.1.3)
are also oriented cohomology theories in the sense of [16, §2].

2.1.5. The Chow ring CH is an oriented cohomology theory, see e.g. [6].
For the rest of §2, we fix an oriented cohomology theory H.

2.1.6. If H(Speck) — R is a morphism of Z-graded rings, then the functor
H ®y(spec k) R is naturally an oriented cohomology theory.

2.1.7.1et V be a vector bundle of rank r over § € Smy. Using the notation of
(2.1.3.(vi)) for E = VY and X = S, the Chern classes clH(V) € H'(S) are defined
using Grothendieck’s method [7] by setting ¢/'(V) = 0if i ¢ {0,...,r}and

D ) i (n)ET = 0 € HP(E)).

i=0

2.1.8. We will use the simplified notation fi, f*,¢; instead of fH, fiF, ¢! when no
confusion seems likely to arise. If j: ¥ — X is a closed immersion in Smy, we will
write [Y] = j«(1) € H(X).

2.1.9.Let L be a line bundle over X € Smyg. Then c;(L) = s* o s«(1), where
s: X — L is the zero-section (this follows from (2.1.3.(vi))).

2.1.10. If D — X is an effective Cartier divisor in Smg, then [D] = ¢ (O (D)) e H(X).
This follows from (2.1.9), (2.1.3.(vii)), (2.1.3.(v)) (see [16, Proposition 3.2]).

2.1.11.If /:Y — X is a morphism in Smy and E a vector bundle over X, then
f*ci(E) =c¢i(f*E) e H(Y) for all i.

2.1.12. An oriented cohomology theory defines an “oriented Borel-Moore weak
homology theory on Smy” by [15, Proposition 5.2.4], hence an “oriented Borel-
Moore functor of geometric type on Smy” by [15, Remark 4.1.10].

2.1.13.Let X € Smyg. Then for n large enough, and line bundles Lq,...,L,
over X, we have ¢;(Ly)---c1(L,) = 0 € H(X). This follows from (2.1.12) and
[15, Lemma 4.1.3].

2.1.14. Let L be aline bundle over X € Smy.. By (2.1.13), we may evaluate a power se-
ries in H(Spec k)[[x]] at ¢1 (L) to obtain an element of H(X). If £, g e H(Spec k)[[x]],
with g a nonzerodivisor, are such that f = gh for some & € H(Spec k)[[x]], we will

write
Sfle1(L))

2 L) = h(c1(L)) € H(X).
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2.1.15. (Whitney product formula) If 0 - E; — E», — E3 — 0 is an exact
sequence of vector bundles over X € Smyg, then for all n

cn(E2) = ) ci(E1)en—i(E3) € H(X).
i=0

This follows from [15, Proposition 4.1.15], in view of (2.1.12).

2.1.16. (Splitting principle) Let E be a vector bundle of rank r over X € Smy.
Then there is a composite of projective bundles g: P — X such that ¢* E admits
a filtration by subbundles whose successive quotients are line bundles L, ..., L,.
By (2.1.3.(vi)) the pullback g*: H(X) — H(P) is injective. By the Whitney product
formula (2.1.15), we have ¢;(¢*E) = oi(c1(L1),...,c1(L,y)) foralli =0,...,r,
where o; is the i-th elementary symmetric function in r variables.

2.1.17. Let E be a vector bundle over X € Smy. Then the class ¢; (E) vanishes for i
large enough by (2.1.13) and (2.1.16), so that the class ¢(E) = 1 + ¢1(E) + - --
is invertible in H(X). If E, E, are vector bundles over X € Smyg, then the class
c(F) = c(E1)c(E2)™! € H(X) depends only on F = E; — E; € Ko(X) by the
Whitney product formula (2.1.15). We denote by c¢; (F) its component in H' (X).
2.1.18. Let V be a vector bundle of rank r over S € Smyg, and p: P(V) — S the
associated projective bundle. We may view the tautological line bundle @(—1) as
a subbundle of p*V. The quotient Q = p*V/@(—1) has rank r — 1, hence the
Whitney product formula (2.1.15) yields in H(P (1))

0=1cr(Q) =) ci(p*V)eri(O(=1)) = Y (=) 7 p*(c;(V))e1(O(=1)) "

i=0 i=0

It follows that the Chern classes ¢; are the same as those defined in [16, §3].

2.2, Cohomology of the point.
2.2.1. When X is a smooth projective k-scheme, with structural morphism p: X —
Spec k, we will write in H(Spec k)

[X] = p«(1) and [u] = p«(u) foru € H(X).

When H = CH (or CH / p), we will write deg(x) € Z (or F,), instead of [u].

2.2.2. We will denote by Hy C H(Speck) the subgroup generated by the ele-
ments [X], for X a smooth projective k-scheme. It is a graded subring (see [16,
Proposition 2.5]), whose degree n component we will denote by H F

2.2.3 Proposition ([16, Corollary 9.10]). Let Ey, ..., E, be vector bundles over
X €Smy, and iy, ...,in € N. Then [[c;, (E1)---ci,(En)] € Hy.
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2.3. The formal group law.

2.3.1. A commutative formal group law is a pair (R, F), where R is a commutative
ringand F € R[[x, y]] a power series satisfying

(i) F(x,y) = F(y.x) € R[[x, y]].

(i) F(x,0) = x € R[[x]],
(iii) F(x, F(y,2)) = F(F(x,y).z) € R[[x, y, z]l.
2.3.2. By [15, Lemma 1.1.3], there is a power series

X, y)=x+4+gy= Zai,jxiyj € H(Spec k)[[x, ¥]] (2.3.2.2)
i,j

witha; j € H!=#=J (Spec k) such that for any line bundles L, M over X € Smy
i (L ® M) = ¢{'(L) +n cf' (M) € H(X),

and the pair (H(Spec k), Fy) is acommutative formal group law. The coefficients a;, ;
actually belong to H ¢ by [15, Remark 2.5.8] and (2.1.12).

2.3.3. We say that the theory H is additive if Fy(x,y) = x 4+ y. An example of
additive theory is CH, see e.g. [6, Proposition 2.5 (e)].

2.3.4. Let [—1]a(x) € H ¢ [[x]] be the unique power series such that Fy (x, [—1]g(x)) =x.
For a € Z, we define a power series [a]u(x) € H ¢[[x]], called formal multiplication
by a, by setting [0]g(x) = 0, and iteratively [a]g(x) = Fu(la —1]g(x), x) fora > 0,
as well as [a]g(x) = [~1]u([—a]u(x)) for a < 0. The leading term of the power
series [a]u(x) is ax. In particular, there are elements @; € H such that

[-1la(x) = —x + Y _a;x'T" € Hy[[x]]. (2.3.4.2)

i>1

2.4. Deformation to the normal bundle.

2.4.1 Lemma. Let T — X be a closed immersion in Smy, with normal bundle N .
Denote by Y the blowup of T in X its exceptional divisor is P(N). Write { =
c1(0pvo1(—1)) € HP(N & 1)) and n = ¢1(Oy(P(N))) € H(Y). Using the
convention of (2.1.14), for any g € H(Spec k)[[x]], we have in H(Spec k)

- ]é‘H(C)]]

Proof. Denote by B the blowupof T x 0in X x P!, and by j:P(N @ 1) — B the
immersion of the exceptional divisor. Then B naturally contains ¥ and X = X x 1

[e(m] = gO[X] + ﬂg(é)
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as closed subschemes. By (2.1.12) and [15, Proposition 2.5.1] (and the proof of [15,
Proposition 2.5.2]), we have

[—1]u()
¢

Let p = c1(Op(P(N & 1))) € H(B). Then p restricts to { on P(N & 1), to n
on Y, and to zero on X. The statement follows by multiplying (2.4.1.a) with g(p)
and projecting to H(Spec k). O

[Y]=[X]+ Jj« € H(B). (2.4.1.2)

2.5. Vishik’s formula. When H is the algebraic cobordism and k has characteristic
zero, the next statement is due to Vishik [22, §5.4] (he mentions that similar
computations were performed earlier independently by Rost and Smirnov). We
reproduce Vishik’s proof, with minor alterations required when chark = 2.

2.5.1 Proposition. Let f:Y — Z be a finite morphism in Smy whose fiber over
any generic point of Z is the spectrum of a two-dimensional algebra. Then the
Oz-module £ = coker(Oz — f.Oy) is locally free of rank one, and we have

[2lu(ci(£Y))

N E

€ H(Z).

Proof. The Oz-module A = f,Oy is locally free of rank two, see e.g. [3, §4, n° 5,
cor. de la prop. 8]. The morphism of s-modules 1 ® id: A — A ®p@, s admits
a retraction (the multiplication map of the @z-algebra +), and it follows that its
cokernel £ ®@, s is a locally free A-module of rank one. By faithful flatness of
the @z-algebra 4, the @ z-module £ is locally free of rank one.

To prove the remaining statement, we may assume that Z is affine by Jouanolou’s
trick [11, Lemme 1.5] (in view of (2.1.3.(v)) and (2.1.3.(vii))). Let 8° be the
symmetric algebra on the @z-module 4. Consider the morphisms of @z-modules
vioh — 82and u: 8% — 82 givenby v(a) = 1®aand u(a ®b) =a@b—1Qab.
Thenker & = im v, and coker v = £%2, This gives an inclusion £%? = im u C §2.
The induced morphism of N-graded @ go-modules £22®p,, 8°2 — 8° is injective,
because locally the @z-module £®2 is freely generated by a nonzero element of §2
and &° is an integral domain. Its image is the homogeneous ideal 4 C §° generated
by im w. The morphism of @z-modules A — +A[t] given by a — at induces a
morphism of N-graded (0z-algebras §°* — «A[t] whose kernel is J, and which is
surjective in degrees > 1. Thus the closed subscheme of P(A"Y) = Proj, §° defined
by the homogeneous ideal 4 of §° is isomorphic to Proj, 4[f] >~ Spec, A ~ Y as
a Z-scheme. We have realised the Z-scheme Y as a Cartier divisor in P(4") whose
line bundle is p*£®72(2), where p:P(AY) — Z is the projective bundle.

The sequence of Oz-modules 0 — Oz — A — £ — 0 splits, because Z is
affine. The corresponding inclusion Oz C A" defines an effective Cartier divisor
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J:P(Oz) — P(+A") whose line bundle is p*£Y(1). Since Op4vy(1) has trivial
restriction on P(@%), in view of (2.1.10) and (2.1.3.(iii)) we have in H(PP (A"))

[2]H(Cl(j*P*ofv)))
c1(j*p*LY) .

Since poj is an isomorphism, we conclude by applying p« and using (2.1.3.(iii)). O

Y] = c1(p*£972(2)) = 2la(ca (p* 2V (1)) = j*(

3. The universal twisting

3.1. Twisting a theory. In this section H is an oriented cohomology theory.

3.1.1. When R is a Z-graded ring, we denote by R[b] the polynomial ring over R
in the variables b; for i € N — {0}. The ring R[b] is Z-graded by letting b; have
degree —i. If f: R — § is a group morphism between Z-graded rings, we will again
denote by f the induced group morphism R[b] — S[b].

3.1.2. Consider the power series (where by = 1)

m(x) =Y _ bix' € Zb][[x]].

ieN

If L is a line bundle over X € Smyg, then w(c1(L)) € H(X)[b]* by (2.1.13). It
follows from the splitting principle (2.1.16) that there is a unique way to define for
every X € Smy amap PH: Ko(X) — H(X)[b] satisfying

(i) f*PU(E) = PH(f*E)forany morphism f:¥ — X inSmy and E € Ko(X),
(ii)) PH(L) = m(c1(L)) when L is a line bundle over X € Smg,
(iiiy PR(E + F) = PH(E)PH(F)forany X € Sm; and E, F € Ko(X).
3.1.3. A sequence of integers ¢ = (@y,...,0q,) with m € N is called a partition
ifay >ay >+ > a, > 0. We will write |a|] = a1 + -+ + a € N. To the
partition & corresponds the monomial by = by, *** by, € Z[b).
3.1.4.Let X € Smy and E € Ky(X). Observe that PH(E) has degree zero in the

Z-graded ring H(X)[b]. We define the Conner-Floyd Chern class cl(E) € H*!(X)
(or simply cq (E)) for each partition « by the formula

PY(E) =) c(E)by € H(X)[b].

3.1.5. When X is a smooth projective k-scheme and « a partition, the corresponding

Chern number is
ca(X) = deg (cS(~Tx)) € Z.

3.1.6. When « is the partition (1,...,1) with |e| = n, we have by = b and
ca(E) = cp(E) forany X € Smy and E € Ko(X).
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31.7.Let ¢ = (¢1,...,0,) and let n > m. The n-th symmetric group acts on
the ring Z[x1, ..., X,] by permuting the variables. The sum of the elements in the
orbit of xJ" -+ x;" may be written as a polynomial Q, in the elementary symmetric
functions o1, ..., o, which does not depend on the choice of n.

3.1.8. Any homogeneous polynomial of degree d in Z[y1,..., yn], where y; has
degree i, is a Z-linear combination of the polynomials Q4 (1, ..., ¥,) for |a| = d.

3.1.9 Lemma. Let « be a partition. For any X € Smy, and E € Ko(X), we have

ca(E) = Qa(c1(E), c2(E), ...) € H(X).

Proof. This follows from the construction (3.1.2) when E is a vector bundle. In
general, we may assume that X is affine by Jouanolou’s trick [11, Lemme 1.5] (in view
of (2.1.3.(v)) and (2.1.3.(vii))). Then there is an integer s such that £ + s € Ky(X)
is the class of a vector bundle, and

ca(E) = ca(E +5) = Qu(c1(E + 5),c2(E + 5),...)
= Qa(CI(E),Cz(E),...). O

3.1.10 Lemma. Let o be a partition. Then there are elements Ay g € Z for all
partitions B with |B| = ||, such that for any X € Smy and E € Ko(X) we have

ca(E) = ) Aapep(—E) € H(X).
18]=lel

Proof- We proceed by induction on |¢|, the case ¢ = & being clear. From the
relation PH(E)PH(—E) = 1 we deduce, using the induction hypothesis

—¢o(E) = E Cy(E)Cé' (—E) = E E Ay,ecs(_E)cé' (~EJ
byb3=ba byb6=boz |€|=[y|
y#a y#a

It follows from (3.1.8) that Q. (s is a Z-linear combination of the polynomials Qg,
for |B| = |¢| + |8|. Thus the statement follows from (3.1.9). |

3.1.11. For X € Smy we set H(X) = H(X)[b] and for a morphism f:Y — X
in Sm; we set fﬁ‘ = fu (we use the notation of (3.1.1)). If f is projective with
virtual tangent bundle 7r € Ko(Y ), for any a € H(Y') we set

fir@) = fA(PY(-Tr)a) € H(X).

3.1.12 Proposition. The functor H, together with the above defined pushforwards, is
an oriented cohomology theory.

Proof. See [15, §7.4.2] or [16, Proposition 4.3]. O



Vol. 95 (2020) Involutions and Chern numbers of varieties 821

3.1.13. We define the power series (where by = 1)
exp(x) = xm(x) = ) bix'™! € Z[b][[x]).
ieN

3.1.14.If L is a line bundle over X € Smyg, then clﬂ(L) = exp(c"l"(L)) € H(X).
This follows from (2.1.9) and (2.1.3.(iii)) (see [16, Lemma 4.2]).

3.1.15. Denoting by exp~! the composition inverse of exp, we have in H(Spec k) [[x, y]]

X +HYy = €xp (exp_l(x) +u exp_l(y)).
This follows from (3.1.14) (see [16, Lemma 8.1])

3.2. The cobordism ring.

3.2.1. We will denote by L the subring CH , C CH(Spec k) =Z[b] defined in (2.2.2).
When p is a prime number, we will write Ch = CH / p and denote by IL , the subring
Chy C Ch(Speck) = Fp[b].

3.2.2. Let X be a smooth projective k-scheme. Then, using the notation of (3.1.5)

[X] =) ca(X)bo € L.

3.2.3 Theorem ([16, Theorem 8.2]). The pair (L, Fcy) is the universal commutative
formal group law.

3.2.4 Corollary. The ring L is generated by the coefficients a; ; of (2.3.2.a).

Proof. By construction [1, I, §5], the coeflicient ring of the universal commutative
formal group law is generated by the coefficients of the corresponding power series.
Thus the corollary follows from (3.2.3). O

3.2.5 Lemma. We have [p]cn(x) = 0.
Proof. Since [plcn(x) = 0 by (2.3.3), this follows from (3.1.14). 1

3.2.6 Proposition. The kernel of the surjective morphism . — 1L, is the ideal
generated by the coefficients of the power series [plcu(x) € L[[x]]. Thus (ILp, Fcn)
is the universal commutative formal group law whose formal multiplication by p
(see (2.3.4)) vanishes.

Proof. Let (', ®) be the universal commutative formal group law whose formal
multiplication by p vanishes. By [21, Proposition 7.3], this law admits a logarithm,
that is a power series / € I'[[¢]] with leading coefficient ¢ such that

O(x,y) =171 (1(x) +1()) € T[[x, y]],

where /=1 denotes the composition inverse of /.
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The morphism L — I classifying the formal group law (T", ®) is surjective, and
its kernel is the ideal generated by the coeflicients of the power series

[Plen(x) € L{[x]].

By (3.2.5), the surjective morphism . — L, factors through a surjective morphism
' - LL,. To conclude the proof, we will provide a retraction of the composite
m:I' > L, C F,[b]. Consider the morphism ¢:F,[b] — I" sending b;, fori > 1,
to the (i + 1)-st coefficient of the power series /~!. Denote by e € F,[b][[x]] the
image of the power series exp € Z[b][[x]] defined in (3.1.13). By (3.1.15), the
morphism 7 classifies the formal group law (IFp[b], ), where

F(x,y) = e(e”(x) +e7 ()

so that the morphism ¢ o m classifies the formal group law (T, ¢ F'), where

0 F(x,7) = pre(p« (™) (x) + px (e ().

Here the notation ¢y stands for the ring morphism F,[b][[x, y]] — ['[[x, ¥]], resp.
Fp[b]{[x]] = I'[[x]], induced by taking the image of the coefficients under ¢. By
construction g,e = {71, and @4 (e™!) = (p«e)™! = [, hence

P F(x,y) =171(1x) +1(y)) = @,
which proves that ¢ o 7 = idr. O

3.2.7 Remark. The rings . and L, admit the following concrete descriptions.
Declare two smooth projective k-schemes equivalent if they have the same
collection of Chern numbers (resp. modulo p Chern numbers), indexed by partitions
(see (3.1.5)). The set of equivalence classes is an abelian monoid for the disjoint
union of k-schemes. The associated abelian group, together with its ring structure
induced by the cartesian product of k-schemes coincides with I (resp. L,). In
view of (3.2.3) and (3.2.6) and [21, Theorems 6.5 and 7.8], the ring L (resp. L) is
isomorphic to the complex (resp. unoriented) cobordism ring.

3.3. Projective bundles. In this section the theory H is either CH or Ch = CH/p
for some prime p. We will compute the pushforward morphism along a projective
bundle in the theory H in terms of Chern classes in the theory H. This is a variant of
Quillen’s formula for complex cobordism [20, Theorem 1]. The reader not interested
in Kosniowski—Stong formula (§5.2) and willing to assume that N is trivial in (5.1.4)
may safely ignore this somewhat technical section (see also (6.1.10)).

3.3.1. Let X € Smy. Denote by R(X) the set of those elements of H(X )[[v]] whose
yi-coefficient lies in H™' (X) for all i € N. Then R(X) is a subring of H(X)[[]].
Moreover, if f € R(X) is invertible in H(X)[[y]], then f~! € R(X). Using the fact
that H/ (X) = 0 for j < 0, we see that, for any partition «, the by-coefficient of any
element of R(X) is of the formag + a1y +--- + a|a|y|°‘| with @; € H®= (x).
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3.3.2. It follows from the splitting principle (2.1.16) that there is a unique way to define
for every X € Smy and E € Ky(X) an element PP(E{y}) € R(X)* satisfying
(see (3.1.2) for the definition of x):

i) f*PYE{y}) = PH(f*E{y}) forany f:Y — X inSmy and E € Kq(X),
(i) PH(L{y}) = n(ct(L) + y) when L is a line bundle,
(i) PH((E + F){y}) = PR(E{y})PR(F{y}) forany E, F € Ko(X).
When E, F € Ko(X) we set PH(E{y} + F) = PR(E{y}) PH(F) e R(X)*.
3.3.3. Let L be a line bundle over X € Smy, and E, F € Ky(X). It follows from the
splitting principle (2.1.16) (and (2.3.3)) that PH(E ® L + F) € H(X) is the image
of PY(E{y} + F) € H(X)[[y]] under y > c}'(L).
334.Let X € Smy and E, F € Ky(X). For each partition o, we denote by
ca(E{y} + F) € H(X)[y] the by-coefficient of PE(E{y} + F) € R(X). Its image
under y > 1 is an element ¢, (E{1} + F) € H(X) whose component in H’ (X) we
denote by co(E{1} + F);. Thenin H(X)[y]

fex|

ca EQy} + F) =) _ca(E{1} + F) o). (3.34.2)
i=0

3.3.5. When « is the partition (1,...,1) with |¢| = n, we will write ¢, (E{y} + F)
instead of co (E{y} + F) (see (3.1.6)).

3.3.6 Lemma. Let X € Smy and E, F € Ko(X). For any partition o, we have in
H(X)[y] (see (3.1.7) and (3.1.10) for the definitions of Q and Ay g)

OQu(c1(E{y} + F),c2(E{y} + F),...) = ca(E{y} + F)

= Y Aapcp(—E{y}—F).
|BI=la]

Proof. Let n = |a|. By (2.1.3.(vi)), the morphism p: H(X)[y] — H(X x P%)
induced by y + ¢1(0@(1)) and the pullback along X x P” — X restricts to an
injection on the subset of polynomials in y of degree < n. The equalities take place
in that subset by (3.3.4.a), hence it suffices to verify their images under p. By (3.3.3),
this follows from (3.1.9) and (3.1.10) applied to E(1) + F € Ko(X x P"). O

3.3.7. Let R be a commutative ring. We define a morphism Res,: R[[y]] = R by
mapping a power series Y ;.7 a;y' to its y~!-coefficient a_;.

3.3.8 Proposition. Let S € Smy and V — § be a vector bundle of rank r. Denote
by p:P(V) — S the associated projective bundle. Then for any m > 0

Pr(ct@pmy())™) = > cf(=V)Res, (y " (exp y)™ PH(— V{y})) € H(S).
ieN
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Proof. Let & = c¢i(Opy(1)). Then clﬂ(ﬂp(y)(l)) = exp & by (3.1.14). Write
Exp )" P (- Vi) =D ey,
jeN
where ¢; € H(S). Since the relative tangent bundle of p satisfies
Tp =(p*"V)1) -1 € Ko(P(V))

(see e.g. [6, §B.5.8]), we have in view of (3.3.3)

PR @pary()™) = P ((exp &)™ PH=(p*V)(1) = PH( D Pii(e))E”).

JeN

We have pf({-‘j) = 0 for j < r —1 (see [6, Proposition 3.1(a)(i)]) and pf(";‘j) =
c?_l_l_r(—V) for j > r — 1 (this is how Chern classes are defined in [6, §3.2];
that this definition coincides with the one given in (2.1.7) follows from [6,
Remarks 3.2.4 and 3.2.3(a), Propositions 2.5(e) and 2.6(b)]). Using the projection
formula (2.1.3.(iii)), we obtain the required equality

Pr(ct@pan()™) =Y 0 pRE) =3 gigro1cf (V). O
JEN ieN

3.3.9 Corollary. Let S be a smooth projective k-scheme and V — S be a vector
bundle of rank r. Then for any m > 0, we have in H(Spec k)

[e}(@par) ()] = Y Res (7"~ (expy)™ deg (e (<V) PF (= V{y} - Ts)) ).
ieN

Proof. This follows from (3.3.8) by pushing forward along S — Speck. O

3.3.10 Corollary. Let V — S be a vector bundle of rank r, and p:P(V) — S the
associated projective bundle. If ¢;'(V) = 0 € H(S) foralli > 0, then for anym > 0
(we write P" = @ whenn < 0)

P (e (Opan(1)™) = [P7717™] € H(S).

Proof. By its construction (3.3.2), the element PH(V{y}) depends only on r and
the Chern classes clH(V). Thus, it follows from (3.3.8) that p*ﬂ(clﬂ((‘)p(y)(l))’")
depends only on r, m and the Chern classes ciH(V). Therefore we may assume that
the bundle V is trivial, and the statement is clear (see [16, Lemma 5.2]). O
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4. pa-actions

4.1. The functor associating to each commutative k-algebra R the subgroup of
those r € R* such that 2 = 1 is represented by a finite commutative algebraic
group ip. We refer e.g. to [5, I] for the notion of p;-action on a quasi-projective
k-scheme X. In the affine case X = Spec A, this is the same thing as a Z /2-grading
A = Ay ® A; as k-algebra [5, I, 4.7.3.1]. In general, the scheme X is covered by
affine p,-invariant open subschemes [5, V, §5].

4.2. Let X be a quasi-projective k-scheme with a p,-action. An open or closed
subscheme Y of X is called p-invariant if its inverse images under the projection
and the action > X X — X coincide.

4.3. Let X be a quasi-projective k-scheme with a p»-action. The equaliser of the
projection and the action p x X — X is represented by a finite surjective morphism
¢: X — X/ua, called the quotient morphism (see [5, V, Théoréeme 4.1]). The
k-scheme X /u, is quasi-projective by [5, V, Remarque 5.1]. The Ox/,,-algebra
A = ¢,O0x admits a Z/2-grading A = A9 @ A1, where Ox/,, = Ao (see
e.g. [10, (3.2.2)]).

4.4. Let X be a quasi-projective k-scheme with a p,-action. The functor associating
to a quasi-projective k-scheme T with trivial p,-action the set of p,-equivariant
morphisms 77 — X is represented by a p,-invariant closed subscheme X#2 of X,
called the fixed locus. Its ideal 4 C Oy is characterised by the fact that the ideal
@sxd C Ox/y, is generated by «+4 (using the notation of (4.3)).

It is possible to provide a more concrete definition of the notion of w,-action, by
distinguishing cases according to the characteristic of the base field:

4.5 Proposition. Let X be a quasi-projective k-scheme.

(i) Assume that chark # 2. Then a jy-action on X is the same thing as a
k-morphism 0: X — X such that 0? = idy. The fixed locus X*2 is the
equaliser of the morphisms idy and o.

(ii) Assume that chark = 2. Then a py-action on X is the same thing as a
k-derivation D: Ox — Oy satisfying D o D = D. The fixed locus X*?2 is the
vanishing locus of the section D' € H°(X, Qy / z) corresponding to D.

Proof. A piz-action on X is given by a k-morphism p, x X — X satisfying certain
conditions. In case (i) the morphism pu, x X = X U X — X is given by idy Uo,
while in case (ii) the morphism u, x X = Spec(k[e]/e?) x X — X is given by the
pair consisting of idy and D’ € H°(X, Qy / ). To verify the remaining statements,
we may assume that X = Spec A.

(i): The correspondence between the grading A = Ao¢ @ A; and the involution
s: A — A is given by the following formulas:

Ag = ker(s—id) = im(s +id), A; = ker(s+id) = im(s—id), s(a) =ap—a,
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where ap € Ag,a; € A; are the components of an arbitrary element @ € A. The
coequaliser of the ring morphisms id 4 and s is the quotient of A by the ideal generated
im(s —id) = A;, whence the given description of X2,

(ii): The correspondence between the grading 4 = Ap & A; and the derivation
d: A — A is given by the following formulas:

Ao =kerd, A, =imd, d(a)=ay,

where a; € A; is the component of an arbitrary element a € A. The section
D' e HY (X, Q% / ) 1s given by the unique A-module morphism 0":Q4/x — A
satisfying d = 0’od, where d: A — 2 4/ is the universal derivation. The vanishing
locus of D’ is the closed subscheme defined by the ideal J generated by im d’.
Since the A-module €24, is generated by imd, it follows that J is generated by
im(d’ o d) = im @ = A, whence the given description of X #2, O

We will repeatedly use the next lemma without explicit mention.

4.6 Lemma. Let X be a smooth quasi-projective k-scheme with a ji3-action. Then
the fixed locus X"2 is smooth over k.

Proof. See e.g. [10, Lemma 3.5.2]. U

4.7 Lemma. Let X be a quasi-projective k-scheme with a py-action. The blowup Y
of X*2 in X inherits a (1,-action whose fixed locus Y *2 is the exceptional divisor.

Proof. Let E be the exceptional divisor in Y. Denote by a: 4, X X — X the action
morphism. Since the closed subscheme X#2 of X is u,-invariant, its inverse image

under the composite 2 XY — up x X % X is the closed subscheme Ha2 X E. The
existence of the morphism p, X ¥ — Y and the fact that it is a group action then
follow from the universal property of the blowup.

To check that Y#2 = E, we may assume that X = Spec A. Let I be the ideal
of A generated by A;. For s € Ay, consider the A-algebra

S =fas™ |ael", ne N} C Als™Y,

with its induced Z/2-grading. The scheme Y is covered by the open subschemes
D(s) = Spec(S)) for s € Ay, and it follows from the universal property of the
blowup that the immersions D(s) — Y are pp-equivariant. Let s € A;. Any
element x € S() homogeneous of degree 1 € Z/2 may be written as as™" where
neNanda € I" N Ay, (we denote by r: Z — Z/2 the reduction modulo 2).
But

"n AH—r(n) = ((Al)nA) n A1+r(n) = (Al)nAl C In+1,

so that as™"~1 € S(5), hence x €58(5). Thus D(s)*2=E N D(s),and Y*2=E. [
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4.8 Lemma. Let Y be a quasi-projective k-scheme with a j;-action such that
Y*2 — Y is an effective Cartier divisor. Denote by .Y — Z = Y/u, the
quotient morphism.

(i) The Oz-module £ = coker(QOz — f«Oy) is locally free of rank one.
(ii) There is a canonical isomorphism f*£Y ~ Oy (Y #2).

iii) The morphism Y*2 — Z is an effective Cartier divisor whose ideal is
P
isomorphic to £®2.

(iv) IfY is smooth over k, then so is Z.

Proof. Asrecalled in (4.3), there is a Z /2-grading of the O z-algebra f.Oy = A =
Ao @ o1 such that Oz = #Ag. Thus £ = A;. Welet d = Oy (—Y #2),

(i): We may replace Y with any cover by pj-invariant open subschemes. In
particular, we may assume that ¥ = Spec A and that the closed subscheme Y #2
of Y is defined by the ideal I = A1 A = aA of A, for some nonzerodivisor a € A.
Denote by ag € Ap and a; € A; the components of a, and write a; = ua with
u € A. Since

ag=a—a EIﬁA0C12,

we may find w € A such that gy = wa?. Then a = wa? + ua, and since a is a
nonzerodivisor in A, we have

l=wa+ue A4 +uA.

Thus Y is covered by the open subschemes D(f) = Spec(A[f™1]) for f € Ay
and D(u) = Spec(A[u~1]). The subschemes D(f) are jy-invariant. So is D(u),
because it is the locus in Y where the u,-invariant closed subschemes Y#2 and
Spec(A/ay A) coincide (alternatively, one may check directly that the ideal uA of A is
homogeneous). Therefore we may assume either that A contains anelement f € 4%,
orthatu € A*.

If f € Ay N A%, then f~! € Ay, and x — fx induces an isomorphism of
Ag-modules Ag — Ay, proving that 4, is free or rank one.

Assume that u € A*. Since a is a nonzerodivisor in A4, so is @; = ua. Thus the
morphism of Ag-modules A9 — A given by x > a;Xx is injective; its image

a1Ag= (@A NA;=1NA; = A

is a free Ag-module of rank one.

(ii): The morphism of @y-modules a: f*£ = f*A; — 4 adjoint to the inclusion
A1 C fid is surjective because fia: fiu f*A; — fid is surjective, since the
ideal f.d of 4 is generated by ;. The morphism o must be an isomorphism,
because its source and target are locally free modules of rank one by (i).
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(iii): The affine morphism Y #2 — Z is given by the morphism of @z-algebras

This morphism is surjective with kernel fid N s¢ = (s1)?, the image of the
morphism of @z-modules B: £®2 = (+41)®? — ¢ induced by the Z/2-graded
Ag-algebra structure on +. Since the @z-module £%2 is locally free of rank one
by (i), in order to prove (iii), it will suffice to prove that the @z-module (A;)? is
locally free of rank one (then B will have to be an isomorphism). To do so, we
may assume that ¥ = Spec A and moreover, in view of (i), that 4, = [ A, for
some /| € A;. Then the ideal A1 A of A is invertible by assumption, hence its
generator / must be a nonzerodivisor in A. Then /2 € A is a nonzerodivisor in 4,
hence in its subring Ag. Thus (A;)? = I? Ay is an invertible ideal of Ay.

(iv): By (i), the morphism f:Y — Z is faithfully flat, so that the statement follows
from [8, (17.7.7)]. O

5. Cobordism and fixed locus

5.1. Parity of Chern numbers.

5.1.1 Lemma. Let Y be a smooth projective k -scheme with a j1-action such that Y #2
has pure codimension one in Y. Then for any m > 0

fe1(Oy (Y#2))"] = 0 € Ls.

Proof. Let f:Y — Z = Y/u, be the quotient morphism. Then Z € Smy
by (4.8.(iv)) (and (4.6)). As [2]ch(x) = 0 € Ly[[x]] by (3.2.5), applying (2.5.1)
yields f«[Y] = 0 € Ch(Z). Since Oy (Y #2) is the pullback of a line bundle on Z
by (4.8.(i)) and (4.8.(ii)), the projection formula (2.1.3.(iii)) implies that

Si(e1(Oy (Y#2))™) = 0 € Ch(Z),
and the lemma follows by pushing forward along Z — Speck. |

5.1.2 Remark. Let X be a connected smooth projective k-scheme with a nontrivial
M2-action. Lemma (5.1.1) (for m = 0, 1) implies that if one Chern number of X or
of X#2 is odd, then X#2 must have a component of dimension < dim X — 2.

5.1.3 Theorem. Let X be a smooth projective k-scheme with a ps-action, and N
the normal bundle to the immersion of the fixed locus X*2 — X. Then in L,

[P(N@ 1] =[X] and [c1(Opwen(1)™] =0 form=>1.
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Proof. LetY be the blowup of X#2 in X. Then Y#2 = P (N) has pure codimension
one in Y by (4.7). It follows from (3.2.5) that [—1]ch(x) = x € Lz[[x]], hence

c1(Opveny(—1)) = c1(Opwen (1))

in Ch(P(N & 1)). The statement now follows from (2.4.1) (with g = x™ form > 0)
and (5.1.1). [

As a sample application of (5.1.3), we deduce an algebraic version of a theorem
of Conner-Floyd [4, (25.1)].

5.1.4 Corollary. Let X be a smooth projective k-scheme with a (3-action, and N
the normal bundle to the immersion of the fixed locus X*2 — X. Assume that X "2

contains no component of X, and that ¢C"(N) € 2CH(X*2) for all i > 0. Then
every Chern number of X or of X2 is even.

Proof. Write X #2 as the disjoint union of subschemes F” having pure codimension r
inX,forr =0,...,dim X. By (3.3.10) (forH = CH /2) and (5.1.3), forany m > 0
we have in L,

dmX X] ifm =0,
[e1(Opwen(1))™] = ,zzm[[lpr "IFT] = ([E : ifZ > 0.

By descending induction on r we deduce that [F"] = 0 for r > 1, and that
[X] = [F°]. Since by assumption F°® = &, it follows that [X] = 0, and that

[X“2] = [F] +---+ [FiX] =0
in I[.:z. O

5.2. Kosniowski-Stong formula. In this section, which will not be used in the rest
of the paper, we consider the theory H = CH /2 and use the notation of (2.1.17)
and (3.3.4).

5.2.1 Proposition. Let X be a smooth projective k-scheme of pure dimension n with
a pua-action, and N the normal bundle to the immersion of the fixed locus X*2 — X.
Let o be a partition such that || < n. Then

ca(X) = deg (¢(—N)ca(—N{1} — Txuz)) € F».
Proof. Write X#2 as the disjoint union of the schemes F°, ..., F”, where F" has

pure dimension # — r, and let N” = N|gr. Consider the Laurent series

n n—r

fOY=Y" y " deg(c;(-N")P*(=N"{y} = Trr)) e R2b][[Y]I[y'].

r=0i=0
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Since PH(—1{y}) = n(y)™! = (expy) 'y and ¢;(—=N") = ¢;(—(N" @ 1)), we
have

n n—r

(expy) ' () =D ¥y deg (ci(—(N" @) PH(—(N" @ 1){y}—Tr)).

r=0i=0

Therefore by (3.3.9), we have for any m > 0

Resy ((exp )" ' f(»)) = [e1(Opwan)(1))"] € F2[b].

By (5.1.3), this element vanishes when m > 0, and equals [X ] when m = 0. Now

(expy)™ ! =y r(y)m =y 4+ Y gemy® € Fabl[Y1Iy

s=m

where g5 » € Fa[b]. By descending induction on m (the case m > n being clear
from the definition of f(y)), we obtain in F; [b]

[X] ifm=0,

Res, ("' f(¥)) = B ifmess

We consider the b, -coefficient of this equation form = n—|a| > 0. Sincecy(X) =0
if |a| # n, in view of (3.2.2) and (3.3.4.a) we obtain in [,

n n—r |«

ca(X) = Z Z Z Res, (yj+"‘|°"_1*r-i deg (ci(—N")ca(=N"{1} = TFr)ja)—j))
r=0i=0 j=0

=3 > deg (i (=N )ea(=N"{1} = Tpr)n—r—i)

r=0i=0
= deg (c(—N)cq(—N{1} — Txuz)). O

We obtain the following analogue of the Kosniowski—Stong formula [14]:

5.2.2 Corollary. Let X be a smooth projective k-scheme of pure dimension n with
a pz-action, and N the normal bundle to X"*2 — X. Let f € Z[y1,...,yn] be a
polynomial of total degree < n, where each y; has degree i. Then in [,

deg (f(Cl(TX)s---,cn(TX)))
= deg (c(—N)f(Cl(N{l} + Txuz),...,cn(N{1} + TX”Z)))-

Proof. By (3.1.8) we may assume that f = Q, with |a| < n. In view of (3.3.6), the
statement follows from (5.2.1). O
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5.3. Cobordism modulo two.

5.3.1 Theorem. Let X be a smooth projective k-scheme with a j12-action, and N
the normal bundle to the immersion of the fixed locus X*2 — X. Write

¢ = c1(Opwe1(=1)) € CH(P(N @ 1)).

Then in 1L /2 (using the convention of (2.1.14))

2§ o 2tmH! >
[Z]Ql_((:)]] and 0 = [[[2](—:&@.)]] form > 1.

Before proving the theorem, let us clarify its statement. There is a unique power
series v(x) € L[27][[x]] such that

v(x) - [2]lcu(x) = x.

The theorem says that [2v(¢)] € L[27!] belongs to L and is congruent to [X]
modulo 2IL, and that [¢™v(¢)] € L[27!] belongs to L for m > 1.

[x1= |

Proof. Let Y be the blowup of X#2 in X, and f:Y — Z = Y /u, the quotient
morphism. Then by (4.7) we have Y#2 = P(N), and by (4.8) the @z-module
£ = coker(Oz — f+«Oy) is invertible and Z € Smy. Let u = ¢1(£Y) € CH(Z)
and n = c1(Oy (P(N))) € CH(Y). Then n = f*u by (4.8.(ii)). It follows form the
projection formula (2.1.3.(iii)) and (2.5.1) (pushing forward along Z — Spec k) that

m+1

|[ n
[2]cu(n)

Applying (2.4.1) with g = x™*1([2]cu(x))~! for m > 1 (and H = CH(—)[27])
yields (the elements a; € L are defined in (2.3.4))

]] = [w"] €L[27"] foranym > 0. (5.3.1.2)

m+1 mi_1 m+1 m-+1+i
[[ n ﬂ= [[C [ ]g(@)]] =_|[ ¢ H+ ai[[s“ ]]E]L[Z_l].
[2lcu(m) [2lcu (%) [2lcu(?) [2lcu(?)
This element belongs to L by (5.3.1.a), and the second statement follows by
descending induction on m (the case m > dim X being clear). We now apply (2.4.1)
with g = 2x([2]cy(x)) ™! and obtain in L[27!]

[ 1]cu(?) 21+
| =2 [[[21520]] H_ﬂz]m(z)ﬂ Z“"ﬂm_c_a(c)ﬂ'

This element belongs to 2IL by (5.3.1.a) (with m = 0), and so do the terms being
summed over i by the second statement. The first statement follows. O

| e
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6. Euler number

6.1. The theory E.
6.1.1. The Euler number of a smooth projective k-scheme of pure dimension 7 is

x(X) = degen(Tx) € Z.

As mentioned in the introduction, this integer is the alternate sum of the £-adic Betti
numbers, but we will not use this description.

6.1.2 Definition. We consider the functor E = CH ®z ) Z[t] where Z[b] — Z][t] is
the morphism b; > (—1)i¢?, and ¢ has degree —1. It follows from (3.1.12), (2.1.6)
and (2.1.5) that E is an oriented cohomology theory. We have E(X) = CH(X)(¢]
for any X € Smg, and ff = fJ; for every morphism f:Y — X in Smg. If f is
projective with virtual tangent bundle Ty € Ko(Y'), then for any a € E(Y),

fEa) = foH (a szc;?“(Tf)) € E(X).
ieN
6.1.3.Let L be a line bundle over X € Smy. Then n(x) € Z[b][[x]] maps to
(1 +tx)~! € Z[t][[x]], hence in view of (3.1.14)
(L)
1+ecSH(L)’

cr(L)

E — AR S S
i) = I—tcP(L)

hence ¢$*(L) =

6.1.4 Lemma. The formal group law of the theory E is given by

x4+ y-—2txy
1 —1t2xy

X+py= € Z[r][[x, y1I.

Proof. Let L, M be line bundles over X € Smy. Write | = ¢{™(L),m = ¢ (M)
and A = c¥(L), u = ¢F (M) in E(X). By (2.3.3) and (6.1.3), we have in E(X)

I +m AQ =) 4 p( —1)”!
E _ —
GO M) = T T T 00 =+ — D)
A — 1) + p(1 — 1) _Atp—20p

A=t —tp) + A —tp) +tu(1—21)  1—12Ap
6.1.5 Lemma. The formal multiplication by a € 7 of the theory E is given by

lale(x) =

ax
T+ @ Drx < 2l

Proof. Let L be a line bundle over X € Smy. Write | = ¢f"(L) and A = cF(L)
in E(X). In view of (2.3.3) and (6.1.3), we have in E(X)

al al(l—tA)”' ai
1+atl  14+atA(l—tA)"1 1+ (@—1ir

ef (55 =
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6.1.6. When X is a smooth projective k-scheme of pure dimension n, we have
[X] = x(X)t" € Ef C E(Speck) = Z[t].

6.1.7 Lemma. The subring Ey C Z[t] is generated by 2t and t>.

Proof. By (3.2.4), this subring is generated by the coefficients a; ; of Fg(x, y). Thus
the statement follows from (6.1.4), which implies that ; ; equals

—2t%#1 fi=j >0,

t ifi =j—1>0,
1% if j=i—-1>0,
0 otherwise. O

6.1.8. Lemma (6.1.7) implies that 2Z[t] C Ey and t?E¢ C Ey.

6.1.9 Lemma. Let V be a vector bundle of rankr >0 over S eSmy and p:P(V)— S
the associated projective bundle. Then

pE() = rt" ! € E(8).

Proof. For an element F € Ko(S), let us denote by Q(F{y}) € E(S)[y] the image
of PCH(F{y}) € CH(S)[y] (see (3.3.2)). We claim that

Q=V{yH =1t"y" + (TR +rt" 1)y ! 44,

where ¢ € E(S)[y] is a polynomial in y of degree < r — 2. To see this, by the
splitting principle (2.1.16) we may assume that V' admits a filtration by subbundles
with successive quotients line bundles Ly, ..., L,. Then

—viyh) =[] ol L{y})—ﬂ(1+rc H(Li) +1ty),
i=1

from which the claimed formula follows. Thus (3.3.8) (with m = 0) implies that
pE) = cHO + "+ SH-V) =t O

6.1.10 Remark. The reader wishing to avoid using §3.3 may instead prove (6.1.9) by
computing directly the image under p$t of the total Chern class of the relative tangent
bundle T, (whose class in Ko(P(V)) is p*V(1) — 1), using [6, Example 3.2.3(b),
Proposition 3.1(a)].
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6.2. Euler number and fixed locus. The first part of the next statement is well known,
at least when chark # 2.

6.2.1 Proposition. Let X be a smooth projective k-scheme of pure dimension n with
a [a-action.

(i) We have x(X) = y(X*2) mod 2.

(ii) If n is odd, then we have y(X) = y(X*2) mod 4.

Proof. Write X*2 as the disjoint union of the schemes F©, ..., F", where F" has
pure dimension n — r. Let N be the normal bundle to X#2 — X and write

£ = CF(@P(N@D(D) € E(P(N & 1)). By (5.3.1) and (6.1.5), in view of (6.1.8) we
have in E" /2

CLER®7 1. -1 -2
=] = P

Now, by (6.1.9), we have in E}"

- [i5] -y e vl -l

PN @ D] =) "+ DIF] and [£] = [P(V)] =D ¢ r[F],
r=0 r=1

hence [X] = [F°] +¢[F'] +---+¢"[F"] inE}"/2. Applying the ring morphism
Er — Z given by ¢ > 1 yields the statements, since by (6.1.7) the image of E}" is
contained in 2Z when n is odd. O

6.2.2 Lemma. Assume that k is infinite. Let S be a quasi-projective k-scheme and
V' — S a vector bundle of rank r > dim S. Then for every s € Z — {0}, we may find
a line bundle L fitting into an exact sequence of vector bundles over S

0t W = =5 L% s 0,

Proof. Let A be an ample line bundle over S. Then for any large enough integer m,
the vector bundle G = V'V ® A®™ is generated by its global sections. Fix such an m
divisible by s, and a finite dimensional k-vector space ¥ C H°(X, G) generating G.
The kernel K of the surjective morphism of vector bundles § x ¥ — G is a vector
bundle whose rank is dim ¥ — r. Then

dimK =dim S + dim ¥ —r < dim X,

.hence the composite K — § x ¥ — X is not dominant. Thus there is a nonempty
open subscheme U of ¥ such that K N (S x U) = @. It follows that every k-rational
point of U is a nowhere vanishing section of G. Since U is a nonempty open
subscheme of an affine space over the infinite field k, it admits a k-rational point,
so that G admits a nowhere vanishing section. This gives a surjective morphism of
vector bundles V — A®™_ 5o we let W be its kernel and I = A®/s), O
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6.2.3 Lemma. Let S be a smooth projective k-scheme of pure dimension d and
V' — S be a vector bundle of rank r. Then for any 0 < m <r —d, we have

[cf(Opan())™] = (r —m)t" ' "™[S] € E; C Z]t].

Proof. We may assume that k is infinite. We proceed by induction on m, the case
m = 0 being (6.1.9). Let m > 0, and s € Z — {0}. By (6.2.2) there is an exact
sequence

0->W >V > L% 50

with L a line bundle. By (6.1.5), we have cF(L®%) € s E(S). The line bundle of the
effective Cartier divisor P(W) — P(V) is p*L®5(1), where p: P(V) — S is the
projective bundle, hence in view of (2.1.10)

[P(W)] = ci(Opy (1) +E e (p* L) = c{(Op) (1) € E@(V))/s.

Multiplying with ¢1(@py(1))™~! and projecting to Spec k, we obtain

[eT (Opawy ()™ '] = [¢} (Or)(1)™] € E(Speck)/s = ZIt]/s.

Using the induction hypothesis on the bundle W, we deduce that

[[Cl (@]p(v)(l))m]] —(r— m)tr—l—m [[X]] € s7Z[t]
This element is divisible in Z[t], hence vanishes. t

6.2.4 Theorem. Let X be a smooth projective k-scheme of pure dimension n with a
pa-action. If 2dim X#2 < n — 1, then y(X*"2) is divisible by four.

Proof. Let N be the normal bundle to X#2 — X and write § = ¢1(Opve1)(1))
in E(P(N & 1)). By (5.3.1) and (6.1.5), in view of (6.1.8) we have in E s /2

- 1]s(§)? (=821 —265)27
0= [[[21]5(5)]] 2 Dbl — 3:&)—1]]““511"[[52“* SRl

U6 0 -2
0= e ] = P S 1L 624

Letd = dim X*#2 and write X #2 as the disjoint union of the schemes F n—d_ ., F",
where F” has pure dimension n — r. Since n > 2d by assumption, for every r =
n—d,...,n,the vector bundle N” = N|pr has rank r > dim F". Applying (6.2.3)
form = 1 and m = 2 to each bundle N” @ 1 yields in E}“"/ 2

n n n

[El-1[E1= Y r'IF]= ) ¢ =DTFT)= )0 STUFTL

r=n—d r=n—d r=n—d
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This element vanishes in E}_"/ 2 by (6.2.4.a). If n is even, the ring morphism
E; — Z given by ¢ > 1 maps E}" to 2Z by (6.1.7), hence

X(XH2) = y(F" %) + - + y(F™) € 4Z,

concluding the proof in that case.
Now assume that n is odd. Since 2d < n —1,each N" hasrank » > dim F” + 1.
Applying (6.2.3) form = 2 and m = 3 to each bundle N” & 1 yields in EZ}"" /2

[E1-11= D> =D [FT]= Y =P [FT )= ) RIFT]

r=n—d r=n—d r=n—d

This element vanishes in E?‘” /2 by (6.2.4.b). The ring morphism E; — Z given
by ¢ > 1 maps E5™" to 2Z by (6.1.7), hence

X(XP2) = y(F*™ ) + -+ + x(F") € 4Z. O
6.2.5 Corollary. Let X be a smooth projective k-scheme of pure dimension n with a
Ma2-action.
(i) If x(X) is odd, then 2dim X#2 > n.
(ii) Ifn is odd and x(X) is not divisible by four, then 2dim X*2 + 1 > n.

Proof. Combine (6.2.1) with (6.2.4). Note that n must be even if y(X) is odd
by (6.1.7), so that 2 dim X#2 + 1 > n implies that 2dim X#2 > n. O

7. Additive Chern number

7.1. The theory A.

7.1.1. We will denote by (0) the empty partition. Let n € N. Taking the partition
a = (n) and the theory H = CH in (3.1.4), we have a Conner-Floyd Chern class
cm)(E) € CH(X) for all X € Smy and E € Ko(X). Observe that ¢g)(£) = 1.
If n > 0, then :

cm)(E + F) = c¢n)(E) + cn)(F)

forevery E, F € Ko(X), and ¢() (L) = ¢1(L)" for every line bundle L — X. If X
is a smooth projective k-scheme of pure dimension n, its additive Chern number is
the integer

cin)(X) = deglemy(—=Tx)) € Z. (7.1.1.a)
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7.1.2 Definition. We consider the functor A = CH gz Z[¢, €]/e* where Z[b] —
Z|t, €]/8? is the morphism b; > et’. The element ¢ has degree —1 and & has degree
zero. It follows from (3.1.12), (2.1.6), and (2.1.5) that A is an oriented cohomology
theory. For any X € Smy, we have A(X) = CH(X)[t, &]/&2, and for any morphism
f:Y — X inSmy we have fJ = fZ. If f is projective with virtual tangent bundle
Ts € Ko(Y), then for any a € A(Y),

fi@ = ((1 ey c(,-)(Tf)z")a) e A(X). (7.1.2.2)
i>1
7.1.3. Let L be a line bundle over X € Smy. By (3.1.14) we have
(L) =LY +e ) tref (L) T e A(X).
i>1
In particular ecf (L)’ = ec{ (L)) € A(X) forany j € N.
7.1.4 Lemma. The formal group law of the theory A is given by
X+ay=x+y+ SZ ((x + 1) AR Sl y”’l)ti € (Z[t, €]/ &%) [[x, ]l
i>1
Proof. Let L, M be line bundles over X € Smy. Write [ = ¢{%(L),m = ¢ (M)
and A = ¢M(L), p = ¢}(M) in A(X). By (2.3.3) and (7.1.3), we have in A(X)
HLOM) =l+m+e Y '(+m) T = dtp+e Y/ ((+m)T1=1'T1—mi*T)
i>1 i>1
and the statement follows from the last sentence of (7.1.3). O

7.1.5. When X is a smooth projective k-scheme of pure dimension n, we have in
Ay C A(Speck) = Z[t, €] /&*

cm)(X) ifn=20,

[X] = L
C(n)(X)St if n > 0.
7.1.6 Lemma. We have
0 ifn <0,
Z ifn =0,

A" =
f pet"Z ifn = p? — 1 for some prime p and integer q > 1,
et"Z  otherwise.

Proof. We may assume thatn > 0. By (3.2.4), the ring A ¢ is generated by the coeft-
icients a;,; of Fa(x, y). Now (7.1.5) implies that A} -A“} = Owhenr,s € Z — {0},
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hence the group A}" is generated by the coefficients a; y4+1-i. Now (7.1.4) implies

that
n+1\ ,
Ain+1-i = ; et

when 0 <i <n 4+ 1,and a; ,41-; = 0 otherwise. Thus the statement follows from
the computation

d n+1 p ifn = p? —1 for some prime p and integer g > 1, -
C =
0<§<n+1 i 1 otherwise.

7.2. Additive Chern number and fixed locus.

7.2.1 Lemma. Let X be a smooth projective k-scheme of pure dimension n with a
Wa-action. Let N be the normal bundle to the immersion X#2 — X.

(i) We have c()(X) = c(n(P(N @ 1)) € Fp,andif 0 < j <n
deg (c1(@pwen (D) co—p(Tpver)) = 0 € Fa.
(ii) Let0 < j < n and assume thatn + 1 andn — j + 1 are powers of two. Then
cony(X) = cony(P(N & 1)) + deg (c1(Opwven (1)) co—j (Trwvery)) € Z/4.
Proof. Let z = ¢ (Opve1)(—1)). Since z = - (Opva1)(1)) by (2.3.3),
we may replace Opneg1)(—1) by Opwe1)(1) in (i), and thus also in (ii). Let

= C?(@P(Naal)(—l))- Let 0 < m < n. Then by (7.1.3) and (7.1.2.a) we have
in Am7"
f

[E™] = deg ((z - 32 tizi+1)m(1 —& Z IiC(i)(T]p(Nel))))

i>1 i>1
hence in A'}“”
d n ifm =n,
[¢n] = {08 =T (1210
et ™™ (m deg(z") — deg (z™cu—m)(Te(No@1)))) ifm <n.

Now (7.1.4) implies that we have in A’;_” (note that e[[¢'] = 0 when i # n)

2§m+1
[[[ZIA(C)

| = [em(1-e2d @ -0e)] = 171 + e - 22"
i>1

We combine this equation with (7.2.1.a), and apply (5.3.1). Incase m = n = 0, we
obtain [X] = deg(z°) in A(}/ 2 = 72, proving the lemma when n = 0. Thus we
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assume that n > 0 from now on. In case m = n, we obtain deg(z") € 2A(} = 27,
while for m < n we obtain in AZ™" /2

[X] ifm =0,

g m ((m+1_2”_m) deg(z")—deg (ch(n—m) (T]P’(NEBI)))) = 0 ifO0<m<n

Taking (7.1.6) into account, we apply the group morphism Ay — Z defined by
1+ 1andet® +— 1if s > 0. Then (i) follows by letting m = 0 and m = j. We now
prove (ii). We have, letting m = 0,

cony(X) = deg(z") + cony(P(N & 1)) € Z/4. (7.2.1.b)

This proves (ii) in case j = n. Finally, assuming that j < n, observe that the integer
(j +1—2""7)is odd, hence letting m = j,

deg(z") = deg (ZjC(n_j)(TP(Ne)l))) € 7Z/4.
Combining this equation with (7.2.1.b) yields (ii) in case j < n. U

7.2.2 Theorem. Let X be a smooth projective k-scheme of pure dimension n with a
Wo-action. Assume that 2dim X#? < n — 1. Then c(,)(X) is even. Ifn = 29 — 1 for
some q > 1, then c(n)(X) is divisible by four.

Proof. If n € {0,1}, then X*2 = &, hence P(N @& 1) = @&. Thus the theorem
follows from (7.2.1.(i)) when n = 0, and from (7.2.1.(ii)) with j = 1 when#n = 1.

We now assume that n > 2. Let k be the integer such thatn = 2k orn = 2k + 1,
and set/ = n —k. Let p:P(N & 1) — X*2 be the projective bundle, and write
£ =c1(0(1)) e CH(P(N @ 1)). Since

Teaveor = (P*N & 1)(1) + p*Txua — 1 € Ko(P(N & 1))
(see e.g. [6, §B.5.8]), forany i =0, ...,/ we have
cn-iy(Tpven) = ca-i((P*N & D)) + p*cm—iy(Txn2)

in CH(P (N @ 1)) (note that n —i > 0). For such i, the element ¢(,—;)(Txu2) €
CH"™" (X #2) vanishes, since dim X#2 <k <n —i. Thusfori = 0,...,/ we have
in CHP(N & 1)),

C(n—i)(T]P(NeBI)) = C(n—i) ((p*N &) 1)(1)) (T:2vds)

Now, we have in Z[x, y]

[
E+yr =@+ (E+) - =@+ )"+ D) (1) (f)y"(x +y)" .

i=1
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Expanding the factor (x 4+ y)* on the left hand side yields in Z[x, y]
k (k g el Nnw .
(x + )n - ‘ k—jxl+] _ (_1)1 ' z(x + )n-—z.

y ;) B ; ety

From the splitting principle (2.1.16), we deduce, in CH(P(N & 1))

k k .
cay((P*N o D) =Y (j)é"—fp*c(z+j)(zv ®1)
J=0 ]
LN .
=Y = (i)slcm_i)((pw & 1)(1)).
i=1

Now cq4+)(N @ 1) € CH/t/ (X#2) vanishes for any j > 0, because
dim X*2 <k <[ + |.
In view of (7.2.2.a), we obtain in CH(P (N & 1))
J {1\ .
—cmy(Tpven) = Z(*l)' (l.)élc(n—i)(TP(N@l))' (7.2.2.b)

i=1

Applying (7.2.1.(i)) and taking the degree of (7.2.2.b) yields c(;)(X) = 0 € [F,.
Now assume that n = 29 — 1 withg > 2. Then/ = 29-1 and we have

] 1 ifi =0o0ri =1,
() mod 4 = {2 ifi =2972,
i
0 otherwise.
Thus, taking the degree of (7.2.2.b) yields in Z /4
-2
¢y (PN @ 1)) = deg (& cuny (Tpven)) +2deg (£ ciumna—2) (Trven))-
Applying (7.2.1.(ii)) with j = [, we get
-2
cmy(X) = 2deg (§'cun(Teven)) +2deg (8% ciuosa—2(Teven)) € Z/4,
which vanishes by (7.2.1.(i)) applied with j =/ and j = 2972, U

7.3. Decomposability in the Lazard ring,

7.3.1. Let R be a Z-graded ring. Denote by /g the ideal generated by homogeneous
elements of nonzero degrees in R, and set Dec(R) = (/g)?. An element of R is
called decomposable if it belongs to Dec(R), and indecomposable otherwise.
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It is well known that decomposability in I/ p or L ,, is detected using the additive
Chern number:

7.3.2 Lemma. Let X be a smooth projective k-scheme of pure dimension n, and p
a prime number.

(i) Ifn = p? — 1 for some g > 1, then [ X] is decomposable in L .

(i) Assume thatn # p? — 1 forall ¢ = 1. Then [X] is decomposable in L/ p if
and only if [ X] is decomposable in L .

(iii) The class [ X] is decomposable in 1L/ p if and only if

2 .
p°L ifn = p?—1 forsomeq > 1,
C(n) (X) e )
pZ  otherwise.

Proof. The degree zero components of I/ p and IL , may be identified with I, via
the map [X] + c¢(p)(X). This implies the statements when n = 0.

We now assume that n > 0. In view of (3.2.3) and (3.1.15), it follows from [1, I,
§7] that the subring IL of Z[b] is a polynomial ring in the variables y; fori € N —{0},
where y; is homogeneous of degree —i . In addition y; = v;b; mod Dec(Z[b]) with
v; = lifi = 19 —1 for some prime/ and integer ¢ > 1, and v; = 1 otherwise. Since
the ring L is generated by the elements y;, among which only y, has degree —n, we
have

[X] = uy, mod Dec(L),

forsome u € Z. Then [ X] is decomposablein L/ p if and only if u € pZ. Since [X] =
uvpb, mod Dec(Z[b]), its by-coeflicient c(,)(X) equals uvy, and (iii) follows.

Assume thatn # p?—1forallg > 0. Obviously if [ X] is decomposable in L/ p,
then [X] is decomposable in IL,. Conversely assume that [X] is decomposable
inL, C Fp[b]. Since [X] = uv,b, mod Dec(F,[b]), it follows that uv, € pZ.
Since vy, is prime to p, this implies that u € pZ, proving (ii).

Assume that n = p? — 1 for some ¢ > 1. Since v, € F, vanishes, so does the
element y, = vpb, € L, CFp[b]. Since [X] = uy, mod Dec(L ), it follows that

[X] € Dec(LL,),
proving (i). [
Besides the additive Chern number, other Chern numbers are affected by the de-
composability in L/ p:

7.3.3 Lemma. Let p be a prime number, and o« = (1, ...,0Un) a partition such
that each o; + 1 is a power of p. Let X be a connected smooth projective k-scheme
of positive dimension. Then co(X) € pZ. If [X] € L/p is decomposable, then
co(X) € p?Z.
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Proof. Let ¢ be the ring endomorphism of Z [b] mapping b; toitself if i 4+ 1 is a power
of p, and to 0 otherwise. Then every element of Z[b] has the same b, -coefficient as
its image under ¢. Let y: Z[b] — F,[b] be the composite of ¢ with the reduction
modulo p. The functor H = CH®gz[p),yFp[b] defines an oriented cohomology
theory by (3.1.12), (2.1.6), and (2.1.5). If L is a line bundle over X € Smy then
by (3.1.14)

L) =Y LY Ty ) = Y TP bpa—y € HX).

ieN geN

Since CH is additive (2.3.3) and p H(X) = 0, it follows that H is additive. Therefore
wheni+ j > 1, the coefficienta; ; € IL of Fcy (defined in (2.3.2.a)) lies in the kernel
of ¥. By (3.2.4), this implies that ¢|,: L — Z[b] sends homogeneous elements of
negative degrees to pZ[b]. Thus ¢([X]) € pZ[b], hence the by-coefficient cy(X)
of [X] € Z[b] belongs to pZ. It also follows that ¢|r, sends homogeneous elements
of negative degrees whose image in IL/p is decomposable to p2Z[b]. Thus if
[X] € L/ p is decomposable, then the b4-coefficient ¢, (X) belongs to p?Z. O

Finally (7.3.2.(iii)) implies the following reformulation of (7.2.2).

7.3.4 Theorem. Let X be a connected smooth projective k-scheme with a j1;-action.
If 2dim X#2 < dim X — 1, then [ X] is decomposable in L /2.
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