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On the decomposability of mod 2

cohomological invariants of Weyl groups

Christian Hirsch*

Abstract. We compute the invariants of Weyl groups in mod 2 Milnor K-theory and more
general cycle modules, which are annihilated by 2. Over a base field of characteristic coprime
to the group order, the invariants decompose as direct sums of the coefficient module. All
basis elements are induced either by Stiefel-Whitney classes or specific invariants in the Witt
ring. The proof is based on Serre's splitting principle that guarantees detection of invariants on

elementary abelian 2-subgroups generated by reflections.
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1. Introduction

Let G be a smooth affine algebraic group over a field ko of characteristic not 2.

Motivated from the concept of characteristic classes in topology, the idea behind

cohomological invariants as presented by J.-P. Serre in [4] is to provide tools for
detecting that two torsors are not isomorphic. Loosely speaking, such an invariant

assigns a value in an abelian group to an algebraic object, such as a quadratic form

or an étale algebra.
The formal definition of a cohomological invariant is due to J.-P. Serre and

appears in his lectures [4], where also a brief account of the history of the subject
is given. First, we identify the pointed set of isomorphism classes of G-torsors over
a field k with the first non-abelian Galois cohomology Hl(k,G). Further, let M
be a functor from the category of finitely generated field extensions of ko, to
abelian groups. Then, a cohomological invariant of G with values in the coefficient

space M is a natural transformation from II1 (—, G) to M(—) considered as functors

on 3riCo. Interesting examples of the functor M include Witt groups or Milnor
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Geometry and Advanced Bioimaging, funded by grant 8721 from the Villum Foundation.



766 C. Hirsch CMH

AT-theory modulo 2, which is the same as Galois cohomology with Z/2-coefficients
by Yoevodsky's proof of the Milnor conjecture.

In general, the cohomological invariants of a given algebraic group with values in
some functor M are hard to compute and there are only a few explicit computations
carried out yet. One exception are the cohomological invariants of the orthogonal

group over a field of characteristic not 2 with values in Milnor -theory modulo 2.

These invariants are generated by Stiefel-Whitney classes

introduced by Delzant [2], Now, every finite group G embeds in a symmetric

group Sn for an appropriate n, and this group in turn embeds in On. Pulling back
the Stiefel-Whitney classes along such homomorphisms G Sn On is a rich

source of cohomological invariants of finite groups considered as group scheme of
finite type over a base field ko-

In this work, we show that most cohomological invariants of a Weyl group G over
a field ko of characteristic coprime to | G | arise in this way if the coefficient space
is a cycle module M* in the sense of Rost [12], which is annihilated by 2. More

precisely, there exists a finite family of invariants {a;}i <E/ with values in /2, such

that every invariant a over ko with values in M* decomposes uniquely as

for some constant invariants m;- 6 A/*(ko). In characteristic 0, any Weyl group is a

product of the irreducible ones mentioned above. Hence, invoking a product formula
of J.-P. Serre yields the decomposition for cohomological invariants.

The proof of this result is constructive, in the sense that we give precise formulas
for the generators {ß;}; e/. For most Weyl groups the invariants are induced by Stiefel-
Whitney classes coming from embeddings of the Weyl group into certain orthogonal

groups. Note that these embeddings make use of the fact that such a Weyl group
can be realized as orthogonal reflection group over every field of characteristic not 2.

However, if the Weyl group has factors of type D2n, Ej, or Eg, then besides Stiefel-
Whitney classes also specific Witt-type invariants appear, which induce invariants
in mod 2 Milnor ATtheory via the Milnor isomorphism. All basis elements are

invariants derived from either the Stiefel-Whitney or the Witt-ring invariants.
Crucial for the derivation is Serre's splitting principle for Weyl groups: if two

invariants coincide on the elementary abelian 2-subgroups generated by reflections,
then these are the same. This allows the following proof strategy. Since Stiefel-
Whitney classes and Witt invariants provide us with a family of invariants, we only
have to show that a given invariant coincides on the elementary abelian subgroups
with a combination from this list. The invariants are then computed case by case for
the various types.

Wi:H\-,On)^K?{-)/2
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J.-P. Serre has recently computed with a different method the invariants of Weyl

groups with values in Galois cohomology, see his 2018 Oberwolfach talk [14], In
an e-mail exchange on an earlier version of the present paper, J.-P. Serre explains
how to remove many of the restrictions on the characteristic of ko. An excerpt of
his letter is reproduced in Section A. J. Ducoat provided a proof of Serre's splitting
principle and attempted to compute the invariants for groups of type Bn and Dn [3].
However, many proofs are incomplete as they are "left to the reader" or "similar to

previous ones". Moreover, Theorem 5 on page 4 about the invariants of W(Dn) is

not correct as stated, because an invariant in degree n/2 is missing. Therefore, we

provide detailed computations also for the types Bn and Dn.

The content of this article is as follows. In Section 2, we state the main result and

fix notations and conventions. Next, Section 3 contains preliminary results. The

proof of the main result occupies the rest of the paper. It also includes an appendix,

elucidating how to use a GAP-program to determine the invariants for £7 and E8.

Acknowledgements. The present manuscript has a long history. It is a condensed

version of my diploma thesis at LMU Munich supervised by F. Morel. I am very
grateful for his comments and insights that shaped this work in many ways. The
thesis is available online and contains additional background material from algebraic

geometry [7] as well as results for reflection groups that are not of Weyl type.
Moreover, I thank S. Gille for massive help and discussions on earlier versions of
the manuscript. He was also the one to mention the thesis during a presentation
of J.-P. Serre at the 2018 Oberwolfach meeting. I am very grateful to J.-P. Serre

for a highly insightful e-mail exchange and for sharing with me an early version

of his report [14]. His remarks helped to both substantially raise the quality of
the presentation, and also improve the contents such as removing restrictions on
the characteristic in the present paper. Moreover, an earlier version also contained

an irritating assumption that —1 be a square in ko. Thanks to a more appropriate

representation of W(Bi) pointed out by J.-P. Serre, also this assumption could be

removed in the present version. Finally, I thank the anonymous referee for the

careful reading of the manuscript and valuable observations that helped to improve
the presentation.

Part I. Results and methods

2. Main theorem and proof strategy

2.1. Cycle modules. We consider in this work invariants with values in a cycle module

M* in the sense of Rost, which is annihilated by 2. Recall that a cycle module
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over a field ko is a covariant functor

k I > Af*(k) := ® Af„(k)
neZ

on the category Fk0 with values in graded Milnor -theory modules. For a field
extension i: k ç L, the image of z e Af*(k) in Af*(L) is denoted by i*(z). By
definition, cycle modules have further structure and we refer the reader to [12] for
details.

The main example of a cycle module is Milnor K-theory:

Z-graded rings

k K(k) ®n^oK{k).

For e kx, we denote pure symbols in K„(k) by {a,\,... ,an). The

graded abelian group Af*(k) has the structure of a graded A"* (k)-module for every
field k e Fk0. Hence, if A/* is annihilated by 2, it becomes a ff* (k)/2-module.
For ease of notation, we set k* (k) := K^(k)/2 and denote the image of a symbol

{a\,...,a„} K„(k) in k"(k) by {a\,... ,an}. We say that Af* has ak-structure
if Af* is annihilated by 2.

From now on cycle module means cycle module with k^-structure.

2.2. Invariants with values in cycle modules. Let G and Af* be a linear algebraic

group and a cycle module over ko, respectively. Recall from Section 1 that a

cohomological invariant of G with values in Mn is a natural transformation from
H1(—,G) to Mn — We denote the set of all invariants of degree n of G with
values in Af* by lnv"(G, Af*), and set

lnv(G, Af*) := Invfco(G,M*) := ® lnvB(G,M*).
neZ

For k 3riCo, any invariant a lnv^() (G, Af*) restricts to a natural transformation

of functors H1 —, G) -> Af* — on the full sub-category 3^ of We denote this
restricted invariant by res^/ (a) or by the same symbol a if the meaning is clear from
the context. A particular example of invariants are the constant invariants, which

are in one-to-one correspondence with elements of Af*(ko)'. The constant invariant
c e Af* (ko) maps every x g H1 (k, G) onto the image of c in Af* (k) for all k Fk0.
Thesetlnv(G, Af*) isak"(ko)-module, sothatifa: Hl(—, G) k^1 — is a Milnor
A-theory invariant of degree m and x e Mn(ko), then

a • x: H1(k, G) -> Mm+n(k), T ak(T)xk

is an invariant with values in Af* of degree m + n. We now define precisely what it
means that an invariant can be represented uniquely as a sum of basis elements.
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Definition 2.1. Let M* be a cycle module over the field ko, and G a linear algebraic

group over ko-

(i) A subgroup S ç lnv£o(G, M*) is a free M*(ko)-module with basis

Glnv£(G,k^), i G /,

if
0 (fc0) 5, [rniliei h-> a0) • m,-

iel i^r
is an isomorphism of abelian groups.

(ii) lnv(G, M*) is completely decomposable with a finite basis

at g Inv^(G.kîJ)

if lnv|(G, M*) is a free M*(k)-module with the corresponding basis

resk/koißi) Invf (G.kJJ), i G I,

for all k G 5>0.

After these preparations, we now state the main result.

Theorem 2.2. Let G be an irreducible Weyl group. Let ko be afield ofcharacteristic

coprime to \G\ and M* a cycle module over ko- Then, lnv|o(G, M#) is completely
decomposable.

The proof of Theorem 2.2 is constructive and we describe the generators explicitly.
These depend on the type of the Weyl group and will be given in the course of the

computation later on. Now, we explain the strategy starting with a reminder on Weyl
groups.

Let E be a finite-dimensional real vector space with scalar product (—, —) and

orthogonal group 0(E). Then, sv: E -»• E,

/ 2(v,w)
sv(w) :=w- — —v,

(v,v)

defines the reflection at a vector v e E with (v, v) 0.

Now, the Weyl group WÇL) associated with a crystallographic root system S ç E
is the subgroup of 0(E) generated by all reflections sa at the roots a e S. By
definition of a root system, the scalars 2(a,ß)/(a,a) are integers for all a, ß G S
and the reflections act on the root system. The Weyl group is irreducible if the

corresponding root system is irreducible. The irreducible root systems are classified

by types An, Bn,Cn, Dn, E6, E1, Es, T4, G2. Let S be such an irreducible root
system. Then, there exists an Euclidean space E R" for an appropriate n, such
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that: (i) S ç V := ®,^„ Z[l/2]e;, where e\,... ,en is the standard basis of Rn,
and (ii) maps V into itself. This can be deduced using the realizations of these

root systems in Bourbaki [1, PLATES I-VIH]. If now ko is a field of characteristic

not 2 then W(£) acts via scalar extension on Vk0 := ko <8>z[i/2] V and can so be

realized as orthogonal reflection group over ko considering 140 has regular bilinear

space with the scalar product induced by the restriction of the standard scalar product
of E R" to V.

The strategy of proof for an irreducible Weyl group G, is as follows. We leverage
different embeddings of the Weyl group G into an orthogonal group On over the

field ko- Now, the invariants of On with values in k* are generated by the Stiefel-
Whitney classes, see [4], Considering embeddings W ^ On gives rise to a family
of invariants in lnv(G, k* by composing the Stiefel-Whitney classes with the natural
transformation

Hl{—, W) -» Hl{—, On).

As we shall see in Sections 5-8, these already generate lnv(G, M*) except if G is

of type D2n, Ej, or Es- The 'missing' invariants have their source in certain Witt
invariants.

Having a family of invariants with values in k* at our disposal, we deduce

Theorem 2.2 for an irreducible Weyl group G by showing that this set of invariants
contains a basis of lnv(G, M*) in the sense of Definition 2.1. The main tool
is the following adaptation of Serre's splitting principle, which is proven in [6,

Corollary 4.10]. Loosely speaking, if ko is a field of characteristic coprime to |G|,
then lnv(G, A/*) is detected by the maximal elementary abelian 2-subgroups of G

generated by reflections. We let Q(G) denote the set of conjugacy classes of maximal
elementary 2-abelian subgroups of G, which are generated by reflections.

Note that the proof of Theorem 2.2 for Weyl groups of type G2 in Section 3.3 is

purely group theoretic, in the sense that it uses only its semi-direct decomposition
and not the geometry of the corresponding root system.

Proposition 2.3 (Serre's splitting principle). Let M* be a cycle module over ko
and G be a Weyl group. Let ko be afield ofcharacteristic coprime to |G|. Then, the

canonical map

(res^jpj! lnv(G, Mf) -» ]~[ \m(P, M*)Ng(P)
[P]eQ(G)

is injective, where Ng(P) is the normalizer of the maximal elementary 2-abelian
subgroup P of G, which is generated by reflections.

We point out that the assumption that order of the irreducible Weyl group G and

the characteristic of ko are coprime seems to be not necessary, see Section A. This

assumption comes from the article [6], where the splitting principle is proven for
more general orthogonal reflection groups. This would also remove that assumption
from Theorem 2.2.
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Remark 2.4. For groups of type An, Dn, E6, E7, or E8, any two roots are conjugate
[8, Rem. 4, Sect. 2.9]. Hence, an induction argument shows that for these types, there

is up to conjugacy only one maximal abelian 2-subgroup P generated by reflections.
In particular, by Proposition 2.3, the restriction map res^ is injective for simply-laced

groups.

The computation of the invariants of an arbitrary Weyl group follows from
Theorem 2.2 by a product formula of Serre. To state the product formula precisely,

we first introduce the notion of a product of invariants. Identifying Hï(k, G' x G)
with H ï(k, G') xH1(k, G), for invariants a e lm/£0(G, k") and b e lnvfc0(G', M*
we define the product ab through

(ab)k: H1(k, G x G') -» M*(k)
(T,T')^ak(T)bk(T').

Proposition 2.5 (Product formula). Let M* be a cycle module and G,G' algebraic

groups over ko. If lnv£o(G, M*) is completely decomposable withfinite basis {at }iei,
then the map

0 Inv£(G', Mf) Inv£(G x G', M*)
iel

{hi}is/ ^]resk/k0(ai)bi
iel

is an isomorphism for all k G Ek(y In particular, if the invariants ofboth G and G'
are completely decomposable, then so is lnv£o(G x G', Mf).

Proof We follow the outline given in [4, Part I, Exercise 16.5]. Replacing a, by

resk/ic0(ai) we can assume k ko.

To show surjectivity, let a G lnv|o(G x G', Mf). Then, for every k G Eko and

T' e Hl(k,G') we define an invariant ci Inv|(G, M*) by mapping T e H1 (I, G)
to di(T) an(T x T'f), where, T't denotes the image of T' in Hl(f, G') under the

base change map. Since lnv(G, Mt) is completely decomposable, d can be uniquely
expressed as

J2resk/k0(ai)bi(T')
i

for suitable bi(T') e M* (k). It remains to prove that £,• G lnv(G', Mf) for all i.
To achieve this goal, let c. k c k\ be a field extension in Ek() and T' H1(k, G').
Then,

resjt/fco (ßi)(r)bi (T')) ^^0^)^(7^.
iel iel
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Since afis are invariants

iel iel

As the at's are a basis we get bi (7^ i* (7>, (7"')), as asserted.

To show injectivity, we assume X^e/ aibi 0 and claim that è, =0 for alii G /.
Fix a field jfc and T' e Hl(k, G'). Then

e lnv^(G, M#)
iel

is the constant zero invariant. Since the ai 's are a basis, we get bi (T') 0 for
all iel. Since k and T' were arbitrary, this implies that the bi's are constant

zero.

Since every Weyl group is a product of irreducible ones, we get the following
corollary.

Corollary 2.6. Let ko be afield of characteristic coprime to \G\ and A7* a cycle
module over ko. Then, Inv£o(G,M*) is completely decomposable for all Weyl

groups G.

3. Preparations for the proof

In this section, we establish several key lemmas on cycle modules. We also discuss

auxiliary results used in the type-by-type proof of Theorem 2.2 for irreducible Weyl

groups.

3.1. Cycle complex computations. We start with a computation of cycle module

cohomology which seems to be well known, but for which we have not found an

appropriate reference. To this end, we recall first the cycle complex associated with
a cycle module M* over ko- We refer the reader to Rost [12] for further details.

Let A be a scheme essentially of finite type over ko- That is, X is of finite type
over ko or the localization of such a ko-scheme. Then, the cycle complex is given by

© Mn(ko(-*0) Mn—\(ko(xf) Mn-2(k0(x)) ->•••,
xsl® xeX^ xeXW

where ç X denotes the set of points of codimension p ^ 0 in X and ko(x) is

the residue field of x e X. In general, the differentials d% n are sums of composition
of second residue maps and transfer maps. If X is an integral scheme with function
field ko(X) and regular in codimension 1, then the components of d% n are the second
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residue maps dx: Mn(ko(X)) —> Mn-\(ko(x)). In particular, the cohomology group
in dimension 0, also called unramified cohomology of X with values in Mn, equals

Mn,unr(X) Ker(.Mn(k0(X))
* *e*a>> ® Mn-X{k0{x))).

x&XW

Incase X Spec (7?), we use affine notations and write M„jUnr(i?) instead of Mn<unr(X)

Lemma 3.1. Let M* be a cycle module over ko and R a regular and integral
ko-algebra withfractionfield K, which is essentially offinite type. Let a x,..., ax G R
be such that ax —aj G Rx for all i / j. Then,

Mn,Unr{R[T] J] (T-ai)) - Mn,um(R) © ®{7 ai} Mn-XtUnr(R),

i^l
where we consider {T —at} as an element ofK (K(T)) and M„_ijUnr(/?) as a subset

ofMn-i(K(T)).

Proof Setting f(T) := fit ^l(T — a,), we consider the following short exact

sequence of cycle complexes, where for a cohomological complex P' we denote

by P*[l] the shifted complex with P' in degree i + 1:

C-(/?[r]//?[r] • f(T), Mn-X)[1] > C'(R[T], Mn) C'{R[T]/(t), Mn).

Using homotopy invariance, the associated long exact cohomology sequence starts

with

0 Mn>unr(R) M„,unr(R[T]fiT)) Mn-hunr(R[T]/R[T] • f{T)).
We claim that the map on the right-hand side of this exact sequence is a split surjection.
Indeed, by the Chinese remainder theorem,

R[T]/R[t] • f(T) ~ ~ n^'
i^l i^l

so that

Mn-hunr(R[T]/R[T] • /(D) ~ Mn-hum(R)®1.

Disentangling the definitions of the appearing maps shows that

i,unr(Dffi/ M„,unr(R[T]f(T)), I > ^{7 - 0,}x/
i^l

defines the asserted splitting.

By induction and homotopy invariance, Lemma 3.1 implies the well-known

computation of the unramified cohomology of a Laurent ring.

Corollary 3.2. Let M* be a cycle module over ko- Then,

MntUm(ko[T^,... ,T^]) ~ ® {Th,...,Tir}-Mn-r(ko).
r^l

1 <•••<;> ^/
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3.2. Invariants of (Z/2)". Corollary 3.2 implies that the invariants of (Z/2)" with
values in a cycle module are completely decomposable. This is shown for invariants

of (Z/2)" with values in k* in Serre's lectures [4, Part I, Sect. 16]. Writing (a) G

H1(k, Z/2) for the class of a e kx, every index set 1 ^ i\ < •• < i[ ^ n gives rise

to an invariant

H1(k, (Z/2)") ~ H\k, Z/2)" -> k*f(k)

[(ai),...,(a„)]

We show that they form a basis of lnv((Z/2)", M#) for every cycle module M* with
k^-structure.

Let k e 3<k0, a e lnv/((Z/2)", M*) and write K := k(t\ ,...,tn) for the rational
function field in n variables over the field k. Then,

T;k[\/t\,..., Vf») — ^(fi> • • • >f/i)

is a versai (Z/2)"-torsor, so that by [4, Part I, Thm. 11.1 ] or [6, Thm. 3.5],

aK(T) G M*>um(k[tf,...

By Corollary 3.2, there exist unique mq,G M*(k) with

aK(T) ^2 {til,---,ti,}miu...jr
I an

1 1 <•••<(/

Then, the invariant
b '= Y! xh,-,iimh,-,ii

lan
iaii<—<iian

agrees with a on the versai torsor T. Hence, the detection principle in the form of
[4, Part I, 12.2] or [6, Thm. 3.7] implies that a b, as asserted.

3.3. Invariants of Weyl groups of type G2. Assume here that the base field is of
characteristic not 2 or 3.

The group W(G2) is a semi-direct product of a normal subgroup L of order 3

and a subgroup P — (Z/2)2 generated by the reflections at two orthogonal roots,
see [1, Chap. VI, §4, No. 13]. Since there is up to conjugacy only one such P,
Proposition 2.3 shows that the restriction map res^G^ is injective. Since the

projection W(G2) — P k L -> P induces a splitting, we deduce that res^,(G^ is in
fact an isomorphism.

In view of the results for other Weyl groups it is worthwhile to note that a basis for
the invariants can also be expressed in terms of the Stiefel-Whitney invariants to be

introduced in Section 3.6 below. As in Section 5.1 below, we see that the restriction
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of the Stiefel-Whitney classes in degrees 1 and 2 to P correspond to the invariants

x\ +X2 andxi;2- Finally, considering the morphism W(G2) 0\ — {±1} sending

one of the two classes of reflections to —1 and the other to 1 yields the invariant X\
(or x2).

3.4. Torsor computations. Henceforth, we switch freely between the interpretation
of H1 (k, On) via cocycles on the one hand and via quadratic forms on the other hand.

For this purpose, we recall how to view H1(k,On) in terms of non-abelian Galois

cohomology [13]. Let c £ Z1 (r, On) be a cocycle. That is, c is a continuous map
from the absolute Galois group T of a separable closure ks/k to On (ks) and satisfies

the cocycle condition caz ca • cr(cT). To construct a quadratic form qc over k, we
first define an action of F on k" via<7*u ca(a(v)). Then, we let vi,..., vn £ kns

denote a k basis of the vector space

V*r {u k" : a * v v for all a e T}. (3.1)

Now, we let qc be the quadratic form whose associated bilinear form bQc is determined

by bqc(ei,ej) (u/, Vj), where (•, •) denotes the standard scalar product in k". In
other words, qc is the restriction to V*T of the quadratic form associated with the
standard scalar product (•,•). We will come back frequently to the following three

pivotal examples, where V kj.
Example 3.3. Consider the group homomorphism (Z/2)2 ->• 02,

ei ^ (i o)' e2^(-°i o1)'

Let (a,ß) £ (kx/kx2)2 be a (Z/2)2-torsor over k. Then, tq (*/ä,-^/ä)T,
v2 (y/ß, \fß)T defines a basis of V*T and the induced bilinear form is the

diagonal form q(a,ß) {2a, 2ß).

Example 3.4. Consider the group homomorphism Z/2 02,

ei ^ (i o)-

Let a £ kx/kx2 be a Z/2-torsor. Applying the above example with ß 1, we see

that the induced bilinear form is the diagonal form q^a) (2a, 2).

Example 3.5. Consider the group homomorphism (Z/2)2 02,

ei ^ (l o)' e2^(i o)-

Let (a,ß) £ (kx/kx2)2 be a (Z/2)2-torsor over k. Then, ui (1,1)T, v2

i^/äß, —y/ciß)T defines a basis of F*r. The induced bilinear form is the diagonal
form q(a,ß) (2,2aß).
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3.5. An embedding of 52« into 02« • Next, we describe a specific embedding

(Z/2)" -> 02"

on the torsor level. For any / ^ 2" — 1 let b(l) ç [0, « — 1] be the position of the bits
in the binary representation. That is,

1 E 2'-

/&(/)

Furthermore, let /s be the flipping the bits at all positions in S ç [0, n — 1]. In other

words, fs- [0,2" — 1] —> [0, 2" — 1],

fsd) :=b-\b(l)AS),

where RAS (R \ S) U (S \ R) is the symmetric difference. In this notation, the

group homomorphism f: (Z/2)" —S2n ç 02n

:= fs
ssS

induces a map </>* : Hl(k, (Z/2)") -> H 1(k, O2"), which we now describe explicitly.

Lemma 3.6. Let eo>•••> £n-1 e &x/^x2- TTten,

0*(fo, • •,„_i) (2") (8) «-0» ® ((-ci)) ® • ®

Since any two simply transitive actions on [0,2" — 1] are conjugate in S2n, Lemma 3.6

is more useful than it may seem at first.

Proof. Consider a cocycle representation

cêZ'(r, (z/2)")

ofthe torsor (eo,..., e«-i) e (kx/kx2)n. Thatis, the/th component of cG equals 1 if
and only if o(*Jëï) To determine the quadratic form defined by the induced

cocycle a h» 4>{ca), we assert that a basis of the /c-vector space V*r from (3.1) is

given by (uo,..., U2"-i}, where vp has components

(Vp)t (-ifMnmi ]-[ ^ieb(p)

First, vp e V*r, since writing ca ffies ei f°r some S S{p) ç [0, n — 1] shows

that

„((.„IM/OnKOl ]"[ (_,)l«,)n»WI+l«,)ns| ]"[ ^ („,)/s(0.
ieb(p) ieb(p)
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Moreover, to prove the linear independence of the {vp}p, we note that

b(vp,vp) (Vp)u(Vp)u 2 J~J

m=S2"-1 ieb(p)

Hence, it suffices to show that b(vp, vq) 0, if p ^ q. By assumption, there is at
least one i e b(p)Ab(q), so that pairing any L ç [0, n — 1] \ {/'} with LU {i} shows

that

b(vP,Vq)= n n vir- e (-i)|wnL|+|^)ni|
ieb(p) izb(q) Lç.[0,n—1]

_ FT E ((—l)'fc^nL'+'è^ni! + (_l)l&0)nL|-HMtf)nL| + l^
i<=b(p) Lc[0,m—l]\{i}
jeb(q)

vanishes as claimed.

3.6. Stiefel-Whitney invariants. The total Stiefel-Whitney class is defined by

w*:H\k, On)^k(k)
(ai,...,an) n(!+ {«;}).

i^n

where (ai,..., an) is the class in H1 (k, On) of the diagonal form. They generate the

invariants of the orthogonal group On with values in k* as Serre shows in [4, Part I,
Sect. 17].

Theorem 3.7. Let ko be a field of characteristic not 2. Then, the Stiefel-Whitney
invariants form a basis in the sense ofDefinition 2.1 of\m(On,kf)for all n ^ 1.

By [4, Rem. 17.4] the product of Stiefel-Whitney classes is given by

WrW,{-1 (3.2)

where b(-) denote the binary representation of Section 3.5.

Example 3.8. Later, we will meet some examples where it is easier to do the
computations with a slight variant of the Stiefel-Whitney classes. Therefore, we introduce

modified Stiefel-Whitney classes vTd e \md(On, k*): For even n, we put

wd(q) := wd({2) <8> q)

for all d ^ n and for odd n, we set inductively Wo 1 and

Wd+i(q) wd+i{{2) ® q) ~ {2}wd{q).
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Then, we obtain for even rank(^r) that

u>d((2) <8><?) wd(q) wd((l) + <2) <8> q).

Alternatively, one could also give a more direct definition ofmodified Stiefel-Whitney
classes not depending on the parity of q by setting wd (q) as wj (q) if d is odd and

as Wdicf) + {2}wd-i(q) if d is even.

Finally, we recall another kind of invariants.

Example 3.9 (Witt-ring invariants). The image of an «-dimensional quadratic form
in the Witt ring G yields an invariant lnv*(0„, W). Since the definition of invariants

only makes use of the functor property, this concept makes sense, even though G

is not a cycle module. Albeit of limited use in the setting of quadratic forms, the

aforementioned invariant becomes a refreshing source of invariants for groups G

embedding into On. Indeed, for Weyl groups G of type 02«» £7, E%, we construct

embeddings such that the restrictions become invariants with values in a suitable

power of the fundamental ideal / ç W. Since the Milnor morphism

{«1} • ••{««} ((ai» <8> • • • ® ((an))

with ((a)) := (\,—a) induces an isomorphism between mod 2 Milnor K-theory and

the graded Witt ring [11, Theorem 4.1], we obtain elements in lnv*(G, k*).

3.7. A technical lemma. The following technical lemma simplifies the computations

of invariants.

Lemma 3.10. Let R be a commutative ring, I a finite index set, M an R-module
and G a finite group acting on I. The operation of G on I induces an operation
of G on the R-module N := 0/e/M by permutation of coordinates. Let I
I\ U I2 LI • • • U Ik be its orbit decomposition. Then, NG s wherefor i ^ k,

Here, ij'.M -> N denotes the inclusion along the jth coordinate.

Proof. Since (Y)j=éi A= {0} and©,^^; NG hold for every /, it remains

to show that the /V) generate N°. To prove this, note that any x N can be written
uniquely as

iel
for certain m, M. We prove by induction on the number of non-zero m,- that any

x Ng lies in the module generated by the A,-. We may suppose / [1; |/|],

./r':C -> ln/In+l

jeli
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mi ^ 0 and denote by /1 the orbit containing 1. Now, comparing the g(l)th entry
of x and of g.x yields that mg(i) m\ for every g e G. In particular, we can split
of a sum

lj(mj) J2 lJ'(m^ G Nl
jeh jeh

from x. Applying induction to x - ij (mi) concludes the proof.

In particular, Lemma 3.10 yields the following orbit decomposition.

Corollary 3.11. Let R* be a commutative, graded ring, I1,Ir be finite index

sets, M* be a graded R«-module and G a finite group acting on each of the 1^. The

operation of G on the I induces an operation of G on the graded R *-module

N* := ©/
where the di are certain non-negative integers. Let /' /[ U/|U'"U 1% be the

orbit decomposition. Then, N° ©^<=r ®i^ne Nl,i, where for I ^ r, i ^ n^, we

put

([Nt,i)* := I ^ ij{m) : m £ s
jelf

Part II. Computation of the invariants of irreducible Weyl groups

Throughout this part ko denotes a field of characteristic not 2. When we compute the

invariants of an irreducible Weyl group W WfS), where S is an irreducible root
system we assume also that the characteristic of ko and the order of G are coprime.

We use in the following the description of irreducible root systems given in
Bourbaki [1, PLATES I-VIII] for irreducible root systems of type f G2 (recall that
for Weyl groups of type G2 we have already computed the invariants in Section 3.3).
We have

S c0<?,Z[l/2] CM"
i^n

for an appropriate n. Taking the tensor product ko0z[i/2] we get an embedding
of Z into k[such that all a £ S are anisotropic for the standard scalar product
of /:([. Hence the associated reflections generate a finite subgroup of On (ko) which is

isomorphic to G. In the following we will identify G with this subgroup of On(ko).
We provide a family of elements {x,}!S/ ç lnv(G,k*), forming a basis of

lnv(G,M*) for all cycle modules over ko- For this we have to show that given
k £ F/ç0 and an invariant a £ Inv£(G, A/*), then there exist unique c,- £ M*(k) such

that

a k/k0(xi)ci.
iel
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To verify this claim, we may assume k ko and letei,...,e„ denote the standard

basis elements of the /co-vector space kß.
If ai,..., an G S are pairwise orthogonal, then P{a\,..., an) denotes

the elementary 2-abelian subgroup generated by the corresponding reflections

Sax » • • •. san - For 1 ^ z"i <•••</; ^ n, we write va/] for the invariant

see Corollary 3.2 for the definition of the invariant

4. Weyl groups of type An

The invariants of Weyl groups of type An with values in k^1 are induced by the

Stiefel-Whitney classes {w;};, see [4, Part I, Sect. 25]. The proof carries over

essentially verbatim to invariants with values in cycle modules M* with k* -structure

using the splitting principle in the form of Proposition 2.3 and the computation
of lnv((Z/2)", A4*) in Corollary 3.2. The result is as follows. Here, we identify
H1(k, S„) with the set of isomorphism classes of étale algebras of dimension n

over k, and denote for such an algebra E by qE its trace form.

Proposition 4.1. Let n ^ 1. Then, Inv(Sn,M*) is completely decomposable with
basis {E Wi(qE)}i^[„/2j-

5. Weyl groups of type Bn/Cn

First, we note that the Weyl group W(Cn) is isomorphic to the Weyl group W(Bn).
Hence, determining the invariants for W{Bn) will also yield the determinants

for W(Cn).

5.1. Invariants of B-i. First, we consider W(B2), which is isomorphic to the

dihedral group of order 8. In particular, G := W(B2) {o, x) ç S4 admits the

permutation representation defined by

Considering G as orthogonal reflection group over ko yields an embedding
(p: G c 02 of algebraic groups over k0 given by

H1 (-, (Z/2) • sai x • • • x (Z/2) • san) (Z/2)") k^(-),

o
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Now, (f> determines an action of G on ko [7, 7] given by

aX 7, aY -7, T7 7, T7 7.

In particular,

k0[X, Yf k0[X2 + 72, X2Y2] s ko[A, B],

where A := X2 + Y2, B := 47272. Fix the notation

E := ko(X, 7), K := k0(X2+ Y2,X2Y2).

Now, the group G acts freely on the open subscheme

U := D(XY(X - 7)(7 + 7)) D(7272(72 - 72)2) ç A2,

where for a polynomial /, we denote by D(f ç A2 the open subset given by f ^ 0.

By [4, Part I, Thm. 12.3] or [6, Thm. 3.7], the evaluation at the versai torsor
Spec {E) -> Spec(A) yields an injection lnv(G, M*) -» M*jUnr(f//G). To check
that this map is also surjective, we first compute M#iUnr(t//G). An explicit
computation yields

U/G Spec(k0[7, Y,X~2Y~2(X2 - Y2)~2f

Spec (ko [72 + 72, X2Y2, X~2Y~2, (X2 - 72)"2])

s Spec(k0[A, ß, B~\ (5 - A2)-1]).

To compute M*)Unr(t//G), note that F := D(A) ç U/G is isomorphic to the

spectrum of

k0[A, B, B~\A~\ (B - A2)'1] ^ k0[A, B', (BY1, A"1, (£' - l)"1],

where the isomorphism is induced by mapping B' to BjA2. Now, by applying
Lemma 3.1 twice and homotopy invariance,

M*,unr(F) s M*(k0) ® {B/A2 - l}M„_i(k0) © {A}M*_j(k0)

© {ß}M*_!(k0) 0 {A}{B/A2 - 1 }M*_2(k0)

© (A}{ß}M*_2(k0).

/G) can be computed as the kernel of the boundary

9 9^):M*(F)^M*_i(Gm).
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Thus, for every t G M* (ko),

3(0 0,

3({B/A2 - 1}/) 3({ß - A2}t) {B}d(t) 0,

3({fi}/) {B}d(t) 0,

d{{A}t) t,

3({A}{B/A2 - 1}*) 3({A}{£ - A2}t) {fi}3({4}/) {B}t.
3 {{A}{B}t) {B}d({A}t) {B)t.

Writing M* short for M*(ko), we conclude that M*tUm(U/G) is given by

M* © {B - A2}M*_i © {B}M*-i © {A}{B(B - A2)}M*_2

M* ® {B — A2}M^X © {ß}M*_i © {A}{B - A2}M*_2.

It remains to construct invariants mapping to the three non-constant basis elements

of M*;Unr(f//G). Pulling back wx,w2 G lnv(02,k^) along the embedding cp gives
invariants in lnv(G, k^1) that — by abuse of notation — we again denote by wx,w2.
We first compute the value wx(E/K) of wx at the versai torsor E/K constructed
above. To do this, we note that the determinant of cp (a1 r) is — 1, while the determinant
of <p(ol) is 1. Now, XY(X2 — Y2) G E maps to its negative by each reflection and

is fixed by all the a1. Thus,

wx(E/K) {X2Y2(X2 - Y2)2} {B(A2 - B)}.

Another invariant comes from the embedding G ç 54. We may define vx :=
res^4(uTi). Again, we compute vx(E/K). We note that wx G lnv1(54,k") may be

computed as follows. Start with an arbitrary x G Hl(k, S4); then

wx(x) sgn*(x) g Hl(k, Z/2) s kx/k*2 s ^(k).
The kernel of sgn consists exactly of the elements {id, r, a2, o2x} with o, x as above.

Since XY is fixed by this kernel and is mapped to its negative by a, the value of vx

at the versai torsor is {X2Y2} {B}. Consequently, it remains to find an invariant

mapping to the basis {A}{B2 — A} of M*,unr(U/G).
Finally, we compute the value of w2 lnv2(G,k*) at E/K. First consider

the elementary abelian 2-subgroup generated by reflections P := (r, r'), where
x' o2x. Thus,

'« J)- o1)-

Recalling that the action of G on £ is defined via cp, we now consider the versai

P-torsor
E/Ep k0(X, Y)/k0(X2 + Y2, XY).
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Then, r e P — Gal(E/Ep) acts via x(X) Y, x{Y) X and x' via x'(X) —Y,

x\Y) —X. Thus, this (Z/2)2-torsor over Ep is equivalently described by the

pair

((X - Y)2, (X + Y)2) G ({Ep)*/{Ep)*2f.
We conclude that the value of res^ w2 at this P-torsor is

{(X-7)2}{(* + T)2}Gk^(Fp).

By the computations above, the value of res® (to2) at E/K is of the form

ai + {B - A2ja2 + {A}a3 + {B}{B(B - A2)}a4 e k%(K)

for some oq G k" (ko), a2,a2 G kj (ko), a4 G k^1 (ko). Now, consider the diagram

H\K,G) — - Iff (A-)

resfP(E)

H\EP ,G)-^Y{EP)
indp

H\Ep,P).

The square commutes by the definition of invariants. Denote by £ G Hl{K,G)
the G-torsor E/K and by F G Hl{Ep, P) the P-torsor E/Ep. Interpreting the

torsors as cocycles yields

indp(F) resfP (F) e H1(EP,G).

Observing that XY is a square in Ep, this means

{(X - Y)2}{(X + Y)2} ax+{B - A2}a2 + {A}{A2 - P}a4.

Applying the identity {ß}{ß'} {ß + ß'}{—ßß'} to the left-hand side gives

{2A}{B - A2},

so that we may choose oq 0, a2 {2}, and «4 1. We conclude that the

injection lnv(G, A/*) -»• M*>unr(U/G) is surjective. This finishes the computation
of lnv(G, A/*) and we obtain the following.

Proposition 5.1. The invariants Inv{W{B2), M*) are completely decomposable with
basis consisting of the invariants {1, iq, uq, ic2}.
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We conclude this section with a corollary of the proof.

Corollary 5.2. Let P\ P(e \,e2) and P2 P(e 1 — e2,e\ + e2). Then,

p
x{e\] T" x{e2}'

reSmB2)(Wl) X{el} + x{e2}>

resly(ß2)(w2) x{ei,e2}'
and

reSW(B2)(Vl)

reSW(B2)(Wl) X{el~e2) x{ei+e2}'

reSW(B2)(W2) x{ei+e2,e\-e2} + {^} ' (x{e\-e2} + x{ei+e2})•

5.2. Invariants of B„. After dealing with the case n 2, we now compute the

invariants of Weyl groups of type Bn for general n. The root system Bn is the disjoint
union

Ai U A2 Ç M",

where Ai ={±g/ : 1 ^ ^ are the short roots and A2 {±e,- ± ej : 1 ^i<j^n}
are the long roots. This root system induces an orthogonal reflection group over any ko

satisfying the above requirements. Furthermore,

W(Bn) s Sn x (Z/2)"

as abstract groups. Put m := [n/2] and for i ^ m define

at :=e2i-1 - e2i and bt := e2i-\ + e2i.

For each L ^ m the elements of Xi := {a\,b\,..., ül, bi, en+i, e2L+i, • • • ,<?«}

are mutually orthogonal. Defining Pi := P(Xl), we prove by induction on m that

C2(G) {[/U...,[^]}.
The claim is clear for n 2. In the general case, let P be any maximal elementary

abelian 2-subgroup generated by reflections. First assume that P contains a short

root, say en. Now, observe that (en)-1 fl Bn Bn-\ and use induction. If P contains

a long root, we may assume this root to be a\. Then, (ai)-1 fl Bn {±/>i} U Bn-2,
where we consider Bn-2 to be embedded in R" using the last n — 2 coordinates. In
particular, we may again use the induction hypothesis.

To determine lnv( Bn, A/*), we introduce additional pieces of notation. We denote

/T-torsors over a field k by

(ai,ßi,...,aL,ßL,e2L+i,...,e„) G (kx/kx2)n.
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From the (Z/2)"-section, we know that lnv(/Y, M*) is completely decomposable
with basis {x/}/ç[i;n]. Since this parameterization is inconvenient in the present
setting, we change the index set by putting

K{ := {(A,B,C, E) ç [l;L]3 x [2L + 1 ;n\:
A, B, C pw. disjoint, |A| + [i?| + 2|C| + \E\ d}.

We reindex the basis of lnv(Pi, A/*) by defining for every (A, B, C, E) G A^:

xLA,B,c,E-H\k,PL)^^{k)
(ûfi, ßi, ÛJ/, i ß]_,i É2L+1 ' • • • ^ nwnwnwfwnw

aeA beB ceC ee£

In the same spirit, we also write

P(A, B, C, E) \= P{{cip}p£j\ U {bq}qçB U {ar, br}r^c U {Psjseij).

For d ^ n, we now construct the specific JF(J?„)-invariant

md P*«"d) e lnv^(W(5„),M»),

where Wd G lnv^(5„, k^) denotes the t/th modified Stiefel-Whitney class and

p: W(ß„) (Z/2)" ->

is the canonical projection. Then, the map W(Bn) -> sends both to (2/ — 1,

2/) and.ve; to the neutral element. Let k and(«i, ß\,...,cxl, ßL. f2L+i, • • •, en)
be a /Y-torsor over k. Using Example 3.5 and {2}{2} 0, gives that the value of
the total modified Stiefel-Whitney class at this torsor is + iaißi})- Hence,

resPlW(Bn)(Ud) ~ xA,B,0,0- (5-1)

(A,B,0,0)eAj^

Next, we construct an invariant Vd such that

5Pl
>W(Bn)fSSu^r, -,(l>d) — y ] X0,0,C,E (5.2)

(0,0,C,E)sA£

To that end, we note that W{Bn) embeds into S2n via

° n Sei ^ ° ' (ct+nc. '+
iel iel

where I ç [1; n], a G S„ and a + n G S2n is given by

\k if k ^ n,m \n + o{k—ri) if k > n.



786 C. Hirsch CMH

We define the modified Stiefel-Whitney invariants Wd Inv^ (S2n, k* as before and

put
v'd resJ£n\wd) \d(W{Bn)^)

for d ^ n. Then, we define Vd recursively, by setting u0 := 0 and then

Vd '=v'd+ Y2 ud-kVk-
k^d—l

To show that the so-defined invariant satisfies (5.2), we first note that already when

restricting v'd to Pi, we obtain an agreement with the right-hand side of (5.3) up to
mixed lower-order expressions.

Lemma 5.3.

reSwiBn)(V'd) Y2 x0,0,C,E + Y1 k Y2 XA,B,C,E- (5-3)

(0,0,C,E)&KdL kad-1 (A,B,C,E)e AkL

Proof. Observe that the map W(Bn) —»• 5*2« sends sej i-> (/, i + n) and

sai ^ (2i — 1, 2i)(2i — 1 + n, 2i + n), Sf,i (2i — 1,2i + n)(2i, 2i — 1 + n)

Hence, by Lemma 3.6, the composition Pi -a- W{Bn) —> S2« -> Ojn maps a

P^-torsor to the quadratic form

Qfi, ßi» © ••• ® ((-aL,-ßL)} © (2,2e2L+t, • • • ,2,2e„).

We claim that the total modified Stiefel-Whitney class evaluated at this quadratic
form equals

no+{-!}({«;}+{ßi})+{«i}{ßi}) n 0+{««•})• (5-4)

i^L 2L + l^i^n
To see this, we compute it suffices to check that

w((2) ® (a,ß))) 1 + {-1H-1} + {a}{ß}.

To see this, we compute

w((2) ® ((-a,-ß)}) (1 + {2})(l + {2a})(1 + {20}) (l + {-2ß} + {-a})
(1 + {a} + {2}{a})(l + {a} + {2ß}{-a})
l + {a}{a} + {2}{a} + {2ß}{-a}
l + {-l}{a} + {-l}{ß} + {a}{ß}.

Thus, translating (5.4) into the new notation, we obtain that

reSW(Bn)(Vd) Y1 X0,0,C,E + Y2 k Y2 XA,B,C,E • ^
(0,0,C,E)ehdL kad-1 (A,B,C,E)e AkL
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In light of Lemma 5.3, to establish (5.2), it remains to understand the product
structure between Ud-k and Vk- To that end, we restrict the products to Pi.
Lemma 5.4. We have

y xa,B,0,0 y x0,0,C,E y xA,B,C,E-
U,B,0,0)eAf (0,0,C,E)e (A,B,C,E)eAd+f

2|C| + |E|=/

Proof. First, since xA,B,0,0xh,0,c,E {-1 }lAnCWBnClxA-C,B-c,c,E>

y. xa,b,0,0 y, x0,0,c,e
(A,B,0,0)eAdL (0,0,C,£)eA{

y. y {_1}kxA-C,B-C,C,E
kzo (A,B,0,0)eAdL

(0,0,C,£)ea{
|Anc|+|5nC|=)t

y xA,B,C,E+y y {~^)kxA-C,B-C,C,E
(A,B,C,E)eAdL+f k^l (A,B,0,0)eAd

2\C\+\E\=f (0,0,C,£)ea{
|Anc|+|Snc|=)t

To show that the second sum vanishes, fix k ^ 1 and (A', B', C, E) e AdL+^~k.

Then, define

S := {(A, B) : {A, B, 0,0) e AdL and A - C A' and B - C B'}
{04' U U, B' U V) : U,V ç C and U n V 0 and\U\ + \V\ k).

Using this description, we conclude \S\ 2fc('^'). Since k ^ 1, this is even and we
obtain the desired vanishing of the second sum.

In the rest of this section, we show that Inv{W(Bn),Mf) is completely
decomposable and that the products {ud-rvr}max(o,2d-n)^r^d,d^n yield a basis.

Before determining the structure of lnv(IL(ß„), M*), it is helpful to know
something about the image of the restriction maps lnv(IL( Bn), M*) -» lnv( Pi, M*).
Let d,k,i,L be non-negative integers, L ^ m. Then, the invariant

:= y XA,B,C,E
(A,B,C,E)eAd
\C\=k,\E\=l

is non-trivial if and only if there exists 04, B, C, E) e A^with|C| =kand|£| i.
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Lemma 5.5. The image of the restriction map Inv(W(Bn), M*) —> lnv( Pl, M*) is
contained in the free submodule with basis

{<pE k i'-2k + I ^ d ^ n, 2(d — k — t) ^ 2L ^ n — £}.

Proof Let us first show that k t ^ 0 iff 2k +1 ^ d ^ n and 2(d —k —I) ^ 2L ^
n — I. First, the conditions 2k +1 ^ d and 2L + i ^ n are necessary. Furthermore,
from the pairwise disjointness of A, B, C, we conclude \ A\ + \B \ + |C| ^ L. This
is equivalent to d — (2k + I) + k ^ L. Thus, d — k — I ^ E is also necessary. To

check sufficiency, suppose, we are given L,k,l,d satisfying the restrictions. Then,

-l-2k\,0, [d -1 - 2k + \\d -1 - k],[2L + \\2L +1\) e AdL.

Thus, 4>dL
k I 7^ 0. Next, we check that the image of the restriction map is indeed

contained in the submodule generated by the <pE k ^M*(ko).
Observe that all of the following elements normalize Pl :

{Se2i-\-e2j-ise2i-e2j^iJ^Ti {sej-ej}i,j^2L+\ and {se2i }i^L-

Let Nl ç Nw(Bn)(PL) be the subgroup generated by these elements. We claim
that Nl permutes the x\BCE- Applying ve2/_1-e2y_1se2,-e27. for i,j ^ L to a

F/_-torsor
(ot 1, ß 1, oll ßL, É2L+1 * • • 1

interchanges ay o ay and ßi -o- ßj. Thus, xA B c E maps to xA, B, c, E where

A'/B'/C is obtained from A/B/C by applying the transposition (i, j) to the

respective sets. Similarly, we see that swapping the ith and the j th coordinate
for i,j ^ 2L + 1 maps x'A B c E to xlA B c E' where E' is obtained from E
by applying to it the transposition (i,j). Finally, changing the (2/)th sign maps

XA,B,C,E f° XA',B',C,E' where

A! (A — {/}) U(fin {/}) and B' [B — {/}) U [A fl {/}).

That is, if i A we remove it from A and put it into B and vice versa.

Iteratively applying these operations to an arbitrary (Aq, B0,Co, £0) s A dL shows

that its orbit under Nl equals

{(A, B,C, E) e AdL : \C\ \C0\,\E\ \E0\}.

Now, the lemma follows from Corollary 3.11.

By Proposition 2.3, the injection Inv(W(Bn), Mf) -> lnv(/>L,M*) has

its image inside 'nv(^L> M*)Nl and Lemma 5.5 gives a good description of
this object. However, this map is not surjective. One reason is the following: If an

element (zl)l of the right hand side comes from a VF(ß7!)-invariant, then certainly
the restrictions of zl and zl' to Pl fl Pl' must coincide. To address this, we prove
the following refined lemma.
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Lemma 5.6. The image of\m(W(Bn), Mf) -> n^m lnv(^L> M*) lies in the

subgroup generated by {s • M*-\s\(ko) : s e S}, where

S := {( $Lkt) : max(0,2d -n) ^ r ^ d ^ n\ ç J~[ lnv(Pi,k").
2k+l=r

' L
L^m

Proof. Let z G \w(W(Bn), M*) be a homogeneous invariant and z (zl)l £

lnv(PL, M*) be the image of z. under the restriction maps. By Lemma 5.5,

z Y1 K,k,imL,d,k,t)
L

d,k,l

for some mL,d,k,e G M*-d(ko), where the sums are over all those d,k,i such

that -f- 0.

First goal, we show that m^td,k,l is independent of L in the sense that

L,d,k,l - mL',d,k,t'

if^Lkt 0 and <t>i/ k i 7^ 0. We then denote by md,k,l the common value. Observe

that (Aq, Bo, Co, Eo) 6 AdL, fl Af, where

(Ao, 5o, Co, Co) := ([1; d -i — 2k], 0, [d — I — 2k + 1; d — i — k], [n — I + 1;«]).

Hence, since z comes from an invariant of W{Bn),

respP^°'Bo'Co'Eo)(zL) res^fo>ßo'Co'jBo)(zL0.

Comparing coefficients of x^^Co^o-components on both sides yields that

mL,d,k,t mL',d,k,i-
Now, let us have a look at the second obstruction. We want to prove

ttld,k,i tnd,k',l',

if 2k + i 2k' + I' and if there exist L, L' such that <pf, k, t, ^ 0 and 4>tklï^
It suffices to prove this in the case k' — k — 1. Since there exist L, L' satisfying

&L' k' i"^L k t ^ we can choose some L such that </>f+1 k' f^L k I ^
Let y be the restriction of z to

C([l; d-l- 2k\, 0, [L - k + 1; L], [2L + 3; 2L + f]) x W(B2),

where B2 is embedded via the (2L + l)th and the (2L + 2)th coordinates. By
Proposition 2.5,

f J2 xA,0,C,EyA,C,E
AQ[V,d-l-2k\
CZ[L-k+\\L]

Eç[2L+3;2L+e]
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for uniquely determined yA,c,E £ lnv*_'A'_2'cl_'-E:'(W/(ß2), M*)- Furthermore, by
the results of Section 5.1,

(0) (la) (lb) (2)
yA,c,E m\'CE + wim\J>E + Vi m\^E + w2m\'c<E

for uniquely determined

m^A,C,E e ^*-|i4|-2|C|-|£|(^o). mA,C,E'm(A,C,E £ ^*-\A\-2\C\-\E\-\(^o)

and

6 M*-\A\-2\C\-\E\-2(ko).

Restricting y further to

P([l;d -l-2k],0,[L-k + 1;L],[2L + 1;2L + i})

and considering the X[1^_2A:-£],0,[L-A:+i;L],[2i,+i;2L+]-component, Corollary 5.2

yields that

_ (2)
d,k,l — m((l;d-i-2k],[L-k+l;L],[2L+3;2L+i])-

On the other hand, restricting y to

P([V,d -t-2k],0,[L-k + 1; L + 1], [2L + 3;2L +1})

and considering the *[i;<f-2fc-*],0,[L-Jfc+i;L+i],[2L+3;2L+«]-component, we obtain
from Corollary 5.2 that

_ (2)
d,k',l' — m([\-d-l-2k],[L-k+l\L\,[2L+3\2L+t]y

This proves the lemma.

From Lemma 5.4, we deduce the following decomposition of \m(W(Bn), M*).

Corollary 5.7. The group ln\i(W(Bn), M*) is completely decomposable with basis

[ud-rVr : max(0,2d — n) ^ r ^ d ^ «}.

6. Weyl groups of type F4

The root system F4 is the disjoint union Ai U A2 U A3 ç M4 with short routes

Ai := {±e,- ± ej : 1 ^ i < j ^ 4}

and long roots

A2 := {±e/ : 1 ^ i ^ 4}, A3 := {l/2(±ei ± e2 ± e3 ± ^4)}.
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Moreover, fi(JF(F4)) {[F0], [Pi], [P2]}, where

P0:=P(ei,e2,e3,e4), Px := P(aubi,e3,e4), P2 := P(ai,bi,a2,b2).

Indeed, the set of long roots of F4 is the root system D4, which up to conjugacy
has a unique maximal set of pairwise orthogonal vectors, namely a\,b\,a2,b2. On
the other hand, if we have a maximal set of pairwise orthogonal roots containing
a short root, say <?4, then (<?4)J- n F4 B3. We have determined before that up
to conjugacy B3 contains two maximal sets of pairwise orthogonal roots; namely
{e\,e2,e3) and {ai,bi,e3}.

Furthermore, the inclusion P2 Ç W{B4) c W(F4) shows that the restriction map

Inv(W(F4), M*) -> \m{W(B4), M*)

is injective. Recall that lnv(IF(ß4), M*) is a free M*(£o)-module with the basis

{l,Ui,Vl,U2, ViUi,V2, V2U\,V3, u4}.

Before constructing specific invariants, we first point to another restriction in

degree 2. Since

reSW'(F4)^1^ reSWp(/;4) (^3) 0,

the image of the restriction res^^ is contained in the free submodule Sç. I nv* P2, M*
with basis {1, y2, y2, y3, y4}, where

y\ res^g4^(wi), y2 \es-^^B^{u2), y2 xes-^^B^{v2),

J3 r®sjF(ß4)(l'2l'i)> and y4 res^^-j(v4).

Now, let a G lnv( P2, A/*) be any invariant which is induced by an invariant from
lnv(JV(F4), A/*). Then, we can find unique md G M*-d(ko), m2,m'2 G M*-2(ko)
such that

° E( E XA,B,c^J>nd + ^ XA,B,z}m2 + (^ ^ xz,z,c^rn'2.
d^4 (A,B,C)eAd (A,B,0)eA2 (0,0,C)sA2
d^2

Now, 3'i/2(ej +e2+e3+e4) lies in the normalizerof P2, as it leaves «1,02 fixed and swaps
b\ with —b2. Since a comes from lnv(IF(F4), A/*), the action of s\/2(ei+e2+e3+eA)
leaves a invariant. Hence,

-E( E xA,B,C^Jmd T (X{alra2} ~f ^C{£>j,è2} *{ö2>i>2})W2

+ (*{ûi,è2} +*{a2,M)2-

Comparing coefficients yields m2 m2.
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Thus, the image of the restriction lnv(W(F4), M*) -» lnv( P2, M#) is contained

in the free submodule with basis {\,yi,y2 + >2< y3. >'4}- Therefore, the image of
the restriction \ny{W{Fn), M*) -» lnv(TK( i?4>, M*) is contained in the free (k0)-
module with basis {1, u\, iq, 112 + «2, V\U\,V2U\, V3, V4}.

Now, we need to construct ^-invariants which restrict to these elements. First
observe that DA ç F4 and that W(F4) stabilizes D\. Thus, any g e W^F^) maps
the simple system S {61 — e2, e2 — 63, — e^, 63 + e4} to another simple system
S' ç D\. Since all simple systems are conjugate there exists a unique h e IT(D4)
mapping S' to S. This procedure induces a permutation of the 3 outer vertices

{e\ — 62, C3 — £4,63 + 64} of the Coxeter graph, thereby giving rise to a group
homomorphism \ß: W^F^) -» S3.

Then, we define iq := where w\ £ lnv(S3,k*) is the first modified

Stiefel-Whitney class. To determine the restriction of iq to Pi note that the map
W{Fa) -> 5*3 sends W(D4) to the identity and se4 to the transposition (2, 3). Since

se. gise4gj~1, where g, e W{D4) denotes the element switching the 4th and the

ith coordinate (i ^ 3), we conclude that all sei are sent to (2, 3). Thus, the value

of res^-^U'i) at the Pt-torsor (aj.ß, «L.ßb-<-2L-i *u) is

E !«'!•
f>2L-|-l

The embedding W{F4) ç 04 as orthogonal reflection group yields invariants

res%(/4\wd) e lnvrf(W(F4),k^,

where w4 6 lnvrf(04, k^1) is the d\h unmodified Stiefel-Whitney class. Again, if 2

is not a square in ko, then these invariants do not have a nice form, when restricted

to the Pi. Therefore, we change them a little and define invariants wj. The image
of a P^-torsor (cq,... ,aL, ßx,..., ßL, é2l+1,..., 64) in H1(k, O4) under the map
Pl <=z W{F4) ç O4 may be computed by using Example 3.3 and is given by

(2oq, 2j8i,..., 2aL,2ßL,e2L+i, 64).

We would like to have

reSwiF4)(Wd) XA,B,C,E '

(A,B,C,E)eAdL

Since the restriction of uq to Pl is already given by J2(a b c,E)eAlL xABCE>wt
put uq := w\. Now, for d 2,

res^(uq) xa,b,c,e+ J2 Mxa,b,0,0'
(A,B,C,E)eA2L C4,jB,0,0)eA£
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so that W2 := u>2 — {2}(u>i — v\) has the desired property. The restriction of w3

to Pl is

res04(^3) xA,B,C,E + ^2 {2}xA,B,0,E<

(A,B,C,E)eh\ (A,B,0,E)e A2L

|£|=1

so that we set W3 := W3 — {2}(u;i — ui)i>i. Finally, the restriction of 104 to Pl is

resp^(w4) ^2 xa,B,C,E + ^2 &}xA,B,C,E
(A,B,C,E)etPL (A,B,C,E)eA3L

2\C\+ \E\=2

so that we set W4 := xv4 — {2}w2(wi — i>i). Furthermore, define

Mi := w\ — v\ G lnv1(fF(F4),k!|f).

Now, we restrict the so-constructed invariants to W(R4). We claim that:

(a) Mj, i*i G Inv^^Fi), k^1) restrict to Mi, r>i G Inv1 (W^(^4), k^1);

(b) m 1 Ui, (iü2—MiUi)Glnv2(H/(F4),k^)restricttoMiUi,M2-|-U2lnv2(W/(F4),k^);
and

(c) uiW2,(wi —uiw^) G lnv3(lF(F4),k!|f) restrict to miU2,U3.

Finally, ÖJ4 G lnv4(lV(F4), k*) restricts to U4 G lnv4(JV(i?4), k*). To prove these

claims, we only need to consider the restrictions to lnv(.PL, k* where the identities

are clear by construction. Thus, \m(W{F4), M*) is a free M* (Zco)-module with basis

{l,VH,vi,wï,iïnvi,wï,u%vi,wï}.

The construction of the w2 also yields the following result.

Proposition 6.1. lnv(lT(F4), M*) is completely decomposable with basis

{1,101, 01, w2, Olu>i, W3, ViW2, w4}.

Remark 6.2. Alternatively, to the approach above, one could also rely on transfer-
restriction arguments to characterize the invariants of W(ß4), which extend to W(F4)
as those whose restriction to W(D4) is fixed under the action of W{F4)/W{D4).

7. Weyl groups of type Dn

The root system Dn, n ^ 2 consists of the elements

Dn {±ei ± ej : 1 ^ i < j ^ n}.
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Let m := [n/2], a,- := e2i-\ — e2and bi := e2i-i + ^2i- By Remark 2.4, this

root system defines an orthogonal reflection group over ko with \Q.(W(Dn))\ 1.

More precisely, P : P (a 1, b1,..., am, bm is a maximal elementary abelian 2-group
generated by reflections. Furthermore, W{Dn) is a subgroup of Snt<(Z/2)n s W(Bn)
in the precise sense that

W(Dn) |ct -n^ G sn X (Z/2)" : |/| even}.
i'e/

Remark 7.1. We note that for odd n the invariants of W(Dn) can be deduced from
those of W(Bn), since W(Bn) {±1 }xW(Dn). For instance, since W{D2) s W(A3),
this gives the invariants for W(B2).

Similarly to the Bn-section, we define

Ad := {(4, B, C) ç [1,m]3 : A, B,C are pw. disjoint, |4| + |ß| + 2|C| d}

and xA,B,c:Hl(k,P) ->k"(k)/2

XA,B,c(oei,ßi,...,am,ßm) nw-n^-n«}.
ae.4 ôeS ceC

As in the -section, we now construct specific invariants. First, for d ^ m the

group homomorphism p: W{Dn) ç W(Bn) —> Sn induces the invariant

ud := P*(wd) e\md(W(Dn),^)

with resw(Bn)(ud) Y1(a,b,fs)eAd xa,b,z-
Furthermore, from Section 5 we have an embedding W{Dn) ç W(Bn) ç S2n.

Starting with a VF(D„)-torsor x £ Hl(k, W(Dn)), we may consider its image qx G

Hl(k, 02n) induced by the map W(Dn) -» S2n —> 02n. Observe that W(Dn) —> S2n

sends

Sai h* (2i — l,2i)(2i — 1 + n,2i + n), S},i h-> (2i — 1,2i + n)(2i,2i — 1 + n).

Thus, starting with a P-torsor {a\, ß\,... ,am, ßm), we may apply Lemma 3.6 to
see that under the composition P —> W(Dn) —> S2n —> 02n this torsor maps to

((—Oft, —ßi)) ® • • • © ((-0lm, —ßm)) ® (L 1)),

where the expression in parentheses appears only for odd n. We would like to have

an element v G Inv(W(Dn), k*) such that res^^O;) is given by

H1(k,P)^k^(k)
(at, ß\ am, ßm) h> (l + {ori }{)ßl}) • • • (1 + {dm){ßm})-
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To achieve this goal, we proceed recursively as in Section 5. First, we compute the

value of the total Stiefel-Whitney class w 6 lnv(04, k*) at a 2-fold Pfister form:

w{((-a, -/!))) (1 + W)(l + {ß}){\ + {a} + U8})

1+ {-!}{«} + {-!}{/?}+ {«}{/)}.

Hence, setting v' := resp^n\w), we obtain as in Lemma 5.3 that

*W{Dn)Wd) Y X0,0,C + Y Y XA'B'C-
(0,0,C)e Ad kud-1 (A,B,C)eAk

Hence, proceeding recursively by setting vo := 0 and then

vd •=v'd+ Y Ud~kyk
k^d-1

yields the desired invariant. Moreover, res^,(D^(uj) 0 c)eAd x0,0,c and,

by Lemma 5.4,

res^(£>n)(M(/)res^(ön)(t;e) Y^ xA,b,C- (7-1)

CA,B,C)<=Ad+e
2\C\=e

Now, suppose that n 2m is even. In this case, we need to construct one further
invariant. Since W(Dn) ^ Sn k (Z/2)"-1, we have an embedding Sn ç W{Dn)
such that \ W(Dn)/Sn\ 2"_1. More precisely, \ W{Dn)/Sn \ consists of the cosets

giSn, where gi := and where I ç [1;«] has even cardinality. The left
action of W(Dn) on these cosets induces a map

W(Dn) -> S2n-1 -> 02»-1-

Thus, any k e and y e H] (k, W(Dn)) induce a quadratic form qy eHl(k, 02n-1)
and thereby an invariant to \t\v(W{Dn),W). In fact, we claim that a> \rw{W{Dn) ,Im),
where I(k) ç W(k) is the fundamental ideal.

To prove this, we start by showing that res^p^(&>) lnv(P, Im). It is convenient
to understand the map W(Dn) —» 52«-i on the subgroup P.

Lemma 7.2. Let L {{2/ — 1,2/} : i ^ m} and define /: 2^'"^ —> 1L,

/(/) := {{2i — 1,2i} : either 2i — 1 I or 2/ /, but not both}.

Then,

(1) 77re action of P on W(Dn)/Sn has the 2m~1 orMs (9$ := {giSn | /(/) #},
# ç L, \ fr \ even.
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(2) Let Og be an arbitrary orbit from (1). Put Ag := {/ ^ m : {2 i — 1,2/} e
and Bg := {/ ^ m : {2/ - 1,2/} g $}. Then, P({ai}iSBg U {bj}jeAg) acts

trivially on 0g and the action of Pg := P({aj\ieA<f U {bj}jeBg) on Og is

simply transitive.

Proof (1) Let I ç [1; «]. If {2/ - 1,2/} ^ /(/), then

Satgl gI Sat and S^gl gl^{2i-\,2i}Sai,

where A is the symmetric difference. On the other hand, if {2/ — 1,2/} /(/), then

saigi giA{2i-i,2i}Sai and s^gi gisar

(2) By the proof of part (1), P({aj }ieBg U {bj}jeAg.) acts trivially on Og. Since

\P({ai}ieA^ö{bj}jeB,)\ 2m \Og\,

assertion (2) follows after verifying that P{{ai }ieAg U {bj}jeBg) acts freely on Og.
So suppose, / ç [1 \n\, M ç Ag and N ç Bg is such that /(/) # and

g '= nieM soj Flysjv sbj fixes glSn- The proof of part (1) gives that

gglSn gl'Sn,

where

I' IA( UieMUN {2/ — 1,2/}).

Observing that I' — I if and only if M N 0 concludes the proof.

Using Lemma 7.2, we conclude the following. Consider an arbitrary

y (ai,...,am,ßi,...,ßm) e H1(k,P)

and let qy e H1(k, 02n-i) be the quadratic form induced by the composition

P -* W(Dn) "* S2n-1 02n-l.

The decomposition of the action of P into orbits Og induces a decomposition of qy
as qy s ®gqg. More precisely, the action of P on Og induces a map P S2m

and qg is defined to be the image of y e H1(k, P) under the composition

P —> S2tn —> 02m.

By Lemma 7.2, this composition factors through the projection P -» Pg. Now, by
Lemma 3.6, its remark and Lemma 7.2,

qg (g) ((-a,- )} <8> 0 {-ßj ». (7.2)

Thus, the image of qy @gqg in lT(A:)liesin/m(k), sothatres^p^}«) e lnv(P, Im).
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Now, we pass from P to W(Dn). First, co induces an invariant

œ e \m°(W(Dn), I*/I*+l)
through the projection VF (/*//*+1)o W/I. Since the image of res^0^(&>)
lies in Im ç /, we conclude that res^D ^(cu) 0. As P is up to conjugation the

only maximal elementary abelian 2-subgroup of W(Dn) generated by reflections,
Corollary 2.3 gives that cû 0e \n\i°(W(Dn), I *//*+1), i.e., co e Inv(W(D„), I).
Iterating this procedure m times shows that co e Inv{W(Dn), Im).

By Example 3.9, there exists an invariant em : Im(k) kj (k) satisfying

em {{(di » ® • • • <8> K})) Y\ • (7-3)
i^m

Then,

em(j) em((2m) <g> co(y)) + {-1} X ud-i-kVk
k^d—l

defines an element of \rwim(W(Dn), k*) and, in the vein of Lemma 5.3, we now
determine its restriction to P.

Lemma 7.3.

f6Sw(£)n)(em) y '
XA.B.0- (7.4)

(A,B,0)eAm
IAI even

Proof. First, by identity (7.1), it suffices to show that the restriction of the invariant
e'm(y) := em((2m) <g> co(y)) to P is given by

X XA,B,0 + {~1} X xA,B,C (7.5)

tA,B,0)eAm (A,B,C)zA
\A \ even

Then, by identities (7.2) and (7.3), evaluating res^D^(e^) at the torsor

(«1 > • • • oim, ß\,..., ßm) £ H (k, P)

gives that

e n<-«>n<-w=E
(A,B,0)zAmieA jeB (A,B,0)eAm UQA ieU jeV

\A\ even \A\ even VQB

=x
U,VQ[l,m\ ieU jeV
unv=0

where

Nu,v '= \{A ç [\,m\ : A D U, A fl V 0, \ A\ even}|.
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To conclude the proof, we distinguish on the value of \U\ + \V\. First, the

contributions coming from | U | +1V \ — m give precisely the leading-order expression
in (7.5). Next, suppose that |C/| + |F| m —k with k ^ 1. Then, Nu,v 2fc_1,

so that the corresponding contribution vanishes mod 2 if and only if k ^ 1. Now,

we conclude the proof by noting that the contributions for k 1 yield precisely the

summation expression in (7.5).

Now, we derive a central set of constraints for the image of the restriction map
Inv{W(Dn), M*) —> lnv(F, M*). For d $ n and i ^ [d/2] put

4>f := J2 xa,b,c e lnvrf(P,k^)

(A,B,C)eAd
\C\=i

and fx := Y1(A,b,&) xa,b,0-
|^41 even

Lemma 7.4. The image of the restriction map \m{W(Dn), M*) —> lnv(P, M*) is
contained in the free M*{kf)-module with basis

S \<pf : d ^n, max(0,J —m)^i^ [d/2]} U R,

where R 0, ifn is odd and R {fi}, ifn is even.

Proof Arguing as in the Bn -section shows that all elements of S are non-zero.
Furthermore, both se2i_x-e2j_xse2i-e2j and se2i_i normalize P.

Let us denote by Ah, N2 Ç N(P) the subgroups generated by the first, respectively
second kind of elements and let us denote by N the subgroup generated by N\ and N2.
At the torsor level, conjugation by the first kind of elements swaps a,- -o- ay and

ßi o ßj. Thus for (A, B, C) G Ad, the invariant xa,b,c maps to xa',b',c, where

A' (i,j)A, B' (i,j)B, and C' (i,j)C.

On the other hand, conjugation by the second kind of elements swaps a,- ßi and

ay -o- ßj. Thus, it maps xa,b,c to xa\b\c, where

A! [A ~{i,j}) U (B n {/,y}) and B' (B - {i,j}) U (A D {/,;'}).

That is, if i G A, we remove it from A and put it into B and vice versa; then we do
the same for j. Thus, N acts on lnv(F, k* by permuting the xa,b,c and hence we
can apply Corollary 3.11.

In the next step, we determine the orbit of xa0,b0,c0 under N for an arbitrary
(do, /?o, Co) G Ad. First, suppose that n is odd or that Co 0 or that (n 2m is

even and d < m). Then, we claim that the orbit of xa0,b0,c0 under N2 is given by

{xA,B,c0 (A, B, C0) Ad, A U B A0 U B0}.
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It suffices to show that for any a G Ao, there exists an element of N2 mapping

xa0,b0,c0 t0 xA0-{a},B0u{a},c0- As soon as this is proven, one observes that the

symmetric statement with b e Bo also holds; iterating these operations, we indeed

get the claimed orbit. For n odd, se2a_1sen maps xa0,b0,c0 to ^a0-{a},B0u{a},Coif
Co 7^ 0 choose c G Co, then Se2a-iSe2c—i xAq,Bo,Co to .L4q—{a},i?QU{tf},Co-

Finally, if n 2m is even and d < m, then there exists i G [1 ;m] such that i
Ao U Bo U C0 and the element se2a_l se2i_1 does the trick. Thus, the orbit of xa0,b0,C0
under N2 equals

{xa,b,c0 ' (A, B,Co) 6 Ad, A U B Ao U Bq\.

Similarly, for any (A\, B\,C\) G Ad the orbit of xa1 ,B\,C\ under N1 equals

{XA,B,C : (A,B,C) 6 Ad, \A\ |^|, \B\ |C| \Cx\}.

Combining these results, the orbit of xa0,b0,c0 under N is given by

{xa,b,c :(A,B,C)eAd, \C\ |C0|}.

Finally, let Co 0, n 2m be even and d m. Then, the orbit of xao,bo,0
under N2 equals

{xa,b,0 {A, B, 0) G Ad, A U B A0 U Bo, \B\ — |ß0| is even}.

Using that for any (Ai,Bi, Ci) Ad the orbit of xauBuC\ under N\ is given by

{Xa,B,C :(A,B,C)e Ad, \A\ \Ai\, \B\ \Bx\, |C| |CX|},

we see that the orbit of xao,bo,0 under N is

{xa,b,0 (A, B, 0) G Ad, |5| - |50| is even}.

Hence, applying Corollary 3.11 concludes the proof.

In particular, as Lemma 5.4 gives that

resW(Dn)(Ud-2iv2i) <P?

and as

res^(D„)(em) V'l '

we obtain the following result.

Corollary 7.5. lnv(lT(D„), M*) is completely decomposable with basis

{ud-2iV2i : d ^ n,max(0, d — m) ^ i ^ [d/2]} U R,

where R 0 for odd n and R — {em} for even n.

Remark 7.6. A relation between W(Bn) and W{Dn) explains why in Corollary 7.5,

we only see vj with even d. Indeed, the kernel of the determinant of the 2n-
dimensional representation of W{Bn) contains W(Dn). Since for odd d, all the

M/(ß„)-invariants vj are divisible by iq and since i>i is vanishing, we deduce that

they all reduce to 0 on W(Dn).
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8. Weyl groups of type E6, Ej, and Es

8.1. Type E(,. Up to conjugacy, P := P{a\, b\,a2, b2) is the unique maximal

elementary abelian subgroup generated by reflections in W(E-i). Since the

injection lnv(lT(£6), M*) -» lnv( P, M*) factors through \m{W{Dp, MP), the map
\w{W{Ep, MP -» lnv(JU(Z)5), MP) is injective and a basis of lnv(fF(D5), M#) is

given by {1, «i, u2, v2, v2U\, v4}.
So let a e Inv(P, MP be an invariant which comes from a irfEgj-invariant.

Since the inclusion P ç W(E6) factors through W(D5) ç W(Ep, a decomposes

uniquely as

° E E XA,B,cmd + ^ XA,B,0>n 2 + ^2 X0,0,cm'2
d^4 (A,B,C)eAä (A,B,0)eA2 (0,0,C)eA2
d^2

for certain mj e m2, m'2 e Now, the element

g — spei-e2-e3-e4-e5-e6-e7+es)S:z(-e1+e2+e3+e4-e5-e6-e7+es) G

lies in the normalizer of P, since

gSaig~1=Sb2, gSb1g~1=Sb1, gSa2g~l Sa2, gSb2g~l Sax-

The induced action of g on a P-torsor (oq, a2, ß\, ß2) is thus given by swapping

«1 ßi, while leaving a2, ß\ fixed. Therefore, applying g to the invariant a yields

E E XA,B,cmd + x{ai,bj)m2 + (X{ai,a2} + x{bi ,b2))'2.
dsk4 (A,B,C)eAd i,je{1,2}
d±2

Since a comes from an invariant of W(Ep, it stays invariant under g and comparing
coefficients, we conclude that the image of the restriction \<nv(W(Ep), MP) -»
lnv(lT(D5), MP lies in the free submodule with basis

{\,U\,U2 + v2, V2U\, vp.

The embedding of W(Ep in Og as orthogonal reflection group gives rise to the

invariants res^^^u^) e Irn/^Og, k*), which we again denote by up. For any
k e P'ko and (cti, ß\,a2, ß2) e (kx/kx2)4, the map P -> W(Ep ç 08 induces

the quadratic form

(2a\,2ßi,2a2,2ß2,1,1,1,1).

Thus, the total modified Stiefel-Whitney class evaluated at this torsor equals

(l+{al})(l+{a2})(l+{ß1})(l+{ß2}).
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Now,

resW(D5)(u i) resW(E6)^)' resW(D5)(u2 + v2) resfc«)®'
res^(ZJ5)(U2M i) resr(£:6)(u;3)' res^(D5)(l'4) rSsjp(£6)(M>4)-

Hence, {u^}^^4 form abasis of \m(W{E6), M*) as M*(/t0)-module.

8.2. I^pe £7. Up to conjugacy, P := P(ai,bi,a2,b2,a3,b3,aA) is the unique
maximal elementary abelian subgroup generated by reflections in W(Ej). Looking
at the root systems, we see that there is an inclusion W(D(,) x (sa4) ç W(E-j),
Invoking the same factorization argument as before, the restriction map

\vn{W(Et), M*) lnv(fF(Z?6) x (sa4),M*)

is injective. We first recall that \vn(W(D6) x (sa4), A/*) is a free M*(/c0)-module
with basis:

(0) 1

(1) Ui,X{a4)

(2) U2,V2,UiX{a4}

(3) (u3 - e3),e3,uiv2,u2x{a4},v2x{a4}

(4) U2V2, V4, («3 - e3)X{a4}, e3X{a4}, UiV2X{a4}

(5) V4Ui,U2V2X{a4}, V4X{a4}

(6) V6, V4UiX{a4}

(7) V6X{a4).

Defining g .—si^ei_e2_e3_e4_e5_e6_e7+eg^s 1 (_ei +e2+e3+e4_e5_e6_e7+eg)e kV(E-j)

as in the E6-ca.se yields that

8sai8 ^b2' g^b\g V>i ' g^ci2g *^02' 8-*b28

g^g-1 sa3' gsb3g~l SaA, gSa4g~l V>3-

The action of g on a P-torsor {a\,ß\,... ,a3, ß3, «4) e (kx/kx2)7 is thus given by
swapping a 1 ß2, ß3 -o- aA while leaving ß\ ,a2,a3 fixed. Arguing just as in the

f?6-case, we see that the image of Inv{W(E2), M*) — lnv(lT(D6) x (sa4), M*) lies

in the free M* (ko)-module with basis

(0) 1

(1) U\ +X{a4}

(2) v2 + u2 + u\X{a4)

(3) uiv2 + («3 -e3) + u2x{a4},e3 + v2x{a4}
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(4) VA + (M3 - e-i)X{aA}, U2v2 + UlV2X{a4] + e2X{aA}

(5) VaX{a4} + U2V2X{a4} + VAUl

(6) VAUiX{a4} + V6

(V) v6x{a4}.

Now, we provide specific variants. First, the embedding W(E7) ç Os

gives us invariants res^^ (wd) e lnvrf (1F(£7), k*), which we again denote by w~d-

Then,

res^(£7)(^ l) reS^(D6)x(^4)(wl + X{a4}),

res£(£7)(uT2) res^(06)x{Ça4)(u2 + v2 + m*{fl4}),

res^(jE7)(ur3) res£(Ö6)x(,a4)(w3 + uiv2 + u2x{a4} + u2x{û4}),

^WtEj^A) reSW(D6)x(sa4)(U2V2 + V* + M3X{a4} + MlU2X{û4}),

res^(E7)(w5) res^^^VAUr + u4x{û4} + u2v2x{a4}),

res&(257)(«T6) res^(l)6)x(iû4>(«6 + V4uix{û4}),

resw'(£,7)(u;7) res^cDgtx^)!^^})-
So we still lack invariants in degree 3 and 4. To construct the missing invariant
in degree 3, we mimic the construction of the invariant em in the -section. Let
U Sq x (sa4) ç W(Ej) be the subgroup generated by the reflections at

{ei + e2, e2 — e3, e3 — e4, c4 — es, es — ee,e2 — es}.

Then, \U\W(E7)\ 2016 and we obtain a map W(Ef) - S2016 -> 02oi6- To be

more precise, there is a right action of W(E1) on the right cosets U\W(Ej) given
by right multiplication. This induces an anti-homomorphism W{E2) -> S2oi6 and

precomposing this map with g k- g~l, we obtain the desired homomorphism. We

need the following lemma which tells us that we are in a situation which is quite
similar to the Dn-case:

Lemma 8.1. Let k e and y Hl(k, P) be a P-torsor. Let qy be the quadratic
form induced by y under the composition

P -> W(Ef) —? S2016 —> 02016-

Then, the image of qy in Wik) is contained in P(k).

Proof This can be checked by a computational algebra system, see the appendix.

We now argue similarly to the D„-case. In concrete terms, if y is a 1T(Z?7)-torsor,

and qy is the quadratic form induced by y under the composition

W{E2) —r N2oi6 02016,
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then the image of qy in W(k) is contained in I3(k) and we define the invariant

/a'OO := e3((23) ® qy). (8.1)

In the Dn-case, namely in Lemma 7.3, we could compute the restriction of the

invariant em to the maximal elementary abelian 2-subgroup explicitly. In principle,
this would also be possible in the present setting. However, the computations would
be substantially more involved. Therefore, we provide a more conceptual level

argument. To that end, we recall from Section 7 that if g 6 W(E-j) is contained in
the normalizer Nw{e7){P) of P in W(E7), then g acts both on the invariants

ixA,B,c}(A,B,C)eAd e lnv^(7>, M*)

as well as on the indexing set Ad.

Lemma 8.2. Let d ^ 1 and g e Nw(E7)(P)- Also, let a e \rwid (WiE-]),^) bean
invariant and represent its restriction to Invd(P, k* as

resW(E7)(a) X m 1X1 ' (8-2)

IeA*

for certain coefficients m / G k^_|71 (Ar0). Then, mj =mg(j)for allied and I G A^.

Proof. First, since the restriction is invariant under the action of g,

X X (W/ ~ msri))xl °- (8-3)

l^d IeAd-'-

Now, suppose that the assertion of the lemma was false, and choose a counterexample
7*6 with maximal £*. Then, we first evaluate both sides of (8.2) at the function
field E ko(A\, Bi,..., A-}, B^,Af) in theindeterminates Ai, B\,..., A3, B3, A4

corresponding to the roots in P, and then apply the Milnor residue maps
corresponding to the indeterminates associated with the index set 7*. Since I*
was chosen to be maximal, the identity (8.3) reduces to mi — mg(j) 0, which
concludes the proof.

In words, just as in Corollary 3.11, when representing the restrictions of invariants
as in (8.2), then basis elements in the same orbit share the same coefficient.

In particular, we have seen above that in degree 1 and 2 all basis elements are in
a single orbit and are therefore the restriction of the corresponding modified Stiefel-
Whitney classes. Thus, applying Lemma 8.2 with a ff there exist mi e k^ (ko),
I {0,1,2} and mA,B,c £ 2/2, (A, B, C) G A3 such that

reS^(£7)(/3) X mA,B,CxA,B,C + XmfreSfe7)(";f)-
(A,B,C)eA3 £«2
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Then, proceeding as in the definition of em in Section 7, we define an invariant
f3 \nv3(W{E2), k*) by stripping of the mixed terms from /3'. That is,

/a := f3~S[lrnii-
2

In the appendix, we expound on how a computational algebra system shows that

reS^(£7)(/3) resW(D6)x<sa4)(uly2 + "3 - e3 + U2X{a4}). (8.4)

Finally, we can proceed in a similar fashion in order to remove the mixed terms in
the product expression.

(U\ + X{a4})(uiV2 + (U3 - e3) + U2X{a4}).

Thus, lnv(VF(£,7), M*) is completely decomposable with basis {ttJaf}^^7U{/3, f3w\).

8.3. Type Eg. Up to conjugacy, P := P(ai,b\,a2,b2,a3,b3,a4,b4) is the unique
maximal elementary abelian subgroup generated by reflections in W(E%). By the

same arguments as in the E$/E2-case, we obtain that the restriction map

lnv(W(£g), M*) lnv(W(Ds),Mm)

is injective. We first recall that lnv(IT(jDg), M*) is a free M*(fco)-module with the

basis

{l, Ml, «2, v2, u3, v2u 1, e4, v4, (m4 - e4), v2u2, v2u3, v4ui,v4u2, v6, v6ui,v8j.

Again, we define g W{E%) as in the E$ or E2-case and check that it normalizes P :

g^a\g ^b2 ' g^b\g ^b\ > g^a2g ^a2i g^b2g

g^ü3S Tz3 • g$b3g T/4 §^a4g Sb3. gsb4g Sb4

The action of g on a P-torsor (ai, ß\,a2, ß2, a3, ß3, a4, ß4) is thus given by

swapping ai <+ ß2, ß3 o a4 while leaving ß\,a2,a3, ß4 fixed. Again, applying
the same kind of arguments as in the Pg-case, we see that the image of the restriction

map lnv(lT(£,g), M*) -* lnv(VT(Z)8), M») is contained in the free submodule with
basis

{1,Mi,m2 + v2,u3 + v2ui, e4 + v4, (w4 - e4) + v2u2,

V2U3 + V4Ui,V4U2 + V6, V(,U i, Ug}.
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We need to construct W/(£,g)-invariants mapping to these basis elements. On the

one hand, the inclusion W(E%) ç 0g gives modified Stiefel-Whitney classes Wd

lnvrf(W(£8),k^). Again,

res^(£8)("ri) res^(D8)(M0' res^(£8)(w5) res^(£,g)(v2M3 + v4u,),

reSW'(£8)("r2) resW(D8)(U2 + V2)' resW(E8)(^) res^(Dg)(v4u2 + u6),

reSC'(£8)("r3) reS^(Dg)(u3 + UiV2), resW(E8)(^ reSW(Ds)(V6"l).

res^(£8)("r4) res W(D8)(U4 + u2V2 + v4), res^(£g) (w8) res^(Dg)(v8).

The situation is very similar to the Ê7-case except that now, we miss a basis invariant
in degree 4. Let U ç W{E8) be the subgroup generated by the reflections at

{el + e2. e2 — e3> e3 — e4> e4 ~ e5> e5 ~ e6i e6 ~ el> el ~ g8}-

By observing that U S8 or by using a computational algebra software, we conclude
17280. As in the Ê7-case, we obtain a map

W{E8) —> «S"x7280 ~ Oi7280-

Again, we need the following lemma.

Lemma 8.3. Let k e Ek0 and y e Hl{k, P) be a P-torsor. Let qy be the quadratic
form induced by y under the composition

P -* W(E8) -» «5x7280 Ol7280"

Then, the image ofqy in W(k) is contained in f4(k).

Proof Again, this can be checked by a computational algebra software, see the

appendix.

As in the Dn-case, we obtain from this an invariant f\ lnv4(H/(£8), k*). More
precisely, if y is a ILTAgj-torsor and qy is the quadratic form induced by y under the

composition
W(E8) -> Si7280 -> Ox7280«

then the image of qy in Wik) is contained in IA{k) and we define /4'(y) := e4(qy).
We then proceed as in the Ej-case and set

h := f4~Y2mtwt
e^3

for suitable mi 6^(4- I) in order to strip off the mixed contributions from ff
The restriction of f4 to P is determined through a computational algebra system,

see the appendix. The result is res^^D^(v2u2 + (u4 — e4)). Thus, we conclude that

lnv(VL(£,g), Mf) is completely decomposable with basis {f4} U
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A. Excerpts from a letter by J.-P. Serre

[... ] Hence, the only technical point which remains is the "splitting principle": if the

restrictions of an invariant to every cube is 0, the invariant is 0. In your text with Gille,

you prove that result under the restrictive condition that the characteristic p does not
divide the order | G | of the group G. The proof you give (which is basically the same

as in my UCLA lectures) is based on the fact that the polynomial invariants of G (in
its natural representation) make up a polynomial algebra; in geometric language, the

quotient Äff"/G is isomorphic to Aff". This is OK when p does not divide |G|,
but it is also true in many other cases. For instance, it is true for all p (^ 2) for the

classical types (provided, for type An, that we choose for lattice the natural lattice
for GLn+1, namely Z"+1). For types G2, E4, Eg, E7, it is true if p > 3 and for Eg

it is true for p > 5: this is not easy to prove, but it has been known to topologists
since the 1950's (because the question is related to the determination of the mod p
cohomology of the corresponding compact Lie groups). When I started working on
these questions, I found natural to have to exclude, for instance, the characteristics 3

and 5 for Eg. It is only a few years ago that I realized that even these small restrictions

are unnecessary: the splitting principle holds for every p > 2.

I have sketched the proof in my Oberwolfach report: take for instance the

case of Es', the group G VF(Eg) contains W(Ds) as a subgroup of odd index,

namely 135; moreover, the reflections of W(Ds) are also reflections of IF(Eg);hence
every cube of W{D%) is a cube of W(Eg); if a cohomological invariant of VF(Eg)

gives 0 over every cube, its restriction to W(Ds) has the same property, hence is 0

because Dg is a classical type; since the index of W{Ds) is odd, then this invariant
is 0. It is remarkable that a similar proof works in every other case. [... ]

B. Computations for Ey and Eg

For the computations involving Ey and Eg, we use the computational algebra system
GAP and the GAP-package CHEVIE [5]. The complete source code used for the proof of
Lemmas 8.1 and 8.3 together with detailed instructions on how to reproduce the results

are provided on the author's GitHub page: https://github.com/Christian-
Hirsch/orbit-e78.

B.l. Computations concerning W(Ey). The proof of Lemma 8.1 requires detailed

information on the action of P on U\W(Ey). We analyze this action, via the

procedure fullCheck(7, U, P).
First, fullCheck(7, U, P) computes the action of P on U\W(Ey) and

also its orbits 0\,...,Or. Then, for each orbit Ok, it determines a subset

Au Ç {ai,bi,a2,b2,a2,b3,ci4}, such that P({ai,bi,a2,b2,a3,b2,a^} - Ak) acts

trivially on Ok and such that P(Ak) acts simply transitively on Ok. A priori, there is
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no reason that such a subset should exist; however — as checked by the program — it
exists in the case we are considering. The return value of the procedure fullCheck
is an array whose &th entry is the set A^. Inspecting the return value reveals that
each Ajç consists of at least 3 elements and that the subsets consisting of 3 elements
have the desired form.

More precisely, to call fullCheck(7, U, P), we need to determine the indices
of the roots generating U and P. In the following, the roots are expressed as linear
combinations of the simple system of roots given by

v\ — e2 — £3 — 64 — es — ee — £7 + cs)> v2 ei + e2»

Vi e,_i - e,-2, 3 ^ i ^ 7.

Additionally,

b2 v2 + l>3 +2U4 + "5,
^3 t>2 + V 3 + 2t)4 + 2v5 + 2V(, + Vj,

—Ü4 2i>i + 2v2 4- 3i>3 + 4d4 + 3t>5 + 2v^ + v2.

We claim that U and P are represented by the indices [2,4,5,6,7,63] and [3,2,5, 28,

7,49,63], respectively. This can be checked by printing the basis representation of
the £7 roots: gap> p: [ 3,2, 5,28, 7, 49, 63 ];

gap> for u in p do Print(CoxeterGroup("E", 7).roots[u]);Print("\ n");od;
[0, 0, 1,0, 0,0,0]
[0, 1,0, 0, 0,0,0]
[0, 0, 0, 0, 1,0,0]
[0, 1, 1,2, 1,0,0]
[ 0, 0, 0, 0, 0, 0, 1 ]

[0,1,1,2, 2,2,1]
[ 2, 2, 3, 4, 3, 2, 1 ]

We can now call the fullCheck-procedure.

gap> Aks: fullCheck(7, [2, 4, 5, 6, 7, 63], [3, 2, 5, 28, 7, 49, 63]);

Verifying that all {Ak)k^r consist of at least 3 elements can be achieved via the
command

gap> for Ak in Aks do if Length(Ak)<3 then Print("Fail");fi;od;

To see that those Ak with \Ak\ 3 correspond precisely to the elements

{(A, B, C) A3 : \C I 1} U {(A, B, 0) A3 : \A\ odd}

U {(A,B,0,a4) : (A,B,0) 6 A2},

we use the e7Correct-procedure. It checks that the {Ak}k^r do not contain elements
which are not in the claimed set above. Since there are precisely 28 Ak with
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3 elements, which is precisely the cardinality of the above set, this reasoning yields
the claimed description.

gap> Y: Filtered(Aks, Ak-> Length(Ak)<4);
gap> e7Correct(Y);

B.2. Computations concerning W{E%). Since the arguments are very similar to
the E-j-case, we only explain the most important changes. First, we consider the

maximal elementary abelian subgroup generated by reflections

P P(ai,bi, a2,b2, a3,b3, a4, bA)

and the subgroup

P e3 ' ^3—£4 > ^4—£5 > Se^—eç, » e~i > ^ej—es •

In addition to the computations provided in Appendix B.l, we note that

2t>i + 3i>2 + 4^3 + 61)4 + 5i>5 + 4^6 + 3vy + 2u8.

Then, P and U are represented by the indices [3,2,5,32,7, 61, 97,120] and [2,4, 5, 6,

7,8,97]:

gap> a: [3, 2, 5, 32, 7, 61, 97, 120];

[3,2,5, 32, 7,61,97, 120]
gap> for u in a do Print(CoxeterGroup("E", 8).roots[u]); Print("\ n"); od;

[0, 0,1,0, 0, 0,0,0]
[0, 1,0, 0, 0, 0,0,0]
[0, 0, 0, 0, 1,0, 0,0]
[0, 1, 1,2, 1,0, 0,0]
[0, 0, 0, 0, 0, 0, 1,0]
[0,1,1,2, 2, 2,1,0]
[2, 2, 3,4, 3, 2, 1,0]
[ 2, 3, 4, 6, 5, 4, 3, 2 ]

To understand the orbit structure, we proceed as in the E-j-case:

gap> Aks: fullCheck(8, [2, 4, 5, 6, 7, 8, 97], [3, 2, 5, 32, 7, 61, 97, 120]);

gap> for Ak in Aks do if Length(Ak)<4 then Print("Fail");fi;od;
gap> Y: Filtered(Aks, Ak->Length(Ak)<5);
gap> e8Correct(Y);

References

[1 ] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4, 5, et 6,

Masson, Paris, 1981. Zbl 0483.22001 MR 647314



Vol. 95 (2020) Mod two Invariants of Weyl groups 809

[2] A. Delzant, Définition des classes de Stiefel-Whitney d'un module quadratique sur un

corps de caractéristique différente de 2 (French), C. R. Acad. Sei. Paris, 255 (1962),
1366-1368. Zbl 0108.04303 MR 142606

[3] J. Ducoat, Cohomological invariants of finite Coxeter groups, 2011. arXiv: 1112.6283

[4] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants, Witt invariants, and

trace forms. Notes by Skip Garibaldi, in Cohomological invariants in Galois cohomology,
1-100, Univ. Lecture Ser., 28, Amer. Math. Soc., Providence, RI, 2003. Zbl 1159.12311
MR 1999384

[5] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE - a system for computing
and processing generic character tables. Computational methods in Lie theory (Essen,
1994), Appl. Algebra Engrg. Comm. Comput., 7 (1996), no. 3, 175-210. Zbl 0847.20006
MR 1486215

[6] S. Gille and C. Hirsch, On the splitting principle for cohomological invariants of reflection

groups, 2019. arXiv:1908.08146

[7] C. Hirsch, Cohomological invariants of reflection groups, Diplomarbeit, LMU Munich,
2010.

[8] J. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced
Mathematics, 29, Cambridge University Press, Cambridge, 1990. Zbl 0725.20028
MR 1066460

[9] R. Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages
de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001. Zbl 0986.20038
MR 1838580

[10] M. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions. With a

preface in French by J. Tits, American Mathematical Society Colloquium Publications,
44, American Mathematical Society, Providence, RI, 1998. Zbl 0955.16001 MR 1632779

[11] D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence for K^4/2 with applications to
quadratic forms, An«, ofMath. (2), 165 (2007), no. 1,1-13. Zbl 1124.14017 MR 2276765

[12] M. Rost, Chow groups with coefficients, Doc. Math., 1 (1996), no. 16, 319-393.
Zbl 0864.14002 MR 1418952

[13] J.-P. Serre, Galois cohomology. Translated from the French by Patrick Ion and revised by
the author, Springer-Verlag, Berlin, 1997. Zbl 0902.12004 MR 1466966

[14] J.-P. Serre, Cohomological invariants mod 2 of Weyl groups, 2018. arXiv: 1805.07172

Received November 27, 2019

C. Hirsch, Bernoulli Institute, University of Groningen,
Nijenborgh 9, 9747 AG Groningen, The Netherlands

E-mail: c.p.hirsch@rug.nl




	On the decomposability of mod 2 cohomological invariants of Weyl groups

