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On the decomposability of mod 2
cohomological invariants of Weyl groups

Christian Hirsch*

Abstract. We compute the invariants of Weyl groups in mod 2 Milnor K-theory and more
general cycle modules, which are annihilated by 2. Over a base field of characteristic coprime
to the group order, the invariants decompose as direct sums of the coefficient module. All
basis elements are induced either by Stiefel-Whitney classes or specific invariants in the Witt
ring. The proof is based on Serre’s splitting principle that guarantees detection of invariants on
elementary abelian 2-subgroups generated by reflections.

Mathematics Subject Classification (2010). 20G10, 12GO05.
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1. Introduction

Let G be a smooth affine algebraic group over a field k¢ of characteristic not 2.
Motivated from the concept of characteristic classes in topology, the idea behind
cohomological invariants as presented by J.-P. Serre in [4] is to provide tools for
detecting that two torsors are not isomorphic. Loosely speaking, such an invariant
assigns a value in an abelian group to an algebraic object, such as a quadratic form
or an €tale algebra.

The formal definition of a cohomological invariant is due to J.-P. Serre and
appears in his lectures [4], where also a brief account of the history of the subject
is given. First, we identify the pointed set of isomorphism classes of G-torsors over
a field k with the first non-abelian Galois cohomology H!(k, G). Further, let M
be a functor from the category Fj, of finitely generated field extensions of kg, to
abelian groups. Then, a cohomological invariant of G with values in the coefficient
space M is a natural transformation from H!(—, G) to M(—) considered as functors
on Fy,. Interesting examples of the functor M include Witt groups or Milnor
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Geometry and Advanced Bioimaging, funded by grant 8721 from the Villum Foundation.
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K -theory modulo 2, which is the same as Galois cohomology with Z /2-coefficients
by Voevodsky’s proof of the Milnor conjecture.

In general, the cohomological invariants of a given algebraic group with values in
some functor M are hard to compute and there are only a few explicit computations
carried out yet. One exception are the cohomological invariants of the orthogonal
group over a field of characteristic not 2 with values in Milnor K-theory modulo 2.
These invariants are generated by Stiefel-Whitney classes

wi: H'(=, 0p) — KM(-)/2

introduced by Delzant [2]. Now, every finite group G embeds in a symmetric
group S, for an appropriate n, and this group in turn embeds in O,. Pulling back
the Stiefel-Whitney classes along such homomorphisms G — S, — O, is a rich
source of cohomological invariants of finite groups considered as group scheme of
finite type over a base field k.

In this work, we show that most cohomological invariants of a Weyl group G over
a field k¢ of characteristic coprime to |G| arise in this way if the coefficient space
is a cycle module M in the sense of Rost [12], which is annihilated by 2. More
precisely, there exists a finite family of invariants {a; };e7 with values in K f,” /2, such
that every invariant a over ko with values in M, decomposes uniquely as

a= Zaimis

iel

for some constant invariants m; € My (ko). In characteristic 0, any Weyl group is a
product of the irreducible ones mentioned above. Hence, invoking a product formula
of J.-P. Serre yields the decomposition for cohomological invariants.

The proof of this result is constructive, in the sense that we give precise formulas
for the generators {a; };e7. For most Weyl groups the invariants are induced by Stiefel—-
Whitney classes coming from embeddings of the Weyl group into certain orthogonal
groups. Note that these embeddings make use of the fact that such a Weyl group
can be realized as orthogonal reflection group over every field of characteristic not 2.
However, if the Weyl group has factors of type D»,, E7, or Eg, then besides Stiefel—
Whitney classes also specific Witt-type invariants appear, which induce invariants
in mod 2 Milnor K-theory via the Milnor isomorphism. All basis elements are
invariants derived from either the Stiefel-Whitney or the Witt-ring invariants.

Crucial for the derivation is Serre’s splitting principle for Weyl groups: if two
invariants coincide on the elementary abelian 2-subgroups generated by reflections,
then these are the same. This allows the following proof strategy. Since Stiefel—
Whitney classes and Witt invariants provide us with a family of invariants, we only
have to show that a given invariant coincides on the elementary abelian subgroups
with a combination from this list. The invariants are then computed case by case for
the various types.
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J.-P. Serre has recently computed with a different method the invariants of Weyl
groups with values in Galois cohomology, see his 2018 Oberwolfach talk [14]. In
an e-mail exchange on an earlier version of the present paper, J.-P. Serre explains
how to remove many of the restrictions on the characteristic of ko. An excerpt of
his letter is reproduced in Section A. J. Ducoat provided a proof of Serre’s splitting
principle and attempted to compute the invariants for groups of type B, and D,, [3].
However, many proofs are incomplete as they are “left to the reader” or “similar to
previous ones”. Moreover, Theorem 5 on page 4 about the invariants of W(D,,) is
not correct as stated, because an invariant in degree n/2 is missing. Therefore, we
provide detailed computations also for the types B, and D,,.

The content of this article is as follows. In Section 2, we state the main result and
fix notations and conventions. Next, Section 3 contains preliminary results. The
proof of the main result occupies the rest of the paper. It also includes an appendix,
elucidating how to use a GAP-program to determine the invariants for £7 and Eg.

Acknowledgements. The present manuscript has a long history. It is a condensed
version of my diploma thesis at LMU Munich supervised by F. Morel. I am very
grateful for his comments and insights that shaped this work in many ways. The
thesis is available online and contains additional background material from algebraic
geometry [7] as well as results for reflection groups that are not of Weyl type.
Moreover, I thank S. Gille for massive help and discussions on earlier versions of
the manuscript. He was also the one to mention the thesis during a presentation
of J.-P. Serre at the 2018 Oberwolfach meeting. I am very grateful to J.-P. Serre
for a highly insightful e-mail exchange and for sharing with me an early version
of his report [14]. His remarks helped to both substantially raise the quality of
the presentation, and also improve the contents such as removing restrictions on
the characteristic in the present paper. Moreover, an earlier version also contained
an irritating assumption that —1 be a square in ko. Thanks to a more appropriate
representation of W(B;) pointed out by J.-P. Serre, also this assumption could be
removed in the present version. Finally, I thank the anonymous referee for the
careful reading of the manuscript and valuable observations that helped to improve
the presentation.

Part I. Results and methods
2. Main theorem and proof strategy

2.1. Cycle modules. We consider in this work invariants with values in a cycle mod-
ule M, in the sense of Rost, which is annihilated by 2. Recall that a cycle module
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over a field kg is a covariant functor

k — My(k) = €D My (k)

neZ

on the category F%, with values in graded Milnor K-theory modules. For a field
extension t:k C L, the image of z € M. (k) in M.(L) is denoted by t«(z). By
definition, cycle modules have further structure and we refer the reader to [12] for
details.

The main example of a cycle module is Milnor K-theory:

Fro — Z-graded rings
k > K(k) = @nz0K))\ (k).

For ay,...,an, € k*, we denote pure symbols in KM(k) by {ai,...,an}. The
graded abelian group M. (k) has the structure of a graded K (k)-module for every
field k € ¥%,. Hence, if M, is annihilated by 2, it becomes a K M(k)/2-module.
For ease of notation, we set kM (k) := KM(k)/2 and denote the image of a symbol
{ai,...,an} € KM(k) ink¥(k) by {a1,...,an}. We say that M, has a k}}-structure
if M, is annihilated by 2.

From now on cycle module means cycle module with kM -structure.

2.2. Invariants with values in cycle modules. Let G and M, be a linear algebraic
group and a cycle module over kg, respectively. Recall from Section 1 that a
cohomological invariant of G with values in My, is a natural transformation from
H'(—,G) to M,(—). We denote the set of all invariants of degree n of G with
values in M, by Inv" (G, M.,), and set

Inv(G, M) = Invg, (G, My) = @Inv"(G, M.,).

nez

For k € F,, any invariant @ € Invg, (G, M,) restricts to a natural transformation
of functors H!(—, G) — M. (—) onthe full sub-category F of Fi,. We denote this
restricted invariant by resg /k, (a) or by the same symbol « if the meaning is clear from
the context. A particular example of invariants are the constant invariants, which
are in one-to-one correspondence with elements of M, (k¢): The constant invariant
¢ € My (ko) maps every x € H!(k, G) onto the image of ¢ in M (k) forallk € %, .
The set Inv(G, M) is akM(ko)-module, so thatifa: H1(—, G) — k¥(—) is a Milnor
K -theory invariant of degree m and x € M, (ko), then

a-x:HY k,G) = Mpyn(k), T ap(T)xk

is an invariant with values in M, of degree m + n. We now define precisely what it
means that an invariant can be represented uniquely as a sum of basis elements.
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Definition 2.1. Let M, be a cycle module over the field k¢, and G a linear algebraic
group over k.

(i) A subgroup S C Inv,";o (G, M) is a free My (kgo)-module with basis
a® emnvg (G.KY), el

if
P Musylko) > 5, {midier > Y a® omy

iel i<r
is an isomorphism of abelian groups.

(ii) Inv(G, My) is completely decomposable with a finite basis
a; € Inv,‘g) (G, ¥
if Invi (G, M) is a free M (k)-module with the corresponding basis

resk/k,(ai) € Inv,‘f" (G.K)), i€l

forallk € Fy,.
After these preparations, we now state the main result.

Theorem 2.2. Let G be an irreducible Weyl group. Let kg be a field of characteristic
coprime to |G| and My a cycle module over ky. Then, Inv,";0 (G, M,) is completely
decomposable.

The proof of Theorem 2.2 is constructive and we describe the generators explicitly.
These depend on the type of the Weyl group and will be given in the course of the
computation later on. Now, we explain the strategy starting with a reminder on Weyl
groups.

Let E be a finite-dimensional real vector space with scalar product (—, —) and
orthogonal group O(E). Then, s,:E — E,

defines the reflection at a vector v € E with (v, v) # 0.

Now, the Weyl group W (X) associated with a crystallographic root system ¥ C E
is the subgroup of O(E) generated by all reflections s, at the roots @ € 3. By
definition of a root system, the scalars 2(«, B)/(o, @) are integers for all o, 8 € ¥
and the reflections act on the root system. The Weyl group is irreducible if the
corresponding root system is irreducible. The irreducible root systems are classified
by types An, Bn, Cy, Dy, Es, E7, Eg, F4,G,. Let X be such an irreducible root
system. Then, there exists an Euclidean space E = R” for an appropriate z, such
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that: (i) X C V := @is” Z[1/2]e;, where ey, ...,e, is the standard basis of R”,
and (ii) W(X) maps V into itself. This can be deduced using the realizations of these
root systems in Bourbaki [1, PLATES I-VIII]. If now ko is a field of characteristic
not 2 then W(X) acts via scalar extension on Vg, := ko ®z[1/2] V and can so be
realized as orthogonal reflection group over kg considering Vi, has regular bilinear
space with the scalar product induced by the restriction of the standard scalar product
of E=R"to V.

The strategy of proof for an irreducible Weyl group G, is as follows. We leverage
different embeddings of the Weyl group G into an orthogonal group O, over the
field ko. Now, the invariants of O,, with values in k! are generated by the Stiefel—
Whitney classes, see [4]. Considering embeddings W — O, gives rise to a family
of invariants in Inv(G, k) by composing the Stiefel-Whitney classes with the natural
transformation

HY (=, W) > HY(—, 0p).
As we shall see in Sections 5-8, these already generate Inv(G, M,) except if G is
of type Dy,, Ev, or Eg. The 'missing’ invariants have their source in certain Witt
invariants.

Having a family of invariants with values in kM at our disposal, we deduce
Theorem 2.2 for an irreducible Weyl group G by showing that this set of invariants
contains a basis of Inv(G, M,) in the sense of Definition 2.1. The main tool
is the following adaptation of Serre’s splitting principle, which is proven in [6,
Corollary 4.10]. Loosely speaking, if k¢ is a field of characteristic coprime to |G|,
then Inv(G, M,) is detected by the maximal elementary abelian 2-subgroups of G
generated by reflections. We let Q(G) denote the set of conjugacy classes of maximal
elementary 2-abelian subgroups of G, which are generated by reflections.

Note that the proof of Theorem 2.2 for Weyl groups of type G, in Section 3.3 is
purely group theoretic, in the sense that it uses only its semi-direct decomposition
and not the geometry of the corresponding root system.

Proposition 2.3 (Serre’s splitting principle). Let M, be a cycle module over kg
and G be a Weyl group. Let kg be a field of characteristic coprime to |G |. Then, the
canonical map

(resg)[P]:lnv(G,M*) —>[ ]l_[( Inv(P, M,)Ne(P)
P1eQ(G)

is injective, where Ng(P) is the normalizer of the maximal elementary 2-abelian
subgroup P of G, which is generated by reflections.

We point out that the assumption that order of the irreducible Weyl group G and
the characteristic of k¢ are coprime seems to be not necessary, see Section A. This
assumption comes from the article [6], where the splitting principle is proven for
more general orthogonal reflection groups. This would also remove that assumption
from Theorem 2.2.
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Remark 2.4. For groups of type A,, D,, Eg, E7, or Eg, any two roots are conjugate
[8, Rem. 4, Sect. 2.9]. Hence, an induction argument shows that for these types, there
is up to conjugacy only one maximal abelian 2-subgroup P generated by reflections.
In particular, by Proposition 2.3, the restriction map resg is injective for simply-laced
groups.

The computation of the invariants of an arbitrary Weyl group follows from
Theorem 2.2 by a product formula of Serre. To state the product formula precisely,
we first introduce the notion of a product of invariants. Identifying H!(k, G’ x G)
with H'(k, G') x H'(k, G), for invariants a € Invg, (G, k}) and b € Invg, (G, M),
we define the product ab through

(ab)i: H'(k, G x G") — M, (k)
(TﬂT”)ka-ak(T)bk(T”)

Proposition 2.5 (Product formula). Let My be a cycle module and G, G’ algebraic
groups overkyg. If Inv,”c‘0 (G, M,) is completely decomposable with finite basis {a; }ic1,
then the map

@ Invi (G’, Mx) — Invi(G x G', M)
iel
{bitier = ) res/k,(ai)bi

iel

is an isomorphism for all k € Fy,,. In particular, if the invariants of both G and G’
are completely decomposable, then so is Inv‘,";0 (G x G, M,).

Proof. We follow the outline given in [4, Part I, Exercise 16.5]. Replacing a; by
resk/k,(ai) we can assume kK = ky.

To show surjectivity, let a € Inv,’:;0 (G x G', M). Then, for every k € ¥y, and
T' € H'(k,G') we define an invariant @ € Inv} (G, M) by mapping T € H'({, G)
to @g(T) = a¢(T x Ty), where, T; denotes the image of 7’ in H 1(¢, G’) under the
base change map. Since Inv(G, M,) is completely decomposable, a can be uniquely
expressed as

Y resk/ko(@i)bi(T")

for suitable b; (T') € M, (k). It remains to prove that b; € Inv(G’, M,) for all i.
To achieve this goal, let t:k C k; be a field extension in F, and 7' € H'(k,G’).
Then,

(D 1S @) (TIBT')) = 3 resiy o @) (Ti i (T, ).

iel iel
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Since a;’s are invariants

Zreskl/ko(ai)l*(bi(Tl)) = Zreskl/ko(ai)bi(Tfél)~

iel iel

As the a;’s are a basis we get b; (T,él) = 14(b; (T")), as asserted.

To show injectivity, we assume ) ; .y a;b; = O and claim thatb; = Oforalli € /.
Fix afield k and T’ € H'(k,G’). Then

> aibi(T') € v (G, M.)

iel

is the constant zero invariant. Since the a;’s are a basis, we get b;(T’) = 0 for
all i € I. Since k and T’ were arbitrary, this implies that the b;’s are constant
Zero. O

Since every Weyl group is a product of irreducible ones, we get the following
corollary.

Corollary 2.6. Let kg be a field of characteristic coprime to |G| and My a cycle
module over ko. Then, Inv;0 (G, M..) is completely decomposable for all Weyl
groups G.

3. Preparations for the proof

In this section, we establish several key lemmas on cycle modules. We also discuss
auxiliary results used in the type-by-type proof of Theorem 2.2 for irreducible Weyl
groups.

3.1. Cycle complex computations. We start with a computation of cycle module
cohomology which seems to be well known, but for which we have not found an
appropriate reference. To this end, we recall first the cycle complex associated with
a cycle module M, over ko. We refer the reader to Rost [12] for further details.

Let X be a scheme essentially of finite type over kg. That is, X is of finite type
over kg or the localization of such a k¢-scheme. Then, the cycle complex is given by

dg'” di’,n
P Matko() —> P Maako(x) —> P Mu-a(ko(x)) > -+,

xeX () xex ) xeX @

where X (P) C X denotes the set of points of codimension p = 0in X and ko (x) is
the residue field of x € X. In general, the differentials d )I;,n are sums of composition
of second residue maps and transfer maps. If X is an integral scheme with function
field ko (X) and regular in codimension 1, then the components of d)‘}’n are the second
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residue maps 0: My (ko(X)) = My—1(ko(x)). In particular, the cohomology group
in dimension 0, also called unramified cohomology of X with values in M;, equals

P Mu-1ko(x))).
xeX @
In case X = Spec(R), we use affinenotations and write M}, ynr(R) instead of M, o (X).

Ox)xex

My (X) = Ker (My (ko (X)) ~

Lemma 3.1. Let M, be a cycle module over kg and R a regular and integral
ko-algebra with fraction field K, which is essentially of finite type. Leta,,...,a; € R
be suchthata; —aj € R* foralli # j. Then,

Mn,unr(R[T] IT (T—ai)) - Mn,unr(R) D @{T —aif Mn-l,unr(R)5
= i<l
where we consider {T —a;} as an element of K\'(K(T)) and My—1,unr(R) as a subset
of Mp—1(K(T)).

Proof. Setting f(T) := [];(T — a;), we consider the following short exact
sequence of cycle complexes, where for a cohomological complex P* we denote
by P*[1] the shifted complex with P* in degree i + 1:

C*(R[T]/RIT]- f(T), My_1)[1] = C*(R[T], Mp) —= C*(R[T] s(1), Mp).
Using homotopy invariance, the associated long exact cohomology sequence starts
with

0— Mn,unr(R) = Mn,unr(R[T]f(T)) - Mn—-l,unr(R[T]/R[T] . f(T))

We claim that the map on the right-hand side of this exact sequence is a split surjection.
Indeed, by the Chinese remainder theorem,

R[T)/RIT]- f(T) ~ [ | RITI/RIT]- (T —a;) ~ [ R,
i<l i<l
so that
My 1,0 (RIT)/RIT] - f(T)) 2= Mp1,une(R)®".
Disentangling the definitions of the appearing maps shows that
Ma—1ue(R)® > My une(RIT15y): (1,0 x) — Y AT —aidx
i<l

defines the asserted splitting. O

By induction and homotopy invariance, Lemma 3.1 implies the well-known
computation of the unramified cohomology of a Laurent ring.

Corollary 3.2. Let M, be a cycle module over ky. Then,
Mn,unr(kO[Tli, sy Tl:t]) X~ @ {Tll PRI Ttr} : Mn—r (k())

r<l
1<iy<w<ir<l
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3.2. Invariants of (Z/2)". Corollary 3.2 implies that the invariants of (Z/2)" with
values in a cycle module are completely decomposable. This is shown for invariants
of (Z/2)" with values in kM in Serre’s lectures [4, Part I, Sect. 16]. Writing () €
H(k,Z/2) for the class of & € k™, every index set 1 < i; <--- < i; < n givesrise
to an invariant

i HY Kk, (Z/2)™) ~ H'(k,Z/2)" — K}\(k)

[ )iy« 5 (o) ] B §@0 o B B

Xi1

.....

We show that they form a basis of Inv((Z/2)", M) for every cycle module M, with
kM-structure.

Letk € Fi,,a € Invi((Z/2)", M) and write K := k(t1,...,,) for the rational
function field in n variables over the field k. Then,

Tkl ooy ofly) D HQ1;0:55 1)
is a versal (Z/2)"-torsor, so that by [4, Part I, Thm. 11.1] or [6, Thm. 3.5],

ax(T) € Mayn (K[, ..., 157]).

*'n

By Corollary 3.2, there exist unique m;,,....;, € Mx(k) with

aefTi= Y. dfsess s B

l=n
1<iy<-<i;<n

b = E Xitseurrig Mg iy

=n
1<i|<-<ij<n

Then, the invariant

agrees with a on the versal torsor 7. Hence, the detection principle in the form of
[4, Part I, 12.2] or [6, Thm. 3.7] implies that @ = b, as asserted.

3.3. Invariants of Weyl groups of type G2. Assume here that the base field is of
characteristic not 2 or 3.

The group W(G>) is a semi-direct product of a normal subgroup L of order 3
and a subgroup P ~ (Z/2)? generated by the reflections at two orthogonal roots,
see [1, Chap. VI, §4, No. 13]. Since there is up to conjugacy only one such P,
Proposition 2.3 shows that the restriction map resﬁ,(Gz) is injective. Since the

projection W(G,) >~ P x L — P induces a splitting, we deduce that resﬁ(Gz) is in
fact an isomorphism.

In view of the results for other Weyl groups it is worthwhile to note that a basis for
the invariants can also be expressed in terms of the Stiefel-Whitney invariants to be
introduced in Section 3.6 below. As in Section 5.1 below, we see that the restriction
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of the Stiefel-Whitney classes in degrees 1 and 2 to P correspond to the invariants
X1+ X7 and x1 ». Finally, considering the morphism W(G,) — O; = {1} sending
one of the two classes of reflections to —1 and the other to 1 yields the invariant x;
(or x2).

3.4. Torsor computations. Henceforth, we switch freely between the interpretation
of H!(k, O,) via cocycles on the one hand and via quadratic forms on the other hand.
For this purpose, we recall how to view H 1(k, O,) in terms of non-abelian Galois
cohomology [13]. Let ¢ € Z! (T, O,) be a cocycle. That is, ¢ is a continuous map
from the absolute Galois group I" of a separable closure kg /k to O, (ks) and satisfies
the cocycle condition ¢;; = ¢4 - 0(c;). To construct a quadratic form g, over k, we
first define an action x of I" on k7 viaoxv = ¢ (0 (v)). Then, weletvy, ..., v, € kJ
denote a k basis of the vector space

V' ={vek” :cxv=uvforallo € T} 3.1)

Now, we let g, be the quadratic form whose associated bilinear form b, is determined
by bg.(ei,e;) = (vi,v;), where (-, ) denotes the standard scalar product in k7. In
other words, g, is the restriction to V*I' of the quadratic form associated with the
standard scalar product (-,-). We will come back frequently to the following three
pivotal examples, where V = k2.

Example 3.3. Consider the group homomorphism (Z/2)? — 0,

01 0 -1
€1 — 1 0) €r — 1 0 :
Let (a,8) € (k*/k*%)? be a (Z/2)%-torsor over k. Then, v; = (Va,—/@)",

va = (y/B,/B)" defines a basis of V'*T and the induced bilinear form is the
diagonal form gy gy = (2c, 28).

Example 3.4. Consider the group homomorphism Z /2 — O,

e}—>01
1 1 0/

Let a € k*/k*? be a Z/2-torsor. Applying the above example with 8 = 1, we see
that the induced bilinear form is the diagonal form g() = {2a, 2).

Example 3.5. Consider the group homomorphism (Z/2)? — O,

(01 (01
€1 1 0) € 1 0/

Let (o, B) € (K*/k>?)? be a (Z/2)*-torsor over k. Then, v1 = (1,1)7, vy =
(v/aB, —+/aB)T defines a basis of V*I'. The induced bilinear form is the diagonal
form qd.p) = (2,201;3).
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3.5. An embedding of S2» into O2n. Next, we describe a specific embedding
(Z/2)" — Oon

on the torsor level. For any / < 2" — 1 leth(l) C [0,n — 1] be the position of the bits
in the binary representation. That is,

I = 2 2
ieb(l)

Furthermore, let fs be the flipping the bits at all positions in § C [0,n — 1]. In other
words, fs:[0,2" — 1] - [0,2" —1],

fs() := b7 (B(DAS),

where RAS = (R\ S) U (S \ R) is the symmetric difference. In this notation, the
group homomorphism ¢: (Z/2)"* — San C Oan

¢(Z€s) = fs

sES
induces amap ¢s: H'(k, (Z/2)") — H'(k, Oy), which we now describe explicitly.
Lemma 3.6. Let ey, ..., en_1 € k*/k>2. Then,

$s(€o, ... €n—1) = (2") ® {(—€0) @ (—€1) ® -+ ® (—€n-1)-

Since any two simply transitive actions on [0, 2" — 1] are conjugate in S3», Lemma 3.6
is more useful than it may seem at first.

Proof. Consider a cocycle representation
ceZ (I (Z/2)")

of the torsor (g, . . ., €n—1) € (k*/k*?)". Thatis, the i th component of ¢, equals 1 if
and only if 0 (,/€;) = —./€i. To determine the quadratic form defined by the induced
cocycle o — @(cy), we assert that a basis of the k-vector space V*T from (3.1) is

given by {vy, ..., v2n_1}, where v, has components
(wp)e = (=DPOPONTT /e,
ieb(p)

First, vp, € V*T' since writing ¢, = Y, < €; forsome § = S(o) < [0,n—1] shows
that

0((_1)|b(p)ﬂb(€)l I1 \/e—i)=(_1)|b(p)mbw)|+lb(p)n3| T va = wp)sso-

ieb(p) i€b(p)
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Moreover, to prove the linear independence of the {v,},, we note that

bvp.vp) = Y Wpu(wp)u=2" [] «-

u<2n—1 ieb(p)

Hence, it suffices to show that b(vp,vy) = 0, if p # . By assumption, there is at
leastone i € b(p)Ab(q), sothat pairing any L C [0,n — 1]\ {i} with L U {i} shows
that

bpvg) = [ Ve [] va- Y. (—pb@ntiib@nt

ieb(p) ieb(q) Lglo,n—1]

— l_[ NG Z ((_l)lb(p)ﬂL|+Ib(q)ﬂLl _|_(_1)Ib(p)ﬂL|+|b(4)ﬂLl+l),

ieb(p)  LC[o,n—1]\{i}
Jjeb(q)

vanishes as claimed. O

3.6. Stiefel-Whitney invariants. The total Stiefel-Whitney class is defined by
wy: H(k, 0,) — KM (k)
(@1, an) = [ (1 + {es}),

i<n

where (@1, ..., ay) is the class in H(k, O,) of the diagonal form. They generate the
invariants of the orthogonal group O, with values in k¥ as Serre shows in [4, Part I,
Sect. 17].

Theorem 3.7. Let ko be a field of characteristic not 2. Then, the Stiefel-Whitney
invariants form a basis in the sense of Definition 2.1 of Inv(Oy, k) for all n = 1.

By [4, Rem. 17.4] the product of Stiefel-Whitney classes is given by

-1
wews = {—1}27 CODy 1 ernbe), (3.2)

where b(-) denote the binary representation of Section 3.5.

Example 3.8. Later, we will meet some examples where it is easier to do the comp-
utations with a slight variant of the Stiefel-Whitney classes. Therefore, we introduce
modified Stiefel-Whitney classes 0y € Inv? (0, kM): For even n, we put

Wa(q) == wa((2) ® q)

for all d < n and for odd n, we set inductively wWp = 1 and

Wat1(q) = wa+1((2) ® q) — {2} Wa ().
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Then, we obtain for even rank(g) that

Wg ((2) ® g) = walq) = wa((1) +(2) ® q).

Alternatively, one could also give a more direct definition of modified Stiefel-Whitney
classes not depending on the parity of g by setting Wy (g) as wy(q) if d is odd and
as wy(q) + {2}wg—1(q) if d is even.

Finally, we recall another kind of invariants.

Example 3.9 (Witt-ring invariants). The image of an n-dimensional quadratic form
in the Witt ring G yields an invariant Inv*(O,, W). Since the definition of invariants
only makes use of the functor property, this concept makes sense, even though G
is not a cycle module. Albeit of limited use in the setting of quadratic forms, the
aforementioned invariant becomes a refreshing source of invariants for groups G
embedding into O,. Indeed, for Weyl groups G of type D,,, E7, Eg, we construct
embeddings such that the restrictions become invariants with values in a suitable
power of the fundamental ideal / € W. Since the Milnor morphism

fMiI:k’I\f iy In/In-I-l

n

for} - {an} > {o1) ® - ® (o)

with {a)) := (1, —a) induces an isomorphism between mod 2 Milnor K-theory and
the graded Witt ring [11, Theorem 4.1], we obtain elements in Inv*(G, k¥).

3.7. A technical lemma. The following technical lemma simplifies the computa-
tions of invariants.

Lemma 3.10. Let R be a commutative ring, I a finite index set, M an R-module
and G a finite group acting on I. The operation of G on I induces an operation
of G on the R-module N := @;e; M by permutation of coordinates. Let | =
Iy U T, U« Iy be its orbit decomposition. Then, NC = @;<x N, where fori <k,

N; ::{th(m):meM}gM.
JEI;
Here, 1j: M — N denotes the inclusion along the jth coordinate.

Proof. Since (3 ;; N;)N\N; = {0} and @; <k Ni © N Y hold for every i, it remains
to show that the N; generate N ©. To prove this, note that any x € N can be written

uniquely as
x =Y t(m)
iel
for certain m; € M. We prove by induction on the number of non-zero m; that any
x € NY lies in the module generated by the N;. We may suppose I = [1;|]],
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my # 0 and denote by [, the orbit containing 1. Now, comparing the g(1)th entry
of x and of g.x yields that mg (1) = m for every g € G. In particular, we can split

of a sum
Z tilm;z) = Z tj(my) € Ny
JE€ J€
from x. Applying inductionto x — 3 _ jer, ti(m1) concludes the proof. O

In particular, Lemma 3.10 yields the following orbit decomposition.

Corollary 3.11. Let R, be a commutative, graded ring, I',...,1" be finite index
sets, M, be a graded Ry-module and G a finite group acting on each of the I*. The
operation of G on the | ¢ induces an operation of G on the graded R-module

Ny = Dre<r Dye M*—dg,

where the d; are certain non-negative integers. Let I¢ = I f L 12‘Z e td I,f , be the
orbit decomposition. Then, N® =~ @<, Dis<n, Npi, where for £ < r, i < ny, we
put
(Nf,i)* = { Z "-j(m) S M*—dg} = M*—dg-
jelf

Part I1. Computation of the invariants of irreducible Weyl groups

Throughout this part ko denotes a field of characteristic not 2. When we compute the
invariants of an irreducible Weyl group W = W(X), where X is an irreducible root
system we assume also that the characteristic of k¢ and the order of G are coprime.
We use in the following the description of irreducible root systems given in
Bourbaki [1, PLATES I-VIII] for irreducible root systems of type # G, (recall that
for Weyl groups of type G, we have already computed the invariants in Section 3.3).
We have
»c@Pez1/2 <R
i<n
for an appropriate n. Taking the tensor product ko®z[1/2] we get an embedding
of ¥ into kg, such that all @ € X are anisotropic for the standard scalar product
of kjj. Hence the associated reflections generate a finite subgroup of O, (ko) which is
isomorphic to G. In the following we will identify G with this subgroup of Oy (k).
We provide a family of elements {x;}ic; < Inv(G,k"), forming a basis of
Inv(G, M) for all cycle modules over ky. For this we have to show that given
k € ¥y, and an invariant a € Inv; (G, M), then there exist unique ¢; € My (k) such
that
a = Z resk/ko(x,-)ci.

iel
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To verify this claim, we may assume k = k¢ and let ey, ..., e, denote the standard
basis elements of the ko-vector space k.

If ai,...,a, € X are pairwise orthogonal, then P(ay,...,a,) denotes
the elementary 2-abelian subgroup generated by the corresponding reflections

Says---+8a,- Forl1 <iy <--- <i; < n, we write Xaj ..t for the invariant

.....

see Corollary 3.2 for the definition of the invariant x;, ;.

4. Weyl groups of type A,

The invariants of Weyl groups of type A4, with values in k" are induced by the
Stiefel-Whitney classes {w;};, see [4, Part I, Sect. 25]. The proof carries over
essentially verbatim to invariants with values in cycle modules M, with k}-structure
using the splitting principle in the form of Proposition 2.3 and the computation
of Inv((Z/2)", M) in Corollary 3.2. The result is as follows. Here, we identify
H(k,S,) with the set of isomorphism classes of étale algebras of dimension n
over k, and denote for such an algebra E by g its trace form.

Proposition 4.1. Let n = 1. Then, Inv(S,, M) is completely decomposable with
basis {E — wi(qE)}i<|n/2)-

5. Weyl groups of type B,/C,

First, we note that the Weyl group W(Cy,) is isomorphic to the Weyl group W(B;).
Hence, determining the invariants for W(B,) will also yield the determinants
for W(C,).

5.1. Invariants of B,. First, we consider W(B;), which is isomorphic to the di-
hedral group of order 8. In particular, G := W(B;) = (0,7) € S4 admits the
permutation representation defined by

(1 23 4 (1 2 3 4
O=\23 4 1) "T\3 41 2)

Considering G as orthogonal reflection group over ko yields an embedding
¢:G € O, of algebraic groups over kg given by

N (01
o 1 o) ° 1 0/}
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Now, ¢ determines an action of G on ko[ X, Y] given by
°X=Y, Y=-X, ‘X=Y, 'Y=X

In particular,
ko[X,Y]% = ko[X? + Y2, X2Y?] = koA, B),

where A := X2 + Y2, B := 4X?Y?2. Fix the notation
E =ko(X,Y), K:=ko(X2+7Y?% X2%Y?).
Now, the group G acts freely on the open subscheme
U:=DXY(X -Y)X+7Y))=D(X*Y>(X*>-Y??) C A?

where for a polynomial f, we denote by D(f) € A? the open subset given by f 0.

By [4, Part I, Thm. 12.3] or [6, Thm.3.7], the evaluation at the versal torsor
Spec(E) — Spec(K) yields an injection Inv(G, Myx) — My ynr(U/G). To check
that this map is also surjective, we first compute My o (U/G). An explicit
computation yields

U/G = Spec(kolX,Y, X 2Y 2(X* - Yz)_Z]G)
= Spec(ko[X? + Y2, X?Y?, X 2Y %, (X*-Y*7?))
=~ Spec(ko[4, B, B!, (B — 4*)71)).

To compute My une(U/G), note that V := D(A) € U/G is isomorphic to the
spectrum of

ko[A,B,B~', A7',(B— A®)™!| = ko[A, B',(B)"1, 471, (B'—1)71],

where the isomorphism is induced by mapping B’ to B/A?. Now, by applying
Lemma 3.1 twice and homotopy invariance,

Muune(V) 2 My (ko) ® {B/A* — 1} M1 (ko) ® {A}M—1(ko)
@ {B}M.—1(ko) ® {A}{B/A* — 1}M_5(ko)
@D {AH B} My—2(ko).

M, yne(U/ G) can be computed as the kernel of the boundary

0 = 0y Mu(V) > Mu1(G).
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Thus, for every t € M. (ko),

() =0,
d({B/A* —1}t) = 0({B — 4*}t) = {B}0(t) =0,
d({B}t) = {B}a(t) =0,
I({A}) =
I({AHB/A* — 1)) = a({A}{B A*}t) = {B}0({A}t) = {B}r.
I({AHB}t) = {B}o({A}t) = {B}t.
Writing M, short for M, (k¢), we conclude that My o (U/G) is given by

M, ®{B — A>}M,_ @ {B}M._1 & {AYB(B — A>)}M,_,
>~ M, ®{B— A2 IM,_1 & {BIM,_, & {AHB — A2IM,_,.

It remains to construct invariants mapping to the three non-constant basis elements
of My yne(U/G). Pulling back wy, wa € Inv(O2, k',\,f') along the embedding ¢ gives
invariants in Inv(G, k™) that — by abuse of notation — we again denote by wy, w.
We first compute the value wq(E/K) of wy at the versal torsor £/K constructed
above. To do this, we note that the determinant of ¢ (o ) is —1, while the determinant
of ¢(c') is 1. Now, XY(X? — Y?) € E maps to its negative by each reflection and
is fixed by all the 0. Thus,

wi(E/K) = {X*Y*(X? - Y?)*} = {B(4* - B)}.

Another invariant comes from the embedding G € S4. We may define v; :=
resg;4 (w1). Again, we compute vi(E/K). We note that w; € Inv!(Sy, k") may be
computed as follows. Start with an arbitrary x € H'(k, S4); then

w1(x) = sgn, (x) € H'(k,Z/2) = k*/k>? = K}(k).

The kernel of sgn consists exactly of the elements {id, 7,02, 02t} with o, 7 as above.
Since XY is fixed by this kernel and is mapped to its negative by o, the value of v
at the versal torsor is {X2Y?} = {B}. Consequently, it remains to find an invariant
mapping to the basis {A}{B? — A} of M, ynr(U/G).

Finally, we compute the value of w, € Inv?(G,kY) at E/K. First consider
the elementary abelian 2-subgroup generated by reflections P := (z,t’), where

7/ = o2t. Thus,
0=( ) =% )

Recalling that the action of G on E is defined via ¢, we now consider the versal
P -torsor
E/E®" =ko(X,Y)/ko(X* + Y2, XY).
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Then, 7 € P = Gal(E/EP)actsviat(X) =Y,7(Y) = X and ¢’ viat/(X) = -7,
t/(Y) = —X. Thus, this (Z/2)?-torsor over E¥ is equivalently described by the
pair
(X —Y)%, (X +Y)?) € ((EP)*/(EP)2)",
We conclude that the value of resg4 w, at this P-torsor is
(X = Y)HX + 1Y)} e G (ET).
By the computations above, the value of resg4 (wy) at E/K is of the form

oy + {B — A%}y + {Alas + {BYB(B — 4%)}ay € K} (K)

for some a1 € k¥ (ko), @2, a3 € kY'(ko), a4 € kY (ko). Now, consider the diagram

HY(K,G) —2>KM(K)
resE” (E) l
HY(EP,G) —2~KY(EP)

G
mdP

HY(E?, P).

The square commutes by the definition of invariants. Denote by E € H!(K,G)
the G-torsor E/K and by F € H'(E?, P) the P-torsor E/E¥. Interpreting the
torsors as cocycles yields

ind$ (F) =resE” (E) e HY(E?, G).
Observing that XY is a square in EZ, this means
{(X =Y)’H(X +Y)’} = o1 + {B — A%}z + {A}{A” — Blaa.
Applying the identity {S}{B’} = {B + B'}{—BB'} to the left-hand side gives
{24}{B — A%},

so that we may choose @y = 0, @p = {2}, and ¢4 = 1. We conclude that the
injection Inv(G, Myx) — M, un(U/G) is surjective. This finishes the computation
of Inv(G, M) and we obtain the following.

Proposition 5.1. The invariants Inv(W(B3), M) are completely decomposable with
basis consisting of the invariants {1, vy, w1, wa}.
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We conclude this section with a corollary of the proof.
Corollary 5.2. Let Py = P(e1,e2) and P, = P(ey — ez, e1 + e3). Then,

P
reSpy 3y (V1) = Xfey} + Xes}s

P
resu}(ﬂz)(wl) = X{e;} T X{ex}s

Py

Sy (p,) (W2) = Xiey.ea}s

and
rest? . (v1) =0
w(B)\ 1 T
P
reSW?(Bz)(wl) = X{ej—ep} T Xfe;+er}s

P
resWZ(Bz) (W2) = Xfe,+erser—ea} T 12} (¥(e1—en} T Xer +e2))-

5.2. Invariants of B,. After dealing with the case n = 2, we now compute the
invariants of Weyl groups of type B,, for general n. The root system B, is the disjoint
union

A UA, C R"”,

where Ay ={=%e; : 1<i <n}aretheshortrootsand Ay ={+e; te; : 1<i<j<n}
are the long roots. This root system induces an orthogonal reflection group over any kg
satisfying the above requirements. Furthermore,

W(Bn) = Sy x (Z/2)"
as abstract groups. Put m := [n/2] and fori < m define
a; ;= e3i—1—ep; and b; :=eri_1+ ey;.

For each L. < m the elements of Xy := {a1,b1,...,ar,br,€21+1,€21+2,-.,€n}
are mutually orthogonal. Defining Py, := P(X), we prove by induction on m that

Q(G) = {[Pol.- ... [Pm]}.

The claim is clear for n = 2. In the general case, let P be any maximal elementary
abelian 2-subgroup generated by reflections. First assume that P contains a short
root, say €,. Now, observe that (en)J" N B, = B, —1 and use induction. If P contains
a long root, we may assume this root to be a;. Then, (a;)* N B, = {£b;} U B,_»,
where we consider B,,—» to be embedded in R” using the last # — 2 coordinates. In
particular, we may again use the induction hypothesis.

To determine Inv(B,, M), we introduce additional pieces of notation. We denote
Pp -torsors over a field k by

(a].!ﬁl’"‘!aL’ ﬂLa EZL-{-],---,G;]) (S (kX/kXZ)n-
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From the (Z/2)"-section, we know that Inv(Pr, M) is completely decomposable
with basis {x7}7cp;n. Since this parameterization is inconvenient in the present
setting, we change the index set by putting

A4 :={(A,B,C,E) C[1I; L]’ x 2L + 1;n] :
A, B, C pw. disjoint, |A| + |B| + 2|C| + |E| = d}.
We reindex the basis of Inv(Py,, M) by defining for every (A4, B,C, E) € A‘l{:
x4 p.crH' (k. PL) — K!(k)
(@1, 1. ar, Bro a4ty en) = | [{aad [T (8o} [ [Hoc}Be} [ [ fee-

acA beB ceC ecE

In the same spirit, we also write
P(A,B,C,E) := P({ap}pea U{bglqen Ufar, br}rec U{eskscr).
For d < n, we now construct the specific W(B,)-invariant
ug 1= p*(y) € v (W(By,), M),
where Wy € Inv? (S, k™) denotes the dth modified Stiefel-Whitney class and
p:W(Bp) = Sy x (Z/2)" — S,

is the canonical projection. Then, the map W(B,) — S, sends both sy, , sp, to (2i —1,
2i) and s, tothe neutral element. Letk € 3, and (a1, B1, ..., L, BL. €20 +1,-..,€n)
be a Pp-torsor over k. Using Example 3.5 and {2}{2} = 0, gives that the value of
the total modified Stiefel-Whitney class at this torsor is [ [;<; (1 + {&; B;}). Hence,

P
resyipy ) = ). Yipoo (5.1)
(4,B,2,2)eA?
Next, we construct an invariant v, such that
P
resyip,) (Va) = Z Xg.05.0,E" (5.2)
(2,9,C,E)eAd
To that end, we note that W(B,) embeds into S,, via
onsei —o-(o +n)l_[(i,i + n),
iel iel
where I C [1;n],0 € S, and o + n € Sy, is given by

k itk <n,
k —
n+otk —n) ifk>n.
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We define the modified Stiefel-Whitney invariants g € Inv¥ (S,,, k™) as before and
put
vl 1= resg P (i) € Inv? (W(By), KY)

for d < n. Then, we define v, recursively, by setting vo := 0 and then
Vg = Ué + Z Ud—k V.-
k<d-1

To show that the so-defined invariant satisfies (5.2), we first note that already when
restricting v;, to Pz, we obtain an agreement with the right-hand side of (5.3) up to
mixed lower-order expressions.

Lemma 5.3.
respip (V) = Y XGpcre+ ) UBF Y xipep (63
(2,9,C,E)eA] ksd—1 (4,B,C,E)eAk
Proof. Observe that the map W(B,) — Sz, sends s¢; — (i,i + n) and
Sa; > (20 — 1,20)(2i —14n,2i +n), sp, = i —1,2i +n)(2i,2i —1+n)

Hence, by Lemma 3.6, the composition P;, — W(B,) — Sz, — O, maps a
P -torsor to the quadratic form

(o1, —B1) @ - @ (—arL,—BL) & (2,2¢e2041,...,2,2¢n).

We claim that the total modified Stiefel-Whitney class evaluated at this quadratic
form equals

[T0+ 0t + 83 +edpy) ] (+ia). G4
i<L 2L+1<i<n

To see this, we compute it suffices to check that

w((2) ® (o, B)) = 1 + {~1H{~1} + {aHB}.
To see this, we compute
w((2) ® (—a,—BY) = (1 +{2}) (1 + {2a}) (1 + {28}) (1 + {28} + {—a})
= (1 +{a} + {2Ha}h) (1 + {o} + {28}{~})
=1+ {aHa} + {2He} + {2BH—a}
=1+ {-1Ha} + {-1HB} + {a}{B}.
Thus, translating (5.4) into the new notation, we obtain that

L d—k L
resW(B (V) = Z YpocEt ) -1 Z X4 8cE U

(2,9,C,E)end k<d-1 (4,B,C,E)enk
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In light of Lemma 5.3, to establish (5.2), it remains to understand the product
structure between u 7 and vg. To that end, we restrict the products to Pr .

Lemma 5.4. We have

L L _ A
Z X4,B,0,0 Z X%,%,C.E = Z XA,B,C,E"

(4,B,2,2)eA] (2,2,C,E)er] (4,B,C,E)eA?+/
2ICI+HEI=f
. . L L — {_11ANC|+|BNC|,.L
Proof. First, since X4 B30 X3.0.CE= {—1} X4_C.B—C.C.E’

L L
Z XA4,B,2,2 Z *%,8,C,E

(4,B,2,2)eAY (@,2,C,E)eA]

= Z Z ~1¥*x5 crccr

k=0 (4,B,2,2)eAd

(2,2,C,E)er]
|ANC |+|BNC|=k

= > XiBcE ) > {~1¥*x% cncck

(4,B,C,E)eAlt/ k=1 (4,B,9,2)cA?
2[C|+H|E|=f (2,9,C,E)eA]
|ANC|+|BNC|=k

To show that the second sum vanishes, fix k = 1 and (4’, B’,C,E) € A‘£+f 5,
Then, define

S:={(A,B):(A,B,&,9) e Afand A—C = A'and B—C = B'}
={(AUU,BUV):UVCCadUNV =gand |U|+|V|=k}.
Using this description, we conclude |S| = 2% ('g'). Since k > 1, this is even and we
obtain the desired vanishing of the second sum. O

In the rest of this section, we show that Inv(W(B,), Mx) is completely
decomposable and that the products {¥ 7, Vr }max(0,2d—n)<r<d, d<n Yi€ld a basis.

Before determining the structure of Inv(W(B,), M,), it is helpful to know
something about the image of the restriction maps Inv(W(By,), Mx) — Inv(Pr, M.).
Let d, k, £, L be non-negative integers, L < m. Then, the invariant

d ._ L
PL ke = Y Xipcrk
(4,B,.C,E)eAd
|C|=k,|E|=¢

is non-trivial if and only if there exists (4, B,C, E) € AdL with |C| =k and |E| = £.
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Lemma 5.5. The image of the restriction map \Inv(W(B,), My) — Inv(Pr, M) is
contained in the free submodule with basis

{¢1‘fkg:2k+£stn, 2d —k—8 <2L<n-t}.

Proof. Let us first show that qbd ¢ #0iff2k +€ <d <nand2(d —k—¥£) <

n — £. First, the conditions 2k + E < d and 2L + £ < n are necessary. Furthermore
from the pairwise disjointness of A, B, C, we conclude |A| + |B| + |C| < L. This
is equivalenttod — (2k + €) + k < L. Thus,d —k — £ < L is also necessary. To
check sufficiency, suppose, we are given L, k, £, d satisfying the restrictions. Then,

([;d —£—2k],@,[d —€—2k + 1;d —£— k], 2L + 1;2L + £]) € A4,

Thus, ¢g vt 7 0. Next, we check that the image of the restriction map is indeed

contained in the submodule generated by the qu,f .0 M (ko).
Observe that all of the following elements normalize Py :

{8es;_1~ess_iSesj—es; Hg<ls 1Sei—e; Yigzar+1 and  {se,; hi<t
J J J

Let N, © Nw(s,)(PL) be the subgroup generated by these elements. We claim
that N;, permutes the xﬁ’B’C’E. Applying Se,; _ —e,;_1Sep;—ey; fOri,j < Ltoa
Py -torsor
(a1, B1,....aL, BL, €2041. ... €n)

interchanges o; <> «; and B; <> Bj. Thus, xﬁ’B,C’E maps to xﬁ,,B,’C,’E where
A’/B’/C’ is obtained from A/B/C by applying the transposition (i, j) to the
respective sets. Similarly, we see that swapping the ith and the jth coordinate
for i,j = 2L + 1 maps xﬁ,B’C’E to xff,B,C,E’ where E’ is obtained from E
by applying to it the transposition (i, j). Finally, changing the (2i)th sign maps
X% p.c.g 1O X5 g ¢ p» Where

=(A-{i}))u(BN{i}) and B = (B-{i})U(AN{i}).

That is, if i € A we remove it from A and put it into B and vice versa.
Iteratively applying these operations to an arbitrary (Ao, Bo, Co, Ep) € A‘I{ shows
that its orbit under Ny, equals

{(4,B,C,E) € A : |C| = |Col. |E| = | Eol}.
Now, the lemma follows from Corollary 3.11. d

By Proposition 2.3, the injection Inv(W(B,), My) = [[;<n InV(PL, My) has
its image inside [ [; <, Inv(Py, M,)NL and Lemma 5.5 gives a good description of
this object. However, this map is not surjective. One reason is the following: If an
element (z7 ) of the right hand side comes from a W (B, )-invariant, then certainly
the restrictions of z;, and zy/ to Py, N Py, must coincide. To address this, we prove
the following refined lemma.
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Lemma 5.6. The image of Inv(W(B,,), Mx) = [|1<m InV(PL, My) lies in the sub-
group generated by {s - My_5|(ko) : s € S}, where

S = {( Z ¢i,k,e) :max(0,2d —n) <r<d < n} C 1—[ Inv(Pr, k™.
2k+i=r L L<m

Proof. Let Z € Inv(W(B,), M) be a homogeneous invariant and z = (z); €
[12.<m Inv(PL, M) be the image of Z under the restriction maps. By Lemma 5.5,

z= ( > ¢‘Li,k,sz,d,k,E)L

d.kt

for some my gx¢ € Mu_q(ko), where the sums are over all those d,k, £ such

that ¢¢ , , # 0.
First goal, we show that my, 4 1 ¢ is independent of L in the sense that

M. dxk = ML d kL

if ¢f vy 7 0and ¢Z, we 7 0. We then denote by m k ¢ the common value. Observe
that (4o, Bo, Co, Eo) € A%, N AY, where

(Ao, Bo, Co, Ep) := ([1; d—0-2k),@,[d—€-2k+1;d—L—k],[n—L+ l;n]).
Hence, since z comes from an invariant of W(B,,), |
res;iAOsBO!CO’EO)(ZL) — resgl(“?o,BOsCO’EO) (ZL/).

Comparing coeflicients of x4,,8,,¢,,E,-components on both sides yields that

mr.dkt =ML d k.-
Now, let us have a look at the second obstruction. We want to prove

Mg ke = Md k' 0

. _ . . d d
if 2k + £ = 2k’ + ¢’ and if there exist L, L’ such that @7 jr o #0and @7 ¢, # 0.
It suffices to prove this in the case k' — k = 1. Since there exist L, L' satisfying
qbf, P (,b}f v 7 0, we can choose some L such that ¢g+1,k’,€” ¢z,k,e = 4,

Let y be the restriction of Z to

P([;d —£—2k], @, [L —k + 1; L], 2L + 3; 2L + £]) x W(B),

where B, is embedded via the (2L + 1)th and the (2L + 2)th coordinates. By
Proposition 2.5,
y = Z xﬁ,z’C’EyA,C,E
AC[l;d —£—-2k]

CC[L—k+1;L]
EC[2L+3;2L+{]
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for uniquely determined y4,c,E € Inv*—141=2IC|-|E '(W(Bz), M,). Furthermore, by
the results of Section 5.1,

0) (1a (1b) )
YA,C.E = qu,C,E £ wlmA,(,z,E tvimyc g WMy c g

for uniquely determined

1 15
mff,)c,z € My—|aj-2/c|-|E|(ko), 'ﬂﬂfg,g’mf;,c),g € My—|aj-2/c|-|E|-1(ko)

and

mﬁf’};,g € My aj-2/c|-|E|-2 (ko).

Restricting y further to
P([l;d —£-2k|,2,[L-k+1;L],[2L +1;2L + Z])

and considering the X[1.q_2k—¢],&,[L—k+1;L],[2L+1;2L+¢)-component, Corollary 5.2
yields that

— @
Md k.t = M (1;q——2k],[L—k+1;L],[2L+3;2L+E))"
On the other hand, restricting y to

P([;d —€—2k],@,[L —k + ;L + 1], [2L + 3;2L + £])

and considering the Xx[1;q—2k—¢),@,[L—k+1;L+1],[2L+3;2L+¢]-Component, we obtain
from Corollary 5.2 that

— @
Mkt = (154 —0—20],[L—k+1;L1,[2L+3:2L+8))°
This proves the lemma. O

From Lemma 5.4, we deduce the following decomposition of Inv(W(By,), M.).

Corollary 5.7. The group Inv(W(By,), M,) is completely decomposable with basis

{ud_,vr : max(0,2d —n)<r<d < n}

6. Weyl groups of type F4

The root system Fy is the disjoint union A; U A; U Az € R* with short routes
Ayi={te; Lej:l€i<js4}

and long roots

Az = {:i:ei 1=l s 4}, A3 = {1/2(:|:€1 &= ér % €3 =+ 64)}.



Vol. 95 (2020) Mod two Invariants of Weyl groups 791
Moreover, Q(W(F4)) = {[Po], [P1], [P2]}, where
Po:= Ple1,ez,e3,e4), Py:= Play,b1,e3,e4), Pr:= P(ay,b1,a2,b;).

Indeed, the set of long roots of Fjy is the root system D4, which up to conjugacy
has a unique maximal set of pairwise orthogonal vectors, namely a1, b1, a2, bz. On
the other hand, if we have a maximal set of pairwise orthogonal roots containing
a short root, say e4, then (e4)J- N Fy = Bis. We have determined before that up
to conjugacy Bj contains two maximal sets of pairwise orthogonal roots; namely
{e1,e2,e3} and {a1, b1, e3}.

Furthermore, the inclusion P, C W(B4) € W(F4) shows that the restriction map

Inv(W(Fy), Myx) — Inv(W(Bs), M)
is injective. Recall that Inv(W(By4), M) is a free M, (ko)-module with the basis
{1,u1,v1,u2,v1U1, V2, V2U1, V3, Va}.

Before constructing specific invariants, we first point to another restriction in
degree 2. Since

P _ p —
resW(F4)(v1) = resW?(F4) (v3) =0,

the image of the restriction resg,z( Fa) is contained in the free submodule SC Inv* (P, M)
with basis {1, y1, 2, ¥5, ¥3, Y4}, where

P P P
y1 =resyip (u1), y2 = resw?(m)(uz), Y5 = resu}(m)(vz),
y3 = res}v;,?(&)(vzul), and y4 = reslv:,.z(B4)(v4).

Now, leta € Inv(P,, M) be any invariant which is induced by an invariant from
Inv(W(F4), My). Then, we can find unique mg € My—g(ko), ma,m’ € My (ko)
such that

= Z ( Z xA,B,c)md +( Z XA,B,z)mz +( Z xz,z,C)mlz-

NOW, 51/2(e; +e5+e3+es) lies in the normalizer of P>, asitleavesay, as fixed and swaps
by with —b;. Since a comes from Inv(W(F4), M), the action of §1/2(e; +ey+e3+eq)
leaves a invariant. Hence,

a= Z ( Z XA,B,c)md + (Xfay,a2) + X(b1,ba} T Xay b1} T Xian,bs})M2
d<4 (4,B,C)eAd ,
d#2 + (X(ay b2} + Xiaz,b1}) M-

Comparing coefficients yields m, = m,.
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Thus, the image of the restriction Inv(W(Fy), Mx) — Inv(P2, My) is contained
in the free submodule with basis {1, y1, y2 + ¥5, 3, ya}. Therefore, the image of
the restriction Inv(W(F3), My) — Inv(W(B4), M,) is contained in the free M, (k¢)-
module with basis {1,u1, vi, Uz + v2, V11, V2U1, V3, V4.

Now, we need to construct Fy-invariants which restrict to these elements. First
observe that D4 C F, and that W(F,) stabilizes D4. Thus, any g € W(F4) maps
the simple system S = {e; —e3, 3 — €3, €3 — €4, €3 + €4} to another simple system
S’ € Dy. Since all simple systems are conjugate there exists a unique h € W(Dy)
mapping S’ to S. This procedure induces a permutation of the 3 outer vertices
{e1 — ez2,e3 — eq,e3 + e4} of the Coxeter graph, thereby giving rise to a group
homomorphism y: W(Fs) — Ss.

Then, we define vy := *(}), where w; € Inv(S3,kY) is the first modified
Stiefel-Whitney class. To determine the restriction of vy to P, note that the map
W(F4) — S3 sends W(Dy) to the identity and s, to the transposition (2, 3). Since
Se; = giSes8; 1. where g; € W(Dy) denotes the element switching the 4th and the
ith coordinate (i < 3), we conclude that all s,; are sent to (2, 3). Thus, the value

of resﬁ,’zﬂ)(vl) at the Py -torsor (1, B1,....00, BL,€20+1,...,€4) 18
> el
iz2l+1

The embedding W(F4) C O4 as orthogonal reflection group yields invariants
resg ¥ (wy) € Invd (W(Fy), kM),

where w, € Inv? (04, kV) is the dth unmodified Stiefel-Whitney class. Again, if 2
is not a square in kg, then these invariants do not have a nice form, when restricted
to the Py. Therefore, we change them a little and define invariants ;. The image
of a Pr-torsor (¢t1,...,2L, B1s..., BL, €20 +1,--.,€4) in H'(k, O4) under the map
Pr € W(F4) € O4 may be computed by using Example 3.3 and is given by

(201 281 s sv 5 5 207 5 2BL s €51 405 2 05 Bl Yo

We would like to have

resyip,) @)= ), XimcE-
(A,B,C,E)eAd

Since the restriction of w; to Pr is already given by Z( A,B,C,E)eAl xf; B.C.E» WE
put Wy := w;. Now, ford = 2,

Py, — L L
res g, (w2) = Y. xipcr+ Z {2}x4 B.2,2
(A,B,C,E)eA} (A,B,2,2)eA}
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so that Wy := wp — {2}(w; — v1) has the desired property. The restriction of w3
to Py is

Py — L L
res, (w3) = Z X4 BcCE T E - {24 poE
(A,B,C,E)eA} (A,B,2,E)eA?
|E|=1

so that we set w3 := w3 — {2}(w; — vy)v;. Finally, the restriction of w4 to Py is

P _ L L
res; (ws) = Z X4pcE T Z {2}x4 B.c.E
(A,B,C,E)eA} (A4,B,C,E)eA3
2|C|+|E|=2

so that we set Wy := wq — {2}wa2 (w1 — v1). Furthermore, define
uy 1= wy — v1 € InvH(W(Fy), kY).
Now, we restrict the so-constructed invariants to W(B4). We claim that:

(a) u1, vy € Invi(W(Fy), kM) restrict to uy, vy € Invl(W(Bs),kM);

(b) uyv1, (Wa—u1v1) € Invz(W(F4), kl") restricttou vy, Uz +v2 € Invz(W(B4), k',\f);
and

(€) w1, (W3 — u W3) € Inv3(W(F,), kM) restrict to uqv,, v3.

Finally, W3 € Inv*(W(Fy), kY) restricts to vq € Inv* (W(By),k¥). To prove these
claims, we only need to consider the restrictions to Inv(Pr, k™), where the identities
are clear by construction. Thus, Inv(W(F4), M) is a free M (ko)-module with basis

{1, wy, v1, Wz, Wiv1, W3, Wav1, Wa}.

The construction of the Wy also yields the following result.

Proposition 6.1. Inv(W(Fy), M,) is completely decomposable with basis
{1, w1, v1, W2, V1W1, W3, V1 W2, Wa}.

Remark 6.2. Alternatively, to the approach above, one could also rely on transfer-
restriction arguments to characterize the invariants of W(Bj4), which extend to W (Fy)
as those whose restriction to W(Dy) is fixed under the action of W(F3)/ W(Dy,).

7. Weyl groups of type D,
The root system D, n = 2 consists of the elements

Dp={te Lte;j:1<i<j<n}
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Let m := [n/2], a; := ezi—1 — €2i, and b; := e3i—1 + ez;. By Remark 2.4, this
root system defines an orthogonal reflection group over ko with |Q(W(D,))| = 1.
More precisely, P := P(ay, b1,...,am, by) is amaximal elementary abelian 2-group
generated by reflections. Furthermore, W(D,,) is a subgroup of S,x(Z/2)" = W(B,)
in the precise sense that

W(D,) = {U'HSei €Sy x (Z/2)" : |I] even}.
iel

Remark 7.1. We note that for odd # the invariants of W(D,,) can be deduced from
those of W(B,,), since W(B,) ={x1}xW(D,). For instance, since W(D3) == W(A3),
this gives the invariants for W(B3).

Similarly to the Bj-section, we define
A? = {(A4,B,C) < [1,m])? : A, B, C are pw. disjoint, |A| + |B| + 2|C| = d}
and x4,5,c: H'(k, P) = kY (k)/2
xa,8.c@1,Bro . m Bm) = [ [} [ 480} - [ [HaeHBe}-
a€A beB ceC

As in the Bj-section, we now construct specific invariants. First, for d < m the
group homomorphism p: W(D,) € W(B,) — S, induces the invariant

ug = p*(y) € Inv? (W(Dy), kM)

with resfy, 5 \(Ua) = (4  gyead ¥4,B,2-

Furthermore, from Section 5 we have an embedding W(D,) € W(By,) € Sz,.
Starting with a W(D)-torsor x € H!(k, W(D,)), we may consider its image g, €
H'(k, O,,) induced by the map W(D,,) — Sz, — Oa,. Observe that W(D,) — S»,
sends

Sg; P> (20 —1,2i)(2i =14+ n,2i +n), sp, = 2i—1,2i +n)Q2i,2i —1+n).

4

Thus, starting with a P-torsor (¢y, B1,...,%m, Bm), we may apply Lemma 3.6 to
see that under the composition P — W(D,) — Sz, — O, this torsor maps to

(—a1.—P1) & & (—am.—Bm) (@ (1.1)),

where the expression in parentheses appears only for odd n. We would like to have
an element v € Inv(W(Dy),KY) such that resy, 1, 1(v) is given by

Hl(k, P) - kM(k)
(o1, B1-.-.Qm. Bm) — (1 ¥ {C‘l}{ﬁl}) (1 =} {am}{ﬂm})
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To achieve this goal, we proceed recursively as in Section 5. First, we compute the
value of the total Stiefel-Whitney class w € Inv(Q4,kY) at a 2-fold Pfister form:

w({—o, —B)) = (1 + {a}) (1 + {BY) (1 + {o} + {B})
=1+ {-1H{a} + {-1}{B} + {a}{B}.

Hence, setting v’ := resW(D") w), we obtain as in Lemma 5.3 that
g 02n

resﬁ,(Dn)(v(’i) = Z xé,z,c + Z {—1y4-* Z XA,B,C-

(2,2,C)eAd k<d—1 (A,B,C)eAk

Hence, proceeding recursively by setting v := 0 and then

Vg = U;v + Z Ug—kVE
k<sd—-1

yields the desired invariant. Moreover, resf;,( py(Vd) = Z(Q,Q,C)e Ad X@,2,c and,
by Lemma 5.4,

resf;(D,,)(ud)feSﬁ/(Dn)(ve) = E XA,B,C- (7.1)
(A,B,C)EA‘H'e
2|C|=e

Now, suppose that n = 2m is even. In this case, we need to construct one further
invariant. Since W(D,) = S, x (Z/2)"!, we have an embedding S, € W(D;)
such that |W(D,)/S.| = 2"~!. More precisely, |W(D,)/S,| consists of the cosets
g1Sn, where g5 := [[;cs Se; and where I C [1;n] has even cardinality. The left
action of W(D,) on these cosets induces a map

W(Dn) b Szn—l — 02n—1.

Thus, any k € ¥y, and y € H ' (k, W(D,)) induce aquadratic form g, € H' (k, Oyn—1)
and thereby an invariant w € Inv(W (D), W). Infact, we claim that w € Inv(W(D,),I™),
where I(k) C W (k) is the fundamental ideal.

To prove this, we start by showing that resf;,( D) (w) € Inv(P, I™). Itis convenient
to understand the map W(D,) — S,»—1 on the subgroup P.

Lemma 7.2. Let L = {{2i — 1,2i}:i < m} and define f:21t" — 2L,
f):={{2i —1,2i}: either2i — 1 € I or2i € I, but not both}.

Then,

(1) The action of P on W(Dy)/Sy has the 2™~ orbits Og := {g1Sn | f(I) = $},
gL, |Z|even.
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(2) Let Og be an arbitrary orbit from (1). Put Ag := {i <m :{2i —1,2i} € ¢}
and Bg = {i <m :{2i —1,2i} & §}. Then, P({ai}ieBy U {b;}jeay) acts
trivially on Og and the action of Py := P({ai}ieay U {bj}jeBy) on Og is
simply transitive.

Proof. (1) LetI C [1;n]. If{2i —1,2i} ¢ f(I), then
Sa;81 = &ISa; and  S$p, &1 = ZIA{2i-1,2i}5a;»
where A is the symmetric difference. On the other hand, if {2i —1,2i} € f(/), then
Sa; 81 = 8IA{i-1,2i}8a; and  Sp, &1 = 815a; .
(2) By the proof of part (1), P({a;}ieB, U{b;}jea,) acts trivially on Og. Since
|P({aiticag U{b;}jeny ) = 2" = |0y],

assertion (2) follows after verifying that P({a; };e Ag U {bj}je By) acts freely on Oy.
So suppose, I C [l;n], M € Ag and N C By is such that f(/) = ¢ and
g = [liem Sa; *1en Sp; fixes g1.Sy. The proof of part (1) gives that

ggISn = gI’Sn,

where
I' = IA( Ujemun {2i — 1,2i}).

Observing that I’ = I if and only if M = N = @ concludes the proof. O
Using Lemma 7.2,.We conclude the following. Consider an arbitrary
y=(a1,....0m B1....,Bm) € H'(k, P)
and let gy € H!(k, Oyn—1) be the quadratic form induced by the composition
P — W(Dy) = Spn—1 — Ogn—1.

The decomposition of the action of P into orbits @4 induces a decomposition of g,
as gy = ®gqg. More precisely, the action of P on Oy induces a map P — Sym
and qg is defined to be the image of y € H 1(k, P) under the composition

P — Szm —> Ozm.

By Lemma 7.2, this composition factors through the projection P — Pg. Now, by
Lemma 3.6, its remark and Lemma 7.2,

g3 = 2" ® Q) (~a) ® Q) (-B;). (7.2)

icdy j€By

Thus, the image of gy =@ g¢qgg in W(k) liesin /™ (k), so that resf;,(Dn)(w) €lnv(P, I™).
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Now, we pass from P to W(D,). First, @ induces an invariant
@ € IO (W(Dy), I*/1*T1)

through the projection W — (I*/I1*t1)q = W/I. Since the image of resﬁ,( D,,)(“’)

lies in I™ C I, we conclude that res%( D, (w) = 0. As P is up to conjugation the
only maximal elementary abelian 2-subgroup of W(D,) generated by reflections,
Corollary 2.3 gives that @ = 0 € IvO(W(D,,), I*/I**1),ie., w € Inv(W(Dy), I).
Iterating this procedure m times shows that w € Inv(W(D), I™).

By Example 3.9, there exists an invariant e,;: I (k) — kY (k) satisfying

em({e1) ® - ® (am)) = [ [{ou}. (7.3)
i<m
Then,
em(y) = em((2") ® (D)) + (=1} Y ua—1-kv
k<d—1
defines an element of Inv”(W(D,),k") and, in the vein of Lemma 5.3, we now
determine its restriction to P.

Lemma 7.3.

(A,B,@)eA™
|A| even

Proof. First, by identity (7.1), it suffices to show that the restriction of the invariant
e, (y) := en((2™) ® w(y)) to P is given by

Y. xases+{-1} ) xasc (7.5)
(A,B,@)eA™ (4,B,C)eA”_,
|A| even

Then, by identities (7.2) and (7.3), evaluating res{;,( D) (ey,) at the torsor

@1, %ms B1y---, Bm) € H' (K, P)

gives that
Yo [[e[[83=). DUVl [ [ €853
(A,B,@)eA™micA JEB (A,B,@)eAm UCA ieU JevV
| Al even |A|even VCB
=Y Nyy{-1" VI T el TT18)3-
,VC[1,m] ieU jev
nV=g
where

Nyyv:={Ac[Il,m]:ADU, ANV = @,|A| even}|.
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To conclude the proof, we distinguish on the value of |U| + |V|. First, the
contributions coming from |U |+ |V | = m give precisely the leading-order expression
in (7.5). Next, suppose that |[U| + |V| = m —k with k = 1. Then, Ny,y = 2*~1,
so that the corresponding contribution vanishes mod 2 if and only if ¥ = 1. Now,
we conclude the proof by noting that the contributions for k = 1 yield precisely the
summation expression in (7.5). ]

Now, we derive a central set of constraints for the image of the restriction map
Inv(W(Dy), Myx) — Inv(P, M,). Ford <nandi < [d/2] put

qb,d = Z XA,B,C € |an(P,klr)

(4,B,C)eA
IC|=i

and Y1 1= ) (4,B,2) XA,B,2-

|A| even
Lemma 7.4, The image of the restriction map Inv(W(D,), Mi) — Inv(P, My) is
contained in the free M, (kq)-module with basis

S ={¢f :d <n, max(0,d —m) <i <[d/2]} UR,
where R = @, if n is odd and R = {y11}, if n is even.

Proof. Arguing as in the B,-section shows that all elements of S are non-zero.
Furthermore, both se,; | —e,;_|Ses;—e,; @nd Sey; | Se,;_, Normalize P.

Letus denote by Ny, No € N(P)the subgroups generated by the first, respectively
second kind of elements and let us denote by N the subgroup generated by Ny and N,.
At the torsor level, conjugation by the first kind of elements swaps o; <> «; and
Bi <> Bj. Thus for (4, B,C) € A, the invariant X4,B,c Mmaps to x4/ g/ cr, where

A =(i,j)A, B =(,j)B, and C'=(,j)C.

On the other hand, conjugation by the second kind of elements swaps o; <> B; and
aj < B;. Thus, it maps x4, B,c to x4’,p’,c, where

A=(A-{i,j)u(Bn{i,j}) ad B =(B-{i,j})u(An{j}).

That is, if i € A, we remove it from A and put it into B and vice versa; then we do
the same for j. Thus, N acts on Inv(P, k¥) by permuting the x4 g ¢ and hence we
can apply Corollary 3.11.

In the next step, we determine the orbit of x4, g,,c, under N for an arbitrary
(Ao, By, Co) € A?. First, suppose that # is odd or that Cy # @ or that (n = 2m is
even and d < m). Then, we claim that the orbit of x 4, 8,,c, under N, is given by

{xa,8,co: (A, B,Co) € A4, AU B = 4q U Bo}.
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It suffices to show that for any a € Ap, there exists an element of N, mapping
X 40,B0,Co 10 XAg—{a},BoUla},Co- AS soon as this is proven, one observes that the
symmetric statement with b € By also holds; iterating these operations, we indeed
get the claimed orbit. For n odd, se,,_,Se, maps x4, By, Co tO XAy—{a},ByuUia},Co-
If Co # @ choose ¢ € Cp; then Se,,_, Sep._, MAPS X 4y, By,Co 1O X Ag—{a}, BoUia},Co
Finally, if » = 2m is even and d < m, then there exists i € [1;m] such that i ¢
ApU BgUC, and the element s, _, Se,;_, does the trick. Thus, the orbit of x 4, B,,c,
under N, equals

{xa,B,co : (A, B,Co) € A%, AU B = Ao U By}.
Similarly, for any (A1, B, C1) € A the orbit of X4,,B,,c; under N equals
{xapc:(4,B.C)e A A=Al |B|=|Bi. [C|=I|Cl}.
Combining these results, the orbit of x 4,, B,,c, under N is given by
{xa,8.c : (4, B,C) € AY, |C| = |Col}.

Finally, let Co = @, n = 2m be even and d = m. Then, the orbit of x4,, 5,2
under N, equals

{xa,8,5: (4, B,@) € AY, AUB = AgU By, |B| —|Bo| is even}.
Using that for any (A, B;,Cy) € A9 the orbit of X4,,B;,c, under Ny is given by
{xapc 1 (A.B.C) € A%, |A|=|41|, |B| = |By]. |C| = |Cyl},
we see that the orbit of x4, B,z under N is
{xa,B2 (A, B,@) € A%, |B|—|Bol is even}.
Hence, applying Corollary 3.11 concludes the proof. (]
In particular, as Lemma 5.4 gives that

res{;/(pn)(ud—inZi) = ¢:d
and as
I’eSﬁ/(DH)(em) = Y1,
we obtain the following result.
Corollary 7.5. Inv(W(D,), My) is completely decomposable with basis

{Ua—ivai 1d <n,max(0,d —m) <i <[d/2]} UR,
where R = @ for odd n and R = {ey, } for even n.

Remark 7.6. A relation between W(B,) and W(D,,) explains why in Corollary 7.5,
we only see vy with even d. Indeed, the kernel of the determinant of the 2n-
dimensional representation of W(B,) contains W(D,). Since for odd d, all the
W(By)-invariants vy are divisible by vy and since v; is vanishing, we deduce that
they all reduce to 0 on W(D,,).
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8. Weyl groups of type E¢, E7,and Eg

8.1. Type E¢. Up to conjugacy, P := P(ay,bi1,a2,by) is the unique maximal
elementary abelian subgroup generated by reflections in W(E7). Since the
injection Inv(W(Eg), Mx) — Inv(P, M,) factors through Inv(W(Ds), M), the map
Inv(W(Esg), My) — Inv(W(Ds), M) is injective and a basis of Inv(W(Ds), M) is
given by {1, uq, uo, V2, VU7, U4}.

So let a € Inv(P, M,) be an invariant which comes from a W(Eg)-invariant.
Since the inclusion P C W(Eg) factors through W(Ds) € W(Eg), a decomposes
uniquely as

azz Z X4,B,cMg + Z XA,B,@M2 + Z X@,3,cMy

d<4 (4,B,C)eAd (4,B,2)EA2 (2,2,C)eA2
d#2
for certain mg € My—4(ko), ma,m5 € My_» (ko). Now, the element

8= S%(e1 —e2—e3—e4—e5—e6—e7+eg)s%(—e1 +ex+e3t+es—es—ec—e7+eg) € W(Es)
lies in the normalizer of P, since

-1 = = -
85a;8 ~ = Sby» 85h & = Sby» 85a8 T Saz» 85h,8& = Say-

The induced action of g on a P-torsor (a1, @2, B1, B2) is thus given by swapping
ay <> B2, while leaving a5, 81 fixed. Therefore, applying g to the invariant a yields

Y Y xamcmat Y. Xaeym2 + (Xayaz) + Xibyb2)) M)
d<4 (A,B,C)EAd i,je{1,2}
d#2

Since a comes from an invariant of W(Eg), it stays invariant under g and comparing
coefficients, we conclude that the image of the restriction Inv(W(E¢), Mx) —
Inv(W(Ds5s), M) lies in the free submodule with basis

{1,u1,uz + va, V2u1, Va}.

The embedding of W(Eg) in Og as orthogonal reflection group gives rise to the
invariants resg;EG)(u'?&) € Inv?(0g, kM), which we again denote by wy. For any
k € Fi, and (a1, B1, a2, B2) € (k*/k**)*, the map P — W(Eg) < Og induces
the quadratic form

(2&1, 2,61, 2&2,2ﬁ2, 1, 1, 1, 1)

Thus, the total modified Stiefel-Whitney class evaluated at this torsor equals

(1+ e }) (1 + {e2}) (1 + {B1)( + {B2}).
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Now,

€Sty poy (1) = respy p (1), 1esfyp. (U2 + v2) = resjy gy ({2),

resfy(ps) (V2U1) = resyy g (W3), STy sy (Va) = reSfy g, (Wa).

Hence, {1 }4<4 form a basis of Inv(W(Esg), M) as M, (ko)-module.

8.2. Type E5. Up to conjugacy, P := P(a1,b1,az,ba,as,b3,a4) is the unique
maximal elementary abelian subgroup generated by reflections in W(E7). Looking
at the root systems, we see that there is an inclusion W{(Dg) X (sq,) S W(E7).
Invoking the same factorization argument as before, the restriction map

Inv(W(E7), My) — Inv(W(De) X (Sa,), Mx)
is injective. We first recall that Inv(W(Ds) X (s4,), Mx) is a free My (ko)-module
with basis:

0) 1

(1) w1, xa4}

(2) u2,v2,U1X(gy)

(3) (u3 —e3),€3,U1V2, UaX{g,}, V2 X{a,}

(4) u2v2,va, (U3 — €3)X(a,}, €3X (a4}, U1V2X{a,}
(5) vau1, U2V2X(q,}, VaX{ay}

(6) v6, Val1X{qy}

(7) veX{a,}-

Defining g := S% (e1—ex2—e3—es—es5—es—e7 +eg)® % (—e1+ex+ez+es—es—eg—e7+eg) € W(E7)
as in the Eg-case yields that

4 = =1 —
8%5aq,8 = Spy, 85,8 =5p;» E&S%a- 8 = Saz,» 85,8 = Saq1

85038 " = Suz 85538 = Say 85248 = Sbs-
The action of g on a P-torsor (a1, B1, ..., a3, B3, aq) € (k*/k*?)7 is thus given by
swapping a1 <> Ba, B3 <> a4 while leaving B1, o2, 3 fixed. Arguing just as in the

Eg-case, we see that the image of Inv(W(E7), Mx) — Inv(W(Dg) X (s4,), Mx) lies
in the free M, (ko)-module with basis

0) 1
(1) U + X{as}
(2) v2 +uz +uU1X{ay)

(3) urva + (U3 —€3) + UzX(g,}, €3 + VaX{g,}
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(4) vg + (U3 — €3)X(q,), U2V2 + UV2X (g} + €3X{ay}

(5) vaxig,y + UaV2X{q,} + VaUr

(0) vaU1X{a,} + V6

(7) v6X{ay)-

Now, we provide specific W(E7)-invariants. First, the embedding W(E7) C

gives us invariants resZéEﬂ (W) € Inv® (W(E7), k), which we again denote by y.
Then,

1S3y (57 (1) = 188D (s, (U1 + Xfas}):

1€S3y (5, (W2) = 188y ) (s, (M2 T V2 + U1 X(ay}),

reS{;/(E7)(UT3) = resﬁ/(pé)x(sa )(ua + ULV + U2X{q,) T sz{a4}),
resiy (g, (Wa) = resW(Dﬁ)x(Sa y (U202 + va + UsX(g,) + U1V2X(q,}),
reSW(E y(Ws) = resW(Dﬁ)x )(”4"1 + VaX(a,y + U2V2X(a,}).
resW(E ) (We) = resW(DG)X(S )(vs + VaU1X{g,}),

r‘95W(1»:7)(w7) reSW(Dé)x(sa4)( U6X{ay})-

So we still lack invariants in degree 3 and 4. To construct the missing invariant
in degree 3, we mimic the construction of the invariant e,, in the D,-section. Let
U = S¢ x (sq,) € W(E7) be the subgroup generated by the reflections at

181 + €, €3 — €3,€3 — €4, n, = €5,85 — €, €7 — €}

Then, [U\W(E7)| = 2016 and we obtain a map W(E7) — S2016 = O2016- To be
more precise, there is a right action of W(E7) on the right cosets U\W(E7) given
by right multiplication. This induces an anti-homomorphism W(E7) — Sz016 and
precomposing this map with g > g~!, we obtain the desired homomorphism. We
need the following lemma which tells us that we are in a situation which is quite
similar to the D,-case:

Lemma8.1. Letk € Fy, and y € H'(k, P) be a P-torsor. Let qy, be the quadratic
form induced by y under the composition

P — W(E7) = S2016 = O2016-
Then, the image of q, in W (k) is contained in I3 (k).
Proof. This can be checked by a computational algebra system, see the appendix. [

We now argue similarly to the D,-case. In concrete terms, if y is a W(E7)-torsor,
and ¢y is the quadratic form induced by y under the composition

W(E7) = S2016 = O201s,
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then the image of ¢y in W(k) is contained in /> (k) and we define the invariant

£HO) = e3((2%) ® qy). (8.1)

In the D,-case, namely in Lemma 7.3, we could compute the restriction of the
invariant e,, to the maximal elementary abelian 2-subgroup explicitly. In principle,
this would also be possible in the present setting. However, the computations would
be substantially more involved. Therefore, we provide a more conceptual level
argument. To that end, we recall from Section 7 that if g € W(E7) is contained in
the normalizer Ny (g,)(P) of P in W(E7), then g acts both on the invariants

{X4,8,c}a.B.Crene € IV (P, M)

as well as on the indexing set A¢.

Lemma 8.2. Letd < 7 and g € Ny g,y (P). Also, let a € Inv? (W(E7),K¥) be an
invariant and represent its restriction to Inve (P, kM) as

res%(Eﬂ(a) = Z Z mrxy, (8.2)

£<d JeAt
for certain coefficients my ek%‘_l II(kO)' Then, my=mg ) forall£<d and I € AL,

Proof. First, since the restriction is invariant under the action of g,

Z Z (mr —mgn))x1 = 0. (8.3)

{<d Jepd—¢

Now, suppose that the assertion of the lemma was false, and choose a counterexample
[* € A*" with maximal £*. Then, we first evaluate both sides of (8.2) at the function
field E = k()(Al, Bi,...,As, B3, A4) in the indeterminates A, B1,..., A3, B3, A4
corresponding to the roots in P, and then apply the Milnor residue maps
corresponding to the indeterminates associated with the index set I*. Since £*
was chosen to be maximal, the identity (8.3) reduces to m; — mg ;) = 0, which
concludes the proof. O

In words, just as in Corollary 3.11, when representing the restrictions of invariants
as in (8.2), then basis elements in the same orbit share the same coeflicient.

In particular, we have seen above that in degree 1 and 2 all basis elements are in
a single orbit and are therefore the restriction of the corresponding modified Stiefel-
Whitney classes. Thus, applying Lemma 8.2 witha = f;, there existmy € k'g'_ ¢(ko),
£e{0,1,2}andmu,gc €Z/2,(A,B,C) € A3 such that

P i "
reSW(E-,)(fg,’) = Z MA,B,CXA,B,C + ngreSW(E7)(wg).
(4,B,C)eA3 £<2
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Then, proceeding as in the definition of ¢, in Section 7, we define an invariant
f3 € Inv3(W(E7),kY) by stripping of the mixed terms from f;. That is,

fi=f=) myiy.
t<2

In the appendix, we expound on how a computational algebra system shows that

reSiy(£,)(f3) = 188y b5, (H1V2 + U3 — €3 + UaX(q,). (8.4)

Finally, we can proceed in a similar fashion in order to remove the mixed terms in
the product expression.

(U1 + Xqa4)) (M1V2 + (U3 — €3) + UzX(g,})-

Thus, Inv(W(E7), M) is completely decomposable with basis {wy }4<7U{ f3, fsW1}.

8.3. Type Eg. Uptoconjugacy, P := P(ay, b1, a2, b2,as, bs,as, by) is the unique
maximal elementary abelian subgroup generated by reflections in W(Eg). By the
same arguments as in the Eg/ E7-case, we obtain that the restriction map

Inv(W(Es), My) — Inv(W(Dsg), M)

is injective. We first recall that Inv(W(Dg), M,) is a free M, (ko)-module with the
basis

{1, Uy, Uz, V2, U3, ValU1, €4, Vs, (Ug — €4), V2U2, VoU3, ValU], ValU2, Vs, V6l 1, Us}-

Again, we define g € W(Eg) as in the E¢ or E7-case and check that it normalizes P:
850,8 " =Sby 85,8 =5b, £54,8 ' =5ay 855,8 ' =S5ay,
85438 =Say 85038 ' = Sas 858 ' =Sy, 86,8 = Su,.

The action of g on a P-torsor (o1, 81,2, B2, a3, B3, s, Bs) is thus given by

swapping @1 <> B2, B3 <> a4 while leaving 81, a2, a3, B4 fixed. Again, applying

the same kind of arguments as in the E¢-case, we see that the image of the restriction
map Inv(W(Eg), Mx) — Inv(W(Dg), M) is contained in the free submodule with
basis

{l,ul,uz + vy, Uz + UoU, €4 + Vg, (Ug — €4) + ValUs,
VU3 + V4U1, V4U2 + Vg, VU1, US}-
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We need to construct W(Eg)-invariants mapping to these basis elements. On the
one hand, the inclusion W(Eg) C Og gives modified Stiefel-Whitney classes Wy €
Inv¢ (W(Eg),kM). Again,

resﬁ,(Es)(z}Tl) = resﬁ,ws)(ul), resﬁ,(Es)({J's) = resﬁws)(vzm + vauy),
resﬁ,(ES)(&Tz) = resﬁ(Ds)(uz + v2), resf;,(Es)(z%) = resQ(Ds)(muz + ve),
restygg) (W3) = resiy pgy U3 +u1v2), eSiygg) (W7) = respy pg)(vett1),
rest},(Eg)(u’)i) = resﬁ,(Ds)(u,; + uavz + v4), resﬁ,(Es)(uTg;) = resv’},(Ds)(vg).

The situation is very similar to the E7-case except that now, we miss a basis invariant
in degree 4. Let U C W(Ejg) be the subgroup generated by the reflections at

{91 + ez,63 —e€3,€3 —e4,84 — 5,85 — €6,86 — €7,€7 — 88}-

By observing that U =~ S or by using a computational algebra software, we conclude
|[U\W(Eg)| = 17280. As in the E7-case, we obtain a map

W(Eg) — Si7280 — O17280-

Again, we need the following lemma.

Lemma8.3. Letk € Fyyandy € H 1(k, P) be a P-torsor. Let qy be the quadratic
form induced by y under the composition

P — W(Eg) — S17280 = O17280.
Then, the image of qy in W(k) is contained in I*(k).

Proof. Again, this can be checked by a computational algebra software, see the
appendix. a

As in the D,-case, we obtain from this an invariant f3 € Inv*(W(Es), kM). More
precisely, if y is a W(Eg)-torsor and gy is the quadratic form induced by y under the
composition

W(Eg) — S17280 = 017280,

then the image of g, in W(k) is contained in I*(k) and we define f(y) := es(qy).
We then proceed as in the E7-case and set

for= fi=) miy
<3
for suitable my, € k%" (4 — £) in order to strip off the mixed contributions from f.
The restriction of f4 to P is determined through a computational algebra system,
see the appendix. The result is res{;,( Dg)(v2”2 + (u4 — e4)). Thus, we conclude that
Inv(W(Eg), M) is completely decomposable with basis { f4} U {Wg}a<s-
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A. Excerpts from a letter by J.-P. Serre

[. .. ] Hence, the only technical point which remains is the “splitting principle”: if the
restrictions of an invariant to every cube is 0, the invariant is 0. In your text with Gille,
you prove that result under the restrictive condition that the characteristic p does not
divide the order |G| of the group G. The proof you give (which is basically the same
as in my UCLA lectures) is based on the fact that the polynomial invariants of G (in
its natural representation) make up a polynomial algebra; in geometric language, the
quotient Aff” /G is isomorphic to Aff”. This is OK when p does not divide |G|,
but it is also true in many other cases. For instance, it is true for all p (# 2) for the
classical types (provided, for type A4,, that we choose for lattice the natural lattice
for GL,+1, namely Z"*1). For types Ga, Fy, Eg, E7, it is true if p > 3 and for Eg
it is true for p > 5: this is not easy to prove, but it has been known to topologists
since the 1950’s (because the question is related to the determination of the mod p
cohomology of the corresponding compact Lie groups). When I started working on
these questions, I found natural to have to exclude, for instance, the characteristics 3
and 5 for Eg. Itis only a few years ago that I realized that even these small restrictions
are unnecessary: the splitting principle holds for every p > 2.

I have sketched the proof in my Oberwolfach report: take for instance the
case of Eg; the group G = W(E3) contains W(Dsg) as a subgroup of odd index,
namely 135; moreover, the reflections of W(Dyg) are also reflections of W(Eg); hence
every cube of W(Dg) is a cube of W(Ejy); if a cohomological invariant of W(Eg)
gives O over every cube, its restriction to W(Dg) has the same property, hence is 0
because Dyg is a classical type; since the index of W(Dyg) is odd, then this invariant
is 0. It is remarkable that a similar proof works in every other case. [...]

B. Computations for E7 and Eg

For the computations involving E7 and Ejg, we use the computational algebra system
GAP and the GAP-package CHEVIE [5]. The complete source code used for the proof of
Lemmas 8.1 and 8.3 together with detailed instructions on how to reproduce the results
are provided on the author’s GitHub page: https://github.com/Christian-
Hirsch/orbit-e78.

B.1. Computations concerning W(E7). The proof of Lemma 8.1 requires detailed
information on the action of P on U\W(E7). We analyze this action, via the
procedure fullCheck(7, U, P).

First, fullCheck(7, U, P) computes the action of P on U\W(E7) and
also its orbits @q,...,0,. Then, for each orbit @, it determines a subset
Ar C {al,bl,az,bz,a3,b3,a4}, such that P({al,b1,a2,b2,a3,b3,a4} — Ak) acts
trivially on @y and such that P(Ag) acts simply transitively on O. A priori, there is



Vol. 95 (2020) Mod two Invariants of Weyl groups 807

no reason that such a subset should exist; however — as checked by the program — it
exists in the case we are considering. The return value of the procedure fullCheck
is an array whose kth entry is the set Ax. Inspecting the return value reveals that
each Ay consists of at least 3 elements and that the subsets consisting of 3 elements
have the desired form.

More precisely, to call fullCheck(7, U, P), we need to determine the indices
of the roots generating U and P. In the following, the roots are expressed as linear
combinations of the simple system of roots given by

1
vi=s(e1—ex—e3—es—es—es—e7+eg), vz =e1+ e,
V] = €j—1 —€j—2, 3<i<T.

Additionally,

by = vz + v3 + 2v4 + vs,
by = vy + v3 + 2v4 + 2v5 + 2vg + V7,
—a4 = 2v1 + 2v3 + 3v3 + 4vg + 3vs 4+ 2v6 + V7.

We claim that U and P are represented by the indices [2, 4,5, 6,7, 63] and [3, 2, 5, 28,
7,49, 63], respectively. This can be checked by printing the basis representation of
the E7 roots: gap>p: =[3,2,5,28,7,49,63 ];

gap> for u in p do Print(CoxeterGroup("E", 7).roots[u]);Print("\ n");od;
[0,0,1,0,0,0,0]

[0,1,0,0,0,0,0]
[0,0,0,0,1,0,0]
[0,1,1,2,1,0,0]
[0,0,0,0,0,0,1]
[6:1,1,2,2,2:1]

[2,2,3,4,3,2,1]
We can now call the fullCheck-procedure.
gap> Aks: = fullCheck(7, [2, 4, 5,6, 7, 63], [3, 2, 5, 28, 7, 49, 63]);

Verifying that all { A }x<, consist of at least 3 elements can be achieved via the
command

gap> for Ak in Aks do if Length(Ak)<3 then Print("Fail");fi;od;
To see that those Ay with |Ax| = 3 correspond precisely to the elements

{(4,B,C) € A3:|C| =1} U{(4, B, D) € Az : |A| odd}
U{(4, B, %,as) : (4, B,?) € A},

we use the e7Correct-procedure. It checks that the { A }z <, do not contain elements
which are not in the claimed set above. Since there are precisely 28 Az with
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3 elements, which is precisely the cardinality of the above set, this reasoning yields
the claimed description.

gap> Y: = Filtered(Aks, Ak-> Length(Ak)<4);
gap> e7Correct(Y);

B.2. Computations concerning W(Eg). Since the arguments are very similar to
the E7-case, we only explain the most important changes. First, we consider the
maximal elementary abelian subgroup generated by reflections

P = P(a1,b1,a2,b3,a3,b3,a4,b4)
and the subgroup
U = {SergezsVes—ps s VegmparSes—eanPes—eags Neg—ersSor—eg):
In addition to the computations provided in Appendix B.1, we note that
by = 2vy + 3vy + 4v3 + 6v4 + 5v5 + 4vg + 3v7 + 2vg.

Then, P and U are represented by the indices [3, 2, 5, 32,7, 61, 97,120]and [2, 4, 5, 6,
7,8, 97]:

gap> a: =[3,2,5,32,7,61, 97, 120];

[3,2,5,32,7,61,97,120]

gap> for u in a do Print(CoxeterGroup("E", 8).roots[u]); Print("\ n"); od;
[0,8:1,0:0,0,0,0]

[0,1,0,0,0,0,0,0]

[0,0,0,0,1,0,0,0]
[0,1,1,2,1,0,0,0]
[0,0,0,0,0,0,1,0]
L0 14,2 2, 2,1, 0]
[2,2,3,4,3,2,1,0]

[2’3’4’6’5’4’3’2]

To understand the orbit structure, we proceed as in the E7-case:
gap> Aks: = fullCheck(8, [2, 4, 5, 6,7, 8,971, [3, 2,5, 32,7, 61, 97, 120]);
gap> for Ak in Aks do if Length(Ak)<4 then Print("Fail");fi;od;
gap> Y: = Filtered(Aks, Ak->Length(Ak)<5);
gap> e8Correct(Y);
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