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On Borel Anosov representations in even dimensions

Konstantinos Tsouvalas

Abstract. We prove that a word hyperbolic group which admits a P>, 1-Anosov representation
into PGL(4¢g + 2, R) contains a finite-index subgroup which is either free or a surface group.
As a consequence, we give an affirmative answer to Sambarino’s question for Borel Anosov
representations into SL(4q + 2, R).
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1. Introduction

In this note, we address the following question of Andrés Sambarino and provide a
positive answer when d = 4¢ + 2 for some ¢ € N.

Sambarino’s Question. Suppose that 1" is a torsion free word hyperbolic group
which admits a Borel Anosov representation into SL(d, R). Is I necessarily free or
a surface group?

Anosov representations of fundamental groups of closed negatively curved
Riemannian manifolds were introduced by Labourie [19] in his study of the
Hitchin component. Guichard—Wienhard extended Labourie’s definition for general
word hyperbolic groups in [14]. Anosov representations define discrete subgroups
of real reductive Lie groups which generalize convex cocompact subgroups of rank
one Lie groups. A representation p:I' — GL(d,R) is called Px-Anosov, where
1<k < %, if it is Anosov with respect to the pair of opposite parabolic subgroups of
GL(d, R) defined as the stabilizers of a k-plane and a complementary (d — k)-plane
(see Subsection 2.3). The representation p is called Borel Anosov if p is Px-Anosov
for every k. Labourie in [19] proved that every Hitchin representation into PSL(d, R)
is irreducible and admits a lift into GL(d, R) which is Borel Anosov. The only known
examples of Borel Anosov representations are constructed from representations of
free or surface groups. By a surface group we mean the fundamental group of a closed
surface of negative Euler characteristic. Hitchin representations are the only known
examples of Borel Anosov representations of surface groups in even dimensions.
In all odd dimensions, Barbot’s construction [1] can be used to produce reducible
examples.
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A positive answer to Sambarino’s question was given in [8] for d = 3 or 4.
By using results of Benoist in [2, 3], we prove that a torsion free word hyperbolic
group admitting a P,441-Anosov representation into GL(4g + 2, R) has to be either
free or a surface group. Moreover, by using Wilton’s result [23] on the existence of
quasiconvex surface groups or rigid subgroups in one ended-word hyperbolic groups
and a theorem of Kapovich—Leeb—Porti in [16] (see also [17, Theorem 6]), we prove
the following stronger statement:

Theorem 1.1. Let I' be a word hyperbolic group and p:I" — GL(4q9 + 2,R)
a representation. Suppose that there exists a continuous, p-equivariant dynamics
preserving map &: oo — Grag41(R*4™2). Then T is virtually free or virtually a
surface group.

The group I' is virtually free (resp. a surface group) if it contains a finite-index
subgroup which is free (resp. a surface group). The map £ is called dynamics
preserving whenever y € I is an infinite order element, p(y) is Pj-proximal
and £ (y+) is its attracting fixed point in Grag+1 (R*?*2). Ananalogue of Theorem 1.1
does not hold in dimensions which are multiples of 4, see Section 4.

Corollary 1.2. Let Gagy2 be either GL(4q + 2,R) or PGL(4g + 2,R). IfTisa
word hyperbolic group and p: " — Gug 4 is a Prg11-Anosov representation, then I’
is virtually free or virtually a surface group.

Let r,:r :Gre(RY) — P(AFRY) be the Pliicker embedding (see subsection 2.1).
By using the connectedness properties of the boundary of a rigid hyperbolic group
with the methods of the proof of Theorem 1.1 we have:

Corollary 1.3. Let I' be a torsion free rigid word hyperbolic group and p:I" —
GL(4q + 2, R) be a representation. Suppose there exists a continuous p-equivariant
map £: 0o —> Grag41(R*IT2). Then the map & is nowhere dynamics preserving
and rz"; +1 © & is not spanning.

The map £ is called nowhere dynamics preserving if for every infinite order element
y € T the restriction of £ on {y~, y*} is not dynamics preserving.

Acknowledgements. Iwould like to thank my advisor Richard Canary for his support
and many useful comments on earlier versions of this paper and Andrés Sambarino for
his question. I would also like to thank the referee whose comments and suggestions
improved this paper. This work was partially supported by grants DMS-1564362 and
DMS-1906441 from the National Science Foundation.

2. Background

In this section, we provide some background on proximality, define Anosov repre-
sentations and state Benoist’s results that we are going to use for the proof of the
main theorem. '
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2.1. Proximality. Letd > 2 and e;,..., e be the canonical basis of R¥. For an
element g € GL(d, R) we denote by

A1(g) = Aa(g) = -+~ = A4(g)

the moduli of its eigenvalues. For 1 < k < -g—, we denote by Py the stabilizer of
the plane (ey, ..., ex) and by P, the stabilizer of the complementary (d — k)-plane

(€k+1s...,eq). The Grassmannian of k-planes, Gry (R?) is identified with the quo-
tient manifold GL(d, R)/ Py. Similarly Gry—x (R¥) is identified with GL(d, R)/ P,
A pair of planes

VT, V) € Gri(RY) x Grg—_i (RY)

is transverse if there exists h € GL(d, R) such that
VYt =hler,....,ex) and V™ =hlexs1,...,eq).

An element g € GL(d, R) is called Px-proximal if

Ak (8) > Ak+1(8).

Equivalently, g has two fixed points x;' € Grg(R%) and Vg € Gra— (R?) such that

the pair (x;,", Vg ) is transverse and for every k-plane Vp transverse to V,~ we have
lim g"Vy = x7.
LA g

The element g is called Pg-biproximal if g and g~! are Pp-proximal. We denote
by x, the attracting fixed point of g LinGrg(R?). Fork = 1,a P;-proximal element

¢ € GL(d,R) in P(R%) has a unique eigenvalue, £, (g), of maximum modulus with
multiplicity exactly one. The matrix g is called P;-positively proximal if £1(g) > 0.
The Pliicker embeddings

d
7GR (RY) - P(A*R?) and  17:Grg—x (R?) — Grg—1(A*RY), dj = (k)

are defined as follows

T (gPr) = [ge1 Ao Agex] and T (gPy) = [(AFg) W],
where
Wi = (@i Ao Al iiLsee s ik} F Lo k)
The maps r,j and 7, define embeddings of Grg (R?) and Grg—_z (R?) into P(A¥R?)
and Grdk_l(/\k R?) respectively. An element g € GL(d,R) is P-proximal if and
only if 1:,;" (g) is P;-proximal (see also [13, Proposition 3.3] for more details).

From now, unless specified, proximal (resp. positively proximal) will refer to
P;-proximality (resp. positive Pj-proximality) in the projective space.
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2.2. Dynamics preserving maps. Let [' be a word hyperbolic group and denote
by 0eoI its Gromov boundary. Every infinite order element y € I" has exactly two
fixed points ¥+ and y~ on 0 I called the attracting and repelling fixed points of y
respectively. Let p: ' — GL(d, R) be arepresentation and 1 < k < d — 1. Suppose
there exists a continuous p-equivariant map £: 9o I" — Grg (R?). The map £ is called
dynamics preserving if for every element y € I" of infinite order, p(y) is P-proximal

and £E(yT) = x;r(y). The map £ is called nowhere dynamics preserving if for every

y € T the restriction of £ on doo(y) = {¥~, ¥ T} is not dynamics preserving.

2.3. Anosov representations. The dynamical definition of Anosov representations
(see [14, 19]) involves the geodesic flow of a word hyperbolic group. Characteriza-
tions of Anosov representations into real reductive Lie groups, without involving flow
spaces, have been established in several papers, see [4, 13,15, 18]. Here we define
Anosov representations by using a characterization of Kapovich-Leeb—Porti in [15]
and Bochi—Potrie—Sambarino [4]. For a finitely generated group I' we always fix a
left-invariant word metric and for y € I', |y|r is the distance of y from the identity
element of I'. For an element g € GL(d, R) let

01(g) = 02(g) = --- = 04(g)

be the singular values of g. Recall that for each i,

0i(g) = v Ai(ggh),

where g’ is the transpose of g. Notice that for an element [k] € PGL(d, R) the ratio
% does not depend on the choice of the representative 4 € GL(d, R).
Let Gq be either GL(d, R) or PGL(d,R), p:T" — Gy a representation and 1 <

k < %. Then p is Pr-Anosov if and only if there exist C, @ > 0 such that

ox (p(¥)) aly|
—_—— = C Yir
T

forevery y € I'.

It is clear from the previous definition that for every quasiconvex subgroup H
of T the restriction p|g is Pr-Anosov. The following theorem summarizes some of
the properties of Anosov representations.

Theorem 2.1 ([14, 19]). Let G; be either GL(d,R) or PGL(d,R) and T" be a
word hyperbolic group. Suppose 1 < k < % and p:I' — Gg is a Px-Anosov
representation. Then:

(i) p is a quasi-isometric embedding, i.e. there exist constants A, C > 0 such that
foreveryy € T’

a1(p(y))

= A.
) DA

1
— — A<
CIVIP og
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(ii) There exist continuous p-equivariant maps
£5: 00T > Gre(RY) and  £47F: 96T — Grg—(RY),

which are dynamics preserving and for distinct points x,y € 0oL the pair
(X (x), 4% () is transverse.

(iii) The set of Pi-Anosov representations of T' in Gy is open in Hom(T', Gy).

Notice that by the previous definition, the representation p is Pi-Anosov if and only

if A¥pis P1-Anosov. The Anosov limit maps of A p are r;k o Eg andt;, o g -,

We also need the following fact which implies the continuity of the first eigenvalue
among P;-Anosov representations.

Fact 2.2. Let {A;};c[0,1] be a continuous family of proximal elements of GL(d, R).
Then, the function ¢ > £;(A;) is continuous.

2.4. The work of Benoist. We summarize here some results that we use from [2]
and [3]. An open cone C C R? is called properly convex if it does not contain an
affine line. A domain Q@ C P (R¥) is called properly convex if it is contained in some
affine chart of P(R%) in which € is bounded and convex. An element g € GL(d, R)
is called positively semi-proximal if A;(g) is an eigenvalue of g. A subgroup I
of GL(d, R) is called positively proximal if it contains a proximal element and every
proximal element of T is positively proximal.

Lemma 2.3 ([3, Lemma 3.2]). Let T" be a subgroup of GL(d, R) which preserves a
properly convex open cone C in R%. Then every y € T is positively semi-proximal.
In particular, every proximal element y € T is positively proximal.

Benoist characterized irreducible subgroups of GL(d,R) which preserve a
properly convex cone in R¥ as follows:

Theorem 2.4 ([2, Proposition 1.1]). Let I' be an irreducible subgroup of GL(d, R).
Then T preserves a properly convex open cone C in R? if and only if T is positively
proximal.

We also have the following fact for subgroups of GL(d, R) which preserve properly
convex domains in P (R%):

Fact 2.5. Let I" be a subgroup of GL(d,R) which preserves a properly convex
domain © C P(R?). There exists a representation 7: I' — GL(d,R) and a group
homomorphism &: I' — Z/2 such that: 7(y) = (—=1)*®)y for every y € T and 7(T")
preserves a properly convex open cone C lifting 2. Thus, if I' is also finitely
generated the group I, := (\{H : [I" : H] < 2} has finite-index in I" and preserves
the properly convex cone C.
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We will also use the following fact:

Proposition 2.6. Let ' be a word hyperbolic group and p:I" — GL(d,R) be
a representation. If there exists a continuous p-equivariant non-constant map
£: 000 — P(RY), then p is discrete and ker(p) is finite.

Proof. Assume that there exists an infinite sequence (y,)nen of distinct elements
of [ with lim, p(y,) = [Iz. The group I acts on deI" as a convergence group,
hence up to subsequence, there exists 1,7’ € do” With lim, y,x = n for x # 7’
and £(x) = &(n) for x # n'. Since deoI' is perfect, £ has to be constant, a
contradiction. O

Let Fy be the free group on k generators. We close this section with the following
proposition which follows by the work of Breuillard—Green—Guralnick-Tao (see [6,
Theorem 4.1]):

Proposition 2.7 ([6]). The set of Zariski dense representations from F, in SL(d, R)
is dense in the representation variety Hom(F5, SL(d, R)).

3. Proof of the main result

In this section we give the proof of Theorem 1.1. First, we need the following lemma
which is proved using a theorem of Kapovich—Leeb—Porti [16] (see also [7]).

Lemma 3.1. Let T" be a torsion free non-elementary word hyperbolic group and
p:I' — GL(d,R) be a representation which admits a continuous p-equivariant map
£: 000 — P(RY). Suppose there exists y € T such that p(y) is biproximal,

EyN)=xf,, and E(y7) =x,,.

Then, there exist a,b € T such that {(a, b) is a free quasiconvex subgroup of I" of
rank 2 and the restricted representation p: {a,b) — GL(d,R) is Py-Anosov with
Anosov limit map &.

Proof. By Proposition 2.6, the representation p is discrete and faithful. Letz € I" be
an infinite order element such that

yryin{et )
is empty. Note that
lim"y® =¢T and limt "y =47,
n n
so we may find m > 0 such that

"yt ™y i {yt,y} and Ty eMyTiN Ty}
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are empty. Up to conjugating p we may assume that

x;_(y) = [e1], x:_(y—l) = [eq]
and

Vp—(-y) = (e2,...,ed>, V—

oly—1) — (81, ek aed—l)'

Then we notice that
Emy 4 - .
p=™)x 50y £ P(Vo) UP(Voi-1))
o = — _
and P50 & P (Vo) UP (V1)

For example, suppose that p(t’”)x;'(y) eP (Vp_(y)), then
lim p(y")p(t™)x 3,y = UmEQ ™y ™) = (") = [ed]
n e(y) n
has to be in (V). a contradiction. Since, lim,, y*t Myt = yT we have
limp(y"t™ME (™) = xj,y and  ptT™Mx 1y £ P (Vo)

Then, by [16, Theorem 7.40] (see also [7, Theorem AZ2]), there exists N > 0 such
that the group H = (y¥, 1™y 1~™) is a free group of rank 2 and the restriction p| g
is P1-Anosov. The restriction p| g is also a quasi-isometric embedding hence H is a
quasiconvex subgroup of I" and its Anosov limit map is the restriction of & on doo H
considered as a subset of 0o . O

Recall that for a finitely generated group I', I'; is defined to be the intersection of
all finite-index subgroups of I" of index at most 2.

Lemma 3.2. Let I" be a torsion free one-ended word hyperbolic group and p: T * 7,
— GL(d,R) be a representation which admits a p-equivariant continuous map
£:00o(T % Z) — P(R?). Supposethat § € Ty is a non-trivial element such that p(8)
is biproximal and £ (§1) = x;'(s) and&(67) = X,6) Then p(8) is positively proximal.

Proof. Let s be a generator of the free cyclic factor, t = s8s~! € I" and notice that p(¢)
is proximal with p(s)x;"(g) = x;"(t) =f(¢tT)andt™ ¢ 0. Ifx € 35T,

lim p(¢")§ (x) = lim§(e"x) = £(t™).

Since p(t) preserves V‘(t) and lim, t"x = t™, £(x) cannot lie in P(Vp‘(t)). It follows
that £(0xo ") lies in the affine chart

P(R?) — P(V,)-
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Let V = (£(0I")) and we consider the representation p’: ' — GL(V) where
P’ (y) = ply(y), ¥ € T. The map £ is not constant, hence p’ is discrete and faithful.
The map &: 00" — P (V) is p’-equivariant, p’(8) is proximal with attracting fixed
point £(8F) and £1(p(8)) = £1(p'(8)).

Then we notice that £ (05, I') also lies in the affine chart

A=PV)=P(VNVy)

of P(V). Since I' is one-ended, do, " and (0 I") are connected. The convex hull
of £(0c[") in A, say €, is bounded and convex in A and has non-empty interior since
E(0ooI") spans V. Then p'(I") preserves & (dooI') and by [8, Proposition 2.8] it also
preserves €. It follows that p/(I") preserves the non-empty properly convex set

Q = Int(€) C P(V).

Fact 2.5 shows that there exists a representation 5': ' — GL(V') which preserves a
properly convex cone C C V and p'(y) = p'(y) for every y € I',. By Lemma 2.3,
p(68) is positively proximal in P (V') and hence in P(RY). O

A torsion free word hyperbolic group I' is called rigid if it does not admit a
non-trivial splitting over a cyclic subgroup. For example, the fundamental group of
a closed negatively curved Riemannian manifold of dimension at least 3 is rigid. By
a theorem of Bowditch [5] the Gromov boundary dI" of a rigid hyperbolic group I'
does not contain local cut points.

Lemma 3.3. Let I" be a torsion free rigid one-ended word hyperbolic group. Let
p: ' — GL(d, R) be a representation which admits a continuous p-equivariant map
£: 000 — P(R?). Suppose that § € T3 is a non-trivial element such that p(8) is
biproximal and £(§1) = x;;(s) and £(67) = X ) Then p(8) is positively proximal.

Proof. Since 04,I" does not have any local cut points, the set dooI" — {87,877} is
connected. For x # 81,8~ we have that lim,, " x = §¥ and, as in Lemma 3.2, the
connected set £(doo " — {81, §7}) is contained in
d . -
PRY) = P(Vyi) UP(V 5-15)-

Note that the two (d — 1)-planes Vi) and V are distinct, hence by the conn-

p(—1)
ectedness of dpo" — {§1,87} we can find a hyperplane Vp such that £(dxoI") is
contained in P(R?) — P(V,). Then we consider the restriction p:T' — GL(V),
V = (£(deol)), whose image preserves the compact connected subset £(doo ") of
the affine chart

P(V)—-P(V NV
of P(V). The element p'(y) is proximal in P(V) and £;(p(y)) = £1(0'(y)).
We similarly conclude that p’(I") preserves a properly convex domain 2 of P(V).

Again, Fact 2.5 guarantees that p’(I",) preserves a properly convex cone of V' and
£1(p'(8)) > 0. O
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Now we combine the previous results to prove Theorem 1.1.

Theorem 1.1. Let T' be a word hyperbolic group and p:I' — GL(49 + 2,R)
a representation. Suppose that there exists a continuous, p-equivariant dynamics
preserving map £: 900 — Grag+1(R*42). Then T is virtually free or virtually a
surface group.

Proof. We first assume that I is a torsion free hyperbolic group. By Proposition 2.6,
p is faithful and we may assume that p(I") is a subgroup of SL(4¢ + 2, R). If not,
we replace p with the representation

p:T — SLE(m,R), p(y) = |det(p(y))|~/ 424D p(y)

and I' with a finite-index subgroup "o such that p(I'g) is a subgroup of SL(4g +2, R).

Notice that / has to be faithful since £ is p-equivariant and dynamics preserving for p.
Let V; = A24T1R*2%2 and notice by assumption that £, = ‘52-';1 L0 is AZkFLp

equivariant and dynamics preserving. We consider the following two cases:

Case 1. Suppose that I' has infinitely many ends. Then we show that I' is free. If
not, by Stallings’ theorem [21], there exists a splitting

=T %%y x F§,

where s = 0 and for 1 < i < k, I} is an one-ended word hyperbolic group. In
particular, there exists a quasiconvex subgroup of I' of the form A * Z, with A one-
ended. Lemma 3.1, shows that there exists a quasiconvex free subgroup Hy of A,
such that A%9%1p(Hy) is P1-Anosov in SL(V,) and its limit map is the restriction

Since A29%1 p(§) is proximal for every § € Hy C A,, by Lemma 3.2,
£ (AT (0(8))) > 0.

The representation p: Hy — SL(4¢q + 2,R) is Pp441-Anosov and A24T1p(y) is
positively proximal for every non-trivial y € Hy. By Theorem 2.1 (iii), we can find
a path connected open neighbourhood U of pg := p| g, in Hom(Hy, SL(4g + 2, R))
consisting of entirely of P»,441-Anosov representations. Proposition 2.7 guarantees
that there exists p; € U such that p;(Fy) is Zariski dense in SL(4g + 2,R). Let
{p:}o<t<1 be a continuous path between py and p; contained entirely in U. By
Fact 2.2, for every y € Hy, the map ¢ — £;(A%9T1p,(y)) is continuous with real
values and nowhere vanishing. Hence

L (AT pi(y)) > 0

for every y € Hy. Therefore, since A2k*1 is an irreducible representation, the
group A2911p; (Hp) is a strongly irreducible subgroup of SL(V,) which is positively
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proximal. By Theorem 2.4, the group A%?%1p;(Hy) preserves a properly convex
cone and hence a properly convex domain of P(V;). On the other hand, the
group A29T1SL(4g + 2,R) (and hence A297!p;(Hy)) preserves the symplectic
non-degenerate form wy: V; x V; — R given by the formula

wg(a,b)y =a Ab € (eg A+ Aesgta).

However, by [2, Corollary 3.5], a strongly irreducible subgroup of SL(d, R) which
preserves a symplectic form cannot preserve a properly convex domain of P (R¢).
We have reached a contradiction, so I cannot contain any non-trivial one-ended
factors in its free product decomposition. Therefore, I is free.

Case 2. Suppose that I" is one-ended and not virtually a surface group. Wilton’s
result [23, Corollary B] ensures that " contains a quasiconvex subgroup A which is
either isomorphic to a surface group or rigid. If A has infinite index in I", then there
exists a quasiconvex subgroup of I' isomorphic to A * Z. However, by the previous
case we obtain a contradiction. Therefore, we may assume that A is rigid and has
finite index in I". By Lemma 3.1, there exists H a quasiconvex free subgroup of A,
such that the restriction A29%1p| H, is Pi-Anosov. By Lemma 3.3, forevery h € Hy,
A24%+1p(h) is positively proximal in P(V,). By continuing as previously, we obtain
a Pyq+1-Anosov, Zariski dense deformation p; of p|g, such that A24*1p; (H,) is
positively proximal. Again, by Theorem 2.4, A2471p;(H;) preserves a properly
convex domain and the symplectic form wg, a contradiction.

We now consider the general case where I' might have torsion or p is not faithful.
If p is not faithful, Proposition 2.6 shows that ker(p) is finite. The group T’ = I'/kerp
is word hyperbolic, 0o = 0xI, so £ is a p’-equivariant dynamics preserving
map, where p": " — GL(4g + 2,R) is the faithful representation induced by p.
By Selberg’s lemma, there exists a torsion free finite-index subgroup I'y of I'". The
previous arguments imply that 'y is either a surface group or a free group. Therefore,
I" is either a finite extension of a virtually free group or a virtually surface group. In
the second case, its boundary is the circle and by [12], I" is virtually a surface group.
In the first case, by [11], I" has infinitely many ends and splits as the fundamental
group of a finite graph of groups with finite edge groups and vertex groups of at most
one end. The vertex groups of this splitting are also finite extensions of a virtually
free group hence finite. It follows that I" is virtually free. O

By following the argument of case 1 in the proof of Theorem 1.1 we obtain the
following conclusion:

Theorem 3.4. Let F; be the free group on two generators and p: F, — GL(4g+2,R)
a representation. Suppose that p is Ppgy1-Anosov. Then A?3+1p(F,) is not a
positively proximal subgroup of GL(A24TIR44+2),

For the proof of Corollary 1.2 we need the following proposition for the existence
of lifts of P,x4(-Anosov representations into PGL(d,R). The proof is similar to
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Lemma 3.2 and 3.3. In the case p is irreducible and k£ = 0, Zimmer has proved the
existence of lifts in [24, Theorem 3.1].

Proposition 3.5. Let I be a torsion free word hyperbolic group and p:I" —

PGL(d,R) is a Pyxy1-Anosov representation, where 0 < k < %.

(i) Suppose that A is an infinite index, one-ended quasiconvex subgroup of I' and pg
is the restriction of p on A. There exists a lift po: A — GL(d,R) such that
AZEF150(A) is positively proximal.

(ii) If T is a rigid word hyperbolic group then there exists a lift p: T' — GL(d,R)
of p such that A2*T1p(T") is positively proximal.

Proof. We begin with the following observation: suppose that ¢: I' — PGL(V1 & V>)
is a representation such that ¢(y) preserves V; forevery y € I. If p(y) = [g,] then
the map @o(y) = [gy|v,] is a well defined representation ¢o: I' — PGL(V1). If ¢
admits a lift @, then there exists a lift ¢ of ¢ such that

¢Wlvy = @o(y)

forevery y € I'. Thelift ¢ is defined as follows: fory € I', §(y) is the unique element
hy € GL(V1 @ V>) such that the restriction of 4, on V7 is @o(y) and ¢(y) = [hy].
Notice that we may assume that k = 0, because the exterior power

AT GL(, R) — GL( AZFF1 RY)

is faithful. For part (i), we may consider § € I'" with 8% ¢ 0, A and £(0A) is a
connected compact subset of the affine chart

PRY) —P(Vys)-
In particular, § (0 A) lies in the affine chart
A=PV) - IP(V N Vp—(a))

of P(V), where V = (£(dxA)). Since pg(A) preserves V there exists a well
defined representation p;: A — PGL(V'). The image p; (A) preserves the connected
compact set £(dooA) and hence the interior of the convex hull of £(dxA) in A.
There exists a lift py of p; into GL(V') such that g7 (A) preserves a properly convex
cone C of V. The representation p; is P;-Anosov, faithful and by Lemma 2.3, p; (y)
is positively proximal for every y € A non-trivial. By our initial observation we
obtain a lift pg: A — GL(d,R) of po with po(y)|y = p1(y). The representation p;
is P;-Anosov with Anosov limit map &. For every non-trivial y € A, the attracting
fixed point of pp(y) isin V and

£1(po(r)) = L1(pr1(y)) > 0.

The proof of (ii) follows by observing, as in Lemma 3.3, that the image of 0o I
under the Anosov limit map £ lies in an affine chart of P(R?). Then we continue as
previously to obtain the lift p. O
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Proof of Corollary 1.2. We first assume that I" is torsion free. If I" contains a
quasiconvex infinite index one-ended subgroup Iy, there exists a lift pp of p|r,
such that the group A2K+150(Tg) is positively proximal, contradicting Theorem 3.4.
Also I" cannot be rigid again by part (ii) of the previous proposition. Therefore, I' is
either free or has one end and by [23, Corollary B] there exists a quasiconvex surface
subgroup which has to be of finite index in I".

Now suppose that I" is not torsion free or ker p is non-trivial. We may find
a torsion free finite-index subgroup I'y of I'" = T'/ker(p) so that p induces the
faithful Pp4+1-Anosov representation p':I'y — Gygy2. The previous step shows
that dooI'1 = doo[ is either a circle or totally disconnected. By working as in the last
paragraph of Theorem 1.1 we conclude that I" is virtually free or virtually a surface
group. O

Proof of Corollary 1.3. Let£: 0o ' — Grag+1(R*972) be acontinuous p-equivariant
map. We first show that £ is nowhere dynamics preserving. Suppose not, i.e. there
exists a Ppq41-proximal element p(y) € p(I') with

+y — =y = y—
§(y )_xp(y) and  £(y )_xp(y)'
The map
E+ = T;:;+1 of

is A2471 p-equivariant and by Lemma 3.1 there exist a free quasiconvex subgroup H
of ', such that A29t1p|y is Pj-Anosov. Lemma 3.3 shows that A9t 1p(H) is
positively proximal, a contradiction by Theorem 3.4.

Let

_ A2g9+1p4g+2 - -
Vg =n"T'R and £ =15,,,0¢.

We show that the map £% cannot be spanning. Suppose that £ is spanning and
xl, “ e ,xr € aoor With

Vo= @167 (x), r=dim(V).

Since I acts minimally on 0o I, for every open subset U of dc I, £1(U) spans V,
and the union U7_,§7(x;) cannot contain £T(0oT). There exists y € 0ol and
1 <) <rwith

Vu=E@)es =0t x)

By the density of pairs {(§*,87) : § € T'} in the set of 2-tuples of dI", we can find
y € I such that

V=D et ()= es ().
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Then we claim that g = A2971p(y) is a biproximal matrix. Up to conjugating g
we may assume that

Yy =[ern-nexgq1] and E(¥7) = [Wagt1],

where W, 41 is defined as in Subsection 2.1. We may write

_|ale) ©
=[5 2]
for some matrix A € GL(W2441). Suppose that 11(A4) = |a(g)|. Let p = 1 be the
largest possible dimension of a complex Jordan block corresponding to an eigenvalue

of maximum modulus of A. Then there exists a subsequence (k)neN, Aco 2 NON-ZETO
matrix and b € R with

lim —1 kn — [b 0 ]
n—00 k,‘,o_l)tl(A)kng 0 Ax |’

Since 000" is perfect and £+ (9o ') spans V,, we may choose x € doo" — {y~} such
that the projection of £ (x) into Wa441 is not in ker(Aoo). Thus,

lim g% (x) = lim £* ("7 x) = £ ()

cannot be the line [e; A +++ A e2441], a contradiction. It follows that |a(g)| > A1(A)
and A2911p(y) is proximal with attracting fixed point £+ (y ). Since

Ve=ET()@E (),
the same argument shows that A24T1p(y~!) is proximal with attracting fixed
point £¥(y~). The map £7 (and hence &) preserves the dynamics of {y~,y*}.

This contradicts the fact that ¢ is nowhere dynamics preserving. Therefore,
th; +1((01)) lies in some proper vector subspace of V. O

4. Examples

In this section, we provide an example showing that the analogue of Theorem 1.1
does not hold in dimensions which are multiples of 4. Also, we give an example of
a surface group representation p into SL(4¢g + 2, R) which is not P44 1-Anosov but
admits a p-equivariant continuous dynamics preserving map & into Grag41(R*912),

Let S be a closed orientable hyperbolic surface and 7: SL(2, C) — SL(4,R) be
the standard inclusion defined as

_Re(g) —Im(g)
“@‘h@)kw]

for g € SL(2, C).
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Example 4.1. Let F5 be the free group ontwo generators. The group I' = 1 (S) * F>
admits an Anosov representation p into SL(2,C) and hence 7, o p is a P,-Anosov
representation into SL(4, R). For k € N, the representation p = EBLI (pop)of T’
into SL(4k, R) is Pox-Anosov. In fact, by Theorem 2.1 (iii) and Proposition 2.7 there
exists a deformation p}c of pr which is Zariski dense and P,z-Anosov.

Example 4.2. Let M be the mapping torus of the closed hyperbolic surface S with
respect to a fixed pseudo-Anosov homeomorphism ¢: S — S. The group 71(M)
contains a normal and infinite index subgroup I' isomorphic with 7{(S). By a
theorem of Thurston [22] (see also Otal [20]), the group w1 (M) admits a convex
cocompact representation ¢ into PSL(2, C). In fact, by [10], ¢ lifts to a quasi-isometric
embedding

T.m (M) - SL(2,C).
By composing 7> with7, we obtain a P>-Anosov representation py: 7y (M) — SL(4,R).
The Cannon—Thurston map (see [9]), 0: deo1(S) = doo1 (M) composed with the
Anosov limit map 531 : 001 (M) — Grp(R*) provides a p; |r-equivariant dynamics
preserving map

Eo: 0o = Gra(R%).
Note that the representation p; |1 is not a quasi-isometric embedding, in particular not

P>-Anosov, since I is not a quasiconvex subgroup of 71 (M). Let pr: ' — SL(2,R)
be a Fuchsian representation with limit map & ; - The representation

p = (®{_101Ir) ® pF
into SL(4g + 2, R) is not P4+1-Anosov, however the p-equivariant map
£ = (@L,£0) B EL, 1 30T — Grog41(R**?)

is dynamics preserving.
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