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On Borel Anosov representations in even dimensions

Konstantinos Tsouvalas

Abstract We prove that a word hyperbolic group which admits a /%+1 -Anosov representation
into PGL(4g + 2, R) contains a finite-index subgroup which is either free or a surface group.
As a consequence, we give an affirmative answer to Sambarino's question for Borel Anosov
representations into SL(4g + 2, R).
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1. Introduction

In this note, we address the following question of Andrés Sambarino and provide a

positive answer when d Aq + 2 for some q e N.

Sambarino's Question. Suppose that T is a torsion free word hyperbolic group
which admits a Borel Anosov representation into SL(J, R). Is T necessarily free or
a surface group?

Anosov representations of fundamental groups of closed negatively curved
Riemannian manifolds were introduced by Labourie [19] in his study of the

Hitchin component. Guichard-Wienhard extended Labourie's definition for general
word hyperbolic groups in [14], Anosov representations define discrete subgroups
of real reductive Lie groups which generalize convex cocompact subgroups of rank

one Lie groups. A representation p: T -* GL(d, M) is called -Anosov, where
1 ^ k ^ if it is Anosov with respect to the pair of opposite parabolic subgroups of
GL(d, R) defined as the stabilizers of a k-plane and a complementary (d — k)-plane
(see Subsection 2.3). The representation p is called Borel Anosov if p is -Anosov
for every k. Labourie in [19] proved that every Hitchin representation into PSL(<i, R)
is irreducible and admits a lift into GL(d, R) which is Borel Anosov. The only known

examples of Borel Anosov representations are constructed from representations of
free or surface groups. By a surface group we mean the fundamental group of a closed
surface of negative Euler characteristic. Hitchin representations are the only known

examples of Borel Anosov representations of surface groups in even dimensions.

In all odd dimensions, Barbot's construction [1] can be used to produce reducible
examples.
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A positive answer to Sambarino's question was given in [8] for d 3 or 4.

By using results of Benoist in [2,3], we prove that a torsion free word hyperbolic

group admitting a f^+i-Anosov representation into GL(4<y 4- 2, R) has to be either
free or a surface group. Moreover, by using Wilton's result [23] on the existence of
quasiconvex surface groups or rigid subgroups in one ended-word hyperbolic groups
and a theorem of Kapovich-Leeb-Porti in [16] (see also [17, Theorem 6]), we prove
the following stronger statement:

Theorem 1.1. Let T be a word hyperbolic group and p: T —r GL(4q + 2,R)
a representation. Suppose that there exists a continuous, p-equivariant dynamics

preserving map £: 3oc>r -» G^+i (FAq+2). Then T is virtually free or virtually a

surface group.
The group T is virtually free (resp. a surface group) if it contains a finite-index

subgroup which is free (resp. a surface group). The map £ is called dynamics

preserving whenever y e T is an infinite order element, p(y) is /Vproximal
and £ (y+) is its attracting fixed point in Gr2Ç+i(R4<?+2). An analogue ofTheorem 1.1

does not hold in dimensions which are multiples of 4, see Section 4.

Corollary 1.2. Let G^q+2 be either GL(4<7 + 2,R) or PGL(4g + 2,R). If T is a
word hyperbolic group and p\T -» G44+2 is a P2q+\-Anosov representation, then T
is virtually free or virtually a surface group.

Let : Grjt(M^) —> F(AkFd) be the Plücker embedding (see subsection 2.1).

By using the connectedness properties of the boundary of a rigid hyperbolic group
with the methods of the proof of Theorem 1.1 we have:

Corollary 1.3. Let V be a torsion free rigid word hyperbolic group and p:T ->
GL(4g + 2, R) be a representation. Suppose there exists a continuous p-equivariant
map £: dœ V -a Gr29+i (K4<?+2). Then the map I- is nowhere dynamics preserving
and ^2q+\ 0 £ is not spanning.

The map f is called nowhere dynamics preserving if for every infinite order element

y e r the restriction of § on {y~, y+} is not dynamics preserving.

Acknowledgements. I would like to thank my advisor Richard Canary for his support
and many useful comments on earlier versions of this paper and Andres Sambarino for
his question. I would also like to thank the referee whose comments and suggestions

improved this paper. This work was partially supported by grants DMS-1564362 and

DMS-1906441 from the National Science Foundation.

2. Background

In this section, we provide some background on proximality, define Anosov
representations and state Benoist's results that we are going to use for the proof of the

main theorem.
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2.1. Proximality. Let d ^ 2 and e\,..., be the canonical basis of Rd. For an

element g G GL(</, R) we denote by

Ai(g) ^ A2(g) ^ Ad(g)

the moduli of its eigenvalues. For 1 ^ A ^ j, we denote by Pk the stabilizer of
the plane (e\,..., ef) and by Pf the stabilizer of the complementary (d — A)-plane

(ek+i,... ,ed). The Grassmannian of A:-planes, Gr^ (Rd) is identified with the
quotient manifold GL(d, R)/Pk. Similarly Gr^_^(MJ) is identified with GL(<i, R)/Pf.
A pair of planes

(V+, V~) e Gtk(Rd) x Grrf_fc(Rrf)

is transverse if there exists h G GL(<i, R) such that

V+= h{e i,...,ek) and V h{ek+1,..., ed).

An element g G GL(d, R) is called Pk-proximal if

h (g) > h+i (g)-

Equivalently, g has two fixed points G Grt(R^) and Vf G Gr^_^(Rrf) such that

the pair (x+, Vf) is transverse and for every A-plane to transverse to Vf we have

lim gn Vq x+.
n 6

The element g is called Pk-biproximal if g and g^1 are P^-proximal. We denote

byxj the attracting fixed point of g_1 inGrfc(R^). For A 1, a Pi -proximal element

g G GL(d, R) in P(Mrf) has a unique eigenvalue, i\(g), of maximum modulus with
multiplicity exactly one. The matrix g is called Pi -positively proximal if l\{g) > 0.

The Plücker embeddings

r+:Grfc(Rrf) ^P(AfeRrf) and rf: Grd_k(Rd) Gr4_1(AtR1'), dk

are defined as follows

*£ (gPk) [gei A • • • A gek] and xf (gPf [(Afcg) Wk],

where
Wk (eh A---Aei/C : {h,...,ik} ^ {1,...,A}).

The maps x£ and xf define embeddings of Gr^ (R^) and Gr</_fc(Rrf) into R(AkRd)
and Gr^-^A^R^) respectively. An element g G GL(d,R) is P^-proximal if and

only if x£ (g) is Pi-proximal (see also [13, Proposition 3.3] for more details).

From now, unless specified, proximal (resp. positively proximal) will refer to

Pi-proximality (resp. positive Pi-proximality) in the projective space.
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2.2. Dynamics preserving maps. Let F be a word hyperbolic group and denote

by 9oc>r its Gromov boundary. Every infinite order element y F has exactly two
fixed points y+ and y~ on called the attracting and repelling fixed points of y
respectively. Let p: F —> GL(d, E) be a representation and 1 ^ k ^ d — 1. Suppose
there exists a continuous p-equivariant map ^:dœr -> Grfc(R^). The map £ is called

dynamics preserving if for every element y F of infinite order, p(y) is iVproximal
and £(y+) y The map £ is called nowhere dynamics preserving if for every

y T the restriction of £ on 9oo(y) {y~. y+} is not dynamics preserving.

2.3. Anosov representations. The dynamical definition of Anosov representations
(see [14,19]) involves the geodesic flow of a word hyperbolic group. Characterizations

ofAnosov representations into real reductive Lie groups, without involving flow

spaces, have been established in several papers, see [4,13,15,18]. Here we define

Anosov representations by using a characterization of Kapovich-Leeb-Porti in [15]
and Bochi-Potrie-Sambarino [4], For a finitely generated group T we always fix a

left-invariant word metric and for y T, |y|p is the distance of y from the identity
element of T. For an element g e GL(d, E) let

o-j(g) ^ ct2(g) E • •• E od(g)

be the singular values of g. Recall that for each i,

(7i(g) s/higg1),

where g' is the transpose of g. Notice that for an element [h\ e PGL(d, M) the ratio

a°+i(h) d°es not depend on the choice of the representative h e GL(d, M).

Let Gd be either GL(r/, M) or PGL(^, M), p:T -> G^ a representation and 1 E
k ^ j. Then p is /\-Anosov if and only if there exist C,a > 0 such that

(7k(p(y))
^

(7fc+i (p(y)) "
for every y e IE

It is clear from the previous definition that for every quasiconvex subgroup H
of T the restriction p\u is -Anosov. The following theorem summarizes some of
the properties of Anosov representations.

Theorem 2.1 ([14,19]). Let Gd be either GL(û?,M) or PGL(u!,M) and F be a
word hyperbolic group. Suppose 1 ^ k ^ j and p:F —» Gy is a Pk-Anosov
representation. Then:

(i) p is a quasi-isometric embedding, i.e. there exist constants A, C > 0 such that

for every y e F

1
I I ^ CT1 (p(y)) n\ I A— y r - A ^ log C y r + A.

c ad(p(y))
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(ii) There exist continuous p-equivariant maps

Çp'- 9<x>r — Gr£(R<?) and ïd~k: dœY ^ Grd-k(Rd),

which are dynamics preserving and for distinct points x, y e dooT the pair
(t;k(x), Çp~k(y)) is transverse.

(iii) The set of Pk-Anosov representations of Y in Gd is open in Hom(r, G^).

Notice that by the previous definition, the representation p is Pk-Anosov if and only
if Akp is Pi-Anosov. The Anosov limit maps of Akp are rj~fe o %k and rfk o %d~k.

We also need the following fact which implies the continuity of the first eigenvalue

among Pi-Anosov representations.

Fact 2.2. Let {At}tS[0il] be a continuous family of proximal elements of GL(d, E).
Then, the function t l\(At) is continuous.

2.4. The work of Benoist. We summarize here some results that we use from [2]
and [3]. An open cone C C Erf is called properly convex if it does not contain an

affine line. A domain £2 C P (Erf is called properly convex if it is contained in some
affine chart of P(E^) in which £2 is bounded and convex. An element g GL(d, E)
is called positively semi-proximal if Ai(g) is an eigenvalue of g. A subgroup T

of GL(d, E) is called positively proximal if it contains a proximal element and every
proximal element of T is positively proximal.

Lemma 2.3 ([3, Lemma 3.2]). Let T be a subgroup ofGL(d, E) which preserves a

properly convex open cone C in Md. Then every y e Y is positively semi-proximal.
In particular, every proximal element y £ Y is positively proximal.

Benoist characterized irreducible subgroups of GL(z?,E) which preserve a

properly convex cone in E^ as follows:

Theorem 2.4 ([2, Proposition 1.1]). Let Y be an irreducible subgroup ofGL(d, E).
Then Y preserves a properly convex open cone C in ifand only if Y is positively
proximal.

We also have the following fact for subgroups of GL(d, E) which preserve properly
convex domains in P(Mrf):

Fact 2.5. Let Y be a subgroup of GL(<i, E) which preserves a properly convex
domain £2 C P(Erf). There exists a representation T: Y GL{d, M) and a group
homomorphism e: Y TLjl suchthat: T(y) (—1 )e^y for every y e Y and7(T)
preserves a properly convex open cone C lifting £2. Thus, if Y is also finitely
generated the group Y2 := f]{Lf : [T : H] ^ 2} has finite-index in Y and preserves
the properly convex cone C.



754 K. Tsouvalas CMH

We will also use the following fact:

Proposition 2.6. Let V be a word hyperbolic group and p:T GL(d, R) be

a representation. If there exists a continuous p-equivariant non-constant map
3cx>r —>• IP (M^ then p is discrete andker(p) is finite.

Proof. Assume that there exists an infinite sequence (yw)nsN of distinct elements

of T with lim„ p(yn) Id- The group T acts on 3ooT as a convergence group,
hence up to subsequence, there exists q,q' G 9ooT with lim„ ynx rj for x ^ f
and £(x) £(rç) for x rj. Since 3ooT is perfect, £ has to be constant, a

contradiction.

Let F]ç be the free group on k generators. We close this section with the following
proposition which follows by the work of Breuillard-Green-Guralnick-Tao (see [6,
Theorem 4.1]):

Proposition 2.7 ([6]). The set ofZariski dense representations from F2 in SL(d, R)
is dense in the representation variety HomfFR SL(<7, R)).

3. Proof of the main result

In this section we give the proof of Theorem 1.1. First, we need the following lemma
which is proved using a theorem of Kapovich-Leeb-Porti [16] (see also [7]).

Lemma 3.1. Let Y be a torsion free non-elementary word hyperbolic group and

p:T —» GL(d, R) be a representation which admits a continuous p-equivariant map
doo Y -> P(R^). Suppose there exists y G Y such that p(y) is biproximal,

f(y+) Xp(Y) and l(y~) x~(y).

Then, there exist a, b G T such that {a,b} is a free quasiconvex subgroup of Y of
rank 2 and the restricted representation p:{a,b) —GL(J,R) is P\-Anosov with
Anosov limit map £.

Proof. By Proposition 2.6, the representation p is discrete and faithful. Let t G Y be

an infinite order element such that

{y+,y-}D{t + ,r}
is empty. Note that

limf"y± t+ and limt_ny± t~,
n n

so we may find m > 0 such that

{tmy+, tmy~} n {y+, y~} and {t~my+, t~my~} fl {y+, y~}
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are empty. Up to conjugating p we may assume that

X+P(Y) <(y"i) M
and

vp(y) (e2,-..,ed), Vp{Y-i)

Then we notice that

and (»"Kwi«P(F«)UP(FF'>)-
For example, suppose that p(tm)xx^) G P(^o(y))' ^cn

lirnp(y>(rm)x+y) lim^yntmy+) £ (y+) [e,]

has to be in P(F^yp, a contradiction. Since, lim„ y"f my+ y+ we have

Then, by [16, Theorem 7.40] (see also [7, Theorem A2]), there exists N > 0 such

that the group H (yN, tmyNt~m) is a free group of rank 2 and the restriction p|#
is Pi-Anosov. The restriction p\jj is also a quasi-isometric embedding hence H is a

quasiconvex subgroup of T and its Anosov limit map is the restriction of f on doo H

Recall that for a finitely generated group T, T2 is defined to be the intersection of
all finite-index subgroups of T of index at most 2.

Lemma 3.2. Let V be a torsion free one-ended word hyperbolic group and p: F * Z
—» GL(ß?,M) be a representation which admits a p-equivariant continuous map
£:9oo(r *Z) P(P SupposethatS G T2 is a non-trivial element such that p{8)
is biproximal and ^{8+) x^.) andt-(8~) x~^. Then p(8) ispositivelyproximal.

Proof. Let 5 be a generator of the free cyclic factor, t sds-1 G F and notice that pit)
is proximal with p(s)x^ x^ f (t+) and If x G d^T,

lim p(f")f(x) lim£(f"x) £(f+).
n n

Since p(t) preserves V~^ and limn tnx t+, £(x) cannot lie in P(F^). It follows
that § (doo T) lies in the affine chart

lim p(.y"r"My+) and P(Vrt)'

considered as a subset of doo T.

¥{Rd)-F(V-(t)).
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Let V (£(9oc>r)) and we consider the representation p': F GL(F) where

p'(y) Pi v(y)> y 6 T. The map £ is not constant, hence p' is discrete and faithful.
The map £: d^T P(F) is p'-equivariant, p'{8) is proximal with attracting fixed

point K5+) andf!(p(5)) W{8)).
Then we notice that § (d^T) also lies in the affine chart

A P(F)-P(fny
ofP(F). Since T is one-ended, d^T and ^(dooT) are connected. The convex hull
of £ (9oc>r) in A, say If, is bounded and convex in A and has non-empty interior since

£(9ooT) spans F. Then p'(T) preserves ÇOooF) and by [8, Proposition 2.8] it also

preserves 15. It follows that p'(T) preserves the non-empty properly convex set

Î2 Int(C) cP(f).
Fact 2.5 shows that there exists a representation p': T —>• GL(F) which preserves a

properly convex cone C C F and p'(y) p'(y) for every y T2- By Lemma 2.3,

p(8) is positively proximal in P(F) and hence in P(R^).

A torsion free word hyperbolic group T is called rigid if it does not admit a

non-trivial splitting over a cyclic subgroup. For example, the fundamental group of
a closed negatively curved Riemannian manifold of dimension at least 3 is rigid. By
a theorem of Bowditch [5] the Gromov boundary d^T of a rigid hyperbolic group T
does not contain local cut points.

Lemma 3.3. Let T be a torsion free rigid one-ended word hyperbolic group. Let

p: r —> GL(<i, R) be a representation which admits a continuous p-equivariant map

f: 9oo T —> P(R^). Suppose that 8 e T2 is a non-trivial element such that p(8) is

biproximal and |j(5+) X^(S) and^{8~) x~^y Then p{8) is positively proximal.

Proof. Since d^T does not have any local cut points, the set d^T — {<5+,<5~} is

connected. For x f <5+, 8~ we have that lim„ 8±nx 8^ and, as in Lemma 3.2, the

connected set f (dooT — {<5+, 8~}) is contained in

Note that the two (d — l)-planes F^ and are distinct, hence by the

connectedness of dooT — {<5+,<5-} we can find a hyperplane Fb such that ^(dooT) is
contained in P(Rrf) — P(Fo). Then we consider the restriction p': F —» GL(F),
F (^(dooT)), whose image preserves the compact connected subset ^fd^F) of
the affine chart

P(F)-P(F n F0)

of P(F). The element p'(y) is proximal in P(F) and fi(p(y)) fi(p'(yj).
We similarly conclude that p'(r) preserves a properly convex domain fü of P(F).
Again, Fact 2.5 guarantees that p'(r2) preserves a properly convex cone of F and

W(«))>0.
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Now we combine the previous results to prove Theorem 1.1.

Theorem 1.1. Let T be a word hyperbolic group and p: T —> GL{Aq + 2, M)

a representation. Suppose that there exists a continuous, p-equivariant dynamics
preserving map £: 9qo F —»• Gr29+i(R4^+2). Then Y is virtually free or virtually a

surface group.

Proof. We first assume that Y is a torsion free hyperbolic group. By Proposition 2.6,

p is faithful and we may assume that p(T) is a subgroup of SL(4t/ + 2, M). If not,
we replace p with the representation

p: Y -> SL±(n,M), p(y) |det(p(y))r1/(4<?+2)p(y)

and T with a finite-index subgroup To such that p(To) is a subgroup of SL(4g + 2, R).
Notice that p has to be faithful since £ is p-equivariant and dynamics preserving for p.

Let Vq a2<?+1R4?+2, and notice by assumption that r2lç+| o£ is A2k+1 p-
equivariant and dynamics preserving. We consider the following two cases:

Case 1. Suppose that Y has infinitely many ends. Then we show that Y is free. If
not, by Stallings' theorem [21], there exists a splitting

T Tj * ••• * r& * Fs,

where s >- 0 and for 1 ^ i ^ k, F, is an one-ended word hyperbolic group. In
particular, there exists a quasiconvex subgroup of Y of the form A * Z, with A one-
ended. Lemma 3.1, shows that there exists a quasiconvex free subgroup Ho of A2
such that A2q+lp{Hçf) is Pi-Anosov in SL(F^) and its limit map is the restriction

^:9ootfo—>P(V9).

Since A29+1p(<5) is proximal for every S G Ho C A2, by Lemma 3.2,

h(A2"+1 (p(8)))> 0.

The representation p: Ho -» SL(4g + 2, M) is P2q+1 -Anosov and A2^+1p(y) is

positively proximal for every non-trivial y Ho- By Theorem 2.1 (iii), we can find
a path connected open neighbourhood U of p0 := p\h0 in Hom(//0, SL(4^r + 2, M))
consisting of entirely of P29+1 -Anosov representations. Proposition 2.7 guarantees
that there exists pi e U such that p\{Fk) is Zariski dense in SL(4^ + 2,R). Let
{p<}o«î«i be a continuous path between p0 and pi contained entirely in U. By
Fact 2.2, for every y Ho, the map t i-> £i(a2q+l Ptiy)) is continuous with real

values and nowhere vanishing. Hence

li( a2<7+1 pi(y)) > 0

for every y Ho- Therefore, since /\2k+l is an irreducible representation, the

group A2?+1pi (Ho) is a strongly irreducible subgroup of SL(F^) which is positively
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proximal. By Theorem 2.4, the group A2<?+1pi (Hq) preserves a properly convex
cone and hence a properly convex domain of P(V?). On the other hand, the

group a2^+1SL(4<7 + 2,R) (and hence A2q+l pi(H0)) preserves the symplectic
non-degenerate form coq : Vq x Vq -> 1 given by the formula

u>q(a,b) a Ab e (e\ A • • • Ae$q+2)-

However, by [2, Corollary 3.5], a strongly irreducible subgroup of SL(d, R) which

preserves a symplectic form cannot preserve a properly convex domain of P(Rrf).
We have reached a contradiction, so T cannot contain any non-trivial one-ended
factors in its free product decomposition. Therefore, T is free.

Case 2. Suppose that T is one-ended and not virtually a surface group. Wilton's
result [23, Corollary B] ensures that T contains a quasiconvex subgroup A which is
either isomorphic to a surface group or rigid. If A has infinite index in T, then there

exists a quasiconvex subgroup of T isomorphic to A * Z. However, by the previous
case we obtain a contradiction. Therefore, we may assume that A is rigid and has

finite index in T. By Lemma 3.1, there exists H\ a quasiconvex free subgroup of A2
such that the restriction A29+1p|//, is Pi-Anosov. By Lemma 3.3, for every h e Hi,
A2q+l p(h) is positively proximal in F( Vq). By continuing as previously, we obtain
a T^+i-Anosov, Zariski dense deformation p\ of p\nx such that A2q+l p\{H\) is

positively proximal. Again, by Theorem 2.4, A2q+1 pi{H\) preserves a properly
convex domain and the symplectic form coq, a contradiction.

We now consider the general case where T might have torsion or p is not faithful.
If p is not faithful, Proposition 2.6 shows that ker(p) is finite. The group T' T/kerp
is word hyperbolic, SooT' 9ooT, so £ is a p'-equivariant dynamics preserving

map, where p': T' -» GL(4<y + 2, M) is the faithful representation induced by p.
By Selberg's lemma, there exists a torsion free finite-index subgroup T1 of T'. The

previous arguments imply that T1 is either a surface group or a free group. Therefore,
T is either a finite extension of a virtually free group or a virtually surface group. In
the second case, its boundary is the circle and by [12], T is virtually a surface group.
In the first case, by [11], T has infinitely many ends and splits as the fundamental

group of a finite graph of groups with finite edge groups and vertex groups of at most

one end. The vertex groups of this splitting are also finite extensions of a virtually
free group hence finite. It follows that T is virtually free.

By following the argument of case 1 in the proof of Theorem 1.1 we obtain the

following conclusion:

Theorem 3.4. Let F2 be thefree group on two generators and p: F2 -a- GL(4<y+2, R)
a representation. Suppose that p is P2q+1 -Anosov. Then AZq+vp(F2) is not a

positively proximal subgroup of GL(a2?+1R4?+2).

For the proof of Corollary 1.2 we need the following proposition for the existence

of lifts of 7*2^+1 -Anosov representations into PGL(<i, M). The proof is similar to
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Lemma 3.2 and 3.3. In the case p is irreducible and k 0, Zimmer has proved the

existence of lifts in [24, Theorem 3.1].

Proposition 3.5. Let V be a torsion free word hyperbolic group and p:T —>•

PGL(J, R) is a P2k+\~Anosov representation, where 0 ^ k f
(i) Suppose that A is an infinite index, one-ended quasiconvex subgroup of F and po

is the restriction of p on A. There exists a lift po'. A -» GL(d, R) such that
A2fc+1p0(A) is positively proximal.

(ii) If T is a rigid word hyperbolic group then there exists a lift p: V — GL(<i, M)

of p such that A2fc+1 p(T) is positively proximal.

Proof. We begin with the following observation: suppose that (p: T - PGL(Fi © V2)

is a representation such that <p(y) preserves V\ for every y e T. If p(y) [gy] then

the map <po(y) [gy IV\] is a well defined representation <po'. T —> PGL(Fi). If <po

admits a lift fio, then there exists a lift q> of ç such that

<p(y)\vi <PQ(Y)

for every y T. The liftais defined as follows: fory G T, (p(y) is the unique element

hy e GL(Fi © Vf) such that the restriction of hy on V\ is cpo(y) and <p(y) [hy].
Notice that we may assume that k 0, because the exterior power

A2k+ 1. Q|_( A2fc+ 1

is faithful. For part (i), we may consider S e T with 8± £ dœA and ?(3ooA) is a

connected compact subset of the affine chart

P(Rä)-P(V-(S)).

In particular, £ (3oo A) lies in the affine chart

A P(K)-P(Fny
of P(F), where V (^(300A)). Since po(A) preserves V there exists a well
defined representation pi : A —> PGL(F). The image p\(A) preserves the connected

compact set £(3ooA) and hence the interior of the convex hull of £(9ooA) in A.
There exists a lift p[ of p\ into GL(F) such that pi(A) preserves a properly convex
cone C of F. The representation p\ is P\ -Anosov, faithful and by Lemma 2.3, pi (y)
is positively proximal for every y G A non-trivial. By our initial observation we
obtain a lift pô: A -» GL(d, R) of po with Po(y)\v pi(y)- The representation pi
is Pi-Anosov with Anosov limit map £. For every non-trivial y e A, the attracting
fixed point of pô(y) is in F and

^i(poO)) Wiiy)) > 0.

The proof of (ii) follows by observing, as in Lemma 3.3, that the image of 3oor
under the Anosov limit map £ lies in an affine chart of P(Rd). Then we continue as

previously to obtain the lift p.
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Proofof Corollary 1.2. We first assume that F is torsion free. If T contains a

quasiconvex infinite index one-ended subgroup r0, there exists a lift po of p|r0
such that the group A2fc+1po(r0) is positively proximal, contradicting Theorem 3.4.

Also T cannot be rigid again by part (ii) of the previous proposition. Therefore, T is

either free or has one end and by [23, Corollary B] there exists a quasiconvex surface

subgroup which has to be of finite index in F.

Now suppose that T is not torsion free or kerp is non-trivial. We may find
a torsion free finite-index subgroup Ti of T' T/ker(p) so that p induces the

faithful /^tf+i-Anosov representation p'\T\ -* G>*q+2- The previous step shows

that 9co rl 9oo T is either a circle or totally disconnected. By working as in the last

paragraph of Theorem 1.1 we conclude that T is virtually free or virtually a surface

group.

Proofof Corollary 1.3. Let£: Gr2?+i(M49+2) be a continuous p-equivariant

map. We first show that £ is nowhere dynamics preserving. Suppose not, i.e. there

exists a P2q+i-proximal element p(y) G p(T) with

£(y+) Xp(y) and Ç(y") x~(y).

The map
£+ =4q+l°l

is A2^-1-1 p-equivariant and by Lemma 3.1 there exist a free quasiconvex subgroup H
of T2 such that A2^+1p|tf is Pi-Anosov. Lemma 3.3 shows that A2q+1p(H) is

positively proximal, a contradiction by Theorem 3.4.

Let

Vq a2^+1M4?+2 and tfq+l o £.

We show that the map £+ cannot be spanning. Suppose that £+ is spanning and

x\,... ,xr G fiooT with

Vq ®ri=il+(xi), r dim(Fç).

Since T acts minimally on 9ooF, for every open subset U of 9oor,£+ (U) spans Vq

and the union U[=1£~(xi) cannot contain f+(9oor). There exists y G and
1 ^ j ^ r with

Vq ç+(xj) © r00 l+(y) © r(xj).
By the density of pairs {(<5+, S~) : S G T} in the set of 2-tuples of we can find

y G T such that

vq Ç(Y+) © r(y-) t(Y~) © r(y+).
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Then we claim that g A2q+1p(y) is a biproximal matrix. Up to conjugating g
we may assume that

£+(y+) [e\ A • • • A e2q+i] and §~(y~) [w2q+1],

where W2q+1 is defined as in Subsection 2.1. We may write

8
a(g)

0

for some matrix A £ QL(W2q+\). Suppose that Ai(^4) |a(g)|. Let p ^ 1 be the

largest possible dimension of a complex Jordan block corresponding to an eigenvalue
of maximum modulus of A. Then there exists a subsequence (kn),,6n> ^oo a non-zero
matrix and b e M with

lim
1

n~*°° k% % (A)k«
-8

kn —
b o

'

0 Aqo

Since d^T is perfect and ^+(3ooL) spans Vq, we may choose x £ d^T — {y } such

that the projection of £+(x) into W2q+1 is not in ker(/400). Thus,

\\mgkn^+{x) lim Ç+(yknx) ^+(y+)
n n

cannot be the line [ei A • • • A e2q+i\, a contradiction. It follows that \a{g)\ > X\(A)
and A2<?+1p(y) is proximal with attracting fixed point Ç+(y+). Since

vq r(y~)®r(y+),
the same argument shows that A2g+1p(y~1) is proximal with attracting fixed

point £+(y~). The map (and hence £) preserves the dynamics of {y_,y+}.
This contradicts the fact that f is nowhere dynamics preserving. Therefore,

T2?+i(£(^°°r)) l'es in some proper vector subspace of Vq.

4. Examples

In this section, we provide an example showing that the analogue of Theorem 1.1

does not hold in dimensions which are multiples of 4. Also, we give an example of
a surface group representation p into SL(4g + 2, K) which is not P2q+l -Anosov but
admits a p-equivariant continuous dynamics preserving map £ into Gr2(?+i (K4,?+2).

Let S be a closed orientable hyperbolic surface and x2\SL(2, C) -» SL(4, M) be

the standard inclusion defined as

*2(g)
'Re(g) —Im(g)
Im(g) Re(g)

for g e SL(2, C).
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Example 4.1. Let 7*2 be the free group on two generators. The group T ji\(S) * F2
admits an Anosov representation p into SL(2, C) and hence t2 o p is a /VAnosov
representation into SL(4, M). For k N,the representation p^ ©f=1 (t2 o p) of F
into SL(4/c, M) is /V-Anosov. In fact, by Theorem 2.1 (iii) and Proposition 2.7 there

exists a deformation p'k of Pk which is Zariski dense and P2k~Anosov.

Example 4.2. Let M be the mapping torus of the closed hyperbolic surface S with
respect to a fixed pseudo-Anosov homeomorphism <f>: S -> S. The group n\{M)
contains a normal and infinite index subgroup T isomorphic with Tt\(S). By a

theorem of Thurston [22] (see also Otal [20]), the group tx\ (M) admits a convex

cocompact representation 1 into PSL(2, C). In fact, by [10], t lifts to a quasi-isometric
embedding

jti(M) -» SL(2,C).

By composing X2 with", we obtain a /VAnosov representation p\ : Jt\(M) -> SL(4, M)
The Cannon-Thurston map (see [9]), 9: 500^1 (S) —>• 300^1 (M) composed with the

Anosov limit map ^ : d^ni (M) —>• Gr2(M4) provides a pi |r-equivariant dynamics
preserving map

£0: SooT Gr2(M4).

Note that the representation p\ \ r is not a quasi-isometric embedding, in particular not

/VAnosov, since T is not a quasiconvex subgroup ofn\ (M). Let pf : T —> SL(2, M)
be a Fuchsian representation with limit map £ ^ The representation

p (®f=1Pi|r) © PF

into SL(4g + 2, E) is not /V+i-Anosov, however the p-equivariant map

(®f=1?o) © 3oor -> Gr2,+1(M49+2)

is dynamics preserving.
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