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The Euler characteristic of Out(F,)

Michael Borinsky and Karen Vogtmann

Abstract. We prove that the rational Euler characteristic of Out(F},) is always negative and its
asymptotic growth rate is I'(n — %) /N 2m log2 n. This settles a 1987 conjecture of J. Smillie
and the second author. We establish connections with the Lambert W -function and the zeta
function.
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1. Introduction

The Euler characteristic, defined as the alternating sum of the Betti numbers, is a
key invariant of topological spaces of finite type (such as cell complexes built out
of a finite number of cells). One can define an invariant ¥(G) for a group G by
substituting group cohomology for singular cohomology, but unless G has a finite-
type K(G, 1)-space this invariant lacks many desirable features of topological Euler
characteristics. This is unfortunate because many of the most interesting groups
have torsion, and groups with torsion never have finite-type K(G, 1)-spaces. A
solution was proposed by C.T.C.Wall, who observed that if G has a torsion-free
subgroup H of finite index that does have a finite-type classifying space then the
rational number y(H)/[G : H] is an invariant of G [41]. In particular, this number
does not depend on the choice of H. Wall called it the rational Euler characteristic
of G, denoted y(G). This rational Euler characteristic is better behaved than ¥(G);
for example if 1 - A — B — C — 1 is a short exact sequence of groups then
x(B) = x(A)x(C), assuming y(A), x(B) and y(C) are all defined.

It turns out that rational Euler characteristics of arithmetic groups can often be
expressed in terms of zeta functions; this ultimately depends on the Gauss—Bonnet
theorem (see [34,35] for details and a guide to the literature). Remarkably, Harer
and Zagier showed that the rational Euler characteristics of mapping class groups
are also given by zeta functions, e.g. the rational Euler characteristic of the mapping
class group of a once-punctured surface of genus g is equal to £(1 — 2g) [23]. This
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was later reproved by Penner [33] and by Kontsevich [27], each using asymptotic
methods related to perturbation expansions from quantum field theory.

We are concerned here with the rational Euler characteristic of the group Out(£},)
of outer automorphisms of a finitely-generated free group. This group shares
many features with both mapping class groups and arithmetic groups, though it
belongs to neither class. In 1987 Smillie and Vogtmann found a generating function
for y(Out(F},)) and computed its value for n < 11 [36]. From the results of these
computations, they conjectured that y (Out(Fy)) is always negative and the absolute
value grows faster than exponentially. In 1989 Zagier simplified the generating
function and computed y(Out(F,)) for n < 100; this added strong evidence for
these conjectures without providing a proof [45]. The only general statements
previously known about the value of y(Out(F,)) are that it is non-zero for even
values of n, and certain information was established about the primes dividing the
denominator [36,37].

In this article we show that y(Out(F,)) is negative for all n and prove that its
asymptotic growth rate is controlled by the classical gamma and log functions:

Theorem A. The rational Euler characteristic of Out(Fy,) is strictly negative,
x(Out(F,)) <O, for all n > 2 and its magnitude grows more than exponentially,

1 T'(n- %)
V27 log’n
The proof of Theorem A is based on the following theorem, in which we produce

an asymptotic expansion, with respect to the asymptotic scale { (—1)*T'(n + % —k) k>0
in the limit n — oo, whose coefficients are closely related to y(Out(F,)).

x(Out(F)) ~

asn — o0.

Theorem B.

1
V2re """ ~ Z;’(‘k(—l)kF(n + 5 —k) asn — 0o,
k>0

where T is the coefficient of z¥ in the formal power series exp ( 2 n>1 X(Out(Fpiq ))z").

We then relate this to a certain expansion of the Lambert W -function. The Lambert
W -function is a well-studied functjon with a long history [16]. Eventually, we are
able to use results of Volkmer [40] about the coefficients of this second expansion to
prove Theorem A. In Proposition 8.5 we also exploit the connection with the Lambert
W -function to give an efficient recursive algorithm for computing y (Out(F})).

In Section 5 we show that there is a close relationship between y(Out(F,))
and the classical zeta function by considering the Connes—Kreimer Hopf algebra H
of 1-particle-irreducible graphs, i.e. graphs with no separating edges. Briefly, the
formula in [36] for y(Out(F,)) can be regarded as the integral of a certain character t
of H on the space spanned by admissible connected graphs with fundamental
group F,, with respect to the “measure” w(I') = 1/|Aut(I')|. Proposition 5.3
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shows that integrating T (the inverse of T in the group of characters) with respect
to the same measure produces {(—n)/n = %, where B, is the n-th Bernoulli
number.

The asymptotic expansion in Theorem B is strikingly reminiscent of the well
known Stirling asymptotic expansion of the gamma function in the asymptotic scale

{(Vame """ K,

I'(n) ~ ZBkVZJre_”n"_%_k asn — 0o.
k=0

The coeflicients of this asymptotic expansion are related to the Bernoulli numbers
as well: by, is the coefficient of z* in the formal power series exp (Y, H%I’Ii ) 2%},
We will explore this analogy in more detail in Section 7. Given this intriguing
parallel between the numbers y (Out(F,)) and the Bernoulli numbers, which are very
prominent objects in number theory, it would be interesting to look for a number
theoretic meaning for the numbers y(Out(F,)) as well. The algorithm given in

Proposition 8.5 may be helpful for investigations in this direction.

As was pointed out in [36], non-vanishing of y(Out(F},)) implies that the kernel
of the natural map from Out(F,) to GL(n,Z) does not have finitely-generated
homology. Magnus proved in 1935 that this kernel is finitely generated and asked
whether it is finitely presented, which would imply that the second homology is finitely
generated [32]. Bestvina, Bux and Margalit showed in 2007 that the homology in
dimension 2n — 4 is not finitely generated [4]. However Magnus’ question is still
unanswered for n > 3.

Theorem A implies that for large n, torsion-free subgroups of finite index
in Out(F,) have a huge amount of homology in odd dimensions. We would like
to say the same is true for the whole group Out(F,). One way to prove this is to
compare the asymptotic growth rate of y(Out(F},)) with that of the “naive” Euler
characteristic ¥(Out(Fy)). Brown [11] showed that the difference between ¥ and y
can be expressed in terms of rational Euler characteristics of centralizers of finite-
order elements of Out(F,). Harer and Zagier used this to compare the rational
and naive Euler characteristics for surface mapping class groups, using the fact that
centralizers of finite-order elements are basically mapping class groups of surfaces
of lower complexity. Centralizers in Out(F},) are more difficult to understand, but
preliminary results obtained by combining the methods of this paper with results
of Krsti¢ and Vogtmann [31] indicate that the ratio ¥ (Out(F,))/ x(Out(F,)) tends
to a positive constant. Note that Galatius proved that the stable rational homology
of Out(F},) vanishes [21], so this would show that there is a huge amount of unstable
homology in odd dimensions. This is completely mysterious, as only one odd-
dimensional class has ever been found, by a very large computer calculation in
rank 7 [2], and this calculation gives no insight into where all of these odd-dimensional
classes might come from.
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Finally we recall that, by the work of Kontsevich, the cohomology of Out(F,)
with coefficients in a field of characteristic zero can be identified with the homology
of the rank n subcomplex of his Lie graph complex [28]. Our results therefore
apply to the Euler characteristic of this graph complex as well. Kontsevich himself
wrote down asymptotic formulas for the Euler characteristics of three of his graph
complexes in [28]; see Chapter 5 of [22] for a detailed derivation of these formulas.
The connection with graph complexes is explained a little further in Section 7.4.
More discussion of the relation of the current paper with ideas from topological
quantum field theory — with further relations to Kontsevich’s work — can be found
in Section 6.

Acknowledgements. We thank Dirk Kreimer for support during this project. M.B.
would like to thank Karen Yeats and Sam Yusim for discussions on the subject.
M.B. was supported by the NWO Vidi grant 680-47-551. K.V. would like to thank
Peter Smillie for discussions. K.V. was partially supported by the Royal Society
Wolfson Research Merit Award WM 130098 and by a Humboldt Research Award.

2. Graphs and rational Euler characteristics

In this section we give variations on the results of [36]. The idea is to use the
action of Out(F,) and closely related groups on contractible spaces of finite graphs
to deduce information about the homology of the groups, including the rational Euler
characteristic.

2.1. Combinatorial graphs. We begin with a combinatorial definition of a graph
and related terms.

Definition 2.1. A graph I consists of a finite set H(I") called half-edges together
with

* a partition of H(I") into parts called vertices and

* an involution (r: H(I") — H(I").

The valence |v| of a vertex v is the number of half-edges in v. A leaf of I is a fixed
point of the involution (r and an edge is an orbit of size 2. A graph isomorphism
[ — I is a bijection H(I') — H(I"') that preserves the vertex partitions and
commutes with the involutions.

Notation 2.2. Let I be a graph.

Aut(T") is the group of isomorphisms T 3T
L(T) is the set of leaves of T, and s(T') = |L(T')|.
E () is the set of edges of I and e(I") = | E(T")|.
V(T') is the set of vertices of I and v(T") = |V(I')].
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Figure 1. Thorned rose R3 4 and star graph Ryg,s.

The graph with one vertex, n edges, s leaves and 2n + s half-edges is called a
thorned rose, and will be denoted R, 5. If n = 0 we will also call Ro a star graph
(see Figure 1).

With the exception of Section 5, we will only consider admissible graphs, where
a graph is admissible if all vertices have valence at least 3.

Definition 2.3. Let I" be a graph. A subgraph of T is a graph y with H(y) = H(I'),
V(y) =V(I'),and E(y) € E(T).

A graph I' always has itself as a subgraph. There is a unique “trivial” subgraph y,
with involution the identity, so H(yp) = H(I"),V(yo) = V(I'), E(y9) = 9, and
L(yo) = H(T).

2.2. Topological graphs. Everycombinatorial graph I" has a topological realization
as a 1-dimensional C W-complex. For each element of V(I") we have a 0-cell called
a vertex and for each element of E(I") we have a 1-cell called an edge. For each
element of L(I") we have both a 0O-cell, called a leaf vertex and a 1-cell connecting
the leaf vertex to a (non-leaf) vertex. By our definition each connected component of
the topological realization must have at least one vertex. Note that graphs may have
multiple edges and they may have loops at a vertex. The thorned rose R, s defined
in the last section has (s + 1) O-cells and (n + s) 1-cells.

The valence of a point x is the minimal number of components of a deleted
neighborhood of x. In an admissible graph the vertices are at least trivalent and the
leaf vertices are univalent, so there are no bivalent 0-cells.

A graph isomorphism is a cellular homeomorphism, up to isotopy. Since
admissible graphs have no bivalent 0-cells, any homeomorphism is a cellular
homeomorphism.

Notice that, by our definition, the topological realization of a subgraph of I is
not a subcomplex of the topological realization of I". Rather, it can be described as
a graph obtained from I" by cutting some of its edges, thus forming pairs of leaves.
To make the result a C W-complex we have to add 0O-cells (leaf vertices) to the ends
of the cut edges. A subgraph can also be visualized as the closure of a sufficiently
small neighborhood of a subcomplex.

In the remainder of this section we will work with the topological realization
of a graph instead of using the combinatorial definition, so that we may freely
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use topological concepts such as connectivity, fundamental group and homotopy
equivalence.
Fors > 0 let:

* § denote the set of isomorphism classes of finite admissible graphs,
* G, C & be the subset consisting of admissible graphs with exactly s leaves,

* §° C G and §¢ C & be the respective subsets of connected graphs.

2.3. Groups. Forany n and s we define A, s to be the group of homotopy classes of
homotopy equivalences of the thorned rose Ry s that fix the leaf vertices {1, . .., bs},
ie. Aps = mo(HE(T, by,...,bs)). The groups A, generalize Out(F,) = Ay o
and Aut(F,) = A,1. If n = 0 then Ry is a graph with no loops and at least 3
leaves as we are insisting on at least one vertex, which is at least trivalent. So, Ag s
is only defined for s > 3, where it is the trivial group. If n = 1 then R; ¢ is a loop
with s > 1 leaves, and there is a short exact sequence

1> Z5 "> Ay, — Z/2Z — 1.
If n > 2 and s > 0 there is a short exact sequence
1> F) - Ay s — Out(Fy) — 1.

See [13] for background on the groups A, s. These groups appear, for example, in
the context of homology stability theorems [24], the bordification of Outer space and
virtual duality [5, 12], and assembly maps for homology [13].

2.4. Complexes of graphs and the rational Euler characteristic. If a group G is
virtually torsion-free and acts properly and cocompactly on a contractible C W -
complex X, then the rational Euler characteristic y(G) can be calculated using this
action, by the formula

_ ( 1)d1mcr
1G) = Z|Smb(cr)|

where € is a set of representatives for the cells of X mod G (see e.g. [10, Proposi-
tion (7.3)]).

For any s > 0 the group A, is virtually torsion-free and acts properly and
cocompactly on a contractible cube complex K, . To describe K, it is convenient
to label the leaves of a graph, so that two graphs I' and I'" are isomorphic if there
is a graph isomorphism I' — I/ that preserves leaf-labels; an isomorphism class is
then called a leaf-labeled graph. We use the notation £§, {5, £§°¢ and £§¢ instead
of §, G, §¢, and §¢ to denote the respective set of leaf-labeled graphs and PAut(I")
to denote the set of automorphisms of a graph that fix the leaves.
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Figure 2. A 2-dimensional cube (T, ¢) in K> 3. Here ¢ is the grey subgraph, 71 (I") = F(a, b)
and the leaves are labeled 1, 2, 3. The marking is indicated by arrows and labels on the edges in
the complement of a maximal tree.

The cube complex K}, s has one cube for each equivalence class of triples (T', ¢, g),
where

» I' € £ is connected with s labeled leaves and with 71 (I") = Fy,,
* ¢ is a subforest of T', i.e. a subgraph with no cycles,

* g:R, s — I is a leaf-label-preserving homotopy equivalence, called a marking
and

e Iy, g) ~ (I, ¢, g’) if there is a leaf-label-preserving graph isomorphism
h:T — T sending ¢ to ¢’ such that & o g is homotopic to g’ through leaf-
label-preserving homotopies.

An example of a cube in K 3 is depicted in Figure 2. Contractibility of K, s was
proved for s = 0,n > 2 by Culler and Vogtmann [17] and in general by Hatcher [24]
(see also [25]). (For n > 2, K,, s was originally described as a simplicial complex,
but its simplices naturally group themselves into cubes, as was done, e.g. in [26].)

Smillie and Vogtmann [36] considered only the case s = 0, but their arguments
apply verbatim for graphs with leaves. We define a function

i) = ) (1)@,

pcCrll

where the sum is over all subforests ¢ C T, including the trivial subgraph, and e(¢p)
is the number of edges in ¢. For instance, T(O0) = 1, as it has only the trivial
subforest and 7(Q) = 1 for the same reason (recall that a leaf is not an edge).
We have 1(0—0) = 0, as it has two forests whose respective contributions to the
sum cancel (in fact 7 always vanishes on graphs with a separating edge as ensured
by Lemma (2.3) of [36]) and t(€&) = —2, as the graph €3 has four forests with
contributions —1, —1, —1, and 1.
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The following theorem relates the rational Euler characteristics of the groups A, ¢
to the function t.

Theorem 2.4.

(')
A —
K (Ans) = Z | PAut(I")|’
where the sum ‘is over all connected leaf-labeled graphs T" with s leaves and

fundamental group F,.

Proof. The group A, s acts properly and cocompactly on K, 5. It acts transitively
on markings, assuming the graphs are leaf-labeled, so there is one orbit of cubes
for each isomorphism class of pairs (I, ¢) € £§¢ with fundamental group F,. The
dimension of this cube is e(¢), and the stabilizer of (T, ¢, g) is isomorphic to the
group PAut(T', ¢) of automorphisms of I' that fix the leaves and send ¢ to itself.
Therefore we have

_ - (Cime (TP
1 (Ans) = Z |Stab(0)| (Z) | PAut(T", ¢)|’

where the sum is over all isomorphism classes of pairs (I, ¢) of leaf-labeled graphs
I' € £§¢ and forests ¢ C I'. The full automorphism group PAut(I") acts on the set of
forests in I", and an orbit is an isomorphism class of pairs (I, ¢), so the orbit-stabilizer
theorem now gives

( 1)¢ e(p) ( 1)e(qo) _ (D)
Z | PAut(T, )| Z Z |PAut(F)] Z | PAut(I")|

T0) Telss ¢ Telgs
as desired.
Note that for n > 2 and s = 0 we have £§5 = §;, A, = Out(Fy), and
PAut(I") =~ Aut(I"), so this is Proposition (1.12) of [36]. ]

Example 2.5. Using this theorem we can immediately verify that

1(Az,0) = x(Out(F3))
7(00) 7(0—0) () 1.0 -2 1

~ JPAUt(QO)| * |PAU(O—O)| ' |PAULS)| 8 ' 8 TRy

Corollary 2.6.
H(Ans) _ Z (')
5! | Aut(I") |
reg¢
ni(T)=Fp
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Proof. Aut(I') acts on the set of leaf-labelings of I' € £§¢. The orbits are the
leaf-labeled graphs, and the stabilizer of a labeling is PAut(I"), giving

| Aut(T")| = |Orbit(T)|| PAut(T)|.

There are s! labelings of I'. Each orbit has the same size, so the size of each orbit
is s!/£(I"), where £(I") is the number of leaf-labeled graphs with underlying graph I'.
Therefore,

| Aut(I')| = —— | PAut(T")|. O

(I‘)

3. Formal power series

For the rest of this article it will be convenient to use |I'| = e(I") — v(I") instead of
the rank of 71 (I") to filter the set of graphs. For connected graphs I" this is only a
minor change of notation as rank(zr;(I")) = e(I’") —v(I") + 1 = || + 1.

Consistent with this shift, we define y, = y(Out(F,+1)) and consider the formal
power series

T(z) =) x(Out(Fpi1))z" =Y ynz"
n=1

n=1

By Theorem 2.4 with s = 0 we have

o ()
T@ =2, ( 2 )
”l(r)gg‘n+1

(") I
Fzgc |Aut([‘)| ) 3:1)

For general A, s we define a bivariate generating function for the Euler characteristic
by

S

T(z.x) =) x(Aos)z" —+Zx(A1,s)—+ZZx(An+1s)z = 62

5>3 s>1 n=>1s5=>0

Recall that the groups A, s are only defined fors > 3ifn = 0,fors > lifn =1
and for s > 0 if n > 2. Obviously, T(z,0) = T(z) and by Corollary 2.6

t)_irj sy
T(z,x) = FZ,,C Vol (3.3)

where s(I") is the number of leaves in I'.

The relationships between the groups A, s, which were described in Section 2.3,
imply the following functional relation between 7(z) and the bivariate generating
function T'(z, x).
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Proposition 3.1.

w_#

e
T(z,x) = 2 + 2 4 T@e™).
z 2

Proof. The groups Ag ¢ are trivial, so we have y(Ags) = 1 for all s > 3. For the
groups A1 s we have the short exact sequence

121 > Ay > Z/2Z — 1.

Thus y(A1s) = 0if s > 2 and y(Ay,1) = x(Z/2Z) = % For the groups A,+1,¢
with n > 1 the short exact sequence

1— F’f+1 — An+1,s —> Out(Fn_H) — 1,

gives y(Ant1,s) = x(Out(Fy11))(—n)* = yn(-n)".
Putting these together into eq. (3.2) gives

x* -1 X (_n)s n.,s
T(z,x)=Z-S—|z +§+ZZX" 7 z°x

§>3 n>1s>0

— x* -1, 2 (=n)° sn
= Hz +5+ZX”Z o X"z

§>3 n>1 §>0

4. Algebraic graph combinatorics

Although Theorem 2.4 gives an explicit expression for the coefficients of T(z)
and T'(z, x), we will use an implicit equation, which the generating function 7'(z, x)
must satisfy, to prove Theorem B. This implicit equation together with the identity
from Proposition 3.1 determines the coefficients y (Out(F},)) completely.

To formulate this implicit equation, it is convenient to use the coefficient extraction
operator notation: For an arbitrary formal power series f(x) the notation [x"] f(x)
means “the n-th coefficient in x of f(x).”

Proposition 4.1.
1= (-2)"Q — DN[x*Texp(T (z, x)), (4.1)
£>0

where (20 — 1)1 = (2€)!/(£12%) is the double factorial.
In the remainder of this section we will first give a combinatorial reformulation
of this identity and then prove it.
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4.1. The exponential formula. The exponential of the generating function T'(z, x)
in (4.1) has a straightforward combinatorial interpretation. While 7'(z, x) can be
expressed as a sum over connected graphs as we did in (3.3), the generating function
exp(T'(z, x)) can be expressed as a sum over all graphs. The reason for this is that
the function t is multiplicative on disjoint unions of graphs, so we can apply the
exponential formula given, for example, in [38, 5.1].

Briefly, the argument behind the exponential formula is that if ¢ is a function on
graphs that is multiplicative on disjoint unions, i.e. ¢ (I'y U T2) = ¢(I'1)¢(I'2), then

p() _ 1 ¢ (yi)
1% |AutF|_n! Z 1_[|Aut)/,

.»¥Yn€gci=1
IC@M)|=n

where we sum over all graphs with n connected components on the left hand side
and over all n tuples of connected graphs on the right hand side. The factor 1/n!
accounts for the number of ways to order the connected components of the graphs.
If we sum this equation over all n > 0 and use e* =} ., x"/n!, we get

Lemma 4.2 (Exponential formula). Let ¢ be a function from graphs to a power series
ring that is multiplicative on disjoint unions (i.e. ¢(I'y U Tp) = ¢(I'1)¢(I'2)). If the
coefficient in ¢ (I") of a given monomial is non-zero for only finitely many graphs I’
then

o(I) _ ( ¢ () )
I; |AutT| I‘Xy’;c | Aut T'|

The finiteness condition on the function ¢ is necessary to ensure that ) g | Aﬁflll

exists in the respective power series space.

Corollary 4.3.
I
exp(T () = Z | ;lft(;nz'“,
exp(T(z. x)) = Z |;(£1)“)| ] s(T).

Proof. Let ¢, be the function defined by ¢1 (') =7(I")z'T| for T € &y and ¢; (') =0
for I' € §; with s > 1. This function is multiplicative on disjoint unions of graphs,
because 7 is ([36, Lemma (2.2)]) and both |I"| and s(I") are additive graph invariants.
The first statement follows by applying Lemma 4.2 to ¢; and using eq. (3.1). For
the second statement apply Lemma 4.2 to the function ¢(I') = ¢(I')z/T1x*@ for
allT" € &, note that there are only a finite number of admissible graphs with fixed |I"|
and s(I") and apply eq. (3.3). O
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Note that the power series 7'(z) and exp(7 (z)) carry the same information. Recall
that y, is the coeflicient of z" in T'(z), and denote the coeflicient of z” in exp(7T'(z))
by ¥n. The coefficients ¥, and ¥, are related by

1 n—1 ~
e Y ke Fn—k forn = 1. (4.2)
k=1

>

>

dn =

This recursive relation can be derived by taking the formal derivative of exp(7'(z))
which results in the (formal) differential equation

j—z exp(T(z)) = eT(z)%T(z).
Note that it is also important that yo = 0 for exp(7'(z)) to make sense as a power
series with Q as coefficient ring.

We can immediately use the relationship between the coefficients ¥, and x,
to prove the following statement which will be helpful later while proving that the
rational Euler characteristic of Out(F}) is always negative.

Lemma 4.4. If ¥, <Oforalln > 1, then x, <0 foralln > 1.
Proof. This follows by induction on »n on eq. (4.2). O

Because y, = y(Out(F,+1)), proving ¥, < Oforalln > 1 is therefore sufficient
to show that y(Out(F},)) < O foralln > 2.

4.2. Convolution identities. By Corollary 4.3, the statement of Proposition 4.1 is
equivalent to the identity

1= (2fee-nn Y D) i, 4.3)

=0 reg, | Aut(I)|

If y is a subgraph of I', we denote by I'/y the graph that one obtains from I" by
collapsing each edge that is in y to a point. We will use the following convolution
identity for 7 to prove eq. (4.3) and therefore also Proposition 4.1.

Proposition 4.5. If T is a graph with at least one cycle, then

> T =o.

ycrl

where the sum is over all subgraphs of U, including the trivial subgraph and T itself.

This statement can be seen as an identity in the incidence algebra of the subgraph
poset of a graph. We will discuss a related viewpoint in Section 5, where we will
interpret it as an inverse relation in the group of characters of the Hopf algebra of
core graphs.
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Proof. Recall that t(I") = Z¢» T (—1)¢@) where the sum is over all subforests of T.
Therefore,

I () (=1)FT = (—1)® 3 1(y) (=1)¢®)

ycT ycT
= (—=1)¢D Z Z (=1)¢@ (—=1)¢®
ycI' oCy
forest @
- (_l)e(l‘) Z (_De(tp) Z(_l)e(y)_
pcll ycT
forest ¢ yoQ

The set of subgraphs of I" containing ¢ is in bijection with the set of subsets of
E(T') \ E(p). Because I has at least one cycle, E(T") \ E(¢) is not empty and the
alternating sum

Z(_l)e(v) = (=1)°®@ Z (—DE' = 0. O
;,,gg E'CEM\E(g)

Corollary 4.6.

B () (=)
1= 2 A

Proof. Since all non-trivial graphs in §y have cycles, Proposition 4.5 implies that the
only non-zero contribution to the sum comes from the empty graph. O

To eventually obtain the statement of Proposition 4.1, we transform this identity
using the following proposition, which is an elementary application of labeled
counting.

Proposition 4.7. Let ¢ be a function from graphs to a formal power series ring such
that for each monomial m and each integer £ > 0, the coefficient of m in ¢(I") is
non-zero for only finitely many graphs I' € §;¢. Then

p(weTn ¢ P (y)
DDy Aut(D))| =) wiee-nt ), [ Auty|’

T'egyycl £>0 132y

where w is a formal variable.

Proof. To prove the proposition we will use (totally) labeled graphs. Here a labeling
of I" with e(I") edges, v(I") vertices and s(I") leaves consists of

* ordering the edges, i.e. labeling them 1,...,e(I),

* orienting each edge,
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* ordering the vertices, i.e. labeling them 1, ..., v(I),
 ordering the leaves, i.e. labeling them 1,...,s(T’).

The set of labeled graphs with s leaves will be denoted £5.

The advantage of using labeled graphs instead of unlabeled graphs is that a sum
of terms 1/| Aut(I")| over unlabeled graphs on v vertices and e edges becomes a
sum of 1/(v!e!2¢) over labeled graphs using the orbit-stabilizer theorem. The group
Aut(I') acts on the set of labelings of I', an orbit is a labeled graph and all stabilizers
are trivial. This simplifies expressions that involve these automorphism groups. In
particular, abbreviating v = v(I"),e = e(I") and d = e(y) we have

W)
Z Z | Aut(D)| Z Z e'v'2€¢(y)

Fegy ycTl Frefgq ycl

A subgraph y inherits a labeling from I": the vertices are the same, so they have the
same labels. The ordering and orientation on the edges of I" induces an ordering and
orientation on the edges of y, giving a labeling on these. The edges not in y also
have an induced ordering, and we use that to order the leaves of y by the following
rule: If there are £ edges in E(I') \ E(y), label the leaf corresponding to the initial
half of the i-th edge by i, and the leaf corresponding to the terminal half by i + £.

We now change the order of summation. Remembering that y has an even number
of leaves, we get

e—

Z Z ',2e¢()’) Z Z Z u:!2e¢(}’)

IF'efgyycl >0 yelgry Tel&y,I'Dy

L
w
=L 2 D gyt

£>0yelg,, TelLEo,I'Dy

We next note that a labeling on y specifies an isomorphism type of I" containing y,
using the rule that the i-th leaf should be connected to the (i + £)-th leaf. This
also orders the edges in E(I') \ E(y) and orients them from i to i 4+ £. The edges
of y C T are ordered and oriented as subsets of E(y). There are (d’{e) ways of
shuffling the two orderings to get a total ordering on E(I') that induces the given

orderings on E(y) and E(I") \ E(y). Thus the last expression becomes

d+¢ wt
=2 2 ( ¢ )(d+£)!v!2d+€¢(”)

>0 yeéﬂﬁu
d +0)! 1
=7 X $(»)
d
~ yew 0d! (d + )2

£>0

¢ (y)
Z 12 yegze dv12d’
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We now translate back to unlabeled graphs to get

_ w P(y)20)!
ZE'ZE Z | Aut(y)|

£>0

I N CIILN: o)

_g mf " Z |Aut()’)|

=Y ee-nmt Y 20 O
2=t Z AU

Proof of Proposition 4.1. Use Proposition 4.7 with ¢(I') = ¢(I")z'! and w = —z,
together with the observation that (—1)¢{I/")zITl = ZlvI(—z)e(M—e()  We get

(EDT )
2 2~ Taur] =2 et ”'( Z TAu()|’ ,,).

TegyycT £>0

Apply Corollary 4.6 to obtain eq. (4.3) and Corollary 4.3 after that. O

5. The Hopf algebra of core graphs

A graph with no separating edges is called a core graph, bridgeless or 1-particle
irreducible graph. Let H denote the Q-vector space generated by all finite core
graphs. In contrast to the rest of the article, we will include graphs with bivalent
edges as generators of H. The vector space H can be made into an algebra whose
multiplication is induced by disjoint union of generators; here we identify all graphs
with no edges with the neutral element I for this multiplication. (Thus a topological
graph representing the neutral element is a (possibly empty) disjoint union of isolated
vertices and star graphs.)

The algebra H can also be equipped with a coproduct A: H — H ® H, defined by

AT =Y yeT/y, (5.1)
ycTl
where the sum is over all core subgraphs of I

Example 5.1. The graph x{)x has seven mutually non-isomorphic core subgraphs
— including the trivial subgraph graph (identified with 1) and the graph xX{>x itself.
The coproduct is given by
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Note that the complete contraction I'/ " has no edges, so is identified with I. Also
note that we omitted isolated vertices of the subgraphs on the left hand side of the
tensor product since isolated vertices are also identified with I.

This coproduct is coassociative, making H into a bialgebra. In fact Kreimer
showed that H has a Hopf algebra structure [30]. The unit u: Q —H sends u: g +>¢I.
The co-unit e:H — Q sends I to 1 € QQ and all other graphs to 0. The antipode
S:H — H can be defined inductively by S(I) = I and,

STy ==Y S(T/y forT £1,

ySrl'

where the sum is over all core subgraphs of I' which are not equal to I". This
recursion terminates since the graphs y in the sum have fewer independent cycles
(i.e. smaller first Betti number) than I". The result is a polynomial in core graphs.
We refer the reader to [39] for a general account of Hopf algebras or [8, Ch. 3] for
more information about this specific Hopf algebra.

A character on H is a linear map ¢ which satisfies ¢(I"'1[2) = ¢(I'1)¢(I"2). The
convolution ¢ x ¥ of two characters is defined by

(> v)(T) =Y s (T/y),

ycrl

where we again sum over all core subgraphs of I'. Because H is a Hopf algebra,
the set of all characters from H to any commutative algebra forms a group under the
convolution product. This follows from the antipode being the inverse to the identity
map, id: H — H, in the sense that id+«S = S xid =uoe. Themapuoe:H — H
is the identity element of the x-group of characters H — H. It satisfiesu oe(l) = I
and uoe(I') = 0if I' £ I. If ¢ is a character H — A which maps to a unital
commutative algebra #4, then ¢*~! := ¢ 0 S is the inverse of ¢ under the star product
in the sense that

¢l xp=¢x¢" =uyoe,

where u 4 is the unit of A.

Because t is multiplicative on disjoint unions of graphs, it induces a character
H — Q. We can define the even simpler character o(I") = (—1)¢I) and formulate
Proposition 4.5 in the Hopf algebra language:

Proposition 5.2. 1 xo0 =0 xt =ugoe.

Proof. By Proposition 4.5 and the definition of the  product t x0 = ugoe. Because
the characters form a group, we also have 0 * T = ug o e. O

Although the Hopf algebra H and its coproduct are defined only on core graphs,
we can also consider the maps t and o on the space of all graphs. The linear space G
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which is generated by all graphs can be made into a (left) H-comodule by defining
a coaction, p:G — H ® G, using the formula (5.1) with p in place of A. The left
side of the tensor product in (5.1) will always be a core graph and can naturally be
associated with an element in H. The star product applied on characters of G in the
same way as on characters of H becomes an action this way. See [8, Ch. 3] for details.

Applying o to the weighted sum of all connected graphs with no leaves gives an
especially interesting result:

Proposition 5.3.
r — B
Z :(t % = {=n) = — n+11 foralln > 1.
S AU~ T T+
T|=n

This statement is not new. It follows as a special case from “Penner’s model” [33]
(see also [27, Appendix D]). The sum could be thought of as the integral of o over the
space of connected graphs with measure u(I') = 1/| Aut(T")|, whereas integrating
its convolutive inverse 7(I") over the same space with the same measure gives y, by
Corollary 2.6.

In Section 7.3 we will give a proof of Proposition 5.3 as a special case of
Corollary 7.6. Here, we can immediately verify it forn = 1:

o(CO) 0 (G-0) 0(8) 1 -1 -1 1 B>

Ao0)] Ao (A 373 TT2- 12- 2

The Bernoulli numbers are classical objects with a long history, and it is well
known that B, 11 vanishes for n > 1 and that the sign of B,, is (—1)"**! forn > 1.
To analyse similar properties of the numbers y,,, we will make heavy use of asymptotic
expansions. We will go into the details after a short digression about the relation of
our methods with perturbative methods used in quantum field theory.

6. Renormalized topological quantum field theory

Our approach to analyzing the numbers y, is in line with an established technique
for analyzing topological objects by using perturbative quantum field theory or
equivalently Feynman diagram techniques [3]. The term topological quantum
field theory is used for a quantum field theory whose observables are topological
invariants [42]. See also [28,29] for further aspects of this theory and [14] for a more
detailed account focused on group cohomology.

One prominent application of topological quantum field theory is intersection
theory in the moduli space of complex curves, as developed by Witten [43] and
Kontsevich [27]. Penner [33] had already applied perturbative quantum field theory
techniques to reprove the result of Harer and Zagier on the rational Euler characteristic
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of the mapping class group. In the course of his study of intersection theory
Kontsevich gave a simplified version of Penner’s proof [27, Appendix D]. This
simplified proof involves a formula similar to the one in Proposition 5.3.

We can endow our approach to studying the numbers y, with a quantum field
theoretical interpretation, in a spirit similar to the work of Penner and Kontsevich.
Here is a brief, heuristic indication of how this goes.

We start with the statement of Proposition 4.1 and immediately apply Proposi-
tion 3.1 to obtain the equation

1= Y (=n)t@L - DI exp (ex = x?z_ lnb >+ T(Ze—x)).

{=0
Now flip the sign of z to get

x _x2

1= "z820— )N[x*exp ( _E 22 + % + T(—ze_x)). (6.1)

£>0

For the remainder of this section we regard z not as a formal variable, but rather as a
positive real number. We then recall the Gaussian integrals

£
x2te™ 22 dx =z'2¢L — 1)1 forall£ > 0,
,—f

2
P YT, A =
— [ x e 2Z2dx=0 for all £ > 0.
2z /]R -

Substituting these into eq. (6.1) gives

20 ,—% 71,28 ¢! —E—x=1 x -
fx e Zdx[x“*|exp| — —l—z-l—T(—ze ).
z

=2 7z )

£=0

This integral is not convergent since we are no longer regarding z as a formal variable,
but we will disregard this issue for this heuristic argument. In the same laissez-faire
spirit, we ignore convergence issues and interchange summation with integration to
obtain

_x—1
1 = exp ( e—-;—— + al — T(—ze_x)) dx. (6.2)

\/_
This integral is again not well-defined, as the series 7'(z) does not converge to
a function of z in any finite domain: it is only a formal power series with a
vanishing radius of convergence. However, we can interpret the right hand side
of this equation as a ‘path-integral’ of a zero-dimensional quantum field theory
with the action —(e* — x — 1), where the parameter z takes the role of Planck’s
constant k. The additional terms in the exponent 5 + 7' (—ze™™) can be interpreted
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as counterterms or renormalization constants which renormalize the quantum field
theory in a generalized sense. In fact, equation (6.2) can be interpreted as a
renormalization condition of a quantum field theory.

In Kontsevich’s proof of the Harer—Zagier formula, a topological quantum
field theory was constructed whose perturbative expansion encoded the geometric
invariants of interest. As we have seen above, our method can also be interpreted as
an application of quantum field theory to the analysis of the invariants y,. However,
instead of using the coefficients of the perturbative expansion directly, we use the
coefficients of the renormalization constants to express the quantities which are of
interest. We might therefore say that we are using a renormalized topological quantum
field theory to encode yp.

This is consistent with the interpretation of t as a character on the core Hopf
algebra. Connes and Kreimer [15] showed that the renormalization procedure in
quantum field theory can be seen as the solution of a Riemann-Hilbert problem using
a Birkhoff decomposition. The Birkhoff decomposition can be formulated elegantly
as an inversion in the group of characters of a certain Hopf algebra. In our topological
case, which is much simpler than the full physical picture, this interpretation boils
down to the brief exposition in Section 5. Consult [6] for a general treatment of
renormalized zero-dimensional quantum field theory in a Hopf algebraic framework.

After these expository remarks we now return to our rigorous treatment of the
Euler characteristic of Out(F,).

7. Asymptotic expansions

An often useful approach to studying a generating functionsuchas 7(z) =) .| xnz"
is to interpret it as an analytic function in z and then use analytic techniques to study
the nature of its coefficients [20]. However, in our case this standard approach is
doomed to fail, at least if it is applied naively, as the coefficients of 7(z) turn out to
grow factorially so the power series 7'(z) has a vanishing radius of convergence.

We will circumvent this problem by using an asymptotic expansion of a certain
function to describe the coefficients of 7(z). In contrast to Taylor expansions of
analytic functions, asymptotic expansions are not necessarily convergent in any non-
vanishing domain of C.

7.1. Asymptotic notation. In this section we fix the notation we use for asymptotic
expansions and prove a basic property that we will use repeatedly. We begin by
recalling the big @ and small o notation. Let f, g and h be functions defined on a
domain D and let L be a limit point of D. The notation f(x) = g(x) + @(h(x))
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means f — g € O(h), where O (h) is the set of all functions u defined on D such that

lmsup [Z55] < o0
Similarly, f(x) = g(x) + o(h(x)) means /' — g € o(h), where o(h) consists of all
functions u that satisfy limy_, 7, % = [,
An asymptotic scale on D with respect to a limit L is a sequence of functions
{@k }k>0 with the property ¢r+1 € o(gx) for k > 0. A common example, for
functions with domain R and limit L = oo, is ¢ (x) = x7*.

Definition 7.1. An asymptotic expansion of a function f defined on D with respect
to the limit L and the asymptotic scale {¢x }x>0 is a sequence of coefficients cx such

that
R-1

() =) crpr(x) + Opr(x)) forall R >0,
k=0
where the O refers to the limit x — L. We will write this infinite set of @ relations
as,
f(x) ~ Z CkPr(x) asx — L.
k>0

Asymptotic expansions are widely used in mathematical analysis, the physical
sciences and engineering to obtain very accurate approximations to functions. A
detailed introduction to asymptotic expansions can be found in de Bruijn’s book [18].
A key feature of asymptotic expansions is that, for a given function f, limit L. and
asymptotic scale {¢ }x>0, the coefficients ¢ are unique if they exist. We will make
use of this property in the proof of Theorem B.

The coefficients of an asymptotic expansion depend on the choice of the
asymptotic scale. However, under certain conditions we can translate between
asymptotic expansions in different asymptotic scales:

Lemma 7.2. Suppose ® = {¢x}k>0 and V¥V = {¥,}m=0 are two asymptotic scales
on a domain D with respect to the same limit L, and suppose f has an asymptotic
expansion in @

f(x) ~ chqak(x) as x — L. (7.1)
k>0

If each V,, also has an asymptotic expansion in @

Ym(x) ~ Y cmipr(x) asx —> L (7.2)

k>m

with ¢mm 7 0, then f has an asymptotic expansion in W

f(x) ~ Z CpVUm(x) asx — L,

m=>0
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where the coefficients c,, are implicitly determined by the infinite triangular equation

system
k

Bl Z ¢, Cmx forallk > 0.

m=0
Proof. By the definition of an asymptotic expansion we have

R-1
Ym — Z cmi@k € O(pr) forallR>m > 0.

k=m

We can multiply a function in @ (k) by a constant or add a finite number of functions
in @ (h) without changing the @ class. Thus multiplying by c,, and then adding from
m=0to R —1 gives

R-1 R-1 R-1
Z Cora¥m — Z Z CrCmk®k € O(pr) forall R > 0.
m=0

m=0k=m
Changing the order of summation and using the definition of the constants c;,, gives

R-1 k R-1 R-1

R-1
Z CraWm — Z Z By O ek = Z CpWm — Z ckox € O(pg) forall R > 0.
m=0

k=0m=0 m=0 k=0

By eq. (7.1) we have f — Zf;& ck9r € O(pr), so combining this with the above

gives
R-1

f - Z ¢, ¥m € O(pr) forall R > 0.
m=0
It remains only to check that @(¢r) = O(¥g). This follows from eq. (7.2), which
implies Y r = cr,r¢R + O(@Rr+1), together with the assumption that cg g # 0 and
the fact that ogr+1 € 0(¢R). O

In this paper the domain of our functions will mostly be the natural numbers, i.e.
our functions are sequences f: N — R, and the limit will almost always be oo, but
the asymptotic scale will vary.

7.2. Stirling’s approximation. Arguably, one of the most studied asymptotic ex-
pansions is Stirling’s approximation. This is an asymptotic expansion of the gamma
function R
L) ~ Y bpv/2me™n" 2% asn — oo, (7.3)
k=0

where by is the coefficient of z* in exp (Xrz, %-ET)ZIC)' See for instance [18,

Sec. 3.10] for a proof. Stirling’s approximation is used extensively as a tool for
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approximating the value of I'(n) for large n. We, however, will view eq. (7.3) as
an asymptotic expansion of I"(n) in the asymptotic scale {«/Ee_"n”_'li_k >0 and
use it merely as a tool to encode and manipulate the coefficients Ek,

Recall that the gamma function satisfies I'(z + 1) = zI'(z); this ensures that
the sequence of functions {I"(n — k + —21—)}k;_>0 forms an asymptotic scale in the
limit n — oco. The statement of Theorem B gives an asymptotic expansion of
f(n) = ~/2me™n™ in this scale, whose coefficients coincide with those of the
formal power series exp(7(z)); we can think of this as a kind of “inverted” Stirling’s
approximation.

Although there is a large and growing literature on Stirling’s approximation
(see [9] for a recent survey), such an asymptotic expansion of +/27e™"n" does not
seem to have been studied previously. This type of ‘inverted Stirling’s approximation’
might also be relevant for other applications: many problems dictate or suggest an
inherent asymptotic scale. For instance, it might be natural to work in the asymptotic
scale

{2 — k)= 1)!Mk>0,
where

Qn—k)— 1! = 2"*’61“(” s fo s %)/\/_

for counting problems whose solution involves double factorials. Moreover, power
series with coefficients which have an asymptotic expansion in the scale

{I'(n—k+ Bli>o

with B € R have a rich algebraic structure; for instance they are closed under
multiplication and functional composition [7].

To establish the asymptotic expansion in Theorem B we will start with a trivial
asymptotic expansion for the constant function 1 in the scale {n* k>0, then use
Lemma 7.2 to change to the scale {{/,; }m>0, Where

nm+d)
\/Z?e‘”n”

In order to apply the lemma, we need to find asymptotic expansions for the func-
tions ¥, (n). We do this using the following variant of Stirling’s approximation.

I
Ym(n) = (7.4)

Proposition 7.3. Let ¥V = {Y,}m>0 be the asymptotic scale with domain N and
limit co defined in eq. (7.4). Then each ., has an asymptotic expansion in the
asymptotic scale {n=* Yk>o given by

Ym(n) ~ Z cm,kn_k asn — oo,
k>m
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where ¢ is the coefficient of z* in the formal power series
m,k P

23" 2@t — D [xPe T maDx(Gom), (7.5)
£>0

We will prove this proposition using Laplace’s method, which serves as a
connection between graphical enumeration and asymptotic expansions. We will
introduce this method in the next section and therefore postpone the proof of
Proposition 7.3 until then.

Assuming Proposition 7.3 we are now ready to prove Theorem B.

Theorem B. The function ~/2mwe™"n" has the following asymptotic expansion in the
asymptotic scale {(—1)*T' (n + % —k)}k>o0.

1
V2me ™™ n" ~ ) fr(=DFT ——k :
we "n I;))(k( ) (n+2 ) asn — oo

where 7 is the coefficient of z* in the formal power series exp ( anl x(Out(Fy41 ))z”).

Proof. The constant function f(n) = 1 has a trivial asymptotic expansion in the
asymptotic scale {n %}z, namely

INchn_k as n — 0o,

with coefficients ¢g = 1 and ¢ = O for all k > 1. Using Lemma 7.2 and
Proposition 7.3 we can change the asymptotic scale from {n %} k>0 to the scale W as
defined in Proposition 7.3, giving

1~ Zc,’,,ylfm(n) as n — 0o,

m=0

where the coefficients c;, are uniquely determined by the triangular equation system

k
Cp = Z CruCm  forallk >0 (7.6)

m=0

and the coefficients ¢,, x are those defined in the statement of Proposition 7.3. Namely,
cm k is the coefficient of z¥ in the formal power series given in eq. (7.5). It follows
from this power series representation that ¢,, ,, # 0 for all m > 0, which justifies
our application of Lemma 7.2 and guarantees that the linear equation system (7.6)
can be uniquely solved for the coefficients c;,.

By definition of v, in eq. (7.4), this asymptotic expansion becomes

T'(n - 1
1~Zc,’n (nom+5) as n — oo.

—Rnhn
o 2wre"n
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Multiplying both sides by ~/2mwe™"n" gives

o nNZC I‘(n-—m—i—;) asn — oo.

m=>0

It remains to show that ¢;, = (—1)™},,. From Proposition 4.1 and Proposition 3.1
we have

1= (-2)*@f — DUx*Texp (T(z, x))

£>0
& =% _x_1
=Y ('@t - DN[x*]exp ( 2 + g 4 T(ze_x))
£20 z
x 2
— Z o . 1)!![x2£]e_2}"(e — T -x=1)+3x exp(T(—ze™)).
£>0

Expanding the second exponential in z gives,

1= ZZE(Z*E— I)H[XZE] ——(e ———x—1)+2 Zz e mx( 1)mA

£=>0 m=>0
= Y )" Y 22t — DU T D+,
m=>0 >0

where ¥ is the coefficient of z¥ in the formal power series exp (anl )(nz"). By
eq. (7.5) this is

1= " ()"Im Y cmaz" =Y > (D" Imcmuz".

m=0 k>m k>0m<k

Because [zX]1 = ¢k, we can also write this as ¢ = Y m<kt D™ XmCom i for
all k > 0. Therefore, we constructed a solution of the triangular equation system
in (7.6). Because the coefficients c;, are unique, it follows that ¢, = (—=1)" ¥, as
claimed. O

Remark 7.4. The coefficients ¢,, x of the asymptotic expansion of the functions v,
given in Proposition 7.3 (eq. (7.5)) can also be written in terms of Bernoulli numbers
if we use the conventional expression of Stirling’s approximation given in eq. (7.3).
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Slightly abusing the ~ notation me may write the asymptotic expansion for ¥, (n)
as

T(n—m+ 1)
«/2_ne‘”n"
N V2r(n—m + %)"_me‘""""‘% exp (X1 %’;—}h—(n —m+ %)-k)

W 2meph
1\ n—m
. —m n_m+5 m— Bk+1 (_ l—k
=n (—n ) e exp(g k n m+2) .

Writing z = % this becomes

((1=2n=3)) e (g G oma) )

Since the coefficients of the asymptotic expansion for v, (n) are given by the above
power series as well as by the power series in eq. (7.5), the series are equal, giving
the following identity for Bernoulli numbers, for all m > 0.

222(22 — DN[x* exp ( — %(ex — );—2 —Xx— 1) + x(% —m))

£=0
1 1 1
- eXp((m_;)log1—z(m—-) T

. Z _ (fls;kill) (1 —z(m - %))—k)
Sk 1 1\¥ Bt
=exp(]§m((m—5k)(m—z) - 1))"))

Z(m—i

This identity actually holds for all m € R. However, it is unclear how to

prove such an identity without asymptotic techniques. The special case m = %
lies at the heart of the proof of Proposition 5.3. De Bruijn also discusses this case
using Laplace’s method and writes that the identity is “by no means easy to verify

directly” [18, Sec. 4.5].

7.3. Laplace’s method: A bridge between graphical enumeration and asymp-
totics. A common source of asymptotic expansions is Laplace’s method. Laplace’s
method is, as one might guess from the name, quite an old technique. It is usually
used to extract asymptotic information from a complicated integral without evaluating
it in full generality. We will use Laplace’s method in the opposite way, as we are
going analyze the properties of a complicated number sequence by associating it with
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a relatively simple integral. This way, the method will serve as a bridge between
graphical enumeration as described in Section 4 and the analytic world of integrals
and their asymptotic expansions.

Lemma 7.5 (Laplace’s method). Let f and g be real-valued functions on a domain
D C R with 0 in its interior. Suppose both f and g are analytic in a neighborhood
of 0, that g(0) = g'(0) = 0, g”’(0) = —1, and 0 is the unique global supremum of g.
Finally, assume that the integral

[ ()] D dx
D

exists for sufficiently large n. Then the sequence I(n) given by the integral formula

I(n) = \/g fD F(x)e™8™ gx (7.7)

admits an asymptotic expansion with asymptotic scale {n =%},

I(n) ~ chn_k asn — oo, (7.8)
k>0

where cy, is the coefficient of z¥ in the formal power series,

x2
Y2420 - DX f(x)ez @@, (7.9)
£>0

A quite similar statement is given in [20, Thm. B7]. Unfortunately, only a partial
proof is given there. For the convenience of the reader we provide a proof in the
appendix. The argument revolves around approximating the integral ineq. (7.7) witha
Gaussian integral. It closely follows the arguments in [18, Sec. 4.4] and [20, Thm. B7].

We wrote the coefficients of the asymptotic expansion in eq. (7.9) suggestively to
illustrate the close relationship of asymptotic expansions which come from Laplace’s
method and generating functions of graphs such as the one in Proposition 4.7. We
will use this relationship in the following Corollary, which we will need to give the
relation between graphs and the zeta function stated in Proposition 5.3.

Corollary 7.6. Let | be the constant function f(x) = 1, and assume g is analytic
near 0 with Taylor series

2
X ¢ bs
g0) =+ 2 ¥
5§>3

Then for all k > 0 the coefficients cy of the asymptotic expansion in eq. (7.9) can be
written as a weighted sum over graphs,

HUGV(F) b|v|
= e 7.10
& Z | Aut " (7.10)
I'egy
IT|=k

where |v| is the valence of the vertex v.
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Proof. Let ¢:§ — R ((z)) be the function from the set of graphs to the space
of Laurent series in z defined by setting ¢(I') = 0 if [ contains an edge and
() = HveV(l") (z71bpy)) if T has no edges. There are only finitely many graphs
with 2 leaves which have no edges, and the function ¢ is multiplicative on the
disjoint union of graphs, so we may apply Proposition 4.7 and Lemma 4.2 to get

) w0 Moevay @ om) _ S wt2e - DY exp( PR L )

Ir'egy | ButE] £>0 yege | Auty]|

where we used the fact that a graph has only one subgraph with no edges. The only
graphs without edges which are also connected are the star graphs Ry ;. This together
with the fact that Rg s has the symmetric group X, as automorphism group gives

Z sy Py) sz ¢(Ros) _ }_szlﬁ
e | Aut y| = | Aut Ro.s]| z s!
Setting w = z results in,

nueV(I‘) blvl

22l ) " IF I t2e = DXt
Z AU z Zz( M ]exp( Zx )
reg, >0 §>3

The right hand side is now exactly the power series given in eq. (7.9) that deter-
mines Cg. O

Proof of Proposition 5.3. We start with Euler’s integral representation of the gamma

function o J
C'(n) = f we L
0 U

Substituting 4 = ne* gives
o X o0 X
I'(n) =f n"e" e "¢ dx =e_"n"/ g —E=1)
—0Q —0o0
We can now apply Lemma 7.5 with g(x) = —(e* —x—1), f(x) =1land D =R

to get an asymptotic expansion

T(n) = V2me ™" n"" 2chn

k>0
By Corollary 7.6 and because —(e* —x —1) = =" .5 ’;—f the coeflicients satisfy,
—1)¥(M
& = (——)— forall k > 0.
| Aut I'|

e$o
|T|=k
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Stirling’s approximation in eq. (7.3) gives another expression for the coefficients cy.
Because the different ways to express the asymptotic expansion of I'(n) with the
same scale and limit must coincide, we get

3 (GOl p(i Br+1 )
& TAuT| kk+ 1)

Since taking the formal logarithm restricts the sum on the left to connected graphs
(Lemma 4.2) we get

y 00 AP i Bis
e [AutT| k(k+1)

Now notice that o(T") = (—1)¢T) = (—=1)IT1(=1)*T) and Bi4q = 0 for all even
k > 0, giving

Z o(I) = (—1)r—2ntL Bnt1 Bn+1 _é’(*ﬂ) =

Feg | Aut T'| nn+1) n(n +1) n

T |=n
‘We now turn to the proof of Proposition 7.3, which follows along similar lines.

Proof of Proposition 7.3. Assume n,m > 0 with n > max{1,m}. Start with Euler’s
integral and substitute ¥ = ne* to obtain

00
I‘(n —m+ -1-) = f Mtz du
2 0
o0
— e—nnn—m+%—f e—n(ex—x—l)-l—x(%—m) dx
—00

Therefore,

F(n —m+ %) m | > n(e* —x—1)+x (4
e —pm [ = —X= 37M) .
Ym(n) 2me npt " \ 27 .[-ooe *

The condition n > max{1, m} guarantees that the integral exists. The functions

Flody = ¢*(3=m  and g(x)=—(e*—x—-1),

defined on D = R, satisfy the conditions of Lemma 7.5, so we can apply Laplace’s
method to obtain
1" Y (n) ~ Zc,’n,kn_k asn — 00,
k>0
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where ¢, , is the coefficient of z* in the power series

Y zfe - [x2Ee} € =5 ~x=Dx(b-m)
£>0

From Definition 7.1 and the fact that ™™ O (n~B*t™) = @ (n~R), it follows that

Ym(n) ~ Z c:n_k_mn_k as n — oo.
k>m

Setting ¢,y k 1= c,’n’k_m gives eq. (7.5). O

We have now completed all of the steps in the proof of Theorem B. Before we
continue with the proof of Theorem A, we will briefly discuss the relationship of our
considerations with Kontsevich’s Lie graph complex.

7.4. Lie graph complex. Kontsevich’s Lie graph complex £« computes the Chevalley—
Eilenberg homology of a certain infinite-dimensional Lie algebra £, associated to
the Lie operad. In [28] Kontsevich remarked that the orbifold Euler characteristic of
the subcomplex 2,(:') spanned by connected graphs with fundamental group F, can
be encoded as coeflicients of the asymptotic expansion of the integral

V%Lexp(—nzs(sx—l))wzckn_k as i = oo, (7.11)

§>2 k>0

where D is a small domain that contains a neighborhood of 0 and ci is the z¥
coefficient of the power series exp (3,54 )((Ei"H))z"). Observing that

xS xS
_SXZ; s(s—1) - ——Z(S _2)!E

§>2

and using Corollary 7.6 together with the exponential formula (Lemma 4.2), we may

conclude that £(T)
oy — ,
Fefg

7 (D)=Fy

where £ is the function given by

£00) = DYON TT (v -2)!

veV(I')

This formula for X(S,(.:")) also follows directly from counting graphs whose vertices
are dressed with Lie operad elements. We have )((Sﬁ")) = ¥n—1, because

Hp (€M) = H?27% (Out(Fy)).
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This was first observed by Kontsevich [28]; see [14] for a detailed proof. The
statements in Theorems A and B, therefore apply verbatim to the orbifold Euler
characteristic of 2&"). It is, however, unclear what role the map £ and the Lie graph
complex play in the interesting Hopf algebraic duality between t and o explained in
Section 5.

The integral in eq. (7.11) gives another representation of the coeflicients y,, but
the descriptive power of this representation is limited: it seems that the integral
does not evaluate to a ‘known’ function, which could facilitate the extraction of
information about the coefficients y,. Recall that the fact that two functions have the
same asymptotic expansion does not imply their equality, so it does not follow from
the considerations above and Theorem B that the left hand side of eq. (7.11) is equal

o o/ 2me ™",

8. The Lambert W -function

In this section we prove that the coeflicients of the asymptotic expansion in Theorem B
are all negative. The first statement of Theorem A, that y(Out(F,)) < Oforalln > 2,
follows then by Lemma 4.4.

8.1. Singularity analysis. We will accomplish this by using a second method to
obtain the asymptotic expansion of the sequence V2me™"n" with respect to the
asymptotic scale {(—D)*T"(n — k + %)}kzo- This second method is singularity
analysis. By Theorem B and because of the uniqueness of asymptotic expansions,
we therefore obtain another expression for the coefficients ¥, of exp(}_,-; xnz").
This expression will involve the Lambert W -function, which is defined as the solution
of the functional equation W(z)e"®) = 7 [16]. Eventually, we will use a theorem of
Volkmer [40] to show that the coefficients of the asymptotic expansion are negative.

Proposition 8.1. The coefficient ¥y of z¥ in exp (anl Xnz") satisfies

R r'k+ 5
Xk = —Z(TE-Z—)ng_l

where the {vi}r>—1 are the coefficients of the following expansion involving the
derivative of the principal branch of the Lambert W -function in the vicinity of its

; =_1
branch-pointat z = —,

forallk > 0, (8.1)

Wy @) = Y (~DFFlup(1 4+ e2)5. (8.2)
k=-1
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Figure 3. Plot of the two real branches of the Lambert W -function. The solid line depicts the
principal branch Wy, the dashed line the other real branch, W_;. Both branches share a square
root type singularity at z = —1/e. The W_; additionally has a logarithmic singularity at z = 0.
The locations of the singularities are indicated with dotted lines.

In Figure 3, the principal branch W, of the Lambert W-function is depicted
with a solid line. Note that the index k in the summation starts with —1. We
chose this notation to be consistent with Volkmer [40], who proved a couple of
interesting properties of the numbers vg motivated by a problem posed by Ramanujan.
Most important for our considerations, he shows in [40, Thm. 3] that vy > 0 for
all £k > 1. He proves this by deriving the following integral representation for the
coefficients vy [40, Thm. 2],

1

o0 k
vk=——[ (1+2z)"271
27[ 0

IW_1(e~12)
11+ W_i(e™12)|?

dz forallk >1,

where J denotes the imaginary part of a complex number and W_; is the branch of
the Lambert W -function which is real and decreasing on the interval (—-;—, 0). This
branch is drawn with a dashed line in Figure 3. The integrand is strictly negative
since IW_1(z) € (—2n, —m) for z € (0, 00) [16].

Corollary 8.2. Foralln > 2, y(Out(F,)) < 0.

Proof. Apply Proposition 8.1, the fact that I" (k + %) > 0 and [40, Thm. 3] to get ¥, <O
for all # > 1. The result now follows from Lemma 4.4. O

As already mentioned, we will use singularity analysis to prove Proposition 8.1.
The basic observation behind singularity analysis is the following: the radius of
convergence of the Taylor expansion of a function f is equal to norm of the singularity
of f in C which is closest to the origin. This singularity is called the dominant
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singularity of the function. The radius of convergence is also equal to the limit
1
limsup |a,| ™",
R—>00

where f(z) = 3 pooanz". The radius of convergence therefore determines the
exponential growth rate of the coefficients a,,. In many cases, the detailed nature
of the function’s dominant singularity determines the asymptotic behaviour of the
coeflicients completely. To illustrate these notions, we will start by proving one of
the most basic statements from the framework of singularity analysis. For other
required statements from this framework, we will refer to the literature. A very
detailed and instructive introduction to singularity analysis can be found in Flajolet’s
and Sedgewick’s book [20, Part 2].

Lemma 8.3. If g is a generating function with power series expansion

o0
g(z) =) _ bn2",
n=0

which has radius of convergence r, then
b, €o(C™) forall0 <C <.

Proof. By elementary calculus, 7~ = limsup,_, o, |bx |%. Therefore for every § > 0
there exists an n¢ such that |b, |% < r~ L 4§ forall n > ng. It follows that

—hn
be| < (r" 1 +8)" = (Ti;g;) for all n > ny.

Because we can choose any § > 0, the statement follows. This argument also works
ifr = oo. U

Suppose we can decompose a generating function s(z) = ano dyz" as a sum
h(z) = f(z) + g(z) with f(z) = ano a,z"™ and g analytic in a disk around 0 € C
of radius larger than 1. Then by Lemma 8.3 there is a constant C > 1 such that

dy, = a, +0o(C™).
This is especially useful if the coefficients a, have an asymptotic expansion,
An ~ chgok(n) asn — 00,
k>0

with an asymptotic scale {¢ }x>o Which satisfies 0(C ™) C O(gk(n)) forall k > 0.
In this common case, we may neglect terms contributed by g to the generating
function & and conclude that

dy ~ chgok(n) as n — oo.
k>0
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%Z F'S

1 ,¢

Rz

Figure 4. The region A C C in the statement of Lemma 8.4.

To prove Proposition 8.1 we will need the following lemma.

Lemma 8.4 (Basic singularity analysis [19, Cor. 3]). Let f:C — C be analytic at 0
with an isolated singularity at 1, such that f(z) can be analytically continued to an
open domain of the form

A={z:|z| <R, z#1,|arg(z—1)| > ¢} CC

with some R > 1 and 0 < ¢ < m/2 (see Figure 4). If f(z) has the following
asymptotic behaviour in A for R > 0,
R-1
f@) =) -2 +0(1-2)*) asz—>1", (8.3)
k=0
where cx €R and ag <y <---<ar—1 <A € R, then the coefficients a, =[z"] f(2)
have the asymptotic behaviour,

R-1

= T
ap = Z Ck (n o;k ) -+ (9(n_A_1) asn — oo. (8.4)

k=0

Note that eq. (8.4) is not an asymptotic expansion in the sense of Definition 7.1,
because we did not specify an asymptotic scale.

Proof of Proposition 8.1. The principal branch of the Lambert W -function has the
series representation [16],

nn—l

Wo(z) = ) (=D —z".

n!
n>1
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By acting with zf—z, we obtain the expansion

zWy(z) = Z(—l)"“?;'z”. (8.5)

n>1

The function W is analytic in the cut plane C \ [-1/e, —oo) and has an expansion
in the vicinity of the branch point at z = —1/e,

Wo(z) = =1+ /2(1 4+ ez) — —i—(l + ez) + %(\/2(1 + ez))3 4= e

which is convergent if z € [—1/e, 0) [16, Sec. 4] (see also Figure 3). Therefore, the
function z W (z) has an expansion of the form

o0
k
2Wo(2) = ) D lue(l +e2)2.
k=-1
Using the basic version of singularity analysis from Lemma 8.4, we can obtain the
n
asymptotic behaviour of the sequence e™" ™+ from this: first we rescale the z-variable
of zWj(z) to obtain the expansion,

R—-1 )

)= 2 Dl -5 +o(1-2%)

k=—1

Z z
—_Zwi( =%
(=3
asz — 1" forall R > 0.

As zWj(z) is analytic in the cut plane C \ [—1/e, —c0), the function —Z W ( — £)

e

is analytic in another cut plane C \ [1,00). As A C C \ [1,00), we can apply
Lemma 8.4 and eq. (8.5) to get
s n"

() ="
e W — S =B
[Z]e 0 e ¢ n!

= n—%_1 R
=) (—D"“vk( Z ) +0(n 27" forallR >0,
k=—1

where we used o = % and A = %. The even contributions in the sum over k vanish
since the first argument of the binomial coeflicient is an integer that is smaller than
the second. Therefore,

" R-1 i e — 1 g
__e—nn_ — Z Vok—1 ) 21 + Q(n_Ruf) forall R > 0.

The binomial coefficient can be expressed in terms of I" functions

(n—kmg) _ D=k +3)

n n!F(%—k) '
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As a consequence of the reflection formula I'(z)['(1 — z) = ﬁ, we have
1k
F(l k)= D
2 Tk +3)
Hence,
R-1
e 1 1 1 R
=Rt _ 1)k _ &= & —5-1
—e = ftn!kZ_;)( 1) vzk_lI‘(n k + 2)F(k+ 2) +(9(n 2 )
- for all R > 0.

The statement follows from the uniqueness of asymptotic expansions and the property
of the I function that O ((n !)n_R_%) =0('(n—R+ -21-)). |

Proposition 8.1 together with known techniques for evaluating the various
expansion coefficients of the Lambert W -function provides an efficient way to
calculate the numbers y:

Proposition 8.5. The numbers y, and ¥, can be calculated using the recursion
equations,

. 15 .
Xn = Xﬁ - ;;kaXn—ks

P 1
fn=—(2n— 1)!!(5(2n — Dptan-1 = @1 + Dpiznt1),
[y = n—1 (an—z n Oln—z) oy Mn—1

T n4+1\ 2 4 2 n+1l
n—1
oy = Zﬂkﬂln—%—lw—k,
k=2

foralln > 1withag =2, a1 = -1, u—1 =0, o= -1, 1 = 1, and o = 1.

Proof. The coefficients u, are the expansion coefficients of the Lambert-W function
near its branch point:
Wo(z) = D ua(2(1 + e2))2.
n>0

The recursion for w, is given in [16, egs. (4.23) and (4.24)]; it follows from the
differential equation which W satisfies. We can adapt [40, eq. (2.11)] to the notation
of [16] (compare [40, eq. (2.1)] with the definition of w,) to get an expression for vy,
in terms of f,:

nyl
vn = (<" H123 (Snstn = (0 + Dbtnsa)

The equation for ¥, follows using Proposition 8.1 and (27 — 1)!! = onth I'n + %).
Finally, we use eq. (4.2) to translate from ¥, to y,. O
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Written in power series notation with

Tiz) = Z ynz" and exp(T(z)) = Z Yz,

n>1 n=>0

the first few coefficients are

1 52 161 53 367 4 120257
24 48 5760 5760 580608

1 23 11237
T()=1-—z— 2 - =
spLT (0 247 T 11527 T 414720°
2482411, 272785979

T 39813120~ 1337720832

With this approach we calculated the value of y, up ton = 1000 with basic computer
algebra tools.

In addition to being able compute the value of y, for very large n, we can also
determine the explicit asymptotic behavior of the coefficients for large n. We do that
in the next section.

8.2. The asymptotic growth of y(Out(F},)).

Proposition 8.6. The Euler characteristic of Out(F,) has the leading asymptotic
behaviour,

1 T(n—32) loglogn 3
Out(Fy,)) = — - +0( r ——) . (8.6
HO(F,)) = ——=— o (n 2) asn — oc. (8.6)

We will prove Proposition 8.6 by applying a stronger version of singularity analysis
to determine the asymptotic behaviour of the coefficients vi. Proposition 8.1 and a
classic theorem by Wright [44] will eventually enable us to deduce the asymptotic
behaviour of the sequence y(Out(F})).

Lemma 8.7. The coefficients vy have the leading asymptotic behaviour,

1 (9(loglogk

% = Tk (logk)? k(log k)3

) as k — oo. (8.7)

Proof. In addition to the expansion in eq. (8.2), the numbers vy are the coefficients
of the following expansion of the other real branch of the Lambert W -function [40],

W (z) =— Z ve (1 —i-ez)% forz € (— 5,0).

k=-1

The discrepancy between the two expansions is given by the two different choices
for the branch of the square root. We first consider the odd coefficients vy _;.
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Setting w = 1 + ez we define

g(w) = lﬁ(zWé(z) —zW. (2)) = szk—lwk-

2 k=0

The function g(w) can be analytically continued to w = 0. Moreover, g(w) has no
other singularities in a A-domain as defined in Lemma 8.4: the dominant singularity
of g(w) comes from the logarithmic singularity of W_; at z = 0 (see Figure 3), so
is located at w = 1 after the variable change. The principal branch W, is analytic
at z = 0. Neither W nor W_; has any other singularities in the relevant domain.

Because the differential equation W'(z) = TTW% is satisfied by every branch
of the Lambert W -function, we have

1 Wo(z) W_1(2) )
w) = —s/w —
gw) =3 (1 FWoz) 1+ Woa(2)
1~ Wa(*2) -
= —=JWw + “analytic” asw — 1
2 1+ W_1(we_1 d
1 Vi
= — w —~ + “analytic” asw — 17,
214+ W (1)

where we are able to neglect contributions which are analytic at w = 1 since, by
Lemma 8.3, they will eventually contribute only exponentially suppressed terms
asymptotically. The function W_; has the singular behaviour [16, Sec. 4],

W_1(z) = log(—z) + O(log(—log(—z))) asz — 0.
Thus, we get the singular expansion for g(w),

1 V1Ii—-(1-w)

21 +log (15#) + O (log(~log (5*)))
1 1 \! log(—1log(1 — w)) « - -
= _E(IOg g —w) ki (9( log(l — )2 ) + “analytic” asw — 17.

With this knowledge we may use a more general statement from singularity analysis
to extract the asymptotics of the coefficients of g(w), for instance [19, Cor. 6]. More
details are given in [20, Sec. VI.2], where one can find the “asymptotic transfer law”

1\ 1 1
k - o
[w ](logl_w) = ~T(ogk)? +0(k(logk)3) fork — oo

in Table VL.5. Also “transferring” the @ term in the singular expansion of g into its
corresponding asymptotic term for the coefficients [19, Cor. 6] gives,

1 1 © loglogk
2 k(log k)? k(logk)3

gw) = + “analytic” asw — 17

[wk]g(w) = Upg—1 = ) ask — oo.
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We note that the asymptotic behaviour of the even coefficients v,y follows analogously
by starting with

1 o0
gw) = > (—2Wg(2) —2WLi(2)) = ) vy,
k=0

although we will not need this for the present article. g

The only remaining task for proving Theorem A is to transfer our knowledge of
the asymptotic behaviour of vg to the coefficients y,. To deduce the asymptotic
behaviour of these coefficients, we will use a classical theorem by Wright in the
theory of graphical enumeration.

Lemma 8.8 ([44, Thm. 2] with R = 1). Let f(x) = Y, cnX" be a power series
in R[x], and let exp(f(x)) =) _,50 CnX". Suppose co =0, Co=1, and Cy—1 €0(Cp)
asn — oo as well as

n—1

> Cklui € O@n-1) asn — co. (8.8)

k=1

Thency, = ¢y + O(Cp—1) asn — oQ.

Proof of Proposition 8.6. Let T(z) = )1 xnz", and exp(T'(2)) = }_,5¢ XnZ"-

We have to verify that ¥, satisfies the conditions of Lemma 8.8. The only
condition that is not immediate is eq. (8.8). By Proposition 8.1 and Lemma 8.7 we
have

R 1 T(n+3) (log logn 1
= — +0 I(n+ <
A V21 nlog®n nlog®n ( 2))
1 I'ln-1 log1 1
_ (" —3) w(gg_gﬂp(nw_)),
V2mlog“(n + 1) log®n 2
From this it follows that we can find a constant C € R such that

- (n—3)
[fn] € C——s—=— forallmg 1.
log“(n + 1)

Recall that I' (x) is log-convex on the interval x € (0, 00), i.e. log(I'(x)) is a convex
function on this interval [1]. The function — log(log(1 4 x)) is convex on this interval
as well, since its second derivative

1 + log(1 + x)
(1 + x)? log®(1 + x)
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is positive. If f(x) is convex on the interval [a, b], then f(b 4 a — x) is also convex
on [a, b]. If another function g(x) is convex on this interval, then f(x) + g(x) is
too. Therefore,

log (F(n —Xx— %)) + log (I‘ (x - ?lz-)) —2loglog(l +n — x) —2loglog(l + x)

T(n—x—3)T(x—41)
> Jog2(1+n—x)log2(1+x)
is also convex on x € (%, n— %). This also implies convexity on the smaller interval
[2,n — 2]. The usual inequality for convex functions now gives

isconvex for x € (%, n— -é—). Because e* is an increasing function

Pa—s-Yris—4) _ Tlr-2-Yre-)
log?(1 +n —x)log?(1 + x) ~ log*(1 +n —2)log?(1 + 2)

for all x € [2,n—2],

and we can estimate

n—1 n—2
> Tn-kZk| < 2dna D1l + D | Tnr Kkl
k=1 k=2

"2 r—k-Hrk-1)
2 Fn-1711+ C? . 2

<2 Fn1i1l + ;10g2(1+n—k)10g2(1+k)

F(n—2-3)r2—3)

log?(1 +n—2)log?(1 +2)

< 2| Fn-141] + C*(n—3)

It follows that Zz;ll In—k Xk € O(¥n—-1), so Lemma 8.8 can be applied to give

1 F(n -~ l) loglogn 1
= J¥n +OFHn-1) = — 2+ 0 r'(n—=))
Yn = Fn + OFn-1) = o ( s (n 2))
because ¥n—1 € (9(11%;%:F(n - 1)) O

The asymptotic behavior of y(Out(F,)) now follows by combining our results.

Theorem A. The rational Euler characteristic of Out(F,) is strictly negative,
x (Out(Fy)) < 0, for all n > 2 and its magnitude grows more than exponentially,

1 I'(n—32)
27 log*(n)

Proof. Apply Corollary 8.2 and Proposition 8.6. O

x(Out(Fy)) ~
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A. Proof of Laplace’s method

Lemma 7.5 (Laplace’s method). Let [ and g be real-valued functions on a domain
D C R with 0 in its interior. Suppose both f and g are analytic in a neighborhood
of 0, that g(0) = g’(0) = 0, g”(0) = —1, and 0 is the unique global supremum
of g. Finally, assume that the integral

[ )8 dx
D

exists for sufficiently large n. Then the sequence 1(n) given by the integral formula

I(n) = \/g fD F(x)e™®) dx (A.1)

admits an asymptotic expansion with asymptotic scale {n“k Y k>0

In) ~Y en™ asn — oo, (A.2)
k>0

where ¢y, is the coefficient of z¥ in the formal power series,
k p

Y zfee—nux* f(x)e%(g(xH%z'). (A.3)
>0

Proof. The proof closely follows the arguments in [18, Sec. 4.4] and [20, Thm. B7].

The dominating contribution to the value of the integral /(n) for large n comes
from the values of f and g near the global supremum of g. Laplace’s method works
by exploiting this observation quantitatively.

The start of the method is to show that /(n) can be approximated by integrating
the same integrand over a small neighborhood of the supremum. The second step
is to split the integrand into a product of a Gaussian kernel and an analytic function
which can be expanded as a convergent power series. In the last step, this power
series is then integrated termwise using the Gaussian integrals

[ = g —k
E_/ e " T xMdx =n""Q2k -1
—00
n i x2
and ‘/2— f e T L gy =0, (A.4)
T J-oo

where both identities hold for all & > 0. The resulting series is an asymptotic
expansion of the integral /(n).

We will start by showing that the most important contribution to the value of /(n)
comes from a small neighbourhood of the supremum of g. Because x = 0 is
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a local maximum of g(x) in D, the function g(x) is monotonically increasing
on the interval [—68,0] and monotonically decreasing on [0, 8] for a sufficiently
small § > 0. Because x = 0 is the unique global supremum of g(x) in D, we can
also choose 8 small enough such that if € € [0, §], then g(x) < max(g(e), g(—e)) for
all x € D \ (—e, €). This observation translates into the following estimate

€
In)— = | F()e"s® gx
2w J_e
< /lf |f(x)|e(”_”°+”°)g(")dx
2 D\ (—¢,¢€)

< /%e(n—no)max(g(—f),g(é)) f FOO1e"E® dx,  (AL5)
D

where n¢ is chosen appropriately large such that, in accordance with the requirement,
the integral in the last bound exists. We may assume that § is small enough such
that f and g are analytic in the interval [—§,8]. Because of the requirements

g(0) = g’(0) = 0 and g”(0) = —1, the function x3(g(x) + %) is analytic in
this interval as well. Specifically, it is bounded in [—§, §]. Therefore, there exists a
constant C; € R such that || 73|g(¢) + %I < C; for € € [-6,8] or equivalently
lg(Fe) + %l < Cy€3 for € € [0, §]. Therefore,

€2 g2
(n —no)g(e) = =5 +n(g(xe) + 5) —nog(xe)
2
< ~52— ¥ C1e® —nog(+8) fore [0, 4],

where —ngg(+e) < —nog (%) follows from the monotonicity of g on the intervals
[—48,0] and [0, 8]. If we set € = n‘TSf, then for large enough #
1/6 .

. 21/6
o8 EnT12) < oy ( - n_2_ +Cin" % — nog(ic?)) €0 7).

Applying the inequality in eq. (A.5), where we also set € = n_l_Si, gives,

n n_157 nl/6
I(n) = \/; f_ s f(x)e" D dx + O(Vne "), (A.6)

where the @ refers, as in the rest of the proof, to the limit n — oo. Observe that

we managed to approximate /(n) up to an exponentially small contribution without
. . . : 5

using the information of the domain D. Instead of € = n™ 12, we also could have

chosen € = n~” withany £ <y < 3.
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The second step of Laplace’s method is to interpret the integrand as a Gaussian
kernel times the function

%2
A(x,n) == f(x)e"EWD+T),

which we may expand as a power series, because it is analytic in x and entire in 7,

o 5]
A(x,n) = Z Z ak,gnexk.

k=0 £=0

This expansion is convergent for all x € [—§, 8] if we choose § sufficiently small. The
sum over £ is bounded, because g(x)+ %2- = ax>+“higher order terms”. As A(x,n)
is analytic in x and n, there exists a constant C; € R such that |ag ¢| < C2k+E for
all k,£ > 0. We will truncate the power series expansion of A at some finite
order K > 0 in x. The remainder can be estimated uniformly for » sufficiently large
and x € [——n‘ls_z,n‘%]:

k
k-1|%]
2
f(x)e”(g(")erT) _ ak,gnexk
k=0 £=0
K k+K 2y 1k
L5 e < g
k=K {=0 k=0 £=0
o0
k+ K k+k+*tK rtx _ 5
< WE Y ST s
3
k=0
2 k+K — 12k
K~3K K + n 1 K K
= |x| C23 n3 ZT(@) < Csn’3 x|,
k=0

This estimate only makes sense when n > C216 , which we may require. The constant C5
is chosen appropriately independent of x and n. With K = 6R, we get the following

estimate for integrals from this,
\/7 [ ( 6R 1 TJ
5 fx)e™s™) — Z Y agn'x )
2m | w12 k=0 =0
x2
= Can?®. | f =T N
27[ —n 12

"o
< cgnZRJz—f e " T xR dx < C3(6R— D!'u R forall R >0,
T —00

n_-lsf
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where the Gaussian integral from eq. (A.4) was used in the last step. Together with
eq. (A.6) and @(ﬁe—"" °/2) c ©(nR) this implies that

Sl‘“

6R— 1 o
In)= > Zakm ‘/ [ e ik dx +O(n %) forall R > 0.

k=0 £=0 n Tz
(A.7)
The remaining task is to get rid of the finite integration bounds to recover a full
Gaussian integral. We need another bound for the remainder,

o x2 € x2
refn; e) 1= 1/—2—% f e T x% dx —[ e T x%k dx
= —€
n —E o0 xz
— ’___([ —n—2—x2k dx+j —nTkadx)
€
‘/ f (x + e)2k dx
2
-—n [ ———enx (JC +€)2k dx.
V 2

The function e™¢"* (x + e) is bounded for x € [—e€, oo] and has its right most local

maximum at x = g—k — €. As long as 2k < €2n, this maximum lies on or on the left

of the origin and the function decreases monotonically for x € [0, c0). Therefore,

€ op | 1 a2
re(n,e) <2e™7e¢ 2—/ e "7 dx
T Jo

—n€ 2k 2
=g e for all €, n, and k such that 2k < e¢“n.

Specifically, with € = anSi, we get
re(n,n~t2) € 0@ ") c O(n k).
Applying this to eq. (A.7) finally gives,

6R1

n oo . x2 _
I(n) = Z Zakgn "57?[.008 "Txkdx+0(n R) forall R > 0,

k=0 (=0

which can be rewritten as egs. (A.2) and (A.3), by substituting the definition of A(x, n),
by using the Gaussian integral from eq. (A.4), by realizing that only every second
term in the sum over k contributes, by using the notation from Definition 7.1 and the
coefficient extraction operator. O
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