
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 95 (2020)

Heft: 4

Artikel: Essential dimension of representations of algebras

Autor: Scavia, Federico

DOI: https://doi.org/10.5169/seals-919561

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-919561
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 95 (2020), 661-702
DOI 10.4171/CMH/500

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Essential dimension of representations of algebras

Federico Scavia

Abstract. Let k be a field, A be a finitely generated associative k -algebra and Rcp^ [«] be the

functor Fields/c -> Sets, which sends a field K containing k to the set of isomorphism classes

of representations of Ak of dimension at most n. We study the asymptotic behavior of the
essential dimension of this functor, i.e., the function i'a (n) := ed/tCRep^I«]), as n -* oo. In
particular, we show that the rate of growth of ra («) determines the representation type of A.
That is, ta (n) is bounded from above if A is of finite representation type, grows linearly if A is of
tame representation type, and grows quadratically if A is of wild representation type. Moreover,

rx(n) allows us to construct invariants of algebras which are finer than the representation type.

Mathematics Subject Classification (2010). 16G60; 16G20,14D23.

Keywords. Representation type, essential dimension, quivers, algebraic stacks, gerbes.

1. Introduction

Let k be an algebraically closed field, and let A be a finitely generated A:-algebra

(associative, unital, but not necessarily commutative). We begin by recalling the

notion of representation type of A, due to Yu. Drozd. We will use the terms "module"
and "representation" interchangeably.

The algebra A is of finite representation type if there are only finitely many
indecomposable finite-dimensional d-modules, up to isomorphism. For example,
if A k G is a group algebra for a finite group G and char A: 0, then A is of finite
representation type.

Loosely speaking, A is tame if it admits infinitely many indecomposable
representations and if for each n > 0 the indecomposable d-modules occur in a finite
number of one-parameter families. The main example is the polynomial algebra
A k[t]: the indecomposable n-dimensional representations of A correspond to
Jordan blocks of size n, and the parameter is the eigenvalue.

Finally, A is wild if a subset of the isomorphism classes of indecomposable
^-modules can be parametrized in a one-to-one manner using the indecomposable
representations of the free algebra k{x, y) on 2 generators. We refer the reader to
Section 3 for the precise definitions.



662 F. Scavia CMH

A classification of the representations of k{x, y}, in the spirit of those for group
algebras in characteristic zero or k[t], is considered to be hopeless; see [34]. Roughly
speaking, when A is of finite representation type or tame one can explicitly classify
its representations, and when A is wild such a classification is impossible.

When first confronted with these definitions, one may be surprised by the big gap
between the notions of tame and wild. However, when A is finite-dimensional, there

are no intermediate possibilities. According to a celebrated theorem of Drozd [14],
A is of exactly one of the three representation types we described: finite, tame or
wild; see [14, Theorem 1, Proposition 2, Corollary 1] or [9, Theorem B],

The purpose of the present work is to reinterpret and refine Drozd's Theorem via
essential dimension. We denote by rA (n) the essential dimension of the functor of
representations of A of dimension at most n. By definition, rA (n) is the smallest

integer m > 0 such that for every field extension K/k and every representation M
of Ak A <Sik K such that dimj^ M < n, there exist a subfield k c Ko Ç K such

that trdegfc Ko < m and a representation N of Ak0 such that N K s M; see

Section 2 for further details.

The definition of rA (n) takes as input an enormous amount of information: we are

considering all Ak-representations for every field extension K/k. In particular, even

in the case where k is algebraically closed, we are forced to consider representations
over fields that are not necessarily algebraically closed.

The main result of this paper is the following refinement of Drozd's Theorem. It
follows from the combination of Propositions 5.1, 5.2 and 5.4.

Theorem 1.1. Let A be a finite-dimensional algebra over an algebraically closed

field k.

(a) If A is offinite representation type, then

rA{n) 0

for every n > 1.

(b) If A is tame, then there exists c > 0 such that

en — 1 < rA(n) < 2n — 1

for every n > 1.

(c) If A is wild, then there exists c > 0 such that

rA{n) > en2 — 1

for every n > 1.

Some remarks are in order.

(i) Theorem 1.1 gives a common framework for several seemingly unrelated results

of [21] and [1]; see Remark 5.5 for further details.
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(ii) Part (a) of Theorem 1.1 is [1, Theorem 1.3]. However, if k is only assumed to be

perfect, we will show that rAin) is bounded from above; see Proposition 5.1. Parts (b)
and (c) ofTheorem 1.1 hold when k is arbitrary, A is finitely generated (not necessarily
finite-dimensional) and A£ is tame or wild, respectively; see Propositions 5.2 and 5.4.

(iii) If k is not algebraically closed, the representation type of /:-algebras becomes

more subtle to define; see Remark 5.6.

(iv) If A is of tame or wild type, it is still possible that rAin) 0 for small values

of n. This explains the presence of —1 in the lower bounds.

(v) If A is generated by r elements over k, then every T^-module M is defined over
the subfield K0 of K generated over k by the rn2 matrix entries of left multiplication
by the generators. Thus we have the following naive upper bound

edk M < trdegfc(/fo) < rn2

which shows that quadratic growth is the fastest possible.

(vi) Our proof of Theorem 1.1 is based on combining stack-theoretic techniques
with representation-theoretic arguments. The stack-theoretic techniques we use were

initially developed in [3], for the purpose of computing the essential dimension of the

stack of vector bundles on a given curve. In this paper we modify these techniques
and adapt them to study the essential dimension of representations of algebras. Some

of our representation-theoretic arguments make use of results from logic and model

theory [19,24],

When k is algebraically closed and A is finite-dimensional, Theorem 1.1 tells us

that the asymptotic behavior of rAin) determines the representation type of A. We

may then regard this function as a finer invariant of A, and use it to extract numerical
invariants. For every field k and every finitely generated /c-algebra A, set:

ao(A) := lim rA(n), if Ar is of finite representation type,
«->00 K

4- rA in)
a j (j4) := lim sup if A£ is tame,

a2 04) := lim sup —jp-, if A^ is wild.
n->-oo n

Using liminfrc-^oo instead, one may also define 04), a^iA). We also write

öl 04) := lim rA^, if Ar is tame,
«-*00 n

a2(A) := lim —^, if At is wild,
«->oo n
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when such limits exist. When k is algebraically closed and A is finite-dimensional,
Theorem 1.1 shows that if A is tame then 0 < a^{A) < af (A) < 2, and that if A is

wild then af (A) > 0.

The number ao(A) has been studied in [21] and [1], When they exist, the numbers

a i (A) and a2 A) represent the coefficients of the "leading term" of («), as n —» oo.

It may also be of interest, even though beyond the scope of this paper, to investigate
the "next term", i.e., the rate of growth of (n) — a\(A)n for tame algebras, or
rA(n) — a2(A)n2 for wild algebras.

To demonstrate that the invariants of (A) (i 0, 1,2) are accessible, at least

in some cases, we will compute them explicitly in the case, where A is a quiver
algebra. Let g be a quiver, and let A kQ be its path algebra; see Section 7

for definitions and references. The algebra it g is finitely generated, and is finitely
dimensional if and only if g has no oriented cycles. The representation type of g is,

by definition, the representation type of kQ. Gabriel's Theorem [16] states that g is

of finite representation type if and only if its underlying graph is a Dynkin diagram
of type A,D,E\ see also [26, Theorem 3.3] or [37, Theorem 8.12], The quiver g is

tame if its underlying graph is an extended Dynkin diagram of type A, D, E, and it
is wild in the remaining cases. In particular, every path algebra k g is of finite, tame

or wild representation type, as in Drozd's Theorem, even though such algebras are

allowed to be infinite-dimensional. We will sometimes collectively refer to quivers
of finite or tame representation type as non-wild quivers.

If g is wild, let A g be the maximum of the opposite of the Tits form of g on

{« e Rgj : 1}-
ießo

Here go is the set of vertices of g. As we explain in Proposition 10.7, Aq can
be easily computed from the underlying graph of g; we give several examples in
Section 11.

The following theorem follows from the combination of Propositions 9.1(b), 9.3,
and 10.12.

Theorem 1.2. Let k be an arbitrary field, and let Q be a connected quiver (possibly
with loops and oriented cycles).

(a) If Q is offinite representation type, then

rkQ(n) 0

for every n > 1.

(b) If Q is tame and 8 (<5i),eg0 is the null root of Q, then

rkQ(n)

for every n > 1, where the sum is over the set of vertices of Q.
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(c) If Q is wild, then

ai{kQ) A Q\

in particular ü2(kQ) Q>o- Moreover, Ü2(kQ) > jisö' eclLla^ty if and

only if Q is the disjoint union ofa (possibly empty) non-wild quiver and ofquivers

of type Es

4

1 2 3 5 6 7 8 9 10.

Part (a) of Theorem 1.2 follows from results of Kac and Schofield that predate
essential dimension; see Proposition 9.1. The proof of part (b) rests on the

classification of representations of tame quivers over an arbitrary field. We refer
the reader to Section 7 for the definition of the null root. The proof of part (c)
relies on stack-theoretic techniques. In particular, it is crucial that the algebraic stack

parametrizing representations of Q is smooth over k.

It follows from Theorem 1.2 that the limits a\(kQ) and ü2{kQ) exist when Q
is tame or wild, respectively. The existence of the limits a\(A) and 02(A) for an

arbitrary k-algebra A is an open problem.

It has been brought to our attention by Richard Lyons that 2480 is the dimension
of the minimal faithful complex representation of the Lyons group. The Lyons group
is one of the 26 sporadic finite simple groups; see [29] and [41 ]. Why this particular
number appears in Theorem 1.2(c) is a bit of a mystery.

Notational conventions. Throughout this paper k will denote a fixed base field, and A

a finitely generated associative unital A:-algebra. We will denote by k an algebraic
closure of k. For a field extension K/k, we will denote by Ak the tensor product
A <g>£ K. When we consider an Tjç-module M, unless otherwise specified we will
assume that M is a finite-dimensional AT-vector space. For a field extension L/K,
we will denote M L by Ml-

If R is a k-algebra, we denote by j(R) its Jacobson radical.

2. Preliminaries on essential dimension

The definition of r^ (n) is a special case of essential dimension of functors and stacks.

We start by giving the definition of essential dimension, due to Merkurjev [2] in the

context of functors, and to Brosnan, Reichstein and Vistoli [6] for algebraic stacks.
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Definition 2.1. Let Fields^ denote the category of field extensions of k. Let
F: Fields^ —>• Sets be a functor.

(i) An element f e F{L) is defined over a field K ç L if it belongs to the image
of F(K) -> F{L).

(ii) The essential dimension of £ F(L) is

edfc £ := mintrdeg^ K,
K

where the minimum is taken over all fields of definition K of £.

(iii) The essential dimension of the functor F is defined to be

edk F := sup ed^
(K,l)

where the supremum is taken over all pairs (K, f), where A' is a field extension of k,
and £ F(K).

(iv) If X is an algebraic stack over k, we obtain a functor Fx:Fieldsjt —> Sets

sending a field K containing k to the set of isomorphism classes of objects in X (K).
We define the essential dimension of an object rj G X(K) as the essential dimension

of its isomorphism class in F%(K), and the essential dimension of X as ed^ F%-

Consider the functor Rep^fn]: Fields^ -> Sets given by

Rep/4[n](Al) := {Af-isomorphism classes of A^-modules of dimension < n}

for every field extension K/k, and such that for every inclusion K ç L, the

corresponding map Rep^ [n] (K) -» Rep4 [n] (L) is induced by tensor product. For

every n > 1, we define

rA(n) := ed/t Rep^[n].

We can do more: rA(n) is the essential dimension of an algebraic stack over k.
Since stack-theoretic methods are central to this work, we explain this construction in
detail. We start by choosing a presentation of A as a quotient of a finitely generated
free algebra

A k{xi,... ,xr}/l,
where / is a two-sided ideal of A. We denote by a i,..., ar the images of x\,..., xr
in A.

For every d > 0, consider the affine space

r
Xd '= ]~I

;=i

The group GL^ acts on Xby simultaneous conjugation.
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Let K/k be a field extension, and let M be a d-dimensional A ^-module. By
fixing a -basis for M, left multiplication by ai,..., ar gives rise to <7 xd matrices
with entries in K, yielding a Appoint a (ori,... ,ar) of Xd. If we choose a

different basis for M, and g e GLd(K) is the matrix of this base change, the new
Appoint associated to M will be g • a. Moreover,

P(a.\,... ,ar) 0 for each P I. (2.1)

Let Yd be the closed GL^-invariant subscheme of Xd defined by the polynomial
equations of (2.1). We can form the stacks

n oo

&A[n\ := \}[Yd/GLd], ,<RA := \\[Yd/GLd\,
d 1 d 1

where \Yd / GLd] denotes the quotient stack construction. The algebraic stacks Sia VA

are of finite type over k, and SiA is locally of finite type over k ; they are not necessarily
smooth. We claim that

edjfc Sia VA rA{n).

We have just seen that the GL^(A^)-orbits in Yd(K) bijectively correspond to
the isomorphism classes of d-dimensional A k-modules. By [6, Example 2.6], the

Ai-points of \Yd/ GL^] bijectively correspond to the GLd (A')-orbits of Yd(K). We
have thus constructed a natural bijection between A1-points of Sia [«] and isomorphism
classes of T^-modules of dimension at most n, that is, the functors Fra [„] and

Rep^[«] are naturally isomorphic. In particular, ed^ SiA[n] rA{n), as claimed.

It is easy to see that SiA[n] is independent of the choice of the generators of A,

up to isomorphism.
We conclude this section with the following observation, which will be used

during the proof of Theorem 1.1.

Lemma 2.2. Assume that k is algebraically closed. Let G be a connected algebraic

group over k, and let H ç G be a closed subgroup, eitherfinite or connected. Let X
be a G-variety (not necessarily irreducible), and let Y be an irreducible H-variety.
Assume that there exists an H-equivariant rational map f'.Y X such thatfor any
G-orbit in X only finitely many H-orbits of Y are mapped to it. Then

edk[X/G] > tidegk k(Y)H.

Proof. Since G is connected, every irreducible component of X is G-stable. Since Y
is irreducible, there exists a component X0 of X such that f(Y) ç 2f0. We clearly
have edk[X/G] > edk[Xo/G\, hence we may assume that X Xo is irreducible.

We may find invariant open subschemes V ç Y and U c X suchthat f(V) ç U
and such that there exist geometric quotients V/H and U/G. This follows from an

application of Rosenlicht's Theorem [36, Theorem 2] (the quoted result of Rosenlicht
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only applies to connected groups, but it is well known that the quotient Y/H exists

if H is finite).
The induced morphism V/H U/G has generically finite fibers by assumption.

By the fiber dimension theorem

dim U/G > dim V/H trdeg^ k(V)H.

The projection [U/G] —U/G is surjective, so there exist a field extension K/k and

a A-point £ of [X/G] mapping to the generic point of U/G. Then

edfc £ > dim U/G > trdeg^ k(V)H.

3. Representation types

Let k be an arbitrary field, and let A be a finitely generated k-algebra. In this section

we define the representation type of Ap and give some examples. The following
definitions are due to Drozd [14].

Definition 3.1. Let A be a k-algebra. A A-representation of A is an A — A-
bimodule A, that is finitely generated and projective as a right A-module.

We say that A is strict if for each pair of A-modules M and M' such that

A <8>a M s A <8>a M' as A-modules one has M s M' as A-modules. One may
also think of A as a functor, see [9, §2],

Definition 3.2. Let k be an algebraically closed field and let A be a finitely generated

k-algebra.

• We say that A is offinite representation type if there are at most finitely many
isomorphism classes of indecomposable A-modules.

• The algebra A is tame if it is not of finite representation type and if, for

every positive integer d, there exists a finitely generated k-algebra of the form

k[x] ç A c k{x), together with a finite collection {Nj} of A-representations of A,
such that any d-dimensional indecomposable representation of A is isomorphic to

Nj ®a M for some j and some A-module M of rank 1.

• We call A wild if there exists a strict k{x, y [-representation A of A, free

as a k{x, y [-module, such that for every k{x, y [-module M, the representation
A <8>k{x,y} Nl is indecomposable.

If k is an arbitrary field, we say that A is offinite representation type if there are at

most finitely many isomorphism classes of indecomposable A-modules.

Since in Theorem 1.1 the field k is algebraically closed, Definition 3.2 is sufficient

to understand the statement of the theorem. It seems natural to prove analogous
results for an algebra A over a more general field, and we do so in Section 5. In
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Proposition 5.1, we will only assume that k is perfect and that A is finite-dimensional
and of finite representation type. In Propositions 5.2 and 5.4, the minimal assumption
to make our argument work is that 4^ is tame or wild, respectively. Therefore, we
do not need to introduce more subtle notions of tameness and wildness over arbitrary
fields. Nevertheless, see Remark 5.6 for a discussion of possible variants of the

definitions.

Example 3.3. Let m > 1. If A k[x]/(xm), «-dimensional 4 -modules

correspond to conjugacy classes of V-linear endomorphisms having index of
nilpotency at most m. The indecomposable representations correspond to nilpotent
Jordan blocks of size at most m, and these are all defined over the base field k.
Therefore rA («) 0. The algebra A is of finite representation type.

Example 3.4. Let k Q, and let

A Q{i,j}/(i2 j2 -1,0' ~ji)
be the quaternion algebra over Q. Since A is a group algebra over a field of
characteristic zero, it is of finite representation type. Let K be the field of fractions
of Q[a, b\/(a2 + b2 + 1), and let M be the 2-dimensional 4 -module given by

fa -b\ f b —a\

a)' J~{-a -h)'
In [ 1, Proposition 6.3], it is shown that ed& M 1.

Example 3.5. Let A k[t]. Isomorphism classes of 4^-modules correspond to

conjugacy classes of ^-linear endomorphisms of Kn. These are classified by the

rational canonical form, hence rA (n) n (we refer the reader to [32] for the details).
The algebra A^ is the prototypical example of an algebra of tame representation type.

Example 3.6. Let A k[x,y] be a polynomial algebra in two variables.

Representations of Ak correspond to pairs of commuting matrices with entries in K.
In [13, Lemma 1], a free strict k{x, y [-representation of A of rank 32 is given. This
shows that A^ is wild, so according to Theorem 1.1(c), rA (n) grows quadratically
in n.

Example3.7. Let 4 := k{x, y, z}/1, where / is the ideal generated by all monomials
of degree 2 in x, y, z. Then 4^ is an example of a finite-dimensional wild algebra;
see [34,(1.2)].

4. Fields of definition for representations

In this section we adapt the methods of [3, §5] to the setting of representations of
algebras. Let A be a finitely generated k-algebra, let K be a field containing k, and

let M be an 4^-module. We may view M as a V-point of !Ra, as explained in
Section 2. We may then associate to M its residue gerbe § in ÏR,4, and its residue

field k(M) := k(§)\ we refer the reader to [27, Chapitre 11] for the definitions.
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Lemma 4.1. We have

edk M edfc(M) M + trdegfc k(M).

Proof. By construction, the field k{M) is contained in any field of definition for M.
Let K0 be a field of definition for M (viewed as an element of Rep^ [n](K)) such that
edfc M trdeg^ Kq. Then k(M) ç K0 and K0 is a field of definition for M (viewed
as an element of Rep4wA/) [n](K)). We deduce that trdegfc(M) K0 > ed^(m) M,
hence

&dk M trdegfc K0 trdegfc k(M) + txdegfe(M) K0

> trdegfe k(M) + edfc(M) M.

On the other hand, if Kx is a field of definition for M (viewed as an element of

ReP/ifcw) M(^0) su°h that trdeg^(M) K\ edk(M) M, then K\ is also a field of
definition for M (viewed as an element of Rep^ [«](/(")), hence

edfc M < trdegfc Kx trdegfc k(M) + trdegfc(M) K{

trdegj. k(M) + edk(M) M.

Remark 4.2. Let K/k be a field extension, and let M be an /I -module. Roughly
speaking, the residue gerbe of M parametrizes all pairs (L, N), where L/k is a field
extension, N is an ^-module, and Me Ne for some extension E/k containing
K and L.

By construction, k(M) is contained in every field of definition of M. Moreover,
since k{M) depends only on the residue gerbe of M, for every field extension L/K
we have k(M) k{Mi).

Since k(M) is contained in all fields of definition of M, it is clear that if M is

defined over k(M), then k(M) is the minimal field of definition for M. However, it
is not always the case that k(M) is a field of definition for M. It may even happen
that a minimal field of definition does not exist (but see Corollary 4.6 below for a

positive result).
As an example, let k — Q, and take A, K and M as in Example 3.4. By [1,

Proposition 6.3], M does not have a minimal field of definition. Since A g s
M2y.2(K), the module is the 2-dimensional vector representation of M2x2(K),
which is defined over Q. It follows that Q (M) Q(M^) Q.

The residue gerbe ~§ of M is clearly non-empty. By [27, Théorème 11.3], § is an

algebraic stack of finite type over k(§). Therefore, there exists a (smooth surjective)
morphism U —>• H, where U is an algebraic space of finite type over k(~§). Passing

to an fppf cover of U if necessary, we may assume that U is a scheme. Since ~§ is

non-empty, U is non-empty. The Nullstellensatz then guarantees the existence of a

finite field extension I/k{ß) for which [/(/) 0, hence such that §(l) ^ 0. We let

d:=[l: k(ß)] < oo.
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We choose an object V G H(l), and set

R := End*w(F)

where V denotes the representation of M over k(j§) obtained from V by restriction
of scalars to k(ß). To state the main theorem of this section, we first need to give a

definition.

Definition 4.3. Let A be a finite-dimensional &-algebra. A projective A-module M
has rank r G Q>o if the direct sum M®n is free of rank n r for some n 6 Z>0 with

nr G Z>0. We let ModA,r be the category of projective modules of rank r.

The following result is an analogue of [3, Theorem 5.3] for representations of
algebras.

Theorem 4.4. In the above situation, consider a field K 2 k(§). Then §(K) is

equivalent to the category ofprojective right RK-modules of rank \/d, compatibly
with extension ofscalars. In particular, all objects in ~§ (K) are isomorphic (Noether-
Deuring Theorem), andfor the k(§)-algebra R and the integer d defined above, we

have

edk(ß)~& edfc(^)(ModÄii/j) ed;t(#)(Modu/;(/?),i/rf)-

Proof The proof is the same as that of [3, Theorem 5.3, Corollary 5.4],

Remark 4.5. The same result holds for any algebraic stack X over k whose restriction
to Fields^ is the category fibered in groupoids associated to a k-linear fibered

category (still denoted by X) such that for every finite extension L/K the pullback
functor X (K) ->• X (L) admits a right adjoint. In the case of vector bundles on a

curve, the right adjoint is given by the pushforward of a bundle, and in the case of
4-modules it is given by restriction of scalars. The proof in this more general setting
is again identical to that of [3, Theorem 5.3].

The next result is [1, Theorem 1.1], without any separability assumption. We will
not need this result in the sequel. For the definition of fields of dimension < 1, see

[40, §11.3] or [1, p. 2],

Corollary 4.6. Assume that k is afield ofdimension < 1 (for example, a C\-field).
Let M be an Ax-module, where K is an algebraic extension ofk. Then M has a
minimalfield ofdefinition k ç F ç K, offinite degree over k. In fact, F k(M).

Proof. Let K be the residue gerbe of M. The field extension k(jS)/k is finitely
generated. It is also algebraic, since k(ß) ç K. Hence k(ß) is a finite extension

of k. Since k has dimension < 1, k(H) also has dimension < 1. Therefore

R/j(R)=n mwl,),
i
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where the Li are finite field extensions of k(§); see [40, §11.3, Proposition 5].
Since M is defined over K, every integer «, is divisible by d, so there exists an

/?//(ft)-module of rank \/d. Now Theorem 4.4 implies that M is already defined

over k(M).

Let K be a field containing k, and let M be an Ax-module. We use the techniques

developed so far to give upper bounds on edjt M, by estimating e&k(M) 47 and

trdeg£ k(M) separately.

Lemma 4.7. Let M be an indecomposable A x-module. Then

dim^End(M)//(End(M)) < dim/f M.

Proof. Since M is indecomposable, the ^-algebra End(M) is local, therefore

D := End(M)/;(End(M))

is a division algebra. By Nakayama's lemma,

;(End(M))M ^ M,

so M/j(End(M))M is a non-zero left Z)-module. Hence dimjf D < dim^ M.

Lemma 4.8. Let M be a non-zero finite-dimensional Ak -module. Then

edk(M) M < dimKM - 1.

Proof. Entirely analogous to [3, Corollary 5.5], replacing [3, Lemma 4.2] by Lemma

4.7.

Lemma 4.9. Let A be a finitely generated k -algebra. Assume that for every field
extension K/k, where K is algebraically closed, and for every indecomposable

Ax-module N, one has

trdegkk{N) < 1.

Then, for every extension K/k and every non-zero Ax-module M,

edfc M < 2 dim M — 1.

Proof. By Lemmas 4.1 and 4.8, it suffices to show that

trdegfc k(M) < dim/f M

for every field extension K/k and every ,4^-module M. Let M be an Ax-module,
for some field extension K/k. Since k(Mi) k(M) for every field extension L/K,
we may assume that K is algebraically closed. If we express M as a sum of
indecomposable 4^-modules My, we have

trdegfc k(M)<J2 trde8fc k(M}).
j

By assumption, each summand is either 0 or 1, and there are at most dim# M terms

in the decomposition of M. Therefore trdegfc k(M) < dima: M, as desired.
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5. Proof of Theorem 1.1

Theorem 1.1 will follow from the next three propositions.

Proposition 5.1. Let k be a perfect field and A be a finite-dimensional k-algebra.
Assume that A is offinite representation type. Then there exists a constant C such

that

for every n > 1.

Recall that, when k is perfect, A is of finite representation type if and only if A^
is; see Remark 5.6.

Proof. By assumption, there are at most finitely many indecomposable A-modules,

up to isomorphism; we denote them by N\,..., Nr. Let

Let M be an Ak-module, for some field extension K/k. Fix an ajgebraic closure

K of K. Since k ç K, the field K contain^ an algebraic closure k of k. Since k
is algebraically closed, the Brauer group of k is trivial. Therefore, Ap being finite-
dimensional over k, the hypotheses of [1, Theorem 1.3] apply to F k, Ap and Mp.
It follows that Mg is defined over a finite extension of k, hence over k. Thus

hence trdegfe k(M) 0 for every 4 #-module M.
Assume first that M is indecomposable. By [19, Theorem 3.3], M is a direct

summand of a module of the form (Ni)g, hence (i) dimjf M < dim^ Ni < m and

(ii) there are at most m isomorphism classes of indecomposable A-modules. Using
Lemmas 4.1, 4.8, (5.1) and (i), we conclude that

edfc M trdeg£ k(M) + edk(M) M < dim/f M — 1 < m — 1 (5.2)

when M is indecomposable.

If M is not assumed to be indecomposable, consider the decomposition of M
in indecomposable summands M^. For every h, we have shown that there exists a
subfield Fh of K such that trdegfc /y, <m — 1 and Mh is defined over F/,. If we let F
be the compositum of all the F/,, then by (ii) and (5.2) we have trdeg^ F < m (m — 1).

Since every indecomposable summand of M is defined over F, by Noether-Deuring's
Theorem M is also defined over F, hence edk M < m (m—1 Since M was arbitrary,
we obtain r^(n) < m (m — 1) for every n > 0.

rA(n) < C

r

trdeg^ k(M) trdeg^ k(Mg) < trdegfc k 0, (5.1)



674 F. Scavia CMH

Proposition 5.2. Let k be an arbitrary field, and let A be a k-algebra. Assume
that A^ is tame. Then there exists a constant c > 0 such that

en — 1 < rA{n) < 2n — 1

for every n > 1.

Proof. We fix a set of generators a\,...,ar of A. For every d > 1, we define Xd
and Yd as in Section 2.

Since rA («) > rA^(n), to prove the lower bound for rA (n) we may assume that k is

algebraically closed. Since A is tame, by definition there exists a A-representation N
for some k-algebra k[x] ç A ç k(x) parametrizing an infinite number of non-
isomorphic indecomposable representations of some dimension d. We may view N
as the datum of r square matrices of size d and whose coefficients are rational
functions of x. For all but finitely many A e k we may specialize x to A in
these matrices, obtaining a matrix description of a d-dimensional indecomposable
representation of A. In other words, N defines a rational map Aj. —> Yd.

Similarly, considering m > 1 copies of N gives a rational map

Af Ymd ç Xmd {Xd)®m

that is Sm-equivariant. Here Sm acts by permuting the factors of Af and (Xd)®m.
By the Krull-Schmidt Theorem, at most finitely many Sm-orbits map to the same

GLmd-orbit. We have

rA(md) edfc lRA[md] > eàk[Ymd/ GLmd\.

Using Lemma 2.2 with G GLm^ and H Sm, we deduce the lower bound

rA{md) > m for each m > 0. Since rA (n) is non-decreasing, the proof of the lower
bound for rA{n) is complete.

We now turn to the proof of the upper bound (so k is again arbitrary). Let M be an

indecomposable A ^--module, where K is an algebraically closed field containing k.
Then M is defined over A (A) for some A e K, by [24, Lemma 4.6(a)].1 Since

k(M) k(Mg), we obtain

trdeggk(M) trdegkk(M^) < trdegfcA(A) < 1.

We may now apply Lemma 4.9, to obtain rA(n) < 2n — 1 for every n > 0.

'In [24, Lemma 4.6] A is supposed to be finite-dimensional over k, however this is not needed
for the proof of [24, Lemma 4.6(a)]. The structure constants of A form a countable set, but since A
is finitely generated only finitely many intervene in the logical expression which is used in the proof
of [24, Lemma 4.6(a)], This implies that the expression remains a first order formula in this more general
setting.
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Remark 5.3. The rational maps appearing in the proof of Proposition 5.2 (and also

Propositions 5.4 and 9.3 below), have already been constructed and used by de la

Pena [10, §1.4,1.5].

Proposition 5.4. Let k be an arbitrary field, and let A be a k-algebra. Assume

that A£ is wild. Then there exists a constant c > 0 such that

fA(n) > en2 — 1

for every n > 1.

Proof. Let a \,..., ar be a set of generators of A and, define Yd as in Section 2, for

every d > I.
We have r^ in) > r^-fn), hence we may assume that k is algebraically closed.

Since A is wild, there exists a strict k{x, y (-representation N of A, where k{x, yj
is the free /c-algebra on two generators. By definition, we have an isomorphism
N s k{x,y}®d of right k{x, y (-modules, for some d > 1. Note that the positive
integer d is uniquely determined, because it coincides with the dimension of the
A:-vector space N ®k{x,y) (k{x, y}/(x, y)).

For every n > 1, «-dimensional representations of k{x, y} are in bijective
correspondence with arbitrary pairs of square matrices of size n (no relations are

enforced). Therefore, we may view N as the datum of r square matrices Pi (x, y)
of size d and whose coefficients belong to k{x,y}. If a k {x, y (-module M of
dimension m corresponds to a pair of matrices (Qx, Qy), then N ®k{x,y} M
corresponds to the matrices Pi(Qx, Qy)- In other words, with the notations of
Section 2, the association M N <S>k{x,y} M gives a rational map

f:^mxm,k Ymd 9 Xmd-

If (Qx'Q'y) an<f (Qx, Qy) can be obtained one from the other by a simultaneous

conjugation, their image in Ym(j are also related by simultaneous conjugation.
This means that the map / is GLm-equivariant, where GLm acts by simultaneous

conjugation on the left and via the diagonal inclusion GLm ç GLm^ on the right.
The assumption that N is strict implies that / maps distinct GLm-orbits in

Mmxm t0 distinct GLmd-orbits in Zmd- We may apply Lemma 2.2 with H GLm,
G GLmd, Y M®^m, and X Zmd, and we obtain that

dk\Zmd/ GLmd\ 1 T m

Since (md) > ed^ [Zmd / GLmd], this shows that that r^ (md) > 1 + m2 for every
m > 1. Since rt\ (m) is non-decreasing, the conclusion follows.
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We conclude this section with two remarks.

Remark 5.5. Assume that A kG is the group algebra of a finite group G. In

this case, representations of kG correspond to representations of G. The essential

dimension of representations of G was studied in [21] and [1]. In the non-modular

case r^cin) < G |/4 for every n > 0, as proved in [21, Proposition 9.2] and [21,

Remark 6.5]. On the other hand, if chark p > 0 and G contains a subgroup

isomorphic to (Z//»Z)2, then [21, Theorem 14.1] shows that r^oin) becomes

arbitrarily large. In [21, Theorem A.5], it is found that r&G (n) grows at least linearly
in n.

To see how the results of this paper relate to [21] and [1], recall that there is

a complete classification of the representation type of finite group algebras. In
characteristic zero, kG is of finite representation type for any finite_group G. If
char/: p is positive, it is a classical theorem of D. Higman that kG is of finite

representation type if and only if a Sylow /»-subgroup of G is cyclic (see [18,

Theorem 2, Theorem 4]). Tame group algebras only occur in characteristic 2, and

have been classified by Bondarenko and Drozd [5]; every other group algebra is wild.
In view of this classification, Theorem 1.1 (and more generally the results of this

section) gives a common framework for all the previous results on essential dimension

of group algebras. Moreover, it strengthens the lower bound of [21, Theorem A.5]
for wild group algebras in characteristic p (i.e. the majority of them) and for n large

enough.

Remark 5.6. We now discuss the assumptions of the previous propositions in the

context of representation type over arbitrary fields. Let k be an arbitrary field, and

let A be a finite-dimensional k-algebra (this restriction is necessary because most of
the theorems that we will quote are not known when A is only assumed to be finitely
generated).

If A£ is of finite representation type, so is A; see [19, Lemma 3.2]. The converse is

not true, in general. For example, let k be a non-perfect field of characteristic p > 0,

pick u e kx \ kxp, and set K := k[y]/{yp — u) and A := K[x\/(xp). Then A

is of finite representation type (see Example 3.3 below), while A^ is not; see [19,

Remark 3.4]. On the other hand, we always have ra(n) > ^-(n), and so r^(n) is

not bounded from above. It follows that Proposition 5.1 does not hold without the

assumption that k is perfect. Note that if k is perfect, then A is of finite representation

type if and only if A^ is of finite representation type; see [19, Theorem 3.3],
There is a notion of genetically tame /:-algebra A, due to Crawley-Boevey [8],

which generalizes the notion of tameness over an arbitrary field k ; see also [44, p. 646].

If k is perfect and A is generically tame, then A^ is generically tame; see [22] when k

is infinite, and [31 ] when k is finite. Moreover, by a theorem of Crawley-Boevey [8]

(see also [44, Theorem 1.13(4)]) the algebra A£ is generically tame if and only if it
is tame. Therefore, the assumptions of Proposition 5.2 hold when k is perfect and A

is generically tame.
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Finally, there is a notion of semi-wild algebra over an arbitrary field; see [14,

p. 247]. If A is a semi-wild k-algebra, by [14, Proposition 2] A^ is also semi-wild.

Applying [14, Theorem 1, Corollary 1], we deduce that A^ is actually wild. Thus the

assumptions of Proposition 5.4 hold when k is arbitrary and A is semi-wild.

6. Algebras admitting a one-dimensional representation

Let A be a finitely generated ^-algebra. The purpose of this section is to prove
Proposition 6.5, which shows that, in some circumstances, in the definition of r^(rc) it
is enough to consider modules of dimension exactly n, as opposed to < n. The results

of this section hold for group algebras and quiver algebras, hence this reconciles our
notation with that of [21] and [1],

Lemma 6.1. Let K be a field containing k, F K(t\,..., tr) be a purely
transcendental field extension of transcendence degree r. IfM an indecomposable
Afc-module, then MF is indecomposable.

Proof It is enough to consider the case F K(t). Recall that a module is

indecomposable if and only if its endomorphism algebra is local. Since M is

indecomposable, the algebra End^(M) is local, hence the quotient

D := EndK(M)/j(EndK(M))

is a division algebra over K. Denote by L the center of D : it is a finite field extension

of K. Since L(t)/L is purely transcendental, D 8>l L(t) is a central division algebra

over L(t) (this can be seen directly, or by appealing to [39, Theorem 1.3]). Therefore,

D (8)K K(t) S D®lL®k Kit) D <8>l L(t)

is a division algebra over K(t). We have an inclusion

j(EndK(M)) <8>k F ç j(EndF(MF)),

hence EndF(MF)/j(EndF{MF)) is a non-zero quotient of

D F D <S>l F F S D <S>l L{t).

It follows that EndF (MF)/j(EndF (MF)) s D <8)F F is a division algebra, hence

Endf(Mf) is local and MF is indecomposable.

Lemma 6.2. Let L/K be an extension of fields containing k and let M be an

indecomposable Ak -module. If one of the indecomposable summands of Ml is

defined over K, then Ml is indecomposable.

If A is finite-dimensional, this follows from [23, Lemma 2.5],
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Proof. We may assume that L/K is finitely generated. Let F ç L be a purely
transcendental extension of K such that L/F has finite degree. By Lemma 6.1,

MF is indecomposable, thus we may assume that L/K has finite degree d. By
assumption, there exists an Tjç-module M' such that M'L is an indecomposable
summand of Ml- There are isomorphisms Ml M®d and M'L ^ {M')®d
of v^-modules. This implies that M' is a direct summand of M. Since M is

indecomposable, by the Krull-Schmidt Theorem we see that M' — M, and so

Ml M'l is indecomposable.

Lemma 6.3. Let L/K be an extensions of fields containing k, and let M be an

AL-module. Assume that M M' © M", where M' and M" are also AL-modules,
and suppose that M and every indecomposable summand ofM" are defined over K.
Then M' is defined over K as well.

Proof. We may write M Nl and M" N'f for some /I ^-modules N and N".
Let N be the decomposition of N in indecomposable summands. We have:

M' ® M" S M s ®i(Ni)L.

For fixed /, if (N{)l shares a direct summand with M", then by the assumptions
and by Lemma 6.2 we see that it is an indecomposable summand of M". Therefore,
each {Ni)i is a direct summand of M', M", or both. Let N' be the direct sum

of those Ni such that (N,)l is a summand of M', and let N" be the direct sum of
those Ni such that (TV, )/, is a summand of M" but not of M'. Then N N' ® N"
and N'l M'.

Lemma 6.4. Let L/k be a field extension and let M be an AL-module. Write

M M' © M" and assume that every indecomposable summand of M" is defined
overk. Then

tdg M edfc M'.

Proof. It is clear that edjt M' < edjt M. Let K/k be a field of definition for M of
minimal transcendence degree. By Lemma 6.3, M' is also defined over K. It follows
that edfc M trdeg^ K > ed^ M', hence ed^ M ed& M', as desired.

Proposition 6.5. Let A be a finitely generated k-algebra, and assume that there

exists a one-dimensional A-module over k. Then there exist an extension K/k and

an n-dimensional Ak-module M such that ed^ M — r^(n).

Proof. Let L/k be a field extension, and let M' be a d-dimensional T^-module such

that d < n and ed^ M' r^ (n), and let Mo be a one-dimensional representation
of A. By Lemma 6.4, if M := M' © (Mo)nLfd, then M is n-dimensional and

edjt M ed& M'. This shows that the value m(n) is attained among n-dimensional
modules.
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7. Preliminaries on representations of quivers

The purpose of this section is to recall the definitions and results of the theory
of quiver representations that are relevant to our discussion. We refer the reader

to [26, Chapters 1,2,3] and [37] for detailed accounts of the general theory, and to

[26, Chapter 7] and [42, Chapter 14] for discussions of representation type of quivers.

If Q is a quiver, we denote by Qo the finite set of its vertices, and by Q\ the finite
set of arrows between them. For every field K there is an equivalence of categories
between K-representations of Q and modules over the path algebra KQ of Q, that
is natural with respect to field extensions L/K\ see [37, Theorem 5.4].

We denote by (•, •) the Tits form of Q. By definition, for every a, ß 8^° we
have:

faß) J2 ai^ ~ J2 aißj'
ießo a\i->j

where the second sum is over all arrows of Q. We denote by (•, •) the associated

symmetric bilinear form: (a, ß) := {a, ß) + (ß, a) for every a, ß e RÖ°. We let qq
be the quadratic form defined by <7q(o0 {a,a) for every a G R®°. We refer
the reader to [26, §1.5, §1.7] for the definitions of the Cartan matrix Cq, the Weyl

group, the simple reflections s,-, and the root system of Q. We denote by (eOiego
the canonical basis of the vector space M®°. The fundamental region is the set Fq of
non-zero a e N^° with connected support and (a, e,) < 0 for all i. An imaginary
root a is called isotropic if {a, a) 0 and anisotropic if (a, a) < 0. The dimension

vector of a representation M of g is the vector (dim M/)!Sq0.
The quiver Q is said to be of finite representation type, tame or wild if the

path algebra kQ is of finite representation type, tame or wild, respectively. The

representation type of Q does not depend on the field k\ see below. A quiver is

connected if its underlying graph is connected. By Gabriel's Theorem [16], the

connected quivers of finite representation type are exactly those whose underlying
graph is a Dynkin diagram of type A, D or E (see [26, Theorem 3.3] or [37,
Theorem 8.12]). A connected quiver Q is tame if and only if its underlying graph is

an extended Dynkin diagram of type A, D or E, and it is wild otherwise; see [26,
Theorem 7.47].

If Q is connected, the representation type of Q is determined by Cq: g is of
finite representation type if and only if Cq is positive definite, tame if and only if Cq
is positive semidefinite but not definite, and wild if and only if Cq is non-degenerate
and indefinite; see [37, §8.2] or [26, Theorem 1.28]. If Q is tame, there is a unique
S e such that (8,8) 0, <5,- > 1 for every i e Qo and min <5, 1, called the

null root of Q. A root a is a Schur root if there exist a field extension K/k and a

^-representation M of Q of dimension vector a such that End(M) K (such a

representation M is usually called a brick).
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The first result related to fields of definitions of quiver representations that we are

aware of is the following, due to G. Kac and A. Schofield.

Proposition 7.1. Let a be a real rootfor the quiver Q. IfK is an algebraically closed

field, the unique indecomposable representation ofdimension vector a is defined over
the prime field of K.

Proof See [20, Theorem 1] for the case ofpositive characteristic, and [38, Theorem 8]
in characteristic zero.

Let Q be a quiver, and let a be a dimension vector for Q. We define the functor

Repßtt: Fields*; -* Sets

by setting

RepgtCt(K) {Isomorphism classes of a-dimensional A'-representations of Q}.

If K ç L is a field extension, the corresponding map Repß a(AT) -> Repßo,(L) is

given by tensor product.
We denote rkQ(n) simply by rß(n). Since representations of a quiver Q are the

same as representations of its path algebra, for any n > 0 we have

rQ (n) max ed^ Repß a

By Lemma 7.2 below, one may equivalently to take the maximum over those a which

satisfy ai n-

Lemma 7.2. Let Q be a quiver. Ifa, ß are two dimension vectors such that ßi < a,-

for each vertex i of Q, then

ed*: RepQ>ß < edk Repßü!.

Proof This follows from an application of Lemma 6.4 as in the proof of
Proposition 6.5, this time by letting M" be the trivial representation of Q of dimension

vector a — ß.

Remark 7.3. We record here another interesting consequence of Lemma 6.4. We

will not use it in the sequel. Recall that if g is a quiver without oriented cycles, the

category of its finite-dimensional representations has enough projectives (see [26,
Theorem 1.19]), and so we may consider its stable category. Since Q has no oriented

cycles, the projective representations of Q are finite-dimensional and are defined

over the base field k\ see [26, Theorem 1.18].

Let M, N be representations of Q. If M and N are stably equivalent kQ-
modules, there is an isomorphism M ® Pi s N © P2, where Pi and Pi are

projective representations for Q. By Lemma 6.4 we have

edfc M ed;t(M © Pi) edk(N © P2) ed^ N.

It follows that essential dimension is a stable invariant.
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Note that an analogous assertion fails in the setting of central simple algebras and

is an open problem in the case of quadratic forms; see [32, §7.4],

8. Stacks of quiver representations

Analogously to what we have done for algebras in Section 2, we may view
/f-representations of a quiver Q as AT-orbits of a suitable action. Let

ieQo

be an affine space and an algebraic group over k, respectively. There is an action

ofGß.« over ArQ,a, given by

We denote by IRq,u the quotient stack [Xq^/Gq>01]. As for algebras, one can
show that there is a bijection between Appoints of and isomorphism classes

of representations of Q of dimension a. The stack is a smooth stack of finite

type over k.
If S is a &-scheme, an S-representation of Q is given by a locally free

démodule Ei for each vertex i of Q, and by an 05-linear homomorphism tpa : E,• -> Ej
for each arrow a:i — j. For any natural number n, let MUq denote the algebraic
£-stack parametrizing representations M of Q over S, together with a morphism
xjr: M -> M such that xj/n 0, and such that coker f J is an S-representation for

every j > 0 (i.e. for each vertex the corresponding coherent sheaf is locally free).
We note that MI°q Spec k and ,NU1q is the disjoint union of the tR.Q,a, where a
ranges among over all possible dimension vectors.

We are going to follow [3, §6] for various statements and proofs in this section.
In [3, §6], the authors studied stacks of coherent sheaves on a fixed curve C, and

analyzed them in terms of certain stacks Mil c,n Our definition of .MHq is the

analogue of their Mlc,n in the context of quiver representations. As we state below,
the results of [3, §6] still hold in this setting. The common feature of the two set-ups
that makes the arguments of [3, §6] possible is the vanishing of the Ext! for i > 2

(for quiver representations, this follows from [37, Theorem 2.24]).

Proposition 8.1. The stack J4Uq is smooth over k, and its dimension at a point
(A/, \jr) is given by the formula

and let

(gi)ieôo ' (Pa)a:i-*j (Sj^aSi j

n

h=1

where ßh is the dimension vector of im fh~1/im fh.
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Proof. The proof of smoothness of M.Iq proceeds as in [3, Corollary 6.2], with one
modification. One step of the proof of [3, Corollary 6.2] rests on [4, Lemma 3.8].
The analogous result for quiver representations is still true, and is a direct application
of the infinitesimal criterion for smoothness. The computation of the dimension

of mnQ also closely follows the argument of [3, Corollary 6.2], using the fact that

if N is a K-representation of Q of dimension vector a, then

{a,a) dimA:(End(AO) — dimjf (Ext^/V, N))\

see [37, Proposition 8.4],

In the sequel, we will only use the following corollary of Proposition 8.1.

Corollary 8.2. Let M be an indecomposable representation of Q over an

algebraically closed field K containing k, and let a be its dimension vector. Ifßj
denotes the dimension vector of im(fi-') for a general element fi of the

Jacobson radical y(End(M)), then

trdegkk(M) < 1 - J^(ßj,ßj).
j

Proof. The result follows from Proposition 8.1, in the same way that [3, Corollary 6.3]
follows from [3, Corollary 6.2],

9. Quivers of finite and tame representation type

The remaining part of this article is concerned with the essential dimension of quiver
representations. We begin by considering quivers of finite and tame representation

type.

Proposition 9.1. Let k be an arbitrary field, and let Q be a quiver.

(a) For everyfield extension K/k, every real root aofQ, and every indecomposable
a-dimensional K-representation M of Q, we have ed^ M 0.

(b) If Q is offinite representation type, then rç)(n) 0 for every n > 1.

Proof, (a) We claim that Mg is also indecomposable. If L/K is an extension of
finite degree d, we have Ml M®d as /^-representations. Thus the dimension

vector of every indecomposable summand of Ml is a rational multiple of a. Since a
is a real root, we have {a, a) 1, and so gcd;eg0(o!i) 1. It follows that Ml
is indecomposable for all finite extensions L/K, hence Mg is indecomposable, as

claimed. By Proposition 7.1, Mg is defined over k, and by Noether-Deuring's
Theorem the same is true for M.

(b) By Gabriel's Theorem (as stated in [37, Theorem 8.12]), the dimension vector
of an indecomposable representation of g is a positive real root. Now (b) follows
from (a).
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If Q is tame, the computation of rg (n) will follow from Lemma 7.2 and the

following lemma, proved in the Appendix.

Lemma 9.2. Let K be a field extension of k, and M an indecomposable

representation of a tame quiver Q ofdimension vector mS over K. Then there exist

ai,... ,am e K, and bases of the vector spaces Mj, for i e Qo, so that the linear

maps (pa, a G Q\, are represented by matrices having entries in (0,1, a \,..., am }.

In [12], the indecomposable representations ofatame quiver Q are classified, over

an algebraically closed field K. Another reference on this topic is [43, Chapter XIII],
Each indecomposable representation may be described by matrices having entries

in {0,1, A}, for some À G K. In the appendix we show that this classification may be

naturally extended to arbitrary fields, with the help of some results successive to [12],
namely [11] and [30]. This is analogous to the passage from the Jordan canonical
form to the rational canonical form; see Example 3.5. We now prove Theorem 1.2(b).

Proposition 9.3. Let Q be a tame connected quiver, with null root 8. If a is a
dimension vector, and m is the biggest non-negative integer such that mS, < ai for
each vertex i of Q, then ed^ Repg a m. Furthermore,

rQ(n)

In particular, a\(kQ) 1
•

.E*

Proof Let K be a field containing k, a a dimension vector, and M an a-dimensional

^-representation. Then M decomposes as a direct sum of indecomposable

representations Mf,, and

edjfc M <£edkMh.

Let m be the maximum non-negative integer such that m8i < a, for each vertex / of Q.
If the dimension vector of Mf, is a real root, then edk 0 by Proposition 9.1(a).

If it is mhS, then by Lemma 9.2 we have ed^ < m^. Since mh < m, we
conclude that ed^ M < m. Therefore edjt Repg;Q, < m.

Let us now prove that ed^RepgQ, > m. Since ed& Repg <a
> ed^Repg a, we may

assume that k is algebraically closed. Let Zm ç Xç> ms be the locally closed subset

parametrizing representations ©=1M/j, where each Mf, has dimension vector 8.

There is an obvious action of Sm on Zm, given by permutation of the summands.

Consider m copies of an infinite family of indecomposable representations of
dimension vector 8 parametrized by an open subset of A£. As in the proof of
Proposition 5.2, this gives an 5m-equivariant rational map

sending at most finitely many -orbits of A to the same Ga-orbit of Zm. By
Lemma 2.2, we deduce that ed^ Repg mS > m. By Lemma 7.2, we have that
edfc Repg a > m, hence we conclude that ed^ Repg tt m as desired.
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We now prove the formula for rg («). Set

Fix a non-negative integer n, and let a be a dimension vector such that ffui — n-

Let m the maximum non-negative integer for which the inequality m§i < a,- holds for
each vertex i of Q. By what we have proved so far, ed& Repg a m. By summing
all the inequalities m8i < «, we obtain m ff &i < f2ai — so that m < d. This

implies

rô(w) max e(tfc RePg,a < d.
~Eoii<n

On the other hand, we may choose a such that d 8j < cq for each vertex i. In this

case ed£ Repg a d, and the proof of the formula for rg (n) is complete.

10. Wild quivers

In this section we determine ci2(kQ) for every wild quiver Q. Let M be a

K-representation of Q, for some field K containing k. Recall that by Lemma 4.8 the term
edyfc(M) M grows sublinearly with the dimension of M, so the quadratic contribution
to rg(n) will come from trdegfc k(M). Our first objective is to produce lower and

upper bounds for the term trdegfc k(M).

Lemma 10.1. Let a be a Schur root for Q. Then there exists an a-dimensional

representation M of Q such that trdeg^ k(M) > 1 — (a, a).

Proof We may assume that k is algebraically closed. Since a is a Schur root, by
[25, Proposition 4.4] there exists a non-empty coarse moduli space Mq a for stable

«-dimensional representations of Q, and it is irreducible of dimension 1 — (a, a).
There is a dominant rational map <ftg,a —> Mq a, that is, a dominant morphism
from a non-empty open substack of ^Rg>a. Let t) be the generic point of Mq a. We
have

trdegfc k(rj) dimMq^ 1 — (a, a).

Let M be a representation over a field K such that the composition Spec K —>

St-Q,a —^ Mq a
is well defined and has image equal to rj. Any field of definition

for M must contain k(rj), hence

trdeg^ k(M) > trdeg^. kfrj) 1 — (a, a).



Vol. 95 (2020) Essential dimension of representations of algebras 685

Before proving an upper bound for trdeg^ k{M), we set some notation.

Definition 10.2. Let Q be a quiver. For a vector v G Rßo, we denote by |v| the sum

of its coordinates. We define

Hq := {a e Rßo : \a\ 1},

Sq := {a e Hq : at > 0 V/ e g0},

Sq := {a £ Hq : a,- > 0 V/ g0}-

We denote by A g the maximum of the opposite of the Tits form —qç> on Sq.

We note that A q > 0 if and only if the quiver Q is wild.

Lemma 10.3. Let K/k be a field extension, and let M be an a-dimensional
K-representation of a wild quiver Q. Then

trdeg^ k(M) < |a| + Ag \a\2.

Proof. Assume first that K is algebraically closed and that M is indecomposable.

By Corollary 8.2 there exist dimension vectors ß\,.such that ff ßh a and

trdegj. k(M) < i -j2(ßh,ßh).
h

By definition of A g,
~{ßh,ßh) < \ßh\2^Q,

hence

trdegfc k(M) < 1 + Ag (E |^|2)<l+Ag|cr|2.
h

Let now K be an arbitrary field extension of k, and let M be a representation
of Q over K of dimension vector a. Since k(M) k(M^), we may assume
that K is algebraically closed. The representation M decomposes in at most |a|
indecomposable representations Mh. Let ah be the dimension vector of A//,. Then

trdegkk(M) < ^trdeg^.k(Mh) < ^ (l + hQ\ah\2) < \a\ + Ag|a|2.
h h

From Lemma 10.3 we see that, in order to understand the asymptotic behavior
of rg(«), we must first understand Ag.
Lemma 10.4. Assume that Q is a disjoint union of wild connected quivers. There is

at most one critical pointa e Mßo ofqQ on Hq. If it exists, it satisfies the equations

(a, ef) —2A

for each vertex i andfor some constant X. The corresponding critical value ofqQ is

<7g(a) {a, a) -X.

Moreover, X Q and ai Q for every i.
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By definition, a critical point of qQ on Hq is a point at which all partial derivatives
of qç\HQ vanish. It is not necessarily a minimum or maximum of (/g |//e ; see

Example 10.8.

Proof. We use the method of Lagrange multipliers. The constraint is given by

ai H + an 1,

and the partial derivatives of çq are

9;?g(a) -(a, et).

Therefore, any critical point a must satisfy the equations

(a, e,) —2A.

for some A e E. If Cg is the Cartan matrix of g, these equations translate to

Cga —2Ae,

where e (1,..., 1). Since g is a disjoint union of wild connected quivers, Cg
is invertible. Therefore, a critical point a will lie in the intersection of the affine

plane Hq with the line generated by Cq 1e, so there can be at most one. If a critical
point a exists, the corresponding critical value of qQ is

(a,a) a, a) ^y]a,-(a,e>) -A.

Definition 10.5. Let g be a disjoint union of connected wild quivers. We denote

by a g and A q the critical point a and the constant A of the previous lemma (if they
O

exist). We say that g is effective if ag exists, a g 6 Sq and Ag > 0.

Recall that a subquiver of g is a quiver g' such that Q'0 ç g0 and whose arrows
are all the arrows of g between vertices in Q'0. If g' is a subquiver of g, the

inclusion Q'0 ç g0 naturally identifies M®o with a subspace of M^o

Lemma 10.6. Let g be an effective quiver with connected components Q\,..., Q'd,
and assume that Ag<j > Ag^ for every h I,... ,d. Then Q\ is effective, and

Ag < Ag/.

O

Proof. Since g is effective, ag exists and belongs to Sq. We may write ag
(a'j,...,a'd), where a'h e W,ßh for each h — I.... ,d. Since qQ is the orthogonal
direct sum of the ^g^, we have that

<7ô(ag) <7ßj (ai) + ••' + ?&, (a'd)•
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Note that a'h/\a'h\ is a critical point for qQ'h \hq, for every h 1,d. Since

the coordinates of a'h/\a'h\ sum to 1, from the uniqueness part of Lemma 10.4 we
obtain that a'J \ a'h \ olq^, i.e. a'h \a'h\oiq^. In particular, a Q>h exists and belongs

O

to SQ'h, for every h. Substituting into the previous equation, we obtain

Aq h f \a'd\2^Q'd-

Since Q is effective, we have Aß > 0. It is thus impossible that Xq' < 0 for every h,
O

and so Xq^ > 0. We already showed that ctQ^ e Sq^, hence Q\ is effective.

Since \a'h >0 for every h and \a[ | + 1- \a'd \ 1, we have \ct'h\2 < \a'h \ for
all h. We conclude that

Aß < (Kl2 H b Wd\2)^Q[ < (l^il H b 1«^ 1)^-01 ^Q\'

as desired.

Recall that, by definition, Aß is the maximum of — <?ß on Sq. If the maximum
O

of —qq is attained in Sq, then by Lemma 10.4 we have Aq Xq. If a belongs to
the boundary of Sq (as in Example 10.8 below), we may consider the subquiver Q'
whose vertices correspond to the non-zero entries of a. If all connected components
of Q ' were wild, then by Lemma 10.4 we would get A q A q' X q> In fact, as we

now show, one may always arrange for Q ' to be wild and connected. We thus obtain
the following formula for Aß, which will be used in the proof of Proposition 10.12.

Proposition 10.7. Let Q be a wild quiver. Then there exists an effective subquiver

of Q. Moreover, we have

An max Ao',* Q'

where the maximum is taken over all effective wild connected subquivers Q' of Q.

Proof. Let Q' be an effective wild connected subquiver of Q, and view a.Q' as a

vector in M 00 by setting the extra coordinates equal to zero. Then

Aß > -^ß(ofß') -^ß'(aß') Aß'.

Letting Q' vary, we obtain Aq > maxß' Aq>. It thus suffices to find Q' such that

Aß Aß/.
Since Sq is compact and qQ is continuous, there exists a vector a e Sq

minimizing #ß|se, that is, satisfying Aq —qQ (a). Since Q is wild, qQ is

indefinite, hence —^ß(a) >0. Let Q' be the subquiver of Q defined by

Qo -= ^ ôo • ai 0}-

If we regard a also as a vector in M^o, then qQ (a) qQ>(a), a e Sq>, and a
minimizes qQ/ on Sq>. In particular, a is a critical point for qQ'\hq, •
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The subquiver Q' is wild, because ciQ'(a) < 0. Now, if Q" is a non-wild
connected component of Q', define a vector ß £ M^o by setting ßi 0 if i £ Q"
and ßi at otherwise, and set y := ß/\ß\. Then |y| 1 and y, > 0 for each

vertex i of Q', i.e. y Sq. Moreover, since qq" is positive semi-definite and

IQ' 1Q" -L ^ô'\Ô"' we have <7ß'(y) < <?ß'(a)> hence qQ>(y) q<2'(a). Here

Q' \ Q" is the subquiver of Q' with set of vertices equal to Q'0 \ Qq. Since y is

supported in Q' \ Q", this shows that we can remove Q" from Q', that is, we may
assume that every connected component of Q' is wild.

By Lemma 10.4, a aQ> is the unique critical point of qQ'\HQ, and

Aß -4ßO) ~qß' (°0 Aß'.

o
As Q is wild, we have A g > 0, hence Xq' >0. We already noted that a £ Sq,
hence Q' is effective. By Lemma 10.6, we are allowed to pass to a connected

component of Q'. Therefore, we may assume that Q' is connected, and this concludes
the proof.

Example 10.8. We illustrate Proposition 10.7 and its proof by computing A g in the

case where Q is the disjoint union of two quivers Ky.

1 2 3 4.

The Tits form of Q is

qg (a) a\ + a\ + a\ + a\ — 3aia2 — 'ia^a^..

As in the proof of Lemma 10.4, we may compute the critical point ag of </g \hq as

the solution of the system of linear equations

3a2 — 2ai 3ai — 2^2 3a3 — 3a4 — 2CÜ3, oq + «2 + <*3 + «4 1-

Thus ag (|, |) and Ag |. In particular, Q is effective. Note that Ag is

not the maximum of —qç \hq, because —c/g is not bounded from above on Hq:

—q<Q (t, L i — t, ^ - t) =212 + O(0, (t -> 00).

Let <2i and Q2 denote the two A3 subquivers of Q. The associated critical points
are agt (5, 0,0) and ag2 (0,0, j, |), and the corresponding critical value

is \ in both cases. Note that this is accordance with Lemma 10.6. In particular, Q\
and Q2 are effective. By Proposition 10.7, we obtain Ag Agj Ag2

For this particular Q, the compactness argument in the second paragraph of the

proof of Proposition 10.7 would select either agj or ag2 as a, hence either Q1 or Q2

as Q'.
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Definition 10.9. We say that the wild quiver g is a minimal wild quiver if there are

no wild subquivers of g other than g. We say that the underlying graph of g is a

minimal wild graph if for every arrow a: i -> j of g, removing a gives a quiver Q'
that is not wild.

Recall that a subquiver of g is obtained by choosing a subset of g o and

considering all arrows between said vertices. Hence subquivers of g bijectively
correspond to subsets of go- Note that if the underlying graph of g is a minimal
wild graph, then g is a minimal wild quiver, but the converse need not be true.

As an example, consider the generalized Kronecker quiver Kr :

r
1 2

If r > 3, Kr is a minimal wild quiver. Its underlying graph is a minimal wild
graph if and only if r 3. Another example is the loop quiver Lr for r > 2: it
is a minimal wild quiver because it has no non-empty subquivers, but its underlying
graph is minimal wild if and only if r 2.

There are 18 minimal graphs, and they are listed in [33, Lecture 6, Subsection 6.7],
They are all obtained by adjoining one vertex to a tame quiver of at most 9 vertices;
see the picture of [33, Lecture 6, p. 9].

Lemma 10.10. Let Q be a minimal wild quiver. Then Q is connected and effective,
and Aq Xq.

Proof. Since a disjoint union of non-wild quivers is non-wild, a minimal wild quiver
is connected. Moreover, every proper subquiver of g is non-wild. The claim now
follows from Proposition 10.7.

Before stating the main result of this section, we need one last lemma.

Lemma 10.11. Let Q' be an effective wild connected subquiver of Q, and let m be

a positive integer such that maçp has integral entries. Then ma.Q/ is a Schur root

of g-

Proof. Since Q' is effective, we have \q> < 0. It follows from Lemma 10.4 that

(maQ',ei) —2raAg/ < 0

for every vertex i of Q'. This implies that the support of maQ' is a wild quiver and

that maQ' belongs to the fundamental region of g'. By [28, Proposition 4.14], it
follows that maQ' is a Schur root of Q'. Let K/k be a field extension and let M'
be a /f-representation of Q' such that Endk(M') K. We may trivially extend M'
to a /f-representation M of g, by letting Mi 0 for every i e go \ Q\y We have

Endjf(M) Endjf(M') K, hence œq' is a Schur root for g.
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We are now ready to compute a2(kQ) for every wild quiver Q. This completes
the proof of Theorem 1.2.

Proposition 10.12. Let Q be a wild quiver. Then:

(a) a2(kQ) Ag;

(b) a2(kQ) > jkôi
(c) we have a2{kQ) tfand on^y If ike underlying diagram of Q is a disjoint

union ofa (possibly empty) non-wild quiver and copies of the graph E$

4

1 2 3 5 6 7 8 9 10.

Proof, (a) Let n > 1, K/k be a field extension, and M be an a-dimensional

^-representation of Q, where |a| n. By Lemma 4.8, we know that &&k(M) M <n.
Furthermore, by Lemma 10.3, trdeg^. k(M) < n + Aqu2. Thus

re(") 2
A

2 < b "-Q-
n

Letting n tend to infinity, we obtain

a+(fcg) limsUp^M < Aß. (10.1)
«->00 W

We now establish the opposite inequality. By Proposition 10.7, there exists an

effective wild connected subquiver Q' of Q such that Àq> Aq (and in particular

Aq' > 0, as Q is wild). By Lemma 10.4, açy e Q>o' hence there exists m > 1

such that mciQ> e N^o. By Lemma 10.11, the vector moiQ> is a Schur root. By
Lemma 10.1, there exists a representation M of dimension vector mctQ/ such that

trdegfe k(M) > 1 — (mag',mag') 1 — m2(ag',ag') 1 + Agm2.

Since |ag'| 1, we have |mag'| m. Considering multiples of mag' yields

rg(m/î) > 1 + Ag(m/î)2

for every non-negative integer h. Let now « be a positive integer. There exists a

unique /î > 0 such that mh < n < m(h + 1). We have rg(«) > rg(m/z), hence

rg(rc) l + Ag(m/î)2 1 (n — m)2
> 3^>3 + AÖ

«2 n2 n2
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Figure 1. The wild graphs Aq, An (minimal for 1 < n < 6), Dn (minimal for 4 <n< 8), E&

and Ej. If one of these graphs has the index j > 0 in the name, it has j + 2 vertices.

Letting n tend to infinity, we conclude that

ai(kQ) liminf > Ag. (10.2)
rt-9-oo nz

The combination of (10.1) and (10.2) shows that

Ü2 (Ag) a^ikQ) a2(kQ) Ag.

(b) By (a), it suffices to show that A g > for every wild quiver g. Let g' be

a quiver obtained from g by removing one arrow. Then qQ>(a) > ^g(a) for every
a G Sq. If Q' is wild, then this implies that Aq' < A q. Therefore, it suffices to

prove Aq > 2jgö in the case when the underlying graph of g is a minimal wild
graph. By Lemma 10.10, g is effective and Ag Ag, hence we may compute A g
using the method of Lagrange multipliers, as explained in Lemma 10.4. We list the

values of A g A g that we have computed for the minimal wild graphs, following
the notation given in [33, Lecture 6, Subsection 6.7]; another source is [15, §2.4],

The reader can find a picture of E% in the statement of Proposition 10.12(c), and

pictures of L2, K3 and U5 in the examples of Section 11. The remaining wild graphs
are displayed in Figure 1.

A3; A ^,

- Ky. A j, _ Ax: A — - Ay. A yA_,

-Us'. A - A2: A jj, - As: A y|j,

L2: A 1, Aq4. A — 4,
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- A(,\ A
jgg, - £>6- X - i?6- k 468>

- D\\ X - Dj\ X
442, - Ei: A

- £>5: A
228, - D%'. X ggjj, - Es'. X

2480"

The smallest value is 2^0» corresponding to Eg. The critical point is

a~ —Î—(76,153,231,115,195,160,126, 93,61, 30).
Es 1240

(c) Let g be a wild quiver such that ^(Ag) Ag jigô' (b), this is the

minimal possible value for A g We may assume that g is connected. We must show

that g is of type Eg.
We first claim that every subgraph of the underlying graph of g which is minimal

wild must be of type Eg. Indeed, let g' be a subgraph of g, and denote by Q" the

subquiver of g such that Qq Q'0. The effective subquivers of Q" are also effective

subquivers of g, hence Aq» < Ag by Proposition 10.7. Since Q' is obtained
from Q" by removal of some arrows, we have qQ>(a) > qQ"(a) for every a Sq».
If Q' is wild, then this implies that A g' < A q». Therefore A q> < Aq. If the graph
of Q' is minimal wild, by Proposition 10.7, Lemma 10.10 and the above list Q' must

be of type Eg, as claimed.

We now claim that Q is obtained from a quiver of type Eg by only adding arrows
(and not vertices). To prove this, we may of course assume that Q has no loops or
multiple arrows. By the previous claim, there exists in particular a wild subquiver Q'

of Q which is obtained from a quiver of type Eg by only adding arrows. We want
to show that go go- If go 7^ go, we may pick a vertex i e go \ go which is

connected to gj, by at least one arrow of g. We let g" be the subquiver of g defined

by the set of vertices Q'0 U {/}. Since Q" is a subquiver of g, by Proposition 10.7 we
have Aq" < A q, and since A g is minimal we obtain that Ag" A g ^ö- We

now verify by a case by case analysis that A g// > 5^0, thus proving that / 6 Qo\Qo
cannot exist.

If two or more vertices of Q' are connected to / via an arrow, then Q" contains a

subquiver of type Ah, for some 0 < h < 9. One easily sees that this implies that Q"

(hence g) contains a subquiver whose underlying graph is minimal wild of type Af,

for 0 < h < 6, Ag or E-j. This contradicts the first claim. Therefore, / is connected

to exactly one j e Q'0. We now want to exclude this possibility.

- If j 1, then g contains a subquiver of type £7.

-If j 2, then g contains a subquiver of type £>5.
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-If j 3, then Q contains a subquiver of type D4.

-If j 4, then Q contains a subquiver of type E6.

- If 5 < j < 8, then Q contains a subquiver of type Dj.
Therefore, the cases 1 < j < 8 are in contradiction with the first claim. The only
remaining possibilities are j 9 and j 10. For j 9,10, the only subquivers

of Q" whose graphs are minimal wild are of type Eg (note that Dg is not minimal),
and so we must use a different reasoning to exclude these two cases. If j — 9, one
finds that

an» —(16, 33, 51,25, 45,40,36, 33, 31,15,15)
340

and Ag" If j 10, then

UQ» —Î—(94,190,288,143,245,204,165,128, 93,60,29)
1639

and Ag" Yg39- In both cases, the coordinate of ag" corresponding to i is the last

one. Thus, in each case Q" is effective and Xq» > jigö- By Proposition 10.7,

1

Ag > Ag" Xq» >
2480

for j 9,10 too. This contradicts the assumptions, hence no such i exists, and so

So Q'o, as claimed. We have shown that Q is obtained from a quiver of type Eg

by only adding arrows, as claimed. In particular, Q is a minimal wild quiver.
To conclude the proof, it is enough to show that the underlying graph of Q is a

minimal wild graph. If we remove one arrow from Q, we obtain a new quiver Q'
O

such that qQ' (a) > <7 g (a) for each a e Sq. Since Q has no proper wild subquivers,
neither does Q'. If Q' were wild, it would be a minimal wild quiver, hence by
Proposition 10.7 and Lemma 10.10 we would have Ag' Ag/. This would in turn
imply

Ag/ Ag' -qQ'ioiQ') < -qQ(piQ>) < Ag.

This is in contradiction with the minimality of Ag, hence Q' is non-wild. Thus

every subgraph of Q is the graph of a non-wild quiver, that is, the underlying graph
of Q is a minimal wild graph, as desired.

Remark 10.13. Let g be a wild quiver. The proof of Proposition 10.12(a) shows

that rg(n) a2(kQ)n2 + 0(n) as n —> 00.
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11. Examples

Proposition 10.7 gives a simple algorithm to determine A q for a given quiver Q.
For each wild subquiver Q' of Q, one determines ag/ and Aq> by solving a system
of linear equations (for minimal wild subquivers, one may use the list in the proof
of Proposition 10.12). By inspection of the œq> and Xq>, one lists the connected

effective subquivers of Q. Then A g coincides with the maximum value of Ag'
among the subquivers in the list. As an example, we determine the coefficients ao,

ai,ö2 explicitly for some families of quivers.

Example 11.1. Let Kr be an r-Kronecker quiver,

with an arbitrary orientation of the arrows. The underlying graph of K\ is a Dynkin
diagram of type A2. The quiver K2 is tame of type A2, and the null root is given
by 8 (1,1). If r > 3, Kr is a minimal wild quiver. One may easily compute that

ctKr (^, j), and AKr AKr r—^- Using Propositions 9.1(b), 9.3, 10.12, and

Remark 10.13, we obtain

'Kr («)

0,

n

2

r -2

if r 1,

if r 2,

-n2 + 0(n), if r > 3.

Example 11.2. Let Lr be the r-loop quiver. It is the quiver with one vertex and r
arrows, here depicted for r 4:

hr
The quiver L\ is tame of type A\, with null root 8 (1). If r > 2, Lr is wild,

«Lr (1) and ALr ALr r — I. Thus

(«, if r 1,
Lr j(r — 1 )n2 + 0(n), if r > 2.

Example 11.3. Let Ur be an r-starshaped quiver, that is, a quiver with vertices

0,1,...,r and such that for every i 1,,r there exists exactly one arrow



Vol. 95 (2020) Essential dimension of representations of algebras 695

connecting i and 0, and these are the only arrows. The orientation of arrows is

arbitrary. Here is the picture for r 4:

If r 1,2,3, Ur is of finite representation type, hence rjjr (n) 0. The quiver U4 is

tame of type Ö4, and its null root is 8 (2,1,1,1,1), so qy4(n) \n/6\. If r > 5,

then Ur is wild. Moreover, aur is the solution of the following system of linear

equations:

E«.- 1.

' 2a0 - J2i^oa' 2A j/r,
2a,- — cto -2Af/r, for each i ^ 0.

Note that these equations imply that a,- aq for each i ^ 0. The solution of this
linear system is a\jr (r 4- 2, 3, 3,..., 3), and A\jr — In particular,
for r >5, Ur is always effective for r > 5, and the sequence A ur is strictly increasing
in r. Since any subquiver of Ur either has no arrows or is itself of the form Ur>, for
some r' < r, we deduce that Aur A ur Therefore

rKr(n)

0,

n

6

r-4
8r +4

Notice that A.jjr <\ for any r > 5.

if r < 3,

if r 4,

n2 + 0(n), if r > 5.

12. Appendix

The purpose of this appendix is to prove Lemma 9.2, which is used in the proof of
Proposition 9.3.

Lemma 12.1. Let K be a separably closed field, and let M be an indecomposable
A k-module. Then M% is an indecomposable A ^-module.

Proof. The result is trivial if char K 0, so we may assume that char K p > 0.

We must prove that M^ is indecomposable as an A ^-module. Since K is separably
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closed, L := End(M)/y (End(M)) is a field. Let <p be an idempotent in L K. We

may write <p ® ^ f°r some (pi e L and some A, e K. The extension K/K
being purely inseparable, there exists a positive integer n such that Xf K for

every i. Since <p is idempotent,

belongs to L. Since L is a field, we obtain cp 0,1. This proves that L<S>kK is a

local ring. Using the inclusion j(End(M)) <5§k K ç j(End(Mg)), it follows that
End(Mg)/j (End(M^)) is a local ring too, which means that Mg is indecomposable.

For the proof of Lemma 9.2 we closely follow [12]. Another reference for the

classification of indecomposable representations of tame quivers is [43, Chapter XIII].

ProofofLemma 9.2. For every arrow a:i -> j of Q, we denote by <pa: Mi -» Mj
the associated X-linear map of M. Assume that Q is a tame quiver of type An (so the

underlying graph of Q is a cycle with n + 1 vertices). Its null root is S (1,..., 1).

The case n 0 has already been treated in Example 3.5. Suppose that Q has a cyclic
orientation. Let N be an indecomposable summand of M%, and fa: Ni —> N} be

the linear map associated to the arrow a: i -> j. By [26, Theorem 7.6], either (i) all
the q>a can be represented by matrices containing only 0 and 1, or (ii) all the <pa but
at most one are isomorphisms. By Lemma 12.1, every indecomposable summand

of Mg is already defined over Xsep. The Galois group Gal(ATsep/X) acts transitively
on the isomorphism classes of indecomposable representations of Mk^p. Thus,
when one of the above is true for A, it is also true for every other indecomposable
summand of Mg (we will use this reasoning multiple times during this proof). In
case (i), by Noether-Deuring's Theorem, M may be represented by matrices with
entries in {0,1}. In case (ii), after fixing bases for the vector spaces M,-, we may
assume that all the <pa but at most one are represented by the identity matrix, and we
are reduced to the case n 0.

Assume now that Q is of type /Lr+i, oriented in such a way that every even

vertex is a sink, and every odd vertex is a source. For example, this is the orientation
that we are considering on A5 (so r 2).

cp cpP" ®^i" ® 1

4 i 5

(12.1)3 0

2 1
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If r 0, we have the Kronecker quiver, whose indecomposable K-representations are
well known for both orientations; see for example [7, Theorem 3.6], Let now r > 1.

Consider the base change Mand denote by N an indecomposable summand

of Ma, with linear maps fa' Ni —> Nj. By [12, Lemma 2.6.5], each \fra is an

isomorphism, with the exception of at most two. By applying Lemma 12.1 as in the

first paragraph, we deduce that all arrows of M but at most two are represented by
linear isomorphisms. Identifying vertices via these isomorphisms, we are reduced

to the cases To or A i, which have already been handled. Consider now the case

when Q is of type An, where n is not necessarily odd and the orientation is acyclic
but otherwise arbitrary. Adding arrows to Q if necessary, we may identify M with
an indecomposable representation M' of a quiver Q' of type /Lr+i, having the

orientation given in (12.1) (i.e. every even vertex is a sink and every odd vertex is a

source), for a suitable r. Of course, we require the new arrows to be represented by
isomorphisms. It follows that if M' may be defined using 0,1, a\,..., am, the same

is true for M. This concludes the proof for quivers of type An.

The case when Q is of type Dn can be proved along similar lines. If n 4 and Q
has the orientation

2

<p2

<P4

4

the indecomposable representations of Q have been classified: see [17] for the

original proof over algebraically closed fields, and [30] for an elementary proof over
arbitrary fields. Recall that the null root of Q is S (2,1,1,1,1). We record here

the m<5-dimensional family consisting of all the /(-representations of Q that are not
defined over the prime field of K (see [30, Appendix]).

*1 ('"o")• «* (,0 )• » (/\ u J \'mxmJ \lmxmJ \lmxm)

Here each of the eight blocks is a square matrix of size m, and A is a square matrix
of size m in rational canonical form. If M does not belong to this family, M may be

defined using only 0 and 1. On the other hand, if M belongs to the family, M may
be defined using only 0,1, a\,..., am, where the a,- are the coefficients of the last

column of A.
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Assume now that Q is of type Dn, where n > 4. By suitably adding arrows,
similarly to what we have done in type An, it suffices to consider the case when

n 2r + 4 > 6 is even, and with the following orientation of arrows (here r 3):

2 8

y *4^

1 > 3 « 4 » 5 4 6 » 7 < 9.

In other terms, the sinks are exactly the odd vertices different from 1 and 2r + 3, and

every other vertex is a source.

By [12, Lemma 3.8.5], if A is an indecomposable summand of Mg, either (i) A
can be defined by matrices with entries only 0 and 1, or (ii) all but at most two of the

maps

Ai © N2 -> A3, A4 —> A3, A27- A2r+1, N2r+2 ® N2r+3 ^2r+l

must be isomorphisms. Applying Lemma 12.1 as in the first paragraph, we see that
in case (i) M is defined by matrices consisting only of 0 and 1, and in case (ii) all but
at most two of the linear maps

M1 ® M2 —> M3, M4 —» M3, M2r M2r+1, M2r+2 © Af2r+3 M2r+1

are isomorphisms. Now, if one of the two maps

M\ © M2 —> M3, M2r+3 © M2r+4 —* 4^2r+2

is an isomorphism, then M comes from a representation of a Dynkin quiver of
type L>2r+2- If neither of these two arrows is represented by an isomorphism,
then M comes from a representation of a quiver of type D4. Since the underlying
graph of Q is a tree, by [26, Lemma 3.6] any two orientations of Q may be obtained

one from the other via reflection functors. This proves the claim for quivers of
type Dn.

To complete the proof of Lemma 9.2, only type E is left. In [12], the classification
in type E is deduced from that of type A and D by means of certain functorial
constructions. The arguments of [12] work over an arbitrary field, as the authors say

in [12, §1.1]. However, some of the references that they quote need to be modified;
we now explain how.

Assume first that Q is a tame quiver of type Eß, with the following orientation:

5

4

3 > 2 > 1 i 6 i 7.
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With this ordering, the null root of Q is 8 (3,2,1,2,1,2,1). Let Q' be the

quiver (12.1), and let 8' be its null root. We construct a functor F from the category
of K-representations of Q' of dimension mS' to the category of mS-dimensional

^-representations of Q as follows. Let N be a -representation of Q, of dimension
vector m8', and denote by No,N5 the vector spaces of N. Then F(N) is given
by the vector spaces (following the ordering in the figure):

N0®N2®N4, No®N2, NI, N2®N4, N3, N4®N0, Ns,

and by linear maps defined in an obvious way using those of N. The functor F is

denoted by <$6 in [12, 4.5].

If M may not be defined using only 0 and 1, then M belongs to the essential

image of F. The proof of this fact is given in [12, Theorem 4.8.1] in the case when K
is algebraically closed. This argument is based on elementary linear algebra and

works over an arbitrary field; see [12, §1.1]. The only step that requires further
justification is the assertion that the category of regular ^-representations of Q is

abelian. If K is algebraically closed, this is proved in [12, Proposition 4.7.1]. For
the case, where K is an arbitrary field, we refer the reader to [11, Proposition 3.2]

or [35, §4.1]; see also [45, §2.4] or the Introduction to [11], It follows that M comes
from an m<5'-dimensional representation M' of a quiver Q' of type D4. We know
that M' may be defined using 0,1, a 1,..., am, for some a,- G K, thus the same is true
for M. By [26, Lemma 3.6], applying the reflection functors, this proves Lemma 9.2

for every other orientation of E6.
The proof for Q of type £7 or Eg is entirely analogous. The indecomposable

representations of £7 not defined over the prime field of K may be obtained from
representations of Ee, and those of £g may be obtained from those of £7. The
fact that the category of regular ^-representations of Q is abelian is proved in [12,

Proposition 5.7.1 and Proposition 6.7.1] for an algebraically closed field K, and

in [11, Proposition 3.2] and [35, §4.1] for an arbitrary K. The rest of the proof is
based on elementary linear algebra, and may be carried out over an arbitrary field.
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