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Essential dimension of representations of algebras

Federico Scavia

Abstract. Let k be a field, A be a finitely generated associative k-algebra and Rep 4[n] be the
functor Fieldsy — Sets, which sends a field K containing k to the set of isomorphism classes
of representations of A g of dimension at most n. We study the asymptotic behavior of the
essential dimension of this functor, i.e., the function r 4 (n) := edx (Rep4[n]), as n — o0. In
particular, we show that the rate of growth of r 4(n) determines the representation type of A.
That is, r 4 (n) is bounded from above if A is of finite representation type, grows linearly if A4 is of
tame representation type, and grows quadratically if A is of wild representation type. Moreover,
r 4(n) allows us to construct invariants of algebras which are finer than the representation type.

Mathematics Subject Classification (2010). 16G60; 16G20, 14D23.
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1. Introduction

Let k be an algebraically closed field, and let A be a finitely generated k-algebra
(associative, unital, but not necessarily commutative). We begin by recalling the
notion of representation type of A, due to Yu. Drozd. We will use the terms “module”
and “representation” interchangeably.

The algebra A is of finite representation type if there are only finitely many
indecomposable finite-dimensional A-modules, up to isomorphism. For example,
if A = kG is a group algebra for a finite group G and chark = 0, then A is of finite
representation type.

Loosely speaking, A is tame if it admits infinitely many indecomposable
representations and if for each n > 0 the indecomposable A-modules occur in a finite
number of one-parameter families. The main example is the polynomial algebra
A = k[t]: the indecomposable n-dimensional representations of A correspond to
Jordan blocks of size n, and the parameter is the eigenvalue.

Finally, A is wild if a subset of the isomorphism classes of indecomposable
A-modules can be parametrized in a one-to-one manner using the indecomposable
representations of the free algebra k{x, y} on 2 generators. We refer the reader to
Section 3 for the precise definitions.
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A classification of the representations of k{x, y}, in the spirit of those for group
algebras in characteristic zero or k[¢], is considered to be hopeless; see [34]. Roughly
speaking, when A is of finite representation type or tame one can explicitly classify
its representations, and when A is wild such a classification is impossible.

When first confronted with these definitions, one may be surprised by the big gap
between the notions of tame and wild. However, when A is finite-dimensional, there
are no intermediate possibilities. According to a celebrated theorem of Drozd [14],
A is of exactly one of the three representation types we described: finite, tame or
wild; see [14, Theorem 1, Proposition 2, Corollary 1] or [9, Theorem B].

The purpose of the present work is to reinterpret and refine Drozd’s Theorem via
essential dimension. We denote by r4(n) the essential dimension of the functor of
representations of A of dimension at most n. By definition, r4(n) is the smallest
integer m > 0 such that for every field extension K/k and every representation M
of Ak = A ®; K such that dimg M < n, there exist a subfield k C Ky € K such
that trdeg; Ko < m and a representation N of Ak, suchthat N ®g, K = M; see
Section 2 for further details.

The definition of r 4 (n) takes as input an enormous amount of information: we are
considering all A g-representations for every field extension K/ k. In particular, even
in the case where & is algebraically closed, we are forced to consider representations
over fields that are not necessarily algebraically closed.

The main result of this paper is the following refinement of Drozd’s Theorem. It
follows from the combination of Propositions 5.1, 5.2 and 5.4.

Theorem 1.1. Let A be a finite-dimensional algebra over an algebraically closed
field k.

(a) If A is of finite representation type, then
ra(n) =0
foreveryn > 1.
(b) If A is tame, then there exists ¢ > 0 such that
cn—1<rg(n) <2n-1
foreveryn > 1.
(c) If A is wild, then there exists ¢ > O such that
ra(n) > cn®—1

foreveryn > 1.
Some remarks are in order.

(i) Theorem 1.1 gives a common framework for several seemingly unrelated results
of [21] and [1]; see Remark 5.5 for further details.
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(ii) Part (a) of Theorem 1.1 is [1, Theorem 1.3]. However, if k is only assumed to be
perfect, we will show that r 4 (n) is bounded from above; see Proposition 5.1. Parts (b)
and (c) of Theorem 1.1 hold when k is arbitrary, A is finitely generated (not necessarily
finite-dimensional) and Ag is tame or wild, respectively; see Propositions 5.2 and 5.4.

(iii) If k is not algebraically closed, the representation type of k-algebras becomes
more subtle to define; see Remark 5.6.

(iv) If A is of tame or wild type, it is still possible that r4(n) = O for small values
of n. This explains the presence of —1 in the lower bounds.

(v) If A is generated by r elements over k, then every A x-module M is defined over
the subfield K¢ of K generated over k by the rn? matrix entries of left multiplication
by the generators. Thus we have the following naive upper bound

edy M < trdeg; (Kop) < rn?

which shows that quadratic growth is the fastest possible.

(vi) Our proof of Theorem 1.1 is based on combining stack-theoretic techniques
with representation-theoretic arguments. The stack-theoretic techniques we use were
initially developed in [3], for the purpose of computing the essential dimension of the
stack of vector bundles on a given curve. In this paper we modify these techniques
and adapt them to study the essential dimension of representations of algebras. Some
of our representation-theoretic arguments make use of results from logic and model
theory [19,24].

When k is algebraically closed and A is finite-dimensional, Theorem 1.1 tells us
that the asymptotic behavior of r4(n) determines the representation type of A. We
may then regard this function as a finer invariant of A, and use it to extract numerical
invariants. For every field k and every finitely generated k-algebra A, set:

ag(A) = nll)ngo ra(n), if Ay, is of finite representation type,
ra(n
af (4) := limsup Al ), if Az is tame,
n—>00 n
ra(n)

az (4) = limsup

5 if Ay is wild.

Using lim inf,,_, «, instead, one may also define aj (4), a, (A). We also write

.

ai(A) ;= lim A(n), if Af is tame,
n—»o00 n

az(4) i= lim L(Z") if Az is wild,

n—o00 n
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when such limits exist. When k is algebraically closed and A is finite-dimensional,
Theorem 1.1 shows that if A4 is tame then 0 < a7 (A4) < af'(A) < 2, and that if A is
wild then a; (4) > 0.

The number ag(A) has been studied in [21] and [1]. When they exist, the numbers
a1(A) and a,(A) represent the coefficients of the “leading term” of r 4 (1), as n — oc.
It may also be of interest, even though beyond the scope of this paper, to investigate
the “next term”, i.e., the rate of growth of r4(n) — a;(A)n for tame algebras, or
ra(n) — az(A)n? for wild algebras.

To demonstrate that the invariants aii(A) (i = 0,1,2) are accessible, at least
in some cases, we will compute them explicitly in the case, where A is a quiver
algebra. Let Q be a quiver, and let A = kQ be its path algebra; see Section 7
for definitions and references. The algebra kQ is finitely generated, and is finitely
dimensional if and only if Q has no oriented cycles. The representation type of Q is,
by definition, the representation type of k Q. Gabriel’s Theorem [16] states that Q is
of finite representation type if and only if its underlying graph is a Dynkin diagram
of type A, D, E; see also [26, Theorem 3.3] or [37, Theorem 8.12]. The quiver Q is
tame if its underlying graph is an extended Dynkin diagram of type A,D,E,and it
is wild in the remaining cases. In particular, every path algebra k Q is of finite, tame
or wild representation type, as in Drozd’s Theorem, even though such algebras are
allowed to be infinite-dimensional. We will sometimes collectively refer to quivers
of finite or tame representation type as non-wild quivers.

If O is wild, let A g be the maximum of the opposite of the Tits form of Q on

{aeRggz Zcx,- =1}.
i€Qg
Here Qg is the set of vertices of Q. As we explain in Proposition 10.7, Ag can
be easily computed from the underlying graph of Q; we give several examples in
Section 11.

The following theorem follows from the combination of Propositions 9.1(b), 9.3,
and 10.12.

Theorem 1.2. Let k be an arbitrary field, and let Q be a connected quiver (possibly
with loops and oriented cycles).

(a) If Q is of finite representation type, then

TkQ (n) = {}
foreveryn > 1.
(b) If Q is tame and § = (8;)ieq, is the null root of Q, then

o = | 5 |

for every n > 1, where the sum is over the set of vertices of Q.
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(c) If Q is wild, then
az(kQ) = Ag;
1

in particular az(kQ) € Qxo. Moreover, ax(kQ) > 5;g5, with equality if and
only if Q is the disjoint union of a (possibly empty) non-wild quiver and of quivers

of type Eg

1 2 3 5 6 7 8 9 10.

Part (a) of Theorem 1.2 follows from results of Kac and Schofield that predate
essential dimension; see Proposition 9.1. The proof of part (b) rests on the
classification of representations of tame quivers over an arbitrary field. We refer
the reader to Section 7 for the definition of the null root. The proof of part (c¢)
relies on stack-theoretic techniques. In particular, it is crucial that the algebraic stack
parametrizing representations of Q is smooth over k.

It follows from Theorem 1.2 that the limits a,(kQ) and a,(kQ) exist when Q
is tame or wild, respectively. The existence of the limits a;(A4) and a(A) for an
arbitrary k-algebra A is an open problem.

It has been brought to our attention by Richard Lyons that 2480 is the dimension
of the minimal faithful complex representation of the Lyons group. The Lyons group
is one of the 26 sporadic finite simple groups; see [29] and [41]. Why this particular
number appears in Theorem 1.2(¢c) is a bit of a mystery.

Notational conventions. Throughout this paper k will denote a fixed base field, and A
a finitely generated associative unital k-algebra. We will denote by k an algebraic
closure of k. For a field extension K/k, we will denote by Ax the tensor product
A ®x K. When we consider an Agx-module M, unless otherwise specified we will
assume that M is a finite-dimensional K-vector space. For a field extension L/K,
we will denote M @ ¢ L by M.

If R is a k-algebra, we denote by j(R) its Jacobson radical.

2. Preliminaries on essential dimension

The definition of 4 (n) is a special case of essential dimension of functors and stacks.
We start by giving the definition of essential dimension, due to Merkurjev [2] in the
context of functors, and to Brosnan, Reichstein and Vistoli [6] for algebraic stacks.
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Definition 2.1. Let Fields; denote the category of field extensions of k. Let
F : Fields; — Sets be a functor.

(i) Anelement & € F(L) is defined over a field K C L if it belongs to the image
of F(K) — F(L).
(ii) The essential dimension of £ € F(L) is

edg & 1= m}}n trdeg; K,

where the minimum is taken over all fields of definition K of &.

(iii) The essential dimension of the functor F is defined to be

edy F := sup edg &,
(K.8)

where the supremum is taken over all pairs (K, §), where K is a field extension of &,
and & € F(K).

(iv) If X is an algebraic stack over k, we obtain a functor Fy:Fieldsy — Sets
sending a field K containing k to the set of isomorphism classes of objects in X (K).
We define the essential dimension of an object n € X/ (K) as the essential dimension
of its isomorphism class in Fy(K), and the essential dimension of X as edy Fy.

Consider the functor Rep 4[n]: Fieldsy — Sets given by
Rep4[n](K) := {K-isomorphism classes of A4 x-modules of dimension < n}

for every field extension K/k, and such that for every inclusion K C L, the
corresponding map Rep 4[n](K) — Repy[n](L) is induced by tensor product. For
every n > 1, we define

ra(n) := edx Rep4[n].

We can do more: r4(n) is the essential dimension of an algebraic stack over k.
Since stack-theoretic methods are central to this work, we explain this construction in
detail. We start by choosing a presentation of A as a quotient of a finitely generated
free algebra

A =l on: el bl

where [ is a two-sided ideal of A. We denote by a,, ..., a, the images of xy, ..., x,
in A.
For every d > 0, consider the affine space

r
Xy = [[Maxdp -

i=1

The group GL; acts on X4 by simultaneous conjugation.
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Let K/k be a field extension, and let M be a d-dimensional A x-module. By
fixing a K-basis for M, left multiplication by a;, ..., a, gives rise to d x d matrices
with entries in K, yielding a K-point « = (a1,...,0,) of Xgz. If we choose a
different basis for M, and g € GL4(K) is the matrix of this base change, the new
K-point associated to M will be g - «. Moreover,

P(ay,...,a,) =0foreach P € I. (2.1)

Let Y; be the closed GL g -invariant subscheme of X; defined by the polynomial
equations of (2.1). We can form the stacks

Raln):= | [Ya/GLal, Ra:=][[¥a/GL4],
d=1 d=1

where [Y;/ GL4] denotes the quotient stack construction. The algebraic stacks R 4[n]
are of finite type over k, and R 4 is locally of finite type over k; they are not necessarily

smooth. We claim that
edy Raln] = ra(m).

We have just seen that the GL;(K)-orbits in Y;(K) bijectively correspond to
the isomorphism classes of d-dimensional A4 x-modules. By [6, Example 2.6], the
K-points of [Y,;/ GL;] bijectively correspond to the GL 4 (K)-orbits of Y4 (K). We
have thus constructed a natural bijection between K -points of R 4[n] and isomorphism
classes of Ax-modules of dimension at most », that is, the functors Fg ,[,) and
Rep 4[n] are naturally isomorphic. In particular, edx R4[n] = r4(n), as claimed.

It is easy to see that R 4[n] is independent of the choice of the generators of A,
up to isomorphism.

We conclude this section with the following observation, which will be used
during the proof of Theorem 1.1.

Lemma 2.2. Assume that k is algebraically closed. Let G be a connected algebraic
group over k, and let H C G be a closed subgroup, either finite or connected. Let X
be a G-variety (not necessarily irreducible), and let Y be an irreducible H -variety.
Assume that there exists an H -equivariant rational map f:Y — X such that for any
G-orbitin X only finitely many H -orbits of Y are mapped to it. Then

edg[X/G] = trdeg, k(Y)E.

Proof. Since G is connected, every irreducible component of X is G-stable. Since Y
is irreducible, there exists a component X of X such that f(Y) € Xo. We clearly
have ed; [X/G] = edr[Xo/G], hence we may assume that X = X is irreducible.
We may find invariant open subschemes V € Y and U € X suchthat f(V) C U
and such that there exist geometric quotients V/H and U/G. This follows from an
application of Rosenlicht’s Theorem [36, Theorem 2] (the quoted result of Rosenlicht
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only applies to connected groups, but it is well known that the quotient ¥ /H exists
if H is finite).

The induced morphism V/H — U/ G has generically finite fibers by assumption.
By the fiber dimension theorem

dimU/G > dim V/H = trdeg; k(V).

The projection [U/G] — U/ G is surjective, so there exist a field extension K /k and
a K-point £ of [X/G] mapping to the generic point of U/G. Then

edy £ > dimU/G > trdeg; k(V)H. O

3. Representation types

Let k be an arbitrary field, and let A be a finitely generated k-algebra. In this section
we define the representation type of Ag and give some examples. The following
definitions are due to Drozd [14].

Definition 3.1. Let A be a k-algebra. A A-representation of A is an A — A-
bimodule N, that is finitely generated and projective as a right A-module.

We say that N is strict if for each pair of A-modules M and M’ such that
N @A M = N ®p M’ as A-modules one has M =~ M’ as A-modules. One may
also think of N as a functor, see [9, §2].

Definition 3.2. Let k be an algebraically closed field and let A be a finitely generated
k-algebra.

* We say that A is of finite representation type if there are at most finitely many
isomorphism classes of indecomposable A-modules.

e The algebra A is tame if it is not of finite representation type and if, for
every positive integer d, there exists a finitely generated k-algebra of the form
k[x] € A C k(x), together with a finite collection {N;} of A-representations of A,
such that any d-dimensional indecomposable representation of A is isomorphic to
N;j ®a M for some j and some A-module M of rank 1.

e We call A wild if there exists a strict k{x, y}-representation N of A, free
as a k{x, y}-module, such that for every k{x, y}-module M, the representation
N ®pix,yy M is indecomposable.

If k is an arbitrary field, we say that A is of finite representation type if there are at
most finitely many isomorphism classes of indecomposable A-modules.

Since in Theorem 1.1 the field k is algebraically closed, Definition 3.2 is sufficient
to understand the statement of the theorem. It seems natural to prove analogous
results for an algebra A over a more general field, and we do so in Section 5. In
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Proposition 5.1, we will only assume that & is perfect and that A is finite-dimensional
and of finite representation type. In Propositions 5.2 and 5.4, the minimal assumption
to make our argument work is that Ay is tame or wild, respectively. Therefore, we
do not need to introduce more subtle notions of tameness and wildness over arbitrary
fields. Nevertheless, see Remark 5.6 for a discussion of possible variants of the
definitions.

Example 3.3. Let m > 1. If A = k[x]/(x™), n-dimensional Ag-modules
correspond to conjugacy classes of K-linear endomorphisms having index of
nilpotency at most m. The indecomposable representations correspond to nilpotent
Jordan blocks of size at most m, and these are all defined over the base field k.
Therefore r4(n) = 0. The algebra A is of finite representation type.

Example 3.4. Let k = Q, and let
A=Qfi, j}/G* = j?=~1.ij = —ji)

be the quaternion algebra over Q. Since A is a group algebra over a field of
characteristic zero, it is of finite representation type. Let K be the field of fractions
of Q[a, b]/(a? + b? + 1), and let M be the 2-dimensional A g-module given by

i+—>a_b .|_>b—a
b a) / —a —b)"

In [1, Proposition 6.3], it is shown thatedy M = 1.

Example 3.5. Let A = k[t]. Isomorphism classes of Ax-modules correspond to
conjugacy classes of K-linear endomorphisms of K”. These are classified by the
rational canonical form, hence r4(n) = n (we refer the reader to [32] for the details).
The algebra Ay is the prototypical example of an algebra of tame representation type.

Example 3.6. et A = k[x,y] be a polynomial algebra in two variables.
Representations of A g correspond to pairs of commuting matrices with entries in K.
In [13, Lemma 1], a free strict k{x, y}-representation of A of rank 32 is given. This
shows that Az is wild, so according to Theorem 1.1(c), r4(n) grows quadratically
in n.

Example3.7. Let A := k{x, y, z}/I,where I is the ideal generated by all monomials
of degree 2 in x, y,z. Then Ay is an example of a finite-dimensional wild algebra;
see [34, (1.2)].

4. Fields of definition for representations

In this section we adapt the methods of [3, §5] to the setting of representations of
algebras. Let A be a finitely generated k-algebra, let K be a field containing k, and
let M be an Ag-module. We may view M as a K-point of R4, as explained in
Section 2. We may then associate to M its residue gerbe § in R4, and its residue
field k(M) := k(§); we refer the reader to [27, Chapitre 11] for the definitions.
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Lemma 4.1. We have
edy M = edyary M + trdeg; k(M).

Proof. By construction, the field k(M) is contained in any field of definition for M.
Let K be a field of definition for M (viewed as an element of Rep 4[] (K)) such that
edy M = trdeg; Ko. Thenk(M) C Kq and K is a field of definition for M (viewed
as an element of Repg, ., [7](K)). We deduce that trdegy sy Ko > edran M,
hence

edy M = trdeg;, Ko = trdegy k(M) + trdeg sy Ko
> trdegy, k(M) + edxry) M.

On the other hand, if K; is a field of definition for M (viewed as an element of
RepAk(M)[n](K)) such that trdegy sy K1 = edgar) M, then K is also a field of
definition for M (viewed as an element of Rep 4[#](K)), hence

edy M < trdegy Ky = trdegy k(M) + trdeg(pr) K1
= trdeg k(M) + edgry M. O

Remark 4.2. Let K/k be a field extension, and let M be an Ag-module. Roughly
speaking, the residue gerbe of M parametrizes all pairs (L, N ), where L/ k is a field
extension, N is an Ay-module, and Mg =~ Ng for some extension E/k containing
K and L.

By construction, k(M) is contained in every field of definition of M. Moreover,
since k(M) depends only on the residue gerbe of M, for every field extension L/ K
we have k(M) = k(Mp).

Since k(M) is contained in all fields of definition of M, it is clear that if M is
defined over k (M), then k(M) is the minimal field of definition for M. However, it
is not always the case that k(M) is a field of definition for M. It may even happen
that a minimal field of definition does not exist (but see Corollary 4.6 below for a
positive result).

As an example, let k = @, and take A, K and M as in Example 3.4. By [,
Proposition 6.3], M does not have a minimal field of definition. Since Ap =
M352(K), the module Mg is the 2-dimensional vector representation of M2x2(K),
which is defined over Q. It follows that Q(M) = Q(Mg) = Q.

The residue gerbe ¥ of M is clearly non-empty. By [27, Théoreme 11.3], § is an
algebraic stack of finite type over k(¥). Therefore, there exists a (smooth surjective)
morphism U — &, where U is an algebraic space of finite type over k(). Passing
to an fppf cover of U if necessary, we may assume that U is a scheme. Since § is
non-empty, U is non-empty. The Nullstellensatz then guarantees the existence of a
finite field extension [/ k(&) for which U(l) # 0, hence such that (/) # 0. We let

d:=[l:k@®)] < .
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We choose an object V' € §(/), and set
R = Endk(g)(V)

where ¥V denotes the representation of M over k(§) obtained from V by restriction
of scalars to k(¥). To state the main theorem of this section, we first need to give a
definition.

Definition 4.3. Let A be a finite-dimensional k-algebra. A projective A-module M
has rank r € Qs if the direct sum M ®" is free of rank nr for some n € Z~q with
nr € Zso. We let Modp , be the category of projective modules of rank r.

The following result is an analogue of [3, Theorem 5.3] for representations of
algebras.

Theorem 4.4. In the above situation, consider a field K 2 k(§). Then §(K) is
equivalent to the category of projective right Rg-modules of rank 1/d, compatibly
with extension of scalars. In particular, all objects in G (K) are isomorphic (Noether—
Deuring Theorem), and for the k(§)-algebra R and the integer d defined above, we
have

edx(g) ¥ = edrg)(Modp,1/4) = edigy(Modgr/j(R),1/4)-
Proof. The proof is the same as that of [3, Theorem 5.3, Corollary 5.4]. O

Remark 4.5. The same result holds for any algebraic stack X over k whose restriction
to Fields;® is the category fibered in groupoids associated to a k-linear fibered
category (still denoted by X) such that for every finite extension L/K the pullback
functor X (K) — X (L) admits a right adjoint. In the case of vector bundles on a
curve, the right adjoint is given by the pushforward of a bundle, and in the case of
A-modules it is given by restriction of scalars. The proof in this more general setting
is again identical to that of [3, Theorem 5.3].

The next result is [1, Theorem 1.1], without any separability assumption. We will
not need this result in the sequel. For the definition of fields of dimension < 1, see
[40, §11.3] or [1, p. 2].

Corollary 4.6. Assume that k is a field of dimension < 1 (for example, a Cy-field).
Let M be an Ag-module, where K is an algebraic extension of k. Then M has a
minimal field of definition k € F C K, of finite degree over k. In fact, F = k(M).

Proof. Let § be the residue gerbe of M. The field extension k(§)/k is finitely
generated. It is also algebraic, since k(¥) € K. Hence k(¥) is a finite extension
of k. Since k has dimension < 1, k(¥) also has dimension < 1. Therefore

R/j(R) = l_[Mn,-xn,' (L),
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where the L; are finite field extensions of k(¥§); see [40, §IL3, Proposition 5].
Since M is defined over K, every integer n; is divisible by d, so there exists an
R/j(R)-module of rank 1/d. Now Theorem 4.4 implies that M is already defined
over k(M). O

Let K be a field containing k, and let M be an A g-module. We use the techniques
developed so far to give upper bounds on edy M, by estimating edgas) M and
trdegy, k(M) separately.

Lemma 4.7. Let M be an indecomposable A x-module. Then
dimg End(M)/j(End(M)) < dimg M.
Proof. Since M is indecomposable, the K-algebra End(M ) is local, therefore
D := End(M)/j(End(M))
is a division algebra. By Nakayama’s lemma,
JEdM)M # M,
so M/j(End(M))M is a non-zero left D-module. Hence dimg D <dimg M. O

Lemma 4.8. Let M be a non-zero finite-dimensional A g-module. Then

edeoay M < dimg M — 1.
Proof. Entirely analogous to [3, Corollary 5.5], replacing [3, Lemma 4.2] by Lem-
ma 4.7. O

Lemma 4.9. Let A be a finitely generated k-algebra. Assume that for every field
extension K/k, where K is algebraically closed, and for every indecomposable
Ag-module N, one has

trdegy kK(N) < 1.
Then, for every extension K /k and every non-zero Ag-module M,
edy M <2dimg M — 1.
Proof. By Lemmas 4.1 and 4.8, it suffices to show that
trdeg; k(M) < dimg M

for every field extension K/k and every Ag-module M. Let M be an Ag-module,
for some field extension K/ k. Since k(M) = k(M) for every field extension L/ K,
we may assume that K is algebraically closed. If we express M as a sum of inde-
composable A g-modules M;, we have

trdeg, k(M) < Z trdegy k(M ;).
J

By assumption, each summand is either O or 1, and there are at most dimg M terms
in the decomposition of M. Therefore trdeg; k(M) < dimg M, as desired. O
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5. Proof of Theorem 1.1

Theorem 1.1 will follow from the next three propositions.

Proposition 5.1. Let k be a perfect field and A be a finite-dimensional k-algebra.
Assume that A is of finite representation type. Then there exists a constant C such
that

ra(n) <C

for everyn > 1.

Recall that, when k is perfect, A is of finite representation type if and only if A
is; see Remark 5.6.

Proof. By assumption, there are at most finitely many indecomposable 4-modules,
up to isomorphism; we denote them by Ny,..., N,. Let

r
m:.= Zdimk N

i=1

Let M be an A g-module, for some field extension K/ k. Fix an algebraic closure
K of K. Since k € K, the field K contains an algebraic closure k of k. Since k
is algebraically closed, the Brauer group of k is trivial. Therefore, A  being finite-
dimensional over k, the hypotheses of [1, Theorem 1.3] apply to F' = k, A gand M.
It follows that M z is defined over a finite extension of k, hence over k. Thus

trdeg, k(M) = trdeg; k(M) < trdeg; k =0, (5.1)

hence trdeg;, k(M) = 0 for every A g-module M.

Assume first that M is indecomposable. By [19, Theorem 3.3], M is a direct
summand of a module of the form (N;)x, hence (i) dimg M < dimy N; < m and
(ii) there are at most m isomorphism classes of indecomposable A x-modules. Using
Lemmas 4.1, 4.8, (5.1) and (i), we conclude that

edy M = trdeg; k(M) +edgay M <dimgM —1 <m—1 (5.2)

when M is indecomposable.

If M is not assumed to be indecomposable, consider the decomposition of M
in indecomposable summands Mj. For every h, we have shown that there exists a
subfield Fy, of K such that trdeg; F, < m—1 and M}, is defined over Fj,. If we let F
be the compositum of all the Fj,, then by (ii) and (5.2) we have trdeg;, F < m(m—1).
Since every indecomposable summand of M is defined over F', by Noether—Deuring’s
Theorem M is also defined over F,henceed; M < m(m—1). Since M was arbitrary,
we obtain r4(n) < m(m — 1) forevery n > 0. O



674 F. Scavia CMH

Proposition 5.2. Let k be an arbitrary field, and let A be a k-algebra. Assume
that A i Is tame. Then there exists a constant ¢ > 0 such that

cn—1<ruqmn) <2n-1
Joreveryn > 1.

Proof. We fix a set of generators ay,...,a, of A. For every d > 1, we define X,
and Y, as in Section 2.

Since r4(n) > rag(n), to prove the lower bound for 74 (n) we may assume that k is
algebraically closed. Since A is tame, by definition there exists a A-representation N
for some k-algebra k[x] € A C k(x) parametrizing an infinite number of non-
isomorphic indecomposable representations of some dimension d. We may view N
as the datum of r square matrices of size d and whose coefficients are rational
functions of x. For all but finitely many A € k we may specialize x to A in
these matrices, obtaining a matrix description of a d-dimensional indecomposable
representation of A. In other words, N defines a rational map A}c -—> Y.

Similarly, considering m > 1 copies of N gives a rational map

AP -5 Yimg C Xima = (X2)®™

that is Sp,-equivariant. Here S, acts by permuting the factors of A}’ and (X 4 )om,
By the Krull-Schmidt Theorem, at most finitely many S,,-orbits map to the same
GL,,,4-orbit. We have

ra(md) = edg Ry[md] > edi[Yrma/ GLal.

Using Lemma 2.2 with G = GL,;,4 and H = S,,, we deduce the lower bound
ra(md) > m for each m > 0. Since r4(n) is non-decreasing, the proof of the lower
bound for r4(n) is complete.

We now turn to the proof of the upper bound (so & is again arbitrary). Let M be an
indecomposable A g-module, where K is an algebraically closed field containing k.
Then M is defined over m for some A € K, by [24, Lemma 4.6(a)].! Since
k(M) = k(Mg), we obtain

trdegy k(M) = trdeg; k(M g) < trdeg, k(A) < 1.

We may now apply Lemma 4.9, to obtain r4(n) < 2n — 1 for every n > 0. O

In [24, Lemma 4.6] A is supposed to be finite-dimensional over k, however this is not needed
for the proof of [24, Lemma 4.6(a)]. The structure constants of A form a countable set, but since A
is finitely generated only finitely many intervene in the logical expression which is used in the proof
of [24, Lemma 4.6(a)]. This implies that the expression remains a first order formula in this more general
setting.
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Remark 5.3. The rational maps appearing in the proof of Proposition 5.2 (and also
Propositions 5.4 and 9.3 below), have already been constructed and used by de la
Pefia[10, §1.4, 1.5].

Proposition 5.4. Let k be an arbitrary field, and let A be a k-algebra. Assume
that Ay is wild. Then there exists a constant ¢ > 0 such that

ra(n) >cn?—1

for everyn = 1.

Proof. Leta,,...,a, be a set of generators of A and, define Y; as in Section 2, for
every d > 1.

We have r4(n) > ra (n), hence we may assume that k is algebraically closed.
Since A is wild, there exists a strict k{x, y}-representation N of A, where k{x, y}
is the free k-algebra on two generators. By definition, we have an isomorphism
N 2 k{x, y}® of right k{x, y}-modules, for some d > 1. Note that the positive
integer d is uniquely determined, because it coincides with the dimension of the
k-vector space N Qg yx,,) (k{x, y}/(x,y)).

For every n > 1, n-dimensional representations of k{x,y} are in bijective
correspondence with arbitrary pairs of square matrices of size n (no relations are
enforced). Therefore, we may view N as the datum of r square matrices P;(x, y)
of size d and whose coefficients belong to k{x, y}. If a k{x, y}-module M of
dimension m corresponds to a pair of matrices (Qx, Qy), then N ®px 3 M
corresponds to the matrices P;(Qx, Qy). In other words, with the notations of
Section 2, the association M +— N ®gx,y} M gives a rational map

fiMﬁim,k ==> Yma € Xma.
If (0%, Q%) and (Qx, Qy) can be obtained one from the other by a simultaneous
conjugation, their image in Y,,; are also related by simultaneous conjugation.
This means that the map f is GL,,-equivariant, where GL,, acts by simultaneous
conjugation on the left and via the diagonal inclusion GL,, € GL,,4 on the right.

The assumption that N is strict implies that f maps distinct GL,,-orbits in
M2 to distinct GL,y,g-orbits in Z,,,;. We may apply Lemma 2.2 with H = GL,,,
G =GLypy, Y =ME2 and X = Z,,4, and we obtain that

edg[Zma/ GLpmg] > 1+ m?>.

Since r4(md) > edi[Zma/ GLmal, this shows that that r4 (md) > 1+ m? for every
m > 1. Since r4(m) is non-decreasing, the conclusion follows. O
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We conclude this section with two remarks.

Remark 5.5. Assume that A = kG is the group algebra of a finite group G. In
this case, representations of kG correspond to representations of G. The essential
dimension of representations of G was studied in [21] and [1]. In the non-modular
case ryg(n) < |G|/4 for every n > 0, as proved in [21, Proposition 9.2] and [21,
Remark 6.5]. On the other hand, if chark = p > 0 and G contains a subgroup
isomorphic to (Z/pZ)?, then [21, Theorem 14.1] shows that rig(n) becomes
arbitrarily large. In [21, Theorem A.5], it is found that rg g (n) grows at least linearly
inn.

To see how the results of this paper relate to [21] and [1], recall that there is
a complete classification of the representation type of finite group algebras. In
characteristic zero, kG is of finite representation type for any finite group G. If
chark = p is positive, it is a classical theorem of D. Higman that kG is of finite
representation type if and only if a Sylow p-subgroup of G is cyclic (see [18,
Theorem 2, Theorem 4]). Tame group algebras only occur in characteristic 2, and
have been classified by Bondarenko and Drozd [5]; every other group algebra is wild.

In view of this classification, Theorem 1.1 (and more generally the results of this
section) gives a common framework for all the previous results on essential dimension
of group algebras. Moreover, it strengthens the lower bound of [21, Theorem A.5]
for wild group algebras in characteristic p (i.e. the majority of them) and for n large
enough.

Remark 5.6. We now discuss the assumptions of the previous propositions in the
context of representation type over arbitrary fields. Let k be an arbitrary field, and
let A be a finite-dimensional k-algebra (this restriction is necessary because most of
the theorems that we will quote are not known when A is only assumed to be finitely
generated).

If Az is of finite representation type, sois A; see [19, Lemma 3.2]. The converse is
not true, in general. For example, let k be a non-perfect field of characteristic p > 0,
pick u € k* \ k*?, and set K := k[y]/(y? —u) and A := K[x]/(x?). Then A
is of finite representation type (see Example 3.3 below), while Ag is not; see [19,
Remark 3.4]. On the other hand, we always have r4(n) > ra.(n), and so ra(n) is
not bounded from above. It follows that Proposition 5.1 does not hold without the
assumption that k is perfect. Note that if k is perfect, then A is of finite representation
type if and only if Ag is of finite representation type; see [19, Theorem 3.3].

There is a notion of generically tame k-algebra A, due to Crawley-Boevey [8],
which generalizes the notion of tameness over an arbitrary field k ; see also [44, p. 646].
If k is perfect and A is generically tame, then Ay is generically tame; see [22] when k
is infinite, and [31] when k is finite. Moreover, by a theorem of Crawley-Boevey [8]
(see also [44, Theorem 1.13(4)]) the algebra Ay is generically tame if and only if it
is tame. Therefore, the assumptions of Proposition 5.2 hold when k is perfect and A
is generically tame.
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Finally, there is a notion of semi-wild algebra over an arbitrary field; see [14,
p.247]. If A is a semi-wild k-algebra, by [14, Proposition 2] Az is also semi-wild.
Applying [14, Theorem 1, Corollary 1], we deduce that Az is actually wild. Thus the
assumptions of Proposition 5.4 hold when k is arbitrary and A is semi-wild.

6. Algebras admitting a one-dimensional representation

Let A be a finitely generated k-algebra. The purpose of this section is to prove
Proposition 6.5, which shows that, in some circumstances, in the definition of r4(#) it
is enough to consider modules of dimension exactly n, as opposed to < n. The results
of this section hold for group algebras and quiver algebras, hence this reconciles our
notation with that of [21] and [1].

Lemma 6.1. Let K be a field containing k, F = K(t1,...,t;) be a purely
transcendental field extension of transcendence degree r. If M an indecomposable
Ag-module, then MF is indecomposable.

Proof. Tt is enough to consider the case F = K(¢). Recall that a module is
indecomposable if and only if its endomorphism algebra is local. Since M is
indecomposable, the algebra Endg (M) is local, hence the quotient

D := Endg(M)/j(Endk (M))

is adivision algebra over K. Denote by L the center of D: it is a finite field extension
of K. Since L(t)/L is purely transcendental, D ®y, L(¢) is a central division algebra
over L(t) (this can be seen directly, or by appealing to [39, Theorem 1.3]). Therefore,

DRk K(t)=2DQ®, Lk K(t) =~ D ®, L(1)
is a division algebra over K(¢). We have an inclusion
J(Endg (M)) ®k F C j(Endr(MF)),
hence Endz (MF)/j(Endr(MF)) is a non-zero quotient of
Dk F=D®LL®x F=DQ L().

It follows that Endp (MFr)/j(Endr(MF)) = D @k F is a division algebra, hence
Endr (MF) is local and MF is indecomposable. O

Lemma 6.2. Let L/K be an extension of fields containing k and let M be an
indecomposable Ag-module. If one of the indecomposable summands of My is
defined over K, then My, is indecomposable.

If A is finite-dimensional, this follows from [23, Lemma 2.5].
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Proof. We may assume that L/K is finitely generated. Let F C L be a purely
transcendental extension of K such that L/ F has finite degree. By Lemma 6.1,
MF is indecomposable, thus we may assume that L /K has finite degree d. By
assumption, there exists an Ax-module M’ such that M; is an indecomposable
summand of M7. There are isomorphisms M7 =~ M®4 and M .= (M "&d
of Ag-modules. This implies that M’ is a direct summand of M. Since M is
indecomposable, by the Krull-Schmidt Theorem we see that M’ = M, and so
M; = M is indecomposable. O

Lemma 6.3. Let L/K be an extensions of fields containing k, and let M be an
A -module. Assume that M = M’ & M", where M’ and M" are also A -modules,
and suppose that M and every indecomposable summand of M"" are defined over K.
Then M’ is defined over K as well.

Proof. We may write M = Ny and M” = N/ for some Ag-modules N and N”.
Let N = @N; be the decomposition of N in indecomposable summands. We have:

MeM' =M = @®; (N;) L.

For fixed i, if (N;)y, shares a direct summand with M”, then by the assumptions
and by Lemma 6.2 we see that it is an indecomposable summand of M”. Therefore,
each (N;) is a direct summand of M’, M”, or both. Let N’ be the direct sum
of those N; such that (N;)y, is a summand of M’, and let N” be the direct sum of
those N; such that (N;)y is a summand of M” but not of M’. Then N = N' & N”
and Nj = M’ O

Lemma 6.4. Let L/k be a field extension and let M be an Ar-module. Write
M = M' & M" and assume that every indecomposable summand of M" is defined
over k. Then

edy M =ed; M'.

Proof. Tt is clear that edy M’ < edy M. Let K/k be a field of definition for M of
minimal transcendence degree. By Lemma 6.3, M’ is also defined over K. It follows
that edy M = trdeg; K > edy M’, henceedy M = edy M’, as desired. O

Proposition 6.5. Let A be a finitely generated k-algebra, and assume that there
exists a one-dimensional A-module over k. Then there exist an extension K/k and
an n-dimensional Ag-module M such that edy M = r4(n).

Proof. Let L/ k be a field extension, and let M’ be a d-dimensional A4;-module such
that d < n and edy M’ = r4(n), and let My be a one-dimensional representation
of A. By Lemma 64, if M = M’ & (Mo)'i_d, then M is n-dimensional and
edy M = edy M’. This shows that the value r 4(n) is attained among n-dimensional
modules. O
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7. Preliminaries on representations of quivers

The purpose of this section is to recall the definitions and results of the theory
of quiver representations that are relevant to our discussion. We refer the reader
to [26, Chapters 1,2,3] and [37] for detailed accounts of the general theory, and to
[26, Chapter 7] and [42, Chapter 14] for discussions of representation type of quivers.

If O is a quiver, we denote by Q¢ the finite set of its vertices, and by Q; the finite
set of arrows between them. For every field K there is an equivalence of categories
between K-representations of Q and modules over the path algebra KQ of Q, that
is natural with respect to field extensions L/ K; see [37, Theorem 5.4].

We denote by (-, -) the Tits form of Q. By definition, for every a, B € R20 we

have:
(@.B) =) wfi— Y afj

i€eQg ai—j

where the second sum is over all arrows of . We denote by (-, ) the associated
symmetric bilinear form: (e, B) := (e, B) + (B, ) forevery a, B € R0, We letgo
be the quadratic form defined by gg(a) = {(a,a) for every @ € R20. We refer
the reader to [26, §1.5, §1.7] for the definitions of the Cartan matrix Cg, the Weyl
group, the simple reflections s;, and the root system of Q. We denote by (e;)iecg,
the canonical basis of the vector space RQ0. The fundamental region is the set F, o of
non-zero & € N20 with connected support and (o, ;) < 0 for all ;. An imaginary
root a is called isotropic if (@, a) = 0 and anisotropic if (a, @) < 0. The dimension
vector of a representation M of Q is the vector (dim M;);cg,-

The quiver Q is said to be of finite representation type, tame or wild if the
path algebra k Q is of finite representation type, tame or wild, respectively. The
representation type of Q does not depend on the field k; see below. A quiver is
connected if its underlying graph is connected. By Gabriel’s Theorem [16], the
connected quivers of finite representation type are exactly those whose underlying
graph is a Dynkin diagram of type A, D or E (see [26, Theorem 3.3] or [37,
Theorem 8.12]). A connected quiver Q is tame if and only if its underlying graph is
an extended Dynkin diagram of type A, D or E, and it is wild otherwise; see [26,
Theorem 7.47].

If Q is connected, the representation type of Q is determined by Cg: Q is of
finite representation type if and only if Cyp is positive definite, tame if and only if Cp
is positive semidefinite but not definite, and wild if and only if Cgp is non-degenerate
and indefinite; see [37, §8.2] or [26, Theorem 1.28]. If Q is tame, there is a unique
§ € 720 such that (§,8) = 0, §; > 1 for every i € Qp and ming; = 1, called the
null root of Q. A root « is a Schur root if there exist a field extension K/k and a
K-representation M of Q of dimension vector « such that End(M) = K (such a
representation M is usually called a brick).
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The first result related to fields of definitions of quiver representations that we are
aware of is the following, due to G. Kac and A. Schofield.
Proposition 7.1. Let a be a real root for the quiver Q. If K is an algebraically closed

field, the unique indecomposable representation of dimension vector o is defined over
the prime field of K.

Proof. See [20, Theorem 1] for the case of positive characteristic, and [38, Theorem 8]
in characteristic zero. O

Let Q be a quiver, and let @ be a dimension vector for Q0. We define the functor
Repg ,: Fieldsy — Sets
by setting
Repg (K) := {Isomorphism classes of a-dimensional K -representations of Q}.

If K C L is a field extension, the corresponding map Repg ,(K) — Repg (L) is
given by tensor product.

We denote rx g (n) simply by ro(n). Since representations of a quiver Q are the
same as representations of its path algebra, for any n > 0 we have

ro(n) = En;%n edx Repg 4 -

By Lemma 7.2 below, one may equivalently to take the maximum over those o which
satisfy > o; = n.

Lemma 7.2. Let Q be a quiver. If a, B are two dimension vectors such that B; < a;
for each vertex i of Q, then

edg Repg g < edx Repg -

Proof. This follows from an application of Lemma 6.4 as in the proof of
Proposition 6.5, this time by letting M " be the trivial representation of Q of dimension
vector o — B. O

Remark 7.3. We record here another interesting consequence of Lemma 6.4. We
will not use it in the sequel. Recall that if Q is a quiver without oriented cycles, the
category of its finite-dimensional representations has enough projectives (see [26,
Theorem 1.19]), and so we may consider its stable category. Since Q has no oriented
cycles, the projective representations of () are finite-dimensional and are defined
over the base field k; see [26, Theorem 1.18].

Let M, N be representations of Q. If M and N are stably equivalent kQ-
modules, there is an isomorphism M & P; =~ N & P,, where P; and P, are
projective representations for Q. By Lemma 6.4 we have

edp M =edpy(M & P;) =edp(N & P;) = edg N.

It follows that essential dimension is a stable invariant.
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Note that an analogous assertion fails in the setting of central simple algebras and
is an open problem in the case of quadratic forms; see [32, §7.4].

8. Stacks of quiver representations

Analogously to what we have done for algebras in Section 2, we may view K-repre-
sentations of a quiver Q as K-orbits of a suitable action. Let

XQ,a = l—[ Majxoz,-,k

ai—j

and let

be an affine space and an algebraic group over k, respectively. There is an action
of Gg,o over Xg 4, given by

(gi)ier . (Pa)a:i—>j = (g; Pagi_l)a:i—>j-
We denote by Rg 4 the quotient stack [Xg «/Gg,e]. As for algebras, one can
show that there is a bijection between K-points of Rg  and isomorphism classes
of representations of Q of dimension «. The stack Rg 4 is a smooth stack of finite
type over k.

If S is a k-scheme, an S-representation of Q is given by a locally free Og-
module E; for each vertex i of (0, and by an O g-linear homomorphism ¢,: E; — E;
for each arrow a:i — j. For any natural number #, let ,leg denote the algebraic
k-stack parametrizing representations M of Q over S, together with a morphism
¥: M — M such that ¥ = 0, and such that coker ¥/ is an S-representation for
every j > 0 (i.e. for each vertex the corresponding coherent sheaf is locally free).
We note that NJZOQ = Speck and JVMIQ is the disjoint union of the Rg o, where o
ranges among over all possible dimension vectors.

We are going to follow [3, §6] for various statements and proofs in this section.
In [3, §6], the authors studied stacks of coherent sheaves on a fixed curve C, and
analyzed them in terms of certain stacks Nifc . Our definition of J\/Ma is the
analogue of their Nilc,, in the context of quiver representations. As we state below,
the results of [3, §6] still hold in this setting. The common feature of the two set-ups
that makes the arguments of [3, §6] possible is the vanishing of the Ext’ fori > 2
(for quiver representations, this follows from [37, Theorem 2.24]).

Proposition 8.1. The stack JWIZ& is smooth over k, and its dimension at a point
(M, ) is given by the formula

n

dimeag,y) Nily = — Y (B, Bn)
h=1

where B}, is the dimension vector of im Yh=1/imyh.
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Proof. The proof of smoothness of J\&'Eg proceeds as in [3, Corollary 6.2], with one
modification. One step of the proof of [3, Corollary 6.2] rests on [4, Lemma 3.8].
The analogous result for quiver representations is still true, and is a direct application
of the infinitesimal criterion for smoothness. The computation of the dimension
of .Niﬂg also closely follows the argument of [3, Corollary 6.2], using the fact that
if N is a K-representation of () of dimension vector ¢, then

(o, &) = dimg (End(N)) — dimg (Ext! (N, N));
see [37, Proposition 8.4]. O

In the sequel, we will only use the following corollary of Proposition 8.1.

Corollary 8.2. Let M be an indecomposable representation of Q over an
algebraically closed field K containing k, and let o be its dimension vector. If B;
denotes the dimension vector of im(y/ 1)/ im(y/) for a general element ¥ of the
Jacobson radical j(End(M)), then

trdegy k(M) <1—) (B;.B,)-

J

Proof. The result follows from Proposition 8.1, in the same way that [3, Corollary 6.3]
follows from [3, Corollary 6.2]. O

9. Quivers of finite and tame representation type

The remaining part of this article is concerned with the essential dimension of quiver
representations. We begin by considering quivers of finite and tame representation

type.
Proposition 9.1. Let k be an arbitrary field, and let Q be a quiver.

(a) Forevery field extension K / k, every real root a of Q, and every indecomposable
a-dimensional K -representation M of Q, we have edy M = 0.

(b) If Q is of finite representation type, then rg(n) = 0 for everyn > 1.

Proof. (a) We claim that Mg is also indecomposable. If L/K is an extension of
finite degree d, we have My = M®? as K-representations. Thus the dimension
vector of every indecomposable summand of My, is a rational multiple of «. Since «
is a real root, we have (@,) = 1, and so gcd;cg, (@) = 1. It follows that My,
is indecomposable for all finite extensions L /K, hence M g is indecomposable, as
claimed. By Proposition 7.1, M is defined over k, and by Noether-Deuring’s
Theorem the same is true for M.

(b) By Gabriel’s Theorem (as stated in [37, Theorem 8.12]), the dimension vector
of an indecomposable representation of Q is a positive real root. Now (b) follows
from (a). O]
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If Q is tame, the computation of rg(n) will follow from Lemma 7.2 and the
following lemma, proved in the Appendix.

Lemma 9.2. Let K be a field extension of k, and M an indecomposable
representation of a tame quiver Q of dimension vector mé over K. Then there exist
ai,...,am € K, and bases of the vector spaces M;, for i € Qq, so that the linear
maps @q, a € Q1, are represented by matrices having entries in {0,1,a1,...,am}.

In [12], the indecomposable representations of a tame quiver Q are classified, over
an algebraically closed field K. Another reference on this topic is [43, Chapter XIII].
Each indecomposable representation may be described by matrices having entries
in {0, 1, A}, for some A € K. In the appendix we show that this classification may be
naturally extended to arbitrary fields, with the help of some results successive to [12],
namely [11] and [30]. This is analogous to the passage from the Jordan canonical
form to the rational canonical form; see Example 3.5. We now prove Theorem 1.2(b).

Proposition 9.3. Let Q be a tame connected quiver, with null root §. If @ is a
dimension vector, and m is the biggest non-negative integer such that mé; < o; for
each vertex i of Q, then edg Repy , = m. Furthermore,

ro(n) = \:Z’;_‘SJ
In particular, ay (kQ) = 1/>_6;.

Proof. Let K be a field containing k, « a dimension vector, and M an ¢-dimensional
K-representation. Then M decomposes as a direct sum of indecomposable
representations M}y, and

edy M <) edi M.

Let m be the maximum non-negative integer such that mé; < «; foreach vertex i of Q.
If the dimension vector of M}, is a real root, then edy My = 0 by Proposition 9.1(a).
If it is mp38, then by Lemma 9.2 we have edy My < my. Since Y my < m, we
conclude that edy M < m. Therefore edg Repy , < m.

Let us now prove thatedy Repy , > m. Sinceedy Repg , > edi Repg o, we may
assume that k is algebraically closed. Let Z,, C X g s be the locally closed subset
parametrizing representations @}, My, where each M), has dimension vector 4.
There is an obvious action of S;, on Z,,, given by permutation of the summands.
Consider m copies of an infinite family of indecomposable representations of
dimension vector & parametrized by an open subset of A}C. As in the proof of
Proposition 5.2, this gives an S;,-equivariant rational map

AY - Zp,

sending at most finitely many Sy,-orbits of A7’ to the same Gg-orbit of Z,;,. By
Lemma 2.2, we deduce that edg Repg ,,5 = m. By Lemma 7.2, we have that
edr Repg o, > m, hence we conclude that edy Repy , = m as desired.
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We now prove the formula for ro (). Set

o~ |5

Fix a non-negative integer n, and let o be a dimension vector such that Y «; < n.
Let m the maximum non-negative integer for which the inequality m§; < o; holds for
each vertex i of 0. By what we have proved so far, edg Repg , = m. By summing
all the inequalities m§; < o; we obtain m »_8; < > «a; < n,sothat m < d. This
implies

ro(n) = En;gﬁn edx Repg o < d.

On the other hand, we may choose « such that d§; < «; for each vertex i. In this
case edg Repgy , = d, and the proof of the formula for rg (n) is complete. (]

10. Wild quivers

In this section we determine a,(k Q) for every wild quiver Q. Let M be a K-repre-
sentation of @, for some field K containing k. Recall that by Lemma 4.8 the term
edg(a) M grows sublinearly with the dimension of M, so the quadratic contribution
to rg(n) will come from trdeg; k(M ). Our first objective is to produce lower and
upper bounds for the term trdeg; k(M).

Lemma 10.1. Let a be a Schur root for Q. Then there exists an «-dimensional
representation M of Q such that trdegy k(M) > 1 — (o, «).

Proof. We may assume that k is algebraically closed. Since « is a Schur root, by
[25, Proposition 4.4] there exists a non-empty coarse moduli space M th o for stable
a-dimensional representations of @, and it is irreducible of dimension 1 — (o, o).
There is a dominant rational map Rg o -——> M 3 o that is, a dominant morphism
from a non-empty open substack of R . Let n be the generic point of M th o We
have

trdegy k(n) = dimMp , = 1 — (o, a).

Let M be a representation over a field K such that the composition Spec K —
Roa ——> M th’a is well defined and has image equal to 7. Any field of definition
for M must contain k(7), hence

trdeg, k(M) > trdeg, k() = 1 — (o, o). OJ



Vol. 95 (2020) Essential dimension of representations of algebras 685

Before proving an upper bound for trdeg;, k(M ), we set some notation.

Definition 10.2. Let Q be a quiver. For a vector v € R20, we denote by |v| the sum
of its coordinates. We define

Hg :={a € R0 : |a| = 1},
So:={ae€ Hp:a; = 0Vi € Qp},
SOQ ={a € Hp :a; > 0Vi € Qo}.
We denote by A g the maximum of the opposite of the Tits form —gg on Sg.

We note that A g > 0 if and only if the quiver Q is wild.

Lemma 10.3. Let K/ k be a field extension, and let M be an a-dimensional K -rep-
resentation of a wild quiver Q. Then

trdegy k(M) < |a| + Agla|?.

Proof. Assume first that K is algebraically closed and that M is indecomposable.

By Corollary 8.2 there exist dimension vectors B1, ..., By such that Y B = a and
trdegy k(M) < 1 =Y (B, Bn).
h
By definition of Ag,

~(Bn Br) < |BrI*Ag,
hence
trdege k(M) < 1+ Ag( D IBsf2) <1+ Aglaf.
h

Let now K be an arbitrary field extension of k, and let M be a representation
of Q over K of dimension vector . Since k(M) = k(Mg), we may assume
that K is algebraically closed. The representation M decomposes in at most ||
indecomposable representations Mj,. Let o, be the dimension vector of M. Then

trdegy k(M) <) _trdegy k(Mp) <Y (1+ Aglanl) < la| + Aglaf>. O
h h

From Lemma 10.3 we see that, in order to understand the asymptotic behavior
of rg(n), we must first understand A .

Lemma 10.4. Assume that Q is a disjoint union of wild connected quivers. There is
at most one critical point a € R0 of qo on Hg. If it exists, it satisfies the equations

(a,€;) = —2A
for each vertex i and for some constant A. The corresponding critical value of q¢ is
qo@) = (o, &) = —A.
Moreover, A € Q and a; € Q for every i.
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By definition, a critical point of gg on Hg is a point at which all partial derivatives
of gg|n, vanish. It is not necessarily a minimum or maximum of gg|n,; see
Example 10.8.

Proof. We use the method of Lagrange multipliers. The constraint is given by
o+ +ap =1,
and the partial derivatives of gg are
digo(a) = —(a, €;).
Therefore, any critical point o must satisfy the equations
(o, e;) = —2A.
for some A € R. If Cg is the Cartan matrix of Q, these equations translate to
Coa = —2)e,

where e = (1,...,1). Since Q is a disjoint union of wild connected quivers, Cgp
is invertible. Therefore, a critical point o will lie in the intersection of the affine
plane Ho with the line generated by Cg, le, so there can be at most one. If a critical
point « exists, the corresponding critical value of gg is

{di0l) = -(a Q) = Z%(Oé &) = O

Definition 10.5. Let Q be a disjoint union of connected wild quivers. We denote
by ag and A the critical point « and the constant A of the previous lemma (if they

exist). We say that Q is effective if ag exists, g € §Q and Ag > 0.

Recall that a subquiver of Q is a quiver Q” such that Qg € Q and whose arrows
are all the arrows of Q between vertices in Q. If Q' is a subquiver of Q, the
inclusion Q; € Q) naturally identifies R20 with a subspace of R <0,

Lemma 10.6. Let Q be an effective quiver with connected components Q.. .., Q )

and assume that )LQ/I > AQZ forevery h = 1,...,d. Then Q) is effective, and

Proof. Since Q is effective, g exists and belongs to §Q. We may write g =
(ay,...,ay), where a; € RZ: foreach h = 1,...,d. Since go is the orthogonal

direct sum of the qo;,we have that

qo(eg) = qg; (@y) + -+ + qp, ().



Vol. 95 (2020) Essential dimension of representations of algebras 687

Note that o /|| is a critical point for qQ;z|HQ;,’ for every h = 1,...,d. Since
the coordinates of o), /|y | sum to 1, from the uniqueness part of Lemma 10.4 we
obtain that o), /|0 | = ag;,ie. o, = |ey, et . In particular, arg exists and belongs

to § )’ for every h. Substituting into the previous equation, we obtain
_ 12 , . 12 ,
Ag = || )LQI + oo oyl )LQd.
Since Q is effective, we have Ao > 0. It is thus impossible that AQZ < O forevery h,

and so )Ler > (. We already showed that agr € So Q! hence Q’1 is effective.
Since |or | > 0 for every h and |a}| + -+ + || = 1, we have | |> < |ay | for
all 4. We conclude that

Ao < (lhP + -+ layl*)Agr < (leq ] + -+ + leg)Ag; = Ao,
as desired. O

Recall that, by definition, A ¢ is the maximum of —g¢g on Sg. If the maximum

of —qg is attained in §Q, then by Lemma 10.4 we have Ag = A¢. If a belongs to
the boundary of Sg (as in Example 10.8 below), we may consider the subquiver Q’
whose vertices correspond to the non-zero entries of «. If all connected components
of Q' were wild, then by Lemma 10.4 we would get Ag = Ao’ = Ag. Infact, as we
now show, one may always arrange for Q' to be wild and connected. We thus obtain
the following formula for A g, which will be used in the proof of Proposition 10.12.

Proposition 10.7. Let Q be a wild quiver. Then there exists an effective subquiver
of Q. Moreover, we have
Ao = maxAg/,
g =Dgmip
where the maximum is taken over all effective wild connected subquivers Q' of Q.

Proof. Let Q' be an effective wild connected subquiver of Q, and view agr as a
vector in R0 by setting the extra coordinates equal to zero. Then

AQ > —qQ(Q{Q/) — —qu(O[Q/) = )‘-Q’
Letting Q' vary, we obtain Ag > maxgr Agr. It thus suffices to find Q' such that

Ag = Ag.
Since Sg is compact and gg is continuous, there exists a vector ¢ € So
minimizing qg|s,, that is, satisfying Ag = —qg(a). Since Q is wild, gg is

indefinite, hence —go (a) > 0. Let Q' be the subquiver of Q defined by
Qo :=1{i € Qo:a; #0}.

If we regard « also as a vector in R0, then go(@) = gor(a), a € §Qf, and o
minimizes g’ on Sg-. In particular, « is a critical point for gg/| Hyr-
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The subquiver Q' is wild, because qg/(or) < 0. Now, if Q” is a non-wild
connected component of Q’, define a vector § € R0 by setting B; = 0ifi € Q"
and B; = «; otherwise, and set y := B/|B|. Then |y| = 1 and y; > 0 for each
vertex i of Q’, i.e. y € Sg. Moreover, since qg~ is positive semi-definite and
go' = qor L qono», we have go/(y) < gg'(a), hence go/(y) = qo’(a). Here
Q' \ Q" is the subquiver of Q" with set of vertices equal to Oy \ Qg. Since y is
supported in Q' \ Q”, this shows that we can remove Q" from Q’, that is, we may
assume that every connected component of Q' is wild.

By Lemma 10.4, ¢ = g is the unique critical point of go/| g o and

Ag =—qg(@) = —qg'(@) = Ag.

As Q is wild, we have Ag > 0, hence Lo > 0. We already noted that o € § 0>
hence Q' is effective. By Lemma 10.6, we are allowed to pass to a connected
component of Q. Therefore, we may assume that Q' is connected, and this concludes
the proof. O

Example 10.8. We illustrate Proposition 10.7 and its proof by computing A ¢ in the
case where Q is the disjoint union of two quivers K3:

1==2 3 =4
The Tits form of Q is
go() = ozf + a% + oe§ + ai — 30102 — 30304,

As in the proof of Lemma 10.4, we may compute the critical point ag of ¢g|n, as
the solution of the system of linear equations

3000 — 201 = 30y — 202 = 303 — 2004 = 304 — 203, @] + 0 +a3 +ag = 1.

Thus g = (§, 3.3 3) and Ag = 3. Inparticular, Q is effective. Note that A¢ is

not the maximum of —¢qg | Hg» because —qg is not bounded from above on Hy:

—qQ(t,t, % -1, % — r) =212+ 0(t), (t — o0).
Let O and Q, denote the two K3 subquivers of (0. The associated critical points
are ¢, = (%, %, 0,0) and g, = (0,0, % %), and the corresponding critical value
is % in both cases. Note that this is accordance with Lemma 10.6. In particular, Q1
and Q, are effective. By Proposition 10.7, we obtain Ag = Ag, = Ag, = ;11-.

For this particular Q, the compactness argument in the second paragraph of the

proof of Proposition 10.7 would select either g, or e, as &, hence either QO or Q»

as Q.
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Definition 10.9. We say that the wild quiver Q is a minimal wild quiver if there are
no wild subquivers of Q other than (0. We say that the underlying graph of Q is a
minimal wild graph if for every arrow a:i — j of Q, removing a gives a quiver Q’
that is not wild.

Recall that a subquiver of Q is obtained by choosing a subset of Qp and
considering all arrows between said vertices. Hence subquivers of Q bijectively
correspond to subsets of Jy. Note that if the underlying graph of () is a minimal
wild graph, then Q is a minimal wild quiver, but the converse need not be true.

As an example, consider the generalized Kronecker quiver K, :

1=}3
If r > 3, K, is a minimal wild quiver. Its underlying graph is a minimal wild
graph if and only if » = 3. Another example is the loop quiver L, for r > 2: it
is a minimal wild quiver because it has no non-empty subquivers, but its underlying
graph is minimal wild if and only if r = 2.
There are 18 minimal graphs, and they are listed in [33, Lecture 6, Subsection 6.7].

They are all obtained by adjoining one vertex to a tame quiver of at most 9 vertices;
see the picture of [33, Lecture 6, p. 9].

Lemma 10.10. Ler Q be a minimal wild quiver. Then Q is connected and effective,
and Ag = Ag.

Proof. Since a disjoint union of non-wild quivers is non-wild, a minimal wild quiver
is connected. Moreover, every proper subquiver of Q is non-wild. The claim now
follows from Proposition 10.7. 0

Before stating the main result of this section, we need one last lemma.

Lemma 10.11. Ler Q' be an effective wild connected subquiver of Q, and let m be
a positive integer such that mog: has integral entries. Then mag: is a Schur root

of Q.
Proof. Since Q' is effective, we have Ags < 0. It follows from Lemma 10.4 that
(magr,e;) = —2mAgr <0

for every vertex i of Q’. This implies that the support of ma g is a wild quiver and
that ma - belongs to the fundamental region of Q'. By [28, Proposition 4.14], it
follows that mag/ is a Schur root of Q. Let K/k be a field extension and let M’
be a K-representation of Q' such that Endg (M') = K. We may trivially extend M’
to a K-representation M of Q, by letting M; = 0 forevery i € Q¢ \ Qp. We have
Endg (M) = Endg(M’) = K, hence ag- is a Schur root for Q. O
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We are now ready to compute a,(kQ) for every wild quiver Q. This completes
the proof of Theorem 1.2.

Proposition 10.12. Let Q be a wild quiver. Then:

(@) ax(kQ) = Ag;

(b) az(kQ) > 5

(c) we have ay(kQ) = :2—4-1% if and only if the underlying diagram of Q if., a disjoint

union of a (possibly empty) non-wild quiver and copies of the graph Eg

4

1 2 3 5 6 7 8 9 10.

Proof. (a) Let n > 1, K/k be a field extension, and M be an a-dimensional

K-representation of O, where |a| = n. By Lemma 4.8, we know thatedgp) M < n.
Furthermore, by Lemma 10.3, trdeg; k(M) < n + Agn?. Thus

ro(n) 2
<-4+ Ap.
n2 n tho

Letting n tend to infinity, we obtain

a;' (kQ) = lim sup ro)

n—oo n2

< Ap. (10.1)

We now establish the opposite inequality. By Proposition 10.7, there exists an
effective wild connected subquiver Q’ of Q such that Agr = A (and in particular
Agr > 0, as Q is wild). By Lemma 104, ag/ € Qfg, hence there exists m > 1
such that magr € N€2o. By Lemma 10.11, the vector mag: is a Schur root. By
Lemma 10.1, there exists a representation M of dimension vector ma - such that

trdegy k(M) > 1 — (magr,magr) =1 -—mz((fo,OlQ/) =]+ Asz.
Since |ag’| = 1, we have |mog/| = m. Considering multiples of mag- yields
ro(mh) > 1+ A g (mh)?

for every non-negative integer 4. Let now n be a positive integer. There exists a
unique A > 0 such that mh < n < m(h + 1). We have rg(n) > ro(mh), hence

ro(n) - 1 + Ag(mh)? - 1 (n —m)?
42 = 72 = HE @z
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Figure 1. The wild graphs ZE), AT;; (minimal for 1 < n < 6), 5;, (minimal for 4 < n < 8), .Eh(ﬁ

and E~7 If one of these graphs has the index j > 0 in the name, it has j + 2 vertices.

Letting » tend to infinity, we conclude that

a, (kQ) = liminf ro()

n—oco p2

The combination of (10.1) and (10.2) shows that

af (kQ) = a3 (kQ) = a2(kQ) = Ag.

(b) By (a), it suffices to show that Ap > ﬁ for every wild quiver Q. Let Q' be
a quiver obtained from Q by removing one arrow. Then gg/ () > go (a) for every
a € So. If Q' is wild, then this implies that Agr < Ag. Therefore, it suffices to
prove Ag > 2—41@ in the case when the underlying graph of Q is a minimal wild
graph. By Lemma 10.10, Q is effective and Ag = Ao, hence we may compute A g
using the method of Lagrange multipliers, as explained in Lemma 10.4. We list the
values of Ag = Ag that we have computed for the minimal wild graphs, following

the notation given in [33, Lecture 6, Subsection 6.7]; another source is [15, §2.4].

> Ag. (10.2)

The reader can find a picture of E:; in the statement of Proposition 10.12(c), and
pictures of Ly, K3 and Us in the examples of Section 11. The remaining wild graphs
are displayed in Figure 1.

~Lad=1 CFea=t Eoa=a
1 — et

- Kz: A =4, - A A=, ~ A A= s,
_ 1 i T = ow i

- Us: A= ¢, - A2 A= g, - Ast A = 33,
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- dg: A= 135, - Ds: 1 = 335, - Ee: A= 35,
- Da: 2= 1 - D72 A= g3, - E7 h = 5,
_ D A= AL _ Dg: A= 2L _ Bad= Lo
5 2287 8- 560° 8- 2480°
The smallest value is ﬁ, corresponding to E;;. The critical point is
1
=~ = ——(76, 153,231, 115, 195, 160, 126, 93, 61, 30).
“F = 1240 )
(c) Let Q be a wild quiver such that a»(kQ) = Ag = ﬁ]-g—ﬁ. By (b), this is the

minimal possible value for A o. We may assume that Q is connected. We must show

that Q is of type Es.
We first claim that every subgraph of the underlying graph of Q0 which is minimal

wild must be of type Eg. Indeed, let Q' be a subgraph of Q, and denote by Q" the
subquiver of Q such that Q5 = Q. The effective subquivers of Q" are also effective
subquivers of @, hence Agr < Ao by Proposition 10.7. Since Q' is obtained
from Q" by removal of some arrows, we have go/(e) > ggr («) forevery o € Sg».
If Q' is wild, then this implies that A o < A g~. Therefore Ag’ < Ag. If the graph
of Q' is minimal wild, by Proposition 10.7, Lemma 10.10 and the above list @’ must

be of type E};, as claimed.

—~

We now claim that Q is obtained from a quiver of type E’g by only adding arrows
(and not vertices). To prove this, we may of course assume that Q has no loops or
multiple arrows. By the previous claim, there exists in particular a wild subquiver Q’

of @ which is obtained from a quiver of type Eg by only adding arrows. We want
to show that Q¢ = Q. If Qg # Q, we may pick a vertex i € Q¢ \ Q( which is
connected to Oy by at least one arrow of 0. We let Q" be the subquiver of Q defined
by the set of vertices Qf U{i}. Since Q" is a subquiver of Q, by Proposition 10.7 we
have Agr < Ag, and since A g is minimal we obtain that A gr = Ag = 5755. We
now verify by a case by case analysis that A g~ > 2_418'6’ thus proving thati € Q¢ \ Oy
cannot exist.

If two or more vertices of Q' are connected to i via an arrow, then Q" contains a

subquiver of type Ay, for some 0 < h < 9. One easily sees that this implies that 0"
(hence Q) contains a subquiver whose underlying graph is minimal wild of type ;1;

forO0 < h <6, E}s or E7 This contradicts the first claim. Therefore, i is connected
to exactly one j € Q. We now want to exclude this possibility.

— If j = 1, then Q contains a subquiver of type E;.

— If j = 2, then Q contains a subquiver of type Ds.
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— If j = 3, then Q contains a subquiver of type D..
— If j = 4, then Q contains a subquiver of type Fig,

— If 5 < j <8, then Q contains a subquiver of type 5;

Therefore, the cases 1 < j < 8 are in contradiction with the first claim. The only
remaining possibilities are j = 9and j = 10. For j = 9, 10, the only subquivers
of Q" whose graphs are minimal wild are of type Eg (note that Dy is not minimal),

and so we must use a different reasoning to exclude these two cases. If j = 9, one
finds that

1
agr = %(16, 33,51, 25, 45, 40, 36, 33, 31, 15, 15)

and Agr = alg-(-)- If j = 10, then

1
agr = @(94, 190, 288, 143, 245,204, 165, 128, 93, 60, 29)

and Agr = -1—613—9. In both cases, the coordinate of ap» corresponding to i is the last

one. Thus, in each case Q" is effective and Ao~ > ﬁ. By Proposition 10.7,

1
>A G e " —
Aoz Nor=1Aor> 51g,

for j = 9,10 too. This contradicts the assumptions, hence no such i exists, and so

Qo = Qg as claimed. We have shown that Q is obtained from a quiver of type Eg
by only adding arrows, as claimed. In particular, () is a minimal wild quiver.

To conclude the proof, it is enough to show that the underlying graph of Q is a
minimal wild graph. If we remove one arrow from Q, we obtain a new quiver Q'
such that gg/ () > g (o) foreach o € §Q. Since Q has no proper wild subquivers,
neither does Q’. If Q' were wild, it would be a minimal wild quiver, hence by
Proposition 10.7 and Lemma 10.10 we would have Ag» = Ags. This would in turn

imply
Agr = Ag = —qo/(ag) < —qoleg) = Ag.
This is in contradiction with the minimality of Ao, hence Q' is non-wild. Thus

every subgraph of Q is the graph of a non-wild quiver, that is, the underlying graph
of Q is a minimal wild graph, as desired. O

Remark 10.13. Let Q be a wild quiver. The proof of Proposition 10.12(a) shows
that o (n) = a2(kQ)n? + O(n) as n — oo.
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11. Examples

Proposition 10.7 gives a simple algorithm to determine Ag for a given quiver Q.
For each wild subquiver Q’ of @, one determines oo’ and A g’ by solving a system
of linear equations (for minimal wild subquivers, one may use the list in the proof
of Proposition 10.12). By inspection of the ags and Ag/, one lists the connected
effective subquivers of Q. Then Ag coincides with the maximum value of Ag-
among the subquivers in the list. As an example, we determine the coefficients ay,
a1, az explicitly for some families of quivers.

Example 11.1. Let K, be an r-Kronecker quiver,

1702
S———
with an arbitrary orientation of the arrows. The underlying graph of K is a Dynkin
diagram of type A,. The quiver K, is tame of type A,, and the null root is given
by 6§ = (1,1). If r > 3, K, is a minimal wild quiver. One may easily compute that
ak, = (3.1), and Ag, = Ag, = 52, Using Propositions 9.1(b), 9.3, 10.12, and
Remark 10.13, we obtain

0, ifr=1,
n . _
rKr (n) — \\EJ’ ifr = 2,

n?+ 0(), ifr>3.

Example 11.2. Let L, be the r-loop quiver. It is the quiver with one vertex and r
arrows, here depicted for r = 4:

0

The quiver L; is tame of type /Tl, with null root § = (1). If r > 2, L, is wild,
o, = (1) and Ap, = Ar, =r — 1. Thus

n ifr=1,

rr,(n) = {(r, — a2+ O(m), ifr=>2.

Example 11.3. Let U, be an r-starshaped quiver, that is, a quiver with vertices
0,1,...,r and such that for every i = 1,...,r there exists exactly one arrow
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connecting i and 0, and these are the only arrows. The orientation of arrows is
arbitrary. Here is the picture for r = 4:

2

1 (‘) 3
|
4

If r = 1,2, 3, U, is of finite representation type, hence ry, (n) = 0. The quiver Uy is
tame of type D4, and its null rootis § = (2,1,1,1, 1), so ry,(n) = [n/6]. If r > 5,
then U, is wild. Moreover, ¢y, is the solution of the following system of linear
equations:

Yo =1,
200 = g0 = =24y,
20; —ap = —2Ay,, foreach i # 0.

Note that these equations imply that ; = «; for each i # 0. The solution of this
linear system is oy, = ﬁ(r +2,3,3,...,3),and Ay, = 82144. In particular,

forr > 5, U, is always effective for r > 5, and the sequence Ay, is strictly increasing

in r. Since any subquiver of U, either has no arrows or is itself of the form U,/, for

some r’ < r, we deduce that Ay, = Ay, = S’rf4. Therefore

0, itr<3,

n .
rx, (n) = < LEJ, itr =4,
8’;___'_ 4n2 + O(n), ifr =5.

Notice that Ay, < % for any r > 5.

12. Appendix

The purpose of this appendix is to prove Lemma 9.2, which is used in the proof of
Proposition 9.3.

Lemma 12.1. Let K be a separably closed field, and let M be an indecomposable
Ag-module. Then M g is an indecomposable A g-module.

Proof. The result is trivial if char K = 0, so we may assume that char K = p > 0.
We must prove that M z is indecomposable as an A g-module. Since K is separably
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closed, L := End(M)/j(End(M)) is a field. Let ¢ be an idempotentin L ® k IZ._We
may write ¢ = Y _ ¢; ® A; for some ¢; € L and some A; € K. The extension K /K

n
being purely inseparable, there exists a positive integer n such that )Lip € K for
every i. Since ¢ is idempotent,

p=¢" =3 ol @A =) (i) ®1

belongs to L. Since L is a field, we obtain ¢ = 0, 1. This proves that L ® xkKisa
local ring. Using the inclusion j(End(M)) ® x K < j(End(Mg)), it follows that
End(M g)/j(End(Mg)) is alocal ring too, which means that M g is indecomposable.

O

For the proof of Lemma 9.2 we closely follow [12]. Another reference for the
classification of indecomposable representations of tame quivers is [43, Chapter XIII].

Proof of Lemma 9.2. For every arrow a:i — j of O, we denote by ¢g,: M; — M,
the associated K-linear map of M. Assume that Q is a tame quiver of type A, (sothe
underlying graph of Q is a cycle with n + 1 vertices). Its null rootis § = (1,...,1).
The case n = 0 has already been treated in Example 3.5. Suppose that Q has a cyclic
orientation. Let N be an indecomposable summand of Mg, and ¢¥,: N; — N; be
the linear map associated to the arrow a:i — j. By [26, Theorem 7.6], either (i) all
the ¢, can be represented by matrices containing only 0 and 1, or (ii) all the ¢, but
at most one are isomorphisms. By Lemma 12.1, every indecomposable summand
of M is already defined over K*P. The Galois group Gal(K*P/K) acts transitively
on the isomorphism classes of indecomposable representations of Mgsep. Thus,
when one of the above is true for N, it is also true for every other indecomposable
summand of Mg (we will use this reasoning multiple times during this proof). In
case (i), by Noether—Deuring’s Theorem, M may be represented by matrices with
entries in {0, 1}. In case (ii), after fixing bases for the vector spaces M;, we may
assume that all the ¢, but at most one are represented by the identity matrix, and we
are reduced to the case n = 0.

Assume now that Q is of type Zgr+1, oriented in such a way that every even
vertex is a sink, and every odd vertex is a source. For example, this is the orientation
that we are considering on /Ts (sor =2).

3/“—5\0
N, 7

(12.1)
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If r = 0, we have the Kronecker quiver, whose indecomposable K -representations are
well known for both orientations; see for example [7, Theorem 3.6]. Let now r > 1.
Consider the base change Mg, and denote by N an indecomposable summand
of Mg, with linear maps ¥,: N; — N;. By [12, Lemma 2.6.5], each ¥, is an
isomorphism, with the exception of at most two. By applying Lemma 12.1 as in the
first paragraph, we deduce that all arrows of M but at most two are represented by
linear isomorphisms. Identifying vertices via these isomorphisms, we are reduced
to the cases fTo or A 1, which have already been handled. Consider now the case
when Q is of type A, n», where n is not necessarily odd and the orientation is acyclic
but otherwise arbitrary. Adding arrows to Q if necessary, we may identify M with
an indecomposable representation M’ of a quiver Q' of type /T2r+ls having the
orientation given in (12.1) (i.e. every even vertex is a sink and every odd vertex is a
source), for a suitable r. Of course, we require the new arrows to be represented by
isomorphisms. It follows that if M’ may be defined using 0, 1, ay,...,a;, the same
is true for M. This concludes the proof for quivers of type Ay

The case when Q is of type D, canbe proved along similar lines. If » = 4 and Q
has the orientation

\8)

the indecomposable representations of () have been classified: see [17] for the
original proof over algebraically closed fields, and [30] for an elementary proof over
arbitrary fields. Recall that the null root of Q is § = (2,1, 1,1, 1). We record here
the md-dimensional family consisting of all the K-representations of Q that are not
defined over the prime field of K (see [30, Appendix]).

_ { Imxm (0 _ | Imxm (A
b1 = ( 0 )’ ¥z = (Imxm) P = (Imxm) 4= (Imxm)-

Here each of the eight blocks is a square matrix of size m, and A is a square matrix
of size m in rational canonical form. If M does not belong to this family, M may be
defined using only 0 and 1. On the other hand, if M belongs to the family, M may
be defined using only 0, 1, a,,...,a,, where the a; are the coeflicients of the last
column of A.
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Assume now that Q is of type Dy, where n > 4. By suitably adding arrows,
similarly to what we have done in type A, it suffices to consider the case when
n = 2r + 4 > 6 is even, and with the following orientation of arrows (here r = 3):

8
! |
> T4

1 > 3 ¢ 4 > 5«4 6

9.

In other terms, the sinks are exactly the odd vertices different from 1 and 2r + 3, and
every other vertex is a source.

By [12, Lemma 3.8.5], if N is an indecomposable summand of Mg, either (i) N
can be defined by matrices with entries only O and 1, or (ii) all but at most two of the
maps

N1 ® Ny - N3, Ny — N3,...,Noy = Nopy1, Noyy2 ® Nory3z = Nopyg

must be isomorphisms. Applying Lemma 12.1 as in the first paragraph, we see that
in case (i) M is defined by matrices consisting only of 0 and 1, and in case (ii) all but
at most two of the linear maps

My @ My — M3, My — M3, ..., Mar — M1, Mory2® Mopy3 — Moy
are isomorphisms. Now, if one of the two maps
My ® My > M3, Mry3® Maryg —> My,

is an isomorphism, then M comes from a representation of a Dynkin quiver of
type Do,42. If neither of these two arrows is represented by an isomorphism,
then M comes from a representation of a quiver of type Dy. Since the underlying
graph of Q is a tree, by [26, Lemma 3.6] any two orientations of ( may be obtained
one from the other via reflection functors. This proves the claim for quivers of
type Dy.

To complete the proof of Lemma 9.2, only type E isleft. In[12], the classification
in type E is deduced from that of type A and D by means of certain functorial
constructions. The arguments of [12] work over an arbitrary field, as the authors say
in [12, §1.1]. However, some of the references that they quote need to be modified;
we now explain how.

Assume first that Q is a tame quiver of type E¢, with the following orientation:

—— B

A~
N
A
~J
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With this ordering, the null root of Q is § = (3,2,1,2,1,2,1). Let Q' be the
quiver (12.1), and let &’ be its null root. We construct a functor F from the category
of K-representations of Q' of dimension mé’ to the category of md-dimensional
K-representations of Q as follows. Let N be a K-representation of Q, of dimension
vector mé’, and denote by Ny, ..., N5 the vector spaces of N. Then F(N) is given
by the vector spaces (following the ordering in the figure):

No® N ® Ny, No®B Nz, Ni, Ny, ®Ng, N3, NsB Ny, Ns,

and by linear maps defined in an obvious way using those of N. The functor F is
denoted by Sg in [12, 4.5].

If M may not be defined using only 0 and 1, then M belongs to the essential
image of F. The proof of this fact is given in [12, Theorem 4.8.1] in the case when K
is algebraically closed. This argument is based on elementary linear algebra and
works over an arbitrary field; see [12, §1.1]. The only step that requires further
justification is the assertion that the category of regular K-representations of Q is
abelian. If K is algebraically closed, this is proved in [12, Proposition 4.7.1]. For
the case, where K is an arbitrary field, we refer the reader to [11, Proposition 3.2]
or [35, §4.1]; see also [45, §2.4] or the Introduction to [11]. It follows that M comes
from an mé8’-dimensional representation M’ of a quiver Q” of type D4. We know
that M’ may be defined using 0, 1, ay, ..., am, for some a; € K, thus the same is true
for M. By [26, Lemma 3.6], applying the reflection functors, this proves Lemma 9.2
for every other orientation of Es.

The proof for Q of type E; or Eg is entirely analogous. The indecomposable
representations of E7 not defined over the prime field of K may be obtained from
representations of l:f6, and those of Eg may be obtained from those of E}. The
fact that the category of regular K-representations of Q is abelian is proved in [12,
Proposition 5.7.1 and Proposition 6.7.1] for an algebraically closed field K, and
in [11, Proposition 3.2] and [35, §4.1] for an arbitrary K. The rest of the proof is
based on elementary linear algebra, and may be carried out over an arbitrary field. L[]
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