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Free rational points on smooth hypersurfaces

Tim Browning and Will Sawin

Abstract. Motivated by a recent question of Peyre, we apply the Hardy—Littlewood circle method
to count “sufficiently free” rational points of bounded height on arbitrary smooth projective
hypersurfaces of low degree that are defined over the rationals.
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1. Introduction

Let ¥V C P"~! be a smooth hypersurface of degree d > 3, defined over the field of
rational numbers. For B = 1, let

Ny(B) = #x e V(Q) : H(x) < B},

where H is the usual exponential height function on P*~1(Q). Thanks to the Hardy-
Littlewood circle method and work of Birch [2], it follows that there exists a constant
8 > 0 such that

Ny(B) = ¢B"™¢ + Oy (B"97%), (1.1)

as B — oo, provided that n > 29(d — 1). Here ¢ = ﬁwH(V(AQ)) and wy is
the Tamagawa measure on the space of adeles of V. The asymptotic formula (1.1)
provided one of the earliest pieces of evidence for the conjecture of Manin [7], and its
refinement by Peyre [10], about the distribution of rational points on Fano varieties.

The purpose of this paper is to address a very recent question of Peyre [11] about
the distribution of “sufficiently free” rational points of bounded height on V. Peyre
associates a measure of “freeness” £(x) € [0,1] to any x € V(Q) and advocates
the idea of only counting those rational points which satisfy £(x) = ep, where ¢p
is a function of B decreasing to zero sufficiently slowly.! (See [11, Def. 6.11] for a
precise statement for arbitrary Fano varieties over arbitrary number fields.) Peyre’s

1A similar question was asked by Ellenberg and Venkatesh in a 2015 private communication with the
first author.
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function £(x) is defined in (3.5) using Arakelov geometry and the theory of slopes
associated to the tangent bundle Zy . Let

NE™(B) =#{x e V(Q) : £(x) = &, H(x) < B}. (1.2)

In the setting of smooth hypersurfaces V' C P"~1 of low degree, Peyre predicts that
for a suitable range of ¢, N{j—'f""*"(B) should have the same asymptotic behaviour as
the usual counting function Ny (B), as B — oco. The following result confirms this
for a range of & that is independent of B.

Theorem 1.1. Let d = 3 and let n > 3(d — 1)2971. Then there exists a constant
cdn € (0,1) such that for any
Ogse<cyy,

there exists a further constant § > 0 such that
N‘e;—free(B) - CBn—d' + OV,E(Bn_d_S),

where ¢ = nl 70H (V(Aq)) is the expected leading constant.

Note that in our theorem the parameter ¢ is a constant, while in Peyre’s notion
of freeness one takes ep tending to zero. Thus our result is stronger than necessary
for Peyre’s formulation. We shall show in §3 that it suffices to work with a simpler
freeness function €(x) that is defined in (3.4) in terms of the largest successive
minimum of a certain associated lattice. Once this is achieved, the proof of
Theorem 1.1 is guided by our investigation [4] of the analogous situation for smooth
hypersurfaces over global fields of positive characteristic. We shall find that the
role of the Riemann—Roch theorem in [4, §3] is replaced by the Poisson summation
formula. After this the argument runs in close parallel to [4], apart from in one
essential difference associated to primes of bad reduction for V.

An interesting feature of our method is that it relies on counting integer solutions
(x,y) to the system of equations f(x) = y.V f(x) = 0, where f is the defining
polynomial of V. This is equivalent to counting integer points on the tangent bundle
of the affine cone over V. This suggests that it may be possible to bound the number
of rational points of small freeness on a Fano variety X by using asymptotics for the
number of rational points on X together with asymptotics for the number of integral
points on the tangent bundle of X.

Acknowledgements. The authors are very grateful to the anonymous referee for
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supported by EPRSC grant EP/P026710/1. The research was partially conducted
during the period the second author served as a Clay Research Fellow, and partially
conducted during the period he was supported by Dr. Max Rdssler, the Walter Haefner
Foundation and the ETH Zurich Foundation.
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2. The geometry of numbers and the shape of lattices

Most of the facts that we record in this section are taken from the book by Cassels [5].
Recall that a lattice A is a discrete additive subgroup of R”. Equivalently

A - {xlbl +"'+Xrbr ZJC, EZ},

for a set of linearly independent vectors by,...,b, € R”. The rank of A is then
rank(A) = r and the determinant is det(A) = /det(B? B), where B isthe n x r
matrix formed from the column vectors by,...,b,. Foreach 1 < k < r let sx(A)

be the least ¢ > 0 such that A contains at least k linearly independent vectors
of Euclidean length bounded by ¢. The si(A) are the successive minimima of A
and they satisfy 0 < s1(A) < s2(A) < --+ < 5.(A). Furthermore, it follows from
Minkowski’s second convex body theorem [5, § VIIL.3.2] that

det(A) < [ [ 5:(A) <y det(A), 2.1)

i=1
where the implied constant depends only on n. The dual lattice is defined to be
A* = {x € spang (A) : x.y € Z forally € A}.
This lattice has basis matrix B(B*B)~! and so
rank(A*) = r and det(A*) = det(A)™!.
Appealing to work of Banaszczyk [1, Thm. 2.1], it follows that
1 < sg(A)sp—g+1(A7) <, (2.2)

forl<k<r.
The following result is well-known and will prove instrumental in our work. A
proof is given as a special case of work by Heath-Brown [8, Lemma 1].

Lemma 2.1. For any vector ¢ € Z3;, the set A = {x € Z" : c¢.x = 0} is a lattice of
dimension n — 1 and determinant det(A) = ||c||, where || - || is the Euclidean norm

on R".

Given a lattice A C R” of rank r it will be important to detect when the lattice is
unusually skew, in the sense that the largest successive minimum is excessively large.
To be precise, we seek a useful majorant for the indicator function

1 ifs,(A) > R,

1r(A) =
R(A) 0 otherwise.

This is achieved in the following simple result.
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Lemma 2.2. Let A C R” be a lattice of rank r < n and let w:R" — R be the
Gaussian function w(t) = exp(— ||t||?). Then

Rr
1r(0) < explrr) G St/ R - s )
yEA

Proof. Note that w(t) = 0 for all t € R” and w(0) = 1. It follows from the Poisson
summation that

4 R
R) = Ry) = 1 R ;
Se/R) = s ¥ o) = s (14 2 eky)
yEA YEA* yEA*,
y#0
since @ = w. Thus
3" 0(y/R) - —— >0
wly - =
oyt det(A)

for any lattice A. Moreover, according to (2.2), we have s1(A*) < r/Rif s,(A) > R.
This means that there exists a non-zero vector yo € A* such that |yo| < /R. But
then

> w(Ry) = o(Ryo) = exp (— 7R?|lyo|?) = exp(~nr?).

yeA*

y#0

This implies that
R’ exp(—mwr2)R"
R) — =
2_ @/ det(A) det(A)

yEA

if s, (A) > R, which thereby completes the proof of the lemma. U

3. Free rational points on hypersurfaces

Suppose that f € Z[xy,...,Xxn] is a non-singular form of degree d that defines the
hypersurface ¥V C P”~!. Any rational point x € V(Q) has a representative vector
X € Zpyy such that f(x) = Oand x = (x1 : -+ ! x»). The measure of freeness

of x that we shall use in our paper is phrased in terms of the “well-shapedness” of
the associated lattice
Ay={yeZ":y.Vf(x) =0}

It follows from Lemma 2.1 that A, C Z" is a lattice of rank » — 1 and determinant

IV

detlfe) = SV )’
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where || - || is the Euclidean norm. Let Ay # 0 be the absolute value of
the discriminant of the non-singular polynomial f. From the definition of the
discriminant as the resultant of the forms af/dx,, ..., df/dx,, it follows that there
exists e € N and algebraic identities

9
Apxf= ) gi,j(x)gii_(x), 3.1)

1<j<n

for 1 <i < n, where each g; ; has integer coefficients. In particular

ged(Vf(x)|Ay forallx € Zg,, . (3.2)
Next we claim that
Ix[97! < I[Vfx)| < [Ix]|47"  forallx € R, (3.3)

for appropriate implied constants that depend only on f. Since f has degree d and
so its partial derivatives have degree d — 1, the upper bound is clear. To see the
lower bound we note that V f(x) # 0 for all x € R”, since f is non-singular. Thus
|V f(x)|| is nowhere vanishing on the unit sphere and so attains some minimum
value C, say, there. Thus we have |V f(x)|| = C||x/|¢"! in general because f is
homogeneous of degree d. This establishes (3.3).

As we shall see shortly, Peyre defines a freeness function relative to the smallest
slope on the tangent bundle .7},. The measure of freeness that we shall work with is
related to this, but it is phrased in terms of the relative size of the largest successive
minimum of the lattice A x. To be precise, we set

E’(x) _ log [|x|| —log sp—1(Ayx)
log |x|| '

(3.4)

Then £(x) = ¢ if and only if sp—1(Ax) < [Ix||*~¢.

We gain some feeling for the behaviour of £(x) by recalling (2.1). Thus for
“typical” x one might expect the successive minima s (A ) to have the same order
of magnitude, for 1 < k < n — 1. If this were true it would follow from (2.1) that

n—d

Sn=1(Ax) X (51(Ax) . .. Sp1 (ALY D < det(A )V~ < |x|| 1~ 5T,

since ||V £(x)|| = [Ix]|4! by (3.3). Such x satisfy £(x) = (n —d)/(n — 1) + o(1),
as H(x) — oo. The following example shows a familiar situation in which the
freeness function is unusually small.

Example 3.1. Consider the case d = 3andn = 4 of a smooth cubic surface V' C P2,
Let L C V be a Q-line and define the associated rank 2 lattice

L={0}U{zeZ*:(z1: - :24) € L} C Z*.
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We claim that, for any & > 0, we have Z(x) < ¢ for all but finitely many x € L. To
see this we note that f(x + #z) vanishes identically in ¢ for all z € L. But theniit
follows that L C Ay, in which case we have 1 < s1(Ax) < s2(Ax) < 1. It now
follows from (2.1) and (3.3) that

IV J(x)]]
51(Ax)s2(Ax)

This therefore yieldsT(x) < —1 4+ o(1) and the claim.

s3(Ax) >v >y x|

We now explain how our freeness function (3.4) relates to that defined by Peyre [11,
Déf. 4.11]. To begin with we can extend V to a closed subscheme V' C ]P’g‘l. A
rational point x € V(Q) gives a section x € V(Z) of this scheme. Because this
scheme is smooth of dimension n — 2, the pullback (Zy), of its tangent bundle
along x is a rank n — 2 free Z-module; i.e. a free lattice of rank n — 2. Fixinga
Riemannian metric on V(R) gives a metric on this lattice. Peyre defines the freeness

of x as
_ max{(n — Qpn—2((F)x), 0}
t) = h(x) |

where h(x) = (n — d) log ||x]| + O(1) is the logarithmic anticanonical height of x
and @y = -+« = u,—o are the slopes defined by Bost. There are four main differences
between Peyre’s definition and ours:

(3.5)

(1) Peyre includes a factor of # — 2 in the numerator and the anticanonical height in
the denominator instead of log ||x||.

(2) Peyre uses the notion of slopes instead of successive minima. The slopes of a
lattice differ from minus the logarithms of its successive minima by O(1).

(3) Peyre works in a slightly different lattice, namely the tangent lattice instead of the
perpendicular lattice to V f(x). These lattices are closely related, but not identical,
and this discrepancy means that we only produce an inequality (instead of an identity)
between the two notions of freeness.

(4) Peyre defines the freeness to always be non-negative.

The relationship between the two notions of freeness is articulated in the following
result.

Lemma 3.2. For any x € V(Q) we have

£y =

Z:SZ(x)Jro(h(l—x)).

Proof. We first explain how to relate the tangent lattice to A, and then why this
leads to the stated inequality. We have an Euler exact sequence

0 — Opn—1 = Opn-1(1)" > Tpn-1 — 0
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on Pg‘l. This induces an exact sequence
0— (ﬁ]pn—l)x - (ﬁ]pn—l(l)n)x —> (g]pn—l)x — 0.

We have (Opn-1), = Z and (Opa-1(1)"), = Z" because Opn-1 and Opn-1(1)
are rank one locally free sheaves, so their pullback along x are rank one locally
free sheaves on Spec Z, which are all isomorphic to Z. The map between them is
multiplication by X, so the tangent lattice of P"~! is the quotient lattice Z" /Zx. We
claim that the induced metric on this is the renormalized metric

min;cR (”Y - tx||)

Iy + Zx| =
Il

Formally this arises from the &1 (1) twist, but we can see this explicitly since the
natural isomorphism between R” /Rx and the tangent space to IPI{R?_I at x depends
on the scaling of the vector x and not just on its equivalence class in P?~!. The
Arakelov metric on the tangent bundle of projective space must depend continuously
on a point in projective space. To make it do so, we divide by |x].

Calculating (7Y ), is now relatively easy. Consider the exact sequence

0—> Jy - Ipn-1 — Oy(d) > 0,

where the second map represents dot product with V f(x). We can realise (Jy),
as the kernel of dotting with V f(x) in Z"/Zx, with no further renormalization
necessary. Invoking some basic properties of slopes, we deduce that

pn-2((Fv)x) = pn—2(Ax/ZX) + log ||x||
= pn-1(Ayx) + log |||
= —sp—1(Ax) + log [x]|.

Indeed, the first step uses the fact that, when we divide the metric of a lattice by ||x||,
we add log ||x|| to each slope of the lattice, which is clear from the definition [11,
Déf. 4.4] and is a special case of [3, Lemma 4.2]. The second step uses the fact that
the minimum slope of a quotient lattice is at least the minimum slope of the original
lattice, which is immediate from the definition of the minimum slope as a minimum
over quotients of the lattice in [3, p. 195] and the equivalence of Bost’s minimum
slope and the last slope in Peyre’s ordering. The last step uses [11, Remarque 4.7(b)].
The inequality

(n— 2)“%—2((&71/)1:) n—2~ 1
hx) Z gt 0(7{(}3)

immediately follows, since h(x) = (n — d) log ||x|| + O(1). We therefore have

I(x) = max{(n — 2)un-2((Fy)x), 0} _ ( = 2pn—2((F7)x)
N h(x) - h(x)

T
n_de(x)+o(

=

1
i)
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except if £(x) < 0 where the middle inequality fails, but this happens for only finitely
many x and we can handle it by assuming that the constant in the O(1/ A(x)) term is
sufficiently large. O

Returning to (1.2), we can now make sense of the counting function

NE™(B) = #{x € V(Q) : £(x) = &, H(x) < B}
=#{x € V(Q): H(x) < B} — Ev,:(B),

for any € > 0, where
Eve(B)=#x e V(Q):4(x) <e H(x) < B}.

The first term is handled by (1.1), since 3(d — 1)2¢~! = 24(d — 1). Moreover, in
view of Lemma 3.2 and the fact that d = 3, we have

n—d

e+ o(l). H(x) < B} +o(1)
<#{x e V(Q): {(x) <& H(x) < B} + O(1),

Eve(B) < #{x e V(Q): i(x) <

where the presence of the O(1) term is needed to account for the low height points.
Hence

1 _
Eye(B) < 5#{7{ € Zhin: S =0, |x]| < B, sp-1(Ax) > Ix[I'=¢} + 0(1),

on taking into account the action of the units {21} on P”~!(Q). We require an upper
bound for Ey (B) which is Oy.«(B"~4~%) for an appropriate § > 0, and which is
valid for as wide a range of ¢ as possible.

To handle Ey(B) it will be convenient to break the range for ||x|| into dyadic
intervals. Thus

Eve(B) < ) #{xeZpy, 1 f(®) =0, R/2<||x| < R, sp1(Ax) > R}

prim
|SR22B +0(1)
=Y Ej.(R)+0(), (3.6)
R=2/,
1<R<2B

say. Appealing to Lemma 2.2, we deduce that

det(Ax) _ R1=e)(n—1)
E;,E(R) L1+ E : R(l—s)(:—l) ( E : w(y/Rl 6) - det(A ) ’
n - x
xezprima f(x)_ol yEAx

R/2<|x|<R
(3.7)
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where w(t) = exp(—m||t]|?). In what follows it will be convenient to write d(x) =
det(Ax) when x is represented by a vector x € Zy;,,. In view of (3.2) we have

ged(Vf(x) = ged(V f(x), Ay),

so that

| vsml
AN = VS0, A

We shall use this formula to extend the definition of d(x) to all (not necessarily
primitive) vectors x € Z".

Let us write ||x|| ~ R to denote the inequalities R/2 < ||x|| < R. In order to
treat £y, (R) we begin by analysing the term

(3.8)

M,Ry= )  dx ) o(y/R'").

XEZH ye Ax

prim?

SF®)=0, [Ix|~R

It is clear that y.V f(kx) = 0 if and only if y.V f(x) = 0, for any k € N. Hence, an
application of Mdbius inversion yields

MRy =Y wk) > dkx) Y (/R

k<R xeZm, yeZ",
Fx)=0,|xll~R/k y.Vf(x)=0
1
“Yul Y dkx) [ S(B) dB, (3.9)
k<R x€Z" 0

fX)=0, |xl~R/k

where

SB) = D oy/R")e(By.V[(x).

yEZ!

Our plan is to define a set of “major arcs” for the interval [0, 1] whose integral matches
the expected main term RO~*=1 / det(A ) from (3.7).

4. Identification of the major arcs

Our identification of the major arcs follows the path that was paved in [4, §4].
Henceforth all implied constants will be allowed to depend on f'. It will be convenient
to set

X=Xy=R/k and Y =R,
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where k is the parameter occurring in (3.9). Since & = w, it follows from Poisson
summation that

S(B) = D o(y/Y)e(By.Vf(x)

yEZ

=Y" ) w(YBVf(x)=Yy).

yEZ"

for any B € [0,1] and any x € Z". Let us use (o) = infyez [m — o| to denote the
distance to the nearest integer. We observe that

o) <y (1+ L),

for any t € R" and any N = 0. Hence it is not hard to see that

S(B) = Y”w(Y(ﬁ ALY ) . ..,Y(B o7 ) )) +on(¥ ™), @D

8X1 axn

for any N = 0. Led by this we make the following definition.

Definition 4.1 (Major arcs). For any n > 0 we set

mxn= ) U {peln:lp-a< )

d—1
qsyl—n 0<a<gq, fX
ged(a,g)=1

where C r > 0 is a sufficiently large constant that only depends on f.

The following result is concerned with the size of the exponential sum S(f)
when B belongs to this set of major arcs.

Lemmad4.2. Let N = 0, letx € Z" with ||x|| < X, andletp = a/q+0 € My(X,Y)
for coprime integers a,q such that 0 < a < q and |q0| < 1/(CfXd“1). Then

S(B) = Y"o(YOV f(x)) + On (Y V)
ifq | VfX)and |0 < Y 1H/|V f(x)|, with S(B) = On (Y V) otherwise.
Proof. Let B =a/q + 6 € My(X,Y). Then

)| _
0x;

1

]9

forany 1 < i < n, provided that C is large enough. Next, we see that

(ﬁaf(X)) _ ‘eaf(X)

ax,‘ Bx,-
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if g | f(x)/0x;. Thus it follows from (4.1) that
S@)=on(¥™")

ifg | Vf(x)and |8] > Y117/ V f(x)|. Alternatively, if we have ¢ | V f(x) and
16| < Y~111/||V £(x)| then clearly

Y”w(Y(ﬁ af(x)), Y(f} o x) )) — Y"o(YOV f(x)).

0x1 0xp,

Finally, if ¢ + df(x)/dx; forsomei € {1,...,n} then there exists a non-zero integer
u € [—q/2,q/2] such that adf (x)/dx; = u mod g, whence

o) 3, 3
0x; 4g = 4y 1-n

(g

for B € M, (X, Y). This shows that S(B) = On (Y ~V) in this case, as required to
complete the proof of the lemma. U

The following result is concerned with the evaluation of the integral of S(8) over
the major arcs.

Lemma 4.3. Let N = 0 and assume that |x|| ~ X. Then

_ Y ged(VS () .
[im,,(X,Y) Sp)op = IV /)| (1 + 0(1(x))) + On (Y ),

where
1 ifgcd(Vf(x))C]zr > Yy!l=n

1(x) =
®) 0 otherwise.

Proof. Let us set h = ged(V f(x)) throughout the proof. We define the modified
major arcs M, (X, Y) to be the set of B = a/q + 6 € M, (X,Y) for which g | h
and |f| < Y~1*7/||Vf(x)|. We claim that these modified major arcs are non-
overlapping. To see this we suppose that a;/q; + 6; = a2/q> + 6>. Then we may
assume without loss of generality that g; = g, = h. But then it follows that

1
ay—az| =hlh— 0| K« X ———,
a1 — az| = h|f2 — 61 C X
Assuming that Cy is sufficiently large, this implies that a; = az, which thereby
establishes the claim. (In fact it is not hard to check that the major arcs 9, (X, Y)
are also disjoint provided that X4=1 >» Y177
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An application of Lemma 4.2 yields

f sBdp=|  S(BdB+Oon(¥Y V)
My (X,Y) Mp(X,Y)
= ¥*8 Z go(q)[ w(YOV f(x))d6 + On (Y_N),
= 6]<®
E G
qlh
forany N = 0, where
y—1+n 1
® = min , .
{IIVf(X)H quXd‘l}

Since (1 * ¢)(h) = h, it is clear that
> 0@ =h+ 0(h1(x)),

gsyl=n
qlh
where 1(x) is as in the statement of the lemma.
Next, we observe that

w(YOV f(x))df = + On(Y7V).

1
f|e|sr-1+n/||Vf(x)|| Y|V

Moroever,
f w(Y8V f(x)) db8
0<|8lsY—1+1/||V fix)|
vanishes unless ® < ||V f(x)||, which implies that
1 Y—1+17
4Cr X1 S V@I

Appealing to (3.3) and using the fact that || x| ~ X, the right hand side is at most
C Y17/ X 41 if the constant C s is taken to be sufficiently large in Definition 4.1.
Hence we conclude that gC2 > Y 177, which in turn implies that «C% > Y17 and
thus that 1(x) = 1. Because the integrand is nonnegative, the integral over this
restricted interval is at most m, so that

f w(YOV f(x))df = f w(YOV f(x))df
|19|1<®

6|y ~1+a/)IV f(0)l

- w(YOV f(x))do
O<f|<Y ~1H1/|IV f()ll

1 1(x) i
R — T ‘
YIV/@] (Y|1Vf(x)||)+0N(Y )

Putting everything together yields the statement of the lemma. O
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It is now time to return to our expression (3.9) for M (R). First, sticking with the
notation X = R/k and Y = R'~¢, we deduce from Lemma 4.3 that

sy = v S B g,
T Ly, S8 =Y Xt T+ E)

J®=0,[x|l~X S@=0, [Ix|~X

where
E(x) = 0(1(x)) + On (X971 ~N)

forany N = 0. If 1(x) = 1 then gcd(V f(x)) > CJTZY =7 Furthermore, if
gcd(xy, ..., x,) = £ then (3.1) yields
ged(V f(x)) = ged(@71V f(x/8)) = €77 ged(V f(x/4)
<t

whence in fact £ >> Y —1/(@=1) Moreover, we have

ged(V f(x))
IV £l

Assume now that n > 24 (d — 1). Then it follows from (1.1) that

d(kx) - < k4 ged(V f(x)) <« k97141,

n—d
#{xe Z": f(x) =0, x| £ X, ged(x1,...,%p) = E} L Ny (X/) « n—d

Thus
ged(V f(x)) d—1pyti—d yr—5 —1y—N
dkx) - S——"L E(x) «y k4 (x"dy—¢ 4 xn-ly
; IV/®] W R )
FE)=0, lIx||~X
forany N = 0, where
5 (L=n)(n—2d)
d—1 '

Here the exponent § arises from summing the £~=d)+@d=1) — p=(1=2d+1) gayingg
over £ > Y -m/(@=1) Reintroducing the sum over k, we now see that the overall
contribution to Mg (R) from the set of major arcs M, x = M, (R/k, R1™) is

T Y dwo [ s@p

k<R xeZ",
fx)=0, ||X||~R/k

=R(1—s)(n—1) Z 1+O(Rn—d+(1—e)(n—l—8)),

n
XGanm,

f@)=0, [x|~R
on taking N sufficiently large.
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Putting m,, x = [0,1) \ 9, x and bringing everything together in (3.7), it now
follows that

E;},S(R) & Rn—d—(1—€)8+

Sul Y s [ S®ag|

k<R x€Z",

S)=0, [xl~R/k
We may detect the equation f(x) = 0 in the way most familiar to practitioners of
the Hardy-Littlewood circle method. On doing so, we are led to the following result,
which summarises our discussion of the major arcs.

Lemma 4.4. Letn > 2%(d —1). Foranyk € N let my e = [0,1) \M,, x, where
My x = M, (R/k, R'¢) is given by Definition 4.1. Then there exists § > 0 such
that

—d— 1 }
Efu(R) < R0t o 3 0260 [ [ 15 pldares
k<vR Tk

where if d(x) is given by (3.8) then

Sp) = > Y dkxoly/R'"e@f(x) +By.V ().
x€Z"  yeZ"
Ixll~R/k
Proof. The only thing that requires comment is the truncation from k < R to
k < +~/R. But since d(kx) <« R4~ the trivial bound yields

|S(Ol, )8)| Rd_l . (R/k)” i R(l_s)" Rn—i—d—s
R(1—e)(n-1) RO=8)(n—1) < P

Hence the tail of the k-summation makes a satisfactory contribution. O

5. Treatment of the minor arcs

We begin with a technical result from the geometry of numbers, which generalises
the “shrinking lemma” that is due to Davenport [6, Lemma 12.6], and which one
recovers by taking P = Q in the following result.

Lemma 5.1. Let y be a symmetric n X n matrix with entriesin R. Let P >0, let
Q >2andlet 6 € (0,1]. Let Ny, p o be the number of x € Z" such that ||x| < P
and maxi<i<a(yxi) < Q7. Then

N P A
BEEE . 9‘"max{ —,1} ,
N, opo-10 V 0

where the implied constant depends only on n.
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Proof. We may assume that P = 1, since the left hand side is 1 when P < 1. Define
the matrix
APQ=(P_11n 0 ),
’ Qy QI
so that

_ PI, —P _ 0 I 0 L)\
APo = ( 0 Q-lj;n) nd Ao = (—In 5) Ape (—1,, 5) '
Let Ry < --- £ Ry, denote the successive minima of the lattice corresponding
to Ap,o and let R < --- < Rj, be the successive minima of the dual lattice
corresponding to (Q/ P)A;,fQ. Then (2.2) implies that R} < (Q/P)/Ran—i+1,
for 1 < i < 2n. Since the lattices are equal up to left and right multiplication by a
matrix in GL,,(Z), we must have

P
Ropi1-i

forall 1 <i < 2n. Taking i = n + 1 we deduce that \/Q/P < Rp+1.

Since Q > 2, the quantity N,, p,¢ is equal to the number of vectors in the lattice
corresponding to A p,o whose first n entries form a vector of Euclidean norm < 1 and
whose last n entries are individually < 1. Thus it is bounded below by the number of
vectors with Euclidean norm < 1, and bounded above by the corresponding number
with Euclidean norm < +/n + 1. On the other hand, N, gp g-1¢ is bounded below
by the number of vectors in the lattice corresponding to A p,o with norm < 6 and
above by the corresponding number with norm < 6+/2n + 1. It therefore follows
from Davenport [6, Lemma 12.4] that

2n 2n
Ny po =< l_[max{l,Ri_l} and N,gpg-19 X H max{1, 6R; '},

i=1 i=1

where the implied constants depend only on n. Dividing term by term, we see
that each i contributes at most #~! and each i = n + 1 contributes at most

max{/P/Q,1}. Thus the total contribution is at most 67" max{/P/Q, 1}", as

claimed in the statement of the lemma. O

The second technical result required is a simple Diophantine approximation result
due to Heath-Brown [9, Lemma 2.3].

Lemma 5.2. Let M,R > 0. Let m € Z such that |m| < M and leta = a/q + z,
with coprime integers a,q and z € R, such that (am) < R™!. Assume that

lz| < 2gM)™', g <R/2 and q > min{M, (|z|R)"'}.
Thenm = 0.
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The statement of this result requires the assumption that ¢ and ¢ are coprime,
which isn’t formally stated in [9, Lemma 2.3] but is implicit in the proof.
We now have the tools in place to study our exponential sum on the minor arcs.

Let us set
X=R/k and Y =R'", 5.1
as previously. We want to study
S.f)= Y Y dkxoy/Y)e(xy),
x€Z", yeZnr

lIx[l~X
for (a, B) € [0, 1) x my, &, where d(x) is given by (3.8) and
gx,y) = af(x) + fy.V/f(x).
Let us write Zf =Ay/ ged(k941, A r). Then we have

VAR _ V@)
ged(Vf(kx),Ay)  ged(k?=1, A £) ged(V f(x), Ap)’

d(kx) =

whence
kd—l

IV /&
ged(k9=1, A y) g yGZZ:n 2cd(V £ (%), Zif)w(y/ Y)e(g(x,y)). (5.2)
Ixl~X

S(e, f) =

In this section an important role will be played by the multilinear forms

n
(x(D (d-1)y — R | & (d-1)
(X700 X ) =d! Z Cltysia—1i Xjy oo Xj,_
jl’“njd—l:l
for1 < j <n,wherecy,,. .., €Z are the symmetric coefficients such that

n

F® = D CiiaXis - Kig-

In what follows we shall write u to denote the vector (uy,...,ugz—1). Since f is
non-singular, it follows from [2, Lemmas 3.1 and 3.3] that

#Hue 2O ull,..., Jugl < U, mjQuy,...,ug—1) = 0Vj <n}
L1+ U6E-Dr (53
for any U > 0. Next, for given P > 0, 0 > 2and 7 € R, let
M P, Q) =#{ue Z¢ D" uy,..., lug—] < P,
(tmj(y,...,ug_)) < Q7' Vj <n}. (54
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It follows from d — 1 applications of Lemma 5.1 that

(d-1)n
P, Q) « VI~ yor0i0), 63

for any 6 € (0, 1].

Returning to the expression for S(a, B) in (5.2), we start by removing the
factor gcd(V F{x); A #) via the observation that ged(V f(x), A #) depends only on
x mod A f- Letting h = A r for compactness of notation, we break the sum into
residue classes mod 4, getting

k4! 1
= Y T(y), (5.6
S(@. ) = T, Af)y;,zn“’(y/ )ge(%z)n v re Y 68
where
Ty = Y  [V/®]exy).
||x|l~X’§€xZ;§ mod A
We may write
T(y) = ) F®e(GX),
XEZN
where
py = [ITNE RO 18 ¢
otherwise,
and

G(x) = af(§ + hx) + By.(V f)(E + hx).
Note that G(x) has degree d.
We shall estimate 7 (y) via Weyl differencing, as in Birch [2]. Let

Fll] (X) = F(X e ul)F(X)a
Fopu,(®) = FX 4+ w1 + W) F(X + ) F(X + wp) F(X),

and
Gy, (x) = G(x +u;) — G(x),
Gu u, X) = G +u; +up) =G+ uy) — G(x + w) + G(x),

Then, for any r € {1,... d— 1} we have

TP
<zm X X

X"
luill<X oy ll<X

“ls Ur

(5.7)
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where
Totrtr @ = Y Fupyon, ®€(Guy .0, (X))

xeZn

We shall produce two estimates for T(y). In the first we take r = d — 1, which
eliminates the effect of the lower degree term By.(V f)(& + Ax) and leads to a family
of linear exponential sums that depend on the Diophantine approximation properties
of o alone. Alternatively, we take r = d — 2. After a further application of Cauchy-
Schwarz, one brings the y-sum inside, thereby bringing the Diophantine properties
of B into play.

By Dirichlet’s approximation theorem there exist a,q € Z and ¥ € R such that

a
a=—+1,
q
with {
ged(a,q) =1, 0<a<gq<X¥?* and WISW. (5.8)

The following is our first bound for S(x, 8) and only involves the Diophantine
approximation properties of .

Lemma 5.3. Assume thatx = a/q +  is such that (5.8) holds and put

D= n
T 2d-1(d — 1)

Then d—1 yn+d—1
k& X YR (log X )® 1 D
Sa, B) < min 41, )
v /7 U e

Proof. Taking r = d — 1 in (5.7), we first note that

n
Guyroowg ®) = ah? Y " xjmj(uy, ... ug_q) + HQuy, ... ug_y),
i=1

for some polynomial H(uy,...,uy_) that doesn’t depend on x. It follows that

> Gy, ®) < [ [ min{X, (@h?mj(uy,... ug-1)) 7",

x€Z", j=1
—cX<x;<t;

for any #q,...,f, < X and any absolute constant ¢ > 0. Exploiting (3.3), it readily
follows from multi-dimensional partial summation that

h
Tug oo ) < X277 @D TT min{X, (@h%m;(u, ... ug-1)) ™).
j=1
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In the standard way (cf. the proof of [6, Lemma 13.2]) one finds that

T(y)
Xn

d—1
2 Zd_l

& X@-DC =1 60 XV 4 (ah? X, X),

in the notation of (5.4). Applying (5.5) we obtain

M(ah? X, X) M (ah?;6X,0172X)
X (d-Dn < (QX)(d—l)n ’

for any 6 € (0, 1]. By choosing 6 to satisfy

Qd—l

] 1 X m { q
s T Ty . Max

lgy| X1 q Xl
for appropriate implied constants depending on f, we can make Lemma 5.2
applicable. We then deduce from (5.3) that

lavlx}},

= min{

M(ah?: X, X) 2 max{ 1 v q min{l 1 }}n/(d—l)
X (@—-Dn Xd—l’q T xyd’ q’qh”le
& 1 . {1 1 }n/(d—l)
——— mini{l, —— ,
g"/@D [v1x

since (5.8) holds. It follows that

xnt+d-1 (log X)" . 1 D

with D as in the statement of the lemma. Substituting this into (5.6), we conclude
the proof of the lemma by summing trivially over y and the finitely many possible
values of &. O

We now turn to our alternative estimate for S (e, 8), which is obtained by exploit-
ing the Diophantine approximation properties of B. By Dirichlet’s approximation
theorem there exist b, r € Z and ¢ € R such that

b
ﬁ:"+Q’
r

with

ged(h,r) =1, 0<b<r<+vX41lY and g < (5.9)

1
rv X4y '
We shall prove the following result, which operates under the assumption that X
and Y are not too lopsided.
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Lemma 5.4. Assume that B = b/r + @ is such that (5.9) holds and put

n

E=—es—ruu—or
24-2(d — 1)

Assume that Y < X9~ Then

S, B) K

kd—1 xn+d=1yn maxx/y, 13@=-Dr/297 (1g0 x)n 1 E
min{1, — 1}
rk lolX4-1Y

Proof. This time we begin through an application of Holder’s inequality in (5.6).
Recalling that A = O(1), we deduce that

———Sg’_’?)z P Gl > ( > IT(y)I)

lyl<Y “ée(Z/hZ)"

LY@ N e,

Ee(Z/hz)”

2d—2

where

ue = Yy ITemPF

lyll<Y
Taking r = d — 3 in (5.7), it follows that

(d 3)n Z Z

loyll<X  llug—3ll<X

Ug)<

I|y1|<<Y

X(d Dn Z Z ) Z |T“1s---a“d—3(y)|2'

IVI<Y flugl<X Jlug—3l<X

At this point we carry out a further differencing operation to conclude that

Tapngs P =Y D Fapng 2 (a-1)€(Guy,ug_» (Wg—1)).

uy_ €L uy_ €L

There exists a polynomial H € Z[uy,...,ugy_] that doesn’t depend on y and
polynomials ry,...,r, € Z[uy,...,u 5] that don’t depend on uy—; such that

n
Gu,,..ug_r(Wg—1) = Bhé-! Z yi(mjuy,...,ug—1) +rj(uy,...,u4_5))
=
. + H(uay,...,ug—1),

where r; may depend on §. We may now interchange the order of summation and
. d—2(4—
execute the sum over y, noting that Fy,,...u, ,Ws—1) < X? @-1) for ||lu; || < X.
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Hence, in the usual way, we conclude that

x29 2 (n+d-1)

Y (@—Dn Z Z

o fl<X  fug— <X

x T min (¥, (A4~ (m(ur. .. .ug—y) + rj (1., ug—2)))"'}
j=1

U) <

X2d—2(n+d—l)Yn loe Y)Y ~
(og¥)" 7
X @d-1)n

<

where .# denotes the number of u € 2@ for which |juy ||, ..., ||ug—1|| < X and

(ﬁhd_l(mj (uy,....ug—1) +rj(ug, ..., u5-5))) < ¥

for 1 < j < n. Note that m; is linear when viewed as a polynomial in ug_;.
For fixed uy,...,ug_5, given a single u, _, satisfying the inequality, for all other
solutions uyz_; we will have

(ﬁhd_l(mj (ag,...,ug—1 — u:i—l)))

= (Bh Y (mjy,...,ug_1) +rj —mjQuy, ... u4_) —1;))
22T
where r; = rj(uy,...,ug—3). Thus we may replace uz_; by ug_; — uil_l to
remove the constant term rj(uj,...,ug—2). Doing so leads to the conclusion
that .# is at most the number of vectors (U1,..., 002, u7_1) € Z¥@=D" for which
[uil, ..., lug—2]l < X and [lug—;| < 2X, with

(B 'mj(uy, ..., ug—y)) < 2Y 71,
for 1 < j < n. We conclude that

de_z(n+d-l) Y"(log Y)"

~ @ A (Bh*™12X,Y/2),

Ug) <

in the notation of (5.4).
Next, on appealing to (5.5), we deduce that

max{,/X/Y,1}{@-n
g(d—1)n

MBRE2X,Y/2) < M(BhE120X,6017Y)2),

for any 6 € (0, 1]. Assume that 8 = b/r + o. If we choose 6 so that

1 1 Y r
d-1 _ —  mi —_— —_—
8 ,-\max{ d_l,mm{l, ol X1 r,max{Xd~1,|rQ|Y}}},
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for appropriate implied constants that depend only on f, then we can make Lemma 5.2
applicable. In the light of (5.3), this leads to the conclusion that

max{/X/Y, 1}{d-Dn(gx)d=2n
gd—1n ’

MBI 2X,Y/2) <

since 86X > 1. Thus
X2t =Dyn max( /X]Y, 134D (log Y )
(6X)n
& X0 DY ax (VXTY, 139D (log Y ) MY,

U€) <

where

M KL { ! lo], 4 mm{1 : }}
max 7 , e
xa-1 "0t yxa—1 r rlolY X491

Assuming that (5.9) holdsand ¥ < X 4=1_jt follows that
1 1
M — min {1, —},
<5 lolX 4=ty
whence finally
UE) « X2 0Hd=Dyn maxt /XY, 134 D2 (log ¥)"

1 1 }n/(d—l)

X @D min {1, —|.Q|Xd_1Y

We deduce by summing over the finitely many possible values of & that

S B X247 n4d=Dy 270 ot /XY, 13E-Dn(jog )"
sr=n /=T

1 }n/(d—l)
“lolx -ty
The lemma follows since log Y < (d — 1) log X. |

xmin{l

We now have everything in place to complete the estimation of E "'}’8 (R) via
Lemma 4.4. For the moment we continue to adopt the notation (5.1) for X and Y.
Since k < +/R in Lemma 4.4 we may assume that ¥ < X4~ in Lemma 5.4. Given
Qi,ti > 0,1et J(Q1, O2; 11, t2) denote the overall contribution to the integral

fo 1 fm ISt )l deap

froma =a/q + ¥ and B = b/r + o such that

g~Q1, r~Qx and |Y¥|~1t, |o|~ta.
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Then it follows that from Lemmas 5.3 and 5.4 that
3(Q1, Qi tr, 12) < k471X -1y max (X /Y, 13@-Dn/277 9292, 4

1 1 1
OP" (011 X4)P’ QE” (Qzl‘sz_lY)E}' e

By invoking Dirichlet’s approximation theorem twice, as in (5.8) and (5.9), we see
that we are only interested in Q;,#; > 0 such that

x (log X)" min {

‘ 1
d/2 d—1 S —
01 < X%, O K Yarz and Q> K VX4TlY, 0O K T

Furthermore, since B belongs to the minor arcs m, ;. it follows from Definition 4.1
that J(Q1, Q2;t1,12) = O unless

max{Qz, 026, X% 1Y} > Y.

Since there are O((log X Y)*) possible dyadic values for Q;,#; that can contribute,
we get an estimate for the minor arc integral by taking a maximum of (5.10) over
all Q;,t; satisfying these inequalities.
Taking min{A4, B} < A%/P B172/D jith
1 1

A= nd B = ,
maX{QI, Qlthd}D 4 max{QZ, tasz—IY}E

and then taking max{1, #; X492 > 11 X9, we deduce from (5.10) that

J(01, 0211, t2) € k21X 1Y " max{X/ Y, 1}€@-Dr/27 (1og X )"

X O3tz
max{Q», Qt, X4-1y }E(1-2/D)"

But 2E/D = 4 and Q%1 X97'Y < max{Q,, Q2t,X?~1Y}2. Hence

kd—an—d Yn—l max{X/ Y, 1}(d—1)n/2d_1

max{ Q2, Qzl;)_Xd_l Y}E_6

k41X 4y max{X /¥, 1}@"D%2"" (1og X )"
y G=m(E—6) '

(log X)"

J(01, 02511, 12) K

<K

Note that the exponent of ¥ in the denominator is strictly positive precisely when
n > 3(d —1)2971, Recalling that X and Y are given by (5.1) we insert this argument
into Lemma 4.4 to deduce that

Ej (R) <« R"478

for some § > 0, provided that ¢ is sufficiently small in terms of d and »n. This
completes the proof of Theorem 1.1, on summing over dyadic intervals in (3.6).
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We can get an explicit value of the constant ¢, , as follows. Since ¥ > X17¢
in (5.1), we see that

2d—1

X"2y»max{X/Y,1}@-Dn/
y 0-n)(E-6)

(log X)"

- Xn—d Yn—lxs(d—l)n/Zd‘l (10g X)"
= ¥ (=) (1—1) (E—6)

gives a power saving as soon as (1 —¢&)(1—-n)(E —6) > e(d — 1)n /241 Recalling
that E = n/(2272(d — 1)) and multiplying both sides by 2¢~1(d —1), this condition
becomes
(1 —e)(1—n)2n—3d —1)2¢%) > en(d —1)?
or
B 2n —3(d —1)2¢
nd—-12/(1—1n)+2n—-3d—1)24

2n—3(d—1)2¢
n(d?-2d+3)-3(d—1)24
to 0. Note that for fixed d we have ¢,

&€

Thus we may take ¢y , = in Theorem 1.1 by letting n converge

—)masn—)oo.
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