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Fractal geometry of the complement of
Lagrange spectrum in Markov spectrum

Carlos Matheus and Carlos Gustavo Moreira

Abstract. The Lagrange and Markov spectra are classical objects in Number Theory related to
certain Diophantine approximation problems. Geometrically, they are the spectra of heights of
geodesics in the modular surface.

These objects were first studied by A. Markov in 1879, but, despite many efforts, the structure
of the complement M \ L of the Lagrange spectrum L in the Markov spectrum M remained
somewhat mysterious. In fact, it was shown by G. Freiman (in 1968 and 1973) and M. Flahive
(in 1977) that M \ L contains infinite countable subsets near 3.11 and 3.29, and T. Cusick
conjectured in 1975 that all elements of M \ L were < V12 = 3.46. ., and this was the status
quo of our knowledge of M \ L until 2017.

In this article, we show the following two results. First, we prove that M \ L is richer than it
was previously thought because it contains a Cantor set of Hausdorff dimension larger than 1/2
near 3.7: in particular, this solves (negatively) Cusick’s conjecture mentioned above. Secondly,
we show that M \ L is not very thick: its Hausdorff dimension is strictly smaller than one.

Mathematics Subject Classification (2010). 11J06, 37E05, 37D05.

Keywords. Markov and Lagrange spectra, Cusick’s conjecture, Hausdorff dimension.

1. Introduction

The (classical) Lagrange and Markov spectra are subsets of the real line related to
Diophantine approximation problems. More precisely, the Lagrange spectrum is

1
L:=({limsuyp—— <o0:0 e R—-Q
pa—oo |¢(go — p)|
PqEL

and the Markov spectrum is

1
M= inf g (x, y)|

(x,y)eZ? b* —dac = 1.
(x,»)%#(0,0)

<0 :q(x,y) = ax? + bxy + cy? real indefinite,
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These sets were intensively studied by several authors (including Hurwitz,
Frobenius, Perron, ...) since the seminal works [13] and [14] of Markov from
1879 and 1880 establishing (among other things) that

221 -
5

LN(—00,3) =M N (—00,3) = {\/§<~/§<

consists of an explicit increasing sequence of quadratic surds accumulating only at 3.

Hall [7] proved in 1947 that L D [c, oo) for some constant ¢ > 3. For this reason,
a half-line [c, co) contained in the Lagrange spectrum is called a Hall ray. Freiman [4]
and Schecker [18] proved that [+/21,00) C L, and Freiman [5] determined in 1975
the biggest half-line [cr, co) contained in the Lagrange spectrum, namely,

2221564096 + 283748+/462
- 491993569

~ 4.5278...

CF .

The constant ¢ g is called Freiman’s constant.

In general, it is known that L C M are closed subsets of R. The results of
Markov, Hall and Freiman mentioned above imply that the Lagrange and Markov
spectra coincide below 3 and above cr. Nevertheless, it took a certain time to decide
whether these two sets were the same: in fact, Freiman [3] showed in 1968 that
M \ L # @ by exhibiting a countable subset of isolated points of M \ L near 3.11;
after that, Freiman proved in 1973 that M \ L contains a point as, near 3.29, and
Flahive showed in 1977 that . is the accumulation point of a countable subset of M
near 3.29.

This state of affairs led Cusick [1] to conjecture in 1975 that the Lagrange and
Markov spectra coincide after /12, i.e., (M \ L) N [v/12,00) = @: in fact, one
reads at page 516 the phrase: “I think it is likely that L and M coincide above
V12 = 3.46410.

The reader is invited to consult the excellent book [2] of Cusick—Flahive for a
beautiful review of the literature produced on this topic until 1989, and the recent
article [17] of the second author for more discussions of the fractal geometry of L
and M.

1.1. Statement of the main results. The first main result of this paper (extending
the analysis in our two previous papers [15, 16]) answers Cusick’s conjecture by
showing that M \ L near 3.7 is richer than countable subsets:

Theorem 1.1. The intersection of M \ L with the interval (3.7,3.71) has Hausdorff
dimension > 0.53128 (and, a fortiori, (M \ L) N (3.7,3.71) # @).

Remark 1.2. We explain in Appendix A that our proof of Theorem 1.1 actually give
more details about M \ L: for instance, our arguments allow to compute the largest
known element Y of M \ L.
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The second main result in this article says that M \ L doesn’t have full Hausdorft

dimension (and, hence, it is not very thick):

Theorem 1.3. HD(M \ L) < 0.986927.

Remark 1.4. In Appendix B, we give empirical evidence towards the better estimate
HD(M \ L) < 0.888.

It follows that M \ L has empty interior, and so, since M and L are closed subsets
of R, int(M) = int(L) C L C M. In particular, we have the following:

Corollary 1.5. int(M) = int(L).

As a consequence, we recover the fact, proved in [5], that the biggest half-line
contained in M coincides with the biggest half-line [cr, c0) contained in L.

Our main results show that M \ L has an intricate structure and this motivates
the following question!. Consider the Lagrange spectrum L, and denote by X the set
obtained from L by removing all non-trivial closed intervals contained on it and all
of its isolated points. Is every point of X accumulated by points in M \ L?

Remark 1.6. We expect that the techniques in this article will be helpful in computing
exactly the first decimal digit of HD(M \ L).

Our approach to Theorems 1.1 and 1.3 is based on some qualitative dynamical
insights leading to a series of quantitative estimates with continued fractions. Before
explaining this point, let us briefly recall the classical dynamical characterization of
the Lagrange and Markov spectra due to Perron (see, e.g., [2] for more details).

1.2. Continued fractions, shift dynamics, and the Lagrange and Markov spectra.
Given a sequence a = (an)nez € (N*)Z, we denote by

Aia) = laiiaivr.aiq2,... )+ [0:ai-1,ai2,.. ],

where

[CO;C1,CQ, o ] ‘= cCgo +

stands for the usual continued fraction development.
The Markov value m(a) of a is

m(a) = sup A, (a)

nez

'Recently, the authors, together with D.LLima and S. Vieira, gave in [12] the first known example of a
pointin L N M \ L, namely 1 + %
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and the Lagrange value £(a) of a is

£(a) = limsup A, (a).
n—>00
In this setting, the Markov spectrum M is the collection of all finite Markov values
and the Lagrange spectrum L is the collection of all finite Lagrange values.
From the point of view of Dynamical Systems, the previous paragraphs can be
rewritten as follows. Let

T=NZ =N x(NH)N=x"xzt

and 7+: ¥ — X% the natural projections.
Consider o the left-shift dynamics on X, and denote by f: X — R the height
function

S((Bn)nez) := Ao((bn)nez) = [boi by, ...] + [0:b—y,.. ].

The Markov value m(b) of a sequence b € ¥ is

m(b) = sup f(a" (b)).

nez

Similarly, the Lagrange value £(b) of a sequence b € X is

t(b) = limsup f(a"(b)).
n—o0
Therefore, we can think geometrically about L and M in terms of the heights
of the orbits of a dynamical system G on the plane R?. Indeed, the natural map
¥t x ¥~ — R x R sending (b;);ez to ([bg; biswls [05Bq4:: ]) allows to transfer
the shift dynamics o: & — ¥ and the height function f: ¥ — R to the plane R?: in
this way, o becomes a natural extension

G:(R\Q)x R\NQ)N(0.1)) = R\ Q) x (R\Q)N(0.1))

of the so-called Gauss map and f becomes ]"W:IR2 - R, f(x,y) =X+ y. Asitis
explained below, even though our proofs of Theorems 1.1 and 1.3 might superficially
look a “lucky” concatenation of a series of lemmas about continued fractions, they are
directly motivated by qualitative dynamical features of the orbits of G with respect
to the height function f.

1.3. Ideas behind the proof of Theorem 1.1. Our first source of inspiration to con-
struct new elements in M \ L is provided by Flahive paper [6]. In this article, Flahive
introduced the notion of semi-symmetric words and she proved that an element
of M \ L is usually associated to non semi-symmetric words. In particular, it is not
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surprising that Freiman’s construction of elements in M is related to the non semi-
symmetric words (of odd lengths?) 222211221 and 2112221, and our construction
of new elements in M \ L is based on the non semi-symmetric word (of odd length)
3322312,

Once we have chosen our preferred non semi-symmetric word o of odd length,
we compute the Markov value £ of the periodic sequence ...« ..., and we select a
Cantor set X, of sequences whose Markov values are < £.

Since o« is nor semi-symmetric, the problems of gluing sequences in X,
on the left and/or on the right of ...« ... in such a way that the Markov
value of the resulting sequence doesn’t increase too much might have distinct

answers. In fact, if @ decomposes as ¢ = xy, then the Markov values p of
...z = ...xyxyz with z € 4 could be u > £ and systematically smaller
than the Markov values v of waw ... = wxyxy... with w € X, (because the

gluings of y and z is a different problem from the gluings of w and x). For example,
if we try to glue the sequence 2121... € X on the right of the periodic sequence
Lo, =...33222123322212.. . without increasing too much the Markov value
of the resulting sequence, we might go for

«s29322212352221221212] ...

whose Markov value u is 3.70969985975 ... On the other hand, if we try to glue
2121 ...€ T ontheleftof...qu. ., = +.,,33222123322212 , .. without increasing
too much the Markov value, the best choice is

vu s 212121221283222123322212 ..,

whose Markov value v is 3.70969985982 . ..

In other words, the cost of gluing any w € ¥ and o« ... is always higher than
the cost of the sequence . ..awaz. Hence, the Markov value p of ... aaz is likely to
belong to the complement of L because any attempt to modify the left side of . . . axcz
to reproduce big chunks of this sequence (in order to show that © € L) would
fail since it ends up producing a subword close to the sequence zaw . .. xaz whose
Markov value would be v > pu.

The discussion of the previous four paragraphs can be qualitatively rephrased in
dynamical terms as follows?3.

The periodic word ...aw ... provides a periodic point py € R? of G such
that £ = f(py) = maxyez f(G"(py)). Also, a classical result of Perron asserts
that the Markov value of any sequence in the Cantor set X, = {1,2}¢ C X

2We insist on non semi-symmetric words of odd length because any modification of the associated
infinite periodic sequence will force a definite increasing of the Markov value in one of two consecutive
periods.

3In the sequel, we assume some familiarity with basic aspects of the standard theory of hyperbolic sets
(and we recommend the book [8] for all necessary details).
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s JI3 < & and, moreover, the periodiﬂg word ...2121.. . & 2, provides a
periodic point py; € R? of G with V12 = f(p21) = max,ez f(G"(p21)).

The problems of gluing sequences in X, on the left and right of ... @« ... have a
clear dynamical meaning: it amounts to study the intersections W% (24) N WS (pe)
and W (Zq) N Wi (po) between the local stable and unstable sets of X,
and ...co....

Geometrically, the fact that p, comes from a non semi-symmetric word o of
odd length suggests that the local stable and unstable manifolds of p, intersect the
invariant manifolds of the subset Ay C R? related to T, at distinct heights with
respect to f(x,y) = x + y. In fact, one can show that the height p of the point
{qa) = Wio.(pa) N WS (p21) is strictly smaller than the minimal height v of any
point r € W5 .(pa) N Wi (Ag): this situation is depicted in Figure 1 below and it is
quantitatively described in Lemma 4.2 below.

Moreover, the G-orbit of gq is locally unique in the sense that some portion of
the G-orbit of any point z € R? with sup,cz f(G"(2)) close to u must stay close
to the first few G-iterates of q,: the quantitative incarnation of this fact is given by
Corollary 3.14 below.

In this context, we show that the Markov value pu doesn’t belong to the Lagrange
spectrum L by combining the previous two paragraphs. More concretely, if 4 € L,
say _

p = limsup f(G"(z))
n—>+00
for some z € R?, then the local uniqueness property would say that some portion
{G"0(z),...,G"0T™M0o(z)} of the G-orbit of z is close to the first few G-iterates
{4e, G(Ga), . .., G™0(gy)}, so that G"OT™0(z) is close to Ag. On the other hand,
the assumption that

u = limsup £ (G"(2))

n—-+o0o

and the local uniqueness property say that there exists an instant 7y > ng + mg such
that G"1(z) is again close to q,. However, this is impossible because the iterates
of G"0T™0(z) would follow W% (Ag) in their way to reach G"!(z) and we know
that the smallest height of the intersection between W3 (gq) and Wi (Ag) is v > p:
see Figure 1 below for an illustration of this argument.

1.4. Ideas behind the proof of Theorem 1.3. Our proof of Theorem 1.3 relies on
the control of several portions of M \ L in terms of the sum-set of a Cantor set
associated to continued fraction expansions prescribed by a “symmetric block” and
a Cantor set of irrational numbers whose continued fraction expansions live in the
“gaps” of a “symmetric block™. As it turns out, such a control is possible thanks to
our key technical Lemma 6.1 saying that a sufficiently large Markov value given by
the sum of two continued fraction expansions systematically meeting a “symmetric
block” must belong to the Lagrange spectrum.
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S G™(z)

Figure 1. Dynamics behind some elements in M \ L.

From a dynamical point of view, this argument can be qualitatively rephrased in
the following way. For the sake of clarity, let us illustrate how our method# gives an
estimate for HD((M \ L) N [v/5, v/12]). It was shown by Hall that

HD(M N[5, +/10]) < 0.93.
Hence, our task is reduced to show that
HD((M \ L) N [v/10,+/12]) < 1,
Recall that Perron showed that any u € M N [v/5, +/12] has the form

it = sup f(G"(z))

nez

for some z € Ay, where Aj > C R? is the set of points related to {1,208 £ &,
Suppose that 4 € (M \ L) N [+/10, +/12] is associated to a point z € A; , with

= f(z) = sup f(G"(2)).
nez
The set of points A11 2> C R? related to the sequences in {11, 22}2 C X is the
geometric incarnation of a “symmetric block” in the sense that {11, 22}7 is a shift-
invariant, locally maximal, transitive set. In this situation, the G-orbit of z can’t

4This is a non-trivial task because HD(L N[+/5, v/12]) = HD(M N[5, v/12]) = 1 (cf. [17]).
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accumulate on Aj 22 in the past and in the future. In fact, if both the a-limit and
w-limit sets of z intersect A1 22 at two points z_o, and z 4, then the transitivity
of Aj1,22 would allow us to employ the shadowing lemma to construct a G-orbit
{G"(w)},ez tracking certain periodic pseudo-orbits starting at z, reaching z4o,
going to z_o, and coming back to z: this scenario is qualitatively described in
Figure 2 below and its quantitative incarnation is Lemma 6.1 below. In particular,
@ = limsup f(G"(w)) €L,
n—00

a contradiction. Therefore, if & € (M \ L) N [v/10, +/12], then the past or the
future of the G-orbit of z € A » can’t approach A 22: in other words, {G"(2)}n>0
or {G"(z)}n<o travels through A; > while avoiding some neighborhood of A1 22,
i.e., {G"(2)}nz0 or {G"(2)}n<o lives in the “gaps” of Aq1,221in Ay 2.

A1

X122

Figure 2. Dynamical constraints on M \ L.

An interesting feature of our method is its flexibility: we have some freedom in
our choices of “symmetric blocks”. Of course, there is a price to pay in this process:
if one tries to refine the symmetric blocks to fit better the portions of M \ L, then one
is obliged to estimate the Hausdorff dimension of Cantor sets of irrational numbers
whose continued fraction expansions satisfy complicated restrictions.

In our proof of Theorem 1.3, we chose the symmetric blocks in order to rely only
on Cantor sets whose Hausdorff dimensions were rigorously estimated by Hensley
in [9].

Nevertheless, one can get better heuristic bounds for HD(M \ L) thanks to
the several methods in the literature to numerically approximate the Hausdorff
dimension of Cantor sets of numbers with prescribed restrictions of their continued
fraction expansions. By implementing the “thermodynamical method” introduced by
Jenkinson—Pollicott in [10], we obtained the empirical bound HD(M \ L) < 0.888.



Vol. 95 (2020) Fractal geometry of M \ L 601

Remark 1.7. As it was observed by Jenkinson—Pollicott in [11], it is possible in
principle to convert the heuristic estimates obtained with their methods into rigorous
bounds. However, we will not pursue this direction here.

1.5. Organization of the article. Closing this introduction, let us explain the organ-
ization of the paper. After recalling some basic definitions in Section 2, we dedicate
the subsequent three sections to the proof of Theorem 1.1. More precisely, we show in
Section 3 that any Markov value close to 3.70969985975025 . . . can only be realized
by a sequence containing the word

B= 2332031 233272123527,

In Section 4, we show that a sequence a containing B whose Markov value is
< 3.70969985975033 is necessarily periodic on the left, i.e.,

a = 332221233222123322

(where 3322212 means an infinite concatenation of 3322212).

Then, we derive Theorem 1.1 in Section 5 as a consequence of a more precise
result (cf. Theorem 5.3 below) and the recent work of Jenkinson—Pollicott [11].

Next, we devote the remainder of the text to the proof of Theorem 1.3. More
concretely, we prove in Section 6 our main technical result namely, Lemma 6.1.
Once we dispose of this lemma in our toolbox, we employ it in Section 7 to
describe several portions of M \ L (i.e., the intersections of M \ L with the
intervals (+/10, +/13), (+/13,3.84), (3.84, +/20), and (+/20, +/21)) as subsets of
arithmetic sums of relatively explicit Cantor sets; in particular, this permits to
establish Theorem 1.3. Finally, we show in Appendix B how a refinement of the
discussion in Section 7 can be combined with the Jenkinson—Pollicott algorithm to
give the heuristic bound HD(M \ L) < 0.888.

Acknowledgements. We are thankful to Dmitry Gayfulin for his feedback on our
proof of Theorem 1.1, and we are grateful to Pascal Hubert for his interest in this
project. This article was partly written during a visit of the first author to IMPA
(Brazil) sponsored by CAPES project 88887.136371/2017-00. The first author
warmly thanks IMPA’s staff for the hospitality and CAPES for the financial support.
The second author is grateful to the financial support of FAPERJ and CNPq.

2. Some preliminaries

Given a finite word y, the sequence obtained by infinite concatenation of this word
is denoted by y.

In general, we will indicate the symbol a( at the zeroth position of a sequence
a = (ap)nez by an asterisk, i.e.,a = ...ara_1ag5aia» . ...
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An elementary result for comparing continued fractions is the following lemmas:

Lemma 2.1, Let o = o015« s Qns Bpbt s 5| @A B = [@ @155+ « 5 G Bndetis « o)
with a,+1 -7é bn+1- Then:

* o> Bifand only if (=1)"* (@41 —but1) > 0;
e la—pB|<1/2"L,

The reader is encouraged to consult the book [2] by Cusick and Flahive for more
background on continued fractions and their relationship to the Lagrange and Markov
spectra.

In the next three sections, we concentrate on the proof of Theorem 1.1.

3. Local uniqueness of candidate sequences

In this entire section, we deal exclusively with sequences a = (a,)nez € {1, 2, B}Z.
Lemma 3.1.

(i) Ao(...3*1...) > 3.822;

(i) Ao(...23*2...) > 3.7165:

(i) Ao(...33*3...) < 3.61279.

Proof.
(i) Ao(...3*1...) =[3:1,1,3] 4+ [0;3,1] = 3.822020185...
(ii) Ao(...23*2...) = [3: _3] +1[0;2,1,3] = 3.7165151389911 ... ;
(i) Ao(...33*3...) <[3:3,3,1] +[0:3,3,1] = 3.61278966. . .. O

An immediate corollary of this lemma is:
Corollary 3.2. If 3.62 < Ag(a) < 3.71, then

B = uys B B wws

up fto transposition.

Lemma 3.3.

(iv) Ao(...33%21...) < 3.6973;

(v) A9(...33%23..))>3.720r A_1(...33%23...) > 3.822.

Proof.
(iv) Ag(...33%*21..) <[3;2,1,1,3] +[0;3,3,1] = 3.6972..

5Compare with Lemmas 1 and 2 in Chapter 1 of the Cusick—Flahive book [2].
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(v) By Lemma 3.1 (i), either:

A_1(...33%23..) > 3.822
or Ao(...33*23..) =1[3:2,3,3,1] +[0:3,2,3,1] =3.72.... O

Corollary 3.4. If3.698 < Ag(a) < 3.71 and A;(a) < 3.71 for |i| < 1, then
a=...33"22...

up to transposition.
Lemma 3.5.
(vi) Ap(...333%22...) > 3.71;
(vii) A;(...233%221...) > 3.7099 for some i € {-3,0,5};
(viii) Ag(...233%223...) < 3.7087;
(ix) Ag(...3233%222...) < Ap(...2233%222...) < 3.7084.

Proof.
(vi) Ao(...333%22...)>=1[3;2,2,3,1]+[0:3,3,3,1] =3.71...;
(vii) By Lemma 3.1 (i),(ii), either:

As(...233%221...) > 3.822,

or A_s(...233%221...) > 3.71,
or Ao(...233%221..) = [3;2,2,1,1,2,1,3] +[0;3,2,3,3,3,1]
= 3.7099028 . . .;

(viii) Ao(...233%*223..)) <[3:2,2,3,3,1] +[0;3,2,1,3] = 3.708691 . . .;
(ix) Ag(...3233%222...) < A¢(...2233%222..)
<[3:2,2,2,3,1] +[0;3,2,2,3,1] < 3.7083107 ...

Corollary 3.6. If 3.7087 < Ao(a) < 3.7099 and A;(a) < 3.7099 for |i| < 5, then
a=...12337222.. ..

up to fransposition.
Lemma 3.7.
(x) A;(...1233%2223...) > 3.7099 for some i € {—5,0};
(xi) Ao(...11233*2221...) < 3.7096;
(xii) Ag(...21233%2222...) > 3.71;
(xiii) Ag(...21233*22211...) > 3.7097;
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(Xiv) Ag(...111233%22221...) = Ao(... 111233%22222 .. ) > 3.7097;

(xv) Ai(...111233*22223...) > 3.7097 for some i € {—7,0,5};

(xvi) Ao(...211233%22223...) < Ao(...211233%22222...) < 3.70957;
(xvii) Ai(...121233%22212...) > 3.7097 for some i € {~7,0,7}:
(xvii) Ao(...321233*22212...) < 3.709604.

Proof.
(x) By Lemma 3.1 (i), if A_5(...1233*2223...) < 3.82, then

Ao(...1233%2223..) = [3;2,2,2,3,3,1] + [0;3,2,1,1,2,1, 3]
=3.7099...,

(xi) Ao(...11233*2221..)) < [3:2,2,2,1.1,3] +[0:3,2,1, 1,1, 3]

= 3.709507 .. .;
(xii) Ag(...21233%2222...) = [3:2,2,2,2,3,1] +[0;3,2,1,2,3,1]
=3.7107...;
(xiii) Ao(...21233%*22211...) =[3;2,2,2,1,1,1,3] 4+ [0;3,2,1,2,3, 1]
=3.7097...;
(xiv) Ao(...111233*22222..)) =>[3;2,2,2,2,2,1,3] +[0;3,2,1,1,1,1, 3]
= 3.7097...;
(xv) By Lemma 3.1 (i),(ii), if A; (... 111233%22223...) < 3.7097 fori € {-7,5},

then

Ai(...111233%22223...) = [3;2,2,2,2,3,3,3,1] + [0;3,2,1,1,1,1,2,1, 3]
=3.7097...;

(xvi) Ao(...211233%22222..)) < [3:2,2,2,2,2,3,1] + [0;3,2,1,1,2,3, 1]
= 3.709568.. .

(xvii) By Lemma 3.1 (i), if A;(...121233*22212...) < 3.82 for |i| = 7, then

Ao(...121233%22212...) =[3;2,2,2,1,2,1,2,1,3] + [0;3,2,1,2,1,1, 2,1, 3]
= 3.7097...;

(xvii) Ao(...321233%22212...) < [3:2,2,2,1,2.3,1] + [0;3.2,1,2,3,3, 1]
= 3.709603.. .. O
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Corollary 3.8. If 3.709604 < Ag(a) < 3.7097 and A;(a) < 3.7097 for |i| < 7, then
a=...221233%22212... or ...211233%22221...

up to transposition.

Proof. By Corollary 3.6,
a=.,.1233%222....

By Lemma 3.7 (x),
a=...1233%2221... or ...1233%2222....
By Lemma 3.1 (i), Lemma 3.7 (xi),(xii),
a=...21233%*2221... or ...11233%2222....
By Lemma 3.1 (i) and Lemma 3.7 (xiii),(xiv),(xv),(xvi),
@ =... 21298%20012.... ©r ..11238%22021 ...
By Lemma 3.1 (i) and Lemma 3.7 (xiv),(xvii),(xviii),
a=...221233*22212... or ...211233%22221.... (]

Lemma 3.9. (xix) Ag(...221233%222121...) < 3.709642;
(xx) Ag(...1221233%222122...) < Ag(...2221233%222122...) < 3.709693;
(xxi) Ag(...1221233%2221233...) < 3.70968;
(xxii) Ag(...3221233*2221233...) > 3.7097;
(xxiii) Ag(...1211233%222211...) < A¢(...2211233%222211...) < 3.70969;
(xxiv) Ag(...1211233*222212...) < 3.70969;
(xxv) Ag(...3211233*222212...) > 3.7097.

Proof.
(xix) Ao(...221233*222121...) <[3;2.,2,2,1,2,1,1,3] +[0;3,2,1,2,2,3,1]
= 3.709641...;
(xx) Ag(...2221233%222122...)

<[3:2,2,2,1,2,2,1,3] +[0;3,2,1,2,2,2,T, 3] = 3.7096929.. . . ;

(xxi) Ao(...1221233*2221233...)
<[3:2,2,2,1,2,3,3,3,1] + [0:3.2,1,2,2,1,T, 3] = 3.709679.... .

(xxii) Ao(...3221233%2221233..))
>[3:2,2,2,1,2,3,3,1,3] +[0:3,2,1,2,2,3,3,1] = 3.70972.. .
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(xxiii) Ao(...2211233%222211..))
<[3:2,2,2,2,1,1,1,3] + [0:3,2,1,1,2,2,1,3] = 3.709688.. . .;
(xxiv) Ao(...1211233%*222212...)
<[3:2,2,2,2,1,2.1,3] + [0;3,2,1,1,2,1,1,3] = 3.709681....:
(xxv) Ag(...3211233*222212..))
>[3:2,2,2,2,1,2,3,1] +[0:3,2,1,1,2,3,3,1] =3.70974...; O

Corollary 3.10. If 3.709693 < Ag(a) < 3.7097 and A;(a) < 3.7097 for |i| < 9,
then

a=...2221233%2221233... or ...33211233%*222211...
OF  wsudbl1o0s 2I2HLE .

up to transposition.
Proof. By Corollary 3.8,
a=...221233%22212... or ...211233*22221....
By Lemma 3.9 (xix) and Lemma 3.1 (i),(ii), the sole possible extensions a are:

010201 238% 222120, .y #::22123372221238 .5
...211233%222211..., ...211233%222212....

By Lemma 3.9 (xx),(xxi),(xxii),(xxiii),(xxiv),(xxv), the sole possible continuations
of a are:

vue 3221288%223122. . ., ... 23212387 2201233....,
...3211233%222211..., ...2211233%222212....

By Lemma 3.1 (i),(ii) and Lemma 3.5 (vi), we obtain that a is one of the words:

...233221233%222122..., ...2221233%2221233...,
...33211233%222211..., ...2211233*222212....

However, Lemma 3.5 (vii) forbids the word ...233221233*222122.. ., so that we
end up with the following three possibilities:

v 22212337 2220233 . ..,
...33211233%222211..., ...2211233*222212...

for a. ]
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Lemma 3.11.

(xxvi) A;(...2221233%22212333...) > 3.7097 for some i € {—7,0};
(xxvii) Ag(...33211233*2222112...) < 3.70968;
(xxviii) Ag(...2211233%*2222121...) > 3.7097;

(xxix) A;(...2211233%2222122...) > 3.7097 for some i € {—7,0}.

Proof.
(xxvi) By Lemma 3.1 (i),(ii), if A_7(...2221233*22212333...) < 3.71, then

Ao(...2221233%22212333...)
>[3:2,2,2,1,2,3,3,3,3,1]4+[0:3,2,1,2,2,2,3,3,3,1] = 3.7097001 ... . ;

(xxvil) Ao(...33211233%2222112...)
<[3%2,2,2,2,1,1,2,3, 1] +[0;3,2.1,1,2,3,3,3, 1] = 3.709672. ...
(xxviil) Ao(...2211233*2222121...)
>0[3:2,2,2,2,1,2,1,1,3] + [0:3,2,1,1,2,2,3,1] = 3.709711 ...
(xxix) By Lemma 3.1 (i),(ii), if A_7(. .. 2211233*2222122...) < 3.71, then

Ao(...2211233%2222122...)
>[3:2,2,2,2,1,2,2,1,3]4+[0;3,2,1,1,2,2,3,3,3,1] =3.709702.... O

Corollary 3.12. If 3.709698 < Ag(a) < 3.7097 and A;i(a) < 3.7097 for |i| < 9,
then

= 4 20BN 22202332 5 i
or ...33211233*2222111..., or ...2211233%22221233...

up to transposition.
Proof. By Corollary 3.10,

= ...2221233%2721233...,
or ...33211233%222211,.., oFf :..2211238%222212.....

By Lemma 3.1 (i),(ii) and Lemma 3.11, we see that the sole possible continuations
of these words are:

a=.,.2221233%22212332...,
or ...33211233*2222111..., or ...2211233%22221233.... O
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Lemma 3.13.
(xxx) Ag(...12221233%22212332...) > Ao(...22221233%22212332..))
> 3.7097;
(xxxi) Ag(...12211233%22221233...) > Ao(...22211233%22221233..))
> 3.7097;
(xxxii) Ao(...2332211233%222212333...) < Ao(...2332211233%222212332...)
< 3.7096992;

(xxxiil) Ag(...2332221233*222123321...) > 3.7096999;

(xxxiv) Ag(...233211233%22221111...) < Ao(...333211233*22221111...)
< 3.709696;

(xxxV) Ag(...333211233%22221112...) > Ao(...233211233%22221112..))
= 3.7097.

Proof.
(xXx) Ao(...22221233%22212332..)
>[3;2,2,2,1,2,3,3,2,3,1] +[0;3,2,1,2,2,2,2,1,3] = 3.709701 ... .;
(xxxi) Ag(...22211233*22221233..))
>[3;2,2,2,2,1,2,3,3,3,1] +[0:3,2,1,1,2,2,2,1,3] = 3.709702.... . ;
(xxxii) Ag(...2332211233*222212332...)
<[3:;2,2,2,2,1,2,3,3,2,3,1] +[0;3,2,1,1,2,2,3,3,2,3,1]
= 3.70969913 .. .;
(xxxiii) Ao(...2332221233*222123321...)
>[3:2,2,2,1,2,3,3,2,1,1,3] +[0:3,2,1,2,2,2,3,3,2,1,3]
= 3.70969992 . . .;
(xxxiv) Ag(...333211233%22221111..))
<[3:2,2,2,2,1,1,1,1,1,3] + [0:3,2,1,1,2,3,3,3,1,3]
= 3.7096955 . ..:
(xxxv) Ag(...233211233*22221112...)
>[3:2,2,2,2,1,1,1,2,3, 1]+ [0;3,2,1,1,2,3,3,2,3,1]
= 3.7097004 .. .. O

Corollary 3.14. If 3.7096992 < Ag(a) < 3.7096999 and A;(a) < 3.7096999
for|i| <9, then
a =...2332221233%222123322...

up to transposition.
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Proof. By Corollary 3.12, a is one of the words

P 2. W K o .0 2
or ...33211233%2222111..., or ...2211233%22221233....

By Lemma 3.13 (xxx),(xxxi), Lemma 3.1 (i),(ii), and Lemma3.5 (vi), the sole
possible continuations for these words are

...2332221233%22212332 ..., ...233211233%2222111...,
...333211233*2222111.. ., ...2332211233%22221233....

However, Lemma 3.1 (i) and Lemma 3.13 (xxxii),(xxxiv),(xxxv) rules out all possi-
bilities except for
a =...2332221233*22212332....

Finally, Lemma 3.13 (xxxiii) and Lemma 3.3 (v), this word is forced to extend as

a =...2332221233%222123322.... 0

4. Replication mechanism

In this entire section, we also deal exclusively with sequences a = (a,)nez €11, 2, S}Z .
Lemma 4.1.
(xxxvi) A;(...22332221233*222123322...) > 3.70969986 for some i € {0,7};
(xxxvii) Ag(...12332221233%2221233223...) > 3.70969986;
(xxxviii) Ag(...112332221233%222123322212...) > 3.70969986;
(

(xxxix) Ag(...3212332221233%222123322212...) > 3.7096998599.
Proof.
(xxxvi) By Lemma 3.5 (vii), if A7(...22332221233%222123322...) < 3.7099,

then

Ao(...22332221233%222123322...)
>1[3:2,2,2,1,2,3,3,2,2,2,3,1] +[0;3,2,1,2,2,2,3,3,2,2,3, 1]
= 3.70969986. . .

(xxxvii) Ag(...12332221233%2221233223...)
>[3;2,2,2,1,2,3,3,2,2,3,3,1] +[0;3,2,1,2,2,2,3,3,2,1,3,1]
= 3.70969986.. .;
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(xxxviii) Ag(...112332221233%222123322212..))
= 819:8,2. 12,383,254, 1,28,

+[0:3,2,1,2,2,2,3,3,2,1, 1,1, 3]

= 3.70969986.. . .;

(xxxix) Ag(...3212332221233*222123322212...)
>[3;2,2,2,1,2,3,3,2,2,2,1,2,3,1]

+10;3,2,1,2,2,2,3,3,2,1,2,3,3, 1]
= 3.7096998599.. . .. O

Lemma 4.2, A;(...12212332221233%222123322212...) > 3.70969985975033
for somei € {—17,—15,0,13,15}.

Proof. By Lemma 3.1 (i),(ii), if A; (... 12212332221233%222123322212...) < 3.71
fori € {—17,—15,13,15}, then

Ai (... 12212332221233%222123322212. . )
>[3;2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,3, 1]
+0:3,2,1,2,2,2,3,3,2,1,2,2,1,1,2,1,2,1,3]
= 3.70969985975033 . . .. O

Corollary 4.3. Leta = ...2332221233%222123322. .. where the asterisk indicates
the position j € Z. If A;(a) < 3.70969985975033 for all |i — j| < 17, then

a =...23322212332221233%222123322212. ..

and the vicinity of the position j — 7 is ...2332221233%*222123322....
Proof. By Lemma 3.3 (v) and Lemma 4.1 (xxxvi), our word must extends as

a =...12332221233%222123322. ...
By Lemma 3.5 (vii) and Lemma 4.1 (xxxvii), our word is forced to continue as

@ = x: 12832221253 2221233202.. ...
By Lemma 3.1 (i), we have the following possibilities

... 112332221233%2221233222 ... or ...212332221233*2221233222...

for the word a. By Lemma 3.7 (x),(xii), these two words can continue only as

... 112332221233%22212332221 ... or ...212332221233*22212332221....
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By Lemma 3.7 (xiii), these words are obliged to extend as
...112332221233%222123322212... or ...212332221233%222123322212....
However, we can apply Lemma 4.1 (xxxviii) to rule out the first case, so that
a =...212332221233%222123322212....
By Lemma 3.7 (xvii) and Lemma 4.1 (xxxix), this word continues as
a =...2212332221233%222123322212....
By Lemma 4.2 and Lemma 3.9 (xxii), we have to extend as
a =...22212332221233%222123322212....
By Lemma 3.13 (xxx), we are forced to continue as
a = ...322212332221233%222123322212....
Finally, Lemma 3.1 (i),(ii) and Lemma 3.5 (vi) reveal that

a = ...23322212332221233%222123322212.... L

5. Lower bound on the Hausdorff dimension of M \ L

Proposition 5.1. L N (3.70969985968, 3.70969985975033) = @.

Proof. Suppose that £ € L.N(3.70969985968, 3.70969985975033) and leta € {1, 2, 3}
be a sequence such that
£ = limsup A, (a).
n—>0Q
By repeatedly applying Corollaries 3.14 and 4.3, we would deduce that
€ = Ao(33*22212) = 3.709699859679 ... < 3.70969985968

a contradiction. U

Proposition 5.2. C = {10(332221233%22212332221221212126) : § € {1,2}N} js
contained in M 1 (3.70969985975024, 3.70969985975028).

Proof. This is a straightforward calculation. U

The previous two propositions imply that:
Theorem 5.3. C = {1,(332221233*22212332221221212126):0 € {1, 2N} c M\ L.
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By Jenkinson—Pollicott work [11], a consequence of Theorem 5.3 is the following
slightly stronger version of Theorem 1.1:

Corollary 5.4. The Hausdorff dimension of (M \ L) N (3.7096,3.7097) is
> 0.5312805062772051416244686473684717854930591090183 . ...

In Appendix A, we refine our proof of Theorem 1.1 to determine the largest
interval J containing the set C from Proposition 5.2 with J/ N L = @, to compute
the largest element YT of (M \ L) N J, and to exhibit a Cantor set £ of continued
fraction expansions such that HD(2) = HD((M \ L) N J).

For now, we consider that the discussion of Theorem 1.1 is complete and we move
on to the discussion of the proof of Theorem 1.3.

6. Key lemma towards Theorem 1.3

Denote by
K(A) ={[0:y]:y € Z7(A)} and K™ (4) = {[0:8'] : § € Z7(A)}

the Cantor sets of the real line naturally associated to an invariant subshift of finite
type £(A)C X.
Fix £ (B) C (C) two transitive (invariant) subshifts of finite type of £ = (N *)Z
such that K(B) = K~ (B) and K(C) = K~ (C), i.e., B and C are symmetric.
Denote by @ = (a,)nez € £(C) be a sequence with m(a) = f(a) =me M
and

m > max ([0: B171 + [0; (@n)']) := (B, C). 6.1)
Bext(B),acz—(C)
7 finite word preceding 8 in X(B)

Lemma 6.1. Suppose that, for every k € N, there exists ny,my = k such that:

(i) the half-infinite sequence ...ag ...an, can be completed into two bi-infinite
sequences

Qél)=...a3---anka_k and QéZ)Z...az.--ank&

so that K(B) N [[0; ax], [0; B]] # 9;
(ii) the half-infinite sequence a_py,, ...ag ... can be completed into two bi-infinite
sequences

Q,Es)zy_ka—mk-”a;"' and Ql£4):§,£a_mk...ag...
so that K(B) N [[0; yi']. [0; 8"]] # @;
(i) lim m(0)) = m foreach 1 < j < 4.
k—o0

Then, m € L.
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Proof. By Theorem 2 in Chapter 3 of the Cusick—Flahive book [2], our task is reduced
to showing that

m = lim m(Py),
k—o0

where Py is a sequence of periodic points in X.
For each k € N, let us take ks Vk € > (B) with

[0: ] < [0: 7 (ua)] < [0: Bl and  [0: ] < [0: (r ()] < [0:8k"]. (6.2)

The transitivity of the subshift of finite type X (B) permits to choose finite subword
(e * v)g of an element of X (B) connecting the initial segment ;L;r of 7T+(&) of
length k with the final segment v~ of 7~ (v ) of length k, say

(1 * Vg = iy wevg .

In this setting, consider the periodic point Py € X obtained by infinite
concatenation of the finite block

ag..-an, (0% V)klomy - ..a—1.

By (6.2) and Lemma 2.1, for each —1 — my < j < ny + 1, one has

fo7 (Pi) < max {m(85"). m(67). m(6;”). m (&)} + (63)

2k—2'

By definition of ¢ (B, C), the facts that X(B) C £(C) and B, C are symmetric, and
Lemma 2.1, one has

f(o7(Py)) < ¢(B,C) +

= (6.4)

for each j corresponding to a non-extremal position in (i * V). Also, by Lemma 2.1,
we know that

1
f(P) > fla) = 55 = m = 555 (6.5)

It follows from (6.1), (6.3), (6.4), and (6.5) that

s < (P < mas pn(0").m(E).m(e?). m(0)} +

2k—2 2k—2

for all k sufficiently large. In particular, m = limg_, o, m( Py ) thanks to our assump-
tion in item (iii). This completes the argument. O

Remark 6.2. As it can be seen from the proof of this lemma, the hypothesis
that B and C are symmetric can be relaxed to K(B) N K~ (B) # @ and/or
K(C)N K~ (C) #@ after replacing (6.1) by appropriate conditions on 1.
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7. Rigorous estimates for HD(M \ L)

In this section, we use Hensley’s estimates in [9] for the Hausdorff dimensions of the
Cantor sets K({1,2}), K({1,2,3}), and K({1,2, 3,4}) in order to rigorously prove
Theorem 1.3.

7.1. Description of (M \ L)N(~10, ~/13). Letm € M\ L with +/10 < m < +/13.
In this setting, m = m(a) = f(a) for a sequence

a=(..,a_1,a9,a1,...) €{1,2)% =: 3(C)

(see, e.g., Lemma 7 in Chapter 1 of Cusick—Flahive book [2]).
Consider the (complete, invariant) subshift X (B) C X(C) associated to B =
{11,22}, namely

X(B):={(an)nez : askask+1 € {11,22}Vk € Z or aze_jaz € {11,22},Vk € Z}.

Note that B and C are symmetric, and the quantity ¢(B, C) introduced above is
bounded by

¢(B,C)<[22,2] +[0;1,2] = V2 + V3 < V10 < m (7.1)

thanks to Lemma 2.1.

Fix & > O such that [m —2s,m +2¢] N L = @ and take N € N with f(0/ (a)) <
m — 2¢ for all |[j| = N. For eachn € N* resp. —n € N*, let us consider the
possible continuations of ...a§ ...Qp, TESp. dy . . .ag ... into sequences in X(C)
whose Markov values are attained in a position |j| < N.

Of course, for every n € Z \ {0}, we have the following cases:

(a) there is an unique continuation (prescribed by a);

(b) there are two distinct continuations given by half-infinite sequences «, and S,;
in this context, one has two subcases:

(b1) the interval I, determined by [0;a,] and [0; B,], resp. [0; (a,)?] and
[0; (Br)!], when n > 0, resp. n < 0, is disjoint from K(B);
(b2) the interval I, determined by [0;a,] and [0; B,], resp. [0;(ay)?] and
[0; (Br)'], when n > 0, resp. n < 0, intersects K(B).
Proposition 7.1. There exists k € N such that:
e cither for all n = k the subcase (b2) doesn’t occur;
e orforalln < —k the subcase (b2) doesn’t occur.
Proof. 1f there were two subsequences 1y, my — 400 so that the case (b2) happens

for all ny and —my, then (7.1) and Lemma 6.1 would say that m € L, a contradiction
with our assumptionm € M \ L. O
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The previous proposition says that, up to replacing a by its transpose, there
exists k = 0 such that, for all n > k, either ...ay ...a, has a forced continuation
...4%...ApApe1 ... OF tWO continuations ...ag ...axot, and ...ag ...a, B, with
[[0; @], [0; Bn]] N K(B) = @. Therefore, we conclude that in this setting

m=a0+[0;a1,...]+[O;a_1,...], (7.2)

where [0;a_1,...] € K(C) and [0;a1,...] belongs to a set K consisting of the
union of a countable set € corresponding to the forced continuations of finite strings
and a countable union of Cantor sets related to sequences generating two continued
fractions at the extremities of an interval avoiding K(B).

Let [0;ay,...] € K \ € such that, for all n sufficiently large, a; ... a, admits two
continuations generating an interval avoiding K(B). Given an arbitrary finite string
(b1, ...,by), consider the interval

I(by,....by) = {[O;bl,...,bn,p] o> 1}.
Recall that the length of 1(by,...,by) is

|
Ithi,....b)| = )
| 2 qn(gn + qn-1)
where g; is the denominator of [0;b;,...,b;]. We claim that the intervals
I(ay,...,a) can be used to efficiently cover K \ € as n goes to infinity. For

this sake, observe that if a;...a, has two continuations, say aj...a,lan+1
and ay ...au2Pn+1 such that [[0;28,+1], [0; lay41]] is disjoint from K(B), then
an = lay+ and B, = 28,41 start by

In particular, we can refine the coverof K\ € with the family of intervals I (ay, ..., a,)
by replacing each of them by I(a;,...,a,,1,1,2) and I(a;,...,a,,2,2,1).

We affirm that this procedure doesn’t increase the (0.174813)-Hausdorff measure
of K \ €. For this sake, it suffices to prove that

(ay,....an, 1, 1,2 + [{(@1,...,an, 2,2, DS < I(ay,...,an)  (1.3)

with s = 0.174813.
In this direction, set

U@, an LLDP + [I(ar, ... an, 2,2, DS
|I(a1,...,an)|s ’

The recurrence formula g; 1> = aj42q;+1 + q; implies that

()_( r41 )S+( r+1 )S
E =\ Gr+56@r+7) Gr+71Gr +12) )
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r+1 1

_r+1 1 r+1 1
Gri @D < 35

Gr+NGr+12) = 81.98

where r = gy—1/gn € (0,1). Since and

forall 0 < r < 1, we have

1\ 1 s
8(s) < (%) T (81.98) '
This proves (7.3) because (1/35)0-174813 4 (1/81.98)0-174813 1,
We summarize the discussion of the previous paragraphs in the following
proposition:
Proposition 7.2. (M \ L) N (~/10,+/13) C K({1,2}) + K, where K is a set of
Hausdorff dimension HD(K) < 0.174813.

An immediate corollary of this proposition is:
Corollary 7.3. HD((M \ L) N (+/10, V13)) < 0.706104.

Proof. By Proposition 7.2 and Hensley’s estimate [9] for HD(K({1,2})), one has®

HD((M \ L) N (+/10,413)) < HD(K({1,2})) + HD(K)
<0.531291 + 0.174813 = 0.706104.

This proves the corollary. O

7.2. Description of (M \ L)N(+/13,3.84). Letm € M\ L with /13 < m < 3.84.
In this setting, m = m(a) = f(a) for a sequence

a=(...a_1,ap.a1,...) €{1,2,3}% = £(C)

not containing 13 nor 31 because if 6 contains 13 or 31, then a result of Bumby
(explained in Table 2 in Chapter 5 of Cusick—Flahive’s book [2]) implies that
m(6) > 3.84.

Consider the (complete) subshift X (B) = {1,2}% c =(C). Note that B and C
are symmetric, and the quantity c¢(B, C) introduced above is bounded by

c(B,C)< max (B ' +a)=[2:1.2] +[0;1,3] < VI3 <m
BeK(B)
a€K(C)

thanks to Lemma 2.1.

We proceed similarly to Subsection 7.1. More precisely, the same arguments
(based on Lemma 6.1) above give that, up to transposing a, there exists
k € N such that, for all n = k, either ...aj...a, has a forced continuation
...ay...Apdp+1 ... OF two continuations ...ag ...a0, and ...ag...a, B, with
[[0; @], [0: Br]] N K(B) =@. We want to use this information to efficiently
cover (M \ L) N (v/13,3.84). For this sake, let us note that the constraint
[[0; ar], [0: Br]] N K(B) = @ impose severe restrictions on the possible continuations
an and fB,. In particular, they fall into two types:

6Here, we are also using that HD(X +Y) < HD(X) + HD(Y) whenever X, Y C R are subsets
such that the Hausdorff and box-counting dimensions of X coincide.
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* ap = 3ap+1and B, = 218,42;
® 0y € {221an+3,23an+2} and ﬂn = {1121,8”_1.4, 113}8n+3}.

Moreover, our assumption that ¢ doesn’t contain 13 or 31 (due to the hypothesis
m(a) = m < 3.84) says that we can ignore the case 8, € {1138,13}.
In summary, we have that the s-Hausdorff measure of the set

K :={a = [ag;a;1,...]: V13 <m(a) < 3.84}
is finite for any parameter s with

_ [I(ay,....an,.3)|° + |{(a1,...,an,2,1)|°
| I(@1, - o, Q) ¥

2(s) <1

M@, a0 22,0 + [ar, - an, 2,3)° + @y, . an, 11,2, D)

[I(ay,...,an)|*

for all (ay,...,an) € |UJ {1,2, 3},
keN
The recurrence ¢ 42 = aj4129;41 + q; implies that

|I(ai,...,an,3)]| B r+1 |I(a1,...,an,2,1)|_ r+1
I(a1,....ay)] (r+3)@+4)° I(ai,....an)]  (r+3)@2r +5)
and
| L8 5 e 5 B s 1] B r+1
I(a1,....an)]  Gr+7)Gr+12)°
[ [(@y;:x058552,3)] r+1
(a1, ....an)]  Gr+7)(@r+9)°
[ (@1, 8n:1;1:25 1)] B r+1
|I(ay, ... a,)| C @r+7(r +12)°
where r = gn—1/qn € (0, 1).
Since
rHl o1 r+tl 0071797,
(r+3)(r+4) 10 (r+3)2r +5)
r + 1 <0.012197 it < 0.016134
(Br +7)(5r +12) T @Br+7@r+9 ’
and
r+1 - I

(4r + 7)(7r + 12) ~ 84
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forall 0 < r < 1, we deduce that

1 & S A h 1 5
2(s) < (Tﬁ) +(0.071797)° and h(s) < (0.012197)* + (0.016134) +(Q).

Therefore,
max {g(0.281266), h(0.281266)} < 0.999999

and, a fortiori, the (0.281266)-Hausdorff measure of
K ={la¢:ar,.. ] : V13 < m(a) < 3.84}

is finite. It follows from this discussion:
Proposition 7.4. (M \ L) N (+/13,3.84) C X5({13,31}) + K, where

X3({13,31}) := {[0;y] : y € {1,2,3}" contains neither 13 nor 31}

and K is a set of Hausdor{f dimension HD(K) < 0.281266.
A direct consequence of this proposition is:
Corollary 7.5. HD((M \ L) N (+/13,3.84)) < 0.986927.

Proof. By Proposition 7.4 and Hensley’s estimate [9] for HD(K ({1, 2,3})), one has

HD((M \ L) N (+/13,3.84)) < HD(K({1,2,3})) + HD(K)
< 0.705661 + 0.281266 = 0.986927.

This completes the argument. Il

7.3. Description of (M \L)N(3.84, +/20). Letm € M\ L with3.84 < m < +/20.
In this setting, m = m(a) = f(a) for a sequence

a=(...,a_1,a0.a,..)€{1,2,3}% = £(C).

Consider the subshift £(B) C X(C) associated to B = {1,2,2321,1232}. Note
that B and C are symmetric, and the quantity ¢(B, C) introduced above is bounded

by

c(B.C)<[3:2,1,1,2] + [0;2,3,1] <3.83 <3.84 < m
thanks to Lemma 2.1.

As it was explained before, we can use Lemma 6.1 to see that, up to
transposing a, there exists k € N such that, for all n = k, either ...aj...a,
has a forced continuation ...a;," ...dpAn41 - .. Or two continuations ...a(")‘ i By
and ...ag...a,Bn with [[0;ay], [0; B,]] N K(B) = @. From this, we are ready to
set up an efficient cover of (M \ L) N (3.84, V20). In this direction, note that the

condition [[0; & ]. [0; Br]] N K(B) = @ imposes two types of restrictions:
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¢ Uy = 30ln_|.1 and ﬁn = 21,8n+2;
e oy = 23ay42 and B, € {11218, 44,1138, 4+3}.
Hence, we have that the s-Hausdorff measure of the set
K :={a =la¢;ay,...] :3.84 <m(a) < ~20}
is finite for any parameter s with

|I(ai,...,as,3)|° + |I(a1,...,8n,2,1)[°

<1
|I(a1,... ,an‘)|s

gls) =

B [I(ay,...,an,2,3)° + |I(a1,...,an, 1, 1,2, D)|* + |I(a1,...,as,1,1,3)|°
|[I(ay,...,an)|*

for all (ay,...,a,) € | {1,2,3}%.
keN
We saw in the previous subsection that g(0.281266) < 0.999999 and

1\s |I(a13'-'9an31!1’3)ls
h(s) < (0.016134)° + (—
(S) ( ) + ( ) + |I(01,-~-»an)|s

84
Because the recurrence ¢ 2 = aj4+29;+1 + g, implies that

[ I(ay,...,an,1,1,3)| . r+1
[I(ai,...,an)| (4r +7)(5r +9)°
where r = gn-1/qn € (0, 1), and since m < 6—13 forall0 < r < 1, we
conclude
h(s) < (0.016134)° + ( : )S+( : )S
S > ey . T TR .
84 63
Thus,

max {g(0.281266), h(0.281266)} < 0.999999
and, a fortiori, the (0.281266)-Hausdorff measure of

K = {lag;ay,...]:3.84 <m(a) < \/%}

is finite. In particular, we proved the following result:

Proposition 7.6. (M \ L) N (3.84, v20) C K({1,2,3}) + K where K is a set of
Hausdorff dimension HD(K) < 0.281266.

As usual, this proposition yields the following estimate:
Corollary 7.7. HD((M \ L) N (3.84, +/20)) < 0.986927.
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Proof. By Proposition 7.6 and Hensley’s estimate [9] for HD(K ({1, 2, 3})), one has

HD((M \ L) N (3.84,+/20)) < HD(K({1,2,3})) + HD(K)
< 0.705661 + 0.281266 = 0.986927.

This ends the proof. L

7.4. Description of (M \L)N(+/20, +/21). Letm € M\ L with /20 < m < +/21.
In this setting, m = m(a) = f(a) for a sequence
8 = o s s Otz +4) € BAC)
;= {y € {1,2,3,4}% not containing 14, 41, 24, 42}
because:

« if 0 contains 14 or 41, then m(@) = [4:1,1,4] + [0;4,1] > +/21 by Lemma 2.1;
* if 6 contains 24 or 42, but neither 14 nor 41, then Lemma 2.1 implies that

m(0) = [4;2,1,3] + [0;4.2] > +/21.

Consider the subshift £(B) C X(C) associated to
B =1{21312,232,3,11313,31311}

with the restrictions that 31311 follows only 3, and 11313 is followed only by 3. Note
that B and C are symmetric, and the quantity ¢(B, C) introduced above is

¢(B,C) < 4.46 < +/20 < m

thanks to Lemma 2.1.

As it was explained before, we can use Lemma 6.1 to see that, up to
transposing a, there exists k € N such that, for all n = k, either ...a(’; .w» Wy
has a forced continuation ...ag ...apdp+1 - .. OF two continuations .. .ag N
and ...ag...anPBy with [[0;ay], [0; B4]] N K(B) = @. From this, we are ready
to cover (M \ L) N (+~/20,+/21). In this direction, note that the condition
[[0: @, ], [0: Bn]] N K(B) = @ imposes three types of restrictions:

* oy € {33131an+5, 34an+2} and ,Bn = 2131,8”4_4;
* oy = 23C¥n+2 and ﬁn = 1131,8,1.1,_3.

Hence, we have that the s-Hausdorff measure of the set

K := {[ap:a1,...] : V20 < m(a) < V21}
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is finite for any parameter s with

|2 (@15 5 5 s G AT = [ @15 ¢ 505835 1 3, 1))
g(s) = R ;
|4 5 s 5 s )
(|I(a1,...,an,3,3,1,3, DI* + [(a1,...,an, 3,4 )
+ [I(ay,....a,.2,1,3, D
h(S)= | ( 1 n )l
A
<1,
and
i(s) = |[I(ay,...,an,2,3)|° + |I(a1,....an,1,1,3, 1)|* <1
[I(ay,...,an)|*
for all (ay,...,an) € U {1,2,3,4}".
keN
We saw in the previous subsection that
. ’I(al’---van’l’]-’B’ ]-)lS
i(s) <(0.016134)° +
|I(a1,...,an)|s
On the other hand, the recurrence g j 4+ = a;j4+29;+1 + ¢; implies that
[(ar,....,an,4)| _ r+1
[I(ay,...,an)| (r+ 4 +5)°
1@, - » - B3 15 3, 1)) B r+1
|I(ay,...,an)| (5r +19(9r +24)°
|I(a1,...,an,3,3,1,3,1)|_ r+1
\I(ai,....an)| (197 + 62)(34r + 111)°
|I(ai,...,an,3,4)| B r+41
(a1, ...,an)]  (4r +13)(5r +16)°
|[I(ai,...,an,2,1,3,1)] r+1
\I(ay,... a,)| © (5r 4+ 14)(9r + 25)°
|I(ay,...,an,1,1,3,1)| r+1
and = ,
|[I(ay,...,an)| (5r +9)(9r + 16)
where r = qn—1/qn € (0, 1).
Since
r+1 o 1 rF+4+1 i 1
(r+4)(r+5 15 (5r +19)(9r +24) ~ 516’
r+1 - 2 r+1 - 2
(19r + 62)(34r + 111) ~ 11745"  (4r + 13)(5r + 16) ~ 357’
r+1 r+1 1

< 0.003106,
(5r + 14)(9r + 25)

d <
M Gr 1 90r +16) 144
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forall0 < r < 1, we get
2(s) < (%)s + (%)S, h(s) < (ﬁ)s 4 (3%)8 + (0.003106)°,

i(s) <(0.016134)° + (L)S
T 144/ °
Thus,
max {g(0.172825), h(0.172825), i(0.172825)} < 0.999997
and, a fortiori, the (0.172825)-Hausdorff measure of
K = {[o5d;.:4] 1 V20 < m(a) < 21}

is finite. In particular, we proved the following result:
Proposition 7.8. (M \ L) N (20, v/21) C X4({14,41,24,42}) + K, where

X4({14.41, 24,42}) 1= {[0; v] 1y €{1.2,3. 4N does not contain 14, 41, 24, 42}

and K is a set of Hausdorff dimension HD(K) < 0.172825.
As usual, this proposition yields the following estimate:
Corollary 7.9. HD((M \ L) N (+/20, ¥/21)) < 0.961772.

Proof. By Proposition 7.8 and Hensley’s estimate [9] for HD(K({1,2, 3,4})), one
has

HD((M \ L) N (v/20,+21)) < HD(K({1,2,3,4})) + HD(K)
< 0.788947 + 0.172825 = 0.961772.

This finishes the argument. L]

7.5. End of proof of Theorem 1.3. By Corollaries 7.3, 7.5, 7.7, and 7.9, we have
that
HD((M \ L) N (~v10,4/21)) < 0.986927.

On the other hand, Freiman [4] and Schecker [18] proved that [+v/21,00) C L.
Therefore, (M \ L) N [v/21,00) = @. Also, the proof of Theorem 1 in Chapter 6 of
Cusick—Flahive’s book [2] gives the (rigorous) estimate

HD(M N (=0, +/10)) < 0.93

for the Hausdorff dimension of M N (—o0, +/10).
By putting these facts together, we obtain the desired conclusion, namely,

HD(M \ L) < 0.986927.
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A. Structure of M \ L near 3.7

A.1. The largest interval J avoiding L containing C. Consider the quantities

Jo := A0(33*22212) = 3.70969985967967 . ..
and

ji i= 0(2112212332221233*2221233222123332112) = 3.70969985975042 . . . .

By Corollary 3.14, Lemma 4.1, and the proof of Corollary 4.3, we have that:
Proposition A.1. If jo < m(a) = Ag(a) < 3.7096998599, then (up to transposition)
o eithera = ...12212332221233*222123322212...,

s or a = ...23322212332221233%222123322212... and the vicinity of the
position —7 is ...2332221233%222123322. ...

Indeed, this happens because m(a) < 3.7096998599 allows to use all results from
Sections 3 and 4 except for Lemma 4.2.

Proposition A.2. If m(a) < 3.71 and a contains 12212332221233%222123322212,
then m(a) = Ji.

Proof. By Lemma 3.1 (i),(ii),

Ao(a) = [3:2,2,2,1,2,3,3,2,2,2,1,2,.. ]
+100:3,2,1,2,2,2,3,3,2,1,2,2,1,.. ]
>[3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,.. ]
+10:3,2,1,2,2,2,3,3,2,1,2,2,1,1,2].

By Lemma 3.3 (v) and Lemma 3.5 (vi),

Ao(a) =1[3;2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,.. ]
+100;3,2,1,2,2,2,3,3,2,1,2,2,1,1, 2]
>[3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,1,.. ]
+10:3,2,1,2,2,2,3,3,2,1,2,2,1,1,2].

By Lemma 3.1 (i), we conclude that

ro@) = [3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,1,.. ]
£0:3,2,1,2,2,2,3,3,2,1,2,2,1,1,2]
>[3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,1,1, 2]
+10;3,2,1,2,2,2,3,3,2,1,2,2,1,1,2]
= J1. U
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By putting together Propositions A.1 and A.2, we obtain the following
strengthening of Propositions 5.1 and 5.2:
Proposition A.3. The open interval J = (jo, J1) containing C is disjoint from L.
Proof. On one hand, the fact that J contains C is an immediate consequence of
Proposition 5.2. On the other hand, if jo < m(a) < j; for a periodic sequence a,
then, thanks to Proposition A.2, we would be able to iteratively apply Proposition A.1
to obtain that m(a) = A¢(33*22212) = jy, a contradiction. Since the Lagrange

spectrum is the closure of Markov values associated to periodic sequences, we derive
that S N L = @. O

Since it is not hard to see that jo and j; belong to L, the previous proposition
implies that:

Corollary A4, J is the largest interval containing C which is disjoint from L.

A.2. The largest known element of M \ L. Consider the quantity
T = 20(332221233%22212332221221212112) = 3.7096998597503806 . ...
Proposition A.5. Y is the largest element of (M \ L) N J.

Proof. Givena € {1,2,3}2 withm(a) = Ao(a) € J, we can apply Propositions A.2
and A.1 to obtain that (up to transposition)

m@a) = [3:2,2,2,1,2,3,3,2,2,2,1,2,.. ] + [0;3,2,1,2,2,2,3,3].

If a;z3 = 1, then

m(a) = [3;2,2,2,1,2,3,3,2,2,2,1,2,1,1,2] + [0;3,2,1,2,2,2,3, 3]
= 3.7096998599. . .,

a contradiction. Hence,

m(a) <[3:2,2,2,1,2,3,3,2,2,2,1,2,2,.. ] +[0:3.2,1,2,2,2,3,3].

If a4 € {2, 3}, then

m(a) =[3:2,.2,2,1,2,3,3,2,2,2,1,2,2,2,3,3,2,1] +[0:3,2,1,2,2.2,3,3]
= 3.709699859799. ...

a contradiction. Thus,

m(a) < [3:2,2,2,1,2,3,3,2,2,2,1,2,2,1..]+[0;3,2.1,2,2, 2,3, 3].
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If a;5 = 1, then

m(a) B [3:272,27 1,27 35 31212’29 112923 13 17 172] + [O, 332, 1,212121 33 3]
= 3.709699859765. ..,

a contradiction. Therefore,
ma) £ [3:2,2,2,1,2,3,3,2,2,2,1,2,2, 1,2,...] +[0;3,2,1,2,2,2, 3, 3].
If ai6 € {2, 3}, then

m(a) = [3;2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,2,3,1...] +[0:3,2,1,2,2. 2,3, 3]
= 3.709699859753 ...,

a contradiction. So,

m(a) <1[3;2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,1,...]4+1[0;3,2,1,2,2,2,3,3].
Ifa;7 =1,0ra;7 = 2and a3 € {2, 3}, then

m(a) =[3:2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,1,2,2,3,1] +[0;3,2,1,2,2,2,3,3]
= 3.70969985975049.. . .,

a contradiction. Hence,

m(a) <[3:2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,1,2,1,.. ]4[0;3,2,1,2,2, 2.3, 3].

It follows that

m(a) <[3;2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,1,2,1,1,2] + [0:3,2,1,2,2, 2,3, 3]
= T.

This completes the argument. O
A.3. The Hausdorff dimension of M \ L near 3.7. As it is explained in our
previous works [15] and [16], we have that
HD(M\ L)NnJ)= HD(Q),
where €2 is the Gauss—Cantor set
£ = {[O; y] 1y € {1,2, 3}N doesn’t contain subwords in P}

with P consisting of “big words”? appearing in items (i), (ii), (v), (vi), (vii), (x),
(xii), (xiii), (xiv), (xv), (xvii), (xxii), (xxv), (xxvi), (xxviii), (xxix), (xxx), (xxxi),
(xxxiii), (xxxv), (xxxvi), (xxxvii), (xxxviii), (xxxix) in Section 3 and 4 and their
transposes, and the “self-replicating” word 2332221233222123322 in Corollary 4.3
and its transpose.

7In the sense that the appearance of these words implies that the value of A¢ surpasses Jjj.
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B. Empirical derivation of HD(M \ L) < 0.888

The algorithm developed by Jenkinson—Pollicott in [10] allows to give heuristic
estimates for the Hausdorff dimensions of certain Cantor sets of real numbers whose
continued fraction expansions satisfy some constraints. Furthermore, Jenkinson—
Pollicott shows in [11] how these empirical estimates can be converted in rigorous
estimates.

In this section, we will explore Jenkinson—Pollicott algorithm to give an empirical
derivation of the following bound:

HD(M \ L) < 0.888. (B.1)

B.1. Heuristic estimates for HD((M \ L)N (—oo, +/13)). Consider again the sub-
shift £(B) := {11,222 of ©(C) = {1, 2}%. The quantity ¢ (B, C) introduced above
is

¢(B,C) = [2:T,1] + [0:2,2,1] < 3.0407 < 3.06.

This refined information on ¢(B,C) allows us to improve Proposition 7.2 and
Corollary 7.3. Indeed, by repeating the analysis of Subsection 7.1 with this stronger
estimate on ¢(B, C), one gets the following result:

Proposition B.1. (M \ L) N (3.06,+/13) C K({1,2}) + K, where K is a set of
Hausdorff dimension HD(K) < 0.174813. In particular,

HD((M \ L) N (3.06, v13)) < 0.706104.
This proposition implies that
HD((M \ L) N (—o0, v/13)) < max {HD((M \ L) N (=00, 3.06)), 0.706104}.

On the other hand, as it is explained in Table 1 of Chapter 5 of Cusick-Flahive’s
book [2], a result due to Jackson implies that if the Markov value of asequencea € X
is m(a) < 3.06, then g contains neither 1,2, 1 nor 2, 1, 2. Thus,

HD((M \ L) N (—00,3.06)) < 2+ HD(K(X>({121,212}))).

where K(X»({121,212})) = {[0; y] : y € {1, 2} not containing 121, 212}.
A quick implementation of the Jenkinson—Pollicott algorithm seems to indicate
that
HD(K(X2({121,212}))) < 0.365.

Hence, our discussion so far gives that

HD((M \ L) N (=00, V13)) < 0.73. (B.2)
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B.2. Heuristic estimates for HD((M \ L) N (+~/13,3.84)). Our Proposition 7.4
above implies that

HD((M \ L) N (+V13,3.84)) < HD(X3({13,31})) + 0.281266,

where X3({13,31}) := {[0;y] : ¥ € {1,2, 3} contains neither 13 nor 31}.
After running Jenkinson—Pollicott algorithm, one seems to get that

HD(X5({13,31})) < 0.574

and, a fortiori,
HD((M \ L) N (+/13,3.84)) < 0.856. (B.3)

B.3. Heuristic estimates for HD((M \ L) N (3.84,3.92)). Letm € M \ L with
3.84 < m < 3.92. In this setting, m = m(a) = f(a) for a sequence

a=(..,a-1,ap,ay,...) € {1,2,3}Z =: B(C)

not containing 131, 313, 231, 132. Consider the subshift ¥(B) C £ (C) associated
to B = {1,2,2321, 1232, 33} with the restrictions that 33 doesn’t follow 1 or 2321,
and 33 is not followed by 1 or 1232. Note that B and C are symmetric, and the
quantity ¢ (B, C) introduced above is

c(B,C) <384 <m

thanks to Lemma 2.1.

From Lemma 6.1 we obtain that, up to transposing a, there exists k € N such that,
foralln = k,either...ag ...a, hasaforced continuation...ay ...dxqp41 ... 0rtwo
continuations . ..aj ...aa, and ... ag . ..a, By with [[0; &), [0; Bx]] N K(B) = 9.
From this, we are ready to set up an efficient cover of (M \ L) N (3.84,3.92). In this
direction, note that the condition [[0; &, ], [0; B4]] N K(B) = @ imposes two types of
restrictions:

* O = 330,45 and By = 218,495
* ap = 23,42 and B, € {113fy43, 11218, 44}
Hence, we have that the s-Hausdorff measure of the set
K := {[ao;a1,...] : 3.84 < m(a) < 3.92}
is finite for any parameter s with

[ s « 2 5805 D) | =+ [ s & s 5 B LI

<1
[ I(ay,...,an)|

g(s) =
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@, .. an,2,3)° + [Ia, ... .an, 1, 1,3) " + [I(a1, ..., a0, 1,1,2, 1)

815 « 55 5 Gu)|®

forall (ay,...,a,) € | {1,2.3}*.
keN
We saw in Subsections 7.2 and 7.3 that

_ ... a,,33)

5) < + (0.071797)°
8 S raap ¢ )
1\s /1y
S _— —
and h(s) < (0.016134)° + (63) + (84) .

Because the recurrence ¢ ;42 = aj+24;+1 + q; implies that

[ (@155 00 s BnsBa3)| r+1
I(a1,...,an)]  Br+10)(@r + 13)’

r+1 < 2
Gr+10)(@r+13) ~ 221

where r = ¢n—1/qn € (0, 1), and since forall0 <r <1, we

get

2\ ]
2(5) < (EE'I) + (0.071797)°.

Thus, max{g(0.25966), h(0.25966)} < 0.99999 and, a fortiori, the (0.25966)-
Hausdorff measure of

K = {lag;ay,...] :3.84 < m(a) < 3.92}

is finite. In particular, we proved the following result:

Proposition B.2. (M \ L) N (3.84,3.92) C X5({131,313,231,132}) + K, where

X5({131, 313,231, 132})
:= {[0; y] : y € {1,2,3}™ not containing 131, 313, 231, 132}

and K is a set of Hausdorff dimension HD(K) < 0.25966.

After running Jenkinson—Pollicott algorithm, one seems to obtain that
HD(X3({131,313,231,132})) < 0.612,
so that the previous proposition indicates that

HD((M \ L) N (3.84,3.92)) < 0.872. (B.4)
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B.4. Heuristic estimates for HD((M \ L) N (3.92,4.01)). Letm € M \ L with
3.92 < m < 4.01. In this setting, m = m(a) = f(a) for a sequence

a=(..,a_1,a0,da1,...) €{1,2,3}% = (C)

not containing 131, 313,2312, 2132. Consider the subshift ¥ (B) C ¥ (C) associated
to B =1{1,2,211,112,232,1133,3311} with the restrictions that 3311 comes only
after 211 and 3311 has to be followed by 2, and 1133 has to appear after 2, and
1133 has to be followed by 112. Note that B and C are symmetric, and the quantity
¢(B, C) introduced above is

c(B,C) <392 <m

thanks to Lemma 2.1.

From Lemma 6.1 we obtain that, up to transposing a, there exists k € N such that,
foralln = k,either...ag . ..a, hasaforced continuation . ..ag ...anap41 ... ortwo
continuations ...ag ...a,o, and ... ag ... a, By with [[0; o], [0; B,]] N K(B) = @.
From this, we are ready to set up an efficient cover of (M \ L) N (3.92,4.01). In this
direction, note that the condition [[0; &, ], [0; B,]] N K(B) = @ imposes two types of
restrictions:

* oy = 33lay+3 and B, = 21B443;
¢ oy = 23(¥n+2 and ﬂn = 113ﬁn+3-

Hence, we have that the s-Hausdorff measure of the set
K :={lag;a1,...] :3.92 < m(a) < 4.01}
is finite for any parameter s with

@y, o o @B 3y 1)° A+ [Ty e ol 2, 1))

1
£ 1@, anl’ <
and h(s) = [I(ay,...,an,2,3)|° + |I(ay,...,an,1,1,3)|° .
(a1, ....an)l*

forall (ai,...,an) € | {1,2,3}".
keN
We saw in Subsections 7.2 and 7.3 that

|I(a1,..-,an,3,3,1)|5
[1(a1,...,an)

Since the recurrence g, 12 = aj4+24;+1 + ¢, implies that

1 \s
g(s) < +(0.071797)° and h(s)s(0.016134)s+(g§),

[ I(ai,...,a,,3,3,1)| . r+1
I(ai,....an)|  (4r +13)(7r +23)’
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where r = gn—1/qn € (0, 1), and since (4r+1;;r(;r+23) < ﬁ forall0 <r <1, we
get
(5) < ( ! )s + (0.071797)*
) S (— ! :
. 255
Thus,

max {g(0.177645), h(0.177645)} < 0.99999
and, a fortiori, the (0.177645)-Hausdorff measure of

K = {lagidi;-.] : 3.92 < m(g) < 4.01}

is finite. In particular, we proved the following result:
Proposition B.3. (M \ L)N(3.92,4.01) C X3({131,313,2312,2132}) + K, where

X3({131,313,2312,2132})
= {[0;y] : ¥ € {1, 2,3} not containing 131, 313, 2312, 2132}

and K is a set of Hausdorff dimension HD(K) < 0.177645.

After running Jenkinson—Pollicott algorithm, one seems to obtain that
HD(X3({131,313,2312,2132})) < 0.65,
so that the previous proposition indicates that

HD((M \ L)N (3.92,4.01)) < 0.828. (B.5)

B.5. Heuristic estimates for HD((M \ L) N (4.01, +/20)). Letm € M \ L with
4.01 < m < +/20. In this setting, m = m(a) = f(a) for a sequence

a=1(..,a_1,a9,4a1,...) €{1,2,3}% = £(C).
Consider the subshift X (B) C X(C) associated to
B = {11,2,232,213312,33}.
Note that B and C are symmetric, and the quantity ¢(B, C) introduced above is
c(B,C)<4.0l <m

thanks to Lemma 2.1.

From Lemma 6.1 we obtain that, up to transposing a, there exists k € N such that,
foralln = k,either...ag ...a, hasaforced continuation...ag ...ap@n41 ... 0rtwo
continuations ...ag ...anpay and ... ag ...an By with [[0; ], [0; B4]] N K(B) = 0.
From this, we are ready to set up an efficient cover of (M \ L) N (4.01, +/20). In this
direction, note that the condition [[0; &, ], [0; Bx]] N K(B) = @ imposes two types of
restrictions:
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* op = 331lay4s and B, = 213B,43;
® Oy = 23(Xn+2 and ﬁn = 113ﬁn+3-

Hence, we have that the s-Hausdorff measure of the set
K := {[ao:ai,...]: 4.01 <m(a) < ~20}
is finite for any parameter s with

(a1, an, 3,3, DI + (@1, an, 2. LI _

&) = 1
8 1@y, ... an)f
(a1, ....an2,3) + |I(@1,...,an,1,1,3)
d h(s) = 1
an ) (@1, ....an)l° =

forall (ai,...,an) € U {1,2,3}".
keN
We saw in Subsections 7.2, 7.3, and B.4 that

1\s  ay,...,an.2,1,3)) 145
g (= d h(s) < (00161347 + (=) .
8) < (533) T and h) < ¥+ (5
Since the recurrence ¢, 12 = aj4+24;+1 + ¢; implies that
[I(ay,...,an,2,1,3)| r+1
[I(ai,....an)|  (4r + 11)(5r + 14)°
wherer = ¢g,—1/¢» € (0, 1), and since (4r+11i;ér+14) < 0.007043forall0 < r < 1,
we get
(5) < ( : )s + (0.007043)°
8(s) < 5z . .
Thus,

max {g(0.167655), 1(0.167655)} < 0.9999
and, a fortiori, the (0.167655)-Hausdorff measure of

K = {[ap;a1,...]: 4.01 < m(a) < 20}

is finite. In particular, we proved the following result:

Proposition B4. (M \ L) N (4.01, v/20) C K({1,2,3}) + K, where K is a set of
Hausdorff dimension HD(K) < 0.167655.

As usual, this proposition and Hensley’s estimate [9] for HD(K ({1, 2, 3})) yields:

HD((M \ L) N (4.01,+/20)) < 0.705661 + 0.167655 = 0.873316.  (B.6)



632 C. Matheus and C. G. Moreira CMH

B.6. Heuristic estimates for HD((M \ L) N (+/20, +#21)). Our Proposition 7.8
above implies that

HD(M\ L)N (\/2—0, \/_2—1)) < HD(X4({14,41,24,42})) + 0.172825,
where
X4({14,41,24,42}) := {[0:y] : y € {1,2,3,4}N does not contain 14, 41, 24, 42}.
After running Jenkinson—Pollicott algorithm, one seems to get that

HD(X4({14,41,24,42})) < 0.715

and, a fortiori,

HD((M \ L) N (~20, v/21)) < 0.888. (B.7)

B.7. Global empirical estimate for HD(M \ L). By (B.2)-(B.7), we have that
HD((M \ L) N (=00, ¥/21)) < 0.888.

On the other hand, Freiman [4] and Schecker [18] proved that [+/21,00) C L.
Therefore,

(M \ L)N [v21,00) = 0.

It follows that
HDM\ L)= HD((M \ L) N (—o0, \/ﬁ)) < 0.888,

the empirical bound announced in (B.1).
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