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Fractal geometry of the complement of
Lagrange spectrum in Markov spectrum

Carlos Matheus and Carlos Gustavo Moreira

Abstract. The Lagrange and Markov spectra are classical objects in Number Theory related to

certain Diophantine approximation problems. Geometrically, they are the spectra of heights of
geodesies in the modular surface.

These objects were first studied by A. Markov in 1879, but, despite many efforts, the structure
of the complement M \ L of the Lagrange spectrum L in the Markov spectrum M remained
somewhat mysterious. In fact, it was shown by G. Freiman (in 1968 and 1973) and M. Flahive

(in 1977) that M \ L contains infinite countable subsets near 3.11 and 3.29, and T. Cusick

conjectured in 1975 that all elements of M \ L were < y/Ï2 3.46 and this was the status

quo of our knowledge of M \ L until 2017.

In this article, we show the following two results. First, we prove that M\L is richer than it
was previously thought because it contains a Cantor set of Hausdorff dimension larger than 1 /2
near 3.7: in particular, this solves (negatively) Cusick's conjecture mentioned above. Secondly,
we show that M \ L is not very thick: its Hausdorff dimension is strictly smaller than one.

Mathematics Subject Classification (2010). 11J06, 37E05, 37D05.

Keywords. Markov and Lagrange spectra, Cusick's conjecture, Hausdorff dimension.

1. Introduction

The (classical) Lagrange and Markov spectra are subsets of the real line related to

Diophantine approximation problems. More precisely, the Lagrange spectrum is

1

L < lim sup
p,q-*oo \q(qa-p)\

< oo : a M — Q

p,qZ

and the Markov spectrum is

1

< oo : q{x, y) ax2 + bxy + cy2 real indefinite,

b2 — 4ac 1.
M : inf \q{x,y)\

{x,y) 6Z2
(x,>>)/(o,o)
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These sets were intensively studied by several authors (including Hurwitz,
Frobenius, Perron, since the seminal works [13] and [14] of Markov from
1879 and 1880 establishing (among other things) that

consists of an explicit increasing sequence of quadratic surds accumulating only at 3.

Hall [7] proved in 1947 that L D [c, oo) for some constant c > 3. For this reason,
a half-line [c, oo) contained in the Lagrange spectrum is called a Hall ray. Freiman [4]
and Schecker [18] proved that [V2Ï, oo) c L, and Freiman [5] determined in 1975

the biggest half-line [c^, oo) contained in the Lagrange spectrum, namely,

The constant cf is called Freiman's constant.
In general, it is known that L C M are closed subsets of R. The results of

Markov, Hall and Freiman mentioned above imply that the Lagrange and Markov

spectra coincide below 3 and above cf Nevertheless, it took a certain time to decide

whether these two sets were the same: in fact, Freiman [3] showed in 1968 that

M \ L ^ 0 by exhibiting a countable subset of isolated points of M \ L near 3.11 ;

after that, Freiman proved in 1973 that M \ L contains a point a^ near 3.29, and

Flahive showed in 1977 that ais the accumulation point of a countable subset of M
near 3.29.

This state of affairs led Cusick [1] to conjecture in 1975 that the Lagrange and

Markov spectra coincide after yf\2, i.e., (M \ L) fl [\f\2, oo) 0: in fact, one
reads at page 516 the phrase: "I think it is likely that L and M coincide above

>/Ï2 3.46410."
The reader is invited to consult the excellent book [2] of Cusick-Flahive for a

beautiful review of the literature produced on this topic until 1989, and the recent
article [17] of the second author for more discussions of the fractal geometry of L
and M.

1.1. Statement of the main results. The first main result of this paper (extending
the analysis in our two previous papers [15, 16]) answers Cusick's conjecture by
showing that M \L near 3.7 is richer than countable subsets:

Theorem 1.1. The intersection of M \ L with the interval (3.7,3.71) has Hausdorff
dimension > 0.53128 (and, a fortiori, (M \ L) D (3.7, 3.71) ^ 0).

Remark 1.2. We explain in Appendix A that our proof of Theorem 1.1 actually give
more details about M \ L: for instance, our arguments allow to compute the largest
known element T of M \ L.

<

cF
2221564096 + 283748v/462

491993569
4.5278...
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The second main result in this article says that M\L doesn't have full Hausdorff
dimension (and, hence, it is not very thick):

Theorem 1.3. HD(M \L)< 0.986927.

Remark 1.4. In Appendix B, we give empirical evidence towards the better estimate

HD(M\L) < 0.888.

It follows that M\L has empty interior, and so, since M and L are closed subsets

of M, int(M) int(L) c L C M. In particular, we have the following:

Corollary 1.5. int(M) int(L).

As a consequence, we recover the fact, proved in [5], that the biggest half-line
contained in M coincides with the biggest half-line [cp, oo) contained in L.

Our main results show that M \ L has an intricate structure and this motivates
the following question1. Consider the Lagrange spectrum L, and denote by X the set

obtained from L by removing all non-trivial closed intervals contained on it and all
of its isolated points. Is every point of X accumulated by points in M \ LI
Remark 1.6. We expect that the techniques in this article will be helpful in computing
exactly the first decimal digit of HD(M \ L).

Our approach to Theorems 1.1 and 1.3 is based on some qualitative dynamical
insights leading to a series of quantitative estimates with continued fractions. Before

explaining this point, let us briefly recall the classical dynamical characterization of
the Lagrange and Markov spectra due to Perron (see, e.g., [2] for more details).

1.2. Continued fractions, shift dynamics, and the Lagrange and Markov spectra.
Given a sequence a (an)nez £ (N*)z, we denote by

Xi (a) := [a, ; a,'+i, a,+2,...] + [0; a,-_2,...],

where
1

[coi C\,C2,. • •] := Co 3 :

c2 H

stands for the usual continued fraction development.
The Markov value m (a) of a is

m (a) sup Xn(a)
neZ

'Recently, the authors, together with D.Lima and S. Vieira, gave in [12] the first known example of a

pointininM\L, namely 1 +
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and the Lagrange value 1(a) of a is

1(a) — lim sup Xn (a).
n-+oo

In this setting, the Markov spectrum M is the collection of all finite Markov values

and the Lagrange spectrum L is the collection of all finite Lagrange values.

From the point of view of Dynamical Systems, the previous paragraphs can be

rewritten as follows. Let

S (N*)z (N*)z~ x (N*)n TxE+
and n±: S -» the natural projections.

Consider a the left-shift dynamics on S, and denote by / : £ —> M the height
function

f((bn)nez) := A0((6„)„6z) [b0:bu...] + [0:b-U...].

The Markov value m(b) of a sequence b S is

m(b) sup f(an(b)).
ne TL

Similarly, the Lagrange value 1(b) of a sequence b e £ is

1(b) lim sup f(on(b)).
n—»00

Therefore, we can think geometrically about L and M in terms of the heights
of the orbits of a dynamical system G on the plane M2. Indeed, the natural map

x ->Exl sending (bi)iez to ([&o; b\,...], [0; b-\,...]) allows to transfer
the shift dynamics a: E —> S and the height function /: S —» M to the plane M2: in

this way, o becomes a natural extension

G: (M \ Q) x (M \ Q) n (0,1» (M \ Q) x (R \ Q) n (0,1))

of the so-called Gauss map and / becomes /: M2 —> R, f (x, y) := x + y. As it is

explained below, even though our proofs of Theorems 1.1 and 1.3 might superficially
look a "lucky" concatenation of a series of lemmas about continued fractions, they are

directly motivated by qualitative dynamical features of the orbits of G with respect
to the height function /.
1.3. Ideas behind the proof of Theorem 1.1. Our first source of inspiration to
construct new elements in M \ L is provided by Flahive paper [6]. In this article, Flahive

introduced the notion of semi-symmetric words and she proved that an element

of M \ L is usually associated to non semi-symmetric words. In particular, it is not
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surprising that Freiman's construction of elements in M is related to the non semi-

symmetric words (of odd lengths2) 222211221 and 2112221, and our construction
of new elements in M \ L is based on the non semi-symmetric word (of odd length)
3322212.

Once we have chosen our preferred non semi-symmetric word a of odd length,
we compute the Markov value I of the periodic sequence aa and we select a

Cantor set E„ of sequences whose Markov values are < I.
Since a is not semi-symmetric, the problems of gluing sequences in Eq,

on the left and/or on the right of aa in such a way that the Markov
value of the resulting sequence doesn't increase too much might have distinct
answers. In fact, if a decomposes as a xy, then the Markov values /x of

aaz xyxyz with z e £a could be /x > I and systematically smaller
than the Markov values v of waa wxyxy with w e £« (because the

gluings of y and z is a different problem from the gluings of w and x). For example,

if we try to glue the sequence 2121 e £ on the right of the periodic sequence

aa 33222123322212 without increasing too much the Markov value

of the resulting sequence, we might go for

...33222123322212212121

whose Markov value /x is 3.70969985975... On the other hand, if we try to glue
2121 Ea on the left of... aa 33222123322212 without increasing
too much the Markov value, the best choice is

...212121221233222123322212...

whose Markov value v is 3.70969985982
In other words, the cost of gluing any w e E and aa is always higher than

the cost of the sequence aaz. Hence, the Markov value /x of aaz is likely to
belong to the complement of L because any attempt to modify the left side of... aaz
to reproduce big chunks of this sequence (in order to show that /x e L) would
fail since it ends up producing a subword close to the sequence zaa aaz whose

Markov value would be v > fi.
The discussion of the previous four paragraphs can be qualitatively rephrased in

dynamical terms as follows3.
The periodic word aa provides a periodic point pa e M2 of G such

that I — f (pa) max„6z /(Gn(pa)). Also, a classical result of Perron asserts

that the Markov value of any sequence in the Cantor set Eœ := {1,2}Z c E

2We insist on non semi-symmetric words of odd length because any modification of the associated

infinite periodic sequence will force a definite increasing of the Markov value in one of two consecutive

periods.
3In the sequel, we assume some familiarity with basic aspects of the standard theory of hyperbolic sets

(and we recommend the book [8] for all necessary details).
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is A -s/T2 < i and, moreover, the periodic word ...2121... e Ea provides a

periodic point P21 £ R2 of G with \/Î2 f(p2i) max„z/(G"(/?2i))-
The problems of gluing sequences in £« on the left and right of... aa have a

clear dynamical meaning: it amounts to study the intersections <*) H W^oc(pa)
and W^C(E„) D W£c{pa) between the local stable and unstable sets of
and acr....

Geometrically, the fact that pa comes from a non semi-symmetric word a of
odd length suggests that the local stable and unstable manifolds of pa intersect the

invariant manifolds of the subset Aa C R2 related to at distinct heights with
respect to f (x,y) x + y. In fact, one can show that the height p of the point
{qa} := Wfa.(pa) G W*(x(p2\) is strictly smaller than the minimal height v of any
point r e Wxlc(pa) fl W^"c(Aa): this situation is depicted in Figure 1 below and it is

quantitatively described in Lemma 4.2 below.

Moreover, the G -orbit of qa is locally unique in the sense that some portion of
the G-orbit of any point z M2 with sup„eZ /(G"(z)) close to p must stay close

to the first few G-iterates of qa: the quantitative incarnation of this fact is given by

Corollary 3.14 below.

In this context, we show that the Markov value p doesn't belong to the Lagrange

spectrum L by combining the previous two paragraphs. More concretely, if p e L,
say

p lim sup / (G"(z))
«—>•+00

for some z G M2, then the local uniqueness property would say that some portion
{G"°(z),..., G"0+m°(z)} of the G-orbit of z is close to the first few G-iterates

{qa, G(qa),.Gm°(qa)}, so that G"0+m°(z) is close to Aa. On the other hand,
the assumption that

p lim sup /(Gn (z))
«->+00

and the local uniqueness property say that there exists an instant n \ > no + mo such

that G"1 (z) is again close to qa. However, this is impossible because the iterates

of G"0+m°(z) would follow W-c(Aa) in their way to reach Gni(z) and we know
that the smallest height of the intersection between W*oc(qa) and W|f"c(Aa) is v > p:
see Figure 1 below for an illustration of this argument.

1.4. Ideas behind the proof of Theorem 1.3. Our proof of Theorem 1.3 relies on
the control of several portions of M \ L in terms of the sum-set of a Cantor set

associated to continued fraction expansions prescribed by a "symmetric block" and

a Cantor set of irrational numbers whose continued fraction expansions live in the

"gaps" of a "symmetric block". As it turns out, such a control is possible thanks to

our key technical Lemma 6.1 saying that a sufficiently large Markov value given by
the sum of two continued fraction expansions systematically meeting a "symmetric
block" must belong to the Lagrange spectrum.
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/ G"1 (z)

From a dynamical point of view, this argument can be qualitatively rephrased in
the following way. For the sake of clarity, let us illustrate how our method4 gives an

estimate for HD((M \L) D [V5, \/Î2]). It was shown by Hall that

HD(M n [V5, vTÖ]) < 0.93.

Hence, our task is reduced to show that

HD((M \L) n [VTÔ, VÏ2]) < 1.

Recall that Perron showed that any pt M F1 [\/5, \/l2] has the form

F sup f (Gn(z))
neZ

for some z e Aji2, where Aij2 C M2 is the set of points related to {1,2}Z c S.

Suppose that /i (M \ L) Fl [\/TÖ, \/l2] is associated to a point z e A ij2 with

F f(z) sup /(G"(z)).
neZ

The set of points Axp22 C M2 related to the sequences in {11,22}Z c S is the

geometric incarnation of a "symmetric block" in the sense that {11,22}z is a shift-
invariant, locally maximal, transitive set. In this situation, the G-orbit of z can't

4This is anon-trivial task because HD(L fi [\/5, -v/Î2]) HD(M fl [\/5, *s/Ï2]) 1 (cf. [17]).
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accumulate on A 11,22 in the past and in the future. In fact, if both the a-limit and

(W-limit sets of z intersect A 11,22 at two points and z+0O, then the transitivity
of A 11,22 would allow us to employ the shadowing lemma to construct a G-orbit
{Gn(w)}n6Z tracking certain periodic pseudo-orbits starting at z, reaching z+0O,

going to z_oo and coming back to z: this scenario is qualitatively described in

Figure 2 below and its quantitative incarnation is Lemma 6.1 below. In particular,

[i lim sup f(Gn(in)) L,
72->00

a contradiction. Therefore, if /re (M \ L) fl [VTÖ, V\2], then the past or the

future of the G-orbit of z Ai,2 can't approach An,22: in other words, {G"(z)}„^o
or {G"(z)}„^o travels through A 1,2 while avoiding some neighborhood of A11,22,

i.e., {G"(z)}„s0 or {G"(z)}„^0 lives in the "gaps" of A 11,22 in Ai,2.

/
v'T2

A

vfö

Figure 2. Dynamical constraints on M \ L.

An interesting feature of our method is its flexibility: we have some freedom in
our choices of "symmetric blocks". Of course, there is a price to pay in this process:
if one tries to refine the symmetric blocks to fit better the portions of M \ L, then one
is obliged to estimate the Hausdorff dimension of Cantor sets of irrational numbers
whose continued fraction expansions satisfy complicated restrictions.

In our proof of Theorem 1.3, we chose the symmetric blocks in order to rely only
on Cantor sets whose Hausdorff dimensions were rigorously estimated by Hensley
in [9],

Nevertheless, one can get better heuristic bounds for HD{M \ L) thanks to
the several methods in the literature to numerically approximate the Hausdorff
dimension of Cantor sets of numbers with prescribed restrictions of their continued
fraction expansions. By implementing the "thermodynamical method" introduced by
Jenkinson-Pollicott in [10], we obtained the empirical bound HD(M \ L) < 0.888.

A11.22

A 1,2
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Remark 1.7. As it was observed by Jenkinson-Pollicott in [11], it is possible in

principle to convert the heuristic estimates obtained with their methods into rigorous
bounds. However, we will not pursue this direction here.

1.5. Organization of the article. Closing this introduction, let us explain the
organization of the paper. After recalling some basic definitions in Section 2, we dedicate
the subsequent three sections to the proof of Theorem 1.1. More precisely, we show in
Section 3 that any Markov value close to 3.70969985975025 can only be realized

by a sequence containing the word

ß 2332221233222123322.

In Section 4, we show that a sequence a containing ß whose Markov value is

< 3.70969985975033 is necessarily periodic on the left, i.e.,

a 332221233222123322

(where 3322212 means an infinite concatenation of 3322212).
Then, we derive Theorem 1.1 in Section 5 as a consequence of a more precise

result (cf. Theorem 5.3 below) and the recent work of Jenkinson-Pollicott [11],
Next, we devote the remainder of the text to the proof of Theorem 1.3. More

concretely, we prove in Section 6 our main technical result namely, Lemma 6.1.

Once we dispose of this lemma in our toolbox, we employ it in Section 7 to
describe several portions of M \ L (i.e., the intersections of M \ L with the

intervals (a/ÏO, vT3), (a/Ï3, 3.84), (3.84, V2Ö), and (a/20, V2Ï)) as subsets of
arithmetic sums of relatively explicit Cantor sets; in particular, this permits to
establish Theorem 1.3. Finally, we show in Appendix B how a refinement of the

discussion in Section 7 can be combined with the Jenkinson-Pollicott algorithm to

give the heuristic bound HD(M \ L) < 0.888.

Acknowledgements. We are thankful to Dmitry Gayfulin for his feedback on our
proof of Theorem 1.1, and we are grateful to Pascal Hubert for his interest in this

project. This article was partly written during a visit of the first author to IMPA
(Brazil) sponsored by CAPES project 88887.136371/2017-00. The first author

warmly thanks IMPA's staff for the hospitality and CAPES for the financial support.
The second author is grateful to the financial support of FAPERJ and CNPq.

2. Some preliminaries

Given a finite word y, the sequence obtained by infinite concatenation of this word
is denoted by y.

In general, we will indicate the symbol ciq at the zeroth position of a sequence
a (an)nez by an asterisk, i.e., a — a_2fl-i«ofliU2
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An elementary result for comparing continued fractions is the following lemma5:

Lemma 2.1. Let a — [ao'.ai,..., an, a„+i,...] and ß — [ao:a\, • • •. on.bn+1,...]
with an+\ ^ b„ + \. Then:

• a > ß ifand only if (—\)n+l (an + \ —bn+\) > 0;

• \a-ß\< 1/2"-1.

The reader is encouraged to consult the book [2] by Cusick and Flahive for more
background on continued fractions and their relationship to the Lagrange and Markov

spectra.
In the next three sections, we concentrate on the proof of Theorem 1.1.

3. Local uniqueness of candidate sequences

In this entire section, we deal exclusively with sequences a (an)nez £ {1.2, 3}z.

Lemma 3.1.

(i) A0(. -.3*1 > 3.822:

(ii) A0(. ..23*2...) > 3.7165;

(iii) A0(. ..33*3...) < 3.61279.

Proof.

(i) A0(... 3*1...) £ [3; 1,173] + [0; 371] 3.822020185 ;

(ii) A0(. ..23*2...) ^ [3;2,"L3] + [0; 2,173] 3.7165151389911 ...;
(iii) A0(. ..33*3...) $ [3; 3, 371] + [0; 3,371] 3.61278966.

An immediate corollary of this lemma is:

Corollary 3.2. If 3.62 < A0(a) < 3.71, then

a ...33*2...

up to transposition.

Lemma 3.3.

(iv) A0(...33*21...) < 3.6973;

(v) A0(... 33*23 > 3.72 or A_i 33*23 > 3.822.

Proof.

(iv) A0(. ..33*21 ^ [3; 2, 1,173] + [0; 3,371] 3.6972... :

5Compare with Lemmas 1 and 2 in Chapter 1 of the Cusick-Flahive book [2],
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(v) By Lemma 3.1 (i), either:

A_i(...33*23...) > 3.822

or A0(. ..33*23...) £ [3; 2,3, 371] + [0:3,2. JJ] 3.72....

Corollary 3.4. If 3.698 < Ao(a) < 3.71 andXi(a) < 3.71 for |/| ^ 1, then

a ...33*22...

up to transposition.

Lemma 3.5.

(vi) A0(... 333*22...) > 3.71;

(vii) Xi 233*221 > 3.7099for some i e {-3,0,5};
(viii) A0(... 233*223 < 3.7087;

(ix) A0(. • • 3233*222...) ^ A0(. -. 2233*222...) < 3.7084.

Proof.

(vi) A0(... 333*22...) 3= [3; 2,2,371] + [0:3,3,371] 3.71 ...;
(vii) By Lemma 3.1 (i),(ii), either:

As(. ..233*221 > 3.822,

or A_3(. ..233*221 ...)> 3.71,

or A0(... 233*221 3= [3; 2,2,1,1,2,173] + [0:3,2,3,3,371]

3.7099028...;

(viii) A0(... 233*223 s= [3; 2,2, 3, 371] + [0; 3, 2, T7I] 3.708691 ;

(ix) A0(. • • 3233*222...):£ A0(... 2233*222

$ [3:2,2,2,371] + [0;3,2,2,37T] < 3.7083107

Corollary 3.6. If 3.7087 < Ao(ö) < 3.7099 and A, (a) < 3.7099for \i | V 5, then

a ...1233*222...

up to transposition.

Lemma 3.7.

(x) Aj(... 1233*2223 > 3.7099 for some i e {-5.0};
(xi) A0(. • 11233*2221 < 3.7096;

(xii) A0(... 21233*2222...) > 3.71;

(xiii) A0(. - .21233*2221 !...)> 3.7097;
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(xiv) A0(--.111233*22221 =5 A0(... 111233*22222 > 3.7097;

(xv) A..111233*22223 > 3.7097 for some i e {-7,0, 5};

(xvi) A0(... 211233*22223...) s= A0(... 211233*22222 < 3.70957;

(xvii) A; 121233*22212...) > 3.7097 for some i e {-7,0,7};

(xviii) A0(. • • 321233*22212...) < 3.709604.

Proof.

(x) By Lemma 3.1 (i), if A_5(... 1233*2223 < 3.82, then

A0(... 1233*2223...) =; [3:2,2,2,3,371] + [0;3,2,1,1,2,173]

3.7099...,

(xi) A0(... 11233*2221 ^ [3; 2, 2,2,1,173] + [0; 3,2, 1,1.173]

3.709507... ;

(xii) Ao(. ..21233*2222...) [3; 2, 2,2, 2, 371] + [0:3,2,1,2,371]

3.7107...;

(xiii) A0(... 21233*22211...) [3; 2,2, 2,1,1,173] + [0;3,2,1,2,371]

3.7097...;

(xiv) A0(... 111233*22222...) ^ [3; 2,2, 2,2, 2,173] + [0:3,2,1,1,1,173]

3.7097...;

(xv) By Lemma 3.1 (i),(ii), if A,(... 111233*22223 < 3.7097 for / 6 {-7,5},
then

Xi 111233*22223...) ^ [3:2,2,2,2,3,3,371] + [0; 3, 2,1,1,1, 1,2,13]
3.7097...;

(xvi) A0(. ..211233*22222...) ^ [3; 2,2, 2,2, 2, 37T] + [0; 3,2, 1,1,2,371]

3.709568...;

(xvii) By Lemma 3.1 (i), if A,- 121233*22212...) < 3.82 for |/| 7, then

A0(... 121233*22212...) ^[3;2,2,2,1,2,1,2,173] + [0;3,2,1,2,1,1,2,173]
3.7097...;

(xviii) A0(... 321233*22212...) [3; 2,2, 2.1, 2, 371] + [0; 3,2,1,2,3,371]
3.709603....
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Corollary 3.8. If 3.709604 < A0(a) < 3.7097 and Xj(a) < 3.7097 for \i | ^ 7, then

a 221233*22212... or ...211233*22221...

m/? to transposition.

Proof. By Corollary 3.6,

a 1233*222....

By Lemma 3.7 (x),

a ...1233*2221 or ...1233*2222....

By Lemma 3.1 (i), Lemma 3.7 (xi),(xii),

a ...21233*2221... or ...11233*2222....

By Lemma 3.1 (i) and Lemma 3.7 (xiii),(xiv),(xv),(xvi),

a ...21233*22212... or ...11233*22221....

By Lemma 3.1 (i) and Lemma 3.7 (xiv),(xvii),(xviii),

o ...221233*22212... or ...211233*22221....

Lemma 3.9. (xix) A0(... 221233*222121...) < 3.709642;

(xx) A0(... 1221233*222122...) $ A0(... 2221233*222122...) < 3.709693;

(xxi) A0(. • • 1221233*2221233 < 3.70968;

(xxii) A0(... 3221233*2221233 > 3.7097;

(xxiii) A0(... 1211233*222211...) $ A0(... 2211233*222211 < 3.70969;

(xxiv) A0(. • • 1211233*222212...) < 3.70969;

(xxv) Ao(... 3211233*222212...) > 3.7097.

Proof.

(xix) A0(... 221233*222121...) [3; 2,2,2, 1.2.1,173] + [0; 3,2,1,2,2,371]
3.709641 ;

(xx) A0(...2221233*222122...)

^ [3; 2, 2,2,1,2,2,173] + [0; 3,2,1,2,2,2,173] 3.7096929...;

(xxi) A0(... 1221233*2221233...)

s= [3; 2, 2,2. 1,2, 3.3,37F] + [0; 3,2, 1,2,2,1,173] 3.709679...;

(xxii) A0(... 3221233*2221233...)

=Ï [3; 2,2, 2.1,2,3,3,173] + [0; 3,2,1,2,2,3,37F] 3.70972...;
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(xxiii) A0(... 2211233*222211...)

[3; 2,2,2,2, 1.1,173] + [0:3,2,1, 1,2,2,173] 3.709688...;

(xxiv) A0(... 1211233*222212...)

^ [3:2,2,2,2,1,2.173] + [0;3,2,1, 1,2, 1.173] 3.709681 ...;
(xxv) A0(... 3211233*222212...)

^ [3:2,2,2,2, 1,2.371] + [0:3,2,1,1,2,3,371] 3.70974...;

Corollary 3.10. 7/3.709693 < A0(a) < 3.7097 and A,-(a) < 3.7097 for |i| 5= 9,

then

a 2221233*2221233... or ...33211233*222211...

or ...2211233*222212...

up to transposition.

Proof. By Corollary 3.8,

a ...221233*22212... or ...211233*22221....

By Lemma 3.9 (xix) and Lemma 3.1 (i),(ii), the sole possible extensions a are:

...221233*222122..., 221233*2221233

...211233*222211..., 211233*222212....

By Lemma 3.9 (xx),(xxi),(xxii),(xxiii),(xxiv),(xxv), the sole possible continuations
of a are:

...3221233*222122..., 2221233*2221233...,

...3211233*222211..., 2211233*222212

By Lemma 3.1 (i),(ii) and Lemma 3.5 (vi), we obtain that a is one of the words:

...233221233*222122..., 2221233*2221233...,

33211233*222211 2211233*222212

However, Lemma 3.5 (vii) forbids the word 233221233*222122..., so that we
end up with the following three possibilities:

...2221233*2221233...,
33211233*222211 2211233*222212...

for a.
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Lemma 3.11.

(xxvi) Xi 2221233*22212333 > 3.7097 for some i G {-7,0};
(xxvii) A0(... 33211233*2222112 < 3.70968;

(xxviii) A0(. ..2211233*2222121...) > 3.7097;

(xxix) A;(. ..2211233*2222122...) > 3.'7097 for some i e {-7,0}.

Proof.

(xxvi) By Lemma 3.1 (i),(ii), if X--]{... 2221233*22212333 < 3.71, then

A0(... 2221233*22212333...)

2s [3; 2,2, 2,1,2, 3, 3,3, 3J]+[0; 3,2,1,2,2, 2, 3, 3, 371] 3.7097001 ;

(xxvii) A0(... 33211233*2222112

s= [3; 2, 2, 2,2,1,1,2,371] + [0; 3,2,1,1,2,3,3,371] 3.709672...;

(xxviii) A0(-. 2211233*2222121...)
=5 [3;2,2,2,2,1,2,1,173] + [0;3,2,1,1,2,2,371] 3.709711 ...;

(xxix) By Lemma 3.1 (i),(ii), if A_7(... 2211233*2222122 < 3.71, then

A0(... 2211233*2222122...)

ss [3; 2,2,2,2, 1,2, 2,173] +[0; 3,2, 1,1,2,2,3,3,371] 3.709702....

Corollary 3.12. If 3.709698 < Ao(a) < 3.7097 and Xi(a) < 3.7097 for |/| + 9,

then

a ...2221233*22212332...,

or ...33211233*2222111..., or ...2211233*22221233...

up to transposition.

Proof. By Corollary 3.10,

a ...2221233*2221233...,

or ...33211233*222211..., or ...2211233*222212....

By Lemma 3.1 (i),(ii) and Lemma 3.11, we see that the sole possible continuations
of these words are:

a ...2221233*22212332...,

or ...33211233*2222111..., or ...2211233*22221233....
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Lemma 3.13.

(xxx) Ao(. 12221233*22212332...) > A0(... 22221233*22212332

> 3.7097;

(xxxi) A0(. 12211233*22221233 > A0(... 22211233*22221233

> 3.7097;

(xxxii) A0(. • 2332211233*222212333 < A0(... 2332211233*222212332...)

< 3.7096992;

(xxxiii) A0(. 2332221233*222123321...) > 3.7096999;

(xxxiv) A0(. - - 233211233*22221 111...) < A0(- - - 333211233*22221 111...)
< 3.709696;

(xxxv) A0(. • 333211233*22221112...) > A0(... 233211233*22221112...)

> 3.7097.

Proof.

(xxx) A0(. • • 22221233*22212332...)

5= [3; 2.2,2. 1.2,3,3.2.371] + [0; 3,2. 1,2,2.2,2.173] 3.709701 ...;
(xxxi) A0(... 22211233*22221233

Ss [3:2,2,2,2, 1.2,3,3,371] + [0;3,2,1,1,2,2,2,173] 3.709702...;

(xxxii) A0(. • • 2332211233*222212332

$ [3; 2,2.2, 2, 1,2,3,3,2,371] + [0; 3,2,1, 1,2,2,3,3,2,371]

3.70969913...;

(xxxiii) A0(... 2332221233*222123321

5= [3; 2,2,2, 1,2,3,3,2, 1,173] + [0; 3,2,1,2,2,2,3,3,2,173]
3.70969992...;

(xxxiv) A0(... 333211233*22221 111...)
s= [3; 2, 2,2, 2,1.1,1,1,173] + [0:3,2, 1, 1,2,3,3,3,173]

3.7096955...;

(xxxv) A0(... 233211233*22221112

£ [3:2,2,2,2,1,1, 1,2,371] + [0; 3, 2,1. 1,2,3,3,2,371]
3.7097004....

Corollary 3.14. If 3.7096992 < A0(a) < 3.7096999 and A,-(a) < 3.7096999

for \i I $ 9, then

a 2332221233*222123322

up to transposition.
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Proof. By Corollary 3.12, a is one of the words

...2221233*22212332...,

or ...33211233*2222111..., or ...2211233*22221233....

By Lemma 3.13 (xxx),(xxxi), Lemma 3.1 (i),(ii), and Lemma3.5 (vi), the sole

possible continuations for these words are

...2332221233*22212332 233211233*2222111....

...333211233*2222111..., 2332211233*22221233

However, Lemma 3.1 (i) and Lemma 3.13 (xxxii),(xxxiv),(xxxv) rules out all
possibilities except for

a 2332221233*22212332

Finally, Lemma 3.13 (xxxiii) and Lemma 3.3 (v), this word is forced to extend as

a ...2332221233*222123322....

4. Replication mechanism

In this entire section, we also deal exclusively with sequences a (an)nez e{1,2,3}z.

Lemma 4.1.

(xxxvi) A, (...22332221233*222123322...) > 3.70969986 for some i e {0,7};

(xxxvii) A0(... 12332221233*2221233223 > 3.70969986;

(xxxviii) A0(.. - 112332221233*222123322212...) > 3.70969986;

(xxxix) A0(. • • 3212332221233*222123322212...) > 3.7096998599.

Proof.

(xxxvi) By Lemma 3.5 (vii), if A7(... 22332221233*222123322...) < 3.7099,
then

A0(... 22332221233*222123322

=; [3; 2, 2,2,1,2,3,3, 2,2,2,371] + [0; 3,2,1,2,2,2,3,3,2,2,371]
3.70969986...;

(xxxvii) A0(. • • 12332221233*2221233223

£ [3; 2, 2,2,1,2, 3,3, 2,2,3, 3TT] + [0; 3,2,1,2,2,2,3,3,2,1,371]
3.70969986...;
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(xxxviii) A0(... 112332221233*222123322212

[3:2,2,2,1,2,3,3,2,2,2,1,2,371]

+ [0:3,2, 1,2,2,2,3,3,2, 1,1,173]

3.70969986... ;

(xxxix) A0(.. 3212332221233*222123322212...)
=Ï [3:2,2,2,1,2,3,3,2,2,2,1,2,371]

+ [0:3.2,1,2,2,2,3,3,2,1,2,3,371]
3.7096998599....

Lemma 4.2. A,- 12212332221233*222123322212...) > 3.70969985975033

for some i G {—17,—15,0, 13, 15}.

Proof. By Lemma 3.1 (i),(ii), ifA,-(... 12212332221233*222123322212...) < 3.71

for / e {—17, —15,13, 15}, then

At (...12212332221233*222123322212...)

5= [3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,371]

+ [0:3,2,1,2,2,2,3,3,2, 1,2,2, 1,1,2,1,2,173]

3.70969985975033....

Corollary 4.3. Let a .2332221233* 222123322... where the asterisk indicates
the position j Z. IfXi(a) < 3.70969985975033 for all |/ — j\ ^ 17, then

a 23322212332221233*222123322212...

and the vicinity of the position j —1 is 2332221233*222123322....

Proof. By Lemma 3.3 (v) and Lemma 4.1 (xxxvi), our word must extends as

a 12332221233*222123322....

By Lemma 3.5 (vii) and Lemma 4.1 (xxxvii), our word is forced to continue as

a ...12332221233*2221233222....

By Lemma 3.1 (i), we have the following possibilities

...112332221233*2221233222... or ...212332221233*2221233222...

for the word a. By Lemma 3.7 (x),(xii), these two words can continue only as

112332221233*22212332221 or 212332221233*22212332221
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By Lemma 3.7 (xiii), these words are obliged to extend as

...112332221233*222123322212... or 212332221233*222123322212....

However, we can apply Lemma 4.1 (xxxviii) to rule out the first case, so that

a 212332221233*222123322212....

By Lemma 3.7 (xvii) and Lemma 4.1 (xxxix), this word continues as

a 2212332221233*222123322212

By Lemma 4.2 and Lemma 3.9 (xxii), we have to extend as

a 22212332221233*222123322212....

By Lemma 3.13 (xxx), we are forced to continue as

a 322212332221233*222123322212

Finally, Lemma 3.1 (i),(ii) and Lemma 3.5 (vi) reveal that

a 23322212332221233*222123322212

5. Lower bound on the Hausdorff dimension of M \ L

Proposition 5.1. L n (3.70969985968,3.70969985975033) 0.

Proof. Suppose that i e Ln(3.70969985968,3.70969985975033) and let a (1,2, 3}z
be a sequence such that

t lim sup A„ (a).
n —>oo

By repeatedly applying Corollaries 3.14 and 4.3, we would deduce that

I A0(33*22212) 3.709699859679... < 3.70969985968

a contradiction.

Proposition 5.2. C {A0(332221233*22212332221221212120) : 6 e {1,2}N} is

contained in M n (3.70969985975024,3.70969985975028).

Proof. This is a straightforward calculation.

The previous two propositions imply that:

Theorem5.3. C {A0(332221233*22212332221221212120) : 6 e {1. 2}N} C M \L.
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By Jenkinson-Pollicott work [11], a consequence of Theorem 5.3 is the following
slightly stronger version of Theorem 1.1:

Corollary 5.4. The Hausdorff dimension of (M \ L) D (3.7096, 3.7097) is

Ïï 0.5312805062772051416244686473684717854930591090183....

In Appendix A, we refine our proof of Theorem 1.1 to determine the largest
interval J containing the set C from Proposition 5.2 with J D L 0, to compute
the largest element T of (M \ L) n J, and to exhibit a Cantor set £2 of continued
fraction expansions such that HD{Q.) — HD((M \ L) IT J).

For now, we consider that the discussion of Theorem 1.1 is complete and we move
on to the discussion of the proof of Theorem 1.3.

6. Key lemma towards Theorem 1.3

Denote by

K(A) {[0; y] : y e £+(A)} and K~(A) {[0:5'] : 8 e XT(A)}

the Cantor sets of the real line naturally associated to an invariant subshift of finite
type S (A) C S.

Fix S (B) c S (C) two transitive (invariant) subshifts of finite type of S (N *)z
suchthat K(B) K~(B) and K(C) K~{C), i.e., B and C are symmetric.

Denote by a (an)n<=z e E(C) be a sequence with m(a) f(a) m e M
and

m > max ([0: ß]~l + [0; (cc/j)']) := c{B, C). (6.1)
/3e£+(ß),ae£-(C)

r] finite word preceding ß in £(B)

Lemma 6.1. Suppose that, for every k N, there exists n^^ k such that:

(i) the half-infinite sequence a (* an/c can be completed into two bi-infinite
sequences

dj?' .ÖQ • ankot]L and a*Q ankfff

so that K(B) n [[0;a*], [0;/^]] f 0;

(ii) the half-infinite sequence a-m/c can be completed into two bi-infinite
sequences

#13) na-mk and 9^ 8ka-,„k ...a^...

so that K{B) n [[0; yff], [0; &k]\ 7^ 0."

(iii) lim m(9k^) — m for each 1 ^ j ^ 4.
k-*oo

Then, m e L.
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Proof. By Theorem 2 in Chapter 3 of the Cusick-Flahive book [2], our task is reduced

to showing that

m lim m(Pk),
k-+oo

where P'k is a sequence of periodic points in £.
For each k e N, let us take /x^, Vk e £(5) with

[0;«fc] ^ [0;7r+(/Xfc)] [0;/J*] and [0; yjf] ^ [0; (7r+(v^))r] ^ [0;4']- (6.2)

The transitivity of the subshift of finite type 11(5) permits to choose finite subword

(/x * v)k of an element of £(5) connecting the initial segment /x^* of n+(p.k) of
length k with the final segment vf of n~{vk) of length k, say

(H * v)k

In this setting, consider the periodic point P,t G £ obtained by infinite
concatenation of the finite block

ÜQ... a„k (ji * v)ka-mk a-i.

By (6.2) and Lemma 2.1, for each — 1 — mk $ j ^ nk + 1, one has

f(oJ(Pk)) A max {m(9{^). m(d£3>), m(^4))} + —j-j. (6.3)

By definition of c(B. C), the facts that £(5) C £(C) and 5, C are symmetric, and

Lemma 2.1, one has

f(<rJ(Pk))<c(B,C) + ^T (6.4)

for each j corresponding to a non-extremal position in (/x * v)&. Also, by Lemma 2.1,

we know that

f(Pk) > fia) - =rn- (6.5)

It follows from (6.1), (6.3), (6.4), and (6.5) that

m - A m(Pk) ^ ma

for all k sufficiently large. In particular, m lim^-s-oo m(Pk) thanks to our assumption

in item (iii). This completes the argument.

Remark 6.2. As it can be seen from the proof of this lemma, the hypothesis
that 5 and C are symmetric can be relaxed to K(B) n K~(B) f 0 and/or

K(C) n K~(C) 0 after replacing (6.1) by appropriate conditions on m.
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7. Rigorous estimates for HD(M \ L)

In this section, we use Hensley's estimates in [9] for the Hausdorff dimensions of the

Cantor sets K({ 1,2}), 7C({ 1, 2, 3}), and J^({1,2, 3,4}) in order to rigorously prove
Theorem 1.3.

7.1. Description of (M\L)n(-/ÏÔ, «/Ï3). Let m G M\L with v^IÖ < m < \/Î3.
In this setting, m m (a) f(a) for a sequence

a (1,2}Z =: Z(C)

(see, e.g., Lemma 7 in Chapter 1 of Cusick-Flahive book [2]).
Consider the (complete, invariant) subshift Z(B) C X(C) associated to B

{11,22}, namely

Z(B):= {(a«)«ez • 2ka2k+\ ^ {11> 22}VA: G Z or fl2fc-ia2/fc e {11,22}, \k G Zj.

Note that B and C are symmetric, and the quantity c(B.C) introduced above is

bounded by

c(B,C) ^ [2; 272] + [0; L2] s/l + V3 < VIÖ < m (7.1)

thanks to Lemma 2.1.

Fix e > 0 such that [m — 2s, m + 2s] D L 0 and take jV eN with / (a7 (a)) <
m — 2s for all \j | ^ N. For each n G N*, resp. —n G N*, let us consider the

possible continuations of an, resp. an into sequences in S(C)
whose Markov values are attained in a position \ j\ ^ N.

Of course, for every n G Z \ {0}, we have the following cases:

(a) there is an unique continuation (prescribed by a);

(b) there are two distinct continuations given by half-infinite sequences ocn and ßn ;

in this context, one has two subcases:

(bl) the interval /„ determined by [0: un\ and [0: /!„], resp. [0\{an)'\ and

[0; (ßn)'], when n > 0, resp. n < 0, is disjoint from K(B)\
(b2) the interval /„ determined by [0: a„] and [0: ßn], resp. [0: (an)r\ and

[0; (ßn)'], when n > 0, resp. n < 0, intersects K(B).

Proposition 7.1. There exists k G N such that:

• eitherfor all n k the subcase b2 doesn't occur;

• orfor all n ^ —k the subcase (b2) doesn't occur.

Proof. If there were two subsequences nk, mk +oo so that the case (b2) happens
for all n k and—/tt^Ohen (7.1) and Lemma 6.1 would say that m g L, a contradiction
with our assumption m G M \ L.



Vol. 95 (2020) Fractal geometry of M \ L 615

The previous proposition says that, up to replacing a by its transpose, there
exists k >; 0 such that, for all n ^ k, either an has a forced continuation

üq anan+\ or two continuations anan and anß„ with
[[0; an\, [0: ßn]] n K(B) 0. Therefore, we conclude that in this setting

where [0;a_i,...] e K(C) and [0; a i,...] belongs to a set K consisting of the

union of a countable set " corresponding to the forced continuations of finite strings
and a countable union of Cantor sets related to sequences generating two continued
fractions at the extremities of an interval avoiding K(B).

Let [0; ai,...] K \ "C such that, for all n sufficiently large, a\ a„ admits two
continuations generating an interval avoiding K(B). Given an arbitrary finite string

(b\,..., bn), consider the interval

Recall that the length of I(b\,..., b„) is

where qj is the denominator of [0; b \ h j}. We claim that the intervals

/(«i,... ,an) can be used to efficiently cover K \~C as « goes to infinity. For
this sake, observe that if a\...a„ has two continuations, say a\... an\otn+\
and a\ ,an2ßn+i such that [[0; 2ßn+i], [0; lc*„+1]] is disjoint from K(B), then

an 1 an+i and ßn 2ßn+l start by

In particular, we can refine the cover of K\'C with the family of intervals ,an)
by replacing each of them by I{ci\,... ,an, 1,1,2) and I(a\,... ,an, 2,2,1).

We affirm that this procedure doesn't increase the (0.174813)-Hausdorff measure
of K \ For this sake, it suffices to prove that

|/(a!,...,a„,1,1,2)|J + |/(ui,...,a„,2,2,l)|* ^ \I(alt..., an)\s (7.3)

with s 0.174813.

m fl0 + [0; ai,...] + [0;o_i ], (7.2)

lib i bn) := {[0;èi,. ..,b„,p]:p> l}.

an 112a,!+3 and ßn 22\ßn+3.

In this direction, set

gis) :=
\I(ai,... ,an,\, 1,2)|* + \Ijai,... ,an.2,2,l)\s

I liai,.. .,a„) I*

The recurrence formula qj+2 aj+2<lj+\ + <lj implies that

S
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where r qn-\/qn e (0,1). Since
(3r_|_5)(4r_|_7) ^ 35

and (3r+7)(5r+i2) < 81.98
for all 0 ^ r ^ 1, we have

< (7* + (iT*)'
This proves (7.3) because (1/35)0 174813 + (1/81.98)0 174813 < 1.

We summarize the discussion of the previous paragraphs in the following
proposition:

Proposition 7.2. (M \ L) fl (7TÖ, 7T3) C AT({1, 2}) + K, where K is a set of
Hausdorff dimension HD(K) < 0.174813.

An immediate corollary of this proposition is:

Corollary 7.3. HD((M \ L) n (7Ï0, 713)) < 0.706104.

Proof. By Proposition 7.2 and Hensley's estimate [9] for HD(K({\, 2})), one has6

HD((M \L) n (7TÖ, 713)) $ HD(K({1.2})) + HD(K)
< 0.531291 + 0.174813 0.706104.

This proves the corollary.

7.2. Description of (M\L)n(7l3,3.84). Let m e M\L with 7Ï3 < m < 3.84.

In this setting, m m (a) f(a) for a sequence

a a-i,ao,ai, • £ {1,2, 3}z =: E(C)

not containing 13 nor 31 because if 9 contains 13 or 31, then a result of Bumby
(explained in Table 2 in Chapter 5 of Cusick-Flahive's book [2]) implies that

m(0) > 3.84.

Consider the (complete) subshift E(ß) {1,2}Z C S(C). Note that B and C
are symmetric, and the quantity c(B, C) introduced above is bounded by

c(B,C) ;< max (ß~1 + a) [2; 1,21 + [0; 1, 31 < 7Ï3 < m
ßeK(B)
aeK(C)

thanks to Lemma 2.1.

We proceed similarly to Subsection 7.1. More precisely, the same arguments
(based on Lemma 6.1) above give that, up to transposing a, there exists

k e N such that, for all n ^ k, either ...öq.--0« has a forced continuation

öq anan+1 or two continuations anan and anßn with
[[0;an], [0; ßn]\ fl K(B) 0. We want to use this information to efficiently
cover (M \ L) fl (7Ï3,3.84). For this sake, let us note that the constraint

[[0; an\, [0; ßn]\ fl K(B) 0 impose severe restrictions on the possible continuations

an and ßn. In particular, they fall into two types:

6Here, we are also using that HD(X + Y) < HD(X) + HD(Y) whenever LfCl are subsets

such that the Hausdorff and box-counting dimensions of X coincide.
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* 3a/i+i and ßn — 21^+2,
• an G {221a„+3,23a„+2} and ßn e {1121ßn+4,113ß„+3}.

Moreover, our assumption that a doesn't contain 13 or 31 (due to the hypothesis

m (a) m < 3.84) says that we can ignore the case ßn e (113/ln+3}.
In summary, we have that the .s-Hausdorff measure of the set

K := {a [ao\a\,...] : VT3 < m(a) < 3.84}

is finite for any parameter s with

\I(ai,...,an,3)\s + \I{ax,...,an,2,\)\s
Vu 7Ü < 1

I I(ax,...,an)\s

and

|/(ai,... ,a„,2,2, l)!5 + \I(au... ,an,2,3)\s + |/(«i,. 1,1,2, l)|s
h{s)

\I{ai,...,an)\s
< 1

for all (ai,... ,an) e [J {1,2,3}*.
yfceN

The recurrence qj+2 a j+2<lj+i + Qj implies that

\I(au...,a„,3)\ r + 1 \I(a1 fl„,2,l)| /• + 1

\I(al,...,a„)\ (r + 3)(r + 4) \I(au ,an)\ (r + 3)(2r + 5)

and

I / (a i U/1,2,2, 1)| r + 1

|/(fli,...,a„)| ~ (3r + 7)(5r + 12)
'

|/(fli,...,a„, 2, 3)|
_ r + 1

|/(fli,...,a„)| (3r + 7)(4r + 9) '

\I(ai,...,an, 1,1,2,1)| r + 1

|/(ai,...,a„)| (4r + 7)(7r + 12)
'

where r qn-\/qn (0,1).
Since

r+1 1 r+1
$ —, 7 + 0.071797,

(r + 3)(r + 4) 10' (r + 3)(2r + 5)

r+1 r+1
^ 0.012197, ^ 0.016134,

(3r + 7)(5r + 12) (3r + 7)(4r + 9)

and

r+1 1

<
(4r + 7) (7r + 12) 84
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for all 0 ^ r ^ 1, we deduce that

g(s) ^ (—V + (0.071797)i and h(s) (0.012197/ + (0.016134)* +
V10^ V84/

Therefore,

max {g(0.281266),/z(0.281266)} < 0.999999

and, a fortiori, the (0.281266)-Hausdorff measure of

K {[flo;fli,...] : vT3 < m(a) < 3.84}

is finite. It follows from this discussion:

Proposition 7.4. (M \ L) D (\/T3, 3.84) C ^3({13, 31}) 4- K, where

9^3 ({13,31}) := {[0; y] : y e {1,2,3}N contains neither 13 nor 31 j

and K is a set ofHausdorffdimension H D(K) < 0.281266.

A direct consequence of this proposition is:

Corollary 7.5. HD((M \L) D (V\3, 3.84)) < 0.986927.

Proof By Proposition 7.4 and Hensley's estimate [9] for HD(K({ 1. 2, 3})), one has

HD((M \L) n (x/Ï3, 3.84)) $ HD(K({ 1.2,3})) + HD(K)
< 0.705661 + 0.281266 0.986927.

This completes the argument.

7.3. Description of (M\L)fl (3.84, -v/20). Let m e M \L with 3.84 < m < V2Ö.

In this setting, m m(a) /(a) for a sequence

a (...,a-ua0,ai,...) e {1,2,3}Z =: E(C).

Consider the subshift T,(B) c S(C) associated to B {1,2,2321,1232}. Note

that B and C are symmetric, and the quantity c(B, C) introduced above is bounded

by
c(B.C) [3; 2,1.1,2] + [0:2.3. 1] < 3.83 < 3.84 < m

thanks to Lemma 2.1.

As it was explained before, we can use Lemma 6.1 to see that, up to

transposing a, there exists k e N such that, for all n ^ k, either ..a^ ,.a„
has a forced continuation a^ a„an+1 or two continuations öq ana„
and • öq - anßn with [[0: ot„], [0; ß„]\ fl K(B) 0. From this, we are ready to
set up an efficient cover of (M \ L) D (3.84, V2Ö). In this direction, note that the

condition [[0; an], [0: ßn]] Fl K(B) — 0 imposes two types of restrictions:
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• an 3a„+i andß„ 21jß„+2;

• a„ 23cr„+2 and ß„ e {l\2lßn+4, 1130„+3}.

Hence, we have that the .y-Hausdorff measure of the set

K [a [ao\a\,...] : 3.84 < m(a) < V2Ö}

is finite for any parameter s with

\I(ai,...,an,3)\s+ \I(ai,...,an,2,l)\s
T77 VT < 1

\I(ai,.. .,an)\s

and

I/(ai,... ,a„,2,3)|* + \I(au ,an, 1,1,2, 1)|* + \I(aU- an, 1,1, 3)|*
h(s) Ï77 07

I I{al,...,an)\s
< 1

for all (au.. .,a„) e (J {1,2, 3}^.
fceN

We saw in the previous subsection that g(0.281266) < 0.999999 and

c /l\s I/(fll 1,1, 3)|s
A(S)=S (0.016134)*+(-) +^t ' ~ •

V84/ |/(at a„)\s

Because the recurrence qJ +2 aj^qj+i + qj implies that

\I(ai, ...,an, 1. 1,3)[ _ r + 1

\I(ai,...,an)\ (4r + 7)(5r + 9)
'

where r qn-\/qn e (0, 1), and since (4r+^(gr+9) ^ for all 0 ^ r 1, we
conclude

h(s)«(0.016134)» + (F)' +

Thus,

max {^(0.281266), /z(0.281266)} < 0.999999

and, a fortiori, the (0.281266)-Hausdorlf measure of

K {[<aotöl,- • ] : 3.84 < m(a) < V2Ö}

is finite. In particular, we proved the following result:

Proposition 7.6. (M \ L) fl (3.84, V2Ö) C AT({ 1, 2, 3}) + K where K is a set of
Hausdorffdimension HD(K) < 0.281266.

As usual, this proposition yields the following estimate:

Corollary 7.7. HD((M \ L) n (3.84. V2Ö)) < 0.986927.
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Proof. By Proposition 7.6 and Hensley's estimate [9] for HD(K({1, 2. 3})), one has

HD((M \ L) n (3.84, V2Ö)) ^ HD(K({ 1,2, 3})) + HD(K)
< 0.705661 + 0.281266 0.986927.

This ends the proof.

7.4. Description of (M\L)n (a/20, a/21). Let m M \L with a/20 < m < V2L
In this setting, m m (a) f(a) for a sequence

a ,a-i,a0,ai,...) G S(C)

:= {y e {1.2,3,4}z not containing 14, 41, 24, 42}

because:

• if 0 contains 14 or 41, then m(9) ^ [4; 1,1,4] + [0; 4,1] > a/2T by Lemma 2.1;

• if 9 contains 24 or 42, but neither 14 nor 41, then Lemma 2.1 implies that

m(6) [4; 2,1/3] + [0; 472] > V2Ï.

Consider the subshift S(B) C S(C) associated to

B {21312,232,3,11313,31311}

with the restrictions that 31311 follows only 3, and 11313 is followed only by 3. Note

that B and C are symmetric, and the quantity c(B.C) introduced above is

c(B, C) < 4.46 < V2Ö < m

thanks to Lemma 2.1.

As it was explained before, we can use Lemma 6.1 to see that, up to
transposing a, there exists k e N such that, for all n k, either ...a^...an
has a forced continuation a„a„+1 or two continuations anan
and ,a.Q ,anßn with [[0;an\, [0;ßn}] D K(B) 0. From this, we are ready
to cover (M \ L) IT (\/2Ö, Vlï). In this direction, note that the condition
[[0; an], [0; ßn]] D K(B) 0 imposes three types of restrictions:

• a„ 4a„+i and ßn 313lyß„+4;

• a„ e {33131q:„+5, 34a„+2} and ßn 2131^„+4;

• an 23an+2 and ßn 1131^„+3.

Hence, we have that the .v-Hausdorff measure of the set

K {[ao'.ai,...] : ^20 < m(a) < a/2Ï}
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is finite for any parameter s with

I I(ai,...,an,4)\s+ \I(a1,...,an,3,1,3, \)\s
T77 TjT < !•

.,an)\s

|/(ûi, 3, 3,1, 3, l)^ + |/(fli...., a„, 3, 4)|5 \
I +|/(fli fl„,2,l,3,l)IV

h(s) -r. —
|/(«t an)\s

< 1.

and
|/Oi an,2, 3)|ä + |/(öi an, 1,1,3, l)|s

' (^) TJZ TT7 < 1

|/(ûi a„)\s

for all (ai,..., an) e U {1,2,3,4}^.
keN

We saw in the previous subsection that

\I(ai,...,an, 1,1,3,1)|J
i(s) Ü (0.016134) +

1 ;I
|/(öi, .,a„)\s

On the other hand, the recurrence qj+2 aj+iQj+i + 1j implies that

|/(ai,...,a„,4)| _ r + 1

|/(«i a„)\ (r + 4)(r + 5)
'

|/(ai,...,a„,3,l,3,1)| r + 1

11 (a i a„) I (5r + 19) (9r + 24) '

|/(ui a„, 3,3,1,3,1)| r + 1

and

|/(ßi,...,a„)\ (19r + 62)(34r + 111)'

|/(Qi a„.3,4)| _ r + 1

|/(fli,...,a„)| (4r + 13)(5r + 16)'

1/(0!,.2,1,3,1)| r + 1

II(au...,a„)\ ~ (5r + 14)(9r + 25)'

|/(oi,... ,Q„, h 1,3, 1)|
_ r + 1

I/(«l a„) I (5r + 9)(9r + 16)'

where r qn-i/qn e (0, 1).

Since

r+1 1 r+1 1

< — <
(r + 4)(r + 5) 15' (5r + 19)(9r + 24) 516'

r+1 2 r+1 2
< <

(19r+ 62)(34r + 111) 11745' (4r + 13)(5r + 16) 357'

r+1 r+1 1

$ 0.003106. and ^
(5r + 14)(9r +25)

' ' (5r + 9)(9r + 16) 144
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for all 0 ^ r ^ 1, we get

(l\s / 1 \j / 2 \s / 2 \s
is) +(ïïi)' ft(s)sS(ïï^) +(5sr) +<»"»3106)',

i{s) ^ (0.016134)5 + (^y.
Thus,

max {g(0.172825), /i(0.172825), i(0.172825)} < 0.999997

and, a fortiori, the (0.172825)-Hausdorff measure of

K {[ao\ai,...] : V2Ö < m(a) < V2Ï}

is finite. In particular, we proved the following result:

Proposition 7.8. (M \ L) n (V20, V2Ä) C *4({14, 41, 24,42}) + K, where

({14, 41, 24.42}) := {[0; y] : y e {1,2, 3,4}N does not contain 14, 41, 24, 42}

and K is a set ofHausdorff dimension HD(K) < 0.172825.

As usual, this proposition yields the following estimate:

Corollary 7.9. HD({M \ L) n (V2Ö. V2Ï)) < 0.961772.

Proof. By Proposition 7.8 and Hensley's estimate [9] for HD(K({ 1, 2, 3,4})), one
has

HD((M \ L) n (V2Ö, V2Ï)) $ HD(K({ 1,2, 3, 4})) + HD(K)
< 0.788947 + 0.172825 0.961772.

This finishes the argument.

7.5. End of proof of Theorem 1.3. By Corollaries 7.3, 7.5, 7.7, and 7.9, we have

that

HD((M \L) D (VIÖ, V2Î)) < 0.986927.

On the other hand, Freiman [4] and Schecker [18] proved that [^21, 00) C L.
Therefore, (M \ L) (T [s/21, 00) 0. Also, the proof of Theorem 1 in Chapter 6 of
Cusick-Flahive's book [2] gives the (rigorous) estimate

HD(M n —00, v/ïô)) < 0.93

for the Hausdorff dimension of M fl (—00, VÏÔ).
By putting these facts together, we obtain the desired conclusion, namely,

HD(M \L)< 0.986927.
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A. Structure of M \ L near 3.7

A.l. The largest interval J avoiding L containing C. Consider the quantities

jo := A0(33*22212) 3.70969985967967...

and

jx := A0(21T2212332221233*22212332221233321Ï2) 3.70969985975042....

By Corollary 3.14, Lemma 4.1, and the proof of Corollary 4.3, we have that:

Proposition A.l. Ifjo < m (a) Ao(fl) < 3.7096998599, then (up to transposition)

' either a ...12212332221233*222123322212...,

• or a ...23322212332221233*222123322212... and the vicinity of the

position -1 is 2332221233*222123322....

Indeed, this happens because m(a) < 3.7096998599 allows to use all results from
Sections 3 and 4 except for Lemma 4.2.

Proposition A.2. Ifm(a) < 3.71 and a contains 12212332221233*222123322212,
then m (a) ^ j\.
Proof. By Lemma 3.1 (i),(ii),

Ao(a) [3:2,2,2,1,2,3,3,2,2,2,1,2,...]
+ [0:3,2,1,2,2,2,3,3,2,1,2,2,1,...]

+ [3:2,2,2,1,2,3,3,2,2,2, 1,2,3,3,3,2,...]
+ [0; 3,2, 1,2,2,2,3,3,2,1,2,2,1,172].

By Lemma 3.3 (v) and Lemma 3.5 (vi),

A0(fl) =Ï [3:2,2,2,1,2,3,3,2,2,2,1.2,3,3,3,2,...]
+ [0; 3, 2,1,2,2,2,3,3,2,1,2,2, 1,ÏÏ2]

+ [3:2,2,2, 1,2,3,3,2,2,2,1,2,3,3,3,2,1,...]
+ [0:3,2,1,2,2,2,3,3,2,1,2,2,1,172],

By Lemma 3.1 (i), we conclude that

A0(a) [3:2,2,2,1,2,3,3,2,2,2,1,2,3,3,3,2,1,...]
+ [0:3,2,1,2,2,2,3,3,2,1,2,2,1.172]

^ [3;2,2,2, 1,2,3,3,2,2,2,1.2,3,3,3,2,1,172]

+ [0:3,2,1,2,2,2,3,3,2,1,2,2,1,172]
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By putting together Propositions A.l and A.2, we obtain the following
strengthening of Propositions 5.1 and 5.2:

Proposition A.3. The open interval J (jo- ji containing C is disjoint from L.

Proof. On one hand, the fact that J contains C is an immediate consequence of
Proposition 5.2. On the other hand, if y'o < m (a) < j\ for a periodic sequence a,
then, thanks to Proposition A.2, we would be able to iteratively apply Proposition A. 1

to obtain that m(a) Ao(33*22212) j0, a contradiction. Since the Lagrange

spectrum is the closure of Markov values associated to periodic sequences, we derive
that J fl L 0.

Since it is not hard to see that jo and j\ belong to L, the previous proposition
implies that:

Corollary A.4. J is the largest interval containing C which is disjoint from L.

A.2. The largest known element of M \ L. Consider the quantity

T:= A0(332221233*222123322212212121L2) 3.7096998597503806....

Proposition A.5. T is the largest element of (M \ L n ./.

Proof. Given a e {1.2, 3}z with m(a) Ao(fl) J, we can apply Propositions A.2
and A.l to obtain that (up to transposition)

m(a) [3; 2,2,2,1,2,3,3,2,2,2,1,2,...] + [0; 3,2,1,2,2,2, 3,3],

If ai3 1, then

m(a) is [3:2,2,2, 1.2,3,3,2,2,2,1,2,1,172] + [0;3,2, 1.2,2,2,3.3]
3.7096998599...,

a contradiction. Hence,

m(a) ^ [3:2,2,2.1,2,3,3,2,2,2,1,2,2,...] + [0:3,2,1,2,2,2,3,3],

If fli4 {2, 3}, then

m(a) 2: [3; 2,2,2, 1,2,3,3,2,2,2,1,2,2,2,3,3,271] + [0:3,2,1,2,2,2,3,3]
3.709699859799...,

a contradiction. Thus,

m(a) ^ [3; 2, 2, 2. 1,2,3,3,2,2,2,1,2,2,1 ...] + [0:3,2,1,2,2,2,3,3],
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If aïs 1, then

/«(a) ^ [3:2,2,2, 1,2,3,3,2,2,2,1,2,2,1, 1,172] + [0: 3, 2. 1. 2, 2, 2. 3, 3]

3.709699859765

a contradiction. Therefore,

777(a) ^ [3:2,2,2, 1,2,3,3,2,2,2, 1,2, 2,1,2,...] + [0; 3,2,1,2,2,2,3,3],

If «16 e {2, 3}, then

777 (a) ^ [3:2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,2,371...] + [0:3,2,1,2,2,2,3,3]
3.709699859753

a contradiction. So,

777 (a) ^ [3;2,2,2, 1.2,3,3,2,2,2,1,2,2, 1,2,1,...] + [0; 3, 2, 1,2,2,2,3,3],

If ai7 1, or a17 2 and aig e {2, 3}, then

777(a) 2; [3:2,2,2,1,2,3,3,2,2,2, 1,2,2,1,2, 1,2,2,371] + [0:3,2, 1,2,2,2,3,3]
3.70969985975049...,

a contradiction. Hence,

777(a) ^ [3:2,2,2,1,2,3,3,2,2,2, 1,2,2, 1,2,1,2,1,.. ,] + [0; 3, 2. 1,2,2,2,3,3].

It follows that

777 (a) ^ [3;2,2,2,1,2,3,3,2,2,2, 1,2,2, 1,2,1, 2,1,172] + [0:3,2, 1,2,2,2,3,3]
T.

This completes the argument.

A.3. The Hausdorff dimension of M \ L near 3.7. As it is explained in our
previous works [15] and [16], we have that

HD((M \ L) n J) HD(Q.),

where G is the Gauss-Cantor set

Q := {[0; y] : y e {1,2, 3}N doesn't contain subwords in P)

with P consisting of "big words"7 appearing in items (i), (ii), (v), (vi), (vii), (x),
(xii), (xiii), (xiv), (xv), (xvii), (xxii), (xxv), (xxvi), (xxviii), (xxix), (xxx), (xxxi),
(xxxiii), (xxxv), (xxxvi), (xxxvii), (xxxviii), (xxxix) in Section 3 and 4 and their

transposes, and the "self-replicating" word 2332221233222123322 in Corollary 4.3

and its transpose.

7In the sense that the appearance of these words implies that the value of Aq surpasses j\.
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B. Empirical derivation of HD(M \ L) < 0.888

The algorithm developed by Jenkinson-Pollicott in [10] allows to give heuristic
estimates for the Hausdorff dimensions of certain Cantor sets of real numbers whose

continued fraction expansions satisfy some constraints. Furthermore, Jenkinson-
Pollicott shows in [11] how these empirical estimates can be converted in rigorous
estimates.

In this section, we will explore Jenkinson-Pollicott algorithm to give an empirical
derivation of the following bound:

HD(M \ L) < 0.888. (B.l)

B.l. Heuristic estimates for HD((M \L)r1 (-oo, 713». Consider again the sub-

shiftS(ß) := {11.22}z ofS(C) {1,2}Z. The quantity c(B. C) introduced above

is

c{B,C) [2:171] + [0:2,271] < 3.0407 < 3.06.

This refined information on c(B,C) allows us to improve Proposition 7.2 and

Corollary 7.3. Indeed, by repeating the analysis of Subsection 7.1 with this stronger
estimate on c(B, C), one gets the following result:

Proposition B.l. (M \ L) D (3.06, \/Ï3) C AT({ 1,2}) + K, where K is a set of
Hausdorffdimension HD(K) < 0.174813. In particular,

HD((M \ L) n (3.06, x/l3)) < 0.706104.

This proposition implies that

HD((M \ L) n (-oo, Vl3)) < max {HD((M \ L) n (-oo, 3.06)), 0.706104}.

On the other hand, as it is explained in Table 1 of Chapter 5 of Cusick-Flahive's
book [2], a result due to Jackson implies that if the Markov value of a sequence a e £
is m (a) < 3.06, thena contains neither 1.2, 1 nor 2, 1.2. Thus,

HD((M \L) n (-oo, 3.06)) ^ 2 • HD(K(X2({ 121. 212}))),

where K(X2({ 121.212})) {[0; y] : y e {1, 2}N not containing 121, 212}.
A quick implementation of the Jenkinson-Pollicott algorithm seems to indicate

that

HD(K(X2({ 121,212}))) < 0.365.

Hence, our discussion so far gives that

HD((M \ L) n (-oo, x/l3)) < 0.73. (B.2)
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B.2. Heuristic estimates for HD((M \ L) n («/Ï3,3.84)). Our Proposition 7.4

above implies that

HD((M \ L) D (VT3,3.84)) < HD{X3{{ 13, 31})) + 0.281266,

where Z3({13, 31}) := {[0; y] : y e {1,2. 3}N contains neither 13 nor 31}.
After running Jenkinson-Pollicott algorithm, one seems to get that

HD(X3({13, 31})) < 0.574

and, a fortiori,
HD((M \ L) n (VT3, 3.84)) < 0.856. (B.3)

B.3. Heuristic estimates for HD((M \ L) n (3.84,3.92)). Let m e M \L with
3.84 < m < 3.92. In this setting, m m (a) fia) for a sequence

a a-i,ao,a.\ e {1,2,3}Z =: S(C)

not containing 131, 313, 231, 132. Consider the subshift E(ß) C £(C) associated

to B - {1,2,2321,1232, 33} with the restrictions that 33 doesn't follow 1 or 2321,
and 33 is not followed by 1 or 1232. Note that B and C are symmetric, and the

quantity c(B,C) introduced above is

c(B, C) < 3.84 < m

thanks to Lemma 2.1.

From Lemma 6.1 we obtain that, up to transposing a, there exists k e N such that,

for all/t ^ k, either.. .a$ ...an has a forced continuation.. ,üq .anan+\ .ortwo
continuations üq anan and anßn with [[0; an\, [0; ßn]] fl K(B) — 0.

From this, we are ready to set up an efficient cover of (M \ L) fl (3.84, 3.92). In this

direction, note that the condition [[0; an], [0; ßn]] fl K{B) — 0 imposes two types of
restrictions:

• an 33a,,+3 and ßn 2lßn+3-,

• a„ 23a,,+2 and ßn e {113yö„+3, 1121^„+4}.

Hence, we have that the ,s -Hausdorff measure of the set

K := {[a0; a.\,...] : 3.84 < m(a) < 3.92}

is finite for any parameter s with

^ |/(fll,...,û„,3,3)|4 + \I(ai,...,an,2,l)\s
T77 717 < 1



628 C. Matheus and C. G. Moreira CMH

and

\I(ai,... ,an,2,3)\s + \I{ax,...,an, 1,1,3)|s + \I(a1,. 1, 1,2, l)|s
his)

\Iifli,.. .,an) \s

< 1

for all (ai,... ,an) e (J{l,2,3}fc.
keN

We saw in Subsections 7.2 and 7.3 that

gis) *= —tJ J' + (0.071797)

and h(s) (0.016134)' +

Because the recurrence qj+2 ay+2#y+i + ?y implies that

|/(fli,... ,Cf„, 3, 3)| r + 1

get

|/(öi, ,a„)\ (3r + 10)(4r + 13)

r+l < J2_
(3r + 10)(4r + 13) ^ 221where r qn-i/qn (0, 1), and since nr+/0ia,-+i3i ^ 2§T for all 0 ^ r ^ 1, we

gis) s= + (0.071797)

Thus, max{g(0.25966), Ä (0.25966)} < 0.99999 and, a fortiori, the (0.25966)-
Hausdorlf measure of

— {[flo; r?i, - • •] : 3.84 < m(a) < 3.92}

is finite. In particular, we proved the following result:

Proposition B.2. (M \ L) n (3.84,3.92) c X3({131, 313,231,132}) + K, where

X3({131,313,231,132})

{[0; y] : y e {1,2,3}N not containing 131, 313, 231, 132}

and K is a set ofHausdorffdimension HDiK) < 0.25966.

After running Jenkinson-Pollicott algorithm, one seems to obtain that

//D(X3({131,313,231, 132})) < 0.612,

so that the previous proposition indicates that

HD(iM \ L) n (3.84, 3.92)) < 0.872. (B.4)
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B.4. Heuristic estimates for HD((M \ L) n (3.92,4.01)). Let m e M \ L with
3.92 < m < 4.01. In this setting, m m(a) f{a) for a sequence

a ,a-i,aQ,ai {1,2,3}Z =: S(C)

not containing 131, 313.2312,2132. Consider the subshift S(5) C S (C) associated

to B {1,2,211,112,232,1133.3311} with the restrictions that 3311 comes only
after 211 and 3311 has to be followed by 2, and 1133 has to appear after 2, and

1133 has to be followed by 112. Note that B and C are symmetric, and the quantity
c(B,C) introduced above is

c(B, C) < 3.92 < m

thanks to Lemma 2.1.

From Lemma 6.1 we obtain that, up to transposing a, there exists k e N such that,
for all n ^ k, either.. .a^ ...an has a forced continuation... öq anan+\ .or two
continuations üq anan and anßn with [[0; an\, [0; ßn]] fl K(B) — 0.

From this, we are ready to set up an efficient cover of (M \ L) n (3.92, 4.01). In this

direction, note that the condition [[0; an\, [0; ßn]\ n K(B) 0 imposes two types of
restrictions:

• an 331a„+3 and ßn 21ß„+3;

• a„ 23an+2 and ßn 113^+3.

Hence, we have that the .v-Hausdorff measure of the set

K := {[a0;au ...] : 3.92 < m (a) < 4.01}

is finite for any parameter 5 with

T77 FT < 1

\I(a i an)\s

|/(ai an,2,3)\s + \I(ai,... ,an, 1, L 3)|5
and h(s) — — < 1

\I(ai,... ,an)\s

for all (ai,..., an) e lj{l,2,3}fc.
keN

We saw in Subsections 7.2 and 7.3 that

^ [/(^ a„,3,3 l)r+(007i797), and ^ (0.016134r + 1V.
|/(<2i an)\s V63/

Since the recurrence qj+2 — aj+iqj+i + qj implies that

\I(au fl«. 3, 3, 1)| r + 1

\I(ai,... ,an)\ (4r + 13)(7r + 23)'
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where r qn-\/qn (0,1), and since {ir+lr3)^r+23) ^ dis for al1 0 ^ r ^ 1, we

get

g{s)$ (^)i + (o.°7i797r.

Thus,
max {g(0.177645), h(0.177645)} < 0.99999

and, a fortiori, the (0.177645)-Hausdorff measure of

K {[aQ\a\,...] : 3.92 < m(a) < 4.01}

is finite. In particular, we proved the following result:

Proposition B.3. (M\L) n (3.92,4.01) C Z3({131, 313,2312,2132}) + K, where

Z3({131,313,2312,2132})

:= {[0; y] : y e {1,2, 3}N not containing 131, 313, 2312, 2132}

and K is a set of Hausdorff dimension HD(K) < 0.177645.

After running Jenkinson-Pollicott algorithm, one seems to obtain that

HD(X3({ 131,313,2312,2132})) < 0.65,

so that the previous proposition indicates that

HD((M \ L) n (3.92,4.01)) < 0.828. (B.5)

B.5. Heuristic estimates for HD{(M \ L) n (4.01, V2Ö)). Let m 6 M \ L with
4.01 < m < V2Ö. In this setting, m m(a) /(a) for a sequence

q (....a-!, flo.fli,...) e {1,2, 3}z =: E(C).

Consider the subshift 2(5) C 2(C) associated to

B {11,2.232,213312,33}.

Note that B and C are symmetric, and the quantity c(B,C) introduced above is

c(B, C) < 4.01 < m

thanks to Lemma 2.1.

From Lemma 6.1 we obtain that, up to transposing a, there exists k N such that,
for all/; ^ k, either. ..a^ .an has a forced continuation.. .a^ ,anan+\ .ortwo
continuations ûq anan and Aq a„ßn with [[0; an], [0: ßn]] Fl K(B) 0.

From this, we are ready to set up an efficient cover of (M \ L) D (4.01, ^20). In this
direction, note that the condition [[0; an], [0: ßn}} H K(B) 0 imposes two types of
restrictions:
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• an 331a„+3 and ß„ 2l3ßn+3;

• an 23an+2 and ßn ll3ßn+3.

Hence, we have that the s-Hausdorff measure of the set

K := {[a0;ai,...] : 4.01 < m{a) < -\/2Ö}

is finite for any parameter s with

\I(a\,... ,an,3,3,l)\s + \I(a\,... ,an,2,\,3)\s
g CO T77 777 < 1

\I{a\ an)\s

\I(ai,...,an,2,3)\s+ \I(ai,...,an,l,l,3)\s
and h(s) — — < 1

\I(ai an)\s

for all (ai an) e (J {1,2, 3}fc.
ÂreN

We saw in Subsections 7.2, 7.3, and B.4 that

S(S) (éïÏ + '/(<i/(a,. .""'a),)p3)' a"d "W « (0-016134)'+ (I)'.
Since the recurrence qj+2 aj+2qj + i + qj implies that

|/(ai,.2,1,3)| r+ 1

|/(a1,...,fl„)| (4r + ll)(5r + 14)'

where r qn-i/qn e (0, 1), and since (4r+nx5r+t4) ^ 0.007043 for all 0 ^ r ^ 1,

we get

g(s) 3 (^)S + (0.007043)'.

Thus,

max {g(0.167655), /t(0.167655)} < 0.9999

and, a fortiori, the (0.167655)-Hausdorff measure of

K — {[ö0;ai,...] : 4.01 < m (a) < V2Ö}

is finite. In particular, we proved the following result:

Proposition B.4. (M \ L) f! (4.01, \/2Ö) C ^T({1, 2, 3}) + K, where K is a set of
Hausdorffdimension HD(K) < 0.167655.

As usual, this proposition and Hensley's estimate [9] for HD(K({ 1,2, 3})) yields:

HD((M \ L) n (4.01. >/2(j)) < 0.705661 + 0.167655 0.873316. (B.6)
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B.6. Heuristic estimates for HD((M \ L) fl (V2Ö, \/2l)). Our Proposition 7.8

above implies that

HD((M \L) n (V2Ö, VÏÏ)) < HD(X4({\4,41,24.42})) + 0.172825,

where

^4(114, 41,24, 42}) {[0; y] : y {1,2, 3, 4}N does not contain 14, 41, 24, 42}.

After running Jenkinson-Pollicott algorithm, one seems to get that

HD{X4({\A, 41,24, 42})) < 0.715

and, a fortiori,
HD((M \ L) n (V2Ö, V2Î)) < 0.888. (B.7)

B.7. Global empirical estimate for HD{M \ L). By (B.2)-(B,7), we have that

HD((M \ L) O (-00, V2T)) < 0.888.

On the other hand, Freiman [4] and Schecker [18] proved that [V2Î, 00) C L.
Therefore,

(M \ L) n [V21,00) 0.

It follows that

HD(M \L) HD((M \ L) n (-00, V2T)) < 0.888,

the empirical bound announced in (B.l).
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