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Rigidity of center Lyapunov exponents and sw-integrability

Shaobo Gan and Yi Shi

Abstract. Let / be a conservative partially hyperbolic diffeomorphism, which is homotopic
to an Anosov automorphism A on T3. We show that the stable and unstable bundles of / are

jointly integrable if and only if every periodic point of f admits the same center Lyapunov
exponent with A. This implies every conservative partially hyperbolic diffeomorphism, which is

homotopic to an Anosov automorphism on T3, is ergodic. This proves the Ergodic Conjecture
proposed by Hertz-Hertz-Ures on T3.

Mathematics Subject Classification (2010). 37D30, 37D20, 37D25.

Keywords. Partial hyperbolicity, Lyapunov exponent, joint integrability, accessibility, ergodi-
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1. Introduction

A diffeomorphism / on a closed Riemannian manifold M is partially hyperbolic if
there exists a continuous Df -invariant splitting TM Es (&EC ®EU and continuous
functions a, /i: M -* M, such that 0 < a < 1 < pt and

||D/V)II < cr(p) < \\Df(vc)\\ < jU-O) < II W)H
for every p e M and unit vector v* E*(p), for * s, c, u.

Since Pugh and Shub [18] conjectured that stably ergodic diffeomorphisms
are dense in the space of C2 conservative partially hyperbolic diffeomorphisms,
ergodicity of partially hyperbolic diffeomorphisms has been one of the main topics
of research in differentiable dynamics. A key ingredient of proving ergodicity
for partially hyperbolic diffeomorphisms is a property called accessibility. In
dimension 3, for instance, it has been showed [4,22] that every conservative accessible

partially hyperbolic diffeomorphism is ergodic. Moreover, accessibility [22] is an

open dense property for partially hyperbolic diffeomorphisms with one-dimensional
center bundle. It seems promising that we can classify 3 dimensional non-ergodic
partially hyperbolic diffeomorphisms. Actually, Hertz-Hertz-Ures proposed the

following Ergodic Conjecture [21,23]:

Conjecture 1. Ifa conservative partially hyperbolic diffeomorphism ofa 3-manifold
is non-ergodic, then there is a 2-torus tangential to Es © E". This implies the only
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orientable 3-manifolds that admit a non-ergodic conservative partially hyperbolic
diffeomorphism are:

1. the 3-torus T3;

2. the mapping torus of—Id; or

3. the mapping torus ofa hyperbolic automorphism of the 2-torus.

The simplest 3-manifold supporting partially hyperbolic diffeomorphisms is

3-torus T3. It has been proven in [3,17] that if /: T3 —> T3 is partially hyperbolic,
then the action f*:tt\(T3) Z3 —> Z3 is also partially hyperbolic. This means

/* e GL(3,Z) has three real eigenvalues with different moduli. One eigenvalue
has modulus larger than 1, and one has modulus smaller than one. So there are two
classes of partially hyperbolic diffeomorphisms on T3:

• either /* GL(3, Z) has an eigenvalue equal to -1 or 1;

•or /* e GL(3, Z) is Anosov, i.e. every eigenvalue of /* has modulus not equal
to 1.

In the first case, there are partially hyperbolic diffeomorphisms which are non-

ergodic. For instance, an Anosov automorphism on 2-torus T2 times identity map
on S1 is not ergodic. Moreover, it has been shown [12] that if such / is not ergodic,
then it admits 2-torus tangent to Es © Eu.

For the second case, it has been shown [14] that there is no 2-torus tangent to
Es © Eu. Thus if we want to prove the Ergodic Conjecture on T3, we need to show

that every C2 conservative partially hyperbolic diffeomorphism, homotopic to an

Anosov automorphism on T3, is ergodic. See also [14, Conjecture 1.11].
In order to prove ergodicity for partially hyperbolic diffeomorphisms on 3-manifolds,

the only obstruction is non-accessibility. If / is conservative, partially
hyperbolic, and homotopic to an Anosov automorphism on T3, then / is non-
accessible implies that the stable and unstable bundles of/ are jointly integrable [14],
This is equivalent to / admits a 2-dimensional invariant foliation tangent to the union
of stable and unstable bundles everywhere. We say that such an / is sw-integrable.

Hammerlindl and Ures proved the following theorem.

Theorem ([14]). Let f be a C1+01 conservative partially hyperbolic diffeomorphism,
which is homotopic to an Anosov automorphism A on T3. If f is not ergodic, it is

topologically conjugate to A.

Here / is not ergodic is equivalent to / is sw-integrable and the integral su-
foliation is minimal on T3. Moreover, Hammerlindl and Ures proved that the

topological conjugacy preserves all invariant foliations of /, see Lemma 2.2.

In this paper, we give a necessary and sufficient condition for vu-integrability
of this kind of diffeomorphisms. Moreover, such kind of / is Anosov by applying
Lemma 2.5.
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Theorem 1.1. Let f be a C1 +a conservative partially hyperbolic diffeomorphism,
which is homotopic to an Anosov automorphism A on T3. The stable and unstable
bundles of f are jointly integrable, if and only if every periodic point of f admits
the same center Lyapunov exponent as A. In particular, either of these conditions

implies f is Anosov.

Remark 1.1. In Theorem 1.1, the condition that / is conservative can be replaced
by assuming the non-wandering set £2(/) T3. Both properties imply that the

sw-foliation of / is minimal and the conjugacy preserves the sw-foliation.

Combined with the work of Hammerlindl and Ures, we have the following
corollary. This proves the Ergodic Conjecture proposed by Hertz-Hertz-Ures on T 3.

Corollary 1.2. Every C1 +a conservative partially hyperbolic diffeomorphism, which
is homotopic to an Anosov automorphism on T3, is ergodic.

From the previous work of Ren, Gan, and Zhang [20], if / is a C1+a partially
hyperbolic and Anosov diffeomorphism on T3, then there exist a series of equivalent
conditions to sw-integrability of /. We state them in Theorem 5.1.

Organization of the paper. In Section 2, we recall some properties of partially
hyperbolic diffeomorphisms homotopic to an Anosov automorphism on T 3. In Section 3,

we prove the "sufficient" part of Theorem 1.1, which states the fact that all periodic
points have the same center Lyapunov exponent implies / is sw-integrable. In
Section 4, we show that if such kind of / is s u-integrable, then every periodic point
of / admits the same center Lyapunov exponent as A. This proves the "necessary"
part of Theorem 1.1. Finally, in Section 5, we give a series of equivalent conditions
for su-integrability when / is partially hyperbolic and Anosov on T3.

Acknowledgements. We would like to acknowledge our debt to A. Gogolev for a

lot of help during preparing this paper, especially for pointing out that his work [8]
is useful for showing the rigidity of center Lyapunov exponents. We are grateful
to A. Hammerlindl, F. Rodriguez Hertz, J. Rodriguez Hertz, A. Tahzibi, R. Ures, and
J. Yang for their valuable comments. S. Gan is supported by NSFC 11771025 and

11831001. Y.Shi is supported by NSFC 11701015, 11831001 and Young Elite
Scientists Sponsorship Program by CAST.

2. Conjugacy and s w-integrability

Let / be a partially hyperbolic diffeomorphism which is homotopic to an Anosov

automorphism A on T3. Then A is also partially hyperbolic [3,17]

FT3 ESA® ECA® EUA.
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These three invariant bundles are linear and correspond to the three eigenvalues
XS,XC,XU of A respectively. From now on, we assume that the center bundle of A is

expanding, i.e.

I^-jI ^ 1 |AC| < \XU\.

Denote by EA, Ef, EA the invariant foliations tangent to ESA,ECA, EA respectively.
Since A is linear, all bundles

Ecas Esa ® Eca, Ecau Eca® Eua, and ESAU ESA © E\

are integrable. Denote by EA EAU, Ejthe foliations tangent to them respectively.
Since / is partially hyperbolic, then / has stable and unstable foliations Ej-

and E" tangent to ESj and E" respectively. It has been proved by R. Potrie [17] that /
is dynamically coherent, i.e. there exist /-invariant foliations E" and Ej" tangent
to Ey and Ec" respectively. Moreover, E" intersects EÏ" in an one-dimensional

/-invariant foliation Ep which is tangent to ECj everywhere. We denote by dp* (•, •)

and djr*(-, •) be the distance induced by the inherited Riemannian metric on leaves

of EJ and EA respectively, for * — s,c,u, es, cu.

We denote by E^ and EA the lifting foliations of Ej and EA in M3

for * s,c,u,cs,cu. We denote by and the distances

induced by the inherited Riemannian metric on leaves of Ey and EA respectively,
for * s, c, u, es, cu.

The following lemma was proved in [13,17], See also [2,11] when / is absolutely
partially hyperbolic.

Lemma 2.1 ([13,17]). The twofoliations EJ and Eju have globalproduct structure:

Ei{x) intersects Eju{y) in exactly one point, for every x,y M3. The two

foliations E" and Ejs have also global product structure.

The liftingfoliation EJ, * s, c ,u is quasi-isometric in M3 : there exist constants

a,b > 0, such thatfor any y e E^(x) with * s,c, u,

dfi*(x, y) < a \x — y\ + b.

Lemma 2.2 ([5,14,17,24]). Let f be a C1 +a partially hyperbolic diffeomorphism
which is homotopic to an Anosov automorphism A on T3. There exists a continuous

surjective map h: T3 —> T3 satisfying:

1. h o f A o h, taking a lift F of f, there exists a lift H of h, such that
H o F A o H.

2. h is homotopic to identity, andfor every lift H of h, there exists L > 0, such that

||//-Id|| <L.
3. For every x e M3, H: Ej.(x) Ef(H(x)) is a homeomorphism.
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4. For every x G M3, H(Fß(x)) F^(H(x)) for * c,cs,cu.

5. For every x G T3, h~l (h(x)) is a compact center arc with length at most 2a L +b.

If f is su-integrable and h is a homeomorphism, i.e. f is topologically conjugate
to A by h, then h preserves all invariantfoliations

h(Fj) — Fa, V* c, s.u, es, eu. su.

Proof. Item I and 2 are well-known results by Franks [5], Item 3, 4, and 5 were

proved by Potrie in [17]. Item 5 see also [24] for absolutely partially hyperbolic
diffeomorphisms. The fact that h is a conjugacy preserving all invariant foliations
when / is sw-integrable was proved by Hammerlindl and Ures [14],

In general, if / is topologically conjugate to A but not Anosov, then the

conjugacy h~l is not Holder continuous. However, we can show that h~l is Holder
continuous when restricted to every leaf of F^ and Ff.
Lemma 2.3. Under the assumption in Lemma 2.2, there exist constants C > 0 and
0 < ß < 1, such thatfor every x T3 and y G Ff (x), * s,u, we have

d3r*(h~l(x).h~\yj) < C -d^x.y^.
Proof. We first prove this fact for y G F%(x). We fix eo,S0 > 0, such that

locally if dpu(x,y) < S0, then djru(h~1(x).h~1(y)) < s0 for every * G T3fand y G F%(x). Now we assume that

dy) « <50.

Let k be the largest positive integer such that dyu (Akx. Aky) < So, then we have

d^(x,y) > |Au|-(*+1) • So-

On the other hand, we have

djru{fk oh~l{x),fk oh~l{y)) dFu(h~l o Ak(x),h~l o Ak(y)) < e0.

This implies

d^f0l~\x),h~l{y)) < p~k - so,

where p. infz6T3 m{Df\Eu{z)) > 1.

If p. > |AU|, then we have

dFu(h l(x),h \y)) < -dF«(x,y).
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Otherwise, we take 0 < ß < 1 such that \Xu\ß < fi. Then we have

dsru(h~](x)Ji~\y)) < ii~k - so < \K\-kß -£o < £°^ dpu{x, y)ß.

This proves that !rx is Holder continuous on every leaf of Ff. The proof for

y e FA (x) is the same.

Notation. Let p e Per(/) be a periodic point off with period n(p). We denote by

Xdp) \\Dflt(p)\Ecf(p)\\^>.

Then log Xc( p) is equal to the center Lyapunov exponent of p. Moreover, we denote

XC(A |AC| > 1, and log XC(A) is equal to the center Lyapunov exponent of A.

Lemma 2.4. Let f be a C1 partially hyperbolic dijfeomorphism which is homotopic
to an Anosov automorphism A on T3. Then there exists a sequence ofperiodic
points {pn} of f, such that lim^^oo Ac(pn) > XC{A).

Proof. From Lemma 2.2, let F: M3 -> M3 be a lift of / and H: R3 -> E3 be a lift
of the semi-conjugacy It. The map H satisfies \H(x) — x\ < L for every x e E3.

?/<We can choose two points x, y e E3, such that y e FUx) and \x — y\ 3L. Then

\H(x) - H(y)\ > L > 0 and H(y) e Ff(H(x)).

Denote by Jj the the arc connecting x and y in Fj (x), and JCA the arc connecting

H(x) and H(y) in Ff(H{x)), then we have

H(Fn(Jj)) A"{Jca), Wn> 0.

Then for every n large enough, we have

\Fn(J})\ > \A'\Ja)\ — 2L > ^-Ac(A)n

(for a smooth arc J, |/| denotes the arc length of /.) This implies that for every n

large enough, there exists xn e Jp such that for xn jt(x„),

j
n—1

j
n—1

~ XIl0g I' Df\Ec{fi(xny>\\ \\DF\E"(F'IX„))\\

log \ JA\ — log2|/^|
> logAC(T) + J—.
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Taking an accumulation point /io of the sequence of measures {Y11=o ^f'(xn)/nK
we get that /t 0 is an invariant probability measure of / and

J log \\Df\EC(x) || d/lo(x) > log Ac(y4).

By ergodic decomposition theorem, we can assume po is ergodic. Since /to is a

hyperbolic measure, by Liao's shadowing lemma (e.g., see [6,7,15]), there exists a

sequence of periodic points {pn} of /, such that lim^oo Ac(pn) > XC(A).

Theorem 2.1 ([1]). Let p be a hyperbolic periodic point of a diffeomorphism f on

a compact manifold. Assume that its homoclinic class H(p) admits a dominated

splitting Th(p)M E © F with E contracting and dim(£) ind(p). If f is

uniformly F-expanding at the period on the set ofperiodic points q homoclinically
related to p, then F is uniformly expanding on H(p).
Lemma 2.5. Let f be a C1 partially hyperbolic diffeomorphism which is homotopic
to an Anosov automorphism A on T3. If Xc(p) — Ac(q) for every p.q e Per(/),
then f is Anosov.

Proof. From Lemma 2.4, we know that Ac(p) > XC(A) > 1 for every p e Per(/).
From the semi-conjugacy It. T3 -» T3 in Lemma 2.2, h(p) is a periodic point of A

for every p e Per(/). Moreover, we have h~l(h(p)) — {p}. Otherwise, h~l (h(p))
is an /-periodic center arc, which must contain a periodic point of / admitting
non-positive center Lyapunov exponents.

This implies that for every p e Per(/), the unstable manifold W"(p) FpU(f)
which is dense in T3 and tangent to Ec" everywhere. On the other hand, h restricted
to every stable leaf Fj(x) is a homeomorphism to 37f(h(x)). If h is injective at a

point p, then h is injective at every point of 3~j (p). Actually, if h is not injective at a

point y !Fj(p), then there exists z e .Fj'(v) satisfying h (y h(z). Let w f p)
be the unique intersecting point of '(z) and Fj{p), then we have

h(F}(p)) h{3Fsf{y)) n(h(y)) K(h{z)) h(F}(z)) h(F}(w)).

Recall that h is a homeomorphism from FUp) to Ff(h(p)), and a homeomorphism
from Fj-(w) to J^(/t(tp)). Since {u;} F'j-(z) D F^(p), we have h(p) h(w),
which contradicts the fact that h is injective at p.

Let Hf(p) WUp) rh W"(p) be the homoclinic class of p w.r.t. /. Then we
have

h(Hf(p)) h(Wj.(p) rh Wfip))

hïwfïp) rh Wjipf)

Wf(h(p)) rh W»(h(p)) HA(h(P)) T3.
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Now we consider the partially hyperbolic splitting THf(p)T3 Ej- © Ec". Since

^c(p) — Ac(;4) > 1 for every p e Per(/), / is uniformly ^"-expanding at the

period on all the periodic points in H f(p). Applying Theorem 2.1, Ec" is uniformly
expanding and ///(/?) is a hyperbolic set of /. Since h is injective at every point
of Wj-(p), Wj-(p) c Hf(p). If Hf(p) ^ T3, Hf(p) would be a proper repeller,
which is contradictory to the conservativity of /. This proves that / is Anosov.

Corollary 2.6. Let f be a C1 partially hyperbolic diffeomorphism which is

homotopic to an Anosov automorphism A on T3. If Xc(p) Xc(q) for every

p.q Per(/), then Ac(p) AC(A).

Proof. We only have to show that there exists a sequence of periodic points {qn}
of /, such that

lim Ac(qn) < AC(A).
n-*oo

This proof goes similarly with Lemma 2.4. In fact, since 5^ is quasi-isometric,
there exist constants a.b > 0, such that for every n large enough,

\Fn{Jcf)\ <a-\Fn(x)~ Fn(y)\ + b

< a (\An(JcA)\ +2L) + b< 2a\JcA\ Ac(A)n.

(for the definition of notations, see the proof of Lemma 2.4.) So there exists y„ e Jp
such that for yn n(yn),

n—1
j n—t

-^logll^/lwo-n»!! -ElogHD/7l
/=0 i=0

k)g2"l^l "'Ogl^/I
< logAc(4) + —.

n

Taking an accumulation point /x i of the sequence of measures {o 5/i(v„)/"}>
we have that /x j is an invariant probability measure of / and

log ||T>/|£cW||d/xi(x) < log Ac(A)./
By ergodic decomposition theorem, we can assume/Xi isergodic. Since / is Anosov,
there exists a sequence ofperiodic points {r/,,} of/, suchthat limn^oo Xc(qn) < XC(A).

The following theorem was essentially proved in the classical paper by Pugh-
Shub-Wilkinson [19]. We will need it in Section 4.

Theorem 2.2 ([19]). Suppose that f'.M —> M is a C1+a partially hyperbolic
diffeomorphism with one-dimensional center bundle. If f is dynamically coherent,
then the local unstable and local stable holonomy maps are uniformly C1 when

restricted to each center unstable and each center stable leaf respectively.
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3. Joint sM-integrability

In this section, we prove that if f is a Cl+a conservative partially hyperbolic
diffeomorphism on T3 which is homotopic to an Anosov automorphism, and the

center Lyapunov exponent of every periodic point of / is equal to log Ac (A), then /
is sw-integrable.

Firstly, we need the following lemma.

Lemma 3.1. Let f be a Cl+a partially hyperbolic diffeomorphism which is

homotopic to an Anosov automorphism A on T3. If Xc(p) — XC(A) for every
periodic point p e Per(/), then there exists a continuous metric dc defined on

every leafofcenter foliation Fp such that:

• There exists K > 1, satisfying 1/K d$rc(x, y) <dc(x,y) < K dpc(x, y), for
every y Fj-(x);

• dc(f(x),f(y)) XC{A) dc(x,y),for every y e Fcf{x);

• The stable and unstable holonomy maps between center leaves are isometries under
dc (•, •) when restricted to each center stable and center unstable leaf respectively.

Proof. From Lemma 2.5 and Corollary 2.6, we know that / is Anosov and Xc(p)
Xc(A) for every p Per(/). Then Livschitz Theorem implies that there exists a

Holder continuous function f: T3 —> M, such that

l°g \\Df\E}(x)\\ fi{x)-(po f{x) + log AC(A), Vx G T3.

This implies that

Ac(A)-exp(<£(x)) \\Df\Ecr(x)\\ -exp(/ o^(x)), Vx G T3.

Now we can define a metric on every leaf of Fî as the following: for every

y G !Ff(x), let y: [0, 1] -> !Fj-(x) be a C1 -parametrization with y(0) x and y (I) y,
then

dc(x, y) := f exp(<p o y(t)) • \y'(t)\dr.
Jo

Since is bounded, there exists K > 1, such that

~ djrc (x, y) < dc(x,y) < K djrc(x,y), Vy g Fcf{x).

Moreover, the cohomology equation implies / is conformai on under this metric:

dc{f(x), f(y)) XC(A) dc(x, y), V.y g Ff(x).
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From this conformai structure, we know that for every x G T3 and z e A7"(x),
we denote h" z: Sry(x) —> !F5(z) the holonomy map induced by the unstable

foliation Sr" in 3ry (x), then

dcihuxz{yi),huxzfiy2)) dc(yi,y2), Vyi,y2 £ Ff (x).

The same property holds for z 6 Fj- (x) and the holonomy map hsxz:Sry(x)^-Sry(z)
induced by stable foliation 3ry in Srys(x).

Remark 3.2. If the function 0 is a solution of the cohomology equation

log \\Df\Ecf\\ <p-<p o f + log Ac 04),

then (j> + k is also a solution for every k g E. The corresponding center metric

r/j (•, •) defined by <p + k also satisfies all the properties in Lemma 3.1. Actually,
they satisfy

d[(x,y) eK -dc(x,y), Vy g 5^(x).

Proposition 3.3. Let f be a Cl+Ct partially hyperbolic diffeomorphism which is

homotopic to an Anosov automorphism A on T3. If Xc(p) AC(A) for every
periodic point p G Per(/), then the stable and unstable bundles of f are jointly
integrable.

Proof. Since Ac(p) AC(A) for every periodic point p e Per(/), let dc(-, •) be the

metric on 3ry which is defined in Lemma 3.1.

If Esy and E" are not jointly integrable, then we have 4-legs local twisting,
i.e. there exist xo e T3, jo G 3ry(xo) and z0 G 5J(x0) which are very close to x0
in the stable and unstable leaves of xo, such that locally there exist w\ e 37y (yo) and

W2 Fy(zo) satisfying

W\ ^ w2 and w2 G Sry(wi).

We denote dc{w\, w2) Ko > 0.

Claim 3.4. There exists a family ofarcs Js \ /x(x) : x G T3} satisfying:

• Is(x) C 3~y (x) admits x as the start-point and varies continuously with respect
to x.

• Is(xo) admits yo as die end-point, and Is(zo) admits w2 as the end-point.

• Every x2 G ^"(xi) satisfies that Is(x2) hcx" X2(Is(x\)).

• There exist constants 0 < l\ < 12, suchthatf < |/'s(x)| < l2for every x G T3.
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Proofof the claim. Let Is(xo) be the arc from xo to yo in Fî(xo), and Is(zo) be

the arc from Zo to W2 in Fj-(zo), then we can see that

Js^) hcxlZo(Is{x0)),

where hx"zo\ FJ-(xo) —> Fj-(z0) is the local holonomy map induced by Fj-". Then
for every point x 6 Fj-U(x0), we can define

Is(x)=hcxu0>x(Is(xo)) C^W.
Since every leaf of Fj" is homeomorphic to M2, and the lifting foliations IFj-", Fj-
admit a global product structure, this tells us that Is (x) is well-defined for every point
x G F^u(xo). Moreover, the topological conjugacy h maps 3~ju into the linear Fff"
implies that we can extend this family of stable arcs to T 3

:

r {Is(x) : x g T3}.

Finally, since Ff and Ff" are linear foliations, the uniform continuity of h gives us
the constants 0 < f <l2 such that l\ < |/s(x)| < l2 for every x G T3.

Symmetrically, we have the following claim.

Claim 3.5. There exists a family ofarcs âu {/"(x) : x G T3} satisfying:

• /"(x) C Fu(x) admits x as the start-point and varies continuously with respect
to x.

• Iu(xo) admits Zq as the end-point, and Iu(zq) admits W\ as the end-point.

• Every x2 G F"{xi) satisfies that Iu(x2) hcxsl X2(^"(xt))-

• There exist constants 0 < l2 < U, such that 13 < |/"(x)| < 14 for every x G T3.

We fix the orientation of Is(x0) from xo to yo to be positive and assume it
coincides with the positive orientation of Fj-. Since Fj-U(x0) is dense and Fi is

orientable, the orientation can be continuously extended to <F. Symmetrically, we
fix the orientation of âu which is positive from xo to z0 at Iu(x0), and assume it
coincides with the positive orientation of Fu. Moreover, we assume that the arc
from W\ to w2 has the same orientation with FF

For every x G T3, we define the .sw-path Jsu(x) to be the path that goes
through Is{x) to the end-point y of Is(x), then go through Iu(y) to the end-

point w'. We call w' the end-point of Jsu(x). Symmetrically, we can define the

ws-path Jus(x) by going through /"(x) to the end-point z, then go through Is(z) to
the end-point w". We call w" the end-point of J"s(x).
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Claim 3.6. There exists a family ofarcs ,lc {Ie(x) : x e T3} satisfying:

• Ie (x) c FUx) admits x as the start-point and varies continuously with respect
to x;

• For every x e T3, denote w' to be the end-point of Jsu(x) and w" to be the

end-point of J us(x), then w" is the end-point of the arc Ie (w'). In particular, up
is the end-point of Ie(w\).

• For every w' T3 with dlc(w') {w', w"}, it satisfies

dc(w', w") dc(wi, w2) /Co > 0,

and Ie(wr) from w' to w" has the same orientation as Fj.

Proofof the claim. The definition of âc comes from the second item of the claim.
From the continuity of As and J", and their holonomy invariance by F^u and IF",
âc is well defined and varies continuously. We only need to check the last item.

For every x Fß(x0), we denote w' and w" be the other endpoints of v m-path

Jsu(x) and Ms-path Jus(x) respectively. The holonomy invariance of Is and âu

implies w',w" e Fj-(w\). Moreover, we consider the composition of holonomy
maps hsXQ yo

: Fcf{x0) -> Fcf(yo) and huyQ Wi
: Fj{y0) -> Pf iwf), it is defined as

*/'»(*0) := Ko^ oh^yo.F}(x0) -,
where hSjUsu(xq)(x) w'.

Similarly, we have the holonomy map

hj»<(x0) := K0,W2°hsXo,Zo:?ï(x0) -, F}(W2)

which is the composition of the holonomy maps

huX(hZf- Fcf{x0) ^ Fcf(z0) and h*ZQ>W2: Fcf{z0) -, F}(w2)

and satisfies hufus^x^{x) w".
Since the holonomy maps of stable and unstable foliations between center leaves

are isometries under the metric dc(-,f when restricted in each center-stable and

center-unstable leaves, both hSjUsu^ and hy»v(xo) are isometries between Fj- (a'o)
and Fcf(wx) under the metric dc(, •)• This implies

dc{w\, w') — dc(xo,x) — dc(w2, w") — kq.

So we have dc(w\, w2) dc{w', w"), that is lc(x) has the same length under the

metric dc{-, •) for every v 37<j- (x0 From the density of Fj (a'o and continuity
of âc, we prove the claim.
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Now we lift these three family of arcs 3s, Au and 3C to the universal cover M3.

We use the same notation for convenience.

Now we fix x° 6 R3 and denote z° the end-point of I"(x°). Define inductively:

• xl + l F}(x°) to be the end-point of Is(x') for i 0,1,— 1;

• z,+1 e !FJ-(z°) to be the end-point of Is{zl) for i 0. 1— 1.

Then we consider the end-point w° of Iu(xn), we can see that that w° !F^(zn).

Moreover, there exists a sequence of points {u>°, w1,... ,wn} C 3*j-(zn), such that

• w1 + 1 is the end-point of Ic(wl) for i 0,1,— 1;

• wn zn and dc(w°, z") — n-kq.

Figure 1. Global twisting.

Actually, if we denote u' to be the end-point of Iu(xl) for i 1 n — 1, we
have

w' fyiu"-1) n F}(w°) e Fc/(w°), i l n- 1.

This implies dc(w°, zn) h-kq. Since !Fj- is quasi-isometric, there exists a > 0,

such that

n a Ko < |tü° — z" I -> oo as n —> oo.

Since \xn — w°\ < |/"(x")| < 14, this implies

Iz" — x"| —> 00, as n -> 00.

Let F: M3 -> M3 be a lift of /, and H:R3 —> R3 be the conjugacy satisfying
A o H H o f. Then there exists L > 0, such that |H(x) — x\ < L.
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Since H(3r^) and H(3FCjU) 3r^u, we have

H(z°) e Ffu(H(x°)), H(x") e Fj(//(x0)).
and

H(zn) n(H(z{))) rh ïc/{H(xn)).

If we denote hs: lFfu(x0) —>• !F£u(xn) as the holonomy map induced by the stable

foliation 3^, then we have

H(xn) hs(H(x0)) and H(zn) hs (H(z0)).

However, since both Tj and 3~f" are linear, we have

IH(zn) - H{xn)I |//(z°) - //(x°)| < |z° - x°\ + 2L < l4 + 2L.

This implies that for every n, we have

\z" — x"I < |z" - H(z")| + |x" - H(xn)I + (/4 + 2L) < /4 + 4L.

This is a contradiction.

4. Rigidity of center Lyapunov exponents

In this section, we prove that if / is a C1+a conservative partially hyperbolic
diffeomorphism on T3 which is homotopic to an Anosov automorphism and admits

jointly integrable ,u/-foliation 3~ju, then the center Lyapunov exponent of every
periodic orbit of / is equal to log XC(A).

From the work of Hammerlindl and Ures, the following proposition implies the

"necessary" part of Theorem 1.1. The idea of our proof originates from the work
of A. Gogolev [8].

Proposition 4.1. Let f be a Cx+a partially hyperbolic diffeomorphism which is

homotopic to an Anosov automorphism A on T3. If the stable and unstable bundles

off are jointly integrable and f is topologically conjugate to A, then

^c(p) Ac(A), VpePer(f).

Thus f is Anosov.

Proof. Recall we assumed that AC(A) > 1. Since / is topologically conjugate to A,
the topological expansion in the center direction implies Xc(p) > 1 for every periodic
point p of /.

From Lemma 2.5, we only need to show that Ac(p) Ac(g) for any periodic
points p,q G Per(/). The topological conjugacy property implies that / also
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satisfies the Shadowing Lemma. If there exist p\, P2 £ Per(/), such that Xc{p\) <
^c{P2), then the set

{Ac(p):p e Per(/)} [A_,A+]

is a nontrivial interval contained in [1, +oo). By applying the Shadowing Lemma,
we can take a smooth adapted Riemannian metric, such that

j _l_ £
< \\Df\Ecf(x)\\ < A+ • (1 + S), Vx e T--< 3

Here S could be arbitrarily small, and we will fix it later.

Now we choose periodic points p, q of /, such that

Mp) ^ i p j i I o
i <l + o and <1+0.A- A c(q)

Denote by n 0 the minimal common period of p and q.

Claim 4.2. There exist two constants C3 > 0 and 0 < 9 < 1/2, such thatfor every
q > 0, there exist points x G y G !Fj(x) with q G !Fj-(y), such that

C3
djrcfy.q) < q and d^(x,y) < where D d^{p,x).

Proofof the claim. Denote by p' h p and q' h(q) the conjugating periodic
points of A. Then the strong unstable manifold drf(p') is a line with irrational
direction. This implies that an arc of (/;') with length D' is C\ / V^ZT-dense in T3
for some C\ > 0. From the local product structure, there exist a constant C2, and

two sequences of points x'n G !F%(p'), y'n G !F^(x'n), such that q' e !Ff(y'n),

K (p'< x'n) —> 00 (« -> OO),

dn(x'n,y'n)<^ and dFc(y',q') < -^=.

Let p' be a lifting point of p' in M3, and x'n e IF^(p') be the corresponding
lifting point of x'n. Then we have

\p' -x'n\ d£u(p',x'n) d$ru(p',x'n) D'n.

Recall that the conjugacy h preserves the stable, unstable, and center foliations:
hCFf) — for * s,u,c. Denote xn h~1(x'n) and yn h~1(y'n). We

have xn g !F"(p), y„ G lFj(xn), and q e !Fj-(yn). From the continuity of the

conjugacy h, for every q > 0. there exists n \ >0, such that

d3rc(yn,q)<ih V« > « 1.

Wedenote Dn djru p. xn).
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Let H:R3 -» M3 be a lift of h. Lemma 2.2 shows that there exists L > 0

satisfying
|x — H(x)\ < L, Vx e R3.

So we have

D„ dsr«(p,xn) dfu(H-l($),H~l{x'n))

>|H-\p')-H-\x'n)\
> \p' — x'n \ — 2L D'n — IL —> oo (n -> oo).

On the other hand, since the lifting foliation is quasi-isometric, we have

Dn d^f(p,xn) d^u\H~\p'),H~\x'n))

< a \H~1(p') — H~l(x'n)\ + b

< a (Ip' — x'n\ + 2L) + b a D'n + 2aL + b.

Here the constants a, b are quasi-isometric constants in Lemma 2.1. So there exists

n2 > 0, such that Dn <2a D'n for every n >n2.
By Lemma 2.3, there exists C3 > 0 and 0 < 9 < 1/2, such that

C' (2a)6 C'
d&sf (xn, yn) < < —^r~> v" > "2.

Let C3 (2a)6 C^.
Let no max{«i,U2}, and take x x„0 e !E"(p), y yno e ^/(x) with

q (Fj(y). They satisfy

C3
dpt(y,q) < q and d^(x,y) < where D d^^p.x).

This finishes the proof of the claim.

Notice that here constants C3 and 9 only depend on the contracting and expanding
rates of / on Esy and E" Moreover, the points x and y also change here when D
changes. We will let D tends to infinity in the future.

Let ?7o > 0, such that for every z\, 7.1 e T3 satisfying d(z\, Z2) < 3qo, we have

^7^ < \\Df\EHz2)\\ < (1 + 5) • \\Df\Ec(zi)\\.
(1 + 0)

From the fact that / is conjugate to A and from the uniform continuity of the

conjugacy, there exists 0 < q\ < qo, such that for any arc J contained in a leaf of Ff
with length |/| < q 1, it satisfies

\f-"(J)\Eqo, Vn> 0.
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Moreover, since the jn-foliation 3^" is linear, the uniform continuity of the

conjugacy also shows that there exists 0 < 772 < qi, such that for any arc J contained
in a leaf of !Fj- with length |/| < 1)2, if J' hs"(J) is an arc contained in a leaf
of S'j induced by the holonomy map hsu of F, it satisfies \J'\ < r)\.

Now we consider an arc J0 C ^f(p) with one endpoint p and satisfying | J0 \ — r/2,
and we take D large enough such that there exist x £ ,'/7" (p) and y e 3~j (x) such

that q !Fj (y) and satisfy the following estimations:

C3
d$ru{p,x) D, d$-s.(x,y) < « rjo, and dFc{y,q) < r?,.

Let J1 hsu(Jo) admitting x as one endpoint. This implies |/i| < qj. And we
denote by Js(x, y) the arc contained in 3^(x) with endpoints x and y; Jc(y, q) the

arc contained in 3*f(y) with endpoints y and q. Notice that when D goes to infinity,
all these estimations still hold.

^•— stable leaf

Figure 2. Holonomy map.

Denote by No the first positive integer where f~"°N°(x) satisfies

d3r«(p,rnoNo(x))< 1.

Let p. supx6T3 IIDf~l\Eu(x)II < 1, then

log D
N0< 7 + 1.

-nolog/x

And we have

X (n)~n°N° x~n°N°
l/""oWo(/o)l * (frW '1/01 - (i +>°^o • i/o"-
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On the other hand, denote

y sup j|of \Es tx)\\ > l.
X6T3 1

We split N0 Ni + N2, such that Ni is the largest integer satisfying

\f-noNl(Js(x,y))\ <n0.

Since | Js(x, y)| djr^(x, y) < C3/Dd, we have

6 log D + log r]o - log C3
TVi >

n 0 log y

Let

_
1 —6 log fi

P 1
*

1 '2 logy
which only depends on the contracting and expanding rates of / on stable and

unstable bundles.

Now we fix the constant 8 so that it satisfies

(1 + <5)[l]+1 -A_ < A+.

Then we have

N1
>

9 log D + log T]0 - log C3 -«0 log /n

N0 «ology log D — no log /x
1 1 l°g TO _ log C3

-yiog/x 1 "t öiogD eiogd
I02 v 1 "01 ft

logf
I I log VP _ log C3

_ 2«. ^logD 2.log—~ P nplogjx
log D

So there exists Do > 0, such that if D > Z)0, then we have

Ni> ß- N0.

We can estimate the growth rate of |Ji| now. For every z e J1, we have for

every 0 < k < noN\,

d(f-k{z),rk(q)) < |/"*(/i)l + Irk(Js(x,y))\ + |/"fc(/c(y,ç))| < 3^o.

This implies that

< (i +8)noNixc(qy"°N'\jl\ < (i +<5)2"oA?ia;"oAViI-
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Since \\Df\£cf (x) II > A—/(1 + 5) for every x e T3, we have

\f n<>N°(Ji)I < (1 + S)noN2X:n°N2 \f~n°Nl(J1)\

< (1 + 8)n°N2X:n°N2 (1 + S)2n°Ni X~n°Nl |7i|

< (1 + 8)2noN°XZnoN2X~n°Nl \Ji\.

Thus we have

(i + 8)2"oNoXzn°N2X~n°Nl |/j|
\f-»oNO(j0)\

<
Xzn°N° (i + 8)~2"oN0

'
jyöT

5<1+^.(-)— M
< (1 +5)-"°^° • —.

V2

When D tends to infinity, N0 tends to infinity, and |/_"°A'0(/i)|/|/_"oiVo(/o)|
tends to zero. Since d^^Xp, f~n°N°(x)) < 1, this implies that the holonomy map

of unstable foliations restricted in is not C1 -smooth. This contradicts Theorem

2.2, which states that these holonomy maps are locally uniformly C1 -smooth.

5. Equivalent conditions for sw-integrability

From the proofofProposition 3.3 and Proposition 4.1, we can see that if / : T3 —» T 3

is partially hyperbolic and Anosov, then / is .vu-integrable as a partially hyperbolic
diffeomorphism if and only if Xc(p) XC{A) for every p Per(/). Combined
with the Main Theorem of [20], we have a series of equivalent conditions to su-
integrability of /.
Theorem 5.1. Let f be a Cl+a partially hyperbolic and Anosov diffeomorphism,
which is topologically conjugate to an Anosov automorphism A, on T 3. Thefollowing
conditions are equivalent:

1. / is su-integrable;

2. / is not accessible;

3. The topological conjugacy h (h o f A o h) preserves unstable foliation of f :

ht?}) n;
4. The lifting unstable foliation !F" is homology bounded in M3, i.e. !F"(x) is

uniformly bounded with (x)for every x e M3;

5. Xc(p) — XC(A) for every periodic point p e Per(/);
6. The topological conjugacy h is dijferentiable along fFj.
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Proof. The equivalence from Item 1 to Item 4 has been proved in [20, Main Theorem].
The equivalence between Item 1 to Item 5 has been proved Proposition 3.3 and

Proposition 4.1. We only need to prove the equivalence between Item 5 to Item 6.

Item 5 =>• Item 6. Let p be a fixed point of /. The point p' h(p) is a fixed

point of A. Now we choose a point x e IF^(p), and denote by J C ^f(p) the center

arc admitting p,x as two endpoints. Then the points p',x' h{x) are endpoints
of J' h(J) C Ff(p').

From Lemma 3.1 and Remark 3.2, there exists a continuous metric dc(-, •) defined

on every leaf of 3>Cp satisfying all three properties in Lemma 3.1 and

dc(p,x) \J'\ d3rc(p>,x').

Here \J'\ is the length of arc J'.

Claim 5.1. The conjugcicy h\j'.J —» J' is an isometry between dc(. on J
and d$rc(-, •) on J'.

Proofof the claim. Denote by x\/2 J be the middle point between p and x under
dc (•, •), i.e.

dc(p,x i/2) dc{x1/2,x).

We want to show that

djr^p' .hfxx/ff) djrcihix l/2),x').

Since Fj-ip) is dense in T3, there exists yn e Fj-ip) such that yn -» xi/2
as n —> 00. Now we consider the holonomy map

hsp^.Vcf(P) ^ Tcf(yn).

Since hsp is an isometry under the metric dc{- and dc(p,x\/2) — dc(xi/2,x),
we have

hP,yn(xV2)-^x as n —> 00.

On the other hand, h(!Fj-(p)) !F^(p') implies h{yn) e 3r^(p') and

h(yn) h(x1/2) as n -> 00.

Moreover, we have

h o hsp yn (xi/2) -> x' as n -> 00.

This implies djrc(p',h(x\/2)) — d$-c(h(xx/2),x').
Repeating this procedure:

• denote by xi/4 the middle point between p and xi/2 under dc(-, •), then we have

dsrc(p',h(x1/4)) dfrc(h(x1/4), ä(xi/2));
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• denote by X3/4 the middle point between xi/2 and x' under dc(, •), then we have

dFc(Ji(x1/2), A (*3/4)) d3rc(h(x3/4), x').

Again, we take the middle points between p and xi/4, xi/4 and xi/2, xi/2 and X3/4,

X3/4 and x', respectively. The same argument shows that h preserves all the middle

points between these intervals and their images by h. Repeating this procedure, form
the density of these middle points, h\j\ J J ' is an isometry between d c (•, •) on J
and dye (•, •) on J'.

Recall that

<ie(/(x1),/(x2)) AC(A) dc(xi,x2)

for every xj, x2 £ /and ||AT4|£c|| XC{A). Since h is an isometry between dc{-, •)

on J and the natural distance on /', it is an isometry between dc(-, on .Fj'(p) and

the natural distance on From the density of FT(p) in T3, this shows that h

is an isometry between dc(-, •) on every leaf of FT and the natural distance on every
leaf of F£.

Finally, for every z e F^(y) and y £ T3, let y: [0, 1] ->• F^(y) be a C1-curve

connecting y and z, then

dc(y, z) := f exp(cp o y(t)) \y'(t)\dr.
Jo

Let z —> y y it implies

\\Dh\Ecf{y)\\=e*<y\ Vy e T3,

which proves that h is differentiable in the center direction.

Item 6 =ï Item 5. Let p e Per(/) be a periodic point of / with period n{p).
Since h is differentiable along 3~cj-. there exists a small arc J C 37<j (p) containing p
and a constant C > 1, such that for any subarc I ç J, it satisfies

i<m<c
C - \I\ -

From the conjugacy, we have

h O f-k-^P\j) A'hn{p) O h(J) Ç h(j), VA > 0.

Since / is Cl+a-smooth and both f'1 is uniformly contracting in the center

direction, the distortion control techniques shows that there exists another constant
K > 1, such that

I I f-k-n(p)( j\I^ • Ac(pykn{p) < U < K Ae(p)-k-*<*\ VA > 0.
K IJ I
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On the other hand, we have

\A~k^P\h(J))\ Ac(A)~k^p) \h(J)\

for every k > 0.

This shows that

1 \c(A)~k-*V). \h(J)\ \A~kjt(-P\h(J))\
K

'
Ac{p)~k'n(p) • |/|

<
I f-k'*(P)(j)\

Since 1/C < \h(I)\/\I\ < C for every / ç /, we have

1 A c(A)-k-*W
K-C2 <

Ac(p)~k-*l*)
< K C2, VA > 0.

This proves Ac(p) AC(H).

Remark 5.2. It should notice that we can build an / such that its topological
conjugacy is differentiate only in the center direction. Let p G T3 be a fixed point
of A. We compose with a rotation around p in the stable and unstable plane. For the

new diffeomorphism, the stable and unstable Lyapunov exponents of p are different
from A. The topological conjugacy is differentiate in the center foliation.

However, when / is C1-close to A, it has been showed by Gogolev and

Guysinsky [9,10] that the topological conjugacy is smooth if and only if all periodic
points of / admit the same three Lyapunov exponents as A. Thus the topological
conjugacy is not differentiate.
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