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Rigidity of center Lyapunov exponents and su-integrability

Shaobo Gan and Yi Shi

Abstract. Let /' be a conservative partially hyperbolic diffeomorphism, which is homotopic
to an Anosov automorphism A on T 3. We show that the stable and unstable bundles of f are
jointly integrable if and only if every periodic point of f admits the same center Lyapunov
exponent with A. This implies every conservative partially hyperbolic diffeomorphism, which is
homotopic to an Anosov automorphism on T3, is ergodic. This proves the Ergodic Conjecture
proposed by Hertz—Hertz—Ures on T 3.

Mathematics Subject Classification (2010). 37D30, 37D20, 37D25.

Keywords. Partial hyperbolicity, Lyapunov exponent, joint integrability, accessibility, ergodi-
city.

1. Introduction

A diffeomorphism f on a closed Riemannian manifold M is partially hyperbolic if
there exists a continuous D f -invariant splitting TM = E*&® E°é E" and continuous
functions o, u: M — R, such that) <o <1 < p and

IDf @) < o(p) <IIDf )| < ulp) < IDf @)l

for every p € M and unit vector v* € E*(p), for x = s, c, u.

Since Pugh and Shub [18] conjectured that stably ergodic diffeomorphisms
are dense in the space of C? conservative partially hyperbolic diffeomorphisms,
ergodicity of partially hyperbolic diffeomorphisms has been one of the main topics
of research in differentiable dynamics. A key ingredient of proving ergodicity
for partially hyperbolic diffeomorphisms is a property called accessibility. In
dimension 3, for instance, it has been showed [4,22] that every conservative accessible
partially hyperbolic diffeomorphism is ergodic. Moreover, accessibility [22] is an
open dense property for partially hyperbolic diffeomorphisms with one-dimensional
center bundle. It seems promising that we can classify 3 dimensional non-ergodic
partially hyperbolic diffeomorphisms. Actually, Hertz—Hertz—Ures proposed the
following Ergodic Conjecture [21,23]:

Conjecture 1. If a conservative partially hyperbolic diffeomorphism of a 3-manifold
is non-ergodic, then there is a 2-torus tangential to E° @ E¥. This implies the only
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orientable 3-manifolds that admit a non-ergodic conservative partially hyperbolic
diffeomorphism are:

1. the 3-torus T3
2. the mapping torus of —1d; or
3. the mapping torus of a hyperbolic automorphism of the 2-torus.

The simplest 3-manifold supporting partially hyperbolic diffeomorphisms is
3-torus T3. It has been proven in [3,17] that if f: T3 — T3 is partially hyperbolic,
then the action fi:m;(T3) = Z> — Z3 is also partially hyperbolic. This means
Jf« € GL(3,Z) has three real eigenvalues with different moduli. One eigenvalue
has modulus larger than 1, and one has modulus smaller than one. So there are two
classes of partially hyperbolic diffeomorphisms on T 3:

* either f, € GL(3, Z) has an eigenvalue equal to -1 or 1;

e or fx € GL(3,7) is Anosov, i.e. every eigenvalue of f, has modulus not equal
to 1.

In the first case, there are partially hyperbolic diffeomorphisms which are non-
ergodic. For instance, an Anosov automorphism on 2-torus T2 times identity map
on S! is not ergodic. Moreover, it has been shown [12] that if such f is not ergodic,
then it admits 2-torus tangent to E* & EY.

For the second case, it has been shown [14] that there is no 2-torus tangent to
E* @ E*. Thus if we want to prove the Ergodic Conjecture on T3, we need to show
that every C? conservative partially hyperbolic diffeomorphism, homotopic to an
Anosov automorphism on T3, is ergodic. See also [14, Conjecture 1.11].

In order to prove ergodicity for partially hyperbolic diffeomorphisms on 3-man-
ifolds, the only obstruction is non-accessibility. If f is conservative, partially
hyperbolic, and homotopic to an Anosov automorphism on T3, then f is non-
accessible implies that the stable and unstable bundles of f are jointly integrable [14].
This is equivalent to f admits a 2-dimensional invariant foliation tangent to the union
of stable and unstable bundles everywhere. We say that such an f is su-integrable.

Hammerlindl and Ures proved the following theorem.

Theorem ([14]). Let f be a C't* conservative partially hyperbolic diffeomorphism,
which is homotopic to an Anosov automorphism A on T3. If f is not ergodic, it is
topologically conjugate to A.

Here f is not ergodic is equivalent to f is su-integrable and the integral su-
foliation is minimal on T3. Moreover, Hammerlindl and Ures proved that the
topological conjugacy preserves all invariant foliations of f, see Lemma 2.2.

In this paper, we give a necessary and sufficient condition for su-integrability
of this kind of diffeomorphisms. Moreover, such kind of f is Anosov by applying
Lemma 2.5.
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Theorem 1.1. Let f be a C1™* conservative partially hyperbolic diffeomorphism,
which is homotopic to an Anosov automorphism A on T3. The stable and unstable
bundles of f are jointly integrable, if and only if, every periodic point of f admits
the same center Lyapunov exponent as A. In particular, either of these conditions
implies f is Anosov.

Remark 1.1. In Theorem 1.1, the condition that f is conservative can be replaced
by assuming the non-wandering set Q(f) = T3. Both properties imply that the
su-foliation of f is minimal and the conjugacy preserves the su-foliation.

Combined with the work of Hammerlindl and Ures, we have the following
corollary. This proves the Ergodic Conjecture proposed by Hertz—Hertz—Ures on T 3.

Corollary 1.2. Every C'*® conservative partially hyperbolic diffeomorphism, which
is homotopic to an Anosov automorphism on T3, is ergodic.

From the previous work of Ren, Gan, and Zhang [20], if f is a C'T¥ partially
hyperbolic and Anosov diffeomorphism on T 2, then there exist a series of equivalent
conditions to su-integrability of f. We state them in Theorem 5.1.

Organization of the paper. In Section 2, we recall some properties of partially hyp-
erbolic diffeomorphisms homotopic to an Anosov automorphism on T 3. In Section 3,
we prove the “sufficient” part of Theorem 1.1, which states the fact that all periodic
points have the same center Lyapunov exponent implies f is su-integrable. In
Section 4, we show that if such kind of f is su-integrable, then every periodic point
of f admits the same center Lyapunov exponent as A. This proves the “necessary”
part of Theorem 1.1. Finally, in Section 5, we give a series of equivalent conditions
for su-integrability when f is partially hyperbolic and Anosov on T 3.

Acknowledgements. We would like to acknowledge our debt to A. Gogolev for a
lot of help during preparing this paper, especially for pointing out that his work [8]
is useful for showing the rigidity of center Lyapunov exponents. We are grateful
to A. Hammerlindl, F. Rodriguez Hertz, J. Rodriguez Hertz, A. Tahzibi, R. Ures, and
J. Yang for their valuable comments. S.Gan is supported by NSFC 11771025 and
11831001. Y. Shi is supported by NSFC 11701015, 11831001 and Young Elite
Scientists Sponsorship Program by CAST.

2. Conjugacy and su-integrability

Let f be a partially hyperbolic diffeomorphism which is homotopic to an Anosov
automorphism A on T3. Then A is also partially hyperbolic [3, 17]

TT? = E @ E & EYL.
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These three invariant bundles are linear and correspond to the three eigenvalues
As, Ae, Ay Of A respectively. From now on, we assume that the center bundle of A is
expanding, i.e.

|As] <1 < [Ae] < |Aul-

Denote by ¥4, ¥4, ¥4 the invariant foliations tangent to £, E9, E' respectively.
Since A is linear, all bundles

Ef =E}®@Ey EJ=E{®Ej ad EY=EjeE)

are integrable. Denote by ¥ {°, ¥ {*, ¥ ;¥ the foliations tangent to them respectively.

Since f is partially hyperbolic, then f has stable and unstable foliations ¥ ;
and ¥ }‘ tangentto £ Sf and £ ;‘, respectively. It has been proved by R. Potrie [17] that f
is dynamically coherent, i.e. there exist f-invariant foliations % fcs and Tf}?“ tangent
to E;S and E?“ respectively. Moreover, ¥ J?S intersects F J‘é“ in an one-dimensional
f -invariant foliation & ; , whichis tangent to £ ;} everywhere. We denote by d 73 (-,
and d 7 (-, -) be the distance induced by the inherited Riemannian metric on leaves
of 37}" and ¥ , respectively, for x = 5, c,u, cs, cu.

We denote by ¥ ; and 3‘%’1" the lifting foliations of % ; and ¥y in R?
for *x = s,c,u,cs,cu. We denote by dg}k (-,) and d};: (-,-) the distances
induced by the inherited Riemannian metric on leaves of F ; and F | » respectively,
for x = s,c,u,cs,cu.

The following lemma was proved in [13,17]. See also [2,11] when [ is absolutely

partially hyperbolic.
Lemma 2.1 ([13,17]). The two foliations ¥ fs and ;“ have global product structure:
7 ; (x) intersects fj”(y) in exactly one point, for every x,y € R3. The two
Soliations ¥ }‘ and ¥ ;S have also global product structure.

The lifting foliation ¥ ; , % = S, ¢, u isquasi-isometric in R3: there exist constants

a,b > 0, such that for any y € ﬁ;(x) with * = s, ¢, u,
dg.(x,¥) Sa-|x =y +b.

Lemma 2.2 ([5,14,17,24]). Let f be a C'™* partially hyperbolic diffeomorphism
which is homotopic to an Anosov automorphism A on T 3. There exists a continuous
surjective map h: T3 — T3 satisfying:

. ho f = Ao h, taking a lift F of f, there exists a lift H of h, such that
HoF =Ao0H.

2. h is homotopic to identity, and for every lift H of h, there exists L > 0, such that
|H —1d|| < L.

3. ForeveryX € R3, H: 34:;(35) — }zj (H (X)) is a homeomorphism.
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4. Forevery X € R3, H(ﬁf’*(f)) = ﬁ;(H(f))for = g, 08,00
5. Foreveryx € T3, h™Y(h(x)) isa compact center arc with length at most 2a L +b.

If f is su-integrable and h is a homeomorphism, i.e. f is topologically conjugate
to A by h, then h preserves all invariant foliations

h(?;) =¥%;, VYx=c,su,cs cu,su.

Proof. Item 1 and 2 are well-known results by Franks [5]. Item 3, 4, and 5 were
proved by Potrie in [17]. Item 5 see also [24] for absolutely partially hyperbolic
diffeomorphisms. The fact that / is a conjugacy preserving all invariant foliations
when f is su-integrable was proved by Hammerlindl and Ures [14]. U

In general, if f is topologically conjugate to A but not Anosov, then the
conjugacy 4! is not Holder continuous. However, we can show that 2~1 is Holder
continuous when restricted to every leaf of ¥§ and # .

Lemma 2.3. Under the assumption in Lemma 2.2, there exist constants C > O and

0 < B < 1, such that for every x € T3 and y € 37/;"()(), * = §, U, we have

dgs (' (x). k7' () < C -dgy(x. )P,

Proof. We first prove this fact for y € FJ(x). We fix g9,80 > 0, such that
locally if dgu(x,y) < 8o, then dg,-}«(h_l(x),h_l(y)) < g for every x € T3
and y € ¥} (x). Now we assume that

dgu(x,y) <K &o.
Let k be the largest positive integer such that d Fu (A*x, A*y) < 8o, then we have

dgu(x,y) > A€V - 8.
On the other hand, we have
dgu(f€oh™1(x), fFoh™ (1) = dgu(h™ 0 A5 (x), 17" 0 A5 (y)) < &0.

This implies
dgu(h™(x). B (1) < ™ - e,

where u = inf <13 m(Df|Ez}(z)) > 1.
If © > |Ay|, then we have

Mu '50|

8o

dgu(h~'(x). h™ () < dgu(x,y).
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Otherwise, we take 0 < B < 1 such that |A,|? < x. Then we have

o _ = _ ol Aul?
dgu(h™ (). 7 () < ™ e < |7 g9 < °|55’| Ay (x, ).

0

This proves that #~! is Holder continuous on every leaf of F}. The proof for
y € Fj(x) is the same. O

Notation. Ler p € Per( f) be a periodic point of f with period 7(p). We denote by

1
Ae(p) = I DF TP | ge ()| 72

Then log A (p) is equal to the center Lyapunov exponent of p. Moreover, we denote
Ac(A) = |Ac| > 1, and log A:(A) is equal to the center Lyapunov exponent of A.

Lemma 2.4. Let f be a C! partially hyperbolic diffeomorphism which is homotopic
to an Anosov automorphism A on T3. Then there exists a sequence of periodic
points { pn} of [, such that limy o0 Ac(pn) > Ac(A).

Proof. From Lemma 2.2, let F:R® — R3 be a lift of  and H:R?® — R> be a lift
of the semi-conjugacy h. The map H satisfies |[H(X) — X| < L for every X € R3.
We can choose two points X, § € R3, such that § ¢ 5‘7]? (¥) and |X — ¥| = 3L. Then

|HF)—HF)|>L>0 and H(F) € F5(HR)).

Denote by J ]C, the the arc connecting X and y in F ]E (X), and J § the arc connecting
H(X) and H(7) in ¥ £ (H (%)), then we have

H(F"(J$)) = A"(J§)., ¥n>0.

Then for every n large enough, we have

JC
[FP(J ) = [A"(JQ)| - 2L > | 2A| FAc(A)”

(for a smooth arc J, |J| denotes the arc length of J.) This implies that for every n
large enough, there exists X, € J;, such that for x, = 7 (Xx,),

- Zlog IDf | Eerigeapll = " ZIOg IDF|gerizyl
i=0 i=0

]ogl.lj[—log2|J}Cr

> log A.(A) +
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Taking an accumulation point zo of the sequence of measures {Z?;é 8 fixey)/ M5
we get that ¢ is an invariant probability measure of f and

f log | Df ¢l do(x) > log Ae (4).

By ergodic decomposition theorem, we can assume o is ergodic. Since po is a
hyperbolic measure, by Liao’s shadowing lemma (e.g., see [6,7, 15]), there exists a
sequence of periodic points {p,} of f, such that lim, oo Ac(pn) = Ac(A). ]

Theorem 2.1 ([1]). Let p be a hyperbolic periodic point of a diffeomorphism f on
a compact manifold. Assume that its homoclinic class H(p) admits a dominated
splitting Tg,yM = E @ F with E contracting and dim(E) = ind(p). If f is
uniformly F-expanding at the period on the set of periodic points g homoclinically
related to p, then F is uniformly expanding on H(p).

Lemma 2.5. Let | be a C' partially hyperbolic diffeomorphism which is homotopic
to an Anosov automorphism A on T3, If A.(p) = Ac(q) for every p,q € Per(f),
then f is Anosov.

Proof. From Lemma 2.4, we know that A.(p) > A.(A4) > 1 for every p € Per(f).
From the semi-conjugacy A: T3 — T3 in Lemma 2.2, h(p) is a periodic point of A
for every p € Per( f). Moreover, we have h~1 (h(p)) = {p}. Otherwise, h~1 (h(p))
is an f-periodic center arc, which must contain a periodic point of f admitting
non-positive center Lyapunov exponents.

This implies that for every p € Per( /'), the unstable manifold W}‘ (p) = F,"(f)
which is dense in T3 and tangent to E j,“ everywhere. On the other hand, A restricted
to every stable leaf & ]*5 (x) is a homeomorphism to # 4 (A(x)). If & is injective at a
point p, then £ is injective at every point of ; (p). Actually, if % is not injective at a
point y € ?;(p), then there exists z € ?'Jf (y) satistying h(y) = h(z). Let w(# p)
be the unique intersecting point of ¥ ; (z) and ¥ J? (p), then we have

h(F7(p)) = h(F7(») = F4(h(y)) = F4(h(2)) = h(F4(2)) = h(F}(w)).

Recall that /4 is a homeomorphism from F Jf (p) to 3 (h(p)), and a homeomorphism
from ?;(w) to F5(h(w)). Since {w} = Iif’}(z) N 37]5(;7), we have h(p) = h(w),
which contradicts the fact that / is injective at p.

Let Hy(p) = W5 (p) M W}‘ (p) be the homoclinic class of p w.r.t. f. Then we
have

h(H ¢ (p)) = h(W3(p) D WE(p))
= h(W3(p) h WE(p))
= W;(h(p)) D W (h(p)) = Ha(h(p)) = T°.
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Now we consider the partially hyperbolic splitting Ty, » I’ =E 7 ® EY. Since
Ac(p) = A:(A) > 1 for every p € Per(f), f is uniformly E?"-expanding at the
period on all the periodic points in H 7 (p). Applying Theorem 2.1, E j,” is uniformly
expanding and H r(p) is a hyperbolic set of f. Since & is injective at every point
of W}(p), W;(p) C Hy(p). If He(p) # T3, Hs(p) would be a proper repeller,
which is contradictory to the conservativity of f. This proves that f is Anosov. [

Corollary 2.6. Let f be a C' partially hyperbolic diffeomorphism which is
homotopic to an Anosov automorphism A on T3. If A.(p) = Ac(q) for every

p.q € Per(f), then A.(p) = A:(A).

Proof. We only have to show that there exists a sequence of periodic points {g, }
of £, such that

nlggo Ac(gn) < Ac(A).

This proof goes similarly with Lemma 2.4. In fact, since F J‘;’ is quasi-isometric,

there exist constants a, b > 0, such that for every n large enough,
|F"(J$) <a-|F*)— F"(F)| +b
<a-(|A"(JY|+2L) + b < 2a|J§|- Ac(A)".

(for the definition of notations, see the proof of Lemma 2.4.) So there exists y,, € J ]Cr,
such that for y, = 7 (¥,),

n—1 n—1
1

I
2102 IDf Ise(pipll = 5 2102 | DF | ez,
i=0 i=0

log2al|J§| —log|J¢
< logAc(A) + A f|.

Taking an accumulation point j¢; of the sequence of measures {Z;:é ) £ ik
we have that p; is an invariant probability measure of f and

f log | Df | g (ol die1 (x) < log Ao (A).

By ergodic decomposition theorem, we can assume p is ergodic. Since f is Anosov,
there exists a sequence of periodic points {g, } of f, suchthatlim, .o Ac(gn) <A (A4).
O

The following theorem was essentially proved in the classical paper by Pugh—
Shub-Wilkinson [19]. We will need it in Section 4.

Theorem 2.2 ([19]). Suppose that f: M — M is a C'™® partially hyperbolic
diffeomorphism with one-dimensional center bundle. If [ is dynamically coherent,
then the local unstable and local stable holonomy maps are uniformly C' when
restricted to each center unstable and each center stable leaf, respectively.
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3. Joint su-integrability

In this section, we prove that if f is a C'*% conservative partially hyperbolic
diffeomorphism on T3 which is homotopic to an Anosov automorphism, and the
center Lyapunov exponent of every periodic point of f is equal to log A.(A), then f
is su-integrable.

Firstly, we need the following lemma.

Lemma 3.1. Let f be a C't% partially hyperbolic diffeomorphism which is
homotopic to an Anosov automorphism A on T3. If A.(p) = Ac(A) for every
periodic point p € Per(f), then there exists a continuous metric d° (-, -) defined on
every leaf of center foliation ¥ €, such that:

» There exists K > 1, satisfying 1/ K ~a,’5,~} (x,y) <d(x,y) < K -dg:;’_ (x, y), for
every y € ?Jﬁ (x); '

© d°(f(x). f(¥)) = Ac(A) -d(x. y), for every y € F £(x);

* The stable and unstable holonomy maps between center leaves are isometries under
d€(-,-) when restricted to each center stable and center unstable leaf, respectively.

Proof. From Lemma 2.5 and Corollary 2.6, we know that f is Anosov and A.(p) =
Ac(A) for every p € Per(f). Then Livschitz Theorem implies that there exists a
Holder continuous function ¢: T3 — R, such that

log || Df |5 (xll = ¢(x) — ¢ 0 f(x) +logAe(4). VxeT?
This implies that
Ac(A) -exp(@(x)) = [IDf |gc |l -exp(f 0 ¢(x)).  Vx € T>.

Now we can define a metric on every leaf of ¥ J‘E as the following: for every
ye J“f']f (x),lety:[0,1]— FJE (x) bea C!-parametrization with y (0) =x and y(1) = y,

then
1

a“(ey)i= [ ew(@ o)l Oldr
0
Since ¢ is bounded, there exists K > 1, such that
1 lrod
© drs(ny) <d®(xy) <K-dge(x.y). VyeFpx).
Moreover, the cohomology equation implies f is conformal on ?} under this metric:

d(f(x), f(¥)) =Ac(A)-d(x,y), VyeFi(x).
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From this conformal structure, we know that for every x € T2 and z € ?}‘ (x):
we denote A} i F J?(x) —- F }"(z) the holonomy map induced by the unstable

foliation 5‘7}‘ in ?;“(x), then

d(h% ;(31).h :(¥2)) = d°(y1.y2).  Vy1.y2 € Fi(0).

The same property holds for z € 37; (x) and the holonomy map £, ,: 37; (x)— .77;5 (2)
induced by stable foliation ¥ fs in ¥ JES (x). O

Remark 3.2. If the function ¢ is a solution of the cohomology equation
log | Df ¢ | = ¢~ o f +logAc(A).

then ¢ + « is also a solution for every k € R. The corresponding center metric
d{(-,-) defined by ¢ + « also satisfies all the properties in Lemma 3.1. Actually,
they satisfy

di(x,y) =¢€"-d(x,y), VyeFix).

Proposition 3.3. Let f be a C'** partially hyperbolic diffeomorphism which is
homotopic to an Anosov automorphism A on T3. If A.(p) = Ac(A) for every
periodic point p € Per(f), then the stable and unstable bundles of f are jointly
integrable.

Proof. Since A.(p) = A.(A) for every periodic point p € Per(f), letd(-,-) be the
metric on ¥ jf which is defined in Lemma 3.1.
If E} and E? are not jointly integrable, then we have 4-legs local twisting,

i.e. there exist xo € T3, yg € 5‘7; (x0) and zg € .’F}‘ (x0) which are very close to xg
in the stable and unstable leaves of xg, such that locally there exist w; € & }‘ (yo) and
wy € 5‘7; (zo) satisfying

w; #wy; and ws; € ff'”;(wl).
We denote d€(w;, wy) = ko > 0.

Claim 3.4. There exists a family of arcs 4° = {I*(x) : x € T3} satisfying:

e I'(x) C F } (x) admits x as the start-point and varies continuously with respect
1o Xx.

o [%(xo) admits ygo as the end-point, and I°(zy) admits w, as the end-point.
* Everyx, € }';“(xl) satisfies that 1°(xp) = h¢% . _(I°(x1)).

X1,X2

e There exist constants 0 < [ < l», such that l; < |15(x)| < I, for every x € T3.
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Proof of the claim. Let I°(xg) be the arc from xq to yg in ?; (x0), and I°(zp) be
the arc from zg to w, in ¥ J;’ (zo), then we can see that

I°(z0) = h%; 2o (7 (x0)).

X0,20

where A , ?’; (x9) — 37; (zo) is the local holonomy map induced by 37;”. Then

for every point x € .’FJE“(xo), we can define

I°(x) = hiy (I°(x0)) C Fr(x).
Since every leaf of 3‘7;“ is homeomorphic to R?, and the lifting foliations Fex ¥ fs
admit a global product structure, this tells us that /°(x) is well-defined for every point
X € ?;”(xo). Moreover, the topological conjugacy # maps £ Jf“ into the linear # ;*

implies that we can extend this family of stable arcs to T :
45 = {I°(x) : x € T}.

Finally, since ¥ and ¥ {* are linear foliations, the uniform continuity of 4 gives us
the constants 0 < [; < /5 such that [ < |I5(x)| < I, for every x € T?3. O

Symmetrically, we have the following claim.

Claim 3.5. There exists a family of arcs §% = {1"“(x) : x € T3} satisfying:

e I¥(x)C F }‘ (x) admits x as the start-point and varies continuously with respect
fo Xx.

o [¥(xo) admits zy as the end-point, and [¥(zy) admits wy as the end-point.

e Everyx; € ijs (x1) satisfies that 1*(x2) = h%] ., (1" (x1)).

o There exist constants 0 < I3 < ly, such that I3 < |I"(x)| < 4 for every x € T3.

We fix the orientation of 7%(xp) from xo to yo to be positive and assume it
coincides with the positive orientation of 7. Since F:*(xo) is dense and ¥ is
orientable, the orientation can be continuously extended to 4°. Symmetrically, we
fix the orientation of 4% which is positive from xg to zo at /*(xp), and assume it
coincides with the positive orientation of . Moreover, we assume that the arc
from w; to w, has the same orientation with & ;

For every x € T3, we define the su-path JS%(x) to be the path that goes
through /¢(x) to the end-point y of 7°(x), then go through I/¥(y) to the end-
point w’. We call w’ the end-point of J**(x). Symmetrically, we can define the
us-path J%**(x) by going through /*(x) to the end-point z, then go through 7°(z) to
the end-point w”. We call w” the end-point of J**(x).
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Claim 3.6. There exists a family of arcs 4 = {I¢(x) : x € T3} satisfying:

e I°(x) C F Jf (x) admits x as the start-point and varies continuously with respect
1o x;

s For every x € T3, denote w' to be the end-point of J*(x) and w" to be the
end-point of J*5(x), then w" is the end-point of the arc 1°(w'). In particular, wo
is the end-point of 1€ (wy).

o Foreveryw' € T3 with dI¢(w'") = {w’, w"}, it satisfies
d°(w', w") = d(w,w2) = kg > 0,
and 1€(w") from w' to w” has the same orientation as ¥ ; .

Proof of the claim. The definition of 4° comes from the second item of the claim.
From the continuity of 4* and 4%, and their holonomy invariance by ¥ fC” and ¥ f” ,
J¢ is well defined and varies continuously. We only need to check the last item.

For every x € #7(xo), we denote w’ and w” be the other endpoints of su-path
J*%(x) and us-path J*¥(x) respectively. The holonomy invariance of 4° and 4*
implies w’, w” € ¥ ]f (w1). Moreover, we consider the composition of holonomy
maps Ay 0 37]? (x0) — 37; (yo) and AY 37)? (yo) — 5‘7; (wy), it is defined as

Tou(xo) = Myomy © Bxg et F i (X0) = Fr(wr),
where hf,‘;u(xo)(x) = i’
Similarly, we have the holonomy map
B o) = Moy © M3 20 FF(X0) = Ff(w2) = F(wy).

ZQ,W2 X0,20

which is the composition of the holonomy maps

By z0: Ff(x0) = Ff(zo) and hy .1 Ff(z0) = Ff(wa)

X0520 ZQ,w2

and satisfies "/}, (o) (x) = w”.

Since the holonomy maps of stable and unstable foliations between center leaves
are isometries under the metric d€(-,-) when restricted in each center-stable and
center-unstable leaves, both A%y, o) and h’}sm(x()) are isometries between ?; (x0)
and .‘F]? (w1) under the metric d°(-,-). This implies

dC(UJhw,) = dc(.xO,x) = dc(wz’w”) = s

So we have d€(wy, wz) = d“(w’, w”), that is ¢ (x) has the same length under the
metric d€(-,-) for every x € ¥ Jf (x¢). From the density of 37; (x0) and continuity
of J¢, we prove the claim. O
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Now we lift these three family of arcs 4%, 4% and J€ to the universal cover R3.
We use the same notation for convenience.

Now we fix x® € R? and denote z° the end-point of 7¥(x?). Define inductively:

o gl e }:Ji(xo) to be the end-point of I5(x?) fori = 0,1,..., n—1;
o 7itl ¢ 59:;(20) to be the end-point of 75(z') fori = 0,1,..., a—L

Then we consider the end-point w® of 7%(x"), we can see that that w° € F ;’ (")

Moreover, there exists a sequence of points {w®, w!, ..., w"} C FE(z"), such that
q p f

« w'*!is the end-point of /¢(w') fori =0,1,....n—1;

o w" =z"and d(w°,z") = n-ko.

—— Stable |eaf 2n=w"
— INStable leaf

n-1
——— CCNter leaf w

Isqzy 2

21

I5(z9)

WD
T (x0)

(xn)

n

LN

Figure 1. Global twisting.

Actually, if we denote u’ to be the end-point of 7*(x’) fori = 1,...,n — 1, we
have

w = }:;(u”_i)ﬂf}’(wo) - fﬁs(wo), i=1,....,n—1.

This implies d¢(w?, z") = n-kp. Since 3‘7; is quasi-isometric, there exists a > 0,
such that
n-akg < |w®—z" - o0 asn — .

Since |x" — w®| < [I¥*(x™)| < l4, this implies
|z" — x"| — 00, asn — oo.

Let F:R3 — R3 be a lift of f, and H:R* — R? be the conjugacy satisfying
Ao H = H o f. Then there exists L > 0, such that |H(X) — X| < L.
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Since H(¥3) = #3 and H(¥§*) = # £, we have

H(z% € F4(H(x®), H(x") € F5(H(x)),
and
H(Z") = F{(H(Z%) b F$4H ().

If we denote /°: fj"(xo) — fj“(x”) as the holonomy map induced by the stable
foliation 4, then we have

H(x™) = h(H(x") and H(z") = h*(H ().
However, since both % 4 and f’j” are linear, we have
|H(Z") — Hx™)| = |H(E%) — Hx%)| < |2° = x°| + 2L <1, + 2L.
This implies that for every n, we have
|z —x"| < |Z2" —HEM)| + [x" — HX™)| + (s + 2L) <14 + 4L.

This is a contradiction. O

4. Rigidity of center Lyapunov exponents

In this section, we prove that if f is a C'*% conservative partially hyperbolic
diffeomorphism on T3 which is homotopic to an Anosov automorphism and admits
jointly integrable su-foliation £ 3*, then the center Lyapunov exponent of every
periodic orbit of f is equal to log A.(A).

From the work of Hammerlindl and Ures, the following proposition implies the
“necessary” part of Theorem 1.1. The idea of our proof originates from the work
of A. Gogolev [8].

Proposition 4.1. Let f be a C'T% partially hyperbolic diffeomorphism which is
homotopic to an Anosov automorphism A on T3. If the stable and unstable bundles
of f are jointly integrable and [ is topologically conjugate to A, then

Ae(p) = Ac(A),  Vp ePer(f).
Thus f is Anosov.

Proof. Recall we assumed that A.(A) > 1. Since f is topologically conjugate to A,
the topological expansion in the center direction implies A.(p) > 1 for every periodic
point p of f.

From Lemma 2.5, we only need to show that A.(p) = A.(g) for any periodic
points p,q € Per(f). The topological conjugacy property implies that f also
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satisfies the Shadowing Lemma. If there exist py, p» € Per(f), such that A.(p;) <
Ac(p2), then the set

{Ac(p):p € Per(f)} = [A- A4]

is a nontrivial interval contained in [1, +00). By applying the Shadowing Lemma,
we can take a smooth adapted Riemannian metric, such that

1+8 <[I1Dflesell <A+ - (1 +9), Vx e T3,

Here § could be arbitrarily small, and we will fix it later.
Now we choose periodic points p, g of f, such that

Ac(p)
. <1446 and ) S

Denote by n¢ the minimal common period of p and q.

Claim 4.2. There exist two constants C3 > 0 and 0 < 60 < 1/2, such that for every
n > 0, there exist points x € 37}‘ (p),ye 5‘7; (x) withq € 37; (v), such that

Cs
dng(y,q) <n and dg:;(x,y) & ek where D = df}l(p,)(f).

Proof of the claim. Denote by p’ = h(p) and ¢’ = h(q) the conjugating periodic
points of A. Then the strong unstable manifold ¥ (p’) is a line with irrational
direction. This implies that an arc of ¥} (p’) with length D" is Cy/ v/ D’-dense in T3
for some C; > 0. From the local product structure, there exist a constant C,, and
two sequences of points x;, € F{(p’), y, € F(x,), suchthatq’ € F{(y;),

D, = d?j‘([?, xp) —> 00 (n— o),

dyg (o yn) < —== and dg(y'.q") =
A

Let p’ be a lifting point of p’ in R3, and X/, € Jf “(p") be the corresponding
lifting point of x;,. Then we have

P~ %l = dzu(F.5)) = dgy (. %) = D},

Recall that the conjugacy h preserves the stable, unstable, and center foliations:
h(fff';) = Fj for x = s,u,c. Denote x, = h™!(x]) and y, = A~ (y;). We
have x, € ?}‘(p), Yn € J’7S(xn) and g € ?j?(y,,). From the continuity of the
conjugacy h, for every n > 0, there exists n1 > 0, such that

dgc(Yn,q) =m, Ynzny.
We denote D, = dg:} (5 Xnds
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Let H:R?® — R3 be a lift of =. Lemma 2.2 shows that there exists L. > 0
satisfying
X—H®X)| <L, VXeR3.

So we have
Dy = dgu(p,xn) = dﬁ;g (H™Y(p), H'(X)))
> |H () —H (%))
>|p'—X,|—-2L =D, -2L — o0 (n— ).

On the other hand, since the lifting foliation .‘}f:}‘ is quasi-isometric, we have

Dy = dgu(p.xn) = dgy (H™'(7'), H™(X;))
<a-|[HWF)~H ' (&) +b
<a-(|f'—%|+2L) +b=a-D, +2aL +b.
Here the constants a, b are quasi-isometric constants in Lemma 2.1. So there exists

ny > 0, such that D, < 2a - D}, for every n > nj.
By Lemma 2.3, there exists C; > 0 and 0 < 8 < 1/2, such that

C;  (2a)°Cy

)E(D,’l)9< D,? , VYn>ns,.

d;«r_; (s Voo

Let C; = (2a)?C}.
Let np = max{ni,n2}, and take x = x,, € 37}‘(17), Y = Yny € 5‘7;(36) with

T C

q€F; (). They satisfy

C3
df;(y,q) <n and djc}(x,y) < Do’ where D = dgq}z(p,x).

This finishes the proof of the claim. 0

Notice that here constants C3 and & only depend on the contracting and expanding
rates of f on E jr and E;‘r Moreover, the points x and y also change here when D
changes. We will let D tends to infinity in the future.

Let no > 0, such that for every z1, zo € T3 satisfying d(z1, z2) < 319, we have

IDf |Ee(zpll
——— U < |Df|g< < (I +9)-|Df|Eec :
o <IDflsceoll < A +8)-1Dfsecyl
From the fact that f is conjugate to A and from the uniform continuity of the

ag-C

conjugacy, there exists 0 < n; < ng, such that for any arc J contained in a leaf of ¥ f
with length |J| < 11, it satisfies

7)) <no, VYn=0.
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Moreover, since the su-foliation F;* is linear, the uniform continuity of the
conjugacy also shows that there exists 0 < 72 < 5, such that for any arc J contained
in a leaf of ?}’ with length |J| < ny, if J' = hjr“(J) is an arc contained in a leaf
of ?Jﬁ induced by the holonomy map #%% of ¥ fs”, it satisfies |[J'| < n;.

Now we consider an arc Jy C 37; (p) with one endpoint p and satisfying | Jo| =12,
and we take D large enough such that there exist x € 3‘7}‘ (p)and y € F j} (x) such
thatg € ¥ ]‘5 (y) and satisfy the following estimations:

G
dyy(p.x) =D, dgz(x,y) = 75 <o, and dge(y.q) <m.

Let J; = h*¥(Jp) admitting x as one endpoint. This implies |J1| < 1. And we
denote by J*(x, y) the arc contained in ¥ } (x) with endpoints x and y; J(y, q) the
arc contained in & ]‘f (y) with endpoints y and g. Notice that when D goes to infinity,
all these estimations still hold.

—— Stable |eaf

e T UnStab'e leaf

——— center |eaf

Figure 2. Holonomy map.

Denote by N the first positive integer where #~"0No(x) satisfies
dyu(p. f N0 (x)) < 1.
Let = supyeps | Df ~Hpull <1, then

log D
Nogg —+ L
—nplog u

And we have

Ae(p) oo AZroMo

|/ (Jo)| = 0+ 6o |Jo| = 1+ 5)zmoNo | Jol.
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On the other hand, denote

y = sup [ Df M gsml > L.

xeT?3

We split No = N; + N3, such that N, is the largest integer satisfying

7N (e, y))] < o

Since |J*(x, y)| = d;:;(x, y) < C3/D?, we have

- Blog D + logny —log Cs
1 2 )

nglogy
Let
B = 1 —Blogu
2 log y

which only depends on the contracting and expanding rates of f on stable and
unstable bundles.
Now we fix the constant § so that it satisfies

1+ &HET A <A,

Then we have

N, - 6log D + logng —log Cs3 —ng log
No — nology log D —nglog
logn log C
_ —flogu . 1+ HligOD - aigf)
logy 1 — moogit

logng _ logCs

1+ Olog D flog D
1 — nolog i
log D

=28

So there exists Dy > 0, such that if D > Dy, then we have
N1 > )8 J No.

We can estimate the growth rate of |J{| now. For every z € Ji, we have for
every 0 < k < noNy,

d(f @), f7@) < 1D+ 15 oD+ 15T )] < 3no.
This implies that

|f7NMD] < (44 80N Ac ()TN ] < (14 8PN ).
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Since ||Df|E;(x)H > A_/(1 4 §) for every x € T3, we have

| froNo( )| < (1 + §)roNzp oMz | prmoli( gy
< (1 + 8)"0Nzl:n0N2 . (1 + 8)2HON1A;"0N1 |J1|

o (1 5y S)ZHONOA:nONZA;nONI |J1 |
Thus we have

|f—noN0(J1)\ - 1+ 5)2noNoA:noN2)L_|—_"ON1 . FA
[froNo(Tg)] ~ ~ATmoNo (1 1 §)2moMo [Ty

A_\BnoNo | J|
= ] 54n0N0_ = L2}
=({1+9) (A+) 17o]
< (1 4 §)~moNo 11

N2

When D tends to infinity, Ny tends to infinity, and | £ ~"0No(J )| /] f 700 (Jo)|
tends to zero. Since d Fu (p, f"No(x)) < 1, this implies that the holonomy map

of unstable foliations restricted in 37;" (p) is not C '-smooth. This contradicts Theo-
rem 2.2, which states that these holonomy maps are locally uniformly C !-smooth. []

5. Equivalent conditions for su-integrability

From the proof of Proposition 3.3 and Proposition 4.1, we can see thatif f: T3 — T3
is partially hyperbolic and Anosov, then f is su-integrable as a partially hyperbolic
diffeomorphism if and only if A.(p) = A.(A) for every p € Per(f). Combined
with the Main Theorem of [20], we have a series of equivalent conditions to su-
integrability of f.

Theorem 5.1. Let f be a C'™% partially hyperbolic and Anosov diffeomorphism,
which is topologically conjugate to an Anosov automorphism A, on T 3. The following
conditions are equivalent:

1. f is su-integrable;

2. f isnot accessible;

3. The topological conjugacy h (ho f = A o h) preserves unstable foliation of f:
h(¥F }‘) =Fi;

4. The lifting unstable foliation F }‘ is homology bounded in R3, i.e. ﬁ'}‘ (x) is
uniformly bounded with ﬁ:}l‘ (x) for every x € R3;

5. Ac(p) = Ac(A) for every periodic point p € Per(f);

T C

6. The topological conjugacy h is differentiable along ¥ b
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Proof. The equivalence from Item 1 to Item 4 has been proved in [20, Main Theorem].
The equivalence between Item 1 to Item 5 has been proved Proposition 3.3 and
Proposition 4.1. We only need to prove the equivalence between Item 5 to Item 6.

Item 5 — Item 6. Let p be a fixed point of f. The point p’ = h(p) is a fixed
point of A. Now we choose a point x € ?;(p), and denote by J C 37; (p) the center

arc admitting p, x as two endpoints. Then the points p’, x" = h(x) are endpoints
of J' =h(J) C F5(p').

From Lemma 3.1 and Remark 3.2, there exists a continuous metric (-, -) defined
on every leaf of ﬁfc, satisfying all three properties in Lemma 3.1 and

d®(p.x) = |J'| = dg¢(p'. x").

Here |J'| is the length of arc J'.
Claim 5.1. The conjugacy h|y:J — J' is an isometry between d€(-,-) on J
and dg(-,-) on J'.
Proof of the claim. Denote by x1/, € J be the middle point between p and x under
de(-,-),i.e.

dC(P’xlfz) = dc(xl/z,x)-

We want to show that
dzc(p' h(x11)) = dgec(h(x12), x°).

Since ?fs(p) is dense in T3, there exists y, € ?;(p) such that y, — x1
as n — oo. Now we consider the holonomy map

B FE(D) = F5 ().

Since A7, ,, is an isometry under the metric d“(-,-) and d“(p, x12) = d“(x172, x),
we have

By, (X172) — x  asn — oo.

On the other hand, h(.?*”; (p)) = F3(p') implies h(y,) € F{(p’) and
h(yn) = h(x1) asn — oo.

Moreover, we have
s /
hoh,, (x12) > x asn — oo.

This implies dg¢ (P’ h(x12)) = dge(h(xiy), x).
Repeating this procedure:
* denote by xi/, the middle point between p and xi/, under d°(-, -), then we have

dge(p’ h(x174)) = dgc(h(x), h(x1)));
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* denote by x3/, the middle point between xi/, and x" under d€(-, -), then we have
dgc(h(x12), h(x34)) = dge (h(x3), X').

Again, we take the middle points between p and x14, X1/, and x1/,, X1/> and x3/4,
x3/4 and x', respectively. The same argument shows that 4 preserves all the middle
points between these intervals and their images by 4. Repeating this procedure, form
the density of these middle points, #|y: J — J'is an isometry between d(-, ) on J
and dg<(-,-) on J'. [

Recall that

d°(f(x1), f(x2)) = Ac(A4) - d®(x1, x2)
forevery x1, x> € J and || DA|g¢ | = Ac(A). Since A is an isometry between d“ (-, +)
on J and the natural distance on J', it is an isometry between d(-,-) on ¥ ]‘;’ (p) and

the natural distance on 55 (p’). From the density of % Jf (p) in T3, this shows that
is an isometry between d€ (-, -) on every leaf of ¥ jE and the natural distance on every
leaf of ¥ 4.

Finally, for every z € 5‘7; (y)and y € T3, let y:[0,1] — ?fc(y) be a C-curve
connecting y and z, then

1

d°(y, 2) = / exp(dh 0 y(1)) - |y ()] dt.

0

Let z — y, it implies
|Dhlgs oyl = e, vy eT?,

which proves that /4 is differentiable in the center direction.

Item 6 — Item 5. Let p € Per(f) be a periodic point of f with period 7 (p).
Since A is differentiable along F J‘E there exists a small arc J C F Jﬁ (p) containing p
and a constant C > 1, such that for any subarc I C J, it satisfies

1L _ ()]

<

c— |

< C.

From the conjugacy, we have
ho f7m®(Jy = A=%D o p(J) € h(J), Vk =0,

Since f is C'*%-smooth and both f~! is uniformly contracting in the center
direction, the distortion control techniques shows that there exists another constant
K > 1, such that

| k() ( ]
- .Ac(p)—k-n(p) < |f ( )|

KA (p) k7@ v >0,
% 7 < (p) >
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On the other hand, we have
AT RIN] = Ae(A)TTD - 1))

for every k > 0.
This shows that

1 A (D p)] AT D (())]

K Xe(p)y*n@ g = [fEw@)(])]
Ac(A) 7R =@ | h ()|

< K- , Yk >0.
Ae(p)~*m®) .| J| B
Since 1/C < |h(1)|/|I| < C forevery I C J, we have
1 Ao (A eermlal
< <(4) <K-C? Vk=>0.
K-C2 = he(p) <)
This proves A.(p) = Ac(A). O

Remark 5.2. It should notice that we can build an f such that its topological
conjugacy is differentiable only in the center direction. Let p € T2 be a fixed point
of A. We compose with a rotation around p in the stable and unstable plane. For the
new diffeomorphism, the stable and unstable Lyapunov exponents of p are different
from A. The topological conjugacy is differentiable in the center foliation.

However, when f is C'-close to A, it has been showed by Gogolev and
Guysinsky [9, 10] that the topological conjugacy is smooth if and only if all periodic
points of f admit the same three Lyapunov exponents as A. Thus the topological
conjugacy is not differentiable.
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