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Squeezing Lagrangian tori in dimension 4

Richard Hind* and Emmanuel Opshtein

Abstract. Let C? be the standard symplectic vector space and L(a,b) C C? be the product
Lagrangian torus, that is, a product of two circles of areas a and » in C. We give a complete
answer to the question of finding the minimal ball into which these Lagrangians may be squeezed
by a Hamiltonian flow. The result is that there is full rigidity whena < b < 2a, which disappears
almost completely when b > 2a.

Mathematics Subject Classification (2010). 53D12; 53D35.
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1. Introduction

In this paper we investigate the extent to which product Lagrangian tori can be
‘squeezed’ by Hamiltonian diffeomorphisms. To be precise, we determine when such
a torus can be mapped into a ball or a polydisk. To fix notation, we work in the vector
space R* ~ C? equipped with its standard symplectic form v = Zle dx; A dy;.
The Lagrangian product tori are defined by

Lig,bh) = {7r|zl|2 = a,n|22|2 = b}.
The open ball of capacity R is given by
B(R) = {m(|z1]* + |22|*) < R},
and our polydisks are defined by
P(a,b) = {r|z1|* < a, w|z2|* < b}.

Hence L(a, b) is the singular part of the boundary of P(a, b). Up to renormalizing
the symplectic form, it is enough to study the special case of squeezing Lagrangian
tori L(1,x), x > 1. The current paper contains the first results about non-monotone
tori, but the monotone case is already known: L (1, 1) (or any torus with monotonicity
constant 2) cannot be squeezed into a ball of size 2, see [3]. Our main result is the
following:

*R.H. is partially supported by Simons Foundation grant no. 633715.
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Theorem 1. For x > 1, there exists a Hamiltonian diffeomorphism of C? that takes
L(1,x) into B(R) if and only if R > min(1 + x, 3).

In other words, the Lagrangian torus L (1, x) belongs to the boundary of the
ball B(1 4+ x), and when x < 2 it cannot be squeezed into a smaller ball, while
when x > 2 it can be squeezed into a ball of size 3 + ¢ if and only if ¢ > 0.
By the Arnold conjecture, taking L(1, x) even into B(1 + x) cannot be done by
a Hamiltonian with support in a neighbourhood of the torus. Indeed the flows we
construct may have large support in C2.

Our result when x > 2 holds in fact in a slightly more general setting that we
review now. For a Lagrangian L C C?2, there are two homomorphisms

Q,u:Hi(L,Z) >R

describing how L is embedded in C2. The first homomorphism is the area class and
is defined by

S2(e) = [Al(e)

where A is a Liouville form, that is, a primitive of w. Equivalently,

Q(e) =[Du*a)

where D is a disk and u: (D, dD) — (C?, L) verifies u4«[0D] = e. The second
homomorphism is the Maslov class. If u: S! — L with u,[S!] = e then u(e) is the
Maslov class of the loop of Lagrangian subspaces T, ()L C C2.

Theorem 2. Suppose L. C B(R) is a Lagrangian torus and e, e is an integral basis
of Hi(L, Z) satisfving:

1. Qer) =1, Qez) > 2,

2. pler) = pler) =2
Then R > 3.

In general squeezing a Lagrangian torus does not depend on the area and Maslov
classes alone. Forexample, L (1, 2) and L(2, 3) both have integral bases with Maslov
class 2 and area classes 1 and 2. However L(1, 2) lies in the boundary of B(3) while
a rescaling and Theorem 1 implies that L(2,3) cannot be mapped to the interior
of B(5).

To the best of our knowledge, although any non-monotone Lagrangian torus in C2
may be conjectured to be Hamiltonian isotopic to a product one, there is no proof
available at this time. In [6], Dimitroglou Rizell-Goodman—Ivrii prove a weaker
unknottedness result, namely that any two Lagrangian tori are Lagrangian isotopic.
The conjecture would imply that Theorem 2 is a consequence of Theorem 1.
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Theorem 1 has an analogue for Lagrangian tori inside polydisks.

Theorem 3. For x > 1 and a < b there exists a Hamiltonian diffeomorphism of C?
that takes L(1, x) into P(a,b) if and only if either a > 2 or botha > 1 and b > x.

In particular Theorems 1 and 3 show that embeddings of Lagrangian tori into
balls or polydisks do not necessarily extend to the corresponding polydisks, where
there is a volume obstruction. Even more, there are symplectic obstructions to
embedding a polydisk into a ball which do not obstruct squeezing its Lagrangian
‘singular boundary’ (see [5, 12] and compare to Theorem 1). Therefore our results
do not seem immediately relevant for studying the squeezing of polydisks P(1, x),
which remains open for x > (/7 — 1)/(~/7 — 2). Nevertheless our approach can be
applied to the stabilized polydisk embedding problem P(1,x) x C" — B(R) x C",
see [8].

Outline of the paper. Theorems 1 and 3 have two facets. On the one hand, they
assert some obstructions for squeezing a Lagrangian torus into a small ball or polydisc.
On the other hand, they claim the existence of some embeddings, that we need to
construct explicitly.

Our obstructions ultimately come from holomorphic planes in the complement
of a Lagrangian torus in C P? which have large ‘degree’ and are asymptotic at their
puncture to a large multiple of a closed geodesic for a flat metric on the torus. It
seems necessary to study such high degree curves in order to derive sharp bounds.
Our approach is to begin with finite energy planes asymptotic to thin ellipsoids which
were introduced in [9]. In a sense we can think of these seed curves as substitutes
for high degree rational curves which are very singular at a point of our Lagrangian
(and by the adjunction formula do not exist). We place the ellipsoid in a tubular
neighborhood of the torus and then carry out a neck-stretching process along the unit
circle bundle.

We fix notation and describe the seed curves and neck-stretching arrangement in
Section 2. Then in Section 3 we collect several lemmas on properties of curves in
the holomorphic buildings appearing as limits after stretching, in particular obtaining
restrictions on their Fredholm indices.

In Section 4, we prove Theorem 2 and the obstruction part of Theorem 1.
Embeddings into balls are actually technically more difficult to study than into
polydiscs (where one can work throughout with embedded curves). In Section 5, we
outline the adjustments needed to deal with embeddings into polydisks.

Finally, we deal with the constructive part of Theorems 1 and 3 at the same time,
by proving the following:

Theorem 4. If x > 2, for any A > 1, there exists a Hamiltonian diffeomorphism
of C? that takes the product torus L(1, x) into B(31) N P(2A,2X).

This is described in Section 6. Our approach is to explicitly write down the image
of the Lagrangian torus, which can readily be seen to have Maslov and area classes
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corresponding to those of L(1,x). We will then rely on techniques used in [6] to
show that what we have described is in fact the image of a product torus under a
Hamiltonian diffeomorphism, rather than a possible exotic nonmonotone torus in C?
(which conjecturally do not exist).

2. Geometric framework

The proof of Theorem 1 is based on neck-stretching arguments in the following
setting. Let L. C B*(R) be an embedded Lagrangian torus in the ball of capacity R.
We can compactify B(R) to a projective plane CP2(R) with lines of area R and will
denote by S, the line at infinity. The cotangent bundle of T2 can be symplectically
identified with R*/Z? where Z? acts by translations in the (x1, x2)-plane. We fix a
very large integer d and an irrational number S > 3d — 1. Then, for ¢ small enough,
the neighbourhood

Ves :={Iy1] <&/2,|y2| < eS/2}

of the zero section symplectically embeds into B(R) as a Weinstein neighbourhood
of L, denoted by V. Now V, g contains a symplectic bidisk %P (e, £S), which by
inclusion contains an ellipsoid € E(1, S). By definition eE(1,S) = E(e,&S5) and the
ellipsoids are defined by

E(a,b) = {n(l—zﬂi L2 2|2) < 1}.
a b

Putting everything together, we therefore have inclusions

¢E(1,S) Cc V C B(R) c CP?(R).

We will consider some holomorphic curves in CPP2(R) that we wish to stretch along
the boundary of V. But since this boundary has corners, we first replace V, s by a
smooth approximation. Following [11], we define

us = {05, <3} e

where [|(§1,62) ]|, = (IE117 + 16217) 7. ’ Then, Uf is a smoothly bounded fiberwise
convex subset of 7*L that contains V, g, and is close to V, s in the Hausdorff
topology when p is large. For large enough p, we therefore have:

E C U C B(R) c CP%(R),

where U is a symplectic embedding of U;’S and FE stands for ourinclusion of e E(1, 5).
We then have a symplectic cobordism X = CP2(R) \ E which supports tame
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almost-complex structures with cylindrical ends compatible with the Liouville contact
structure on dE. We study finite energy J-holomorphic curves in X. These will be
J -holomorphic maps

u:CP! \I' - X,

where I' is a finite set of punctures and u is asymptotic to closed Reeb orbits on dF
at each puncture. We define the degree of these maps to be simply their intersection
number with the line at infinity Soe = CP?(R)\B(R), and their asymptotics are
iterates of the two closed Reeb orbits on dE, namely (the images of)

y1=8Eﬂ{x2=y2=0}
and v2 = 0dE N{x; = y; =0}

Some special finite-energy curves in X. Our starting point is an existence theorem
for some curves of degree d in this cobordism:

Theorem 2.1 (Hind—Kerman [9, 10]). There exists an infinite subset A C N such
that, forany d € A, S > 3d — 1 irrational and ¢E(1,S) C CP2(R) and for any
generic J, there exists a rigid finite energy plane u: C — X of degree d asymptotic
to the Reeb orbit yf’d_l.

This theorem was claimed for any d in [9, Theorem 2.36]. Unfortunately there
was a mistake in the proof, which is corrected in [10] at the expense of establishing
the result only for d belonging to a sequence of natural numbers that diverge to +oc.
In [14], McDuff proves the statement claimed in [9], that the previous result holds
with A = N. The version considered here is however enough for the purpose of the
current paper.

Neck-stretching. Let now J,, be a sequence of almost complex structures on X
that are cylindrical near dE and that stretch the neck along dU. Let u,,: C — X be
Jn-holomorphic finite energy planes provided by Theorem 2.1. They have degree d,
and are asymptotic at their puncture to yfd‘l. By [2], this set of curves enjoys a
compactness property. In a now well known sense, our sequence of curves converges
(modulo extraction) as n — oo to a holomorphic building B made of finite energy
holomorphic curves in SOE, U\E, SOU, and CP?\U. (Here SAE and SQU denote
the symplectization of dE and dU respectively, with cylindrical almost-complex
structures.) These curves have positive and negative ends that are asymptotic to Reeb
orbits of U or dE. All these ends but one match together pairwise. The unmatched
end is asymptotic to yfd‘l on JE. Moreover, gluing the different components
along their matching ends provide a topological surface which is a bunch of spheres
(that may appear because of bubbling phenomenon) and one plane that contains the
unmatched end. We need to gather information on the limit building. To make our
analysis manageable we will identify various sets of limit curves with matching ends

and consider them as single components of the limit. Once the ends are identified,
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we can still talk about the index of such a glued component (see Section 3.1). The
identifications are made as follows.

(I) The limiting building has a unique curve uy in its lowest level with negative end
asymptotic to yf’d —1. All curves which can be connected to ug through a chain of
curves with matching ends lying in U \ E or the symplectization layers are identified

along their matching ends to form our first component Fjp.

(IT) Suppose Fy has T unmatched ends. Then the complement of Fy in our limiting
building, after identifying matching ends, has exactly 7 components which we denote
P o s s ps

3. Preliminaries

3.1. Reeb orbits and index formulas. The Reeb flow on dU is conjugated to that
of BUE{J - Which can be easily computed. It preserves the tori {(y1, y2) = c}, and
is a linear flow on each such torus, whose slope depends on ¢. When this slope is
rational, the torus is foliated by a 1-dimensional family of periodic orbits.

Proposition 3.1. Fix an integral basis of Hy (L, Z). For each pair of integers (k.l)
except (0, 0) there is a 1-parameter family of closed Reeb orbits on 0U which project
to a curve in L in the class (k,l). We say these Reeb orbits are of type (k,l) and
denote them by yi ;. The orbits are embedded if and only if k.l have no common
factor. Orbits y,k r1 are r-times covers of the orbits yy ;.

We now recall the index formulas for the different curves that may appear after
the neck stretching process. Before specializing to our situation, let us consider the
general setting of holomorphic curves in symplectic cobordisms, and their index [1,
18]. Let ¥ be a punctured surface of genus g with s punctures, and W a symplectic
cobordism. Recall that this means that W is a symplectic manifold with boundaries
AW LW ~, which are equipped with locally defined outward (inward respectively)
pointing Liouville vector fields. The Liouville vector fields define contact forms on
the boundary components of W, and we assume that their Reeb vector fields are
Morse—Bott: the closed Reeb orbits on dW may come in smooth families, along
which the transverse Poincaré return maps are non-degenerate. Let also J be an
almost complex structure adapted to our cobordism (compatible with the symplectic
structure and cylindrical near the ends). Given a finite energy J-holomorphic curve

u:i]—>W,
we denote by
yi+,i=1...s+ and y;, j=1...5-

the positive and negative limiting Reeb orbits in dW T and dW ~, respectively. By the
Morse—Bott condition, these asymptotics belong to families of closed Reeb orbits,



Vol. 95 (2020) Squeezing Lagrangian tori in dimension 4 541

denoted Sl.+, S . We also fix a symplectic trivialization 7 of u*T W along these
asymptotics. Then, ¢](u*T W) denotes the algebraic number of zeros of a generic
section of the vector bundle A?u*T W which is constant with respect to T on the
boundary. Following [1, 18], the formula for the expected dimension of the moduli
space of holomorphic curves (moduli reparameterizations) in the same homology
class and having the same asymptotics as u, called below the index of u, is given by

S+
. 1
index(u) = (n — 3)x(£) + 2] TX) + Y (ucz(y,*) + 5 dim S;f)
i=1

S_

- (keaG7) — 5 dimST). G

J=1

In this formula, pcz(y) represents the classical Conley—Zehnder index of y when it
is non-degenerate (and in this case dim S(y) vanishes), or the generalized Maslov
(Robin—-Salamon) index of y in the general case [7, 16]. Note that this dimension
formula takes care of the Teichmuller space of 3, or its automorphisms group.

As we explained above, we will need for practical computations to (abstractly)
glue several curves of the building, and consider the resulting subbuilding as a single
entity. We then consider the punctures of this subbuilding to be those of its constituent
curves that do not serve as matching ends. We can then define a notion of index for
such a building:

Definition 3.2. Let B be a building made of curves (u1, ..., uy) (in various layers)
that match along asymptotic orbits (y1,...,y;) belonging to spaces Si,...,S; of
closed Reeb orbits (we assume the Morse—Bott situation, where these spaces are
manifolds). We define

k l

index(B) := Z index(u;) — Z dim ;.

i=1 i=1
Working with this definition, the following proposition sums up those properties
of the index that will be important for us.
Proposition 3.3. The index formula of the buildings has the following properties:

1. Recursivity: Let B be a building obtained by gluing different buildings B; along
matching orbits y; that belong to spaces S; of Reeb orbits. Then,

index(B) = Y _index(B;) — Y _dim ;.

2. Computability: Let B be a holomorphic building and let the underlying curve
(after gluing) be X, the positive punctures be )/i+ and negative punctures be y;
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(recall that those punctures of the constituent curves that have to matched to
Jorm B are not considered as punctures of B). Then,

S+
index(B) = (n — 3)x(X) + 2¢}(B) + Z (MCZ(Vi+) + %dim S{*‘)
i=1

- Z (ILCZ()’, dlm Sy )

Here c{(B) simply means the sum of the c{(u*TX) over the constituent curves
of B.

3. Continuity: Let X be a symplectic cobordism, (J,) a neck-stretching in X
(along some hypersurface), and (By,) a sequence of J,-holomorphic buildings
that converge in the sense of [2] to a building B. Then

index(B) = limindex(B;,).

Let us now specialize formula (3.1) to our context. We recall that £ denotes our
embedded ellipsoid ¢ E£(1, §) in U.

Proposition 3.4. Let Y bea punctured sphere, and u: Y — Wbeal -holomorphic
map asymprotic to yi"', Yiri=1...s54,j=1...5_. Lets:=s4 +s5_. Wedenote
the Reeb orbits on U with respect to an integral basis of L consisting of classes
with Maslov index 2.
(a) fW =U,

index(u) = 2s — 2.

(b) If W = SaU,
index(u) =254 + s— — 2.

(¢) If W = CP?\U (thus s = s_) and y; is of type (=kj.—lj),
index(u) = s —2+6d +2 (k; +1;).
(d) If W = U\E, the s_ negative asymptotics can be further split into s covers

of y1 and s; covers of vz (we denote r;” the multiplicities of these covers).
Then,

’ J'

sy

index(u) = 254 — 2 — 2Z(r +[ J) 22 T+ 15S)).

i=1

(e) If X = SOE,
index(u) > 0.
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Proof. In dimension 4, for a punctured sphere, the formula (3.1) gives

S+
1
iMam)=s—2+2quW)+§:Qmﬂﬁj+immgﬂ

i=1
S S P
_;(MCZ(Vj)_EdImSj)-

In U, there is a global Lagrangian distribution &£ given by the vertical distribution of
the cotangent bundle. This Lagrangian distribution can be extended to a symplectic
trivialization 7 of u*T U, and for this choice, ¢{(#) = 0. In dU, each closed orbit
comes in a 1-parameter family and its generalized Maslov index is % Finally, U isa

symplectic cobordism with one positive end dU, so s = s4. Thus, for u: % I,

S+
1 1
i =52 (5+5)=2s-2
index(u) = s —|—0+§ 2—{—2 s

The same choice of T can be made in SOU, and the previous remarks still hold
in this setting, except that there are now positive and negative ends. Thus, for
u: X — SoU, we have

S—

1 1
index(u):s—2+0+s+—Z(§—§)=2s+-|—s_—2.
j=1

In W = U\E, we still have the same Lagrangian distribution that we extend
to a symplectic trivialization T of u*T W. Notice that since E is contractible, we
can deform this symplectic trivialization above E (and hence its boundary dE) so
that it coincides with the trivialization coming from E C R?", with the standard
trivialization. Relative to this choice, ¢ (u) still vanishes, and the the Conley-
Zehnder indices of the closed orbits of dE are well known:

r
[ch()/lr) =2r+1+ ZLEJ,
while

puez(yz) =2t + 1+ 2]1s].

As aresult, we get for u: ¥ — U\E:

index(u) = s —2 + s+ —S_—Zi: (r,- + HS'_IJ) —ZZ (tj + LthJ).
j=1

i=1
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Similarly in SOF,

- +

h) + S
index(u) =s—24+s4 —s5-+ 2t (rl-+ + L%J) + Zi (tj'" < 2 Lth_{)
i=1 F=t
Sp - 52
= (r; + L?J) —23 (17 + 117S))
i=1 j=1
Sl+ ok S;r
=-2+2) (r;r + L—‘S—J + 1) +2Y (T LTSI+
fil J=1

i’l
_22:(’"1' L_)_2§ C L S1).
By positivity of the area, we also have

DorF D s = i+ ) 45

SO

S+ UFSI =)+ ) 15 S
r* r.
and ZL?J+1+Z:}“22L§J+Z};

and one of the inequalities must be strict. Hence we have index(x) > 0 for any curve
u:y — SOE.

Finally, in CP2\U, we consider the symplectic trivialization over dU that comes
from the inclusion of dU in the affine chart CIP?\S,,. Then ci(u) = 3d and u
has only negative ends, whose asymptotic limits come in 1 parameter families.
The discrepancy between the generalized Maslov index defined with respect to the
trivialization generated by £ above and the index with respect to the trivialization
coming from the affine chart is the Maslov class of L evaluated on the homology
class of the projection of the limiting Reeb orbit to L under the natural projection
in T*L. Hence if the i-th end y; is asymptotic to a Reeb orbit of type (—k;, —/;)
then we substitute

1
mez(yi) = 7 —2(ki +1;)

into formula (3.1) to get

index(u) = s —2+6d +2) (ki +1). O

i
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3.2. Nonnegative index and multiple covers. We recall from Section 2 that the F;
are subbuildings of the building B obtained by our neck-stretching process, and that
their indices are given by the sum of their constituent curves in the different layers,
minus the sum of the dimensions of the space of closed Reeb orbits along which
these different curves match. Moreover, Fy plays a special role: it is the connected
subbuilding in U\E U S3E U SU that is asymptotic to y?¢~! at its unmatched
negative end. It has 7" positive ends, at which the F;,i = 1...T are connected.

Lemma 3.5. index(F;) > 1for1 <i <T.

Proof. These components only have one unmatched negative end in dU (correspond-
ing to an end of Fj) and hence by Propositions 3.3 and 3.4(c), they have odd index.
Therefore it suffices to show that index(F;) > 0. Decompose F; into subbuildings

{FifYi=t.ap ULF; Y=o,

where the FI;L are just the constituent curves of F; in CP2\U and the F;; their
complementary connected subbuildings in F; (thus F;; lies in U \E USIU USOE).

Let s;“- be the number of (negative) ends of FI}" and Sij be the number of (positive)
ends of FJ Since moreover F; has only one (unmatched) negative end in 0U, we

see that
dost=>"si+1

We infer by Propositions 3.3 and 3.4(a) that the index of F;; is 2s;; — 2. Now notice

that there is no finite energy plane in U (~ T*T?), so s;; = 2and

index(FiJ_-) =2s5; —2= 5.
As a result,

index(F;) = Zindex(Fi}L) - Zindex(FU—-) — Zs; > Zindex(l‘}}F :

and it suffices to prove that index(FJ) > 0 Vi, j to conclude our proof. Let

therefore u be a constituent curve of F; in CP2\U, and suppose it has degree d
and s ends asymptotic to Reeb orbits of type (—k;, —/;) as in Proposition 3.4. If u
is somewhere injective then for generic J we may assume it has nonnegative index.
Otherwise it is a multiple cover of an underlying curve #. We may assume that i
is somewhere injective and so index (%) > 0 for generic almost-complex structures.
Suppose this cover is of degree r, so u has degree d = d/r, and further that i
has s negative ends asymptotic to orbits of type (—k;, —/;). The Riemann-Hurwitz
formula shows that the domain of # is a punctured sphere, so Proposition 3.4 gives

A
index() =5 —2+6d +2 3 (ki +1).

j=1
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Hence we have
index(u) = rindex(%t) + 2(r — 1) = (r5—s) > 2(r — 1) — (r5 — s). (3.2)

Let now ¢:S2\I' — S2\T be the holomorphic (ramified) covering such that
u = i o ¢. Removing singularities, ¢ extends to a holomorphic map ®: 5% — §?
that sends " to I". Then, r3 —s represents the total ramification of ¢ over the points
of I', so, letting m. be the multiplicity of a singular point ¢, the Riemann—-Hurwitz
formula gives

r§'—s=Z(mc—1)§ Z(mc—]):2(r—1).

cel ceS?

By (3.2), we see that index(u) > 0 as required. O

By Proposition 3.4, since Fy has T positive ends and a single negative end
asymptotic to y39~! we have index(Fy) = 2T — 6d.

Lemma 3.6. index(Fy) > 0, that is T > 3d.

Proof. We argue by contradiction and assume that 7 < 3d, that is F{ has less than
3d positive ends. Let us consider the curves of Fy in SJE which fit together to form
a connected component G of Fp including the lowest level curve with negative end
asymptotic to y79 1. Then letu;: S?\I'; — U\ E be the curve of Fy with a negative
end matching the i th positive end of Gy. (Note that u; may have other negative ends
matching with curves in S9E not included in G¢ , but only one matches G because
the building has genus 0.)

Note that by the maximum principle, each positive end of the u; is connected
through components in SdU to positive unmatched ends of F,. And since our
building is obtained by degenerating curves of genus 0, these different positive ends
of the u; are connected to distinct positive unmatched ends of Fj,. Denoting by Q;
the number of positive ends of u;, we therefore get that

Y 0i<T<3d-1

This, in turn, guarantees that no negative end of the u; is asymptotic to a cover of y,.
Indeed, a curve in U\E is (possibly a multiple cover of) a somewhere injective
curve u in U\ E with s4 ends with index

index(i) = 254 — 2 — 221; (r,- n L%J) _2 22: (t; + t;S]) > 0.
i=1 Jj=1

Since sy < 3d — 1 and S > 3d — 1, we see that the 7; must vanish, so % and
therefore u itself has no negative end asymptotic to a cover of y,. Altogether, the
curves u; therefore verify the following. They have Q; positive ends with

Y 0i=0=<3d—1,
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and they have a negative end asymptotic to a y;* which is matched with a positive
end of G. For area reasons, we then see that

Y gi=3d—1.

In total, we therefore have

ZQiS3d—1§ZQi,

so there exists an i such that Q; < g;. We henceforth denote this curve by u, and let
g and Q the corresponding numbers; hence ¢ > Q. The index of this curve is

ri

index(u) =2Q—2—22(ri + LEID <20-2-2¢ <0,

Thus u must be an r-covering of a somewhere injective curve u: S 2\f‘ — U\ E with
say O < Q < 3d positive ends, 5— negative ends, the i-th of which is asymptotic
to yff (none of them is asymptotic to a cover of y,), and non-negative index given by

5 =
. s ~ ~ ¥
index(z1) =20 —2 — ; (2r,~ - 2L§’J)
Hence Q > 1+ Y_7;. Suppose that the end of u asymptotic to y{ covers 7 times an
end of & asymptotic to y{, so 7§ = g. Consider also the ramified covering

p: S\ = SA\I'

defined by u = # o ¢, and remove its singularities to get a map ¢: S? — S2. We
recall that I" splits as '™ U '™, where I'" are the positive ends of u and '~ the
negative ones. One of the negative ends, say cg, has order f. The Riemann—-Hurwitz
formula, together with the facts that Q >14+ ) ri,t <r,andg > Q, then give:

20— = ) (me—1)= Y (me—1) +@—1)

ceS? cel+

rQ—Q+1t—1

r(1+ Y %) -0+t -1
>r(14+q)—0+1-1
=r+rg—Q+t—1
=r+tqg—-Q+@r—-0g+1-1
>r+q—-Q+4+r—t+t-1
=2r—1,

I

A%

which is a contradiction. ]
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3.3. Holomorphic planes in C2\U. We recall the inclusions L C U C B*(R),
with U symplectomorphic to Uf 5. We consider here the situation where L is
the image by a Hamiltonian diffeomorphism of C? of the product torus L(1, x)
with x > 1. We moreover assume in this paragraph that x € Q. The aim of this
section is the following result:

Lemma 3.7. Under the above hypothesis, for a generic almost complex structure
and s > 1, there is no genus 0 finite energy curve in C2\U with s negative ends,
deformation index at least s and area strictly less than 1.

Remark 3.8. To avoid complicating our formulas with terms of order €, we define
the area of a finite energy curve in C2\ U to be the area of the closed surface formed
by topologically gluing a half-cylinder in U to each end of u. The open end of the
cylinder is asymptotic to a limiting Reeb orbit matching the corresponding end of u
and the boundary of the cylinder is a curve on L. Note that this cylinder is symplectic,
so starting with a curve in C2\U of positive genuine area, the area we define here
still remains positive, and this is all we will care about in the sequel.

Before proving Lemma 3.7 we derive the property for the standard Lagrangian
torus L(1, x) C C? and some particular cylindrical almost complex structures.

Lemma 3.9. Let U be a neighbourhood of L(1,x) C C? (with x > 1),
symplectomorphic as before to U :’ - Let J be an almost complex structure on C 2\
cylindrical near U and such that J coincides with the standard complex structure i
near the line {zo = 0}. Then, there is no genus 0 finite energy curve in C>\U with s
negative ends, deformation index at least s and area strictly less than 1.

Proof. Let u: CP!\{z;,...,zs} — C2\U be a genus 0 J-holomorphic curve with
finite energy and index at least 5. Its ends are asymptotic to orbits of type (—k;, —/;)
as in Section 3 where we now use the standard basis of H(L(1, x), Z). Then,

Y
index(u) =s—2+2) (kj+1;) =s

j=1
so » k; +1; = 1. On the other hand,

s

Area(u) = Z(kj +1;x) = Z(kj +1i+lij(x-1)) =1 +(x—1)le.
J=1 Jj=1

J=1

Now the sum of the /;’s represents the intersection number between v and {z; = 0}
(parameterized in the obvious way by the z;-coordinate). Since J = Jg near this
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line, and u is holomorphic, each intersection point between these two curves counts
positively, so Y /; > 0. Since x > 1, we indeed get Area(u) > 1. ]

Proof of Lemma 3.7. Arguing by contradiction, since there exists a Hamiltonian
diffeomorphism f mapping L(1,x) to L, if such an almost-complex structure and
finite energy curve exists then we can pull-back using f to find holomorphic curves
of area less than 1 asymptotic to a neighborhood U of the product torus. Hence it
suffices to work with L = L(1, x). By Lemma 3.9 we can find at least one almost-
complex structure J; for which no such curves exist. Moreover, since the only
constraints on J; appear near {z; = 0} we may assume any generality properties
of J; with respect to curves asymptotic to dU .

We need two facts about moduli spaces of finite energy curves in C2\U. We
denote by ¢ the collection of compatible almost-complex structures on C2\U.

Theorem 3.10 (Ivrii [13, Section 2.4] and Wendl [19].). Given J € ¢, immersed
J -holomorphic finite energy curves with index at least the number of negative ends
are regular. That is, the normal Cauchy—Riemann operator is surjective and our
curves appear in a family of the expected dimension. Such curves are also regular
in their moduli space of curves with fixed asymptotic limits (rather than allowing the
limits to move in the family of Reeb orbits).

Theorem 3.11 (see Zehmisch [20] and Oh—Zhu [15]). There exists a comeagre
subset §1 C & such that if J € &, in any moduli space of somewhere injective
J -holomorphic curves the collection of non-immersed curves form a stratified subset
of codimension 2.

A parametric version of this statement (i.e. for families of almost complex
structures) also follows by the same arguments.

Let $r C & be the collection of almost-complex structures on C2\U which
are regular for all of the (countably many) moduli spaces of finite energy curves
with unconstrained asymptotic limits (that is, moduli spaces defined for all choices
of Reeb orbit families of asymptotic limits and for all relative homology classes in
H?(R*, L;Z)). We will work with $o = dgr N g; C ¢, which is again a comeagre
set. Since J; can be freely defined in the complement of {z = 0}, and since
all holomorphic curves with boundary on L(1,x) meet this free region, we may
assume J; € Jo.

Given this, we define + to be the infimum of the areas of J-holomorphic curves
having index at least the number of negative ends and J € ¢o. By contradiction we
are assuming A < 1. But since x € QQ there are only finitely many possible areas
less than 1 which can be realized by holomorphic curves and so A > 0 is realized
by J-holomorphic curves. Amongst all choices for (v, J) with minimal area A, we
choose (u, Jo) for which u has the minimal number of negative ends, which we call s.
We may further assume that u is somewhere injective from the following lemma.
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Lemma 3.12. Let v be a finite energy curve in C2\U with t negative ends and
indexv > t. Suppose that v is a multiple cover of a curve T with t negative ends.
Then index(?) > 7.

Proof. Suppose the ends of ¥ are asymptotic to orbits of type (—m;, ——l:,-) and the
cover is of degree r. Then we have

t
index(¥) =7 —2+2) (i +k;)
i=1
? T~
and index(v) =t —2+ 2r Z(n"’z,- + ki)
i=1

=t — 2+ r(index(¥) — 7 + 2).

Thus
r(index(¥) —74+2)—2>0
and
. -~ 2
index(v) —t > — —2 > —2.
r
As index(¥) — 7 is even this gives our inequality as required. O

Now, by the definition of go the Jy-holomorphic curve u is regular, and by
Theorem 3.11 we may further assume it is immersed. Denote its asymptotic limits
by o1.....0s. Inthe case when index(u) > s wealsofix N = %(index(u) —s) points
P1...., pn in the range of the injective points of u (recall from Proposition 3.4(c)
that N must be an integer).

For a family J;, 0 < t < 1 of almost-complex structures interpolating between
Jo and J;, define the universal moduli space

(t,u) such that w:CP!\{z;,...,z;} — C2\U,
5],11 = O,
M= u somewhere injective, / ~,
image(u) N p; # @ forall i,
u is asymptotic to o; at z;

where we quotient by reparameterizations of the domain. We note that M has virtual
dimension 1. Indeed, fixing the asymptotic limits reduces the virtual dimension by s,
and the fixed points further reduce the dimension by 2/N.

Since Jo, J1 € Jo. we can find a path {J;};¢[0,1] between Jo and J; which is
both regular for all of the countably many unconstrained moduli spaces of curves
asymptotic to L and is also regular for the constrained moduli space M (so in
particular M has dimension 1). Furthermore, the parametric version of Theorem 3.11
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implies that we may also assume that our path is generic in the sense that non-
immersed curves in all of these moduli spaces have codimension 2 (and so in particular
do not exist at all in M).

Given all of this, since curves in M are immersed they are also regular for a
fixed almost-complex structure by Theorem 3.10 (which also holds when the index
is a constrained index for curves passing through fixed points). Therefore the map
M — [0,1], (t,u) — ¢, is a submersion. By Lemma 3.9 the fiber over 1 is empty
and so we will arrive at a contradiction if we can show M to be compact.

To this end, let (¢,,u,) € M and suppose that t, — f. We claim that a
subsequence of the u, converges to a J;__-holomorphic finite energy plane u such
that (100, Uso) € M. By [2], some subsequence of u, converges in a suitable sense
to a J;__-holomorphic building. This building consists of top level curves in C*\U
and lower level curves in SAU. For simplicity we will gather lower level curves
with matching asymptotics and consider them as a single curve. We can also assume
by adding trivial lower cylinders that there are no unmatched negative ends of the
top level curves. Hence, there are s unmatched negative ends to the lower level
curves which are asymptotic to o1....,0;. Let L, be the number of top level
curves and L, the number of low level components (after our identifications). We
call /;,s;,i = 1,..., Lip the (unconstrained) index and number of negative ends
of the i-th top level curve, and (J;,ri,t), i = 1,..., Loy the index, number of
positive and number of negative ends of the i-th low-level component. Then by
Proposition 3.4(b),

Ji=2ri + 1t —2.

Since all ends of the upper level curves match,

me Liow
E §i = E ri,
= =1

and since the total number of unmatched ends is s,

We can associate a graph to a holomorphic building by adding a vertex for each
curve and asymptotic limit (just one vertex when an asymptotic limit is a matching
asymptotic between two curves), and an edge between the vertex for each curve and
its asymptotics. As we take limits of curves of genus 0, this graph is a tree, hence
has Euler characteristic 1, so we have

L‘OP Low LlOP Liow Liow

Ltop+L10w+ZSi +Zti _Zsi —Z(ri +li) = Ltop+Llow_Zri = 1.

i=1 i=1 i=l1 i=1 i=1
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Finally, the index of the limiting building, namely the sum of the indices of the
constituent curves minus matching conditions, equals the index of the original curve,
which by assumption is at least s. Thus, taking all previous equalities into account,

Liop Liow Liop Liop Liow
§ = Zli -I-ZJ,' —ZS,' = Z(Ii—si)-i-Z(zri + i —2)
i=1 i=1 i=1 i=1 i=1
Liop

=D Ui =51) +2(Liop + Liow = 1) + 5 = 2Liow
f=1
Liop
=5+ 2Liop = 1) + ) (I —51)
i=1
By
=s—2+) (Ii—s +2).
1=
Thus,
Liop
Y Ui—si+2) =2
i=1
By Proposition 3.4(c) the differences I; — s; are even, so at least one of them is
non-negative, and the corresponding top level curve v therefore has index at least the
number of its negative ends. As it appears as part of the limit, the area of v is at most
the common area + of the curves u,,.

By our assumptions on {J;} the J;__-holomorphic curve v appears in a universal
moduli space containing some immersed curves, so without loss of generality we
will assume v itself is immersed. Next by Theorem 3.10 such an immersed curve v is
regular and so we find holomorphic curves with the same asymptotics if we deform
the almost-complex structure. We cannot assume J; . € o, however it can be
approximated by J € Jo and so we can approximate v by a curve w with the same
asymptotics, and hence the same area, which is holomorphic with respect to an
almost-complex structure in Jo. By minimality of A among the areas of such curves,
the area of w is at least +, and hence as v has area at most + we see that v and w
have area 4 precisely.

In conclusion there was exactly one top level curve (as v occupies all of the area)
which must therefore intersect the points p;. By minimality of s we see that v has
at least s negative ends, but as the limit is of curves of genus O and there are no
holomorphic planes in U (there are no contractible Reeb orbits) the curve v must
have exactly s negative ends. It follows that the lower level curves are cylinders
which for action reasons must be trivial cylinders asymptotic to the oy, ..., 0. We
conclude that v has the correct asymptotics and (fx0, v) € M as required. O
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4. Proof of the obstruction part of Theorem 1

We now gather together the information from the previous section to prove the
obstructions claimed in Theorem 1. We can divide the theorem into the cases x < 2
and x > 2. For the latter case we actually prove the more general Theorem 2,
where L is not assumed to be Hamiltonian isotopic to the product torus: it may be
any Lagrangian torus in B(R), with a basis (e;, e2) of the homology with w(e;) =
1(ez) = 2 and Q2(e;) = 1, 2(ez) = x. We consider in the following the general
situation until we get to the proof of the first case of Theorem 1, then we add the
assumption of L being Hamiltonian isotopic to a product torus, allowing for the use
of Lemma 3.7.

Some restrictions on the F;. By Lemmas 3.5 and 3.6, the component Fj has
index(Fp) > 0

and the F; for 1 <i < T have
index(F;) > 1.

As there are T remaining ends to match and the sum of the indices minus matching
is 0, we conclude that index(Fy) =0 (and hence T'=3d) and index(F;) =1 fori > 1.
By Proposition 3.4, the index equality for the F; withi > 1 says

1 = index(F,) = 6d; + 2(m; + k;) — 1, @1

where F; has total degree d; and is asymptotic to orbits of type (—m;, —k;).
Meanwhile the action in B(R) of orbits of type (—m;, —k;) is m; + k;x (recalling
Remark 3.8). Therefore by Stokes’ Theorem we have

Area(F;) = Rd; + (m; + kix).
In view of (4.1) we get

Area(F;) = (R—3)d; + (ki(x —1) + 1).

The case x > 2 (proof of Theorem 2). We note that by setting Q(e2) = x, the more
general Theorem 2 implies the obstruction part of Theorem 1 in the case when x > 2.
Also note that proving R > 3 is enough to deduce R > 3. Indeed, since L is compact
and B(R) is open, if L were to lie in B(3), then it would lie in a smaller ball B(3 —¢)
for some ¢ > 0. We argue by contradiction, and assume that R < 3 and x > 2.
As area(F;) > 0 this means k; > 0. But as all limiting orbits y_,,, ¢, bound the
component Fy in U they represent a trivial homology class, and so

Zmi == Zki =i},
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Thus k; = O for all i and the 3d components F; are all asymptotic to orbits of

type (—m, 0).
Now we use Stokes’ Theorem to calculate the area of F in U. This has 3d
positive ends asymptotic to orbits y_p,, ¢ and a negative end on 391, From our

description of U in Section 2 we see that the integral of the standard Liouville form
around both y_; o and y; ¢ is €/2 and so we get

area(Fy) = Z |m,-|§ —(3d — 1)e.

As > m; = 0 we have

ZmiZSd—l.

m; >0

Focus for a moment on the components F; with m; > 0. By the index formula (4.1)
their index is 1 = 6d; + 2m; — 1, so their degrees d; vanish, while m; = 1. Since
the sum of these degrees is at least 3d — 1, there are exactly 3d — 1 such components
(since there are 3d components in total, and one of them at least must have m; < 0).
The final picture for the building is therefore a component F with 3d positive ends,
3d — 1 of which are asymptotic to orbits y_; o that match with components F; of
degree 0, and one positive end asymptotic to an orbit y35_; ¢ that matches with
a component (say F3y4) of degree d. The positive area of this last component is
Rd —(3d —1),s0 R > 3 — 1/4. Taking d large gives us the result.

The case x < 2. For this part of the proof Theorem 2 does not apply. Specifically,
we will apply Lemma 3.7, which requires our tori to be Hamiltonian isotopic to
products.

We again argue by contradiction, and assume now that R < 1 + x. As in the
case of x > 2, this means that we may assume R < 1 + x. Note that by Weinstein’s
neighbourhood theorem, it is enough to prove our result for x € Q. Note also that
if all k; vanish, the same proof as the above shows that R > 3, which is already
a contradiction. Hence, there must be planes asymptotic to orbits of type (m;, k;)
with k; # 0, and in particular there must be such a plane F' asymptotic to an orbit y,, x
with k& < 0. Let d be the degree of F. Then,

1 =index(F) =6d +2(m+ k) — 1
and
Area(F) = Rd + (m + kx).

From the first equation we get m = 1 —3d — k, and substituting in the second one
gives

Area(F) =Rd+(1—-3d —k)+kx=(R—-3)d+k(x—1)+1>0.
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Sincek < —1,x <2and R < 1+ x, we get
2—x)d <2—x

and so d = 0. Thus F is a plane with one negative end, has index 1, lies in
B*(R)\U c C?\U, and verifiesm = 1 —k, so

Area(F)=1+4+k(x—-1) < 1.

This is in contradiction with Lemma 3.7 (recall that x € Q). O

5. Proof of the obstruction part of Theorem 3

We briefly outline the adjustments required to establish the obstruction part of
Theorem 3. Note that there does not exist an embedding L(1,x) < P(a,b) when
a < 1 since by [4], Proposition 2.1, the Lagrangian torus L(1, x) has displacement
energy 1. We still argue by contradiction, assuming that a < 2 and b < x, which as
the polydisk is open implies we may take a < 2 and b < x. The proof of Theorem 3
proceeds similarly to that of Theorem 1 except now we compactify P(a, b) to a copy
of $2 x §? with factors having areas @ and b. The analogue of Proposition 3.4 is
that the deformation index of a finite energy curve u of bidegree (d;, d2) asymptotic
to Reeb orbits of type (—m;, —k;) is given by

R
index(u) = 5 — 2+ 4(dy +da) +2 ) _(m; +ky).

i=1
As before, we consider the situation
E cU cC S%*(@a) x S2(b),

where U is our Weinstein neighbourhood of L. We now use the existence of J-holo-
morphic planes
u:CPN\{oo} - §2 x S2\E

of bidegree (d, 1), asymptotic to ylzd""l, which exist for d arbitrarily large by [9],

and we stretch the neck of dU. As previously, we split the limit building B into
subbuildings Fy, Fi, ..., Fr, where Fy is the maximal connected subbuilding of B
in SOE, U\E and SAU attached to the negative unmatched end, while Fy,... Fr
are the connected subbuildings attached to the 7" positive ends of Fy. Arguing as for
balls, we get the following:

1. index(F;) > 1. The proofis exactly the same as Lemma 3.5, replacing the formula
for the index of # by the correct formula in $2 x S2\U.
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2. index(Fp) > 0. Since Fy lies in U, this is exactly Lemma 3.6. Since now
index(Fy) = 2T — 4(d + 1), we conclude that T > 2(d + 1).

Then again we get restrictions on the F;:

index(Fp) =0, index(F;)=1, and T =2(d +1).
Suppose F; is asymptotic to an orbit of type (—m;, —k;) and has bidegree (a’i1 , di2 .
The index and area formula for the F; now give

1 = index(F;) = —1 4 4(d}! + d?) + 2(m; + k;),
Area(F;) = dl'a +d?b + m; + kix,

SO

Area(F)) =d!(a—2)+d?*(b—-2) +ki(x—1) +1>0,

while the degrees verify > d! =d, > d? = 1.
When x > 2, taking into account our assumptions a < 2, b < x, we see that the
component with d;’Z = 1 verifies

G- +k(x-1) >0,
so k; > 0 because b < x. Meanwhile the ones with a’i2 = 0 verify
kitx—1)+ 1> 0,

so k; = 0 because x > 2. Thus k; > 0 for all 7, and since > _k; = 0, we get
all k; =0, so all Reeb asymptotics are of type (2, 0). Exactly the same argument as
in Section 4 then shows that 2d + 1 of the F; have bidegree (0, 0) and are asymptotic
to y(—1,0) While one has bidegree (d, 1) and asymptotic y(24+1,0)- The area of this
subbuilding is
ad +b—-2d —-1=@—-2d+b—-1>0.

Since this inequality has to hold for arbitrarily large d, it contradicts our assump-
tiona < 2.

When x < 2 we see as above that if all k; vanish, we get a contradiction witha < 2.
Thus at least one of the F; must be asymptotic to y(—m,—k), kK < 0. Its area is

A=di@—2)+dob—2)+k(x—1)+1, k<-1.

Now 1 + k(x — 1) < 1, so Lemma 3.7 rules out the possibility that d; = d, = 0.
Ifdy > 1 (and since @ < 2 and b < x < 2 by assumption) we get

a—2—x+2=a—x>0,
which contradicts the fact thata < b < x. If d; =0, d, = 1, we get
b—2—x+2>0

sob > x. O
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6. Squeezing Lagrangian tori: proof of Theorem 4

The construction is slightly delicate, so we proceed in several steps. We first construct
a Lagrangian torus close to P(2, 2) or to B(3), with several properties that we use in
a second step to show that this Lagrangian torus is in fact Hamiltonian isotopic to a
product torus.

Proposition 6.1. Let x > 2 and U be an arbitrary neighbourhood of B(3) N P (2, 2).
There exists a Lagrangian torus L C U which has an integral basis (eq, e3) of its
1-dimensional homology with

pler) = plez) =2, Q(ey) =x, Q(ez) = 1.

This Lagrangian torus bounds a solid torus ¥ C C? with symplectic meridian discs
having boundary in the class e, and whose characteristic foliation is by closed leaves.

One can further impose that there exists a, b € C such that:
(a) £ C C?\{z = a} U {w = b} (hence the same holds for L),
(b) Ik(ez,{z = a}) = lk(ez, {w = b}) =0,
(c) Ik(e1,{z = a}) =1, Ik(e1, {w = b}) = —1.

Proof. Let A > 1 be a real number to be chosen more specifically later. Let y be
the immersed closed loop in the z = (x1, y1)-plane represented in Figure 1. It is
contained in the square

S={0<x; <A 0<y <A}

and approximates an n-times cover of dS. More precisely, we can parameterize y as
a map

[0, 1]/0~1 ~5 4

(which we will also denote by y) such that y(t) = wqy + it for ¢ small, with
Imwg < € and Rewg > 1. The curve y then winds counterclockwise around 4.5 on
an interval [0, 1 — 4], remaining embedded by spiraling slightly inwards. Finally, the
segment y ([1 — 6, 1]) is roughly horizontal, closing up the curve and intersecting the
remainder of the curve n — 1 times.

The horizontal segment of (the image of) y which runs from close to Rez = 0
to include y([1 — &, 1]) is labelled H. This is the uppermost horizontal segment
close to {y; = 0}. The vertical segment extending the part of y defined by positive
parameters close to 0 will be labelled V. This is the rightmost vertical segment close
to {x; = A} (see Figure 2). For technical reasons, we chose 0 < & < 1 and assume
that H C {y; <e}and V C {x; > A — ¢/2}, while y lies in the e-strip around 9.
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A
/ ) )
/ |
g
B e ] H | 74"713&)/(0)
= _4/ T—¥li-&1
A

Figure 1. The curve y.

Let T := dD be the circle of unit area in C,, w = x + iy;. The product of y
with 7T is an immersed Lagrangian torus in C2. Denoting by

e1 =[yx{*}] € Hi(y xT) and ey = [{x}xT],
we have

w(@) =2n, ule2) =2, QE) ~nA%, and Q(e;) = 1.

Step 1. We first construct a Lagrangian torus L as required, except for the linking
conditions (b) and (c¢). Let G(w) be a Hamiltonian function which displaces the
circle T in a disc of area 2 + ¢ and satisfies 0 < G < 1 4+ &. Let y:R — [0, 1]
be a smooth function with y(#) = 1 fort > A —¢, y(t) = 0 when t < € and
0 < y'(t) <1(recall A > 1). Letalso Q C C be defined by 2 := Q; U 0> U 03,
with

O1:={e<x1 <A-z¢g},

Q2 :={x1 > A —¢/2},
Q3 Z:{A—8_<_X1§A}ﬂ{0<y1 <8}.

Note that H C Q1 U Q3, V C Q2 U O3, and Q1 N Q> = @ (see Figure 2). The
self-intersections of y all lie in the region Q3. By y\ H,y \ V,ory \ (H U V) we
will mean the image of the parameterized curve restricted to the complement of the
interval defining H, V or H U V respectively.

We leave the reader to check the following straightforward facts.
Claim 6.2. The function f:Q CC — R defined by fio, := x(x1), fio,:=1— x(»1),

and fio,:=1 is smooth, and its Hamiltonian flow <I)‘f verifies:

1. <I>tf|Q3 = Id,
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2. L, (HN Q1) CC Q1 N{0 <y < A—s}and ®,(H)N (y\H) N Q1 =,
3. 0% (VNQ2) C QaN{Ad—c2<xi < A+ 1}and @'.(V) N (y\V) N Qr = 0.

We finally define the function K(z, w) := f(z)G(w) on Q@ x C C C2, and

Li=y\(HUV)xT U ®p((HUV)xT).

Y1

01 02
K=36D6w) || K=(-x01)Gw)
L H

K=G
Figure 2. The curve y, and the function K.

Since f = 0 near d(H U V) (considering H U V as a connected arc), and
hence K = O near 0(H U V) x T, we see that L is an immersed torus. Moreover,
also since K = O near d(H U V) x T, the integral of a primitive A of the standard
symplectic form over a path o in (H UV) x T is equal to its integral over @} (o) C L.
Thus the area class of L coincides with that of y x T'. The same holds for the Maslov
class, because L is Lagrangian isotopic to y x T.

Notice also that the Hamiltonian vector field of K is

G(w)Xyr(z) + f(z) X (w).
Thus, Since 0 < f <land0 < G <1 + ¢, forany subset P C Q2 x C,
7, (P%(P)) C U55(1+5),CD“}(JTZP) and 7y, O% (P) C U< O (7w P).

Hence, by points (2) and (3) of the above claim, L has no self-intersection in Q; x C,
nor in 0, x C. Moreover, since / = 1on Q3, @} =1dx®} on Q3 x C, s0

PLHUVXT)NyxTNQ;3=0.

Therefore, L is embedded.
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Let p € T and g € y\ Supp(f). Then the homology of L is generated by

&r=[71:=[yY\(H U V) x{p}UPK(H UV x{p})] and ez:=[{g}xT].

We have u(e;) = 2 and u(e1) = 2n, so (e; := €; — (n — 1)es, e3) is a Maslov 2
integral basis of H; (L), with areas

Ale) =1, Ale) =n(A2 -8 —m—1),

where § is a term that can be chosen arbitrarily small. Given x, one may find 4
arbitrarily close to 1, § < 1 and n large enough, so that A(e;) = x, which we
assume henceforth. Thus, L is an embedded Lagrangian torus, with a Maslov two
basis of areas x and 1, which lies in [0, A + 1] x [0, A] x D(2), which can be mapped
into an arbitrary neighbourhood of P(2,2) provided A is close to 1.

Step 2. We now show that L can in fact be taken into an arbitrary neighbourhood
of B(3) N P(2,2). Throughout D(c) denotes the standard round disk of area c. Let
e land ¢¥:[0,4A + 1] x [0, A] = D(A(A + 1) + ¢) be such that

¥ ([0, A]x[0, A]) C D(A%+e) and ¥ ([4, A+1]x[0,p]) C D(A*+p+e) Vp.
Such a symplectic diffeomorphism is easy to construct by stretching the part
[4, A+ 1] x [0, A]

horizontally by a factor 4, shrinking vertically by the same factor, then wrapping
the long strip around the square [0, A]* (see Figure 3). The resulting domain can
be mapped into the standard disk D(A(A + 1) + ¢) such that the image of points
in [A, A4 + 1] x [0, A] with larger y coordinate (the dark rim in our figure) are
mapped towards the boundary of the disk while points with smaller y coordinate
(the lighter rims) are mapped closer to the disk D(A?). We can quantify this
precisely by following [17, Lemma 3.3.3], so that points in [4, A + 1] x [0, b] map
into D(A% + b + ¢).

R e

p?) | [ 8

0 A—e A+e¢ A+1 LL e

Figure 3. The projection of L onto the z-plane, and its image by ¥.

We claim that ¥ x Id(L) lies close to B(3) provided A is close to 1. Indeed,
o if (z,w) € L, with z € [0, 4] x [0, 4], then ¥ x Id(z, w) = (z', w’) verifies

1z’| e D(A2 +¢) and |w| € D(2),
so (z/,w') € B(A%2 4+ 2 + ¢);
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o if (z,w) € Lwithz € [A, A+ 1] x{p}, then (z,w) € CD}{(V x T). Since

Xk(z,w) = f(z)Xe(w) + Gw)X 7(2)
= [1 — x(D]X6w) + G(w)X 7(z) in O,

Xk preserves the hyperplanes {y; = ¢} in 02 x C, so (z,w) = P (2, w’) with
Iz = Imz" = p. Thei,

ﬂw(p}{(zl, w/) == (DS_X(p))(wl)’
so we may assume w € D(2 — y(p)), while z € [4, A + 1] x {p}. As aresult,
¥ xId(z,w) € D(A% 4+ p+ &) x D2 — x(p)) C B(A2 +2+ p— x(p) + ¢).

Notice now that since A is close to 1 and y(p) is chosen at €°-distance ¢ from the
identity, and this shows that v/ (z, w) lies arbitrarily close to B(3).

Step 3. We now slightly alter the previous construction to achieve the linking con-
dition. Note first that taking a in {Rez < &} in such a way that y winds around a
exactly once achieves the correct linking between L and {z = a}. The problem is
therefore with the line of the type {w = b}.

First, fix b € C in the complement of U®},(T), in D(2 + ¢). In particular,
since (IJE displaces T, b is in the complement of D U QDE(D), where T = dD.
There exists a Hamiltonian diffeomorphism W with supportin D (2 + ¢), disjoint from
D U ®L (D) and such that Vp € T, the path % (p) for0 <t < 1 and ¥ o &% (p)
for 1 <t < 2 winds around b with winding —1. Such a diffeomorphism is not easy
to describe in words, but easy to draw (see Figure 4).

@ (D)

S

Supp(¥)

Figure 4. The diffeomorphism W. The red oriented curves represent the flow lines of W. The
red unoriented lines represent the image of the horizontal foliation. The support of W can be
made arbitrarily thin, so that the whole picture fits into a disc of area 2 + &.
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We now define
Ly:=y\(HUV)xTU®LH xT)UW(@(V xT)),

where K(z,w) = f(z)G(w) as before and by abuse of notation we are writing
Y(z,w) = (z, ¥(w)).

Letus explain why Ly satisfies all our requirements. Note first that Ly is obtained
by L from cutting the tube 7 := @}((V x T') and pasting Ty := ‘~IJ(CD}<(V x T)).
As Ty (<I>}<(8V x K))= DU <I>lG (D) is disjoint from the support of ¥ we have
that 7y differs from 7 by a Hamiltonian generated by a function with compact
support. Moreover, since the corresponding Hamiltonian flow is parallel to the w-
plane, the flow of 7 remains disjoint from the remainder of L and so the generating
function can be extended to be identically 0 near the remainder of L. We conclude
that Ly differs from L by a Hamiltonian diffeomorphism and in particular L has
the same Maslov and area classes as L.

We now claim that Ly has the correct linking with the lines {z = a} and {w = b}.
It is clear for the former, while the latter needs a justification. First, since ey is
represented by {x} x T for suitable {x}, and since b ¢ D, lk(ez, {w = b}) = 0. Fix
now wg € T. A representative of the class e; = e; + (n — 1)e; is simply

YN(H U V) x {wo} U@k (H x {we}) UW(Pk(V x {wo})).

Parametrize H by p — p+ic, for p € [po, p1], po < €and p; > Aandc < ¢. Then
there exists a function ¢(p) taking values in (0, 1) with,

D (o + ic,wo) = (p + iT(p), XL (wy)). 6.1)
Similarly V' can be parameterized by p +— b + ip and there exists a 5(,0) with
W(DL (b +ip,wo)) = (b(p) +ip, W o @5 P (wy)) (6.2)
By choice of W, we therefore see that
Ik (€1, {w = b}) = —1,
and since ey = @7 — (n — 1)ey, that
lk(el,{w =b}) =—1.

In view of the particular form of W, whose support can clearly be given any
arbitrarily small area, the arguments that showed that L can be taken into an arbitrary
neighbourhood of B(3) go through. Finally, L g bounds the solid torus

Yy :=y\(HUV)x DU®L(H x D)U ¥ (Pk(V x D)).

The characteristic foliation of y x D is by curves y x {x}, and Z is obtained from
y x D by explicit Hamiltonian diffeomorphisms on various pieces, and therefore the
characteristic leaves remain closed as required. ll
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Let us finally now prove that the Lagrangian tori that we have just produced are
Hamiltonian isotopic to a product torus.

Proposition 6.3. A Lagrangian torus that satisfies the requirements of Proposition 6.1
is Hamiltonian isotopic to the product torus L(1, x) in C2.

Proof. Let L,X,a.b be as in Proposition 6.1, but observe that without loss of
generality a = b = 0. We denote X := C?\{z = 0} U {w = 0}. We wish to prove
that L is Hamiltonian isotopic to L(x,1) = S!(x) x S(1) in C2. We proceed in
two steps.

Step 1 (Lagrangian isotopy). We first reposition the product torus L(x, 1) in X
and then find a Lagrangian isotopy inside X between L and the repositioned torus.
Consider the linear symplectomorphism

A:(z,w) —> 2(z+)uﬁ,w+)tf),

1
vV1—2A
where A is a constant satisfying \/; < A < 1. We observe that A(L(x, 1)) C X and

denote the image by Lo. We denote the image of the standard basis of H;(L(x, 1))
by f1. f2 € Hi(Lo), so

p(f1)) =p(f2) =2 and Q(fHi) =x, Q(f)=1

Also

k(fi,{z=0})=1, Ik(fi,{w=0})=-1,

and

k(f,{z=0})=0, k(f{w=0})=0.

Moreover the solid torus Xy = A({7r|z|2 = x,mlw]? < 1}) also lies in X and has
trivial characteristic foliation.

The existence of a Lagrangian isotopy between L and L, given the existence
of ¥ and X, has already been established in [6, Theorem 6.1], (see also [13,
Proposition 3.4.6]). For the sake of clarity and completeness, we briefly recall
an outline of the argument here.

Let us fix characteristic leaves (called core circles)

FcX and Tp:=A(S'(x) x {0}) C =,

and a meridian disk D in 2. The return map on D of the characteristic foliation in X
being the identity, any isotopy of circles in D starting from dD defines a Lagrangian
isotopy of L, by considering the suspension of these loops by the characteristic
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foliation in . Hence an isotopy of loops that shrinks D to a small loop around
D N T gives a Lagrangian isotopy from L to a small neighborhood of I" in X.

Next, since the linking numbers about the axes are the same, I" and I'y are
smoothly isotopic in X, and the smooth isotopy extends to a symplectic isotopy
(not Hamiltonian), defined in a neighbourhood of I', that brings I" to I'y. Since
these two curves are characteristic leaves, the image ¥’ = ¥ (X) is an embedding
of S x D(e) which is tangent to X along I'y.

There is an obstruction to the existence of a symplectic isotopy which fixes I'y
and maps X’ into X. We can find a trivialization of the meridinal disks in X’ which
is invariant under the characteristic flow (since the leaves are closed). This induces
a trivialization of the tangent spaces to the meridinal disks in 3¢ along I'y but this
may not be invariant under the characteristic flow here. Indeed, since the leaves of
the characteristic flow on X, are also closed, leaves other than Iy have a winding
number about Iy relative to the trivialization. We are able to correct this relative
winding however, by a small perturbation of Xy, leaving it tangent to X’ along Iy,
as follows.

We identify a neighborhood of I'y in X with a neighborhood of S! x {0} x {0}
in S x R x C with the product symplectic form from S! x R = T*S! and C.
We can make this identification such that ¢ is S! x {0} x C. Given this, choose
a smooth function y:R* — R™ with small support, small €°-norm, linear with
slope N near 0, and define

o :={(6, x(lw*),w) e S' xR x C, |w| < 1}.
The characteristic foliation of £ is given by the curves
0 — (6, x(lw). weixl(fw|2)9).

Thus close to I'g the characteristic foliation of f]o can be arranged to have a winding N
equal to that of X',

It follows that we can find a symplectic isotopy ¢; taking a neighborhood of Iy
in ¥’ into £g. To see this, note that a smooth map sending ¥’ into T preserving
the characteristic foliations, mapping meridinal disks of £’ to meridinal disks of So0s
and acting as a symplectomorphism on a single disk, is automatically a symplectic
embedding of X', which can be extended locally to a symplectomorphism. Since the
characteristic foliations have the same winding, such a symplectomorphism is isotopic
to the identity through diffeomorphisms which preserve 'y and whose derivatives
along I'y preserve the meridinal disks. By an application of Moser’s method these
diffeomorphisms can be deformed near I'y into symplectomorphisms.

The image L= t1(yr1 (L)) of L is now a circle of characteristic leaves in X
intersecting a particular meridinal disk Dy in a small circle oy about I'y. We may
assume that oo lies in the region {|w| < €} where y'(Jlw|) = N. Finally we
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find a Lagrangian isotopy between L and Lg. First consider a family & of circles
in Dy connecting & = 0Dy with & = og¢. We can choose this family such that
if a & intersects the region where y’ is not constant, then & is one of the circles
{lw| = ¢} N Dg. We then observe that the return map Dy — Dy generated by
following the characteristic foliation preserves all &, and hence the characteristic
leaves through these circles form a family of Lagrangian tori giving our isotopy as
required.

Step 2 (Hamiltonian isotopy). We now use classical transformations on X to modify
the Lagrangian isotopy L; between L and L = L; constructed (in reverse) in Step 1,
such that it becomes Hamiltonian.

Let (e}, e}) the continuous deformation of basis of H;(L;,Z) that ends at
(ei,e;) = (e1,e2) € Hi(L.Z), and denote by a;, f; the corresponding symplectic
actions. Given the construction in Step 1 it is not hard to see that eg € Hi(Ly) is
the class of a meridian circle A({z = *}) and so 8; = Bop = 1. Since Lagrangian
isotopies preserve the Maslov class, e} € H;(Lo) is a Maslov 2 class with the same
linking as e;. There is only one such class, namely fi, and so @y = ®p = x. Our
goal is to deform the isotopy L, inside X relative to Lg  suchthate, = x and B; = 1
for all . The isotopy will then be Hamiltonian as required.

Recall that X =C2\{z = 0}U{w = 0} is symplectomorphic to a subset of T*T2,
for instance to {(61, 02, p1, p2) € T? x (R*)?}.

Start first by applying dilations

dy: (01,02, p1, p2) = (01,62, Apy1, Ap2).

These dilations are conformally symplectic so they preserve the class of Lagrangian

submanifolds. They correspond to standard dilations (Az, Aw) in C? and thus

L} := dy, L, is a Lagrangian isotopy from L to L¢ in X with actions &; and ; = 1.
To correct the action «; we use translations

[P (01,02, p1, p2) = (61,02, p1 + ¢, p2)
or t2:(61. 04, p1, p2) > (01, 62, p1, pa + ©).

These transformations are symplectic, and they preserve the set {p1, p» > 0}, and
hence X, provided ¢ > 0. In C2, they correspond to inflating either the line {z = 0}
or {w = 0}, that is removing these lines and pasting D(c) x C in their place. Because
of the linking condition, we see that the area class of t! L} is (a, + ¢, 1) while that of
t2L} is (@) —c, 1). Thus, defining L} := r;_a;L; wheno, < xand L} := ro%;_xL;
whena; > x, we get a Lagrangian isotopy from L to Lo by Lagrangian submanifolds
with fixed action in C2, and hence a Hamiltonian isotopy as required. O
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