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Squeezing Lagrangian tori in dimension 4

Richard Hind* and Emmanuel Opshtein

Abstract. Let C2 be the standard symplectic vector space and L(a,b) c C2 be the product
Lagrangian torus, that is, a product of two circles of areas a and b in C. We give a complete
answer to the question of finding the minimal ball into which these Lagrangians may be squeezed

by a Hamiltonian flow. The result is that there is full rigidity when a <b< 2a, which disappears
almost completely when b > 2a.

Mathematics Subject Classification (2010). 53D12; 53D35.
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1. Introduction

In this paper we investigate the extent to which product Lagrangian tori can be

'squeezed' by Hamiltonian diffeomorphisms. To be precise, we determine when such

a torus can be mapped into a ball or a polydisk. To fix notation, we work in the vector

space R4 % C2 equipped with its standard symplectic form co Xa i dxi A dyi.
The Lagrangian product tori are defined by

L(a,b) {n\zi\2 — a,it\z2\2 b}.

The open ball of capacity R is given by

B(R) {jv(\Z1\2 + \Z2\2)<R},

and our polydisks are defined by

P(a,b) {tt|zi|2 < a,n\z2\2 < b}.

Hence L(a,b) is the singular part of the boundary of P(a, b). Up to renormalizing
the symplectic form, it is enough to study the special case of squeezing Lagrangian
tori L( I, x), x > 1. The current paper contains the first results about non-monotone
tori, but the monotone case is already known: L(l, 1) (or any torus with monotonicity
constant 2) cannot be squeezed into a ball of size 2, see [3], Our main result is the

following:

*R. H. is partially supported by Simons Foundation grant no. 633715.
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Theorem 1. For x > 1, there exists a Hamiltonian diffeomorphism of C2 that takes

L (1 x) into 6(6) ifand only if R > min(l + x, 3).

In other words, the Lagrangian torus L(l,x) belongs to the boundary of the
ball 5(1 + x), and when x < 2 it cannot be squeezed into a smaller ball, while
when x > 2 it can be squeezed into a ball of size 3 + s if and only if e > 0.

By the Arnold conjecture, taking 5(1, x) even into 5(1 + x) cannot be done by
a Hamiltonian with support in a neighbourhood of the torus. Indeed the flows we
construct may have large support in C2.

Our result when x > 2 holds in fact in a slightly more general setting that we
review now. For a Lagrangian L C C2, there are two homomorphisms

describing how L is embedded in C2. The first homomorphism is the area class and

is defined by

where D is a disk and u:(D,dD) —»• (C2,5) verifies u*[dD] e. The second

homomorphism is the Maslov class. If u: S1 -> L with w*^1] e then pt(e) is the
Maslov class of the loop of Lagrangian subspaces TU^L c C2.

Theorem 2. Suppose L C 5(5) is a Lagrangian torus and e \. e2 is an integral basis

of Hi (5, Z) satisfying:

1. fi(ei) 1, fi(e2) > 2,

2. /x(ei) p{e2) 2.

Then R > 3.

In general squeezing a Lagrangian torus does not depend on the area and Maslov
classes alone. For example, L(l, 2) and L(2,3) both have integral bases with Maslov
class 2 and area classes 1 and 2. However 5(1,2) lies in the boundary of 6(3) while
a rescaling and Theorem 1 implies that 5(2,3) cannot be mapped to the interior
of 5(5).

To the best of our knowledge, although any non-monotone Lagrangian torus in C2

may be conjectured to be Hamiltonian isotopic to a product one, there is no proof
available at this time. In [6], Dimitroglou Rizell-Goodman-Ivrii prove a weaker
unknottedness result, namely that any two Lagrangian tori are Lagrangian isotopic.
The conjecture would imply that Theorem 2 is a consequence of Theorem 1.

£2, /r! F/j(5,Z) —> M

Q(e) [X](e)

where A is a Liouville form, that is, a primitive of co. Equivalently,
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Theorem 1 has an analogue for Lagrangian tori inside polydisks.

Theorem 3. For x > 1 and a < b there exists a Hamiltonian diffeomorphism of C2

that takes L(\,x) into P(a,b) ifand only ifeither a > 2 or both a > 1 and b > x.

In particular Theorems 1 and 3 show that embeddings of Lagrangian tori into
balls or polydisks do not necessarily extend to the corresponding polydisks, where
there is a volume obstruction. Even more, there are symplectic obstructions to
embedding a polydisk into a ball which do not obstruct squeezing its Lagrangian
'singular boundary' (see [5,12] and compare to Theorem 1). Therefore our results

do not seem immediately relevant for studying the squeezing of polydisks P(l, x),
which remains open for x > (V7 - l)/(Vl — 2). Nevertheless our approach can be

applied to the stabilized polydisk embedding problem P( l,t)xC" c-> B(R) x C",
see [8].

Outline of the paper. Theorems 1 and 3 have two facets. On the one hand, they
assert some obstructions for squeezing a Lagrangian torus into a small ball or polydisc.
On the other hand, they claim the existence of some embeddings, that we need to

construct explicitly.
Our obstructions ultimately come from holomorphic planes in the complement

of a Lagrangian torus in CP2 which have large 'degree' and are asymptotic at their

puncture to a large multiple of a closed geodesic for a flat metric on the torus. It
seems necessary to study such high degree curves in order to derive sharp bounds.

Our approach is to begin with finite energy planes asymptotic to thin ellipsoids which
were introduced in [9]. In a sense we can think of these seed curves as substitutes

for high degree rational curves which are very singular at a point of our Lagrangian
(and by the adjunction formula do not exist). We place the ellipsoid in a tubular
neighborhood of the torus and then carry out a neck-stretching process along the unit
circle bundle.

We fix notation and describe the seed curves and neck-stretching arrangement in
Section 2. Then in Section 3 we collect several lemmas on properties of curves in
the holomorphic buildings appearing as limits after stretching, in particular obtaining
restrictions on their Fredholm indices.

In Section 4, we prove Theorem 2 and the obstruction part of Theorem 1.

Embeddings into balls are actually technically more difficult to study than into
polydiscs (where one can work throughout with embedded curves). In Section 5, we
outline the adjustments needed to deal with embeddings into polydisks.

Finally, we deal with the constructive part of Theorems 1 and 3 at the same time,
by proving the following:
Theorem 4. If x >2, for any A > 1, there exists a Hamiltonian diffeomorphism
of C2 that takes the product torus L(\. x) into B(3A) D P(2A, 2A).

This is described in Section 6. Our approach is to explicitly write down the image
of the Lagrangian torus, which can readily be seen to have Maslov and area classes
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corresponding to those of L(l,x). We will then rely on techniques used in [6] to
show that what we have described is in fact the image of a product torus under a
Hamiltonian diffeomorphism, rather than a possible exotic nonmonotone torus in C2

(which conjecturally do not exist).

2. Geometric framework

The proof of Theorem 1 is based on neck-stretching arguments in the following
setting. Let L C B4(R) be an embedded Lagrangian torus in the ball of capacity R.
We can compactify B(R) to a projective plane CP2(f?) with lines of area R and will
denote by S00 the line at infinity. The cotangent bundle of T2 can be symplectically
identified with ®4/Z2 where Z2 acts by translations in the (x\, x2)-plane. We fix a

very large integer d and an irrational number S > 3d — 1. Then, for s small enough,
the neighbourhood

Ve,s {bil < e/2, \y21 5 sS/2)

of the zero section symplectically embeds into B(R) as a Weinstein neighbourhood
of L, denoted by V. Now VE<s contains a symplectic bidisk ^P(s,sS), which by
inclusion contains an ellipsoid sE(1, S). By definition sE( 1. S) E(s,sS) and the

ellipsoids are defined by

K¥+¥)
Putting everything together, we therefore have inclusions

sE( 1, S) C V C B(R) C CP2(R).

We will consider some holomorphic curves in CP2(Ä) that we wish to stretch along
the boundary of V. But since this boundary has corners, we first replace Ve<s by a
smooth approximation. Following [11], we define

^:={||(«-f)IL<5lcrT2-
1

where ||(^i, ^2)Hp (Iti\p + \^i\p) " Then, Ufs is a smoothly bounded fiberwise

convex subset of T*L that contains Vs,s, and is close to in the Hausdorff

topology when p is large. For large enough p, we therefore have:

E C U C B(R) C CP2(/?),

where U is a symplectic embedding of Ufs and E stands for our inclusion ofsE(l, S).
We then have a symplectic cobordism X CP2(/?) \ E which supports tame
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almost-complex structures with cylindrical ends compatible with the Liouville contact
structure on 3E. We study finite energy /-holomorphic curves in X. These will be

/-holomorphic maps
m:CP1 \T -> X,

where T is a finite set of punctures and u is asymptotic to closed Reeb orbits on 3E
at each puncture. We define the degree of these maps to be simply their intersection
number with the line at infinity S00 CP2(R)\B(R), and their asymptotics are

iterates of the two closed Reeb orbits on 3E, namely (the images of)

Y\ dE n {x2 y2 0}

and Y2 — dE fl {xi yi 0}.

Some special finite-energy curves in X. Our starting point is an existence theorem
for some curves of degree d in this cobordism:

Theorem 2.1 (Hind-Kerman [9,10]). There exists an infinite subset A C N such

that, for any d e A, S > 3d — 1 irrational and eE(l,S) C CP2(R) and for any
generic J, there exists a rigid finite energy plane u: C —> X ofdegree d asymptotic
to the Reeb orbit yjd_1.

This theorem was claimed for any d in [9, Theorem 2.36]. Unfortunately there

was a mistake in the proof, which is corrected in [10] at the expense of establishing
the result only for d belonging to a sequence of natural numbers that diverge to +oo.
In [14], McDuff proves the statement claimed in [9], that the previous result holds

with A N. The version considered here is however enough for the purpose of the

current paper.

Neck-stretching. Let now Jn be a sequence of almost complex structures on X
that are cylindrical near 3E and that stretch the neck along 3(7. Let un: C -> X be

/„-holomorphic finite energy planes provided by Theorem 2.1. They have degree d,
and are asymptotic at their puncture to yj^-1. By [2], this set of curves enjoys a

compactness property. In a now well known sense, our sequence of curves converges
(modulo extraction) as n —>• oo to a holomorphic building B made of finite energy
holomorphic curves in S dE, U\E, SdU, and C¥2\U. (Here S dE and S dU denote
the symplectization of 3E and 3 U respectively, with cylindrical almost-complex
structures.) These curves have positive and negative ends that are asymptotic to Reeb

orbits of 3U or 3E. All these ends but one match together pairwise. The unmatched
end is asymptotic to yf^-1 on 3E. Moreover, gluing the different components
along their matching ends provide a topological surface which is a bunch of spheres

(that may appear because of bubbling phenomenon) and one plane that contains the

unmatched end. We need to gather information on the limit building. To make our
analysis manageable we will identify various sets of limit curves with matching ends

and consider them as single components of the limit. Once the ends are identified,
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we can still talk about the index of such a glued component (see Section 3.1). The
identifications are made as follows.

(I) The limiting building has a unique curve üq in its lowest level with negative end

asymptotic to y^d'1. All curves which can be connected to »0 through a chain of
curves with matching ends lying in U \ E or the symplectization layers are identified
along their matching ends to form our first component F$.

(II) Suppose F0 has T unmatched ends. Then the complement of F0 in our limiting
building, after identifying matching ends, has exactly T components which we denote

Fi,..., Fj.

3. Preliminaries

3.1. Reeb orbits and index formulas. The Reeb flow on 3(7 is conjugated to that

of dUfs, which can be easily computed. It preserves the tori {(yi, ^2) c}, and

is a linear flow on each such torus, whose slope depends on c. When this slope is

rational, the torus is foliated by a 1-dimensional family of periodic orbits.

Proposition 3.1. Fix an integral basis of Hi (L, Z). For each pair of integers (k, /)
except (0,0) there is a 1 -parameterfamily ofclosed Reeb orbits on dU which project
to a curve in L in the class (k, I). We say these Reeb orbits are of type (k,l) and
denote them by y^j. The orbits are embedded if and only ifk,l have no common
factor. Orbits yrk.rl are r-times covers of the orbits yk.i-

We now recall the index formulas for the different curves that may appear after
the neck stretching process. Before specializing to our situation, let us consider the

general setting of holomorphic curves in symplectic cobordisms, and their index [1,

18]. Let É be a punctured surface of genus g with 5 punctures, and W a symplectic
cobordism. Recall that this means that IL is a symplectic manifold with boundaries
dW+ U 3W~, which are equipped with locally defined outward (inward respectively)
pointing Liouville vector fields. The Liouville vector fields define contact forms on
the boundary components of W, and we assume that their Reeb vector fields are

Morse-Bott: the closed Reeb orbits on dW may come in smooth families, along
which the transverse Poincaré return maps are non-degenerate. Let also J be an

almost complex structure adapted to our cobordism (compatible with the symplectic
structure and cylindrical near the ends). Given a finite energy / -holomorphic curve

u: t -> W,

we denote by
y.+ i 1... 5+ and yj, j 1 s-

the positive and negative limiting Reeb orbits in 3W+ and 3 W~, respectively. By the

Morse-Bott condition, these asymptotics belong to families of closed Reeb orbits,
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denoted S^~, S~. We also fix a symplectic trivialization r of u*TW along these

asymptotics. Then, c\(u*TW) denotes the algebraic number of zeros of a generic
section of the vector bundle A 2u*TW which is constant with respect to r on the

boundary. Following [1,18], the formula for the expected dimension of the moduli

space of holomorphic curves (moduli reparameterizations) in the same homology
class and having the same asymptotics as u, called below the index of u, is given by

1

index(w) (n - 3)/(S) + 2c\(u*TX) + ^ (pcz(yf) + - dim

i=i
S— j- (^cz(yj) - -dim 57)-
j=i

In this formula, ptczfy) represents the classical Conley-Zehnder index of y when it
is non-degenerate (and in this case dimS(y) vanishes), or the generalized Maslov
(Robin-Salamon) index of y in the general case [7, 16]. Note that this dimension
formula takes care of the Teichmuller space of É, or its automorphisms group.

As we explained above, we will need for practical computations to (abstractly)
glue several curves of the building, and consider the resulting subbuilding as a single
entity. We then consider the punctures of this subbuilding to be those of its constituent
curves that do not serve as matching ends. We can then define a notion of index for
such a building:

Definition 3.2. Let B be a building made of curves (u\,..., Uk) (in various layers)
that match along asymptotic orbits (yi,..., yi) belonging to spaces Si, 5/ of
closed Reeb orbits (we assume the Morse-Bott situation, where these spaces are

manifolds). We define

k 1

index(ß) := ^ index(w,) — ^ dim Si.
i=1 i=1

Working with this definition, the following proposition sums up those properties
of the index that will be important for us.

Proposition 3.3. The index formula of the buildings has the following properties:

1. Recursivity: Let B be a building obtained by gluing different buildings Bi along
matching orbits y, that belong to spaces Si of Reeb orbits. Then,

index(S) — index (Bj — ^ dim Si.

2. Computability: Let B be a holomorphic building and let the underlying curve
(after gluing) be E, the positive punctures be y;+ and negative punctures be y~
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(recall that those punctures of the constituent curves that have to matched to

form B are not considered as punctures of B). Then,

j
index(ß) (n - 3)x(Ê) + 2c\(B) + ^ (/xcz(L;+) + ^ dim 5+)

i 1

s—
2

- (^cz(yj) - - dim SJ
7 1

Here c\(B) simply means the sum of the c\(u*TX) over the constituent curves

of B.

3. Continuity: Let X be a symplectic cobordism, (Jn) a neck-stretching in X
(along some hypersurface), and (Bn) a sequence of J„-holomorphic buildings
that converge in the sense of [2] to a building B. Then

index(5) lim index(ß„).

Let us now specialize formula (3.1) to our context. We recall that E denotes our
embedded ellipsoid sE(\, S) in U.

Proposition 3.4. Let È be a punctured sphere, and w: È —» W be a J-holomorphic
map asymptotic to y(+. yj, i — 1... s+, j 1... s— Let s := ,v+ + ,v_. We denote

the Reeb orbits on dU with respect to an integral basis of L consisting of classes

with Maslov index 2.

(a) IfW — U,
index (u) 2s — 2.

(b) IfW S3U,
index(w) 2s+ + S- — 2.

(c) IfW C¥2\U (thus s S-) and yj is of type (—kj, —Ij),

index(w) —s — 2 +6d+ 2 ^2(kj + Ij).

(d) If W — U\E, the S- negative asymptotics can be further split into sj" covers

of yi and sf covers of y2 (we denote rf, tj the multiplicities of these covers).

Then,

Sl / r~ \ 52

index(w) 2s+-2-2j2 + |_yjj ^

(e) IfX SdE,
index(u) > 0.

(tj + Ltj 5J).
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Proof. In dimension 4, for a punctured sphere, the formula (3.1) gives

*+
ii.n-j(v + 4-

1 \
index(w) s — 2 + 2c\{u*TX) + ^ (pcz (y,+) + - dim S+j

i 1

- (^cziyj) - 2dim 57)-
7 1

In (7, there is a global Lagrangian distribution Z given by the vertical distribution of
the cotangent bundle. This Lagrangian distribution can be extended to a symplectic
trivialization r of u*TU, and for this choice, c[(w) 0. In BU, each closed orbit
comes in a 1-parameter family and its generalized Maslov index is Finally, U is a

symplectic cobordism with one positive end dU, so s s+. Thus, for u: Ê —> (7,

5+ ^

index(w) s — 2 + 0 + ^ y- + 2s — 2.

z — 1

The same choice of r can be made in SdU, and the previous remarks still hold
in this setting, except that there are now positive and negative ends. Thus, for
u: S -» SdU, we have

S— j j
index(n) — s — 2 + 0 + 5+ — ^ (- — -) 2s+ + S- —2.

7 1

In W U\E, we still have the same Lagrangian distribution that we extend

to a symplectic trivialization r of u*TW. Notice that since E is contractible, we

can deform this symplectic trivialization above E (and hence its boundary BE) so

that it coincides with the trivialization coming from E C M2n, with the standard

trivialization. Relative to this choice, c\(u) still vanishes, and the the Conley-
Zehnder indices of the closed orbits of BE are well known:

Pcz 0[) 2r + 1 + 2

while

Pcz(yD 2? + 1 + 2\ts\.

As a result, we get for m: S U\E:

h r \
index(u) s - 2 + s+ - s- - 2 n + ~ —2 } (tj + Lt/S]).

1=1 ' 7=1
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Similarly in SdE,

Sl r+ \ Sl

index(w) s - 2 + s+- s_ + 2 ^ I 4- 4r I + 2 (ft + [tfSj)
i= 1

^ 7
; =1

5i

-2£

-2 + 2 '-,+ +
1 /

1 1 V

X2E(t +

1

E
L S

f + I

S

\ *2

)-2£(<
7 7=1

+ U7^J)

s2

+ ]) + 2è(7+ + L7+5J + ')
7 y=i

(=i Ls J; -2£(<7 + L'7SJ)-
7

7 1

By positivity of the area, we also have

E^ + EE^Et + x>-s.
so

and

£P + EL'/^J +1 - Et + EL'7sJ
r +
i
SEm + ' + E'^EL^J + E t~:

and one of the inequalities must be strict. Hence we have index(w) > 0 for any curve
u:t -> SdE.

Finally, in CP2\(/, we consider the symplectic trivialization over dU that comes
from the inclusion of dU in the affine chart CP2\500. Then c\{u) 3d and u
has only negative ends, whose asymptotic limits come in 1 parameter families.
The discrepancy between the generalized Maslov index defined with respect to the

trivialization generated by X above and the index with respect to the trivialization
coming from the affine chart is the Maslov class of E evaluated on the homology
class of the projection of the limiting Reeb orbit to L under the natural projection
in T*L. Hence if the i-th end y,- is asymptotic to a Reeb orbit of type (—ki, —/,)
then we substitute

Ecz(ïi) x-2(ki + U)

into formula (3.1) to get

index(w) — s — 2 + 6d + 2 E<*'-+ li^
i
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3.2. Nonnegative index and multiple covers. We recall from Section 2 that the F,

are subbuildings of the building B obtained by our neck-stretching process, and that
their indices are given by the sum of their constituent curves in the different layers,
minus the sum of the dimensions of the space of closed Reeb orbits along which
these different curves match. Moreover, Fo plays a special role: it is the connected

subbuilding in U\E U SdE U SdU that is asymptotic to Y\d~x at its unmatched

negative end. It has T positive ends, at which the Fj, i — 1 T are connected.

Lemma 3.5. index(F) > 1/or 1 < f < 7\

Proof. These components only have one unmatched negative end in dU (corresponding

to an end of F0) and hence by Propositions 3.3 and 3.4(c), they have odd index.
Therefore it suffices to show that index(F) > 0. Decompose Fi into subbuildings

where the F;t are just the constituent curves of Fj in CP2\U and the Ff • their
complementary connected subbuildings in Fi (thus F[J lies in U\E U SdU U SdE).
Let ,v+ be the number of (negative) ends of Ff and sf be the number of (positive)
ends of F~. Since moreover F, has only one (unmatched) negative end in 3U, we
see that

We infer by Propositions 3.3 and 3.4(a) that the index of F^ is 2s^ — 2. Now notice

that there is no finite energy plane in U (« T*T2), so sf > 2 and

index(F,~) 2sfj —2 > sfj.

As a result,

index(F) ^]indcx(F+) + ^ index(Fl7 - ^si} > ^ index(iff),

and it suffices to prove that index(F-+) > 0 Wi,j to conclude our proof. Let

therefore u be a constituent curve of F, in CP2\(/, and suppose it has degree d
and s ends asymptotic to Reeb orbits of type (—ki, —If) as in Proposition 3.4. If u
is somewhere injective then for generic J we may assume it has nonnegative index.
Otherwise it is a multiple cover of an underlying curve ü. We may assume that ù
is somewhere injective and so index(w) > 0 for generic almost-complex structures.
Suppose this cover is of degree r, so n has degree d d/r, and further that u
has J negative ends asymptotic to orbits of type (—kj, —/_/). The Riemann-Hurwitz
formula shows that the domain of m is a punctured sphere, so Proposition 3.4 gives

{Fij}j=i...l+ U {Fij }y=i...z_>

S

index(w) s — 2 + 6d + 2 y^(kj +
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Hence we have

index(w) r index(w) + 2(r — 1) - {rs — s) > 2(r — 1) — (rs — s). (3.2)

Let now (p\ S2\r —> S2\r be the holomorphic (ramified) covering such that

u ù o (p. Removing singularities, cp extends to a holomorphic map 0: S2 —> S2

that sends T to T. Then, rJ — s represents the total ramification of cp over the points
of T, so, letting mc be the multiplicity of a singular point c, the Riemann-Hurwitz
formula gives

rs — s YXmc - 1) < Y. Cmc - 1) 2(r ~
cer ces2

By (3.2), we see that index(u) > 0 as required.

By Proposition 3.4, since F0 has T positive ends and a single negative end

asymptotic to y\d~~x we have index(F(t) 2T — 6d.

Lemma 3.6. index(770) > 0, that is T > 3d.

Proof. We argue by contradiction and assume that T < 3d, that is F0 has less than

3d positive ends. Let us consider the curves of F0 in SdE which fit together to form
a connected component Go of F0 including the lowest level curve with negative end

asymptotic to y2d~x. Then let w, : 52\T, -> U\E be the curve of Fq with a negative
end matching the zth positive end of Go. (Note that Ui may have other negative ends

matching with curves in SdE not included in G0 but only one matches Go because

the building has genus 0.)
Note that by the maximum principle, each positive end of the M; is connected

through components in SdU to positive unmatched ends of E0. And since our
building is obtained by degenerating curves of genus 0, these different positive ends

of the Uj are connected to distinct positive unmatched ends of Fo- Denoting by Qi
the number of positive ends of u;, we therefore get that

< r<3d-\.
This, in turn, guarantees that no negative end of the Uj is asymptotic to a cover of /2-
Indeed, a curve in U\E is (possibly a multiple cover of) a somewhere injective
curve u in U\E with s+ ends with index

sï / r. \ "2

index(w) 2s+ - 2 - 2^ I rf + ~ J - 2 ^ (tj + \tj5J) > 0.

1 1
'

7 1

Since s+ < 3d — \ and S > 3d — 1, we see that the tj must vanish, so ù and

therefore u itself has no negative end asymptotic to a cover of y2. Altogether, the

curves w, therefore verify the following. They have Q, positive ends with

£fi. Q<3d-l,
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and they have a negative end asymptotic to a yf' which is matched with a positive
end of Go- For area reasons, we then see that

y^r/f > 3d - 1.

In total, we therefore have

J2 Qi < ïd - 1 < J2qi'
so there exists an i such that Qi < qi. We henceforth denote this curve by u, and let

q and Q the corresponding numbers; hence q > Q. The index of this curve is

index(u) 2 Q — 2 — 2 G + |jj) <2Q-2-2q < 0.

Thus u must be an r-covering of a somewhere injective curve m: S2\T -» U\E with

say Q < Q < 3d positive ends, 3_ negative ends, the z -th of which is asymptotic
to y[' (none of them is asymptotic to a cover of yj), and non-negative index given by

index(u) 2Q — 2 — ^ (2rj- + 2 ~ V
i 1

^ 2

Hence Q > 1 + ^ r,. Suppose that the end of 1/ asymptotic to yc( covers t times an

end of u asymptotic to y\, so tq q. Consider also the ramified covering

(p\ s2\t -* s2\r
defined by tz ü o <p, and remove its singularities to get a map 1p\ S2 52. We

recall that T splits as T+ U T~, where T+ are the positive ends of u and T~ the

negative ones. One of the negative ends, say Co, has order t. The Riemann-Hurwitz
formula, together with the facts that Q > 1 + t < r, and q > Q, then give:

2(r - 1) (mc - 1) 1 (wc - 1) + (t - 1)

ceS2 cer+

rQ - Q + t - 1

- '"I1 + H7') ~ ~+1 ~1

> r(l + q) - ô + t - 1

r + rq- Q+t-\
r + tq - Q + (r - t)q + t - 1

>r+^ - ô + r — t + t — 1

> 2r — 1,

which is a contradiction.
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3.3. Holomorphic planes in C2\U. We recall the inclusions L c U C B4(R),
with U symplectomorphic to Ufs. We consider here the situation where L is

the image by a Hamiltonian diffeomorphism of C2 of the product torus L(l,x)
with x > 1. We moreover assume in this paragraph that x e Q. The aim of this
section is the following result:

Lemma 3.7. Under the above hypothesis, for a generic almost complex structure
and s > 1, there is no genus 0 finite energy curve in C2\U with s negative ends,

deformation index at least s and area strictly less than 1.

Remark 3.8. To avoid complicating our formulas with terms of order e, we define
the area of a finite energy curve in C2\U to be the area of the closed surface formed
by topologically gluing a half-cylinder in U to each end of u. The open end of the

cylinder is asymptotic to a limiting Reeb orbit matching the corresponding end of u
and the boundary of the cylinder is a curve on L. Note that this cylinder is symplectic,
so starting with a curve in C2\U of positive genuine area, the area we define here

still remains positive, and this is all we will care about in the sequel.

Before proving Lemma 3.7 we derive the property for the standard Lagrangian
torus L(l,x) C C2 and some particular cylindrical almost complex structures.

Lemma 3.9. Let U be a neighbourhood of L(l,x) C C2 (with x > I),
symplectomorphic as before to Ufs. Let J be an almost complex structure on C2\U
cylindrical near dU and such that J coincides with the standard complex structure i
near the line {z2 0}. Then, there is no genus 0 finite energy curve in C2\U with s

negative ends, deformation index at least s and area strictly less than 1.

Proof Let m: CP1\{zi, zs} C2\U be a genus 0 7-holomorphic curve with
finite energy and index at least s. Its ends are asymptotic to orbits of type (—kj, —lj)
as in Section 3 where we now use the standard basis of H\ (L( 1, x), Z). Then,

index(u) 5 — 2+2
7 1

so 12 kj + lj —
1 On the other hand,

S S S

Area(u) kj + Ijx) ^^(kj + lj + lj (x — 1)) > 1 + (x - 1 ^ Ij.
7 1 7 1 7 1

Now the sum of the lj's represents the intersection number between u and {z2 — 0}
(parameterized in the obvious way by the z\-coordinate). Since J 7st near this
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line, and u is holomorphic, each intersection point between these two curves counts

positively, so h > 0- Since x > 1, we indeed get Area(u) >1.

ProofofLemma 3.7. Arguing by contradiction, since there exists a Hamiltonian
diffeomorphism / mapping L(l,x) to L, if such an almost-complex structure and

finite energy curve exists then we can pull-back using / to find holomorphic curves
of area less than 1 asymptotic to a neighborhood U of the product torus. Hence it
suffices to work with L L(l,x). By Lemma 3.9 we can find at least one almost-

complex structure J\ for which no such curves exist. Moreover, since the only
constraints on J\ appear near {z2 0} we may assume any generality properties
of Ji with respect to curves asymptotic to dU.

We need two facts about moduli spaces of finite energy curves in C2\U. We

denote by # the collection of compatible almost-complex structures on C2\U.

Theorem 3.10 (Ivrii [13, Section 2.4] and Wendl [19].). Given J e immersed

J -holomorphic finite energy curves with index at least the number of negative ends

are regular. That is, the normal Cauchy-Riemann operator is surjective and our
curves appear in a family of the expected dimension. Such curves are also regular
in their moduli space ofcurves with fixed asymptotic limits rather than allowing the

limits to move in the family ofReeb orbits).

Theorem 3.11 (see Zehmisch [20] and Oh-Zhu [15]). There exists a comeagre
subset |/ C I such that if J fj, in any moduli space of somewhere injective
J-holomorphic curves the collection ofnon-immersed curvesform a stratified subset

of codimension 2.

A parametric version of this statement (i.e. for families of almost complex
structures) also follows by the same arguments.

Let C # be the collection of almost-complex structures on C2\U which
are regular for all of the (countably many) moduli spaces of finite energy curves
with unconstrained asymptotic limits (that is, moduli spaces defined for all choices

of Reeb orbit families of asymptotic limits and for all relative homology classes in

//2(M4, L; Z)). We will work with #o $R G #/ C which is again a comeagre
set. Since J\ can be freely defined in the complement of {z2 0}, and since

all holomorphic curves with boundary on L(l,x) meet this free region, we may
assume J\ e $0-

Given this, we define A to be the infimum of the areas of /-holomorphic curves

having index at least the number of negative ends and / #o- By contradiction we

are assuming <A < 1. But since x Q there are only finitely many possible areas

less than 1 which can be realized by holomorphic curves and so ^4> > 0 is realized

by /-holomorphic curves. Amongst all choices for (u, /) with minimal area A, we
choose (u, J0) for which u has the minimal number of negative ends, which we call 5.

We may further assume that u is somewhere injective from the following lemma.
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Lemma 3.12. Let v be a finite energy curve in C2\U with t negative ends and
index?; > t. Suppose that v is a multiple cover of a curve v with t negative ends.

Then index(ïï) > t.

Proof. Suppose the ends of v are asymptotic to orbits of type (-m,-, —&,•) and the

cover is of degree r. Then we have

t

index (y) t — 2 + 2 + ki)
i l

7

and index(u) t — 2 + 2r ^(w,- + ki)
i 1

t — 2 + r(index(ïï) — t + 2).

Thus

r(index(v) — F+2) — 2>0
and

~ 2
index(û) — t > 2 > —2.

r

As index(û) — t is even this gives our inequality as required.

Now, by the definition of $o the ./0-holomorphic curve u is regular, and by
Theorem 3.11 we may further assume it is immersed. Denote its asymptotic limits
byeri ,os. In the case when index(w) > s we also fix TV |(index(w)—s) points

pi psi in the range of the injective points of u (recall from Proposition 3.4(c)
that TV must be an integer).

For a family Jt, 0 < t < 1 of almost-complex structures interpolating between

J0 and Ji, define the universal moduli space

!(t,

u) such that u: CP1\{zi,..., zs) —* C2\U,
d jt u — 0,
u somewhere injective,
image(w) ft pi ^ 0 for all i.
u is asymptotic to cr; at z,

where we quotient by reparameterizations of the domain. We note that M has virtual
dimension 1. Indeed, fixing the asymptotic limits reduces the virtual dimension by s,

and the fixed points further reduce the dimension by 2N.
Since Jo, J\ e #0, we can find a path {V/}r6[o,i] between Jo and J\ which is

both regular for all of the countably many unconstrained moduli spaces of curves

asymptotic to L and is also regular for the constrained moduli space M (so in

particular M has dimension 1). Furthermore, the parametric version of Theorem 3.11
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implies that we may also assume that our path is generic in the sense that non-
immersed curves in all of these moduli spaces have codimension 2 (and so in particular
do not exist at all in M).

Given all of this, since curves in M are immersed they are also regular for a

fixed almost-complex structure by Theorem 3.10 (which also holds when the index
is a constrained index for curves passing through fixed points). Therefore the map
M -» [0, 1], (t, u) t, is a submersion. By Lemma 3.9 the fiber over 1 is empty
and so we will arrive at a contradiction if we can show M to be compact.

To this end, let (t„,u„) e M and suppose that tn t00. We claim that a

subsequence of the un converges to a Jtoo-holomorphic finite energy plane u00 such

that (too, ttoo) ^ M. By [2], some subsequence of un converges in a suitable sense

to a Jtoo-holomorphic building. This building consists of top level curves in C2\U
and lower level curves in 53(7. For simplicity we will gather lower level curves
with matching asymptotics and consider them as a single curve. We can also assume

by adding trivial lower cylinders that there are no unmatched negative ends of the

top level curves. Hence, there are s unmatched negative ends to the lower level

curves which are asymptotic to 04,,as. Let Ltop be the number of top level

curves and L]ow the number of low level components (after our identifications). We

call Ii, Si, i 1 Ltop the (unconstrained) index and number of negative ends

of the /-th top level curve, and (/,, r,, t,), i — l,...,L\ow the index, number of
positive and number of negative ends of the /-th low-level component. Then by

Proposition 3.4(b),
Jj 2ri + ti — 2.

Since all ends of the upper level curves match,

Lop Llow

x>=i>.
i=l i=l

and since the total number of unmatched ends is s,

Low

J^ti s.

i 1

We can associate a graph to a holomorphic building by adding a vertex for each

curve and asymptotic limit (just one vertex when an asymptotic limit is a matching
asymptotic between two curves), and an edge between the vertex for each curve and

its asymptotics. As we take limits of curves of genus 0, this graph is a tree, hence

has Euler characteristic 1, so we have

Lop Llow Lop L[ow L|0w

Ltop ~b L]ow 4- ^ ^ sj -f ^ ^ îj ^ ^ Sj ^ ^ L T ti — Ltop ~f~ Liow — ^ ^ f'i 1.

i 1 i l i=1 i 1 i 1
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Finally, the index of the limiting building, namely the sum of the indices of the

constituent curves minus matching conditions, equals the index of the original curve,
which by assumption is at least s. Thus, taking all previous equalities into account,

< E1[ + E Ji ~ E1^' E^7' ~ s') + E<2" + u ~ 2)
1 1 i 1 i 1 i l i 1

^top

— ^ + 2(Ltop H- E]OW 1) -f- s 2Liow

i=1
top

s + 2(Ltop — 1) + — £;)
i l

^top

5 — 2 + ^ /; — 5,' + 2).
i=i

Thus,
^top

EE' ~ + 2) > 2.

i l

By Proposition 3.4(c) the differences h — Si are even, so at least one of them is

non-negative, and the corresponding top level curve v therefore has index at least the

number of its negative ends. As it appears as part of the limit, the area of v is at most
the common area A of the curves u„.

By our assumptions on {Jt} the Jtoo-holomorphic curve v appears in a universal
moduli space containing some immersed curves, so without loss of generality we
will assume v itself is immersed. Next by Theorem 3.10 such an immersed curve v is

regular and so we find holomorphic curves with the same asymptotics if we deform
the almost-complex structure. We cannot assume Jtoo #0» however it can be

approximated by J e #0 and so we can approximate v by a curve w with the same

asymptotics, and hence the same area, which is holomorphic with respect to an

almost-complex structure in $o- By minimality of A among the areas of such curves,
the area of w is at least A, and hence as v has area at most A we see that v and w
have area A precisely.

In conclusion there was exactly one top level curve (as v occupies all of the area)
which must therefore intersect the points pi. By minimality of s we see that v has

at least s negative ends, but as the limit is of curves of genus 0 and there are no

holomorphic planes in U (there are no contractible Reeb orbits) the curve v must
have exactly s negative ends. It follows that the lower level curves are cylinders
which for action reasons must be trivial cylinders asymptotic to the 0\,..., as. We

conclude that v has the correct asymptotics and (too, v) e M as required.
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4. Proof of the obstruction part of Theorem 1

We now gather together the information from the previous section to prove the

obstructions claimed in Theorem 1. We can divide the theorem into the cases x <2
and x > 2. For the latter case we actually prove the more general Theorem 2,

where L is not assumed to be Hamiltonian isotopic to the product torus: it may be

any Lagrangian torus in 5(5), with a basis (ej, e2) of the homology with /r (ei)
fx(e2) 2 and £2(ei) 1, Q(e2) x- We consider in the following the general
situation until we get to the proof of the first case of Theorem 1, then we add the

assumption of L being Hamiltonian isotopic to a product torus, allowing for the use

of Lemma 3.7.

Some restrictions on the F,-. By Lemmas 3.5 and 3.6, the component Fo has

index(Fo) > 0

and the F, for 1 < i < T have

index (F,) > 1.

As there are T remaining ends to match and the sum of the indices minus matching
is 0, we conclude that index(F0) =0 (and hence T 3d) and index(F;) 1 for i > 1.

By Proposition 3.4, the index equality for the F, with i > 1 says

1 index(F,) 6di + 2(w, + A:,) — 1. (4.1)

where Ft has total degree di and is asymptotic to orbits of type (—m,-,—k{).
Meanwhile the action in B(R) of orbits of type {—mi, —kj) is 777,- + kiX (recalling
Remark 3.8). Therefore by Stokes' Theorem we have

Area(F,-) Rdi + (777, + kix).

In view of (4.1) we get

Area(F) (R - 3)dt + (kt(x - 1) + 1).

The case x > 2 (proofof Theorem 2). We note that by setting Q(e2) x, the more
general Theorem 2 implies the obstruction part of Theorem 1 in the case when x > 2.

Also note that proving R > 3 is enough to deduce R > 3. Indeed, since L is compact
and B(R) is open, if L were to lie in 5(3), then it would lie in a smaller ball 5(3 — e)

for some s > 0. We argue by contradiction, and assume that R < 3 and x > 2.

As area(Fj > 0 this means ki > 0. But as all limiting orbits y-mj-iCi bound the

component F0 in U they represent a trivial homology class, and so

y>,- y> 0.
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Thus ki — 0 for all i and the 3d components Ft are all asymptotic to orbits of
type (-mi, 0).

Now we use Stokes' Theorem to calculate the area of F0 in U. This has 3d

positive ends asymptotic to orbits Y-m,,o and a negative end on Y\d~l- From our
description of U in Section 2 we see that the integral of the standard Liouville form
around both y~i,o and yi,o is e/2 and so we get

area(T'o) ^ - (3d - l)e.
i

As Ylmi 0 we have

mi >3d — \.
m;- >0

Focus for a moment on the components Fi with m,- > 0. By the index formula (4.1)
their index is 1 6dj + 2m; — 1, so their degrees di vanish, while /«, 1. Since
the sum of these degrees is at least 3d — there are exactly 3d — 1 such components
(since there are 3d components in total, and one of them at least must have < 0).
The final picture for the building is therefore a component F() with 3d positive ends,

3d — 1 of which are asymptotic to orbits y-i,o that match with components F, of
degree 0, and one positive end asymptotic to an orbit Yid-\,o that matches with
a component (say Fjd) of degree d. The positive area of this last component is

Rd — (3d — 1), so R > 3 — 1/d. Taking d large gives us the result.

The case x < 2. For this part of the proof Theorem 2 does not apply. Specifically,
we will apply Lemma 3.7, which requires our tori to be Hamiltonian isotopic to
products.

We again argue by contradiction, and assume now that R < 1 + x. As in the

case of x > 2, this means that we may assume R < 1 + x. Note that by Weinstein's

neighbourhood theorem, it is enough to prove our result for x e Q. Note also that

if all ki vanish, the same proof as the above shows that R > 3, which is already
a contradiction. Hence, there must be planes asymptotic to orbits of type (mi,ki)
with ki 0, and in particular there must be such a plane F asymptotic to an orbit ym,k
with k < 0. Let d be the degree of F. Then,

1 index(F) 6d + 2 (m + k) — 1

and

Area(F) Rd 4- (m + kx).

From the first equation we get m 1 — 3d — k, and substituting in the second one

gives

Area(.F) Rd + (1 — 3d — k) + kx (R — 3)d + k(x — 1) + 1 > 0.
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Since k < — 1, x < 2 and R < 1 + x, we get

(2 — x)d < 2 — x

and so d 0. Thus F is a plane with one negative end, has index 1, lies in
B4(R)\U C C2\U, and verifies m 1 — k, so

Area(F) 1 + k(x — 1 < 1.

This is in contradiction with Lemma 3.7 (recall that x G Q).

5. Proof of the obstruction part of Theorem 3

We briefly outline the adjustments required to establish the obstruction part of
Theorem 3. Note that there does not exist an embedding L( 1, x) <-* P(a,b) when

a < 1 since by [4], Proposition 2.1, the Lagrangian torus L(l.x) has displacement

energy 1. We still argue by contradiction, assuming that a < 2 and b < x, which as

the polydisk is open implies we may take a <2 and b < x. The proof of Theorem 3

proceeds similarly to that of Theorem 1 except now we compactify P(a. b) to a copy
of S2 x S2 with factors having areas a and b. The analogue of Proposition 3.4 is

that the deformation index of a finite energy curve u of bidegree (d\, J2) asymptotic
to Reeb orbits of type (—/n,, —ki) is given by

index(w) s — 2 + A(d\ + dj) + 2 + ki).
1=1

As before, we consider the situation

E C U C S2(a) x S2(b),

where U is our Weinstein neighbourhood of L. We now use the existence of 7-holo-
morphic planes

w:CP'\{oo} S2 x S2\E

of bidegree (d, 1), asymptotic to y\d+x, which exist for d arbitrarily large by [9],
and we stretch the neck of 3(7. As previously, we split the limit building B into
subbuildings Fo, F\...., Ft, where Fq is the maximal connected subbuilding of B
in SdE, U\E and SdU attached to the negative unmatched end, while F\,...Ft
are the connected subbuildings attached to the T positive ends of F0. Arguing as for
balls, we get the following:

1. index(Fj > 1. The proof is exactly the same as Lemma 3.5, replacing the formula
for the index of m by the correct formula in 52 x S2\U.
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2. index(Fo) > 0. Since Fo lies in U, this is exactly Lemma 3.6. Since now
index(Fo) 2T — 4(d + 1), we conclude that T > 2(d + 1).

Then again we get restrictions on the Fi :

index(Fo) 0, index(F/) 1, and T — 2 (d + 1).

Suppose Fi is asymptotic to an orbit of type (—m,-. —kj) and has bidegree (df, df).
The index and area formula for the Fi now give

1 index (F;) -1 + A(df + df) + 2 (m, + kj).
Area (F,-) dfa + dfb + mi + ktx,

so

Area(F,) df (a — 2) + df(b — 2) + ki (x — 1) + 1 >0,
while the degrees verify Jfdf d,Yf df 1.

When x > 2, taking into account our assumptions a < 2, b < x, we see that the

component with df — 1 verifies

(b — 1) + ki(x — 1) > 0,

so ki > 0 because b < x. Meanwhile the ones with df 0 verify

ki (x — 1) + 1 > 0.

so ki > 0 because x > 2. Thus ki > 0 for all i, and since 0, we get
all ki 0, so all Reeb asymptotics are of type (m, 0). Exactly the same argument as

in Section 4 then shows that 2d + 1 of the F; have bidegree (0. 0) and are asymptotic
to y(—i;o) while one has bidegree (d, 1) and asymptotic y(2rf+i,o)- The area of this

subbuilding is

ad + b — 2d — 1 (a — 2)d + b — 1 >0.
Since this inequality has to hold for arbitrarily large d, it contradicts our assumption

a <2.
When x < 2 we see as above that ifall kj vanish, we get a contradiction with a < 2.

Thus at least one of the F, must be asymptotic to k < 0. Its area is

A d\ (a — 2) + d2(b — 2) + k(x — 1) + 1, k < —1.

Now 1 + k{x — 1) < 1, so Lemma 3.7 rules out the possibility that d\ — d^ — 0.

If d\ > 1 (and since a <2 and b < x < 2 by assumption) we get

a — 2 — x + 2 — a — x>0,
which contradicts the fact that a < b < x. If d\ 0, d2 1, we get

b — 2 — x + 2 > 0

so b > x.
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6. Squeezing Lagrangian tori: proof of Theorem 4

The construction is slightly delicate, so we proceed in several steps. We first construct
a Lagrangian torus close to P(2,2) or to B(3), with several properties that we use in
a second step to show that this Lagrangian torus is in fact Hamiltonian isotopic to a

product torus.

Proposition 6.1. Let x > 2 and U be an arbitrary neighbourhood of 5(3) fl P(2, 2).
There exists a Lagrangian torus L C 11 which has an integral basis (e\, £2) of its
1 -dimensional homology with

fi(ei) =/i(e2) 2, Œ(é?i) x, Œ(e2) 1.

This Lagrangian torus bounds a solid torus I C C2 with symplectic meridian discs

having boundary in the class e2 and whose characteristicfoliation is by closed leaves.

One can further impose that there exists a. b C such that:

(a) S C C2\{z a) U {w b} (hence the same holds for L),

(b) lk(e2, {z — a}) \k(e2, {w b}) 0,

(c) lk(ei, {z a}) 1, lk(ei, {w b}) —1.

Proof. Let A > 1 be a real number to be chosen more specifically later. Let y be

the immersed closed loop in the z ji)-plane represented in Figure 1. It is

contained in the square

S := {0 < x\ < A, 0 < vi < A}

and approximates an n-times cover of 35. More precisely, we can parameterize y as

a map

[0, l]/0~, -> c

(which we will also denote by y) such that y(t) wo + it for t small, with
Im too < e and Re tuo > 1. The curve y then winds counterclockwise around 35 on

an interval [0, 1—3], remaining embedded by spiraling slightly inwards. Finally, the

segment y ([1 — S, 1]) is roughly horizontal, closing up the curve and intersecting the

remainder of the curve n — 1 times.

The horizontal segment of (the image of) y which runs from close to Re z 0

to include y([l — 3, 1]) is labelled H. This is the uppermost horizontal segment
close to {y\ 0}. The vertical segment extending the part of y defined by positive
parameters close to 0 will be labelled V. This is the rightmost vertical segment close

to {xi A} (see Figure 2). For technical reasons, we chose 0 < e « 1 and assume
that H C {ji < e} and V C {xj > A — £/2}> while y lies in the £-strip around 35.
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y(0)
Y\U-SA]

Figure 1. The curve y.

Let T := 3D be the circle of unit area in Cw, w x2 + iy2. The product of y
with T is an immersed Lagrangian torus in C2. Denoting by

h [Y x {*}] e H\(y x T) and e2 [{*} x T],

we have

yt{ei) 2/7, yt{e2) 2, f2(i?i) % nA2, and Q(e2) 1.

Step 1. We first construct a Lagrangian torus L as required, except for the linking
conditions (b) and (c). Let G(w) be a Hamiltonian function which displaces the

circle T in a disc of area 2 + e and satisfies 0 < G < 1 + e. Let y. M —»• [0, 1]

be a smooth function with ^(0 1 for t > A — e, %(t) 0 when t < e and

0 < x'G) S 1 (recall A > 1). Let also £2 c C be defined by £2 := Q\ U Q2 U Q2,
with

Qx := {e <xx < A- e},

Q2 {A'l > A-e/l},
03 := {A - e < xx < A} n {0 < yx < e}.

Note that H C Qx U Q3, V C Q2 U Q2, and Qx D Q2 — 0 (see Figure 2). The
self-intersections of y all lie in the region O3. By y \ H, y \ V, or y \ (H U V) we
will mean the image of the parameterized curve restricted to the complement of the

interval defining H, V or H U V respectively.
We leave the reader to check the following straightforward facts.

Claim 6.2. Thefunction/: £2 cC ->IR definedby f\Qx := /(xi), f\Q2 := 1 — x(y 1),

and fig3:=l is smooth, and its Hamiltonian flow verifies:

1. A>'f\Q3 Id,
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2. 0'y(// fi Q\) CC Q\ n {0 < yi < A — e} and 4r\ (y\H) D Q\ — 0,

3. <î>!f(V n 02) C 02n{A-e/2 < JCI < A + l}and&f(V)n(y\V)nQ2 0.

We finally define the function K{z. w) := f(z)G(w) on £2 x C C C2, and

L := y\(H U V) x T U 4>^((// U V) x T).

K G

Figure 2. The curve y, and the function K.

Since / 0 near d(H U V) (considering H U V as a connected arc), and

hence K — 0 near d(H U V) x T, we see that L is an immersed torus. Moreover,
also since K 0 near d(H U V) x T, the integral of a primitive A of the standard

symplectic form over a path a in (H UK)xT is equal to its integral over c L.
Thus the area class of L coincides with that of y xT. The same holds for the Maslov
class, because L is Lagrangian isotopic to y x T.

Notice also that the Hamiltonian vector field of K is

G(w)Xf(z) + f(z)XG(w).

Thus, Since 0 < / < 1 and 0 < G < 1 + s, for any subset P C Q x C,

Jtzi'&K{P)) C U^<(]_)_Ê^rfi'y-(jtz P) and K(P) C UiÇ<;4>g(7rU)T>).

Hence, by points (2) and (3) of the above claim, L has no self-intersection in Q \ x C,
nor in Q2 x C. Moreover, since / 1 on Q3, <5^ Id xOj, on Q3 x C, so

cPlK(H UV xT)(lyxT DQ3 0.

Therefore, L is embedded.
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Let p e T and q e y\ Supp(/). Then the homology of L is generated by

r,-[y)-[y\(//Uf)xMU<(//UKx{/>})] and e2 := [{q} x T].

We have p{e2) 2 and p(è\) 2n, so (e\ := ë\ — (n — l)<?2,e2) is a Maslov 2

integral basis of H\ (L), with areas

<A(e2) 1. A(ei n(A2 — 8) — (11 — 1).

where 8 is a term that can be chosen arbitrarily small. Given x, one may find A

arbitrarily close to 1, 8 <£ 1 and 11 large enough, so that A(e 1) x, which we

assume henceforth. Thus, L is an embedded Lagrangian torus, with a Maslov two
basis of areas x and 1, which lies in [0. A + 1] x [0, A] x D(2), which can be mapped
into an arbitrary neighbourhood of P(2,2) provided A is close to 1.

Step 2. We now show that L can in fact be taken into an arbitrary neighbourhood
of 5(3) fl 5(2,2). Throughout D(c) denotes the standard round disk of area c. Let
e <^ 1 and x/z: [0, A + 1] x [0, A) —>• D{A(A + 1) + s) be such that

^([0, /4]x[0, A]) C D(A2+e) and i/s{[A. xl + l]x[0.p]) C D{A2+p+e) Vp.

Such a symplectic diffeomorphism is easy to construct by stretching the part

[A. A + 1] x [0. A]

horizontally by a factor 4, shrinking vertically by the same factor, then wrapping
the long strip around the square [0, A]2 (see Figure 3). The resulting domain can
be mapped into the standard disk D(A(A + 1) + e) such that the image of points
in [A, ,4 + 1] x [0, A] with larger y coordinate (the dark rim in our figure) are

mapped towards the boundary of the disk while points with smaller y coordinate

(the lighter rims) are mapped closer to the disk D{A2). We can quantify this

precisely by following [17, Lemma 3.3.3], so that points in [A, A + 1] x [0, b] map
into D(A2 + b + e).

D(A2)

0 A— s A + e A + \

Figure 3. The projection of L onto the z-plane, and its image by \fr.

We claim that x Id(L) lies close to 5(3) provided A is close to 1. Indeed,

• if (z, w) e L, with z e [0, A] x [0. A], then f x Id(z, w) (z', w') verifies

|z'| e D{A2 + s) and \w'\ e D{2),

so (z', w') e B(A2 + 2 + e);



Vol. 95 (2020) Squeezing Lagrangian tori in dimension 4 561

• if (z, w) e L with z G [A, A + 1] x {p}, then (z, w) e (V x T). Since

XK(z, w) f(z)XG(w) + G(w)Xf(z)

[! - X(y\)\Xc(w) + G{w)Xf(z) in Q2,

Xk preserves the hyperplanes {y\ c} in Q2 x C, so (z, w) A>xK(z', w') with
Imz Imz' p. Then,

nw^K{z',w') ^-x{p)\w'),

so we may assume w e D(2 — x(p)), while z [A, A + 1] x {p}. As a result,

t/r x Id(z, w) 6 £>(A2 + p + e) x 0(2 - /(p)) c B(A2 + 2 + p - x(p) + s).

Notice now that since A is close to 1 and /(p) is chosen at Ç°-distance e from the

identity, and this shows that t/f (z, w) lies arbitrarily close to 8(3).

Step 3. We now slightly alter the previous construction to achieve the linking
condition. Note first that taking a in {Rez < e} in such a way that y winds around a

exactly once achieves the correct linking between L and {z a}. The problem is

therefore with the line of the type {w b}.
First, fix b C in the complement of U<t>rG(T), in D(2 + s). In particular,

since $G displaces T, b is in the complement of D U <t>G(Z)), where T dD.
There exists a Hamiltonian diffeomorphism with support in D(2 + s), disjoint from
D U $G (D and such that Vp e T, the path 0G (p) for 0 < t < 1 and fir o (p)
for 1 < t < 2 winds around b with winding —1. Such a diffeomorphism is not easy
to describe in words, but easy to draw (see Figure 4).

Figure 4. The diffeomorphism 4. The red oriented curves represent the flow lines of fir. The
red unoriented lines represent the image of the horizontal foliation. The support of fir can be

made arbitrarily thin, so that the whole picture fits into a disc of area 2 + e.
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We now define

Ly := y\(H U 7) x T U &K(H x T) U ^(<7^(7 x T)),

where K(z,w) f(z)G(w) as before and by abuse of notation we are writing
Vfi(z, w) (z,

Let us explain why Ly satisfies all our requirements. Note first that is obtained

by L from cutting the tube T := 0]^(7 x T) and pasting Ty := (7 x T)).
As jzw{<&xK(dV x A')) D U is disjoint from the support of we have

that Tq< differs from T by a Hamiltonian generated by a function with compact
support. Moreover, since the corresponding Hamiltonian flow is parallel to the w-
plane, the flow of T remains disjoint from the remainder of L and so the generating
function can be extended to be identically 0 near the remainder of L. We conclude
that L\p differs from L by a Hamiltonian diffeomorphism and in particular Lq, has

the same Maslov and area classes as L.
We now claim that L>i< has the correct linking with the lines {z a} and {tu b}.

It is clear for the former, while the latter needs a justification. First, since ei is

represented by {*} x T for suitable {*}, and since b £ D, Ik(e2, {w b}) — 0. Fix
now tuo G T. A representative of the class ë\ e\ + (n — 1)^2 is simply

y\(H UF)x {tt>0} U $lK(H x {tu0}) U ^($^(7 x {tu0})).

Parametrize H by p p + ic, for p [po, pi], po < £ and p\ > A and c < e. Then
there exists a function c(p) taking values in (0,1) with,

^K(p + ic,w0) (p + ic(p), <F£(p)(iu0)). (6.1)

Similarly V can be parameterized by p i-> b + ip and there exists a b(p) with

(è + ip, w0)) (b(p) + ip, V o <E>ç~z(p)(w0)) (6.2)

By choice of we therefore see that

lk (?i, {w b}) -1,

and since e\ — è\ — (n — l)e2, that

lk (ej, {w b}) —1.

In view of the particular form of whose support can clearly be given any
arbitrarily small area, the arguments that showed that L can be taken into an arbitrary
neighbourhood of B{3) go through. Finally, Ly bounds the solid torus

;= y\(H Uf)xDU &k(H xD)U ^($^(7 x D)).

The characteristic foliation of y x D is by curves y x {*}, and H4/ is obtained from

y x D by explicit Hamiltonian diffeomorphisms on various pieces, and therefore the

characteristic leaves remain closed as required.
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Let us finally now prove that the Lagrangian tori that we have just produced are

Hamiltonian isotopic to a product torus.

Proposition 6.3. A Lagrangian torus that satisfies the requirements ofProposition 6.1

is Hamiltonian isotopic to the product torus L(l,x) in C2.

Proof. Let L.Yj.a.b be as in Proposition 6.1, but observe that without loss of
generality a — b — 0. We denote X := C2\{z 0} U {w 0}. We wish to prove
that L is Hamiltonian isotopic to L(x, 1) S1 (x) x 5"1 1 in C2. We proceed in

two steps.

Step 1 (Lagrangian isotopy). We first reposition the product torus L(x, 1) in X
and then find a Lagrangian isotopy inside X between L and the repositioned torus.

Consider the linear symplectomorphism

A: (z, w) i->
*

(z + Aw, w + Az),

where A is a constant satisfying ^ < A < 1. We observe that A(L(x, 1)) C X and

denote the image by Lq. We denote the image of the standard basis of H\(L{x, 1))

by /1./2 e H\ (L0), so

Mfi) p(h) 2 and £2(/i) *, S2(/2) 1.

Also

lk (/!, {z 0}) 1, lk (ft, {w 0}) -1,
and

lk (f2, {z 0}) 0, lk (f2. {w 0}) 0.

Moreover the solid torus So A({n\z\2 x,^|tu|2 < 1}) also lies in X and has

trivial characteristic foliation.
The existence of a Lagrangian isotopy between L and L0 given the existence

of S and S0 has already been established in [6, Theorem 6.1], (see also [13,

Proposition 3.4.6]). For the sake of clarity and completeness, we briefly recall

an outline of the argument here.

Let us fix characteristic leaves (called core circles)

T c £ and T0 := x {0}) C £0,

and a meridian disk D in S. The return map on D of the characteristic foliation in S

being the identity, any isotopy of circles in D starting from dD defines a Lagrangian
isotopy of L, by considering the suspension of these loops by the characteristic
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foliation in E. Hence an isotopy of loops that shrinks 3D to a small loop around

Dnr gives a Lagrangian isotopy from L to a small neighborhood of T in E.

Next, since the linking numbers about the axes are the same, T and r0 are

smoothly isotopic in X, and the smooth isotopy extends to a symplectic isotopy ifrt

(not Hamiltonian), defined in a neighbourhood of T, that brings T to r0. Since
these two curves are characteristic leaves, the image E' xfrx(E) is an embedding
of S1 x D(s) which is tangent to Eo along To.

There is an obstruction to the existence of a symplectic isotopy which fixes To

and maps E' into E0. We can find a trivialization of the meridinal disks in E' which
is invariant under the characteristic flow (since the leaves are closed). This induces

a trivialization of the tangent spaces to the meridinal disks in Eo along To but this

may not be invariant under the characteristic flow here. Indeed, since the leaves of
the characteristic flow on E0 are also closed, leaves other than To have a winding
number about T0 relative to the trivialization. We are able to correct this relative

winding however, by a small perturbation of E0, leaving it tangent to E' along T0,
as follows.

We identify a neighborhood of To in X with a neighborhood of S1 x {0} x {0}
in S1 x M x C with the product symplectic form from S1 x M T*Sl and C.
We can make this identification such that Eo is S1 x {0} x C. Given this, choose

a smooth function /:IR+ —» M+ with small support, small f°-norm, linear with
slope N near 0, and define

S0 := {(0, /(|tc|2), w) e S1 xIxC, \w\ < l}.

The characteristic foliation of Eo is given by the curves

9 h* (0,/(H2), weix'(lwl2)e).

Thus close to T0 the characteristic foliation of Eo can be arranged to have a winding N
equal to that of E'.

It follows that we can find a symplectic isotopy taking a neighborhood of T0

in E' into E0. To see this, note that a smooth map sending E' into Eo, preserving
the characteristic foliations, mapping meridinal disks of E' to meridinal disks of Eo,
and acting as a symplectomorphism on a single disk, is automatically a symplectic
embedding of E', which can be extended locally to a symplectomorphism. Since the

characteristic foliations have the same winding, such a symplectomorphism is isotopic
to the identity through diffeomorphisms which preserve To and whose derivatives

along T0 preserve the meridinal disks. By an application of Moser's method these

diffeomorphisms can be deformed near T0 into symplectomorphisms.
The image L £i(Vri(T)) of L is now a circle of characteristic leaves in Eo

intersecting a particular meridinal disk Do in a small circle ct0 about T0. We may
assume that oq lies in the region {|u>[ < e} where x'(\w\) — N. Finally we
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find a Lagrangian isotopy between L and Lq. First consider a family of circles
in Do connecting £o 9L>o with — Oq. We can choose this family such that

if a intersects the region where x' is not constant, then ßt is one of the circles

{IwI c} n D0. We then observe that the return map D0 -> D0 generated by

following the characteristic foliation preserves all and hence the characteristic
leaves through these circles form a family of Lagrangian tori giving our isotopy as

required.

Step 2 (Hamiltonian isotopy). We now use classical transformations on X to modify
the Lagrangian isotopy Lt between Lo and L — L \ constructed (in reverse) in Step 1,

such that it becomes Hamiltonian.

Let (Cj.Cj) the continuous deformation of basis of H\{Lt,Z) that ends at

(ej.gi) (ei,e2) e /L(L,Z), and denote by at, ßt the corresponding symplectic
actions. Given the construction in Step 1 it is not hard to see that 6 #i(Lo) is

the class of a meridian circle A({z *}) and so ßi ßo — 1. Since Lagrangian
isotopies preserve the Maslov class, e® e H\(Lo) is a Maslov 2 class with the same

linking as e\. There is only one such class, namely f\, and so oq ao x. Our

goal is to deform the isotopy Lt inside X relative to Lo,i such that at x and ßt 1

for all t. The isotopy will then be Hamiltonian as required.

Recall that X =C2\{z 0}U{u; 0}issymplectomorphictoasubsetof T*T2,
for instance to {(6>i, 62, p\, P2) T2 x (Mp2}.

Start first by applying dilations

dx'- (#i> ^2, pi, P2) ^ (^t. Ö2, Xpi,Xp2).

These dilations are conformally symplectic so they preserve the class of Lagrangian
submanifolds. They correspond to standard dilations (Xz.Xw) in C2 and thus

L't d\/ßt Lt is a Lagrangian isotopy from L to Lq in X with actions a[ and ß't 1.

To correct the action a't we use translations

rl\(ß\,02,p\,P2) (01,02,^1 + c,p2)

or r2: (6U 02,px,p2) ^ (0i,92,pi,p2 + c).

These transformations are symplectic, and they preserve the set {p\, p2 > 0}, and

hence X, provided c > 0. In C2, they correspond to inflating either the line {z 0}
or {w 0}, that is removing these lines and pasting D(c) x C in their place. Because

of the linking condition, we see that the area class of r}L't is (a't + c, 1) while that of
rçL't is (a't —c, 1). Thus, defining L" := z^_a,L't when a't < x and L't' z^,_xL't
when a\ > x, we get a Lagrangian isotopy from L to Lo by Lagrangian submanifolds

with fixed action in C2, and hence a Hamiltonian isotopy as required.
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