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Hyperbolic surfaces with sublinearly many systoles that fill

Maxime Fortier Bourque

Abstract. For any e > 0, we construct a closed hyperbolic surface of genus g g(s) with a set

of at most sg systoles that fill, meaning that each component of the complement of their union
is contractible. This surface is also a critical point of index at most sg for the systole function,
disproving the lower bound of 2g — 1 posited by Schmutz Schaller.

Mathematics Subject Classification (2010). 32G15, 30F60.
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1. Introduction

The moduli space Mg,n of Riemann surfaces of genus g with n punctures is an

object of great interest to many geometers and topologists. It encodes all the

different complex structures, conformai structures, or hyperbolic structures (provided
2g + n > 2) supported on a surface with given topology. The topology of moduli

space is largely encoded in its orbifold fundamental group Tg,n, the mapping class

group.
All the torsion-free finite index subgroups of rgj„ have the same cohomological

dimension, which is called the virtual cohomological dimension (vcd) of Tg^n. Harer

computed the vcd of Tg-„ for all g and n > 0 and found a spine (a deformation
retract) for Mgt„ with this smallest possible dimension whenever n > 0 [9], When
n 0, the vcd of the mapping class group is equal to 4g — 5, but a spine of this
dimension has yet to be found [4, Question 1], The largest codimension attained so
far is equal to 2 [10] (the space Mg$ has dimension 6g — 6).

In an unpublished preprint [28], Thurston claimed that the set Xg of closed

hyperbolic surfaces of genus g > 2 whose systoles fill forms a spine for Mg Mg,o-
Recall that a systole is a closed geodesic of minimal length, and a set of curves fills
if each component of the complement of their union is simply connected. Thurston's

proof that Mg deformation retracts onto Xg appears to be difficult to complete [10],
Furthermore, the dimension of Xg is still not known, mostly because we do not
understand which filling sets of curves can be systoles. Indeed, Thurston writes:
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Unfortunately, we do not have a combinatorial characterization of collections
of curves which can be the collection of shortest geodesies on a surface. This
seems like a challenging problem, and until more is understood about how to

answer it, there are probably not many applications of the current result.

The paper [2] provides some partial answers to Thurston's question. On a

closed hyperbolic surface, systoles do not self-intersect and distinct systoles can
intersect at most once. This obvious necessary condition is, however, far from
being sufficient. Indeed, a filling set of systoles must contain at least ~ ng/ log g
curves [2, Theorem 3], but there exist filling collections of ~ 2^/g geodesies

pairwise intersecting at most once [2, Corollary 2], There is a discrepancy in the

opposite direction as well: a closed hyperbolic surface can have at most Cg2/logg
systoles [16, Corollary 1.4], but there exist filling collections with more than g2

geodesies pairwise intersecting at most once [14, Theorem 1.1],

Our main result here is a construction of closed hyperbolic surfaces with filling
sets of systoles containing sublinearly many curves in terms of the genus. Compare
this with [21,22] where surfaces with superlinearly many systoles are found. Though
we are still very far1 from the lower bound of ng/ log g, our examples improve upon
the previous record of surfaces with filling sets of 2g systoles ([2, Section 5], [18]).

Theorem 1.1. For every e > 0, there exist an integer g > 2 and a closed hyperbolic
surface of genus g with a filling set ofat most eg systoles.

Near a surface with a filling set of at most eg systoles, Thurston's set Xg contains
the set of solutions to the same number of equations. This should imply that Xg has

codimension at most eg in Mg. However, the equations requiring the curves to have

equal length can be redundant, preventing us from applying the implicit function
theorem. We only manage to prove that Xg has dimension at least 4g — 5 when g is

even, but conjecture the following.

Conjecture 1.2. For every e > 0, there exists an integer g > 2 such that Xg has

dimension at least (6 — e)g.

On the other hand, we can prove that a closely related spine, the Morse-
Smale complex for the systole function, has dimension much larger than the virtual
cohomological dimension of the mapping class group.

In a series of papers [19,20,23,24], Schmutz Schaller initiated the study of the

systole function sys: Mg,n —> M+, which records the length of any of the shortest

closed geodesies on a surface. He proved that the systole function is a topological
Morse function on the Teichmüller space Tg,n whenever n > 0 [24] and Akrout
extended this result to n 0 (and to a more general class of functions) in [1],

Schmutz Schaller constructed a critical point of index 2g — 1 for the systole
function in every genus g > 2 and thought it was "quite possible" that this was

'The genus g in Theorem 1.1 grows like a tower of exponentials of length roughly 1 /e.



Vol. 95 (2020) Hyperbolic surfaces with sublinearly many systoles that fill 517

the smallest achievable index [24, p. 439]. He verified this hypothesis for g 2 by

finding all the critical points in Mi. If this were true in general, it would imply that the

Morse-Smale complex for the systole function has the smallest possible dimension

4g — 5 (6g — 6) — (2g — 1)

for a spine of Mg. However, our surfaces show that no such inequality holds.

Theorem 1.3. For every e > 0, there exist an integer g > 2 and a critical point of
index at most sg for the systole function on Tg.

Organization of the paper. The surfaces arising in Theorems 1.1 and 1.3 are built
in two steps, in a similar fashion as the local maxima from [7]. First, in Section 2, we
define a building block (depending on some parameters) which is a surface whose

systoles are the boundary components. This surface is modelled on a flag-transitive
surface map (a generalization of Platonic solids) and can be cut into isometric right-
angled polygons along a collection of geodesic arcs. We then glue building blocks

together according to the combinatorics of certain graphs of large girth with strong
transitivity properties in Section 3. We do this in such a way that the boundaries of
the blocks remain systoles in the larger surface and that the arcs in the blocks connect

up to form systoles as well (see Section 4). In Section 5, we show that X/ Isom(A)
is isometric to a triangle or a quadrilateral. This easily implies that X is a critical
point of the systole function, which we prove in Section 6. Finally, we discuss our
failed attempt to prove Conjecture 1.2 in Section 7.

Acknowledgements. I thank the anonymous referee for their useful comments and

corrections.

2. Building blocks

Graphs. A graph is a 1-dimensional cell complex, where there can be multiple edges
between two vertices and edges from vertices to themselves. The valence of a vertex
in a graph is the number of half-edges adjacent to it. If every vertex in a graph has

the same valence, then this number is called the valence of the graph.

Flag-transitive maps. A map M is a graph embedded on a surface S such that the
closure of each complementary component is an embedded closed disk (called a face
of the map). All maps considered in this paper will be orientable, meaning that the
surface S is required to be orientable. If all the faces of a map M have the same
number p of edges and all the vertices have the same valence q, then M is said to
have type {p, q}.
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A flag in a map is a triple consisting of a vertex v, an edge e containing v,
and a face / containing e. A map-automorphism of M is an automorphism of the

underlying graph which can be realized by a homeomorphism of the surface S. A
map is flag-transitive2 if its group of map-automorphisms acts transitively on flags.

Any flag-transitive map has type {p,q} for some p > 1 and q > 2. The five
Platonic solids are the only flag-transitive maps on the sphere with p,q> 3 ; their

types are {3,3}, {4,3}, {3,4}, {5.3}, and {3,5}. Beach balls assembled from q
spherical bigons are flag-transitive maps of type {2, <7}.

Maps of large girth. A cycle in a graph is a sequence of oriented edges (ei ek)
such that the endpoint of e,- coincides with the starting point of e,+i for every i eZ^.
Cycles are considered up to cyclic permutation of their edges and reversal of
orientation. The length of a cycle is the number of edges that it uses. A cycle
is non-trivial if it cannot be homotoped to a point by deleting backtracks, that is,
consecutive edges (modulo k) with opposite orientations. The girth of a graph is the

length of any of its shortest non-trivial cycles. These shortest non-trivial cycles will
be called girth cycles. A graph of girth at most 2 is often called a multigraph, and a

graph of girth larger than 2 is simple.
The girth of a flag-transitive map M of type {p,q} is at most p since the faces

are non-trivial cycles of length p. If M is finite, then one can actually unwrap all
the cycles shorter than p by taking a suitable finite normal cover, thereby obtaining
a finite flag-transitive map N of girth p [6, Theorem 11], That such covers exist
follows from MaFcev's theorem on the residual finiteness of finitely generated linear

groups [13].

Theorem 2.1 (Evans). For any p.q > 2, there exists a finite flag-transitive map of
type {p, q} and girth p.

See also [15] and [27] for constructive proofs of this result.

Regular polygons. Let q > 3. Up to isometry, there exists a unique polygon P in the

hyperbolic plane with 2q sides of the same length L and all interior angles equal
to n/2. We will call P the regular right-angled 2q-gon. By connecting the center
of P to the midpoint of a side and one of its vertices, we obtain a triangle with
interior angles jt/2, it/A, and n/2q and a side of length L/2 from which we obtain
the equation

cosh(L/2) cos(7r/2qr)/sin(7r/4) V2cos(7r/2q) (2.1)

(see [5, p. 454]). We color the sides of P red and blue in such a way that adjacent
sides have different colors.

2These maps are usually called regular, but if we stuck to standard terminology, this word would be

used with five different meanings throughout the paper.
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Lemma 2.2. Any arc a between two disjoint sides in the regular right-angled 2q-gon P
has length at least L, with equality only ifa is a side of P.

Proof Let a have minimal length among such arcs. Then a must be geodesic and

orthogonal to 3P at its endpoints. These endpoints are separated by m sides of P
in one direction and n sides in the other, where m + n + 2 2q and m < n. First

suppose that m > 1. Let d be a main diagonal of P which is linked with a and has

one endpoint at an extremity of one of the two sides of P joined by a. Let z be the

intersection point between a and d, and let a± be the two components of a \ {z}
labelled in such a way that a+ and d have endpoints in a common side of P. If Rj
denotes the reflection about d, then the arc y a_ U Rj(a+) has the same length
as a and joins two disjoint sides of P (because m > 1). By minimality, y must
be geodesic and orthogonal to BP, which is absurd. This shows that m 1, in
which case a is a side of P (the orthogonal segment between two geodesies in the

hyperbolic plane is unique when it exists).

One can also prove this using trigonometry (see [2, p. 91]).

Gluing regular polygons along maps. Let M be an oriented map of type {p, q}
where q > 3. Let P be the unique right-angled regular hyperbolic 2g-gon with
sides colored red and blue as above. We now define a hyperbolic surface B modelled
on M. For each vertex v e M, take a copy Pv of P. The blue sides of Pv are labelled
in counterclockwise order by the edges adjacent to v in M, which come with a cyclic
ordering from the orientation. For each edge e {n,r}inM,we glue the polygons
Pu and Pv along their sides labelled e by an orientation-reversing isometry. The

resulting surface is denoted B and will be called a block in the sequel. The polygons
Pv C B are its tiles.

Topologically, B is the same as the surface 5 D M with a hole cut out in each

face. Indeed, if we join the center of each polygon Pv to the midpoints of its blue
sides, we obtain an embedded copy of M in P. Since each Pv deformation retracts
onto the star M D Pv, the surface B deformation retracts onto M. Each boundary
component of B is the concatenation of p red sides of polygons Pv coming from
the p vertices v around a face of M. In particular, each boundary component of B
has length pL, where L is the positive number implicitly defined by Equation (2.1).

Lemma 2.3. Let M be a map of type {p, q} and girth p, where p > 2 and q > 3.

Then the systoles in B are the boundary geodesies, of length pL.

Proof. Let y be a systole in B. As explained above, the map M embeds in B as the

dual graph to the decomposition into the 2g-gons Pv. Let 7r : B —> M be the nearest

point projection. The image Jt(y) must be non-trivial in M since y is non-trivial in B
and 7T is a deformation retraction. It follows that the combinatorial length of n(y)
in M is at least p. In other words, y intersects at least p tiles Pv, joining distinct blue
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sides each time. By Lemma 2.2, the length of yC\Pv is at least L for any tile Pv that y
intersects. The total length of y is therefore greater than or equal to pL. If equality
occurs, then y must be a concatenation of red arcs, that is, a boundary geodesic.

Corollary 2.4. Let M be a map of type {p, q j and girth p, where p > 2 and q > 3.

Then any arc from a boundary component to itself in B which cannot be homotoped
into dB has length strictly larger than pL/2.

Proof Suppose that a is a non-trivial arc of length at most pL/2 from a boundary
geodesic b to itself. The arc a followed by the shorter of the two subarcs of b between
its endpoints is a non-trivial closed curve y of length at most pL in B. The closed

geodesic homotopic to y is strictly shorter, contradicting Lemma 2.3.

Lemma 2.5. Let M be a map of type {p,q} and girth p, where p > 2 and q > 3.

Then any arc a from dB to dB which cannot be homotoped into dB has length at
least L, with equality only ifa is a blue arc.

Proof Let a be a geodesic arc from dB to dB. By Lemma 2.3, we may assume
that a joins consecutive sides of any tile Pv it intersects. Since the starting point of ct

in on a red side, it has to next intersect a blue side, and then a red. This means that a
is homotopic to a blue arc in a union Pu U Pv of two adjacent tiles. This blue arc is
shortest among all arcs in Pu U Pv joining the same two sides, as it is orthogonal to
the boundary at both endpoints.

The above results do not require the map M to be finite or flag-transitive, but we
will impose these conditions in the next sections.

3. Gluing graphs

In this section, we explain how to glue blocks together along certain graphs of large

girth with large automorphism groups in order to get closed hyperbolic surfaces with

many symmetries and few systoles.

Strict polygonal graphs. A strict polygonal graph is a graph G such that any
embedded path of length 2 in G is contained in a unique girth cycle (where cycles
are considered up to cyclic reordering and reversal). This notion was introduced by
Perkel in his thesis [17]. Examples of strict polygonal graphs include polygons, the

tetrahedron, the dodecahedron, and the cube of any dimension. See [25] for a short

survey on the subject.
Archdeacon and Perkel [3] found a way to double the girth of a strict polygonal

graph G (or any graph) by taking an appropriate normal covering space. The girth
cycles in this cover G are precisely those that wrap twice around a girth cycle in G

under the covering map. Repeated applications of their construction yield strict
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polygonal graphs of arbitrarily large girth and constant valence (equal to the valence

of G).
Seress and Swartz [26, Theorem 3.2] proved that any automorphism of the base

graph G lifts to an automorphism of the girth-doubling cover G. They concluded
that if G is vertex transitive, edge transitive, arc transitive or 2-arc transitive, then

so is G. We will need an even stronger transitivity property, described in the next

paragraph.

Isotropic graphs. The star st(v) of a vertex v in a graph is the set of half-edges adjacent

to v. A graph G is locally symmetric if for every vertex v e V(G), any bijection
of st(u) can be extended to an automorphism of G that fixes v. We say that a graph is

isotropic if it is vertex transitive and locally symmetric. To spell it out, G is isotropic
if every injection st(u) st(u) between stars in G extends to an automorphism
of G.

In an isotropic graph, there is a girth cycle passing through any embedded path
of length 2, but there can be more than one.

Example 3.1. The Petersen graph P (the quotient of the dodecahedron by the

antipodal involution) is an isotropic graph of valence 3 and girth 5 on 10 vertices.
However, P is not strict polygonal since every embedded path of length 2 is contained
in two distinct girth cycles in P.

Lubotzky [12] constructed infinitely many isotropic Cayley graphs of any valence
d > 3 and any even girth > 6 (the generators are involutions, allowing the valence

to be odd). Since we want better control on the girth cycles of our isotropic graphs,

we use the girth-doubling construction of Archdeacon and Perkel instead. The proof
that the girth-doubling cover G of a graph G is isotropic provided that G is isotropic
follows immediately from [26, Theorem 3.2], which states that any automorphism
of G lifts to G, and the fact that the covering G -> G is normal, so that its deck

group acts transitively on fibers.
The simplest isotropic strict polygonal graph is a pair of vertices joined by d > 2

edges. Repeated applications of the girth-doubling construction to this graph 0 yield
a sequence of finite, isotropic, strict polygonal graphs of any valence and arbitrarily
large girth.

Theorem 3.2 (Archdeacon-Perkel, Seress-Swartz). For any d > landn > I, there
exists a finite, isotropic, strict polygonal graph G of valence d and girth 2". In fact,
G can be chosen to be a covering space of the bipartite graph 0 of valence d on 2

vertices, in which case the girth cycles in G project to powers of girth cycles in 0
under the covering map.

Gluing. We now explain how to glue copies of the block B from Section 2 along a

finite isotropic strict polygonal graph G to get a closed hyperbolic surface X with a

small set of systoles that fill.
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Let q > 3, let n > 1, and write p 2". Let M be a finite flag-transitive map of
type {p, q} and girth p whose existence is guaranteed by Theorem 2.1.

Let B be the block obtained by gluing regular right-angled 2qr-gons along the

map M as in Section 2. Let d be the number of boundary components of B, which
is is equal to the number of faces in M.

Let G be a finite, isotropic, strict polygonal graph of valence d and girth p 2"

covering the bipartite graph 0 on two vertices as in Theorem 3.2, and let n: G —> 0
be a covering map. Letu: L(0) -> {—1, l}and/: £(0) —> {1...., d} be bijections,
where F(0) and £(0) are the sets of vertices and edges of 0 respectively. These

induce proper colorings a on and / o 7r of the vertices and edges of G respectively.
For each v e V(G), let Bv be a copy of the block B, equipped with its standard

orientation if a(v) 1 and with the reverse orientation ifa(v) —1. Letbi, bj
be the boundary components of B and label the boundary components of any copy Bv

in the same way so that the isometric identification Bv s B preserves the indices of
boundary components.

Here is how we define the closed hyperbolic surface X given the above

combinatorial data. For any edge e {u,v} in G, glue Bu to Bv by the identity
map along their y'-th boundary component, where j X ° n(e). The surface X
is defined as the quotient of Uv&v(G)Bv by these gluings. Since the gluing maps
are orientation-reversing, X is an oriented surface. It has empty boundary since

the coloring x ° n takes all values in {1, • • •, d} on the edges containing a given
vertex v, so that all the boundary components of Bv are glued. Lastly, X is compact
because M and G are finite.

The main reason for using strict polygonal graphs in this construction is so that
the blue arcs in the blocks Bv all close up to curves of the same length in X.

Lemma 3.3. Any blue arc in a block Bv C X is part ofa closed geodesic oflength pL
in X.

Proof. Any blue arc av in Bv connects two boundary geodesies bi and bj. The

block Bv is glued to two other blocks Bu and Bw via these boundary components,
and there are blue arcs au C Bu and aw C Bw corresponding to av under the

isometric identifications Bu ^ Bv s Bw. The concatenation au U av U aw is

geodesic since av is orthogonal to 3Bv.

By our convention, the arc au (resp. aw connects the boundary components of Bu

(resp. Bw) labelled bi and bj. By repeating the above reflection process with au
or aw instead of av (and so on), we obtain a bi-infinite path S u, v, w,...)
in the graph G whose edges alternate between the colors i and j. There is also a

bi-infinite geodesic

ß • • • U au U av U aw U • • •

in X obtained by concatenating the corresponding blue arcs.
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Since G is a strict polygonal graph, the path (u,v,w) is contained in a unique
non-trivial cycle y of length p (the girth of G). Furthermore, Theorem 3.2 stipulates
that y covers a closed cycle of length 2 in 0 under the covering map :r: G —»• 0.
This cycle of length 2 is necessarily formed by the edges and X~l(j) since n
respects the coloring of edges. This means that the edges of y alternate between

the colors i and j, and hence that the path S wraps around y periodically in both
directions. In other words, 8 closes up after p steps. Similarly, the geodesic ß is

closed and its length is equal to pL since each of its p subarcs has length L.

Note that we have not used the hypotheses that M is flag-transitive nor that G is

isotropic yet. This will come up in Section 5 where we determine the isometry group
of X.

4. Systoles

In this section, we determine and count the systoles in the surface X constructed
above.

Proposition 4.1. Let X be the surface constructed in Section 3. The systoles in X are
the red curves and the blue curves. These systolesfill X and there are j^zyjyfig ~ ')
of them, where q is the valence of the map M, p is the girth of M and the gluing
graph G, and g is the genus of X.

Proof. Let y be a systole in X. If y is contained in a single block Bv c X, then y
is a red curve (of length pL) by Lemma 2.3. Now assume that y is not contained

in any block. Then the blocks BV} BVk (k > 2) that it visits define a closed

cycle s (t>i,... Vk, iq) in the graph G. First suppose that s is trivial in G.

Then 5 contains at least two backtracks, that is, vertices vj in the sequence such

that Vj~i Vj+i. If s backtracks at a vertex u e G, this means that a subarc m of y
enters and leaves the block Bu via the same boundary component. By Corollary 2.4,

co has length strictly larger than pL/2. Since there are at least two disjoint subarcs

like this, y is longer than pL. We conclude that 5 is non-trivial in G, so that its

length is at least p, the girth of G. But for each vertex u along s, the corresponding
subarc of y in Bv has length at least L by Lemma 2.5. Thus the total length of y is

at least pL. If equality occurs, then y is a concatenation of blue arcs. Conversely,

any concatenation of blue arcs has length pL by Lemma 3.3.

The complementary components of the set of systoles in X are precisely the

interiors of the tiles from which the blocks are assembled. In particular, the systoles
fill.

The number of systoles in X is equal to the total number of red arcs and blue arcs

divided by p. This is because the red arcs are joined in groups of p to form systoles,
and similarly for the blue arcs. Each such arc a (either red or blue) belongs to exactly
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two tiles. The rhombus with one vertex in the center of each of these two tiles and

diagonal a has area n(q — 2)/q by the Gauss-Bonnet formula (it has two right angles
and two angles n/q). These rhombi tile X, which has area 4n(g — 1). Therefore,
the number of systoles is 4jt(g — 1) divided by Jt(q — 2)/q, divided by p.

Recall that in the construction of X we could take any q > 3 and p 2" for
any n > 1. Given any s > 0, taking n sufficiently large and any q > 3 gives a surface

with a filling set of at most eg systoles. This proves Theorem 1.1. At the other

extreme, the largest number of systoles is obtained when q 3 and p 2, which
gives 6g — 6 systoles. By [19, Theorem 2.8], such a surface has too few systoles to be

a local maximum of the systole function, but we will see later that it is nevertheless

a critical point of lower index.

Example 4.2. For any g > 2, if we take the map M to be the bipartite graph of
valence g + 1 on two vertices (as a map on the sphere), then the resulting block B
has g + 1 boundary components. Taking the gluing graph G to be equal to M,
we obtain a surface X which is the double of B across its boundary. The genus
of X is then equal to g. Since q g + 1 and p 2, the number of systoles
is 2g + 2 according to the formula in Proposition 4.1. Removing any two intersecting
systoles leaves a filling set of 2g systoles. This example was previously described
in [24, Theorem 36] and [2, Section 5] and was the starting point of this paper.

Remark 4.3. We could allow the graphs G and M to have different girths p and r
by replacing the polygons P in the blocks to be semi-regular with side lengths Lblue

and Lred satisfying pLb\ue rLied. A version of Proposition 4.1 still holds for this

generalization, with the count of systoles coming to

2q 1 1 \7 ' +- (g-1).(q-2)\p r
All one has to do is change Lemma 2.2 to say that the distance between any two blue
sides is at least Lred and the distance between any two red sides is at least Lb|ue, and

modify the other lemmata accordingly.

5. Isometries

In this section, we determine the isometry group of the surface X up to index 2.

Recall that the blocks Bv c X (where v e F(G)) are tiled by regular right-angled
2^-gons Pu (where u G V(M)). By connecting the center of each polygon Pu to
the midpoints of its edges with geodesies, we obtain a tiling Ö of X by (2,2,2, q)-
quadrilaterals (i.e., quadrilaterals with three right angles and one angle equal to jt/^).
Since any isometry of X preserves the set of systoles, it permutes the complementary
polygons Pu and therefore the quadrilaterals in Q. In fact, any quadrilateral can be

sent to any other by an isometry.
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Proposition 5.1. The isometry group of X acts transitively on the quadrilaterals in

the tiling GL.

Proof. The hypothesis that M is flag-transitive implies that the isometry group of B

acts transitively on its (2,2,2, ^(-quadrilaterals. This is because there is a one-

to-one correspondence between the flags in M and the quadrilaterals in B. The

correspondence works as follows. Recall that M naturally embeds in B. connecting
the centers of polygons P to their blue sides. A flag in M is the same as a half-edge e

together with a choice of a face / containing e, either on the left or the right. In
the tiling of B by quadrilaterals, there are exactly two quadrilaterals that have e as

an edge. The side of e on which / lies determines which quadrilateral to pick.
Since any map-automorphism of M can be realized as an isometry of B and M is

flag-transitive, the claim follows.

Let v e V(G) and let <p\ Bv ->• Bv be an isometry. We claim that f extends to an

isometry <f> of X. First, the isometry f induces a permutation r on {1 d } such

that <p sends the boundary component bj of Bv to the component èrp) for every i.
Now the edges adjacent to v in G are colored with the numbers {1,... ,d} according
to the coloring X 0 n- Thus the permutation r induces a bijection on the star of v.
Since G is locally symmetric, this bijection can be extended to an automorphism f
of G. If x e Bu C X, then define <L(x) to be the point <p(x) in B^(u), where

we use the canonical identifications Bw Bv to transport the action of f onto any
block. This map is well-defined, for if x e Bu (T Bv then x belongs to the boundary

component labelled i x 0 ti({u. u}) of Bu and Bv. By definition, <p{x) belongs to
the r(/)-th boundary component of Bv. Now ß^(u) and #,/,(» are glued along their
boundary component labelled x 0 tt(tjr({u, u})). This number equals r(/) provided
that the automorphism f is chosen to be a lift of the automorphism of 0 induced

by r, and this is possible according to [26, Theorem 3.2], The map d> is an isometry
since it is a locally isometry as well as a bijection.

Similarly, any automorphism r]r of G which preserves the coloring X ° n defines

an isometry of X by sending x e Bv to the corresponding x in B^(vy This simply
shuffles the blocks around, acting by the identity map on the blocks. Note that the

group of such automorphisms f acts transitively on the vertices of G.

Combining these two types of isometries gives the desired result. In order to send

a quadrilateral Q C Bu to another quadrilateral Q' C Bv. first apply an isometry T
as in the previous paragraph to send Bu to Bv. Then move ^(Q) to Q' via an

isometry of the first type, preserving the block Bv.

Since there are at most two isometries of X sending one quadrilateral to another,

this determines the isometry group of X up to index 2. We can reformulate this as

follows. Subdivide Q further into a tiling T by (2, 4,2^r)-triangles by bisecting the

quadrilaterals at their smallest angle. Then the isometry group of X may or may
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not act transitively on the tiles of T depending on the graphs M and G used to
construct X.

In Example 4.2, the isometry group of X acts transitively on these triangles, but
that is not the case in general. That is, there can be an asymmetry between the red
and blue curves in X. For example, let M be the flag-transitive map of type {4, 4}
obtained by subdividing the square torus into a 5 x 5 grid (so that B is a torus with 25

holes) and let G be the 1-skeleton of the 25-dimensional cube. Then each component
of X \ {blue curves} is a torus with 16 boundary components corresponding to
a 4-dimensional subcube of G, while the complementary components of the red

curves are the blocks with 25 boundary curves each. In this case, no isometry of X
can interchange the two families of systoles.

6. Critical point and index

A real-valued function / on an n-dimensional manifold M is a topological Morse

function if for every p e M, there is an open neighborhood U of p and an injective
continuous map <p\ U —> R" with <p(p) 0 such that / o — f(p) takes either
the form

(Xi,. ,X„) l-> X]

or
j n

(X!,...,X„) H» ~J2Xi + Xi
i l i=j +1

for some j e {0 «}. In the first case, p is an ordinary point and in the second

case p is a critical point of index j. Critical points of index 0 and n are local minima
and maxima respectively.

Let g > 2 and let Tg be the Teichmüller space of marked, connected,
oriented, closed, hyperbolic surfaces of genus g. This space is a smooth manifold

diffeomorphic to R6?_6. The systole sys(T) of a surface Y e Tg is the length of
any of its shortest closed geodesies. As mentionned in the introduction, Akrout [1]
proved that sys: Tg —> M+ is a topological Morse function.

Let Y e Tg and let S be the set of (homotopy classes of) systoles in Y. For
each a S and Z e Tg, we let la(Z) be the length of the unique closed geodesic

homotopic to a in Z. These functions are differentiable on Tg and we denote their
differentials by dla.
Definition 6.1. The point Y e Tg is eutactic if for every v e TyTg, the following
implication holds: iidla(v) > Oforeverya e then dta{v) Oforeverya e -8.

The rank of a eutactic point Y is the dimension of the image of the linear map

(dla)aeS:TYTg -+RS.
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With these definitions, we have the following characterization of the critical points
of sys [1, Theorem 1],

Theorem 6.2 (Akrout). The critical points of index j of the systole function are the

eutactic points of rank j.
We can now show that the surface X constructed in Section 3 is a critical point

of sys and give an upper bound for its index.

Proposition 6.3. Let X be as in Section 3. Then X is a critical point of index at
most (q^2)p (S ~~ 1 )for the systole function.

Proof. Let S be the set of systoles of X (the red curves and the blue curves). Suppose
that v G TxTg is such that dla(v) > 0 for every a e S and let

w 22 f*v•
fGlsom(X)

Then

dla(w) 22 dla(f*v) — 22 dtf(a){v) > dla(v) > 0 (6.1)

/elsom(A') /lsom(.Y)

for every a G %. On the other hand, w is the lift to X of a deformation of the quotient
orbifold Q X/ Isom(W). By Proposition 5.1, Q is either a (2,4,2g)-triangle or a

(2,2, 2, ^-quadrilatéral. If Q is a triangle, then w 0 so that dla(w) and dla(v)
are both zero by Equation (6.1), for every a G S. If Q is a quadrilateral, then its
deformation space is 1-dimensional. This is because any (2. 2,2, g)-quadrilateral
is determined by the lengths a and b of the two sides disjoint from the angle n/q,
which satisfy the relation

sinha sinhfi cos{n/q)

(see [5, p. 454]). This equation implies that the lengths of the red curves and the blue

curves in S have opposite derivatives in the direction of w. Since the derivatives are

non-negative, they must all be zero. We conclude that dla(v) 0 for every a G S

from Equation (6.1). This shows that X is eutactic. The number of systoles in X is a

trivial upper bound for the rank of X, and this number is equal to yß(g — 1) by
Proposition 4.1.

Once again, by taking p sufficiently large we obtain critical points of index at

most sg for any e > 0, thereby proving Theorem 1.3. This disproves the possibility
envisaged by Schmutz Schaller [24, p. 410] that the minimal index were 2g — 1.
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7. Deformations preserving the systoles

Let Xg be the subset of Tg whose systoles fill. We would like to show that Xg has

relatively small codimension in Tg. By Proposition 4.1, the systoles of any surface X
constructed in Section 3 fill (recall that X depends on several parameters). Let S
be the set of systoles in X. If we deform X in such a way that the curves in S
remain of equal length, then these curves will still be the systoles for sufficiently
small deformations. This is because the second shortest curve on X is longer by a

definite amount and length varies continuously.
In other words, the intersection between the inverse image of the diagonal A C H'5

by the map (£a)aeS- Tg and a small neighborhood of X is contained in X^.
One might be tempted to conclude directly that Xg has codimension at most \S | - 1

in Tg. The subtlety is that the image of (la)aes is not necessarily transverse to A.
Indeed, the rank of X can be strictly less than \S\ — 1. For instance, the surface in

Example 4.2 has rank 2g — 1 according to [24, Theorem 36], while \S\ 2g + 2.

To remedy this, one could try to get rid of redundant equations, i.e., to find a

filling subset of curves R C S for which the differential (dx£a)aeûi is surjective
and apply the implicit function theorem. The problem is that even if the curves in R
stay of equal length, the curves in -8 \ R might become shorter and so the systoles

might not fill anymore.
Another approach would be to find a nearby surface Xq which has the same set of

systoles as X, and hope that the differential (dxdla)aes has full rank there. Below
we will describe a 1-dimensional family of deformations of X with the same systoles.
This fixes the issue of rank in some (but not all) cases. A similar idea was used in [ 18]

to find a path of surfaces in X^ with 2g systoles.

A 1-dimensional deformation. Recall that X is assembled from right-angled regular

2^-gons P whose sides are colored alternatingly red and blue, where q > 3.

Given any 9 e (0, n), there exists a unique polygon Pq with 2q equal sides and

interior angles alternating between 6 and n — 9 (start with a triangle with angles

n/q, 9/2, and (n — 9)/2 and reflect repeatedly across the two sides at angle n/q).
To fix ideas, let us say that 9 is the counter-clockwise (interior) angle from a red side

to a blue side when going clockwise around Pq and 7r — 6? is the angle from blue

to red. Now replace all the polygons P in X by Pq while keeping the same gluing
combinatorics. By construction, the total angle around vertices of the resulting tiling
is 2n so the deformed surface Xq is still a closed hyperbolic surface. Moreover, the

red sides still line up to form closed geodesies and similarly for the blue sides. These
closed geodesies all have equal length, namely, p times the side length of Pq. As

long as 9 is close enough to it/2, these curves will remain the systoles.
The goal is then to show that the linear map (dxef-a)aes has full rank when

9 ^ n/2. We can do this for some small examples (see below), but we do not know
how to handle surfaces with complicated gluing graphs of large girth. We present
examples with full rank for girth 2 and 3 below.
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Computing the rank. To prove that the derivative of lengths has full rank, it suffices

to find a set of tangent vectors {vß}ßeg to Teichmüller space for which the square
matrix (dx0ia(vß))a,ßeS has non-zero determinant. For this, we can choose each

vector Vß to be the Fenchel-Nielsen twist deformation (i.e., left earthquake) around
the curve ß. The cosine formula of Wolpert [29] and Kerckhoff [11] then says that

dla{vß)= Y2 cos^p(a'ß)
paCß

whenever a and ß are transverse, where Xp(a, ß) is the counter-clockwise angle
from a to ß at the point p. In our case, two distinct curves a, ß e S intersect at most

once, with angle 9 from red to blue or n — 0 from blue to red. If we split the rows
and columns of D (dxß£a(vß))a,ßes by color we get a block matrix of the form

D cos (-/IT o)

where A is the matrix of zeros and ones recording which red curves intersect which
blue curves. If 9 ^ jt/2, then D has full rank if and only if the matrix

»-a ;)
does. This matrix is the adjacency matrix of some graph Is, namely, the graph whose

vertices are the systoles of X and where two vertices are joined by an edge if and

only if the corresponding systoles intersect.
The determinant of the adjacency matrix of a graph counts something

combinatorial on the graph. Indeed, according to [8] we have

det(5) - j^#{even components of «/}2#{cycles in /}
JCIS

where the sum is over all spanning subgraphs of J C Is (subgraphs containing all

vertices) which are elementary, meaning that their components are either edges or
embedded cycles. The even components are those with an even number of vertices.

In our case, Is is bipartite so that all its cycles are even.
We are now ready to give some examples where D is invertible.

Examples of girth 2. The first family of examples comes from Example 4.2. In that

example, the red and blue curves form a chain, that is, Is is a cycle of length 2g + 2.

It follows that Is has exactly three elementary spanning subgraphs: Is itself, and two
subgraphs obtained by deleting every other edge in Is- If g 2m is even, then Is
has 4m + 2 edges and

det(D) (—1)121 + (-l)2m+12° + (—l)2m+12° -4^0. (7.1)
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Alternatively, one could compute the determinant of D by using the fact that A is a

circulant matrix in this case.

The fact that D has non-zero determinant implies that the derivative of £

((-a)aeS- Tg has full rank at Xg whenever 6 ^ n/2. By the implicit function
theorem, near Xg we have that t(A) is a smooth submanifold of codimension

hence of dimension 4g—7. As explained earlier, t~1 (Ä) intersected with a sufficiently
small ball around Xg is contained in Xg. We have thus proved that Xg has dimension
at least 4g — 7 when g is even. We can push the proof a little further to obtain the

following.

Theorem 7.1. For every even g > 2, the set Xg C Tg of closed hyperbolic surfaces

ofgenus g whose systoles fill contains a cell ofdimension 4g - 5.

Proof. Let X be the surface of genus g from Example 4.2 and let

be its set of systoles labelled in such a way that otj intersects aj-\ and a/+i for

every j, where the indices are taken modulo 2g + 2. Let Xg be the deformation
of X described above, where 8 is close enough to rr/2 so that its sets of systoles is

still equal to -8. By Equation (7.1), the map i — (la)aes- Tg —> is a submersion

at the point Xg. In particular, I is open in a neighborhood of Xg. This implies that
there exist surfaces Y arbitrarily close to Xg such that

and such that these lengths are strictly less than la2g+\ (Y) and £a2g+2(Y). If Y is

close enough to Xg, then its set of systoles is a subset of S by continuity of the length
functions. Therefore, there is a sequence Yn converging to Xg such that the systoles
in Yn are given by the set R {aq oi2g}.

If« is large enough, then the square matrix (dYn£a(vß))a,ßetR will have non-zero
determinant. Indeed, in the limit the matrix has the form

which is invertible because ® is the adjacency matrix of a tree Ir with an even
number of vertices. Up to sign, its determinant is the number of perfect matchings
(spanning subgraphs whose components are edges) in /^, which is equal to one.

Furthermore, the entries of (dY£a(vß))a,ß&si depend continuously on the surface Y

in the same way that the angles of intersection between geodesies do.

|*|-1 (2g T 2) — 1 2g + 1,

S — {a i «2^+2}

lai(Y) - ta2g(Y)
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Let Y Yn for any such large enough n. Then the systoles in Y are given by
the set 31 and the map ((-a)ae3i'-7g —> RÄ is a submersion at Y. By the implicit
function theorem, the inverse image of the diagonal by this map is a submanifold of
codimension 2g — 1 near Y. Since the curves in 31 fill, a small neighborhood of Y in
this submanifold is contained in Xg. The curves in 31 fill because the complement
of the curves in -8 is a union of four polygons which meet at the intersection of d2g+i
and ci2g+2- Adding these two curves fuses the four polygons into a single one.

When g is odd, the matrix D is singular, but this does not necessarily imply that
the image of (£a)aeS is not transverse to the diagonal.

An example of girth 3. Next, we present an example of genus g 6 where the

underlying graphs M and G for the surface X have girth 3 and the matrix D is non-
singular. Let M be the 1-skeleton of a regular tetrahedron (as a map of type {3, 3}
on the sphere) and let B be the corresponding block. This is a sphere with 4 holes
and tetrahedral symmetry. Although this does not fit in the theory of Section 3, it is

possible to glue five copies of B along the complete graph K5 in such a way that the

blue arcs connect up in groups of three to form closed geodesies. To see this, it is

convenient to draw Ks in R3 with a 3-fold symmetry as in Figure 1.

Figure 1. An embedding of K5 in R3 and the corresponding gluing of tetrahedral blocks. (The
red curves are printed in light grey and the blue curves in dark grey.)
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The tetrahedral pieces are glued as suggested by the figure, in the simplest possible

way (without twist). By inspection, the blue arcs connect in groups of three. The

proof of Proposition 4.1 applies without change to show that the systoles in X are
the red curves and the blue curves. The genus of X is equal to the number of edges

in the complement of any spanning tree in K5, which is 10 — 4 6. Let us label the

red curves from 1 to 10 and the blue curves from a to j as in Figure 1 (the red curves

correspond to the edges in Ks). Then the intersection matrix A is given by

n 0 0 1 0 1 0 0 0 0^
0 l 0 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0 0

0 0 0 1 0 0 1 0 0 1

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 0 1 1

l 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 1 1 0

M 1 1 0 0 0 0 0 0 0)

which has determinant 48 ^ 0. Therefore, the derivative of lengths dt has full rank

at Xq whenever 9 ^ it12. Note that this only gives us that has codimension at

most 19 in Tg, hence dimension at least 11 4g — 13. The conclusion is weaker

than that of Theorem 7.1, but we wanted to include this example to show that D can
have full rank for more complicated graphs.

Questions. We conclude with a few questions related to the strategy we have just
outlined.

Question 7.2. Is there a sequence of graphs M and G as in Section 3 with girth
going to infinity such that the corresponding intersection matrices D have non-zero
determinants?

In view of the above reasoning and the counting of Proposition 4.1, a positive
answer would imply Conjecture 1.2. A major difficulty is that M and G are given to

us in a non-explicit way from Theorem 2.1 and Theorem 3.2.

As the proof of Theorem 7.1 shows, one could bypass the determinant issue

by finding a filling subset IR C S of even cardinality such that the corresponding
intersection graph I,r is a tree, and a surface Y near Xq whose systoles are exactly
the curves in IR.

Question 7.3. Given a surface X constructed as in Section 3 with set of systoles S,

is there an induced subtree in Is with an even number of vertices such that the union

of the corresponding curves fill?
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Question 7.4. Let X be any hyperbolic surface, let S be its set of systoles and let

R C S be a non-empty subset. Does there exist, in every neighborhood of X, a

surface whose set ofsystoles is equal to fR

Even if these questions have negative answers, they suggest how one should

modify the construction of surfaces with sublinearly many systoles that fill in order

to show that has large dimension: the systoles should cut the surface into a single

polygon instead of several.

References

[1] H. Akrout, Singularités topologiques des systoles généralisées (French), Topology, 42

(2003), no. 2, 291-308. Zbl 1054.32006 MR 1941437

[2] J. Anderson, H. Parlier, and A. Pettet, Small filling sets of curves on a surface, Topology

Appl., 158 (2011), no. 1, 84-92. Zbl 1238.30034 MR 2734699

[3] D. Archdeacon and M. Perkel, Constructing polygonal graphs of large girth and degree.

Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory,
and Computing (Boca Raton, FL, 1989), Congr. Numer., 70 (1990), 81-85. Zbl 0699.05049
MR 1041586

[4] M. Bridson and K. Vogtmann., Automorphism groups of free groups, surface groups and

free abelian groups, in Problems on mapping class groups and related topics, 301-316,
Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. Zbl 1184.20034

MR 2264548

[5] P. Buser, Geometry and spectra ofcompact Riemann surfaces. Reprint of the 1992 edition,
Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010. Zbl 1239.32001

MR 2742784

[6] C. Evans, Net structure and cages, Discrete Math., 27 (1979), no. 2, 193-204.
Zbl 0407.05031 MR 537475

[7] M. Fortier Bourque and K. Rafi, Local maxima of the systole function, arxiv: 1807.08367

[8] F. Harary, The determinant of the adjacency matrix of a graph, SIAM Rev., 4 (1962),
202-210. Zbl 0113.17406 MR 144330

[9] J. Harer, The virtual cohomological dimension of the mapping class group of an orientable
surface, Invent. Math., 84 (1986), no. 1, 157-176. Zbl 0592.57009 MR 830043

[10] L. Ji, Well-rounded equivariant deformation retracts of Teichmüller spaces, Enseign.
Math., 60 (2014), no. 1-2, 109-129. Zbl 1303.32007 MR 3262437

[11] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2), 117 (1983), no. 2,

235-265. Zbl 0528.57008 MR 690845

[12] A. Lubotzky, Locally symmetric graphs of prescribed girth and Coxeter groups, SIAM J.

Discrete Math., 3 (1990), no. 2, 277-280. Zbl 0721.05031 MR 1039298

[13] A. Mal'cev, On the faithful representation of infinite groups by matrices, Mat. Sb., 8 (50)
(1940), 405^122; English translation in Amer. Math. Soc. Transi. (2), 45 (1965), 1-18.

[14] J. Malestein, I. Rivin, and L. Theran, Topological designs, Geom. Dedicata, 168 (2014),
221-233. Zbl 1284.57020 MR 3158040



534 M. Fortier Bourque CMH

[15] R. Nedela and M. Skoviera, Regular maps on surfaces with large planar width, European
J. Combin., 22 (2001), no. 2, 243-261. Zbl 0973.05025 MR 1808195

[16] H. Parlier, Kissing numbers for surfaces, J. Topol, 6 (2013), no. 3, 777-791.
Zbl 1285.30023 MR 3100890

[17] M. Perkel, On finite groups acting on polygonal graphs, Ph. D. thesis, University of
Michigan, 1977. MR 2627108

[18] B. Sanki, Systolic fillings of surfaces, Bull Aust. Math. Soc., 98 (2018), no. 3, 502-511.
Zbl 1411.57005 MR 3877282

[19] P. Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geom. Fund.
Anal., 3 (1993), no. 6, 564-631. Zbl 0810.53034 MR 1250756

[20] P. Schmutz, Systoles on Riemann surfaces, Manuscripta Math., 85 (1994), no. 3-4, 429-
447. Zbl 0819.30027 MR 1305753

[21] P. Schmutz, Compact Riemann surfaces with many systoles, Duke Math. J., 84 (1996),
no. 1, 1917198. Zbl 0867.30029 MR 1394752

[22] P. Schmutz Schaller, Extremal Riemann surfaces with a large number of systoles, in
Extremal Riemann surfaces (San Francisco, CA, 1995), 9-19, Contemp. Math., 201,
Amer. Math. Soc., Providence, RI, 1997. Zbl 0867.30028 MR 1429190

[23] P. Schmutz Schaller, Geometry of Riemann surfaces based on closed geodesies, Bull.
Amer. Math. Soc. (N.S.), 35 (1998), no. 3, 193-214. Zbl 1012.30029 MR 1609636

[24] P. Schmutz Schaller, Systoles and topological Morse functions for Riemann surfaces, J.

Differential Geom., 52 (1999), no. 3, 407^152. Zbl 1033.32010 MR 1761080

[25] A. Seress, Polygonal graphs, in Horizons of combinatorics, 179-188, Bolyai Soc. Math.
Stud., 17, Springer, Berlin, 2008. Zbl 1170.05317 MR 2432533

[26] A. Seress and E. Swartz, A note on the girth-doubling construction for polygonal graphs,
J. Graph Theory, 68 (2011), no. 3, 246-254. Zbl 1229.05185 MR 2838335

[27] J. Siran, Triangle group representations and constructions of regular maps, Proc. London
Math. Soc. (3), 82 (2001), no. 3, 513-532. MR 1815966 Zbl 1015.05033

[28] W. Thurston, A spine for Teichmüller space, preprint, 1985.

[29] S. Wolpert, An elementary formula for the Fenchel-Nielsen twist, Comment. Math. Helv.,
56 (1981), no. 1, 132-135. Zbl 0467.30036 MR 615620

Received April 9, 2019

M. Fortier Bourque, School of Mathematics and Statistics, University of Glasgow,
University Place, Glasgow Gl2 8QQ, UK
E-mail: maxime.fortier-bourque@glasgow.ac.uk


	Hyperbolic surfaces with sublinearly many systoles that fill

