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Hyperbolic surfaces with sublinearly many systoles that fill

Maxime Fortier Bourque

Abstract. For any ¢ > 0, we construct a closed hyperbolic surface of genus g = g(¢) with a set
of at most g systoles that fill, meaning that each component of the complement of their union
is contractible. This surface is also a critical point of index at most ¢g for the systole function,
disproving the lower bound of 2g — 1 posited by Schmutz Schaller.

Mathematics Subject Classification (2010). 32G15, 30F60.
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1. Introduction

The moduli space Mg, of Riemann surfaces of genus g with n punctures is an
object of great interest to many geometers and topologists. It encodes all the
different complex structures, conformal structures, or hyperbolic structures (provided
2g + n > 2) supported on a surface with given topology. The topology of moduli
space is largely encoded in its orbifold fundamental group I'g ,, the mapping class
group.

All the torsion-free finite index subgroups of I'g , have the same cohomological
dimension, which is called the virtual cohomological dimension (ved) of I'y ,. Harer
computed the ved of I'y , for all g and n > 0 and found a spine (a deformation
retract) for Mg , with this smallest possible dimension whenever n > 0 [9]. When
n = 0, the vcd of the mapping class group is equal to 4g — 5, but a spine of this
dimension has yet to be found [4, Question 1]. The largest codimension attained so
far is equal to 2 [10] (the space M o has dimension 6g — 6).

In an unpublished preprint [28], Thurston claimed that the set X, of closed
hyperbolic surfaces of genus g > 2 whose systoles fill forms a spine for M, = My .
Recall that a systole is a closed geodesic of minimal length, and a set of curves fills
if each component of the complement of their union is simply connected. Thurston’s
proof that Mg deformation retracts onto X', appears to be difficult to complete [10].
Furthermore, the dimension of X is still not known, mostly because we do not
understand which filling sets of curves can be systoles. Indeed, Thurston writes:
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Unfortunately, we do not have a combinatorial characterization of collections
of curves which can be the collection of shortest geodesics on a surface. This
seems like a challenging problem, and until more is understood about how to
answer it, there are probably not many applications of the current result.

The paper [2] provides some partial answers to Thurston’s question. On a
closed hyperbolic surface, systoles do not self-intersect and distinct systoles can
intersect at most once. This obvious necessary condition is, however, far from
being sufficient. Indeed, a filling set of systoles must contain at least ~ 7g/log g
curves [2, Theorem 3], but there exist filling collections of ~ 2,/g geodesics
pairwise intersecting at most once [2, Corollary 2]. There is a discrepancy in the
opposite direction as well: a closed hyperbolic surface can have at most Cg2/log g
systoles [16, Corollary 1.4], but there exist filling collections with more than g2
geodesics pairwise intersecting at most once [14, Theorem 1.1].

Our main result here is a construction of closed hyperbolic surfaces with filling
sets of systoles containing sublinearly many curves in terms of the genus. Compare
this with [21,22] where surfaces with superlinearly many systoles are found. Though
we are still very far! from the lower bound of 7 g/ log g, our examples improve upon
the previous record of surfaces with filling sets of 2g systoles ([2, Section 5], [18]).

Theorem 1.1. For every & > 0, there exist an integer g > 2 and a closed hyperbolic
surface of genus g with a filling set of at most g systoles.

Near a surface with a filling set of at most £g systoles, Thurston’s set X contains
the set of solutions to the same number of equations. This should imply that X has
codimension at most g in M. However, the equations requiring the curves to have
equal length can be redundant, preventing us from applying the implicit function
theorem. We only manage to prove that X, has dimension at least 4¢ — 5 when g is
even, but conjecture the following.

Conjecture 1.2, For every ¢ > 0, there exists an integer g > 2 such that Xg has
dimension at least (6 — €)g.

On the other hand, we can prove that a closely related spine, the Morse—
Smale complex for the systole function, has dimension much larger than the virtual
cohomological dimension of the mapping class group.

In a series of papers [19, 20,23, 24], Schmutz Schaller initiated the study of the
systole function sys: My, — R, which records the length of any of the shortest
closed geodesics on a surface. He proved that the systole function is a topological
Morse function on the Teichmiiller space 7, , whenever n > 0 [24] and Akrout
extended this result to n = 0 (and to a more general class of functions) in [1].

Schmutz Schaller constructed a critical point of index 2g — 1 for the systole
function in every genus g > 2 and thought it was “quite possible” that this was

IThe genus g in Theorem 1.1 grows like a tower of exponentials of length roughly 1/¢.
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the smallest achievable index [24, p. 439]. He verified this hypothesis for g = 2 by
finding all the critical points in M. If this were true in general, it would imply that the
Morse—-Smale complex for the systole function has the smallest possible dimension

4g—5=(6g—6)—(2g—1)

for a spine of M. However, our surfaces show that no such inequality holds.

Theorem 1.3. For every € > 0, there exist an integer g > 2 and a critical point of
index at most £g for the systole function on Tg.

Organization of the paper. The surfaces arising in Theorems 1.1 and 1.3 are built
in two steps, in a similar fashion as the local maxima from [7]. First, in Section 2, we
define a building block (depending on some parameters) which is a surface whose
systoles are the boundary components. This surface is modelled on a flag-transitive
surface map (a generalization of Platonic solids) and can be cut into isometric right-
angled polygons along a collection of geodesic arcs. We then glue building blocks
together according to the combinatorics of certain graphs of large girth with strong
transitivity properties in Section 3. We do this in such a way that the boundaries of
the blocks remain systoles in the larger surface and that the arcs in the blocks connect
up to form systoles as well (see Section 4). In Section 5, we show that X / Isom(X)
is isometric to a triangle or a quadrilateral. This easily implies that X is a critical
point of the systole function, which we prove in Section 6. Finally, we discuss our
failed attempt to prove Conjecture 1.2 in Section 7.

Acknowledgements. I thank the anonymous referee for their useful comments and
corrections.

2. Building blocks

Graphs. A graphis a 1-dimensional cell complex, where there can be multiple edges
between two vertices and edges from vertices to themselves. The valence of a vertex
in a graph is the number of half-edges adjacent to it. If every vertex in a graph has
the same valence, then this number is called the valence of the graph.

Flag-transitive maps. A map M is a graph embedded on a surface S such that the
closure of each complementary component is an embedded closed disk (called a face
of the map). All maps considered in this paper will be orientable, meaning that the
surface S is required to be orientable. If all the faces of a map M have the same
number p of edges and all the vertices have the same valence ¢, then M is said to

have fype {p. q}.
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A flag in a map is a triple consisting of a vertex v, an edge e containing v,
and a face f containing e. A map-automorphism of M is an automorphism of the
underlying graph which can be realized by a homeomorphism of the surface S. A
map is flag-transitive? if its group of map-automorphisms acts transitively on flags.

Any flag-transitive map has type {p,q} for some p > 1 and ¢ > 2. The five
Platonic solids are the only flag-transitive maps on the sphere with p,g > 3; their
types are {3, 3}, {4,3}, {3,4}, {5,3}, and {3,5}. Beach balls assembled from ¢
spherical bigons are flag-transitive maps of type {2, ¢}.

Maps of large girth. A cycle in a graph is a sequence of oriented edges (eq, ..., ex)
such that the endpoint of e; coincides with the starting point of e; +1 for every i € Zy.
Cycles are considered up to cyclic permutation of their edges and reversal of
orientation. The length of a cycle is the number of edges that it uses. A cycle
is non-trivial if it cannot be homotoped to a point by deleting backtracks, that is,
consecutive edges (modulo k) with opposite orientations. The girth of a graph is the
length of any of its shortest non-trivial cycles. These shortest non-trivial cycles will
be called girth cycles. A graph of girth at most 2 is often called a multigraph, and a
graph of girth larger than 2 is simple.

The girth of a flag-transitive map M of type {p, g} is at most p since the faces
are non-trivial cycles of length p. If M is finite, then one can actually unwrap all
the cycles shorter than p by taking a suitable finite normal cover, thereby obtaining
a finite flag-transitive map N of girth p [6, Theorem 11]. That such covers exist
follows from Mal’cev’s theorem on the residual finiteness of finitely generated linear
groups [13].

Theorem 2.1 (Evans). For any p,q > 2, there exists a finite flag-transitive map of
type {p,q} and girth p.

See also [15] and [27] for constructive proofs of this result.

Regular polygons. Letg > 3. Up to isometry, there exists a unique polygon P in the
hyperbolic plane with 2g sides of the same length L and all interior angles equal
to /2. We will call P the regular right-angled 2q-gon. By connecting the center
of P to the midpoint of a side and one of its vertices, we obtain a triangle with
interior angles 7 /2, /4, and 7 /2q and a side of length L /2 from which we obtain
the equation

cosh(L/2) = cos(m/2q)/sin(x/4) = v/2cos(/2q) (2.1)

(see [5, p-454]). We color the sides of P red and blue in such a way that adjacent
sides have different colors.

2These maps are usually called regular, but if we stuck to standard terminology, this word would be
used with five different meanings throughout the paper.
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Lemma 2.2. Any arc o between two disjoint sides in the regular right-angled 2q-gon P
has length at least L, with equality only if « is a side of P.

Proof. Let ¢ have minimal length among such arcs. Then @ must be geodesic and
orthogonal to dP at its endpoints. These endpoints are separated by m sides of P
in one direction and n sides in the other, where m +n 4+ 2 = 2g and m < n. First
suppose that m > 1. Let d be a main diagonal of P which is linked with « and has
one endpoint at an extremity of one of the two sides of P joined by «. Let z be the
intersection point between « and d, and let o4 be the two components of « \ {z}
labelled in such a way that ¢4 and d have endpoints in a common side of P. If Ry
denotes the reflection about d, then the arc y = a— U Ry (o4 ) has the same length
as « and joins two disjoint sides of P (because m > 1). By minimality, y must
be geodesic and orthogonal to dP, which is absurd. This shows that m = 1, in
which case « is a side of P (the orthogonal segment between two geodesics in the
hyperbolic plane is unique when it exists). U

One can also prove this using trigonometry (see [2, p. 91]).

Gluing regular polygons along maps. Let M be an oriented map of type {p, g}
where ¢ > 3. Let P be the unique right-angled regular hyperbolic 2g-gon with
sides colored red and blue as above. We now define a hyperbolic surface B modelled
on M. For each vertex v € M, take acopy P, of P. The blue sides of P, are labelled
in counterclockwise order by the edges adjacent to v in M, which come with a cyclic
ordering from the orientation. For each edge ¢ = {u, v} in M, we glue the polygons
P, and P, along their sides labelled e by an orientation-reversing isometry. The
resulting surface is denoted B and will be called a block in the sequel. The polygons
P, C B are its tiles.

Topologically, B is the same as the surface S O M with a hole cut out in each
face. Indeed, if we join the center of each polygon P, to the midpoints of its blue
sides, we obtain an embedded copy of M in B. Since each P, deformation retracts
onto the star M N P, the surface B deformation retracts onto M. Each boundary
component of B is the concatenation of p red sides of polygons P, coming from
the p vertices v around a face of M. In particular, each boundary component of B
has length pL, where L is the positive number implicitly defined by Equation (2.1).

Lemma 2.3. Let M be a map of type {p, q} and girth p, where p > 2 and q > 3.
Then the systoles in B are the boundary geodesics, of length pL.

Proof. Let y be a systole in B. As explained above, the map M embeds in B as the
dual graph to the decomposition into the 2g-gons P,. Let 7 : B — M be the nearest
point projection. The image () must be non-trivial in M since y is non-trivial in B
and m is a deformation retraction. It follows that the combinatorial length of 7 (y)
in M is at least p. In other words, y intersects at least p tiles Py, joining distinct blue
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sides each time. By Lemma 2.2, the length of y N P, is at least L for any tile P, that y
intersects. The total length of y is therefore greater than or equal to pL. If equality
occurs, then y must be a concatenation of red arcs, that is, a boundary geodesic. [

Corollary 2.4. Let M be a map of type {p, q} and girth p, where p > 2 and q > 3.
Then any arc from a boundary component to itself in B which cannot be homotoped
into 0B has length strictly larger than pL/2.

Proof. Suppose that « is a non-trivial arc of length at most pL /2 from a boundary
geodesic b to itself. The arc « followed by the shorter of the two subarcs of b between
its endpoints is a non-trivial closed curve y of length at most pL in B. The closed
geodesic homotopic to y is strictly shorter, contradicting Lemma 2.3. O

Lemma 2.5. Let M be a map of type {p,q} and girth p, where p > 2 and q > 3.
Then any arc « from dB to B which cannot be homotoped into 0B has length at
least L, with equality only if a is a blue arc.

Proof. Let a be a geodesic arc from 9B to dB. By Lemma 2.3, we may assume
that « joins consecutive sides of any tile P, it intersects. Since the starting point of o
in on a red side, it has to next intersect a blue side, and then a red. This means that o
is homotopic to a blue arc in a union P, U P, of two adjacent tiles. This blue arc is
shortest among all arcs in P, U P, joining the same two sides, as it is orthogonal to
the boundary at both endpoints. O

The above results do not require the map M to be finite or flag-transitive, but we
will impose these conditions in the next sections.

3. Gluing graphs

In this section, we explain how to glue blocks together along certain graphs of large
girth with large automorphism groups in order to get closed hyperbolic surfaces with
many symmetries and few systoles.

Strict polygonal graphs. A strict polygonal graph is a graph G such that any em-
bedded path of length 2 in G is contained in a unique girth cycle (where cycles
are considered up to cyclic reordering and reversal). This notion was introduced by
Perkel in his thesis [17]. Examples of strict polygonal graphs include polygons, the
tetrahedron, the dodecahedron, and the cube of any dimension. See [25] for a short
survey on the subject.

Archdeacon and Perkel [3] found a way to double the girth of a strict polygonal
graph G (or any graph) by taking an appropriate normal covering space. The girth
cycles in this cover G are precisely those that wrap twice around a girth cycle in G
under the covering map. Repeated applications of their construction yield strict
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polygonal graphs of arbitrarily large girth and constant valence (equal to the valence
of G).

Seress and Swartz [26, Theorem 3.2] proved that any automorphism of the base
graph G lifts to an automorphism of the girth-doubling cover G. They concluded
that if G is vertex transitive, edge transitive, arc transitive or 2-arc transitive, then
s0 is G. We will need an even stronger transitivity property, described in the next
paragraph.

Isotropic graphs. The star st(v) of a vertex v in a graph is the set of half-edges adja-
cent to v. A graph G is locally symmetric if for every vertex v € V(G), any bijection
of st(v) can be extended to an automorphism of G that fixes v. We say that a graph is
isotropic if it is vertex transitive and locally symmetric. To spell it out, G is isotropic
if every injection st(u) < st(v) between stars in G extends to an automorphism
of G.

In an isotropic graph, there is a girth cycle passing through any embedded path
of length 2, but there can be more than one.

Example 3.1. The Petersen graph P (the quotient of the dodecahedron by the
antipodal involution) is an isotropic graph of valence 3 and girth 5 on 10 vertices.
However, P is not strict polygonal since every embedded path of length 2 is contained
in two distinct girth cycles in P.

Lubotzky [12] constructed infinitely many isotropic Cayley graphs of any valence
d > 3 and any even girth > 6 (the generators are involutions, allowing the valence
to be odd). Since we want better control on the girth cycles of our isotropic graphs,
we use the girth-doubling construction of Archdeacon and Perkel instead. The proof
that the girth-doubling cover G ofa graph G is isotropic provided that G is isotropic
follows immediately from [26, Theorem 3.2], which states that any automorphism
of G lifts to G, and the fact that the covering G — G is normal, so that its deck
group acts transitively on fibers.

The simplest isotropic strict polygonal graph is a pair of vertices joined by d > 2
edges. Repeated applications of the girth-doubling construction to this graph ® yield
a sequence of finite, isotropic, strict polygonal graphs of any valence and arbitrarily
large girth.

Theorem 3.2 (Archdeacon—Perkel, Seress—Swartz). Foranyd > 2 andn > 1, there
exists a finite, isotropic, strict polygonal graph G of valence d and girth 2". In fact,
G can be chosen to be a covering space of the bipartite graph ® of valence d on 2
vertices, in which case the girth cycles in G project to powers of girth cycles in ©
under the covering map.

Gluing. We now explain how to glue copies of the block B from Section 2 along a
finite isotropic strict polygonal graph G to get a closed hyperbolic surface X with a
small set of systoles that fill.
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Letg > 3,letn > 1, and write p = 2". Let M be a finite flag-transitive map of
type {p., g} and girth p whose existence is guaranteed by Theorem 2.1.

Let B be the block obtained by gluing regular right-angled 2g-gons along the
map M as in Section 2. Let d be the number of boundary components of B, which
is is equal to the number of faces in M.

Let G be a finite, isotropic, strict polygonal graph of valence ¢ and girth p = 2"
covering the bipartite graph ® on two vertices as in Theorem 3.2, and let 7: G — ©®
be a covering map. Leto: V(®) — {—1, 1}and y: E(®) — {1,...,d} bebijections,
where V(®) and E(®) are the sets of vertices and edges of ® respectively. These
induce proper colorings o o r and y o « of the vertices and edges of G respectively.

For each v € V(G), let B, be a copy of the block B, equipped with its standard
orientation if o (v) = 1 and with the reverse orientation if o (v) = —1. Let by, ..., by
be the boundary components of B and label the boundary components of any copy B,
in the same way so that the isometric identification B, =~ B preserves the indices of
boundary components.

Here is how we define the closed hyperbolic surface X given the above
combinatorial data. For any edge e = {u,v} in G, glue B, to B, by the identity
map along their j-th boundary component, where j = y o m(e). The surface X
is defined as the quotient of L, ey (G) By by these gluings. Since the gluing maps
are orientation-reversing, X is an oriented surface. It has empty boundary since
the coloring y o m takes all values in {1,...,d} on the edges containing a given
vertex v, so that all the boundary components of B, are glued. Lastly, X is compact
because M and G are finite.

The main reason for using strict polygonal graphs in this construction is so that
the blue arcs in the blocks B, all close up to curves of the same length in X.

Lemma 3.3. Any blue arc in a block B, C X ispart of a closed geodesic of length pL
in X.

Proof. Any blue arc o, in B, connects two boundary geodesics b; and b;. The
block B, is glued to two other blocks B, and B,, via these boundary components,
and there are blue arcs o, C By and «y, C B, corresponding to «, under the
isometric identifications B, =~ B, = B,. The concatenation o, U o, U oty is
geodesic since «,, is orthogonal to dB,.

By our convention, the arc «,, (resp. oy, ) connects the boundary components of B,
(resp. By,) labelled b; and b;. By repeating the above reflection process with a,
or oy, instead of &, (and so on), we obtain a bi-infinite path § = (..., u,v,w,...)
in the graph G whose edges alternate between the colors i and j. There is also a
bi-infinite geodesic

B=--Uao,UayUayU:--

in X obtained by concatenating the corresponding blue arcs.
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Since G is a strict polygonal graph, the path (u, v, w) is contained in a unique
non-trivial cycle y of length p (the girth of G). Furthermore, Theorem 3.2 stipulates
that y covers a closed cycle of length 2 in ® under the covering map 7: G — ©.
This cycle of length 2 is necessarily formed by the edges y ! (i) and y~! () since &
respects the coloring of edges. This means that the edges of y alternate between
the colors i and j, and hence that the path § wraps around y periodically in both
directions. In other words, § closes up after p steps. Similarly, the geodesic f is
closed and its length is equal to pL since each of its p subarcs has length L. n

Note that we have not used the hypotheses that M is flag-transitive nor that G is
isotropic yet. This will come up in Section 5 where we determine the isometry group
of X.

4. Systoles

In this section, we determine and count the systoles in the surface X constructed
above.

Proposition 4.1. Let X be the surface constructed in Section 3. The systoles in X are
the red curves and the blue curves. These systoles fill X and there are (qu)p (g—1)
of them, where q is the valence of the map M, p is the girth of M and the gluing

graph G, and g is the genus of X.

Proof. Let y be a systole in X. If y is contained in a single block B, C X, then y
is a red curve (of length pL) by Lemma 2.3. Now assume that y is not contained
in any block. Then the blocks B,,,..., By, (k > 2) that it visits define a closed
cycle s = (vy,...vx,vp) in the graph G. First suppose that s is trivial in G.
Then s contains at least two backtracks, that is, vertices v; in the sequence such
that vj_; = vj4;. If s backtracks at a vertex u € G, this means that a subarc w of y
enters and leaves the block B, via the same boundary component. By Corollary 2.4,
o has length strictly larger than pL /2. Since there are at least two disjoint subarcs
like this, y is longer than pL. We conclude that s is non-trivial in G, so that its
length is at least p, the girth of G. But for each vertex u along s, the corresponding
subarc of y in B, has length at least L by Lemma 2.5. Thus the total length of y is
at least pL. If equality occurs, then y is a concatenation of blue arcs. Conversely,
any concatenation of blue arcs has length pL by Lemma 3.3.

The complementary components of the set of systoles in X are precisely the
interiors of the tiles from which the blocks are assembled. In particular, the systoles
fill.

The number of systoles in X is equal to the total number of red arcs and blue arcs
divided by p. This is because the red arcs are joined in groups of p to form systoles,
and similarly for the blue arcs. Each such arc « (either red or blue) belongs to exactly



524 M. Fortier Bourque CMH

two tiles. The rhombus with one vertex in the center of each of these two tiles and
diagonal « has area (g —2)/g by the Gauss—Bonnet formula (it has two right angles
and two angles 7 /g). These rhombi tile X, which has area 47 (g — 1). Therefore,
the number of systoles is 47 (g — 1) divided by 7 (g — 2)/q, divided by p. O

Recall that in the construction of X we could take any ¢ > 3 and p = 2" for
any n > 1. Given any ¢ > 0, taking n sufficiently large and any ¢ > 3 gives a surface
with a filling set of at most eg systoles. This proves Theorem 1.1. At the other
extreme, the largest number of systoles is obtained when ¢ = 3 and p = 2, which
gives 6g — 6 systoles. By [19, Theorem 2.8], such a surface has too few systoles to be
a local maximum of the systole function, but we will see later that it is nevertheless
a critical point of lower index.

Example 4.2. For any g > 2, if we take the map M to be the bipartite graph of
valence g + 1 on two vertices (as a map on the sphere), then the resulting block B
has g + 1 boundary components. Taking the gluing graph G to be equal to M,
we obtain a surface X which is the double of B across its boundary. The genus
of X is then equal to g. Since ¢ = g+ 1 and p = 2, the number of systoles
is 2g + 2 according to the formula in Proposition 4.1. Removing any two intersecting
systoles leaves a filling set of 2g systoles. This example was previously described
in [24, Theorem 36] and [2, Section 5] and was the starting point of this paper.

Remark 4.3. We could allow the graphs G and M to have different girths p and r
by replacing the polygons P in the blocks to be semi-regular with side lengths Lypjue
and L4 satisfying pLpwe = rLeq. A version of Proposition 4.1 still holds for this
generalization, with the count of systoles coming to

(s o
TRV A

All one has to do is change Lemma 2.2 to say that the distance between any two blue
sides is at least L4 and the distance between any two red sides is at least Ly,,e, and
modify the other lemmata accordingly.

5. Isometries

In this section, we determine the isometry group of the surface X up to index 2.
Recall that the blocks B, C X (where v € V(G)) are tiled by regular right-angled
2qg-gons P, (where u € V(M)). By connecting the center of each polygon P, to
the midpoints of its edges with geodesics, we obtain a tiling @ of X by (2,2,2, g)-
quadrilaterals (i.e., quadrilaterals with three right angles and one angle equal to 77 /q).
Since any isometry of X preserves the set of systoles, it permutes the complementary
polygons P, and therefore the quadrilaterals in @. In fact, any quadrilateral can be
sent to any other by an isometry.
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Proposition 5.1. The isometry group of X acts transitively on the quadrilaterals in
the tiling Q.

Proof. The hypothesis that M is flag-transitive implies that the isometry group of B
acts transitively on its (2, 2,2, g)-quadrilaterals. This is because there is a one-
to-one correspondence between the flags in M and the quadrilaterals in B. The
correspondence works as follows. Recall that M naturally embeds in B, connecting
the centers of polygons P to their blue sides. A flagin M is the same as a half-edge e
together with a choice of a face f containing e, either on the left or the right. In
the tiling of B by quadrilaterals, there are exactly two quadrilaterals that have e as
an edge. The side of ¢ on which f lies determines which quadrilateral to pick.
Since any map-automorphism of M can be realized as an isometry of B and M is
flag-transitive, the claim follows.

Letv € V(G) and let ¢: B, — B, be an isometry. We claim that ¢ extends to an
isometry ® of X. First, the isometry ¢ induces a permutation 7 on {1, ...,d} such
that ¢ sends the boundary component b; of B, to the component b, for every i.
Now the edges adjacent to v in G are colored with the numbers {1, ..., d} according
to the coloring y o . Thus the permutation t induces a bijection on the star of v.
Since G is locally symmetric, this bijection can be extended to an automorphism
of G. If x € B, C X, then define ®(x) to be the point ¢(x) in By (,), where
we use the canonical identifications By, = B, to transport the action of ¢ onto any
block. This map is well-defined, for if x € B, N B, then x belongs to the boundary
component labelled i = y o 7 ({u,v}) of B, and B,. By definition, ¢ (x) belongs to
the 7(7)-th boundary component of B,. Now By ) and By (,) are glued along their
boundary component labelled y o (¥ ({u, v})). This number equals t(i) provided
that the automorphism v is chosen to be a lift of the automorphism of ® induced
by 7, and this is possible according to [26, Theorem 3.2]. The map @ is an isometry
since it is a locally isometry as well as a bijection.

Similarly, any automorphism v of G which preserves the coloring y o 7 defines
an isometry W of X by sending x € B, to the corresponding x in By (). This simply
shuffles the blocks around, acting by the identity map on the blocks. Note that the
group of such automorphisms y acts transitively on the vertices of G.

Combining these two types of isometries gives the desired result. In order to send
a quadrilateral Q C B, to another quadrilateral Q" C B,, first apply an isometry W
as in the previous paragraph to send B, to B,. Then move W(Q) to Q’ via an
isometry ® of the first type, preserving the block B,,. 0

Since there are at most two isometries of X sending one quadrilateral to another,
this determines the isometry group of X up to index 2. We can reformulate this as
follows. Subdivide @ further into a tiling 7 by (2, 4, 2¢g)-triangles by bisecting the
quadrilaterals at their smallest angle. Then the isometry group of X may or may
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not act transitively on the tiles of 7 depending on the graphs M and G used to
construct X .

In Example 4.2, the isometry group of X acts transitively on these triangles, but
that is not the case in general. That is, there can be an asymmetry between the red
and blue curves in X. For example, let M be the flag-transitive map of type {4, 4}
obtained by subdividing the square torus into a 5 x 5 grid (so that B is a torus with 25
holes) and let G be the 1-skeleton of the 25-dimensional cube. Then each component
of X \ {blue curves} is a torus with 16 boundary components corresponding to
a 4-dimensional subcube of G, while the complementary components of the red
curves are the blocks with 25 boundary curves each. In this case, no isometry of X
can interchange the two families of systoles.

6. Critical point and index

A real-valued function f on an n-dimensional manifold M is a topological Morse
function if for every p € M, there is an open neighborhood U of p and an injective
continuous map ¢: U — R” with ¢(p) = 0 such that f o ¢~ — f(p) takes either
the form

(xlv"-5xn) = xl
or
J n
3 2
(xl,...,x,,)»—>—2xl--|— Z X;
i=1 i=j+1
for some j € {0,...,n}. In the first case, p is an ordinary point and in the second

case p is a critical point of index j. Critical points of index 0 and » are local minima
and maxima respectively.

Let g > 2 and let 7, be the Teichmiiller space of marked, connected,
oriented, closed, hyperbolic surfaces of genus g. This space is a smooth manifold
diffeomorphic to R® 6. The systole sys(Y) of a surface ¥ € Ty is the length of
any of its shortest closed geodesics. As mentionned in the introduction, Akrout [1]
proved that sys: 7, — R is a topological Morse function.

Let Y € T, and let § be the set of (homotopy classes of) systoles in Y. For
eacha € § and Z € T, we let £,(Z) be the length of the unique closed geodesic
homotopic to @ in Z. These functions are differentiable on 7, and we denote their
differentials by d £,,.

Definition 6.1. The point Y € 7 is eutactic if for every v € Ty T, the following
implication holds: if d€4(v) > Oforeverya € §,then d€,(v) = Oforeverya € §.
The rank of a eutactic point Y is the dimension of the image of the linear map

(dlz)ses= Ty Ty — RS,
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With these definitions, we have the following characterization of the critical points
of sys [1, Theorem 1].

Theorem 6.2 (Akrout). The critical points of index j of the systole function are the
eutactic points of rank j.

We can now show that the surface X constructed in Section 3 is a critical point
of sys and give an upper bound for its index.

Proposition 6.3. Let X be as in Section 3. Then X is a critical point of index at
most (qf—g)p (g — 1) for the systole function.

Proof. Let & be the set of systoles of X (the red curves and the blue curves). Suppose
that v € Ty Ty is such that d £, (v) > O for every @ € & and let

W = Z Jfwv.

f €lsom(X)
Then
dbg)= Y dbe(fir)= Y  dlpm) =dle@) =0  (6.1)
f €lsom(X) f€lsom(X)

for every @ € &§. On the other hand, w is the lift to X of a deformation of the quotient
orbifold Q@ = X/ Isom(X). By Proposition 5.1, Q is either a (2, 4, 2¢g)-triangle or a
(2,2, 2,g)-quadrilateral. If Q is a triangle, then w = 0 so that d €, (w) and d £, (v)
are both zero by Equation (6.1), for every @ € &. If Q is a quadrilateral, then its
deformation space is 1-dimensional. This is because any (2, 2, 2, g)-quadrilateral
is determined by the lengths a and b of the two sides disjoint from the angle 7 /q,
which satisfy the relation

sinha sinh b = cos(r/q)

(see [5, p.454]). This equation implies that the lengths of the red curves and the blue
curves in § have opposite derivatives in the direction of w. Since the derivatives are
non-negative, they must all be zero. We conclude that d€,(v) = 0 forevery @ € §
from Equation (6.1). This shows that X is eutactic. The number of systoles in X is a
trivial upper bound for the rank of X, and this number is equal to —2%— (g — 1) by

e (g-2)p
Proposition 4.1. O

Once again, by taking p sufficiently large we obtain critical points of index at
most £g for any € > 0, thereby proving Theorem 1.3. This disproves the possibility
envisaged by Schmutz Schaller [24, p. 410] that the minimal index were 2g — 1.
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7. Deformations preserving the systoles

Let X, be the subset of 7, whose systoles fill. We would like to show that X, has
relatively small codimension in 7. By Proposition 4.1, the systoles of any surface X
constructed in Section 3 fill (recall that X depends on several parameters). Let &
be the set of systoles in X. If we deform X in such a way that the curves in &
remain of equal length, then these curves will still be the systoles for sufficiently
small deformations. This is because the second shortest curve on X is longer by a
definite amount and length varies continuously.

In other words, the intersection between the inverse image of the diagonal A ¢ R¥
by the map ({y)qes: Tg — R¥ and a small neighborhood of X is contained in Xg.
One might be tempted to conclude directly that X', has codimension at most |§| — 1
in T,. The subtlety is that the image of ({4)qes is not necessarily transverse to A.
Indeed, the rank of X can be strictly less than |§| — 1. For instance, the surface in
Example 4.2 has rank 2g — 1 according to [24, Theorem 36], while |§| = 2g + 2.

To remedy this, one could try to get rid of redundant equations, i.e., to find a
filling subset of curves R C & for which the differential (dxy€4)qe® iS surjective
and apply the implicit function theorem. The problem is that even if the curves in R
stay of equal length, the curves in § \ &R might become shorter and so the systoles
might not fill anymore.

Another approach would be to find a nearby surface Xy which has the same set of
systoles as X, and hope that the differential (dx,{«)«es has full rank there. Below
we will describe a 1-dimensional family of deformations of X with the same systoles.
This fixes the issue of rank in some (but not all) cases. A similar idea was used in [18]
to find a path of surfaces in X, with 2g systoles.

A 1-dimensional deformation. Recall that X is assembled from right-angled reg-
ular 2¢g-gons P whose sides are colored alternatingly red and blue, where ¢ > 3.
Given any € € (0, ), there exists a unique polygon Pg with 2g equal sides and
interior angles alternating between € and w — 6 (start with a triangle with angles
w/q, 8/2, and (r — 0)/2 and reflect repeatedly across the two sides at angle 7 /g).
To fix ideas, let us say that @ is the counter-clockwise (interior) angle from a red side
to a blue side when going clockwise around Py and = — 6 is the angle from blue
to red. Now replace all the polygons P in X by Py while keeping the same gluing
combinatorics. By construction, the total angle around vertices of the resulting tiling
is 2 so the deformed surface Xy is still a closed hyperbolic surface. Moreover, the
red sides still line up to form closed geodesics and similarly for the blue sides. These
closed geodesics all have equal length, namely, p times the side length of Py. As
long as 6 is close enough to 7r/2, these curves will remain the systoles.

The goal is then to show that the linear map (dx,{«)aes has full rank when
6 # m/2. We can do this for some small examples (see below), but we do not know
how to handle surfaces with complicated gluing graphs of large girth. We present
examples with full rank for girth 2 and 3 below.



Vol. 95 (2020) Hyperbolic surfaces with sublinearly many systoles that fill 529

Computing the rank. To prove that the derivative of lengths has full rank, it suffices
to find a set of tangent vectors {vg}ges to Teichmiiller space for which the square
matrix (dx,{«(vg))a,ges has non-zero determinant. For this, we can choose each
vector vg to be the Fenchel-Nielsen twist deformation (i.e., left earthquake) around
the curve B. The cosine formula of Wolpert [29] and Kerckhoff [11] then says that

dly(vg) = D cos Ly p)

peang

whenever o and 8 are transverse, where Z,(«, ) is the counter-clockwise angle
from « to B at the point p. In our case, two distinct curves o, B € & intersect at most
once, with angle 6 from red to blue or & — 6 from blue to red. If we split the rows
and columns of D = (dx,{q(vg))a,pes by color we get a block matrix of the form

0 A
D = cos@ (—AT O)

where A is the matrix of zeros and ones recording which red curves intersect which
blue curves. If 6 # 7/2, then D has full rank if and only if the matrix

= 0 A
= (% 4

does. This matrix is the adjacency matrix of some graph / g, namely, the graph whose
vertices are the systoles of X and where two vertices are joined by an edge if and
only if the corresponding systoles intersect.

The determinant of the adjacency matrix of a graph counts something
combinatorial on the graph. Indeed, according to [8] we have

det(ﬁ) — Z (_1)#{even components of J}z#{cycles inJ}
JCIlg

where the sum is over all spanning subgraphs of J C Ig (subgraphs containing all
vertices) which are elementary, meaning that their components are either edges or
embedded cycles. The even components are those with an even number of vertices.
In our case, s is bipartite so that all its cycles are even.

We are now ready to give some examples where D is invertible.

Examples of girth 2. The first family of examples comes from Example 4.2. In that
example, the red and blue curves form a chain, that is, /g is a cycle of length 2g + 2.
It follows that [ g has exactly three elementary spanning subgraphs: [z itself, and two
subgraphs obtained by deleting every other edge in /g. If g = 2m is even, then /g
has 4m + 2 edges and

det(D) = (=1)'2! 4 (=1)2m+120 4 (—1)2m+120 — _4 £ 0, (7.1)
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Alternatively, one could compute the determinant of D by using the fact that A is a
circulant matrix in this case.

The fact that D has non-zero determinant implies that the derivative of £ =
Ca)ues: Tg — R¥ has full rank at X4 whenever 6 # /2. By the implicit function
theorem, near Xy we have that £~ (A) is a smooth submanifold of codimension

18| —-1=Q2g+2)—1=2g+1,

hence of dimension 4g—7. Asexplained earlier, £~ (A) intersected with a sufficiently
small ball around Xy is contained in Xg. We have thus proved that X has dimension
at least 4g — 7 when g is even. We can push the proof a little further to obtain the
following.

Theorem 7.1. For every even g > 2, the set X.g C T4 of closed hyperbolic surfaces
of genus g whose systoles fill contains a cell of dimension 4g — 5.

Proof. Let X be the surface of genus g from Example 4.2 and let

5={a1,---,azg+2}

be its set of systoles labelled in such a way that «; intersects «j—1 and o4 for
every j, where the indices are taken modulo 2g + 2. Let Xy be the deformation
of X described above, where 6 is close enough to /2 so that its sets of systoles is
still equal to . By Equation (7.1), the map £ = ({o)aes: Tg — R¥ is a submersion
at the point Xy. In particular, £ is open in a neighborhood of Xg. This implies that
there exist surfaces Y arbitrarily close to Xy such that

bo (V) = - = La,, (¥)

and such that these lengths are strictly less than €4, (Y) and £4,, ., (Y). If ¥ is
close enough to Xy, then its set of systoles is a subset of & by continuity of the length
functions. Therefore, there is a sequence Y, converging to Xy such that the systoles
in Y, are given by the set R = {1, ..., a2 }.

If n is large enough, then the square matrix (dy, £ (vg))a,ger Will have non-zero
determinant. Indeed, in the limit the matrix has the form

0 B
(dxyba(vg))a,per = cost (_ BT 0)

which is invertible because ( 2 &) is the adjacency matrix of a tree /g with an even

number of vertices. Up to sign, its determinant is the number of perfect matchings
(spanning subgraphs whose components are edges) in /g, which is equal to one.
Furthermore, the entries of (dy €y (vg))a,gesr depend continuously on the surface Y
in the same way that the angles of intersection between geodesics do.
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Let Y = Y, for any such large enough n. Then the systoles in Y are given by
the set R and the map ({g)acnr: Tz — R® is a submersion at Y. By the implicit
function theorem, the inverse image of the diagonal by this map is a submanifold of
codimension 2g — 1 near Y. Since the curves in R fill, a small neighborhood of Y in
this submanifold is contained in Xg. The curves in R fill because the complement
of the curves in & is a union of four polygons which meet at the intersection of oz 41
and asg42. Adding these two curves fuses the four polygons into a single one. [

When g is odd, the matrix D is singular, but this does not necessarily imply that
the image of (£, )qes is not transverse to the diagonal.

An example of girth 3. Next, we present an example of genus g = 6 where the un-
derlying graphs M and G for the surface X have girth 3 and the matrix D is non-
singular. Let M be the 1-skeleton of a regular tetrahedron (as a map of type {3, 3}
on the sphere) and let B be the corresponding block. This is a sphere with 4 holes
and tetrahedral symmetry. Although this does not fit in the theory of Section 3, it is
possible to glue five copies of B along the complete graph K5 in such a way that the
blue arcs connect up in groups of three to form closed geodesics. To see this, it is
convenient to draw K5 in R? with a 3-fold symmetry as in Figure 1.

Figure 1. An embedding of K5 in R3 and the corresponding gluing of tetrahedral blocks. (The
red curves are printed in light grey and the blue curves in dark grey.)
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The tetrahedral pieces are glued as suggested by the figure, in the simplest possible
way (without twist). By inspection, the blue arcs connect in groups of three. The
proof of Proposition 4.1 applies without change to show that the systoles in X are
the red curves and the blue curves. The genus of X is equal to the number of edges
in the complement of any spanning tree in K5, which is 10 —4 = 6. Let us label the
red curves from 1 to 10 and the blue curves from a to j as in Figure 1 (the red curves
correspond to the edges in Ks). Then the intersection matrix A is given by

/1 0010100 0 0\
0101100000
0010110000
000100T10O0 1
i_|0ooo0o0 100101
000001001 1
1 0000O0T1O0T10
01 000O0T1T1O00O0
001 000O0T1 10
\] 1 1. 00 00 0 0 0/

which has determinant 48 # 0. Therefore, the derivative of lengths d{ has full rank
at Xg whenever 6 # n/2. Note that this only gives us that X has codimension at
most 19 in T, hence dimension at least 11 = 4g — 13. The conclusion is weaker
than that of Theorem 7.1, but we wanted to include this example to show that D can
have full rank for more complicated graphs.

Questions. We conclude with a few questions related to the strategy we have just
outlined.

Question 7.2. Is there a sequence of graphs M and G as in Section 3 with girth
going to infinity such that the corresponding intersection matrices D have non-zero
determinants?

In view of the above reasoning and the counting of Proposition 4.1, a positive
answer would imply Conjecture 1.2. A major difficulty is that M and G are given to
us in a non-explicit way from Theorem 2.1 and Theorem 3.2.

As the proof of Theorem 7.1 shows, one could bypass the determinant issue
by finding a filling subset & C & of even cardinality such that the corresponding
intersection graph /g is a tree, and a surface ¥ near Xy whose systoles are exactly
the curves in R.

Question 7.3. Given a surface X constructed as in Section 3 with set of systoles &,
is there an induced subtree in 1g with an even number of vertices such that the union
of the corresponding curves fill?
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Question 7.4. Let X be any hyperbolic surface, let § be its set of systoles and let
R C & be a non-empty subset. Does there exist, in every neighborhood of X, a
surface whose set of systoles is equal to R ?

Even if these questions have negative answers, they suggest how one should
modify the construction of surfaces with sublinearly many systoles that fill in order
to show that X, has large dimension: the systoles should cut the surface into a single
polygon instead of several.
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