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The Liouville property and random walks on
topological groups

Friedrich Martin Schneider and Andreas Thom

Abstract. We study harmonic functions and Poisson boundaries for Borel probability measures

on general (i.e., not necessarily locally compact) topological groups, and we prove that a second-

countable topological group is amenable if and only if it admits a fully supported, regular Borel

probability measure with trivial Poisson boundary. This generalizes work of Kaimanovich-
Vershik and Rosenblatt, confirms a general topological version of Furstenberg's conjecture,
and entails a characterization of the amenability of isometry groups in terms of the Liouville
property for induced actions. Moreover, our result has non-trivial consequences concerning
Liouville actions of discrete groups on countable sets.

Mathematics Subject Classification (2010). 22A10, 22D40, 43A07.

Keywords. Topological group, amenability, Poisson boundary, random walk, Liouville
property.

1. Introduction

The study of random walks on countable discrete (resp., second-countable locally
compact) groups via their corresponding Poisson boundary was initiated in a series of
papers by Furstenberg [12-15] and has since evolved into a major theme in geometric

group theory. Furstenberg's original construction of the Poisson boundary forrandom
walks on discrete groups, relying upon the martingale convergence theorem, was

soon generalized to locally compact groups [1] and complemented by a number of
non-probabilistic approaches, ranging from functional-analytic to dynamical [9,10,
34,42,44]. As revealed by the multitude of rather different perspectives on Poisson

boundaries, there is no essential obstruction to defining and studying such boundaries

for general (i.e., not necessarily locally compact) topological groups [37]. On the

other hand, recent years' growing interest in topological dynamics and ergodic theory
of large (often referred to as infinite-dimensional) Polish groups, such as arising, for
instance, in Ramsey theory and operator algebra, suggests to actually pursue this

path. The present article aims to initiate and advance this development.
A definite milestone in the classical theory of Poisson boundaries of random

walks on groups is marked by Kaimanovich-Vershik's proof [23,41 ] of Furstenberg's
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conjecture [15]: a countable group G is amenable if and only if it possesses
a probability measure whose support is all of G and whose Poisson boundary
is trivial. In fact, Furstenberg's conjecture was proved for random walks on

<j-compact locally compact groups, independently, by Kaimanovich-Vershik [23]
and Rosenblatt [38 ]. The central objective of the present paper is a general topological
version of Furstenberg's conjecture (Corollary 4.8), valid for arbitrary second-

countable groups, which follows from a new characterization of amenability in terms
of asymptotic invariance of the sequence of convolutional powers of a suitable fully
supported, regular Borel probability measure (Theorem 4.7). The proof of the latter
combines ideas of Kaimanovich and Vershik [23] with some recent work by the

present authors [40]. Furthermore, our result reveals a correspondence between the

amenability of topological groups of isometries of metric spaces and the Liouville
property for their induced actions (Theorem 5.8).

Perhaps surprisingly, the topological version of Furstenberg's conjecture (Corollary

4.8) does have interesting and non-trivial consequences even in the context of
actions of countable (discrete) groups on countable sets. Answering a recent question
by Juschenko [20], we show that, for every n N, the action of Thompson's group F
on the set Z[i] of dyadic rationals is n-Liouville [20], that is, the induced action of F
on the collection ofn-element subsets of Z ] admits a Liouville measure. In the light
of our Corollary 6.2, this becomes an immediate consequence of Pestov's work [35]

establishing the (extreme) amenability of the topological group Aut(Z[^], <), which
contains F as a dense subgroup.

This article is organized as follows. In Section 2 we recall some necessary
background concerning the amenability of general topological groups, including its
connection with the so-called UEB topology. The subsequent Section 3 is dedicated to
providing some technical prerequisites on convolution semigroups over topological
groups. In Section 4 we study harmonic functions and Poisson boundaries for
Borel probability measures on topological groups and prove the above-mentioned

generalization of Furstenberg's conjecture, the consequences of which for isometry

groups form the subject of Section 5. The final Section 6 contains applications of
our results in the context of discrete group actions and Thompson's group F.

2. UEB topology and amenability

The purpose of this preliminary section is to fix some notation and to recall some basic

concepts concerning function spaces on topological groups. The focus is on providing
some necessary background regarding the UEB topology on the corresponding dual

vector spaces, including its connection with the amenability of topological groups.
For a considerably more comprehensive exposition (capturing the general setting of
arbitrary uniform spaces), the reader is referred to Pachl's monograph [33],

Before getting to topological groups, let us briefly clarify some general notation.
Given a set S, we denote by the commutative unital C*-algebra of all bounded
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complex-valued functions on S, equipped with the pointwise operations and the

supremum norm

ll/Hoo := sup{|/*(s)| I s g S}

Consider any Hausdorff topological space T and let pi be a Borel probability measure

on T. The support of /x is defined to be the closed subset of T given by

spt(/x) := {x G T I VU ç T open:x G U => gi{U) > 0}.

Let us call pi finitely supported if spt(/x) is finite, and fully supported if spt(/x) T.
As usual, /x will be called regular if /x(5) sup{ß(K) \ K ç B, K compact}
for every Borel set B ç T. The set of all Borel probability measures on T will be

denoted by Prob( 7" and the subset of regular Borel probability measures on T will
be denoted by Probreg(T).

Throughout the present article, a topological group is always understood to be

Hausdorff. Let G be a topological group. A function / : G -> C is said to be

right-uniformly continuous if for every s > 0 there exists a neighborhood U of the

neutral element in G such that

Vx, y G: xy"1 U =4 |/(x) - /(y)| < e.

The set RUCB(G) of all right-uniformly continuous, bounded complex-valued
functions on G, equipped with the pointwise operations and the supremum norm,
constitutes a commutative unital C*-algebra. A set H ç RUCB(G) is called UEB

(short for uniformly equicontinuous, bounded) if II is || Hoo-bounded and right-
uniformly equicontinuous, that is, for every e > 0 there exists a neighborhood U of
the neutral element in G such that

V/ e H Vx, ye G: xy"1 e U => \f(x) - f(y)\ < e.

The set RUEB(G) of all UEB subsets of RUCB(G) is a convex vector homology
on RUCB(G). The UEB topology on the dual Banach space RUCB(G)* is

defined as the topology of uniform convergence on the members of RUEB(G).
Of course, this is a locally convex linear topology on the vector space RUCB(G)*
containing the weak-* topology, that is, the initial topology generated by the functions

RUCB(G)* -» C, pi /x(/), where / G RUCB(G). More detailed information

on the structure of RUCB(G)* and the UEB topology can be found in [33], For most
of this paper, we will be interested in aspects concerning the convex subset

M(G) := {pt G RUCB(G)* | /x positive, /x(l) 1},

i.e., the set of states on the C*-algebra RUCB(G), which forms a compact Hausdorff

space with respect to the weak-* topology. The set S(G) of all *-homomorphisms
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from RUCB(G) to C forms a closed subspace of M(G), which is called the Samuel

compactification of G. Now, for any g G G, let Xg: G —> G, x i-> gx and

pg \ G —» G, x i-> xg. Note that the group G acts by linear isometries on the Banach

space RUCB(G)* via

(gp)(f) := p(f o Xg) {geG.pe RUCB(G)*, / e RUCB(G)).

It is straightforward to check that M(G) forms a G-invariant subset of RUCB(G)*
and that the restricted action of G on M(G) is affine and continuous with respect to the

weak-* topology. Moreover, S(G) constitutes a G-invariant subspace of M(G). We

recall that G is said to be amenable (resp., extremely amenable) if M(G) (resp., S(G))
admits a G-fixed point. It is well known that G is amenable (resp., extremely
amenable) if and only if every continuous action of G on a non-void compact
Hausdorff space admits a G-invariant regular Borel probability measure (resp., a

G-fixed point). For a more comprehensive account on (extreme) amenability of
general topological groups, we refer to [36].

We recall a recent characterization of amenability in terms of asymptotically
invariant finitely supported probability measures.

Theorem 2.1 ([40, Theorem 3.2]). A topological group G is amenable ifand only if
for every s > 0, every H G RUEB(G) and every finite subset E ç G, there exists a

finitely supported, regular Borel probability measure p on G such that

VgeEVfeH: \JfoXgdp-J f dp < e.

Corollary 2.2. A topological group G is amenable if and only if for every e > 0,

every H G RUEB(G) and everyfinite subset E c G, there exists afinitely supported,
regular Borel probability measure p on G such that E ç spt(/i) and

VgeEVfeH: \JfoXgdp-J f dp < e.

Proof In view of Theorem 2.1, we only need to prove that the former implies the

latter. To this end, let s G (0, 1] and H G RUEB(G), and let £ ç G be finite.
Without loss of generality, we may and will assume that E 0. By Theorem 2.1,

since G is amenable, there exists a finitely supported, regular Borel probability
measure p on G with | f f o Xg dp — f f dp\ < | for all / G H and g G G. For

" '
1 4-4sup/6tf ll/lloo

(0'

we consider the finitely supported, regular Borel probability measure v on G given
by

v(B) := (1 - oi)p(B) + (B G Borel).
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Evidently, E ç spt(v). Moreover,

J foXgdv-J f dv\

< (1 -a)| J f oXgd/x-J f dß + |fj I f(gx)~f(x)\
xeE

< (1 - a)| + a2||/||oo < f + | — £

for all f e H and g e G, as desired.

Theorem 2.1 suggests the following Definition 2.3.

Definition 2.3. Let G be a topological group. A net (/i,),e/ in M(G) is said to

UEB-converge to invariance (over G) if

Vg G VH RUEB(G): sup |o Xg) - m(f)\ —> 0 (i —> /).
feH

Remark 2.4 (see [40, Proof of Theorem 3.2]). Let G be a topological group.
If (ßi)iei is a net in M(G) UEB-converging to invariance over G, then any weak-*

accumulation point of the net (/r, )je/ in M(G) is G-invariant.

For later use, we also note the subsequent observation.

Lemma 2.5. Let S be any dense subset of a topological group G. A net (ßi)iel
in M(G) UEB-converges to invariance over G ifand only if

Vg 5 V// RUEB(G): sup \m(f o Xg) - Mf)\ — 0 (i I).
feH

Proof. Evidently, the former implies the latter. In order to prove the converse

implication, let (ßi)iel be a net in M(G) such that

Vg g 5 WH G RUEB(G): sup \m(f o Xg) - mW)\ —* 0 0'—>/)•
f£H

Consider any g G G and H e RUEB(G). We wish to show that

sup \Pi(f o Ag) ~Pi(f)\—>0 as i-»/.
f^H

To this end, let s > 0. Since H e RUEB(G), there exists a neighborhood G of the

neutral element in G such that \\f — (/ o Au)||oo < § for all / e H and u G.
As 5 is dense in G, there exists s e S with s Gg. Moreover, by assumption, we
find z'o e / such that

Vz 6 /, z > z'0: sup l/i, (/ o A,) — /x,(/)| < §.
feH
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For every i e I with i > io, we conclude that

IM/ 0 M ~M/)I <I~M/ °MI + IM/ °M - M/)l
< ll(/°M-(/°Mlloo + |

II/-(/°M-I)IIoo + §<£
for all / £ //, i.e., supy6#\ßi(f 0 A^) — pi (/)| < e as desired.

Due to well-known work of Birkhoff [3] and Kakutani [24], a topological
group G is first-countable if and only if G is metrizable, in which case G moreover
admits a metric d both generating the topology of G and being right-invariant,
i.e., satisfying d(xg,yg) d(x,y) for all g,x,y e G. Furthermore, if G is

any metrizable topological group, then the Birkhoff-Kakutani theorem gives rise

to a corresponding description of the UEB topology on norm-bounded subsets of
RUCB(G)* (Lemma 2.6 below). To be precise, let us clarify some notation. Let X
be a metric space. Given any £ e M>0, let us consider the set

LipM) := {/ e M* | Vx,y e X:\f(x)-f{y)\ < £dx(x,y)}

of all l-Lipschitz real-valued functions on X, and moreover let

h\x>f(X) := Lip|(X) n £°°(X) and Lip^(3f) := Lipf(2f) n [—r, r]^

for r g M>0. Define Lip°°(X) := U6r>0 Lipf (*).
Lemma 2.6. Let G be a topological group. If d is a right-invariant metric on G

generating the topology of G, then the UEB topology and the topology generated by
the norm

PrfiRUCB(G)* —> M, / ^ sup {|/r(/)| | / Lip}(G, d)}

coincide on every || • \\-bounded subset ofRUCB(G)*.

Proof. Evidently, constitutes a semi-norm on RUCB(G)*. Since d is right-
invariant and generates the topology of G, it follows that Lip\(G,d) generates a

|| • Hoc-dense linear subspace of RUCB(G) (see [33, Lemma 5.20(2)]), whence p^
is in fact a norm on RUCB(G)*. Moreover, as d is right-invariant and continuous,
Lip} (G, d) is easily seen to be a member of RUEB(G), thus the topology generated

by pd is contained in the UEB topology tueb- It remains to prove that, for every
|| • ||-bounded B ç RUCB(G)*, the restriction of tueb to B is contained in the

restriction of to B. So, consider any || • ||-bounded subset B ç RUCB(G)*.
Let p e B, H e RUEB(G) and e > 0. Then

K := {Re(/) | / 6 H) U {Im(/) | f e H}
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belongs to RUEB(G), too. Again due to d being a right-invariant metric generating
the topology of G, there exists a real r > 0 such that

V/ 6 K3g erUp\(G.d): 11/~g||oo < i+8sup^fl M
(see [33, Lemma 5.20(1)]). Consequently, if v G B, then

sup \(p - v)(/)| < 2 sup \(n - v)(/)|
feH feK

<2 sup |(/x - v)(g)| + §
g£rUp\(G,d)

2>'Vd Z - v) + §

Hence,

{v e B I pd(li - v) < ç [v g B I V/ g H: \(fi - u)(/)| < e}.

This shows that the restriction of rUEB to B is contained in the corresponding
restriction of the topology

3. Convolution semigroups

Studying the amenability of general topological groups, we take advantage of the

intrinsic right topological semigroup structure present on the continuous duals of
the corresponding spaces of uniformly continuous bounded functions. A right
topological semigroup is a semigroup S together with a topology on S such that
S —> S, s i-»- st is continuous for every t e S, and the topological centre of S is

then defined to be the subset

A (S) := {t S I S —> S, s I-» ts continuous},

which is easily seen to form a subsemigroup of S. Before proceeding to semigroups
associated to topological groups, let us note the following general fact.

Lemma 3.1. IfS is a right topological semigroup and T is a subsemigroup ofA (5),
then T is a subsemigroup of S.

Proof. Since T is a subsemigroup of A(S), it follows that tT ç tT ç T for every

t e T, which means that TT ç f. Hence, if t e T, then Tt ç Tt ç T T, as

desired.

We now turn to the natural semigroup structure on RUCB(G)* for an arbitrary
topological group G. The details of the construction are recorded in the subsequent
lemma (recollected from [2, Section 2.2] and [36, Section 6.1]), whose straightforward

proof we omit.



490 F. M. Schneider and A. Thom CMH

Lemma 3.2 (cf. [2, Section 2.2]). Let G be a topological group. The following hold.

(1) For any p e RUCB(G)* and f e RUCB(G), the function

<D„/iG—>C, g^p(f oXg)

is right-uniformly continuous and bounded with H^/Hoo < Il MII11/11 oo-

(2) For all ne RUCB(G)*, / e RUCB(G) and g e G,

<M/ ° kg) (<*//) °V ®gßf (®ßf)°Pg-

(3) Let p e RUCB(G)*. Then, RUCB(G) -> RUCB(G) is a bounded linear
operator with H^H \\p\\- Ifp is positive (resp., unital, a *-homomorphism),
then so is

(4) Let p,v e RUCB(G)*. Then

pv. RUCB(G) —> C, f i—» p(Qvf)

belongs to RUCB(G)*, ||/xv || < ||/x||||v|| and <bßv o <!>„. Ifboth p and v

are positive (resp., unital, *-homomorphisms), then so is pv. In particular,

pv e M(G) ifp, v e M (G), and pv e S(G) ifp, v e S (G).

(5) For all p,v,% e RUCB(G )*, we have p(vÇ) (pv)^.
Let G be a topological group. It follows that RUCB(G)*, together with the

multiplication defined in Lemma 3.2(4), constitutes a unital Banach algebra. For each

g e G, let us considerthe state 8g: RUCB(G) —> C,f f(g). We observe that the

multiplication on RUCB(G)* is compatible with the action of G upon RUCB(G)*
introduced in Section 2, in the sense that gp — Sgp for all p RUCB(G)*
and g G. Furthermore, endowed with this multiplication and the weak-* topology,
RUCB(G)* is easily seen to form a right topological semigroup, of which M(G)
and S(G) are subsemigroups by Lemma 3.2(4).

Let us briefly examine the topological centre of the right topological semigroup
isolated above. Consider any topological group G. The convolution of two Borel

probability measures p and y on G is the Borel probability measure pv on G defined

by

(pv){B) (p (g> y)({(x, y) e G \ xy e B}) (B ç G Borel).

We note that spt(^,y) ç (spt/r)(spt y) for any two Borel probability measures p
and y on G. It is well known and straightforward to check that Prob(G) together with
this convolution forms a semigroup and that Probreg(G) is a subsemigroup thereof.
The map Ic'- Prob(G) —> M(G) given by

/g(a0(/) f f dp (p e Prob(G), / e RUCB(G))
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is a semigroup homomorphism, in particular Iq (Probreg(G and /G(Prob(G))
constitute subsemigroups of M(G). Since Probreg(G) contains all Dirac measures

on G, the latter moreover entails that both /G(Probreg(G)) and /G(Prob(G)) are

G-invariant subsets of M(G).

Remark 3.3. Let G be a topological group. Due to [33, Theorem 5.3], the restriction
of Iq to Probreg(G) is injective. Furthermore, if G is metrizable (equivalently,
first-countable), then the map Iq itself is injective, since in this case every closed

subset of G is the zero set of some element of RUCB(G). In any case, starting from
Section 4, we will not distinguish in notation between a Borel probability measure

on G and its image under Iq, and we will adopt terminology introduced so far for
elements of M(G) (such as in Definition 2.3) for members of Prob(G) accordingly.

With the notation introduced above at hand, we recollect two results about

topological centres from literature. The first one is a generalization of a result
about locally compact groups by Wong [43, Lemma 3.1].

Proposition 3.4 ([11, Proposition 4.2]). For any topological group G,

7G(Probreg(G)) ç A(M(G)).

The second is a consequence of [33, Theorem 7.25] and [33, Theorem 9.41(1)].

Proposition 3.5 ([33, Theorems 7.25,9.41(1)]). For a separable topological group G,

Ig (Prob(G)) ç A(M(G)).

If G is a locally compact group, then the inclusion noted in Proposition 3.4 above

is indeed an equality, i.e., /G(Probreg(G)) A(M(G)). This follows from the work
of Neufang [31] sharpening a result by Lau [27], Natural analogues of this result
for different classes of topological groups are due to Ferri and Neufang [11], and

Pachl [32]. For more details, we refer to [33, Section 9.4].
For the remainder of this section, we turn to a class of function sets on topological

groups, classically referred to as introverted sets [7,17],

Definition 3.6. Let G be a topological group and let H ç RUCB(G). Then H will
be called right-translation closed if / o pg e H for all f H and g G, and H
will be called introverted if H whenever / e H and pt M(G).

When dealing with introverted sets, we will make use of the following
observations.

Lemma 3.7. Let G be a topological group and f 6 RUCB(G). The linear map

T'y:RUCB(G)* —> RUCB(G), p i—>

is continuous with respect to the weak-* topology on RUCB(G)* and the topology of
pointwise convergence on RUCB(G). Furthermore,
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(1) ^/(IVKG)) conv{/ o pg |ge G}, and

(2) Vf(B) RUEB(G) for every norm-bounded B ç RUCB(G)*.

Proof. For every h RUCB(G), let ?^:RUCB(G)* —» C,/t p{h). If x e G,
then

{Sx o Vf)Qi) 8x(®ßf) (av/)(x) n(foXx) rifoxAß)

for all [i e RUCB(G)*, i.e., Px 0 ^f — Q f°kx- This readily entails the continuity
stated above. Since 4>/(i?)x) $>8xf — f ° Px for all x e G and the convex hull
of {<5X I x e G} is dense in the compact space M(G) (see [33, Corollary, p. 6]),
continuity and linearity of ^/ imply that

/(M(G)) con\{Tf (8x) I x e G} conv{/ o px \ x e G}.

which proves (1).
In order to verify (2), let B be a norm-bounded subset of RUCB(G)* and consider

s := sup^gg ||/r|| < oo. Let s > 0. As / is right-uniformly continuous, we find a

neighborhood U of the neutral element in G such that \\f — (f o A^)||oo <7TTfor
all g G. We claim that

V.v, y e G, xy'1 e U: sup |(<&„/)(*) - (0M/)(y)| < e.

ßeB

Indeed, if /i e B and x, y e G with xy_1 e U, then

\(®nf)(x) ~ (^f)(y) I I P((f o Ax) - (/ o A,))|

<j||/-(/°^xy-i)lloo<e.
This shows that 4>/(£) {d>^/ | p G B} is right-uniformly equicontinuous. Of
course, 4>/(B) is || • ||oo-bounded by Lemma 3.2(4). Hence, /(B) e RUEB(G).

Corollary 3.8. Let G be a topological group and let H ç RUCB(G). If H is

introverted, then H is right-translation invariant. Conversely, if H right-translation
closed, convex, and closed w.r.t. the topology ofpointwise convergence, then H is

introverted.

Proof. This is an immediate consequence of Lemma 3.7(1).

Corollary 3.9. Let G be a topological group and let d be a right-invariant metric
on G generating the topology of G. Then p</(/xv) < Pdip) f°r all p RUCB(G)*
and v M(G).
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Proof. Evidently, Lip}(G,r/) is right-translation closed, convex, and closed with

respect to the topology of pointwise convergence, hence introverted by Corollary 3.8.

Consequently, if /x e RUCB(G)* and v e M(G), then

pd(fiv) sup {|0u>)(/)| I / G Lip}(G,<i)}

sup {|/x(d>y/)| I / G Lip}(G, d)}
< sup{|/x(/)| I / e Lip[(G,d)} pd(ji).

The next lemma will allow us to swap quantifiers when testing amenability.

Lemma 3.10. Let G be a topological group, let E be a closed subsemigroup of M(G),
and let H ç RUCB(G). Suppose that <t>M H) ç H for all fi G E. The following
are equivalent.

(1) 3/x e E V/ e // Vg e G: p(f o Xg) p(f).
(2) V/ e H lu e S Vg e G: p(f o Xg) /*(/).

Proof. Of course, the former implies the latter. Since E is a compact Hausdorff

space, in order to prove the converse implication it suffices to show that

VF ç H finite 3/4 e E Vg e G: p(f o \g) p(f).
Consider any finite subset F {f\, fn} If H. By assumption, there is fin e E
such that jJ-nifn °^g) Pn(fn) for all g e G, i.e., the function fn is constant. As

^u(H) f H for all fie E, we may continue by recursion: for each i e{l,...,« — 1},
there exists /t,- e E such that

fLi(($Hi+1~ßnfi) 0 kg) fli(®ßi+l-ßnfi)

for every g G G, that is, $>ßi{$ßi+]-ßnf $>,H - nnf is constant. Finally, let us

define fi := fi\ • • • fin e E. For each i e {1 «}, since the function T>/ir../x^ f is

constant, it follows that

f) ®ßi"ßnfi>

wherefore is constant, too. Consequently,

Fiji °^g) ($ßfi)(g) ($ßfi)(e) fi(fi)
for all g G and i e {1,as desired.

The subsequent corollary is a well-known result due to Granirer and Lau [17].

Corollary 3.11 ([17]). Let G be a topological group. The following hold.

(1) G is amenable ifand only if

V/ e RUCB(G) 3ti 6 M(G) Vg G: fi(f o Xg) fi(f).
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(2) G is extremely amenable ifand only if

Vf e RUCB(G) 3,x e S (G) Vg e G: /*(/ o Xg) /x(./).

Proof Both statements are immediate consequences ofLemma 3.10: the first follows
for S M(G) and H RUCB(G), the second for S S(G) and H RUCB(G).

As shown by Moore [30], for a discrete group G, one may replace RUCB(G)
t°°(G) in Corollary 3.11(1) by the set of characteristic functions of subsets of G.

A topological version of Moore's result, in terms of two-element uniform coverings,
has been established in [39], For our present purposes, however, we will need a

different refinement of Corollary 3.11(1).

Corollary 3.12. Let G be a topological group. Assume that H ç RUCB(G) is

introverted and generates a dense linear subspace o/RUCB(G). Then G is amenable

ifand only if

Vf e H 3p, e M(G) Vg e G: p,(f o Xg) n(f).
Proof Evidently, the former implies the latter. Let us prove the converse implication.
By Lemma 3.10, our hypothesis entails that there exists pt e M(G) such that

M(/ 0 hg) n(f)
for all f e H and g e G. Since fi is a continuous linear form and H generates
a dense linear subspace of RUCB(G), it follows that p.(f o Xg) gt(f) for all

/ RUCB(G) and g eG.

4. Poisson boundary and Furstenberg's conjecture

In this section we consider harmonic functions and Poisson boundaries for random
walks on topological groups and prove a general topological version of Furstenberg's
conjecture.

Definition 4.1. Let G be a topological group and let /r e M(G). The elements of

HM(G) := {/ 6 RUCB(G) | / <&„/}

will be called p-harmonic functions on G.

Of course, for any topological group G and any /r e M(G), the collection H^G)
constitutes a || • Hoo-closed linear subspace of RUCB(G) containing the set of
constant functions and being closed under complex conjugation. The subsequent

Proposition 4.2 and Proposition 4.4 are simple variations of results due to Prunaru [37]
extending earlier work Furstenberg [12] and many others [9,10,34,42,44],
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Proposition 4.2. Let G be a topological group and let p. A(M(G)). Then H/((G)
constitutes a commutative unital C* -algebra with respect to the multiplication given
by

(fi > fi)(g) := Hm <V (/i/2)(g) (/i,/2 e HM(G), g e G).
«-+0O

Proof. The following argument is due to Prunaru [37] and will be included only
for the sake of convenience. By Lemma 3.2, (dV)«eN is a sequence of linear
contractions, which readily implies that the linear subspace

C/i(G) := {/ £ RUCB(G) | f)neN pointwise convergent}

is ||-1|oo-closedin RUCB(G). To prove this, let / RUCB(G) and (fk)keN CM(G)N
such that

\\f ~ fkWoo—>0 ask^oo.
Let g e G. For every e > 0, we find k e N with \\f — fkWoo < f and then

I e N with

SUp |(<!ynfk)(g) - (<V/*)(#)I < f,
N>£

which entails that

<11 / - Alloc + I(SV»/*)(£) - (<V/fc)fe)l + IIA - /Hoc < e

for all e N>^. This shows that ((dV</)(g))neN £ is a Cauchy sequence
and therefore convergent in C. Thus, / e CM(G) indeed. What is more, for each

n e N, the operator A>ßn commutes with complex conjugation, whence Cß(G) is

closed with respect to the latter, too. Furthermore,

H/x(G) ç Cß(G).

Thanks to Lemma 3.7, for each / e Cß(G), the pointwise limit

M/) := lim V/n^-oo

belongs to RUCB(G). Once more, since (O^'O/zeN is a sequence of linear
contractions, nß:Cß(G) -» RUCB(G) is a linear contraction as well. Evidently,
if / e H^G), then nß(f) — f. We now claim that

nß(Cß(G)) ç Uß(G).

In order to prove this inclusion, let us consider the weak-* closed set

A := P| {pf> \n e N>m} ç M(G),
me N
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which is non-empty by weak-* compactness of M(G). As/t e A(M(G)), it follows
that

f) {pn I n e N>m+i} A.
meN

Now, let / Cß(G). We wish to show that A>ß(jtß(f)) nß(f). Note that, for

every g e G, continuity of the map M(G) —> 1R, v h» v(f o \g) implies that

{(<ïv/)(g) I v e A} {v(f o Xg) I v e A} ç p "(/ o Xg) \ n e N>m}
meN

p| {(v/)(?)i«eN>m} Mf)(g)}.
me N

That is, <FV/ nß{f) for all v e A. Hence, picking any v e A and using the fact
that fiv e A, we conclude that

<MM/)) *ß(*vf) Lem='2(4) <*V(/) M/)-
So, nß(f) e Hm(G) as desired. It follows that Jtß is idempotent and that

nß(Cß(G)) Hß(G).

Claim 1. If h e Hß(G), then \h\2 e Cß{G) and

V/ RUCB(G): (|h\2 - itß{\h\2))f e kerf^).

Proof of Claim 1. Let h Hß(G). For each g G, since g/i is a positive linear
functional on the C*-algebra RUCB(G), the Cauchy-Schwarz inequality asserts that

\h\2(g) |<V*|2(g) \(gmh)\2 < (g^)(|l|2) • (gp)(\h\2) <M|A|2)(g)-

By positivity of <&ß, this entails that the II-lloo -bounded sequence (A>ßn (|/?|2))«eN is

increasing, thus pointwise convergent to the function sup„gN A>ßn (|/;|2). This shows

that \h\2 Cß{G) and

nß(\h\2) sup $a«(|/î|2).
neN

In particular, nß(\h\2) — \h\2 > 0. Note that

$ßn{jtß(\h\2) - \h\2)(g) —> 7Tß(jTß(\h\2) - \h\2)(g) 0 (n —» oo)

for all g G. For every / e RUCB(G) with / > 0, since

|<M(|/*i2-Mi/*i2))/)| <\\f\\oo®ß»M\h\2)-\h\2)

due to positivity of the linear operators (<Ev)neN, it follows that

(<V((l>>l2-MlA|2))/))„eN
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converges pointwise to 0, i.e., (|//|2 — n^Qh]2))/ G ker^n^). By linearity of n^,
this readily implies that

(\!'\2 -^(|/'|2))/ e ker(jr/x)

for every / e RUCB(G).

Claim 2. If h\,h2 H^G), then h\h2 e Cß{G) and

V/ g RUCB(G): (hih2 - n^h^))/ G ker(7r/x).

Proofof Claim 2. Consider any h h2 G H/t(G). A straightforward computation
shows that

3

h\h2 \ ^2in\gn\2.
n=0

where gn \=h\ + inh2 for n e {0,1, 2, 3}. Since gn e H/X(G) for each « g {0,1,2, 3},
Claim 1 implies that hih2 G CM(G) and moreover

3

{hlh2-nß(hlh2))f \ ^/"((|g„|2 - 7rM(|g«|2))/) ker^)
n=0

for every / G RUCB(G).

Henceforth, let us denote by Jß(G) the II-Hoc -closed ideal of RUCB(G) generated

by the subset

{hih2 - nß(hih2) | huh2 G H^(G)}.

By Claim 2, J^G) is contained in kerC^).

Claim 3. If n G N>i and h\,... ,h„ G H^G), then h\---hn G Cß(G) and

hi • • • hn — nß(hi • • • hn) g J^(G).

Proofof Claim 3. The proof proceeds by induction. Clearly, if n 1, then the

statement is trivial. Moreover, if n 2, then the desired conclusion follows from
Claim 2 and the definition of JM(G). For the inductive step, let n G N>2 such that
the assertion of Claim 3 is valid. Let h\ hn+i H/X(G) and / := h \ •• - hn+1.
Then

/i := (hih2 - n^hih2))h3 •hn+l G Jß(G) and fx G ker(7rM)

by Claim 2. Furthermore, since nß(h\h2) G HM(G), our induction hypothesis asserts
that

fi '= Tt^{hih2)h2 hn+i G Cß(G) and f2 - nß{f2) G iß(G).
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Consequently,

f f1+f2e Cß(G), / - 7r„(/) f1 + f2- nß(f2) e JM(G).

This completes the induction and hence proves the claim.

Let us denote by Aß(G) the II • llco -closed subalgebra of RUCB(G) generated

by Hm(G). Since Hß(G) is closed under complex conjugation, Aß(G) is a C*-sub-
algebra of RUCB(G). By Claim 3, A/X(G) ç Cß(G). As jrß is an idempotent linear

contraction, it follows that

||Ä||oo inf {ll/lloo I /eA^(G), nß(f) h}

for all h H;/ (G), and therefore

Aß(G)/ker(nß\Alx{G)) -> Hß(G), f + ker (nß\A^G)) nß(f)

is an isometric isomorphism of the respective Banach spaces. Moreover, Claim 3

asserts that / — nß(f) e Jß(G) for every f e Aß{G). Since, again, nß is

idempotent and JM(G) ç kerj^) due to Claim 2, we conclude that

ker Ma^cg)) {/ - M/) I f e AM(G)} Jß(G) n Aß(G).

In particular, ker^^A (g>) is an ideal of AM(G), and thus

Hß(G) A/i(G)/ker(7rja|Aju(G))

constitutes a C*-algebra with respect to complex conjugation and the multiplication
given by

h\ > h2 := nß(h\h2) lim $ßn(hih2) (huh2 e Hß(G)).
n—>OQ

Evidently, the C*-algebra H^jG) is commutative and unital.

Definition 4.3. Let G be a topological group and let e A(M(G)). The Poisson

boundary of (G,/x), denoted by n^jG), is defined to be the Gel'fand spectrum
of the commutative unital C*-algebra H^fG), i.e., the compact Hausdorff space of
*-homomorphisms from HM(G) to C, endowed with the weak-* topology.

The next proposition provides an integral representation of harmonic functions
via Poisson boundaries as introduced above. Let G be a topological group and let

/x 6 A(M(G)). It follows from Lemma 3.2(2) (and Proposition 4.2) that

Hß(G)^Hß(G), h^hoXg
is a well-defined C*-automorphism for every g G. In turn, G admits an action

on TIm(G) given by

(gf)(A) := Hh o kg) {g G, I e Uß(G), h e Hß(G)),
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which is easily seen to be continuous. For every / e H^G), let

II/i(G) -> C, £.-»£(/)•
Due to Gel'fand duality, x//ß:¥lß(G) —» Cin^G)) constitutes an isomorphism of
C*-algebras. Since H/t(G) -» C, h i-> /t(e) is a positive unital linear functional on
the C*-algebra H/X(G). the Riesz-Markov-Kakutani representation theorem asserts

that there exists a unique regular Borel probability measure p on F1M(G) such that

J fß(h)dp h(e)

for all h e H^G).
Proposition 4.4 (Poisson formula). Let G be a topological group and let ft e A(M(G)).
For all h G H^G) and g e G,

Kg) J fKh)(g$)dp(£).

Proof. For all h G HM(G) and g e G,

jMh)(g&dm) j(gm)dß{K fw°i8)dm
J fKh °^g)(l)dfi(K (h o Xg){e) h(g).

Let us study the connection between the amenability of topological groups and

the structure of their Poisson boundaries. By Lemma 3.1, if G is a topological group
and [x e A(M(G)), then the weak-* closed convex hull T,ß(G) := conv{ pn \ n > 1}

is a subsemigroup of M(G).
Lemma 4.5. Let G be a topological group, let p A(M(G)), and let H c RUCB(G)
be introverted. The following are equivalent.

(1) 3u 6 Em(G) V/ H Vg G: v(f o Xg) v(f).
(2) H^G) fi H ç C.

Proof. (1) =A (2). Let h G H^fG). By Lemma 3.7,

V(W) {veM(G)|<M A}

forms a closed subset of M(G). Since moreover 4^ ({/z}) is a convex subsemigroup
of M(G) containing p, it follows that £M(G) Ç *1i.e., Ov/t h for every
v G T,ß(G). Hence, if h G H and there exists v G T,ß(G) with v{f o Xg) — v(f)
for all g G G, then

Kg) (®vh)(g) v(hoXg) v(h) (®vh)(e) h(e)

for all g G G, that is, h is constant.
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(2) => (1). Since pt e A(M(G)), the affine map T,ß(G) -> Hß(G), v h- /tv
is continuous. By the Markov-Kakutani fixed-point theorem [25,28], there exists

v G £/i(G) with pv v. Now, consider any / e H. Then $>vf e H, due to H
being introverted. Moreover, since

by Lemma 3.2(4), the function <£>vf is /t-harmonic, hence constant by assumption.
Thus,

V(f O kg) (<S>vf)(g) ($v/)(e) v(/)
for every g e G.

In the light of Remark 3.3, the following proposition particularly applies to

any regular Borel probability measure on a topological group (Proposition 3.4) as

well as to any arbitrary Borel probability measure on a separable topological group
(Proposition 3.5).

Proposition 4.6. Let G be a topological group and let pi A(M(G)). Then the

following are equivalent.

(1) The Poisson boundary 11
/t (G) is trivial, i.e., a singleton.

(2) Hß(G) C.

(3) There is v eSß(G) suchthat v(f oAg) v(/) for all f gRUCB(G) and g£G.

Proof. The equivalence of (1) and (2) is an immediate consequence of Gel'fand duality,

while the equivalence of (2) and (3) follows by Lemma 4.5 for H — RUCB(G).

The subsequent result generalizes work of Kaimanovich-Vershik [23, Theorem

4.3] and Rosenblatt [38, Theorem 1.10]. The proof given below follows closely
the lines of Kaimanovich and Vershik [23, Proof of Theorem 4.3].

Theorem 4.7. Let G be a second-countable topological group. Then the following
statements are equivalent.

(1) G is amenable.

(2) G admits a fully supported, regular Borel probability measure p such that

(P-")neN UEB-converges to invariance over G.

(3) G admits a Borel probability measure /i such that UEB-converges to

invariance over G.

Proof. (2) =>• (3). This is trivial.

(3) (1). This is due to Remark 2.4.
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(1) =>• (2). Since G is second-countable, the Birkhoff-Kakutani theorem [3,24]
asserts that G admits a right-invariant metric d generating the topology of G, and

furthermore we find an increasing sequence of finite subsets

{e} =: S0 ç S1 ç ç Sm ç Sm+1 ç ç G

such that S := | m N} is dense in G. Choose a sequence (rm)meN of
positive reals so that XmeN Tm 1- For each m e N>i, we pick nm N>i such

that (r0 + h Thanks to Corollary 2.2, we may recursively choose

a sequence (am)mgN of finitely supported, regular Borel probability measures on G

such that So ç spt(«o) and, for each m e N>i,
(i) pdigotm ~ dm) < £ for all g e Sm U (sptam_i)"m, and

(ii) Sm U (sptam_i)"m ç spt(am).

Consider the regular Borel probability measure [i := XmeN Tmam on G. Then

spt(/x) G, since spt(/r) is a closed subset of G containing spt(am) 2 Sm for
all m 6 N. We will show that (/OneN UEB-converges to invariance over G. Our

proof proceeds in three steps.

Claim 1. For all m G N>i, k G N"m \ {0 m — l}"m and g G Sm~i,

Pd {gukx akn,n -oikr" oik„m )<£
ProofofClaim 1. Let m e N>i and I nm. Let g G Sm-\ and k e \
{0,..., m — 1}^, and put j := min{/ G {1 t] \ ki > m}. For

9 := akx 0i := akl 92akj+l---ake,
we note that 9 9\akj 92. For each i e {1,..., j — 1}, the definition of j implies
that ki < m and therefore

spt(afc;) ç spt(am_i)

by (ii). Since j < I, we have

spt(öi) Ç (sptam_i)_1.

Also, g G spt(am_i) by (ii), and so

spt(g0i) Ç (spt am-iY.

Thus, assertion (i) implies that

Pd (a*y - 0iakj < 01 (th(a*J ~ hoikJ - m •

Äspt(öi)

Vd{oikj ~ g9\cikj) < (S"0i)({Ä»Pd(akj-hctkj) <
hespt(gOi)
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Consequently, thanks to Corollary 3.9,

Pd(g0 -6) Pd((gOiotkj - Oiakj)02) < Vd{g0\Oikj - 6\<dkj) <

This finishes the proof of Claim 1.

Claim 2. For every m e N>i and g e Sm_i,

pd(gnnm -Id""') <

Proofof Claim 2. Consider any m e N>i and g e Sm-\. We will abbreviate I :=nm.
Noting that // XlfceN* TU ••• we define

V1 -= ^ '
xk\ ' ' ' T-ki&k] ' ' ' Wki

and

v2 := Id1 -V^.
Evidently,

Vd(gv\ - vi) < Pd(gvi) +Pd(vi)

— ~ ^ Tk\ " " xkt
ke{0,...,m—1}^

2(to + • • + xm~i)^ <

Furthermore, according to Claim 1,

Pd(gv2-v2)< Y2 Tk\ TktVd(goikx •0Cke ~otkx •••akt) <

keNe\{0,...,m-l}e

Consequently, pdigp1 - \±l) < pd)gv\ - vi) + p</(gv2 - v2) < ± as desired.

Claim 3. The sequence (fdn)neN UEB-converges to invariance over G.

Proofof Claim 3. Thanks to Lemma 2.5 and S being dense in G, it is sufficient to
show that, for every g S, the sequence (g/x"—/x")„6n converges to 0 e RUCB(G)*
with respect to the UEB topology. For this purpose, let g e S. According to

Corollary 3.9,

pd(gldn+1 -/x"+1) pd((gldn -Id")Id) < pd{gldn-ldn)
for all n e N, i.e., the sequence (pd(gld" — /d"))neN is decreasing. Moreover,
Claim 2 gives that

inf pd(gId" -il") < inf pd(gldnm -ix"m) 0.
nN /meN

and therefore pdigp" — Id") —> 0 as 11 -> oo. Since {g/d" — [in | n N} U {0} is

a || • ||-bounded subset of RUCB(G)*, it follows by Lemma 2.6 that (g/a" — /r")«eN
converges to 0 RUCB(G)* with respect to the UEB topology, as desired.
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We deduce a general topological version of Furstenberg's conjecture [15],
established for countable discrete groups by Kaimanovich-Vershik [23] and for
second-countable locally compact groups by Rosenblatt [38],

Corollary 4.8. Let G be a second-countable topological group. Then the following
statements are equivalent.

(1) G is amenable.

(2) G admits a fully supported, regular Borel probability measure p such that

n/x(G) is trivial.

(3) G admits a Borel probability measure p such that T\IL(G) is trivial.

Proof. (2) => (3). This is trivial.

(3) =4 (1). This is an immediate consequence of Proposition 3.5 and Proposition

4.6.

(1) =4 (2). Suppose that G is amenable. By Theorem 4.7, there exists a fully
supported, regular Borel probability measure p on G such that (pn)neN UEB-

converges to invariance. Thanks to compactness, we find a weak-* accumulation

point v of the sequence (pn)nen in M(G). Evidently, v Eß(G). Due to
Remark 2.4, v is G-invariant. Hence, n^G) must be trivial by Proposition 3.4
and Proposition 4.6.

Remark 4.9. It would be very interesting to establish an analogue of Theorem 4.7
for more general topological groups. In this regard, it seems natural to consider

separable or, more generally, cu-bounded groups. Recall that a topological group G

is co-bounded if for every open neighborhood U of the neutral element in G there

exists a countable subset C ç G such that UC — G. By work of Guran [18],
a topological group is co-bounded if and only if it is isomorphic to a topological
subgroup of a product of second-countable groups. This suggests employing inverse

spectra techniques to investigate potential generalizations of Theorem 4.7.

5. Liouville actions on metric spaces

In this section, we turn our attention towards continuous isometric actions of
topological groups on metric spaces and study the Liouville property for such

actions. More precisely, given a metric space X, we consider the topological group
Iso(3f) of all isometric self-bijections of X, endowed with the topology of pointwise
convergence. Of course, a continuous isometric action of a topological group G

upon X corresponds naturally to a continuous homomorphism from G into Iso(V).
Our first observation concerns introverted UEB sets on topological groups arising

from continuous isometric actions. For this purpose, let us define

f\x'-G -> R, g^fig-'x)
for any group G acting on a set X, any x e X and / e M*.
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Lemma 5.1. Let G be a topological group acting continuously by isometries upon a
metric space X. For every x e X, the set

LAG.X) :={/U /GLipl(X)}

belongs to RUEB(G), is convex, right-translation closed, and compact w.r.t. the

topology ofpointwise convergence, thus is introverted.

Proof. Let x G X. Evidently, LX(G, X) is || • ||oo-bounded. To show that LX(G. X)
is right-uniformly equicontinuous, let us consider any e > 0. Then

U := {g G I dx{x,gx) < e}

constitutes a neighborhood of the neutral element in G. If g,h G G and gh~x G U,
then

I f\x(g)~f lx(h)\ \f(g~lx) - f{h~lx)\
5 dX{g~lx, h~lx) dx(x, gh~xx) < e

for all / e LipJ(A/. So, LX(G, X) G RUEB(G) as desired. To conclude, we note
that the map

rx:Lip°°00 — RUCB(G), / f\x
is linear and continuous with regard to the respective topologies of pointwise
convergence. Consequently, Lx(G,X) Tv(Lipj(A')) is convex and compact.
Furthermore, for all g G G and / G Lip[(3f), note that

/ tx ° pg (/ ° O) tx e LX(G, X),

where rg:X —> X, y g~xy. Thus, LX(G.Z) is right-translation closed, hence

introverted by Corollary 3.8.

For convenience, let us recall the following well-known fact.

Lemma 5.2. Let S be a set and let X be a metric space. Let <p: S X and

f,£ G R>o- For any bounded f : S —> M,

(ys, t e S: I/O) - /(Ol < tdx((p0), <K0) + «)

^ (3F £Lip?(Xy.\\f - F o<p\\œ < e).

Proof. Let r := ||/||oo- Define F: X —> M by

F(x) := inf f(s) + ldx(cp(s), x)) Ar (x e X).
seS

Note that F G L\pre(X). Evidently,

F(cp(s)) < f(s) + ld(<p(s),<p(s))
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for every s e S. Also, if s e S, then

/0) </(*) + id{(p{t), <p(s)) + s

for all t G S. Hence, \\f — F o < s.

Given any metric space X and n G N, let us consider the metric space Xn
carrying the usual supremum metric defined by

dx"(x, y) := sup{dx(xi,yi) \ i g N, 1 < i < n} (x,y e X").

Evidently, if G is a topological group acting continuously by isometries on X, then G

admits a continuous isometric action upon X" given by gx := (gx\,..., gx„) for
all g G and x Xn.

Lemma 5.3. Let X be a metric space. If G is any topological subgroup of Iso(V),
then

L(G, X) := [J{LX(G, Xn) \ x e X", n e N}

generates a dense linear subspace of RUCB(G).

Proof. Of course, it suffices to check that RUCB(G) 0 MG is contained in the norm-
closure of the linear subspace of RUCB(G) generated by L(G, X). So, let f:G — R
be bounded and right-uniformly continuous. Consider any e > 0. Thanks to right-
uniform continuity, there exist 8 > 0, n e N, and x e X" such that

Vg,heG: dx»(g~lxji~lx) dx»(x, gh~lx) < 8 => \f(g)-f(h)\<s.
Let I := 28~l ||/||oo- We deduce that

I fig) - f(h) I < max{£, idXn(g"1x,h~1x)} < idXn(g~lx,h~lx) + £

for all g, h G. Due to Lemma 5.2, we find F G Lip^°(A") with

sup I/te) - F(g~l*)\ < G
geG

i.e., UZ-FMloo < £. Of course, being a member of Lip^°(2f"), the function F is

contained in the linear subspace of the real vector space
'

generated by Lip J (X"),
whence F |"x belongs to the linear span of LX(G. X) inside the real vector space
RUCB(G). This proves that / is contained in the norm-closure of the linear span
of L(G, X) in RUCB(G), as desired.

Corollary 5.4. Let X be a metric space and let G be any topological subgroup

of Iso(A). Then G is amenable ifand only if

Wn > 1 Vx G Xn V/ LipJ(V")3/r G M(G) VgeG: pt{f b,oAg) p(f [x).



506 F. M. Schneider and A. Thorn CMH

Proof. As any union of introverted subsets of RUCB(G) will be introverted as well,
Lemma 5.1 entails that L(G, A) is an introverted subset of RUCB(G). Hence, the

desired statement follows from Corollary 3.12 and Lemma 5.3.

Subsequently, we reformulate the results above in terms of the Liouville property.
Let us call a Borel probability measure /tona topological group G non-degenerate
if spt(/x) generates a dense subsemigroup of G.

Definition 5.5. Let G be a topological group acting continuously by isometries

on a metric space X and let /z be a Borel probability measure on G. A bounded
measurable function f:X -> M will be called p-harmonic if f(x) — f f{gx)dp(g)
for all xeX. The action of G on A is called p-Liouville if every ya-harmonic
uniformly continuous bounded real-valued function on X is constant, and the action
is said to be Liouville if it is v-Liouville for some non-degenerate, regular Borel

probability measure vonG.
In the special case of a discrete group acting on a set, the Liouville property

introduced above coincides with the usual one, e.g., as considered in [21],

Remark 5.6. Let G be a topological group acting continuously by isometries on a

metric space X and let p be any Borel probability measure on G.

(1) The action of G on A is /z-Liouville if and only if every /z-harmonic member

of Lip} (A) is constant. This is because Lip} (A) spans a dense linear subspace
in the Banach space UCB(A, R) of all uniformly continuous, bounded real-valued
functions, equipped with the pointwise operations and the supremum norm, and

UCB(A. R) —> UCB(A, R), / i—» (jc i->-

is a bounded linear operator.

(2) As G acts isometrically on A, the set A // G := {Gx \ x e A} forms a partition
of A. Moreover, A // G admits a well-defined metric given

dX//G(Gx,Gy) := inf dx(x,gy) inf dx(gx,y) (x,y A).
geG g&G

For every / UCB(A / G,R), the map A -> R, x f(Gx) is a /z-harmonic
member of UCB(A, R). So, if the action of G on A is /z-Liouville, then Gx X
for all x A.

We will relate the Liouville property defined above to the study of harmonic
functions on topological groups. Given any Borel probability measure /z on a

topological group G, let us consider the push-forward measure p* := i*(/z) along
the map i: G —» G, g t-> g-1.

Lemma 5.7. Let G be a topological group acting continuously by isometries upon a

metric space X and let p be a Borelprobability measure on G. A bounded measurable
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function f:X —» M is p-harmonic if and only if f\x:G —> M is p*-harmonic for
every x e X.

Proof. Let / e be bounded, measurable. As

Everything is prepared to prove the following characterization of amenability of
isometry groups in terms of the Liouville property for their induced actions.

Theorem 5.8. Let X be a separable metric space. A topological subgroup G

of I so (A) is amenable if and only if for all ne N and x e X", the action of G

on Gx is Liouville.

Proof. (=>•) As A is a separable metric space, Iso(X) is second-countable with
respect to the topology of pointwise convergence, and hence is the topological
subgroup G. Since G is amenable, Corollary 4.8 asserts that G admits a fully
supported, regular Borel probability measure p such that H^G) C. It follows
that p.* is a fully supported (thus non-degenerate), regular Borel probability measure

on G. To conclude, let n e N and x e X". If / Lip} (Gx) is /z*-harmonic, then

/ Ï* 6 RUCB(G) will be /z-harmonic by Lemma 5.1, thus constant by assumption,
so that / will be constant, too. Hence, the action of G upon Gx is Liouville.

(•<=) We apply Corollary 5.4 to deduce amenability. To this end, let ne N
and x e X". According to our assumption, we find a non-degenerate, regular Borel
probability measure p. on G such that the action of G on Gx is /z-Liouville, and

therefore

by Lemma 5.7. Furthermore, LX(G, X") is an introverted subset of RUCB(G) by
Lemma 5.1. Hence, Lemma 4.5 asserts the existence of some v e EM*(G) such that

for all / e Lip|(X") and g e G. Thanks to Corollary 5.4, this shows that G is

f(gh 1x) f((hg v) lx) f\x{hg *)

for all g. h e G and x e X, it follows that

/ is /z-harmonic

H,x*(G) Cl LX(G, Xn) ç R

v(f\x)

amenable.
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6. The Liouville property for permutation groups

This section contains a brief discussion of consequences of our results for
non-archimedean second-countable topological groups, i.e., those topologically
isomorphic to a subgroup of the full symmetric group Sym(Jf), over a countable
set X, equipped with the topology of pointwise convergence. The subsequent result
follows immediately from Theorem 5.8.

Corollary 6.1. Let X be a countable set. A topological subgroup G of Sym(A)
is amenable if and only if for all n G N and x 6 Xn, the action of G on Gx is

Liouville.

Given a group G acting on a set X, one may consider the induced action of G on

the corresponding powerset P(X), defined via

gB - {gx I X B)

forallg e G and B ç X. Evidently, for every n e N, the set Pn (X) of all «-element
subsets of X then constitutes a G-invariant subset of P(X). We say that G acts

strongly transitively on X if, for every n G N, the induced action of G upon Pn(X)
is transitive. Specializing Corollary 6.1 to the case of groups of automorphisms of
linearly ordered sets, we arrive at our next result.

Corollary 6.2. Let X be a countable set and let G be a topological subgroup

of Sym(X). Then the following hold.

(1) If the topological group G is amenable, then the action of G on {gB \ g G} is

Liouville for every finite subset B ç X.

(2) If G preserves a linear order on X and the action of G on {gB \ g e G}
is Liouville for every finite subset B f X, then the topological group G is

amenable.

Proof. For every n e N and x e X", the map

<px:Gx —> {g{xi,...,x„} I g G}, y i—> {yx,...,yn}

constitutes a G-equivariant surjection. Hence, (1) is a consequence of Corollary 6.1.

Moreover, if G preserves a linear order on X, then <px is a bijection for every x e X"
with neN, and therefore (2) also follows by Corollary 6.1.

Due to the seminal work of Kechris, Pestov, and Todorcevic [26], Corollary 6.2

identifies structural Ramsey theory as a source of Liouville actions. More precisely,

if G is the automorphism group of an order Fraïssé structure on a countable set X
having the Ramsey property, then Corollary 6.2 combined with [26, Theorem 4.7]
(see also [36, Corollary 6.6.18]) asserts that the action of G on {gB \ g e G}
is Liouville for every finite B ç X. A concrete example of a corresponding
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application concerning Thompson's group F is given by Corollary 6.4 below. We

will formulate Corollary 6.4 as a consequence of the following abstract result, which
follows immediately from Corollary 6.2 and Pestov's work on the extreme amenability
of automorpism groups ultrahomogeneous linear orders [35].

Corollary 6.3. Let X be a countable set and let G be a subgroup ofSym(X If the

action of G on X is strongly transitive and preserves a linear order on X, then, for
every n e N, the action of G on SPn (X is Liouville.

Proof. Our hypotheses about the action imply that X is either empty, a singleton set,

or infinite. If X 0or|A| 1, then the desired conclusion is trivial. Now suppose
that X is infinite. Then Pestov's work [35, Theorem 5.4] asserts that the topological
group G, carrying the topology of pointwise convergence, is (extremely) amenable.
As G acts strongly transitively on X, an application Corollary 6.2(1) finishes the

proof.

In order to explain the above-mentioned application of our results, let us finally
turn to Richard Thompson's group

F := (a, r | [oz~1 ,o~lto] [ctt-1, a~2rcr2] e),

which possesses an alternative presentation given by

F ((Vn)neN I Vffl,« 6 N, m < n : Y~lynYm Yn)

and corresponding to the previous one via yo tr and y„ a1_"Ta"_1 for

every n e N>i. For general background on this group, the reader is referred to [6].
In the following, we will be particularly concerned with two of its representations.
First of all, let us recall that Thompson's group F admits a natural embedding
into the group Homeo+[0, 1] of orientation-preserving homeomorphisms of the real

interval [0. 1] determined by

ct(x)
(*g1M])> * i

tX n !p
/ n su /x )l +1 (x e [if])-- 4 (XG[ilJ)' T(X) •= { 1 / r3 1~\\
/ n i I* - ÏÏ (* 4, 52.x-1 (*[|,1]), I 8,

x
2

X - \
2x — 1 (x[|,l]).

The image of F under this embedding consists of those elements of Homeo+[0. 1]

which are piecewise affine (with finitely many pieces) and have all their break points
contained in Z[|] and slopes contained in the set {2^ | k e Zj. Furthermore, by work
of Brin and Squier [4], Thompson's group F embeds into the group Homeo+(M) of
orientation-preserving homeomorphisms of the real line via the action on M given by

cr(x) := x — 1 (x e M), r(x) :=
(x e oo, x]),
(x 6 [0,2]),

(x e [2,oo)).
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The image of this second embedding consists of those members of Homeo+(M)
which, again, are piecewise affine (with finitely many pieces) and have all their break

points inside Z[|] and slopes inside {2k \ k Z}, and which moreover agree
with translations by (possibly two different) integers on (—00, a] and [a, 00) for a

sufficiently large dyadic rational a G Z[^].
The two embeddings of Thompson's group F introduced above are connected

in a fairly natural way. As remarked in [19, Remark 2.5] (see also [22, 2.C]), the

piecewise affine map k: (0,1) -> M given by

jç ^

k(x) := F n (x [tn,t„+1], 11 G Z),
tn +1 — Ui

wheretn := 1 —^qryfor n G N andf„ := ^fL^for« G Z\N, constitutes an F-equi-
variant monotone bijection between (0. 1) and M. Furthermore, k(D) Z[^l for
D := (0. 1) nZ[|], whence the restricted F-actions on Z[|] and D are isomorphic.

Since the considered actions of Thompson's group FonZ[j] and D are strongly
transitive and preserve the natural linear order, our Corollary 6.3 entails the following
affirmative answer to a recent question by Juschenko [20], motivated by work of
Kaimanovich [22].

Corollary 6.4. For all n N, (lie action of F on -Fn (Z[|]) (resp., lPn(D)) is

Liouville.

Furthermore, Corollary 6.2 resolves another recent problem by Juschenko [20].

Problem 6.5 ([20, Problem 9]). Let a group G act faithfully on a countable set X
such that, for every n e N, the induced action of G on PniX) is Liouville. Is G

amenable?

Our results entail that the solution to Problem 6.5 is negative, even if we require G

to be countable. Indeed, if H is any amenable topological subgroup of Sym(X) acting
strongly transitively on X and containing a dense countable subgroup G which is non-
amenable as a discrete group (e.g., isomorphic to the free group F2 on two generators),
then, however, the density will imply that the action of G on A is strongly transitive
and that the topological subgroup G < Fl is amenable, whence by Corollary 6.2(1)
the action of G on lPn(X) will be Liouville for every n G N. For instance, the

topological group Sym(N) is amenable, acts strongly transitively on N, and contains
dense subgroups isomorphic to F2 [29] (see also [8]). For another example, we note
that the topological group Aut(Q, <) is (even extremely) amenable [35], acts strongly
transitively on Q [5, p. 140], and contains a dense subgroup isomorphic to F2 [16].

On the other hand, we note that if a group G acts faithfully on a countable set X
in such a way that the action preserves a linear order on X and, for every n G N,
the induced action of G on lPn(X) is Liouville, then the topological group G,
carrying the subspace topology inherited from Sym(A), is indeed amenable. This is

a consequence of our Corollary 6.2(2) (combined with Remark 5.6(2)).
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