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The Liouville property and random walks on
topological groups

Friedrich Martin Schneider and Andreas Thom

Abstract. We study harmonic functions and Poisson boundaries for Borel probability measures
on general (i.e., not necessarily locally compact) topological groups, and we prove that a second-
countable topological group is amenable if and only if it admits a fully supported, regular Borel
probability measure with trivial Poisson boundary. This generalizes work of Kaimanovich—
Vershik and Rosenblatt, confirms a general topological version of Furstenberg’s conjecture,
and entails a characterization of the amenability of isometry groups in terms of the Liouville
property for induced actions. Moreover, our result has non-trivial consequences concerning
Liouville actions of discrete groups on countable sets.

Mathematics Subject Classification (2010). 22A10, 22D40, 43A07.

Keywords. Topological group, amenability, Poisson boundary, random walk, Liouville
property.

1. Introduction

The study of random walks on countable discrete (resp., second-countable locally
compact) groups via their corresponding Poisson boundary was initiated in a series of
papers by Furstenberg [12—15] and has since evolved into a major theme in geometric
group theory. Furstenberg’s original construction of the Poisson boundary for random
walks on discrete groups, relying upon the martingale convergence theorem, was
soon generalized to locally compact groups [1] and complemented by a number of
non-probabilistic approaches, ranging from functional-analytic to dynamical [9, 10,
34,42,44]. As revealed by the multitude of rather different perspectives on Poisson
boundaries, there is no essential obstruction to defining and studying such boundaries
for general (i.e., not necessarily locally compact) topological groups [37]. On the
other hand, recent years’ growing interest in topological dynamics and ergodic theory
of large (often referred to as infinite-dimensional) Polish groups, such as arising, for
instance, in Ramsey theory and operator algebra, suggests to actually pursue this
path. The present article aims to initiate and advance this development.

A definite milestone in the classical theory of Poisson boundaries of random
walks on groups is marked by Kaimanovich—Vershik’s proof [23,41] of Furstenberg’s
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conjecture [15]: a countable group G is amenable if and only if it possesses
a probability measure whose support is all of G and whose Poisson boundary
is trivial. In fact, Furstenberg’s conjecture was proved for random walks on
o-compact locally compact groups, independently, by Kaimanovich—Vershik [23]
and Rosenblatt [38]. The central objective of the present paper is a general topological
version of Furstenberg’s conjecture (Corollary 4.8), valid for arbitrary second-
countable groups, which follows from a new characterization of amenability in terms
of asymptotic invariance of the sequence of convolutional powers of a suitable fully
supported, regular Borel probability measure (Theorem 4.7). The proof of the latter
combines ideas of Kaimanovich and Vershik [23] with some recent work by the
present authors [40]. Furthermore, our result reveals a correspondence between the
amenability of topological groups of isometries of metric spaces and the Liouville
property for their induced actions (Theorem 5.8).

Perhaps surprisingly, the topological version of Furstenberg’s conjecture (Corol-
lary 4.8) does have interesting and non-trivial consequences even in the context of
actions of countable (discrete) groups on countable sets. Answering a recent question
by Juschenko [20], we show that, for every n € N, the action of Thompson’s group F’
on the set Z [%] of dyadic rationals is n-Liouville [20], that is, the induced action of F
on the collection of n-element subsets of Z [%] admits a Liouville measure. In the light
of our Corollary 6.2, this becomes an immediate consequence of Pestov’s work [35]
establishing the (extreme) amenability of the topological group Aut(Z [%] 5), which
contains F' as a dense subgroup.

This article is organized as follows. In Section 2 we recall some necessary
background concerning the amenability of general topological groups, including its
connection with the so-called UEB topology. The subsequent Section 3 is dedicated to
providing some technical prerequisites on convolution semigroups over topological
groups. In Section 4 we study harmonic functions and Poisson boundaries for
Borel probability measures on topological groups and prove the above-mentioned
generalization of Furstenberg’s conjecture, the consequences of which for isometry
groups form the subject of Section 5. The final Section 6 contains applications of
our results in the context of discrete group actions and Thompson’s group F.

2. UEB topology and amenability

The purpose of this preliminary section is to fix some notation and to recall some basic
concepts concerning function spaces on topological groups. The focus is on providing
some necessary background regarding the UEB topology on the corresponding dual
vector spaces, including its connection with the amenability of topological groups.
For a considerably more comprehensive exposition (capturing the general setting of
arbitrary uniform spaces), the reader is referred to Pachl’s monograph [33].

Before getting to topological groups, let us briefly clarify some general notation.
Given a set S, we denote by £°°(S) the commutative unital C *-algebra of all bounded



Vol. 95 (2020) Random walks on topological groups 485

complex-valued functions on S, equipped with the pointwise operations and the
supremum norm

1/ lloo := sup{| f()] | s € S} (f € £F(S)).

Consider any Hausdorff topological space T and let i be a Borel probability measure
on T'. The support of 11 is defined to be the closed subset of 7" given by

spt(p) :={x € T | YU C T open:x € U = pu(U) > 0}.

Let us call w finitely supported if spt(i) is finite, and fully supported if spt(n) = T.
As usual, p will be called regular if n(B) = sup{u(K) | K € B, K compact}
for every Borel set B € T. The set of all Borel probability measures on 7" will be
denoted by Prob(7") and the subset of regular Borel probability measures on 7" will
be denoted by Probyeg (T).

Throughout the present article, a fopological group is always understood to be
Hausdorff. Let G be a topological group. A function f:G — C is said to be
right-uniformly continuous if for every ¢ > 0 there exists a neighborhood U of the
neutral element in G such that

Vi, yeG: xy'eU=|f(x)= f(»| e

The set RUCB(G) of all right-uniformly continuous, bounded complex-valued
functions on G, equipped with the pointwise operations and the supremum norm,
constitutes a commutative unital C *-algebra. A set H € RUCB(G) is called UEB
(short for uniformly equicontinuous, bounded) if H is || - ||o-bounded and right-
uniformly equicontinuous, that is, for every ¢ > 0 there exists a neighborhood U of
the neutral element in G such that

VfeHVYx,yeG: xyleU=|f(x)- f(y)| <e

The set RUEB(G) of all UEB subsets of RUCB(G) is a convex vector bornology
on RUCB(G). The UEB topology on the dual Banach space RUCB(G)* is
defined as the topology of uniform convergence on the members of RUEB(G).
Of course, this is a locally convex linear topology on the vector space RUCB(G)*
containing the weak-* topology, that is, the initial topology generated by the functions
RUCB(G)* — C, u +— u(f), where f € RUCB(G). More detailed information
on the structure of RUCB(G)* and the UEB topology can be found in [33]. For most
of this paper, we will be interested in aspects concerning the convex subset

M(G) := {u € RUCB(G)* | u positive, u(1) = 1},

i.e., the set of states on the C *-algebra RUCB(G), which forms a compact Hausdorff
space with respect to the weak-* topology. The set S(G) of all *-homomorphisms
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from RUCB(G) to C forms a closed subspace of M(G), which is called the Samuel
compactification of G. Now, for any g € G, let A,:G — G, x — gx and

pg: G — G, x — xg. Note that the group G acts by linear isometries on the Banach
space RUCB(G)* via

(gu)(f) == u(f odg) (g€ G. peRUCB(G)", f € RUCB(G)).

It is straightforward to check that M(G) forms a G-invariant subset of RUCB(G)*
and that the restricted action of G on M(G) is affine and continuous with respect to the
weak-* topology. Moreover, S(G) constitutes a G -invariant subspace of M(G). We
recall that G is said to be amenable (resp., extremely amenable) if M(G) (resp., S(G))
admits a G-fixed point. It is well known that G is amenable (resp., extremely
amenable) if and only if every continuous action of G on a non-void compact
Hausdorff space admits a G-invariant regular Borel probability measure (resp., a
G -fixed point). For a more comprehensive account on (extreme) amenability of
general topological groups, we refer to [36].

We recall a recent characterization of amenability in terms of asymptotically
invariant finitely supported probability measures.

Theorem 2.1 ([40, Theorem 3.2]). A topological group G is amenable if and only if,
for every ¢ > 0, every H € RUEB(G) and every finite subset E C G, there exists a
finitely supported, regular Borel probability measure |1 on G such that

Vge EVf e H: Iffolgdu—ffdulgg.

Corollary 2.2. A ropological group G is amenable if and only if, for every ¢ > 0,
every H € RUEB(G) and every finite subset E C G, there exists a finitely supported,
regular Borel probability measure p on G such that E C spt(p) and

Ve e EVf € H: i/folgdp,—ffd,u,yfs.

Proof. In view of Theorem 2.1, we only need to prove that the former implies the
latter. To this end, let ¢ € (0,1] and H € RUEB(G), and let E C G be finite.
Without loss of generality, we may and will assume that E # @. By Theorem 2.1,
since G is amenable, there exists a finitely supported, regular Borel probability
measure 1 on G with |ffo/lgd,u—ffd,u| < Sforall f € Handg € G. For

g
o =
I+ 4suprep | flloo

€ (0, 1],

we consider the finitely supported, regular Borel probability measure v on G given
by

v(B) := (1 —)u(B) + «!BLEL (B C G Borel).
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Evidently, E C spt(v). Moreover,

'ffo)tgdv—ffdv‘

<(-a)| [ forcdu— [ faul+ g T 1560 - f)

xeE

=(l-o)f+02|fle<5+5=¢
forall f € H and g € G, as desired. O

Theorem 2.1 suggests the following Definition 2.3.

Definition 2.3. Let G be a topological group. A net (i;)iey in M(G) is said to
UEB-converge to invariance (over GG ) if

Vg € GVH € RUEB(G): sup |ui(foAg)—pi(f)] — 0 (i —1).
feH
Remark 2.4 (see [40, Proof of Theorem 3.2]). Let G be a topological group.

If (147 )ier is a net in M(G) UEB-converging to invariance over G, then any weak-*
accumulation point of the net (u;);ey in M(G) is G-invariant.

For later use, we also note the subsequent observation.

Lemma 2.5. Let S be any dense subset of a topological group G. A net (lii)ier
in M(G) UEB-converges to invariance over G if and only if

Vg e SVH € RUEB(G): sup |ui(fodg) —ui(f)] — 0 (@ —1I).
feH

Proof. Evidently, the former implies the latter. In order to prove the converse
implication, let (u;);e; be a net in M(G) such that

Vg e SVH € RUEB(G): sup |ii(f oAg) —ui(f) — 0 (i —> I).
feH

Consider any g € G and H € RUEB(G). We wish to show that

sup i (f 0 Ag) — pi( /)| —> 0 asi — 1.
feH

To this end, let ¢ > 0. Since H € RUEB(G), there exists a neighborhood U of the
neutral element in G such that || f — (f 0o Ay)|eo < 5 forall f € H andu € U.
As S is dense in G, there exists s € S with s € Ug. Moreover, by assumption, we
find ig € 1 such that

Viel i>ip: sup|ui(fols)—pmi(f) =<3
feH
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For every i € I withi > ig, we conclude that

li(f o Ag) = wi () = [i(f 0o dg) = pi(f o As)| + i (f 0 As) — pi(f)]
S(fodg) —(f ods)lle + 5
= ”f_(folsg_l)”oo+ % =&

forall f € H,ie.,supsey|pi(f org) —pi(f)| < & as desired. O]

Due to well-known work of Birkhoff [3] and Kakutani [24], a topological
group G is first-countable if and only if G is metrizable, in which case G moreover
admits a metric d both generating the topology of G and being right-invariant,
i.e., satisfying d(xg,vg) = d(x,y) forall g,x,y € G. Furthermore, if G is
any metrizable topological group, then the Birkhoff—-Kakutani theorem gives rise
to a corresponding description of the UEB topology on norm-bounded subsets of
RUCB(G)* (Lemma 2.6 below). To be precise, let us clarify some notation. Let X
be a metric space. Given any £ € R, let us consider the set

Lipg(X) := {f e R¥ | Vx,y € X:|f(x) — f(»)] < tdx(x.y)}

of all £-Lipschitz real-valued functions on X, and moreover let
Lipg®(X) := Lip,(X) N€>®(X) and Lipy(X) := Lipy(X) N [—r.r]¥

for r € Rs¢. Define Lip™(X) := UzeR>0 Lip7°(X).

Lemma 2.6. Let G be a topological group. If d is a right-invariant metric on G
generating the topology of G, then the UEB topology and the topology generated by
the norm

pa:RUCB(G)* — R, f +— sup{|u(f)|| f €Lipi(G.d)}
coincide on every || - ||-bounded subset of RUCB(G)*.

Proof. Evidently, p; constitutes a semi-norm on RUCB(G)*. Since d is right-
invariant and generates the topology of G, it follows that Lip} (G,d) generates a
|| - lloo-dense linear subspace of RUCB(G) (see [33, Lemma 5.20(2)]), whence py
is in fact a norm on RUCB(G)*. Moreover, as d is right-invariant and continuous,
Lip} (G, d) is easily seen to be a member of RUEB (G ), thus the topology 7, generated
by pq is contained in the UEB topology tygg. It remains to prove that, for every
| - |[-bounded B € RUCB(G)*, the restriction of rygg to B is contained in the
restriction of t; to B. So, consider any || - |-bounded subset B € RUCB(G)*.
Let u € B, H € RUEB(G) and ¢ > 0. Then

K:={Re(f) | f € H}U{Im(f) | f € H}
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belongs to RUEB(G), too. Again due to d being a right-invariant metric generating
the topology of G, there exists a real r > 0 such that

Vf e K3gerLipi(G.d): |If —glloo < Tm
(see [33, Lemma 5.20(1)]). Consequently, if v € B, then
sup [(u —v)(f) =2 sup [(L—v)(f)
f€EH fekK
<2 sup [(u—v)(@t+3
gerLip}(G,d)
= 2rpyg(—v) + 5.

Hence,

(veB|pau-v)< £} ClveBIVfeH: |—v)f)]<e}.

This shows that the restriction of tygg to B is contained in the corresponding
restriction of the topology 7. L]

3. Convolution semigroups

Studying the amenability of general topological groups, we take advantage of the
intrinsic right topological semigroup structure present on the continuous duals of
the corresponding spaces of uniformly continuous bounded functions. A right
topological semigroup is a semigroup S together with a topology on S such that
S — 8,5 — st is continuous for every ¢ € S, and the fopological centre of S is
then defined to be the subset

A(S):={teS|S — S, s tscontinuous},

which is easily seen to form a subsemigroup of S. Before proceeding to semigroups
associated to topological groups, let us note the following general fact.

Lemma3.1. If S is a right topological semigroup and T is a subsemigroup of A(S),
then T is a subsemigroup of S.

Proof. Since T is a subsemigroup of A(S), it follows that t7 C 1T C T_for every
t € T, which means that TT < T. Hence, ift € T,then Tt C Tt C T =T, as
desired. O

We now turn to the natural semigroup structure on RUCB(G)* for an arbitrary
topological group G. The details of the construction are recorded in the subsequent
lemma (recollected from [2, Section 2.2] and [36, Section 6.1]), whose straight-
forward proof we omit.
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Lemma 3.2 (cf. [2, Section 2.2]). Let G be a topological group. The following hold.
(1) Forany n € RUCB(G)* and f € RUCB(G), the function

O, f:G — C, gr— u(foly)

is right-uniformly continuous and bounded with || ®,, f |lecc < |||l f |lco-
(2) Forall pn € RUCB(G)*, f € RUCB(G) and g € G,

Qu(fodg) = (Puf)odg, Pguf = (Puf)opy.

(3) Let n € RUCB(G)*. Then, ®,:RUCB(G) — RUCB(G) is a bounded linear
operator with | ®, || = |||l If pn is positive (resp., unital, a *-homomorphism),
then so is ®,,.

(4) Let yu,v € RUCB(G)*. Then
uv:RUCB(G) — C, f +— u (P, f)

belongs to RUCB(G)*, ||pnv]| < ||pllllv]l and @, = Py 0 ©y. If both 1 and v
are positive (resp., unital, *-homomorphisms), then so is puv. In particular,
v € M(G) if u,v € M(G), and v € S(G) if o, v € S(G).

(5) Forall u.v,& € RUCB(G)*, we have u(v€) = (uv)é€.

Let G be a topological group. It follows that RUCB(G)*, together with the
multiplication defined in Lemma 3.2(4), constitutes a unital Banach algebra. For each
g € G, letus consider the state §;: RUCB(G) — C, f — f(g). We observe that the
multiplication on RUCB(G)* is compatible with the action of G upon RUCB(G)*
introduced in Section 2, in the sense that gu = dgu for all 4 € RUCB(G)*
and g € G. Furthermore, endowed with this multiplication and the weak-* topology,
RUCB(G)* is easily seen to form a right topological semigroup, of which M(G)
and S(G) are subsemigroups by Lemma 3.2(4).

Let us briefly examine the topological centre of the right topological semigroup
isolated above. Consider any topological group G. The convolution of two Borel
probability measures i and v on G is the Borel probability measure ;v on G defined
by

(nv)(B) := (L ®v)({(x,y) €G | xy € B}) (B < G Borel).
We note that spt(uv) € (sptu)(sptv) for any two Borel probability measures u
and v on G. It is well known and straightforward to check that Prob(G ) together with

this convolution forms a semigroup and that Prob,.,(G) is a subsemigroup thereof.
The map /g: Prob(G) — M(G) given by

o)) := [ fdu  (ueProb(G)., f € RUCB(G))
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is a semigroup homomorphism, in particular /g (Prob.g(G)) and I (Prob(G))
constitute subsemigroups of M(G). Since Prob,,(G) contains all Dirac measures
on G, the latter moreover entails that both /G (Proby(G)) and I (Prob(G)) are
G -invariant subsets of M(G).

Remark 3.3. Let G be a topological group. Due to [33, Theorem 5.3], the restriction
of I to Proby,(G) is injective. Furthermore, if G is metrizable (equivalently,
first-countable), then the map /g itself is injective, since in this case every closed
subset of G is the zero set of some element of RUCB(G). In any case, starting from
Section 4, we will not distinguish in notation between a Borel probability measure
on G and its image under /g, and we will adopt terminology introduced so far for
elements of M(G) (such as in Definition 2.3) for members of Prob(G) accordingly.

With the notation introduced above at hand, we recollect two results about
topological centres from literature. The first one is a generalization of a result
about locally compact groups by Wong [43, Lemma 3.1].

Proposition 3.4 ([11, Proposition 4.2]). For any topological group G,
IG (PrObreg(G)) - A(M(G))

The second is a consequence of [33, Theorem 7.25] and [33, Theorem 9.41(1)].
Proposition 3.5 ([33, Theorems 7.25,9.41(1)]). Fora separable topological group G,

1 (Prob(G)) € AM(G)).

If G is a locally compact group, then the inclusion noted in Proposition 3.4 above
is indeed an equality, i.e., /G (Proby,(G)) = A(M(G)). This follows from the work
of Neufang [31] sharpening a result by Lau [27]. Natural analogues of this result
for different classes of topological groups are due to Ferri and Neufang [11], and
Pachl [32]. For more details, we refer to [33, Section 9.4].

For the remainder of this section, we turn to a class of function sets on topological
groups, classically referred to as introverted sets [7,17].

Definition 3.6. Let G be a topological group and let H € RUCB(G). Then H will
be called right-translation closed if f o p, € H forall f € H and g € G, and H
will be called introverted if ®,, f € H whenever f € H and u € M(G).

When dealing with introverted sets, we will make use of the following
observations.

Lemma 3.7. Let G be a topological group and f € RUCB(G). The linear map
U :RUCB(G)* — RUCB(G), p +— @, f

is continuous with respect to the weak-* topology on RUCB(G)* and the topology of
pointwise convergence on RUCB(G). Furthermore,
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(1) ¥r(M(G)) =conv{f opg | g € G}, and
(2) W r(B) € RUEB(G) for every norm-bounded B < RUCB(G)*.

Proof. For every h € RUCB(G), let n,:RUCB(G)* — C, u — u(h). If x € G,
then

B o Wr)(p) = 8x(Puf) = (Puf)(x) = p(f 0 dx) =nfop, (1)

for all © € RUCB(G)*, i.e., Px o W = Q ro;,. This readily entails the continuity
stated above. Since W (8x) = P, f = f o px forall x € G and the convex hull
of {8x | x € G} is dense in the compact space M(G) (see [33, Corollary, p. 6]),
continuity and linearity of W ¢ imply that

¥ (M(G)) =conv{Ts(6x) | x € G} =conv{f opx | x € G},

which proves (1).

In order to verify (2), let B be a norm-bounded subset of RUCB(G)* and consider
s := sup,ep |u|l < oco. Lete > 0. As f is right-uniformly continuous, we find a
neighborhood U of the neutral element in G such that || f — (f 0Ag)|loc < ﬁ for
all g € U. We claim that

Vx,y € G, xy !l e U: sup (P f)(x) = (@ (V)| <&
ne

Indeed, if # € B and x,y € G with xy~! € U, then

(P f)(x) = (P YD) = [1((f 0 Ax) = (f 0 Ay))|
= S”f - (f 2 ’lxy"'l)”oo =e€.

This shows that ¥ »(B) = {®, f | u € B} is right-uniformly equicontinuous. Of
course, W ¢ (B) is || - [[co-bounded by Lemma 3.2(4). Hence, ¥ s(B) € RUEB(G).
O

Corollary 3.8. Let G be a topological group and let H C RUCB(G). If H is
introverted, then H is right-translation invariant. Conversely, if H right-translation
closed, convex, and closed w.r.t. the fopology of pointwise convergence, then H is
introverted.

Proof. This is an immediate consequence of Lemma 3.7(1). ]

Corollary 3.9. Let G be a topological group and let d be a right-invariant metric
on G generating the topology of G. Then pg (uv) < pg (i) for all 1 € RUCB(G)*
and v € M(G).
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Proof. Evidently, Lip] (G, d) is right-translation closed, convex, and closed with
respect to the topology of pointwise convergence, hence introverted by Corollary 3.8.
Consequently, if & € RUCB(G)* and v € M(G), then

pa(pv) = sup {|(uv)(f)| | f € Lip; (G, d)}
sup {|u(Dy )| | f € Lipj(G.d)}
<sup{|u(f)| | f €Lipj(G.d)} = pa(p). O

The next lemma will allow us to swap quantifiers when testing amenability.

Lemma 3.10. Let G be atopological group, let ¥ be a closed subsemigroup of M(G),
and let H € RUCB(G). Suppose that ®,(H) € H for all pn € X. The following
are equivalent.

() 3ueZVfeHVgeG:u(forg) = ulf).
(2) Vfe HIueZVgeG:u(f odg) = u(f).

Proof. Of course, the former implies the latter. Since X is a compact Hausdorff
space, in order to prove the converse implication it suffices to show that

VF C Hfinitedu e Vg e G:  u(fokg) =pulf).

Consider any finite subset F ={f1,..., f,} € H. By assumption, there is pu, € X
suchthat , (f, 0Ag) =un(fn) forall g € G, i.e., the function ®, f, is constant. As
&, (H)C H forall u € X, we may continue by recursion: foreachi € {1,...,n — 1},
there exists yu; € X such that

Mi ((®Mf+1"'un fi)o Ag) = /J’i(q>m+1'"ﬁbn fi)

for every g € G, thatis, @, (Py,, -, fi) = Ppuypu, fi 1s constant. Finally, let us
define ju := py-+-pp, € L. Foreachi € {1,...,n}, since the function ® ;.. f; is
constant, it follows that

Du(fi) = Puypas_1 (Puuyoopin [i) = Prjorpin Jis
wherefore @, ( f;) is constant, too. Consequently,
p(fiodg) = (Pu fi)(g) = (P fi)e) = u(fi)
forallg € Gandi € {1,...,n}, as desired. O

The subsequent corollary is a well-known result due to Granirer and Lau [17].
Corollary 3.11 ([17]). Let G be a topological group. The following hold.
(1) G is amenable if and only if

Vf € RUCB(G) 3u € M(G) Vg € G:  u(f oAg) = ul(f).



494 F. M. Schneider and A. Thom CMH

(2) G is extremely amenable if and only if
Vf €eRUCB(G)3Iu € S(G)Vg e G: pu(f odg) = u(f).

Proof. Both statements are immediate consequences of Lemma 3.10: the first follows
for ¥ = M(G) and H = RUCB(G), the second for £ = S(G) and H = RUCB(G).
O

As shown by Moore [30], for a discrete group G, one may replace RUCB(G) =
£°°(G) in Corollary 3.11(1) by the set of characteristic functions of subsets of G.
A topological version of Moore’s result, in terms of two-element uniform coverings,
has been established in [39]. For our present purposes, however, we will need a
different refinement of Corollary 3.11(1).

Corollary 3.12. Let G be a topological group. Assume that H € RUCB(G) is
introverted and generates a dense linear subspace of RUCB(G). Then G is amenable
if and only if

VfeHIneMG)VgeG: u(foiry)=pu(f).

Proof. Evidently, the former implies the latter. Let us prove the converse implication.
By Lemma 3.10, our hypothesis entails that there exists © € M(G) such that

plforg) = pu(f)

forall f € H and g € G. Since p is a continuous linear form and H generates
a dense linear subspace of RUCB(G), it follows that pu(f o Ag) = u(f) for all
f e RUCB(G)and g € G. O

4. Poisson boundary and Furstenberg’s conjecture

In this section we consider harmonic functions and Poisson boundaries for random
walks on topological groups and prove a general topological version of Furstenberg’s
conjecture.

Definition 4.1. Let G be a topological group and let & € M(G). The elements of
Hu(G) :={f e RUCB(G) | f = ®u [}

will be called p-harmonic functions on G.

Of course, for any topological group G and any u € M(G), the collection H,, (G)
constitutes a || - ||co-closed linear subspace of RUCB(G) containing the set of
constant functions and being closed under complex conjugation. The subsequent
Proposition 4.2 and Proposition 4.4 are simple variations of results due to Prunaru [37]
extending earlier work Furstenberg [12] and many others [9, 10, 34,42, 44].
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Proposition 4.2. Let G be a topological group and let p € AM(G)). Then H, (G)
constitutes a commutative unital C*-algebra with respect to the multiplication given
by

(1w 2)(8) = Tim O (f1/2)(8) (/1. f2 €Hu(G), g € G).

Proof. The following argument is due to Prunaru [37] and will be included only
for the sake of convenience. By Lemma 3.2, (®,n),en is a sequence of linear
contractions, which readily implies that the linear subspace

Cu(G) = {f € RUCB(G) | (Pyn f)nen pointwise convergent}

is ||-|| co-closed in RUCB(G). To prove this, let f € RUCB(G) and ( fx)xen €C(G)N
such that
I f = filloo —> 0 ask — oo.

Let g € G. Forevery ¢ > 0, we find k € N with |/ — fx]leo < £ and then

{ € N with

£
3

sup  [(Ppm fr)(g) — (Pun fr)(8)] =< 3.

m,neN=

which entails that

(@ f)(g) — (Pun ()]
< S = frlloo + [(@pm fi) (@) = (Pun )@ + 1L fie = flloo < €

for all m,n € Ns,. This shows that ((® 2 £)(g))nen € CN is a Cauchy sequence
and therefore convergent in C. Thus, f € C,(G) indeed. What is more, for each
n € N, the operator ®,» commutes with complex conjugation, whence C,(G) is
closed with respect to the latter, too. Furthermore,

H, (G) € Cu(G).
Thanks to Lemma 3.7, for each f € C,(G), the pointwise limit
mu(f) = nll)n;o Pyn f

belongs to RUCB(G). Once more, since (®,n),en is a sequence of linear
contractions, m,:C,(G) — RUCB(G) is a linear contraction as well. Evidently,
if f € H,(G), then 7, (f) = f. We now claim that

7, (Cu(G)) € Hu(G).

In order to prove this inclusion, let us consider the weak-* closed set

A= () " Tn € Nam} SM(G),

meN
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which is non-empty by weak-* compactness of M(G). As i € AM(G)), it follows
that

pAC () {w" [0 € Nopm1} = 4.

meN

Now, let f € C,(G). We wish to show that ®, (7, (f)) = 7, (f). Note that, for
every g € G, continuity of the map M(G) — R, v v(f oA,) implies that

(D)) [ve A} ={(fodg) |ve A} S () {W*(fohg) | n € Nom}

meN

= () {(@ur /)@ [ 1 € Nom} = {mu(£)()}.

meN

That is, ®, f = m,(f) for all v € A. Hence, picking any v € A and using the fact
that yv € A, we conclude that

Lem. 3.2(4)

Pu(mu(f) = Qu(®uf) =" Puu(f) = ulf).
So, ., (f) € H,(G) as desired. It follows that 7, is idempotent and that
1, (Cu(G)) = Hu(G).
Claim 1. If h € H,,(G), then |h|?> € C,,(G) and
Vf € RUCB(G): (|h]* = mu(|h?)) f € ker(m,).

Proof of Claim 1. Let h € H,(G). For each g € G, since gu is a positive linear
functional on the C*-algebra RUCB(G), the Cauchy—Schwarz inequality asserts that

1h%(g) = |D.h*(g) = |(g)AR)* < (g)(111%) - (g)(111?) = Pu(1R]?)(g).

By positivity of ®,,, this entails that the ||- || o-bounded sequence (P, (|7]*))nen is
increasing, thus pointwise convergent to the function sup,,cpy @01 (|1|?). This shows
that |4|? € C,,(G) and

. (|h)?) = sgg @ n (|17).

In particular, 7, (|k|?) — |h|?> > 0. Note that
Oy (70, (1112) = 1h12) () —> 7 (mu(121?) — A1) (€) =0 (n —> o0)
forall g € G. Forevery f € RUCB(G) with f > 0, since
1@, (112 = 70 (1212) £)] = 11 F lloo @y (e (1112) — [11?)
due to positivity of the linear operators (® 7 )nen, it follows that

(@ (171 = 7. (18%)) ) pens
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converges pointwise to 0, i.e., (|h|* — 7, (|h]?))f € ker(m,). By linearity of m,,
this readily implies that

(Ih1> = 7 (1517)) f € ker(m,,)
for every f € RUCB(G). O
Claim 2. If 4y, h, € H,(G), then A hy € C,(G) and
Vf € RUCB(G): (hihy —myu(hihy)) f € ker(my,).

Proof of Claim 2. Consider any hy,h, € H,(G). A straightforward computation

shows that X
hihy = & Z " |gnl?

where g, :=hy + i"h, forn€{0, 1, 2, 3}. Since g, €H,, (G) foreachn {0, 1,2, 3},
Claim 1 implies that h1h, € C;,(G) and moreover

3
(hihy = (hiha)) £ =5 i"((Ignl” = 7u(lgnl?)) f) € Ker(m,)

n=0
for every f € RUCB(G). O

Henceforth, let us denote by J, (G) the || - || o-closed ideal of RUCB (G ) generated
by the subset
{h1h2 — Nu(hlhg) | hl,/’lg (S HM(G)}

By Claim 2, J,(G) is contained in ker(sr,).
Claim 3. If n € N5 and /4, ..., hn, € H,(G), then hy---h, € C,,(G) and
hl"’hn_.ﬂ:ﬂ(hl"'hn) EJ“(G).

Proof of Claim 3. The proof proceeds by induction. Clearly, if n = 1, then the
statement is trivial. Moreover, if 1 = 2, then the desired conclusion follows from
Claim 2 and the definition of J,,(G). For the inductive step, let n € Nx; such that
the assertion of Claim 3 is valid. Let Ay, ..., hny1 € Hy(G) and f := hy -+ hpyg.
Then

J1:=(hihy — mu(hiha))hz -+ -hypyy € 1,(G) and  f € ker(imy,)

by Claim 2. Furthermore, since 7, (h1h2) € H,(G), our induction hypothesis asserts
that

fri=mu(hiho)hs---hpy1 € Cu(G) and  fo — 7, (f2) € Ju(G).
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Consequently,
f=h+eCuG). [f-mf)=h+fra—mu(f2)€lu(G).
This completes the induction and hence proves the claim. 0J

Let us denote by A, (G) the || - ||so-closed subalgebra of RUCB(G) generated
by H,(G). Since H,, (G) is closed under complex conjugation, A, (G) is a C *-sub-
algebra of RUCB(G). By Claim 3, A,,(G) € C,.(G). As m,, is an idempotent linear
contraction, it follows that

|7lloe = inf {[| flloo | f € Au(G), mu(f) = h}
for all h € H, (G), and therefore

Au(G)/ker (mula,y)) = Hu(G),  f +ker (mula,y) = mu(f)

is an isometric isomorphism of the respective Banach spaces. Moreover, Claim 3
asserts that f — m,(f) € J,(G) for every f € A,(G). Since, again, m, is
idempotent and J,(G) C ker(m,,) due to Claim 2, we conclude that

ker (mula, (@) = {f —mu(f) | f € Ap(G)} = Ju(G) N AL(G).

In particular, ker(r, |, (6)) is an ideal of A, (G), and thus

Hu(G) B AM(G)/ker (nM|A,u(G))

constitutes a C *-algebra with respect to complex conjugation and the multiplication
given by

]’ll uw hz = Eu(hlhz) = nll)ng() CDM" (hlhz) (hl,hz & HM(G))

Evidently, the C *-algebra H,,(G) is commutative and unital. O

Definition 4.3. Let G be a topological group and let © € A(M(G)). The Poisson
boundary of (G, u), denoted by IT,,(G), is defined to be the Gel’fand spectrum
of the commutative unital C *-algebra H,(G), i.e., the compact Hausdorff space of
*-homomorphisms from H,, (G) to C, endowed with the weak-* topology.

The next proposition provides an integral representation of harmonic functions
via Poisson boundaries as introduced above. Let G be a topological group and let
i€ AM(G)). It follows from Lemma 3.2(2) (and Proposition 4.2) that

H,(G) - H,(G), hr—holg

is a well-defined C *-automorphism for every g € G. In turn, G admits an action
on I1,(G) given by

(g&)(h) :=E&(hody) (g €G. & eTu(G), heHuG))
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which is easily seen to be continuous. For every f € H, (G), let

Yu(f):11,(G) = C, §=E(f).

Due to Gel’fand duality, ¥,: H,,(G) — C(I1,,(G)) constitutes an isomorphism of
C *-algebras. Since H,(G) — C, h > h(e) is a positive unital linear functional on
the C *-algebra H,, (G), the Riesz—Markov—Kakutani representation theorem asserts
that there exists a unique regular Borel probability measure & on IT,,(G) such that

j Va(B) AR = hie)

forall h € H,(G).

Proposition 4.4 (Poisson formula). Let G be a topological group and let p € A(M(G)).
Forallh € H,(G) and g € G,

h(g) = f V() (58) dAE).

Proof. Forallh € H,(G) and g € G,
f V(b (g6) da(E) = [ (86)(h) d(E) = f §(hohg) dR(E)
~ [Vl 010 ® dR® = (ho2)(e) = hg). T

Let us study the connection between the amenability of topological groups and
the structure of their Poisson boundaries. By Lemma 3.1, if G is a topological group

and & € A(M(G)), then the weak-* closed convex hull £,,(G) := conv{u” | n > 1}
is a subsemigroup of M(G).

Lemmad.5. Let G be a topological group, let € A(M(G)), and let H CRUCB(G)
be introverted. The following are equivalent.

(1) WeX, (G)VfeHYgeG:v(folg) =v(f)
(2) Hy(G)NH c C.
Proof. (1) = (2). Leth € H,(G). By Lemma 3.7,
Wt ({hY) = (v e M(G) | ®uh = h)}

forms a closed subset of M(G). Since moreover \IJ;I ({h}) is a convex subsemigroup
of M(G) containing pu, it follows that X,,(G) € \II;I({h}), i.e., ®,h = h for every
v € ¥,(G). Hence, if h € H and there exists v € X, (G) with v(f o Ag) = v(f)
for all g € G, then

h(g) = (Puh)(g) = v(h o) = v(h) = (Pyh)(e) = hle)

for all g € G, that is, A is constant.
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(2) = (1). Since u € A(M(G)), the affine map £,(G) — Z,(G), v = pv
is continuous. By the Markov—Kakutani fixed-point theorem [25, 28], there exists
v € £,(G) with uv = v. Now, consider any f € H. Then &, f € H, due to H
being introverted. Moreover, since

Pu(®vf) =P f =0 f

by Lemma 3.2(4), the function @, f is u-harmonic, hence constant by assumption.
Thus,

v(fodg) = (0 f)(g) = (yf)e) =v(f)
forevery g € G. O]
In the light of Remark 3.3, the following proposition particularly applies to
any regular Borel probability measure on a topological group (Proposition 3.4) as

well as to any arbitrary Borel probability measure on a separable topological group
(Proposition 3.5).

Proposition 4.6. Let G be a topological group and let u € AM(G)). Then the
following are equivalent.

(1) The Poisson boundary I1,,(G) is trivial, i.e., a singleton.

(2) Hu(G) = C.

(3) Thereisve X, (G)suchthatv(f oAg)=v(f)forall f eRUCB(G)andgeq.
Proof. The equivalence of (1) and (2) is an immediate consequence of Gel’fand dual-

ity, while the equivalence of (2) and (3) follows by Lemma 4.5 for H = RUCB(G).
O

The subsequent result generalizes work of Kaimanovich—Vershik [23, Theo-
rem 4.3] and Rosenblatt [38, Theorem 1.10]. The proof given below follows closely
the lines of Kaimanovich and Vershik [23, Proof of Theorem 4.3].

Theorem 4.7. Let G be a second-countable topological group. Then the following
statements are equivalent.

(1) G is amenable.

(2) G admits a fully supported, regular Borel probability measure [ such that
(") nen UEB-converges to invariance over G.

(3) G admits a Borel probability measure ju such that (1"*),en UEB-converges to
invariance over G.

Proof. (2) = (3). This is trivial.
(3) = (1). This is due to Remark 2.4.
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(1) = (2). Since G is second-countable, the Birkhoff—Kakutani theorem [3, 24]
asserts that G admits a right-invariant metric d generating the topology of G, and
furthermore we find an increasing sequence of finite subsets

{e} =85S S 1C-CSCSSm1S---CG

such that S := | J{S,, | m € N} is dense in G. Choose a sequence (Tp;)menN Of
positive reals so that ZmeN Tm = 1. For each m € N, we pick n,, € N> such
that (o + -+ + Tm—1)"" < % Thanks to Corollary 2.2, we may recursively choose
a sequence (am)meN of finitely supported, regular Borel probability measures on G
such that Sy C spt(ap) and, for each m € N5,

(i) pa(gam —am) < % forall g € Sy, U (sptou—1)™™, and

(ii) Sy U (sptam—1)"" C spt(oim).

Consider the regular Borel probability measure i := ) .n Tm®m on G. Then
spt(i) = G, since spt(u) is a closed subset of G containing spt(c,) 2 Sy, for

all m € N. We will show that (1"),en UEB-converges to invariance over G. Our
proof proceeds in three steps.

Claim 1. Forallm € N5,k e N"7 \{0,...,m —1}"" and g € Sp—1,
Pa (8o, + 0k, — 0k, -+, ) < %

Proof of Claim 1. Let m € Ns; and { := n,. Let g € Sp—1 and k € Ng\
{0,...,m—1}, and put j := min{i € {1,...,€} | k; > m}. For
0= -Qr,, O1:=ag gy, =g, o,

we note that 6 = O1ag, 0>. Foreachi € {1,...,j — 1}, the definition of ; implies
that k; < m and therefore
Spt(akl) g Spt(aﬂ'E—l)
by (ii). Since j < £, we have
spt(61) < (sptam—1)"".
Also, g € spt(am—1) by (ii), and so
spt(gf1) € (sptam-1)°.
Thus, assertion (i) implies that
pa(ar, —Orar,) < Y 61(h})palon, —hax,) < £,
hespt(671)

palor, —gbhar,) < > (g0D({h})palew, —haw,) < 7
hespt(g6y)
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Consequently, thanks to Corollary 3.9,

pd(gf —0) = Pd((8916¥kj - glakj)ﬁ’z) =~ pd(gﬁ’ﬂkj = 916¥kj) < %
This finishes the proof of Claim 1. O

Claim 2. Forevery m € N> and g € Sp—1,

pa(gu™ —u") < 5.

Proof of Claim 2. Consider any m € N> and g € S,,—;. We will abbreviate £ :=n,,.
Noting that ;Lﬁ = > reN¢ Tk "t T Ok, * " Ok,, We define

Vp .= Z Ty =t Tk Oy - Uy
kefo,....,m—1}¢
and
Vp 1= ,LL£ —Vi.
Evidently,

Pd(gvi —v1) < pa(gv1) + pa(v1)
=2 Z Ty == T,
ke{0,...m—1}¢

=2(tp+---+ 'cm_l)‘2 < %

Furthermore, according to Claim 1,
Pa(gva —v2) < Z 143] --~fkgpd(g0!kl T Ok, — Ok '-'Otkg) = %
keN*\{0,...,m—1}¢

Consequently, pg (gt — i) < pa(gvi —v1) + pa(gva — va) < % as desired. [
Claim 3. The sequence (i1”),en UEB-converges to invariance over G.

Proof of Claim 3. Thanks to Lemma 2.5 and S being dense in G, it is sufficient to
show that, forevery g € S, the sequence (gu” — " )nen converges tod € RUCB(G)*
with respect to the UEB topology. For this purpose, let g € S. According to
Corollary 3.9,

pa (g™t — "t = pa (g — W) < pa(gu™ — u™)

for all » € N, i.e., the sequence (pg(gun” — 1"))nen is decreasing. Moreover,
Claim 2 gives that

inf pg(gu” —p") < inf pa(gu" — ") =0,
neN meN

and therefore py (gu” — u") — 0asn — oo. Since {gu” — u" |n € N} U {0} is
a || - ||-bounded subset of RUCB(G)*, it follows by Lemma 2.6 that (g — " )pen
converges to 0 € RUCB(G)* with respect to the UEB topology, as desired. O

O
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We deduce a general topological version of Furstenberg’s conjecture [15],
established for countable discrete groups by Kaimanovich—Vershik [23] and for
second-countable locally compact groups by Rosenblatt [38].

Corollary 4.8. Let G be a second-countable topological group. Then the following
statements are equivalent.

(1) G is amenable.

(2) G admits a fully supported, regular Borel probability measure [t such that
I1,.(G) is trivial.
(3) G admits a Borel probability measure j such that 11,,(G) is trivial.

Proof. (2) = (3). This is trivial

(3) = (1). This is an immediate consequence of Proposition 3.5 and Proposi-
tion 4.6.

(1) = (2). Suppose that G is amenable. By Theorem 4.7, there exists a fully
supported, regular Borel probability measure u on G such that (©”),en UEB-
converges to invariance. Thanks to compactness, we find a weak-* accumulation
point v of the sequence (u")sen in M(G). Evidently, v € X,(G). Due to
Remark 2.4, v is G-invariant. Hence, IT,,(G) must be trivial by Proposition 3.4
and Proposition 4.6. O

Remark 4.9. It would be very interesting to establish an analogue of Theorem 4.7
for more general topological groups. In this regard, it seems natural to consider
separable or, more generally, w-bounded groups. Recall that a topological group G
is w-bounded if for every open neighborhood U of the neutral element in G there
exists a countable subset C € G such that UC = G. By work of Guran [18],
a topological group is w-bounded if and only if it is isomorphic to a topological
subgroup of a product of second-countable groups. This suggests employing inverse
spectra techniques to investigate potential generalizations of Theorem 4.7.

5. Liouville actions on metric spaces

In this section, we turn our attention towards continuous isometric actions of
topological groups on metric spaces and study the Liouville property for such
actions. More precisely, given a metric space X, we consider the topological group
Iso(X) of all isometric self-bijections of X', endowed with the topology of pointwise
convergence. Of course, a continuous isometric action of a topological group G
upon X corresponds naturally to a continuous homomorphism from G into Iso(X).

Our first observation concerns introverted UEB sets on topological groups arising
from continuous isometric actions. For this purpose, let us define

f1x:G—>R, g f(g7'x)
for any group G actingon aset X,any x € X and f € R¥.
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Lemma 5.1. Let G be a topological group acting continuously by isometries upon a
metric space X. For every x € X, the set

Ly(G,X) = {f}: | f € Lipj(X)}

belongs to RUEB(G), is convex, right-translation closed, and compact w.r.t. the
topology of pointwise convergence, thus is introverted.

Proof. Letx € X. Evidently, Ly(G, X)is || + || co-bounded. To show that L (G, X)
is right-uniformly equicontinuous, let us consider any ¢ > 0. Then

U:={geG|dx(x,gx) <&}

constitutes a neighborhood of the neutral element in G. If g,h € G and gh™! € U,
then

1f1x(@) = f =) = | flg™ %) — f(h ' x)]
<dx(g'x,h'x)=dx(x,gh”'x) <e

for all € Lipj(X). So, Lx(G, X) € RUEB(G) as desired. To conclude, we note
that the map
Ty:Lip*®(X) — RUCB(G), f + f |«

is linear and continuous with regard to the respective topologies of pointwise
convergence. Consequently, L, (G, X) = Tx(Lipi(X )) is convex and compact.
Furthermore, for all g € G and f € Lip;(X), note that

fltxopg =(fotg)lx € Lx(G, X),

where 7,: X — X, y — g~ !y. Thus, L,(G, X) is right-translation closed, hence
introverted by Corollary 3.8. ]

For convenience, let us recall the following well-known fact.

Lemma 5.2. Let S be a set and let X be a metric space. Let ¢:S — X and
L,e € Rso. Forany bounded f:S — R,

(Vs.r € S:|f(s) = f(0)] < Ldx(p(s),9(1)) + &)
= (AF e Lip°(X): | f — Foglle < &).

Proof. Letr := | f]loo. Define F: X — R by
F(x) = (inf () + Ly (p(s), X)) AT (x € X),
Note that F € Lip}(X). Evidently,
F(p(s)) < f(s) + €d(p(s), @(s)) = f(p(s))
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forevery s € S. Also, if s € S, then

J(s) = f2) + Ld(p(1). ¢(s)) + ¢
forallz € S. Hence, || f — F 0 9|00 < €. O

Given any metric space X and n € N, let us consider the metric space X"
carrying the usual supremum metric defined by

dxn(x,y) :=sup{ldx(x;.yi)|i e N, 1 <i <n} (x,yeX").

Evidently, if G is a topological group acting continuously by isometries on X, then G
admits a continuous isometric action upon X" given by gx = (gx;,...,gx,) for
allg e Gand x € X",

Lemma 5.3. Let X be a metric space. If G is any topological subgroup of Iso(X),
then
L(G. X) := | JILx(G.X") | x € X", n e N}

generates a dense linear subspace of RUCB(G).

Proof. Of course, it suffices to check that RUCB(G) N R is contained in the norm-
closure of the linear subspace of RUCB(G) generated by L(G, X). So,let f: G — R
be bounded and right-uniformly continuous. Consider any ¢ > 0. Thanks to right-
uniform continuity, there exist § > 0, n € N, and x € X" such that

Ve, he G: dxn(g™'x,h7'x) =dxn(x,gh7'x) <8 = |f(g)— f(h)| <e.
Let £ := 287! f|loo- We deduce that
| f(g) — f(B)| < max{e, £dyn (g™ x.h ' x)} < ldxn(g™'x.h7'x) + ¢

forall g,h € G. Due to Lemma 5.2, we find F' € Lip7°(X") with

sup|f(g) — F(g7'x)| < &,
geCG

ie, | f — F lx]loo < &. Of course, being a member of Lipy°(X "), the function F is
contained in the linear subspace of the real vector space RX" generated by Lip} (X™),
whence F |, belongs to the linear span of L, (G, X) inside the real vector space
RUCB(G). This proves that f is contained in the norm-closure of the linear span
of L(G, X) in RUCB(G), as desired. L]

Corollary 5.4. Let X be a metric space and let G be any topological subgroup
of Iso(X). Then G is amenable if and only if

Vn > 1Vx € X"V [ €Lipj(X")3u e M(G)Vg € G: pu(f Pxorg) = pu(f ).
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Proof. As any union of introverted subsets of RUCB(G) will be introverted as well,
Lemma 5.1 entails that L(G, X) is an introverted subset of RUCB(G). Hence, the
desired statement follows from Corollary 3.12 and Lemma 5.3. O

Subsequently, we reformulate the results above in terms of the Liouville property.
Let us call a Borel probability measure y on a topological group G non-degenerate
if spt(y) generates a dense subsemigroup of G.

Definition 5.5. Let G be a topological group acting continuously by isometries
on a metric space X and let x be a Borel probability measure on G. A bounded
measurable function f: X — R will be called p-harmonic if f(x)= [ f(gx)du(g)
for all xe X. The action of G on X is called pu-Liouville if every p-harmonic
uniformly continuous bounded real-valued function on X is constant, and the action
is said to be Liouville if it is v-Liouville for some non-degenerate, regular Borel
probability measure v on G.

In the special case of a discrete group acting on a set, the Liouville property
introduced above coincides with the usual one, e.g., as considered in [21].

Remark 5.6. Let G be a topological group acting continuously by isometries on a
metric space X and let i be any Borel probability measure on G.

(1) The action of G on X is u-Liouville if and only if every p-harmonic member
of Lip}(X) is constant. This is because Lipl(X) spans a dense linear subspace
in the Banach space UCB(X, R) of all uniformly continuous, bounded real-valued
functions, equipped with the pointwise operations and the supremum norm, and

UCB(X.R) — UCB(X,R), f r— (x+ f flgx)du(g))

is a bounded linear operator.

(2) As G acts isometrically on X, the set X / G := {Gx | x € X} forms a partition
of X. Moreover, X // G admits a well-defined metric given

dX//(;(m,G_y) = inf dy(x,gy) = inf dx(gx.,y) (x,y € X).
geG geG
For every f € UCB(X / G,R),themap X — R, x — f(Gx)isa p-harmonic
member of UCB(X,R). So, if the action of G on X is u-Liouville, then Gx = X
forallx € X.

We will relate the Liouville property defined above to the study of harmonic
functions on topological groups. Given any Borel probability measure p on a
topological group G, let us consider the push-forward measure p©* := () along

themapt:G — G, g+ g~ L.

Lemma 5.7. Let G be a topological group acting continuously by isometries upon a
metric space X and let L be a Borel probability measure on G. A bounded measurable
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function f: X — R is u-harmonic if and only if f |'x: G — R is u*-harmonic for
every x € X.

Proof. Let f € RX be bounded, measurable. As

fgh™'x) = f((hg™") 7 x) = fx(hg™)
forall g,h € G and x € X, it follows that

S is p-harmonic <= Vx € X: f(x) = / f(gx)du(g)
= VxeXVheG: f(hlx) = f flgh™'x)du(g)
< VxeXVheG:fIyih) =[frx(hg_1)d,u,(g)

= Vx e X Vh € G: [ }(h) fofx(hg) di*(g)

< Vx € X: f | is u*-harmonic. W

Everything is prepared to prove the following characterization of amenability of
isometry groups in terms of the Liouville property for their induced actions.

Theorem 5.8. Let X be a separable metric space. A topological subgroup G
of Iso(X) is amenable if and only if, for all n € N and x € X", the action of G
on Gx is Liouville.

Proof. (=) As X is a separable metric space, Iso(X) is second-countable with
respect to the topology of pointwise convergence, and hence is the topological
subgroup G. Since G is amenable, Corollary 4.8 asserts that G admits a fully
supported, regular Borel probability measure p such that H,(G) = C. It follows
that ;* is a fully supported (thus non-degenerate), regular Borel probability measure
on G. To conclude, letn € N and x € X". If f € Lipj(Gx) is u*-harmonic, then
fI'x € RUCB(G) will be u-harmonic by Lemma 5.1, thus constant by assumption,
so that f will be constant, too. Hence, the action of G upon G x is Liouville.

(<=) We apply Corollary 5.4 to deduce amenability. To this end, let n € N
and x € X”. According to our assumption, we find a non-degenerate, regular Borel
probability measure p on G such that the action of G on Gx is p-Liouville, and
therefore

H,»(G) NLy(G,X") C R
by Lemma 5.7. Furthermore, L, (G, X") is an introverted subset of RUCB(G) by
Lemma 5.1. Hence, Lemma 4.5 asserts the existence of some v € X« (G) such that

v(ftxodg) =v(f1x)

for all f € Lipj(X") and g € G. Thanks to Corollary 5.4, this shows that G is
amenable. O
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6. The Liouville property for permutation groups

This section contains a brief discussion of consequences of our results for
non-archimedean second-countable topological groups, i.e., those topologically
isomorphic to a subgroup of the full symmetric group Sym(X), over a countable
set X, equipped with the topology of pointwise convergence. The subsequent result
follows immediately from Theorem 5.8.

Corollary 6.1. Let X be a countable set. A topological subgroup G of Sym(X)
is amenable if and only if, for all n € N and x € X", the action of G on Gx is
Liouville.

Given a group G acting on a set X, one may consider the induced action of G on
the corresponding powerset #(X), defined via

gB :={gx|x€e B}

forall g € G and B € X. Evidently, forevery n € N, the set %, (X) of all n-element
subsets of X then constitutes a G-invariant subset of $?(X). We say that G acts
strongly transitively on X if, for every n € N, the induced action of G upon P, (X)
is transitive. Specializing Corollary 6.1 to the case of groups of automorphisms of
linearly ordered sets, we arrive at our next result.

Corollary 6.2. Let X be a countable set and let G be a topological subgroup
of Sym(X). Then the following hold.

(1) Ifthe topological group G is amenable, then the action of G on {gB | g € G} is
Liouville for every finite subset B C X.

(2) If G preserves a linear order on X and the action of G on {gB | g € G}
is Liouville for every finite subset B C X, then the topological group G is
amenable.

Proof. Foreveryn € N and x € X", the map

¢x:Gx — {g{x1,....xa} [§ € G}, y+— {1,..., 0}

constitutes a G-equivariant surjection. Hence, (1) is a consequence of Corollary 6.1.
Moreover, if G preserves a linear order on X, then ¢, is a bijection for every x € X"
with n € N, and therefore (2) also follows by Corollary 6.1. [

Due to the seminal work of Kechris, Pestov, and Todorcevic [26], Corollary 6.2
identifies structural Ramsey theory as a source of Liouville actions. More precisely,
if G is the automorphism group of an order Fraissé structure on a countable set X
having the Ramsey property, then Corollary 6.2 combined with [26, Theorem 4.7]
(see also [36, Corollary 6.6.18]) asserts that the action of G on {gB | g € G}
is Liouville for every finite B € X. A concrete example of a corresponding
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application concerning Thompson’s group F is given by Corollary 6.4 below. We
will formulate Corollary 6.4 as a consequence of the following abstract result, which
follows immediately from Corollary 6.2 and Pestov’s work on the extreme amenability
of automorpism groups ultrahomogeneous linear orders [35].

Corollary 6.3. Let X be a countable set and let G be a subgroup of Sym(X). If the
action of G on X is strongly transitive and preserves a linear order on X, then, for
everyn € N, the action of G on P, (X) is Liouville.

Proof. Our hypotheses about the action imply that X is either empty, a singleton set,
or infinite. If X = @ or |X| = 1, then the desired conclusion is trivial. Now suppose
that X is infinite. Then Pestov’s work [35, Theorem 5.4] asserts that the topological
group G, carrying the topology of pointwise convergence, is (extremely) amenable.
As G acts strongly transitively on X, an application Corollary 6.2(1) finishes the
proof. ]

In order to explain the above-mentioned application of our results, let us finally
turn to Richard Thompson’s group

F:=(o,t|[ot o lto] = [ot .0 %10?%] = e),

which possesses an alternative presentation given by

F = ((yn)nen | Ym,n e N, m < n 2y, yuVm = V)

and corresponding to the previous one via Y9 = o and y, = oo™ ! for

every n € Nx;. For general background on this group, the reader is referred to [6].
In the following, we will be particularly concerned with two of its representations.
First of all, let us recall that Thompson’s group F admits a natural embedding
into the group Homeo [0, 1] of orientation-preserving homeomorphisms of the real
interval [0, 1] determined by

) 1 x (x € [0, 7]).
5 (XE[O!E])’ Egl [gpell2
o(x):=qx—3 (xe[33]), ()= ijf Exe%’é%’
21 (ve 1)) 2x-1 (e[,

The image of F' under this embedding consists of those elements of Homeo [0, 1]
which are piecewise affine (with finitely many pieces) and have all their break points
contained in Z, [—é—] and slopes contained in the set {2"" | k eZ } Furthermore, by work
of Brin and Squier [4], Thompson’s group /' embeds into the group Homeo4 (R) of
orientation-preserving homeomorphisms of the real line via the action on R given by

(x € (—o0,x]),
(x €[0,2]),
-1 (xe€ [2,00)).

o(x):=x—-1 (xeR), Z(x) =

= e =
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The image of this second embedding consists of those members of Homeo (R)
which, again, are piecewise affine (with finitely many pieces) and have all their break
points inside Z[1] and slopes inside {2¥ | k € Z}, and which moreover agree
with translations by (possibly two different) integers on (—o0, a] and [a, o0) for a
sufficiently large dyadic rational a € Z[%]

The two embeddings of Thompson’s group F introduced above are connected
in a fairly natural way. As remarked in [19, Remark 2.5] (see also [22, 2.C]), the
piecewise affine map «: (0,1) — R given by

X —1

k(x) 1= t— +n (x €[ty,tas1], n € Z),

n+1 — In

wheret, == 1— é—,}g forn e Nandt, = 21%,, forn € Z\ N, constitutes an F-equi-
variant monotone bijection between (0, 1) and R. Furthermore, «(D) = Z[%] for
D = (0, 1)NZ [%] whence the restricted F-actions on Z[%] and D are isomorphic.

Since the considered actions of Thompson’s group F on Z[%] and D are strongly
transitive and preserve the natural linear order, our Corollary 6.3 entails the following
affirmative answer to a recent question by Juschenko [20], motivated by work of

Kaimanovich [22].

Corollary 6.4. For all n € N, the action of F on P, (Z[%]) (resp., $Pn(D)) is
Liouville.

Furthermore, Corollary 6.2 resolves another recent problem by Juschenko [20].

Problem 6.5 ([20, Problem 9]). Let a group G act faithfully on a countable set X
such that, for every n € N, the induced action of G on #,(X) is Liouville. Is G
amenable?

Our results entail that the solution to Problem 6.5 is negative, even if we require G
to be countable. Indeed, if H is any amenable topological subgroup of Sym(X') acting
strongly transitively on X and containing a dense countable subgroup G which is non-
amenable as a discrete group (e.g., isomorphic to the free group F> on two generators),
then, however, the density will imply that the action of G on X is strongly transitive
and that the topological subgroup G < H is amenable, whence by Corollary 6.2(1)
the action of G on £, (X) will be Liouville for every n € N. For instance, the
topological group Sym(N) is amenable, acts strongly transitively on N, and contains
dense subgroups isomorphic to F; [29] (see also [8]). For another example, we note
that the topological group Aut(QQ, <) is (even extremely) amenable [35], acts strongly
transitively on QQ [5, p. 140], and contains a dense subgroup isomorphic to F, [16].

On the other hand, we note that if a group G acts faithfully on a countable set X
in such a way that the action preserves a linear order on X and, for every n € N,
the induced action of G on #,(X) is Liouville, then the topological group G,
carrying the subspace topology inherited from Sym(X '), is indeed amenable. This is
a consequence of our Corollary 6.2(2) (combined with Remark 5.6(2)).
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