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Connected components of strata of Abelian differentials
over Teichmiiller space

Aaron Calderon

Abstract. This paper describes connected components of the strata of holomorphic abelian
differentials on marked Riemann surfaces with prescribed degrees of zeros. Unlike the case for
unmarked Riemann surfaces, we find there can be many connected components, distinguished
by roots of the cotangent bundle of the surface. In the course of our investigation we also
characterize the images of the fundamental groups of strata inside of the mapping class group.
The main techniques of proof are mod r winding numbers and a mapping class group—theoretic
analogue of the Euclidean algorithm.
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1. Introduction

The Hodge bundle J# Mg of holomorphic abelian differentials over the moduli
space Mg of genus g Riemann surfaces is a fundamental object of study in many
diverse fields of mathematics. This bundle can be partitioned into a collection of
disjoint strata, suborbifolds (in fact, subvarieties) which are distinguished by the
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number and degree of the zeros of the differentials in the stratum. For any integer
partition k = (ky,...,k,) of 2g — 2, we write J{ M (k) to denote the stratum of
abelian differentials on genus g Riemann surfaces which have exactly n zeros of
degrees k1, ..., k.

An abelian differential dz defines a flat cone metric |dz|* on the surface, and so
a stratum J¢ M (k) may be identified with the moduli space of finite—area translation
surfaces with cone points of angle 2(ky + 1)x,...,2(k, + 1) 7.

By pioneering work of Masur [34] and Veech [43], the Teichmiiller geodesic flow
on H M acts ergodically on each connected component of a stratum with respect to
a Lebesgue—class measure. More generally, strata are some of the simplest examples
of orbit closures for the SL(R) action on M. For an overview of these and
related topics, see, e.g. [49] or [50].

In [29], Kontsevich and Zorich classified the connected components of these
strata. They proved that each stratum J M (k) has at most 3 components, distin-
guished by hyperellipticity and the parity of the induced spin structure, an algebro-
geometric condition relating to square roots of the canonical bundle (cotangent
bundle) over a given Riemann surface (see Theorem 2.2).

This paper addresses a similar question, posed now over the Teichmiiller space.
Recall that the Teichmiiller space T is the space of marked genus g Riemann surfaces
(up to isotopy). The change—of—marking action of the mapping class group Mod(SS)
on T, demonstrates T as the (orbifold) universal cover of Mg, and there is similarly
a Hodge bundle #7 , over Teichmiiller space classifying the holomorphic abelian
differentials on marked Riemann surfaces (equivalently, marked translation surfaces
of finite area).

Just as over moduli space, the Hodge bundle over Teichmiiller space is stratified

by number and degree of zeros. For any integer partition k = (k1,...,k,) of 2g —2,
we write J€T (k) to denote the stratum of abelian differentials on marked genus g
Riemann surfaces which have exactly »n zeros of degrees k1, .. ., k,.

Let r := ged(ky, ..., k). Whenr € {2¢ —2,¢ — 1} (and g > 3), there are
infinitely many hyperelliptic components of 7 (k), corresponding to the infinitely
many different hyperelliptic involutions of the surface S (see Corollary 2.6).

Our main theorem deals with the remaining cases by relating the connected
components of T (k) to the set of r-spin structures, r™ roots of the canonical
bundle over a given marked Riemann surface which can equivalently be thought of
as mod r winding number functions (see §§3, 4).

Our results only apply to surfaces of high enough genus; in order to specify
exactly which, we must use the following auxiliary function:

13 r =4,
gr) =1{21 r =8,

5 otherwise.
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Theorem 1.1. Suppose that k = (kq,...,ky) is a partition of 2g — 2 such that
g > g(r), where

r =gecd(ky,.... ky) ¢{g—1,2g —2}.
Then the stratum H T (k) has finitely many components.
(1) Ifr is odd, then there are exactly r*8 components, distinguished by their induced
r-spin structure.

(2) Ifr is even, then there are at least r*8 components, of which at least
(r/2)* (2571 (2 + 1))
have even parity and at least

(r/2)* (257125 - 1)
have odd.

The connected components of strata over Teichmiiller space are intimately
connected to the fundamental groups of strata over moduli space. Kontsevich has
conjectured [28] that every connected component of a stratum is a classifying space
for some sort of mapping class group, but little progress has been made either way
in this regard.

Our second main theorem deals with certain representations of these fundamental
groups inside of the mapping class group. In particular, suppose that €2 is a connected
component of some stratum J# M (x). The forgetful map p: # Mg — My induces a
map of orbifold fundamental groups

P TP (Q) — 1P (M,) = Mod(S)

whose image is called the geometric monodromy group §(£2) of Q.1

Since the number of connected components of J 7 (k) which lie over 2 is the
same as the index of ¥ (£2) inside Mod(S) (see §4.3), Theorem 1.1 is essentially
equivalent to the following:

Theorem 1.2. Suppose that k = (k1,...,kn) is a partition of 2g — 2 such that
g > g(r), where
r =gcd(ky,.... kn) € {g—1,2¢g — 2}.

If Q2 is a connected component of H M(x), then the geometric monodromy

group § (K2) is a finite—index subgroup of Mod(SS).

(1) If r is odd, then §(R2) is the stabilizer inside the mapping class group of an
r-spin structure.

Technically, this group is only well-defined after choice of basepoint (X, @) (where X is a Riemann
surface and w an abelian differential on X') and an identification of X and S, i.e. a marking. We discuss
this further in §4.3, but for the purposes of the introduction one may simply think of the geometric
monodromy as a subgroup up to conjugation.
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(2) If r is even, then §(S2) is a finite—index subgroup of the stabilizer of an r-spin
structure.

The high—genus and finite—index qualifications for even r are not essential, but
are rather relics of the mapping class group—theoretic methods which we use to
investigate the geometric monodromy groups §(€2). Moreover, the strata J M (k)
fork = (2g —2) or (g — 1, g — 1) have non-hyperelliptic components, the geometric
monodromy groups of which remain unclassified (see the discussion in §7).

Conjecture 1.3. Let g > 4 and let k = (ky,...,ky) be a partition of 2g — 2 with
r = ged(ky, ..., k,). The non—hyperelliptic connected components of KT (k) are
in one—to—one correspondence with the set of r-spin structures on S. In particular,
there are always exactly r*& non-hyperelliptic components of HT (k).

Equivalently, if Q is a non—hyperelliptic connected component of ¥ M(k), then
its geometric monodromy group is the stabilizer of an r-spin structure.

Update. Nick Salter and the author have proven this conjecture for all r and all g > 5;
see [8].

1.1. Context: higher spin structures. While square roots of the canonical bundle K y
over a Riemann surface X (also known as theta characteristics or (classical) spin
structures) have been studied since the times of Riemann, its higher roots are a
relatively recent addition to the literature.

The fundamental work of Sipe [40] relates r'" roots of Ky to the cohomology of
the unit tangent bundle 75 X (see §3.1), and in that paper and in a sequel [41] she
also describes the action of the mapping class group on the set of r-spin structures.
Later, Trapp recovered the same action in his construction of novel representations
of the mapping class group acting on the homology of the unit tangent bundle [42].

Higher spin structures were recently utilized by Salter in the course of his
investigations into the geometric monodromy groups of both families of smooth
plane curves of fixed degree [38] and of families of smooth curves in a complete
linear system on a smooth toric surface [39]. In the latter work, he also analyzes
the Mod(S) stabilizer of a fixed r-spin structure and gives an explicit criterion for
collections of Dehn twists to generate the subgroup (Theorem 3.14). We make
extended use of this result in $6.1.

Though it seems higher spin structures had been largely forgotten in the
Teichmiiller theory literature until quite recently, they are routine objects of inquiry for
complex algebraic geometers and topological string theorists. One need only perform
acursory web search to find a wealth of papers relating to moduli of Riemann surfaces
with r-spin structures and compactifications thereof, e.g. [1,10,25]. We mention in
particular work of Polischuk on moduli of effective r-spin structures, that is, r-spin
structures which admit holomorphic sections. The r™ power of one such section
is an abelian differential, and in particular the moduli spaces of effective r-spin
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structures are in one—to—one correspondence with strata of abelian differentials [37,
Theorem 1.2].

Much of the recent activity regarding higher spin curves has focused on their role
in a higher spin formulation of Witten’s conjecture [47], which relates intersection
theory on the moduli space of stable r-spin curves with integrable hierarchies. This
conjecture was refined and subsequently proved in certain special cases in [26] and
in all generality in [16].

Intersection theory over the moduli space of stable curves is known to relate to
both the Weil—Petersson volume of moduli space [36] and the Masur—Veech volume
of the principal stratum of quadratic differentials (that is, the stratum with all simple
zeros) [14]. As Masur—Veech volumes are notoriously difficult to compute, it would
be interesting to know if intersection theory over the moduli space of stable r-spin
curves can be related to the volumes of non-principal strata in a similar fashion.

1.2. Context: connected components. As stated above, Kontsevich and Zorich
classified the connected components of strata over the moduli space of holomorphic
abelian differentials [29] by hyperellipticity and parity of spin structure. In the
infinite-area case, Boissy [6] proved that each stratum of meromorphic abelian
differentials over moduli space also has at most 3 components (except when g = 1),
distinguished by the same invariants. Lanneau completed the classification of the
connected components of strata of quadratic differentials over moduli space in [30]
and [31], with a slight correction by Chen and Moller when g = 4 [11].

Except for the last-named result, all of the above papers rely on a classification
of the connected components of the minimal stratum J# M (2g — 2) (or for quadratic
differentials, the stratum with a single zero of degree 4g — 4). By “colliding zeros,”
one may degenerate any stratum to the minimal one, and therefore the number of
connected components of a general stratum over moduli space is at most the number
of connected components of the minimal stratum. Over Teichmiiller space, this
approach fails miserably, for there are infinitely many components of the minimal
stratum H T (2g — 2) (Corollary 2.6).

In her thesis [44] and in [45], Walker used winding numbers and r roots of
the square of the cotangent bundle to investigate the connected components of
the Teichmiiller space of quadratic differentials, recovering in some special cases
results which are analogous to ours. The characterization of connected components
appearing in our main theorem is inspired by her work, and our argument in §4.2 is
a generalization of her lower bound for the the number of connected components of
strata. However, her use of ' roots to construct upper bounds uses the connectivity
of certain configuration spaces, a technique which requires many zeros of the same
multiplicity and thus is insufficient for most of our cases.
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1.3. Context: monodromy of strata. While the fundamental groups of strata have
remained mysterious outside of the hyperelliptic components and low genera [32],
their monodromy representations (in both mapping class and symplectic groups) have
been studied by multiple authors.

Let €2 be a connected component of a stratum of abelian or quadratic differentials
over moduli space. By marking the zeros of any representative differential in €2,
one may obtain a geometric monodromy representation of 7¢™(2) not only into
the mapping class group, but into the punctured mapping class group. We denote
the resulting subgroup of Mod(S, ) by ¥°(€2). This representation gives one
more information about 7{™(Q) (since () is the image of §°(Q) under the
forgetful map), but is less related to the components of the stratum of differentials
over Teichmiiller space which cover €2.

In addition to her work on connected components of strata over Teichmiiller
space, Walker also considered the groups ¥°(£2) when 2 is a stratum of quadratic
differentials over moduli space [44,46]. In some very special cases (in particular,
when one has many simple zeros), she proved that this group is the kernel of a certain
map and gave an explicit generating set.

During the writing of this paper, Hamenstddt released a preprint in which she
computes ¥°(£2) when € is a stratum of abelian differentials [22]. We note that
while her main result gives a set of generators for ¥°(£2) (and hence for §(2)),
it does not immediately characterize §(£2) as a subgroup of Mod(S). In a later
draft, by applying the work of Salter, she is able to recover some cases of our main
theorems [22, Theorem 3].

The geometric monodromy of a component of a stratum can be realized more
concretely as a monodromy group by building the corresponding surface bundle. To
that end, if §2 is a component of J M (x) and Qisa component of T (k) lying
over §2, define X to be the bundle over & whose fiber at a marked abelian differential
(X, f,w) is simply the Riemann surface X. This bundle is trivial over Q, but
quotienting out by the diagonal action of the mapping class group yields a nontrivial
surface bundle XX — 2 whose monodromy group (of a generic fiber) is exactly §(£2).

By replacing each Riemann surface with its homology, one can similarly define
an H;(X;R) bundle over @2, which descends to a bundle unfortunately also
sometimes referred to in the literature as the Hodge bundle over 2.2 We will
eschew this terminology, and will instead simply denote this bundle by H€2.

The natural SL,(R) action on H; €2 gives rise to the Kontsevich—Zorich cocycle,
the Lyapunov exponents of which have been studied extensively; see e.g. [5, 19].
Associated to this cocycle is its algebraic hull, the smallest algebraic group containing
(a conjugate of) the cocycle, which has been exploited to great effect by Filip [18]

20bserve that with this nomenclature, the Hodge bundle is a bundle over a subvariety of the Hodge
bundle! Moreover, it is common in the literature to use the term “Hodge bundle” to refer to the Mod(S)
quotients of a number of different real or complex, relative or absolute, homology or cohomology bundles

over Q [35, Remark 4].



Vol. 95 (2020) Components of strata over Teichmiiller space 367

and Eskin-Filip-Wright [15]. Since the Zariski closure of the monodromy of H €2
necessarily contains the algebraic hull, constraints on the monodromy place con-
straints on the hull.

Filip proved Zariski density in Sp(2g,R) of the monodromy of H;2 [18,
Corollary 1.7]3 and the full computation of the monodromy groups of H;$2 was
completed by Gutiérrez-Romo [21, Corollary 1.2].

By the construction of the bundles X and H; €2 above and our discussion of their
monodromies, one can see that the monodromy of H €2 is exactly

v(9(R)) < Sp(2g.7Z),

where v is the natural symplectic representation of Mod(S) via its action on
homology. Using this fact, we can use Theorem 1.2 to give a topological proof
of the result of Gutiérrez-Romo.

Corollary 1.4 (c.f. [21, Corollary 1.2]). Suppose thatk = (ky,...,ky) is a partition
of 2g — 2 such that g > g(r), where

r=ged(ky,.... kn) £{g—1,2¢ —2}.

Let 2 be a connected component of # M(k).

(1) If r is odd, then the monodromy group of HS2 is the entire symplectic group
Sp(2g, 7).

(2) If r is even, then the monodromy group of H1$2 is the stabilizer in Sp(2g, 7Z.)
of a quadratic form q associated to the spin structure on the chosen basepoint
(see §3.2).

We note that Gutiérrez-Romo’s result (combined with work of Avila, Matheus, and
Yoccoz for the hyperelliptic case [4]) also recovers the cases whenr € {2g—2,g—1}
(and for low genera). In addition, the original impetus for both [21] and [4] was the
computation not of monodromy representations, but rather the Rauzy—Veech groups
of strata, which relate to a discrete version of the Kontsevich—Zorich cocycle and the
combinatorial dynamics of the Teichmiiller geodesic flow.

It would be interesting to know how much of the geometric monodromy group can
be recovered from the Teichmiiller geodesic flow, perhaps via modular Rauzy—Veech
groups (see [21, Definition 2.3]).

1.4. Outline of the paper. In Section 2, we recall some necessary background
about abelian differentials and strata. We also use this section to collect results about
the topology of the hyperelliptic connected components of J M (k) (Theorem 2.3)
and hyperelliptic mapping class groups (Theorem 2.5). The latter theorem plays an
importantrole in the calculations appearing in Appendix A. Combining Theorems 2.3

3In fact, he proved an analogous statement for the monodromy group of any affine invariant submanifold.
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and 2.5, we derive the classification of hyperelliptic connected components of # T (k)
(Corollary 2.6).

In order to parametrize the non—hyperelliptic connected components of H T (k)
by their induced r-spin structure, in §3 we recall Sipe’s characterization of r-spin
structures as elements of the cohomology of the unit tangent bundle and the action
of the mapping class group on the set of these structures. We also record Salter’s
criterion (Theorem 3.14) for generating an r-spin mapping class group Mod(S)|[¢],
the stabilizer of an r-spin structure ¢ under the mapping class group action. In
particular, viewing r-spin structures as topological, instead of algebro-geometric,
objects will allow us to compare r-spin structures on different (marked) Riemann
surfaces.

Section 4 contains one final interpretation of r-spin structures as mod r winding
numbers (Proposition 4.4) and uses this characterization to relate them to the flat
geometry of surfaces in J£7 (k). From this equivalence, it is easy to show that the
r-spin structures on any two marked differentials in a component of # 7 (k) must be
topologically equivalent (Proposition 4.7). In particular, this demonstrates that there
exist at least as many components of JT (k) as there are (topological equivalence
classes of) r-spin structures (Theorem 4.9).

The invariance of the r-spin structure therefore implies that the geometric
monodromy group & (£2) of any connected component €2 of # M (k) must lie inside
some r-spin mapping class group Mod(S)[¢] (§4.3). The remainder of the paper
consists of using the action of the mapping class group on simple closed curves to
show that §(£2) is all of Mod(S)[¢] (or when r is even, is of finite index).

In §5, we fix a system of curves C of combinatorial type compatible with €2 and
use a standard construction to build an explicit (marked) abelian differential in €2
(Proposition 5.5). The core curves of the horizontal and vertical cylinders on this
differential are exactly the curves of C, and so by shearing these cylinders (see §6.1)
we are able to realize a subgroup I'(C) < §(£2) generated by all of the Dehn twists
in the curves of C.

In some special cases, the collection of curves C is large enough that we are able
to immediately apply Salter’s theorem. In the case when r is odd, the theorem says
that I'(C) = Mod(S)[¢], so we have that

I'(C) = Mod(S)[¢] < ¥(£2) < Mod(S)[¢]

and in particular §(2) = Mod(S)[¢]. If r is even, the theorem says that I'(C) is a
finite index subgroup of Mod(S)[¢], hence & (£2) must be as well, finishing the proof
of Theorems 1.1 and 1.2.

However, for many strata the curves of C do not fulfill the hypotheses of Salter’s
theorem. To deal with the remaining possibilities, we show in Theorem 6.7 that by
we can “complete” the curve system C to the maximal one allowed by r, that is, to the
curve system C’ corresponding to the partition (7, 7, ..., #) of 2g —2. More precisely,
we show that I'(C) = I"'(C').



Vol. 95 (2020) Components of strata over Teichmiiller space 369

One of the most novel contributions of this work is the demonstration of the above
equality. In order to prove it, we model the operations of standard arithmetic by Dehn
twists on certain simple closed curves of C (see Appendix A) and then iteratively
apply the Euclidean algorithm to reduce the partition (kq,...,k,) to the partition
(,...,r). From this procedure it follows that any Dehn twist in a curve of C’ can be
expressed as a product of Dehn twists in the curves of C.

The completed curve system C’ is then large enough to apply Salter’s theorem, so
we can conclude that

I'(C) = I'(C') = Mod(S)[¢]

when r is odd, and is a finite index subgroup of Mod(S)[¢] when r is even, finishing
the proof of Theorems 1.1 and 1.2.

We conclude in §7 by outlining some natural questions that arise in the course of
the proof, as well as possible directions for further research.

Acknowledgements. The author is grateful to his advisor, Yair Minsky, for encour-
aging him to pursue this question and for his continued support and guidance, as well
as for comments on earlier drafts of this paper.
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this work.

The author would also like to thank Ursula Hamenstddt for helpful comments, as
well as the anonymous referee for comments which improved the readability of this
paper.
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2. Preliminaries

Before proceeding with the proof we will recall some foundational information, which
also serves the purpose of allowing us to establish our notation. All of this material
can be found in greater detail in the flat surfaces literature, see e.g. [49,50]. In §2.1, we
record the relationship between hyperelliptic abelian differentials and hyperelliptic
mapping class groups, and use this to show that there are infinitely many hyperelliptic
components of X7 (2g —2) and HT (g — 1, g — 1) (Corollary 2.6).

Let S = S, denote a (smooth, orientable) surface of genus g with n marked
points. The moduli space M , of S is the space of complex (equivalently, conformal
or hyperbolic) structures on S. The moduli space is generally not a manifold but an
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orbifold, whose orbifold universal cover is the Teichmiiller space 7, of (equivalence
classes of) marked Riemann surfaces. A point in 7, is an (equivalence class of)
pairs (X, f), where X is a Riemann surface and f:S — X is a diffeomorphism (a
marking), and where two marked Riemann surfaces (X, /) and (Y, h) are equivalent
if the map h o f~1: X — Y is isotopic to a biholomorphism.

The mapping class group Mod(S) may be defined as

Mod(S) = mo(Diff ™ (8)),

where Diff 7 (S) is the space of orientation—preserving diffeomorphisms of S. If S
has punctures and/or boundary components, we allow mapping classes to permute
the punctures but insist that they fix the boundary pointwise.

The mapping class group acts on Teichmiiller space by precomposition (by
inverses) with the marking, so that for any g € Mod(.S),

g (X’ f) = (Xv .fg_l)'

A specific family of mapping classes that we will use frequently are Dehn twists: given
any simple closed curve ¢ on S, the (left-handed) Dehn twist 7'(c) in ¢ is realized by
cutting the surface along ¢ and regluing the resulting boundary components with a
full leftward twist. It is a standard fact that Mod(.S) is generated by a finite collection
of Dehn twists.

For the rest of the paper, except when otherwise stated, all surfaces will be closed
and without boundary.

A holomorphic abelian differential ® on a Riemann surface X is a holomorphic
1-form, equivalently, a holomorphic section of Ky, while a quadratic differential is
a section

qg:- X - K ?2.

For the rest of the paper, we will assume that all abelian differentials are holomorphic
and all quadratic differentials are meromorphic with at worst simple poles.

Around every point of X, an abelian (quadratic) differential defines canonical
coordinates in which the differential takes the form z¥ dz forsome k > 0 (respectively,
z%dz? for k > —1). By pulling back the flat metric on C along these coordinates,
both abelian and quadratic differentials induce flat cone metrics on X with cone
angles of 2(k + 1)x at each point (respectively, (k + 2)r). A cylinder on a flat
surface (X, w) or (X, q) is an embedded flat cylinder which does not contain any
singularities in its interior.

The space of all pairs (X,w) where X is a Riemann surface and w is a
holomorphic abelian differential is naturally a vector bundle over Mg, called the
Hodge bundle # M. For a given partition k = (k1,...,k,) of 2g —2 by positive
integers, we denote the stratum of J M ¢ of differentials with exactly n zeros of orders
ki,...,ky by J M(x). Similarly, there is a Hodge bundle T ; over the Teichmiiller
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space T, and we denote its strata by J7 (k). Points in # 7 ; correspond to triples
(X, f,®) where X is a Riemann surface, f:S — X is a marking, and w is a
holomorphic abelian differential on X'.

Let (X, f,w) € HT (k) and fix a basis {y1,...,yq} for the homology of X
relative to the zeros of w. One can transport each y; to nearby (X', f/, ') in #T (k),
yielding period coordinates on the stratum, local coordinates given by

HT (k) - C?

(X,w)H([,Iw,...,[,dw),

which demonstrate # 7 (k) as a complex manifold of dimension d = 2g +n — 1.
Quotienting out by the Mod(S) action, these coordinates descend to coordinates
on HM(k), which is a (possibly disconnected) complex orbifold of the same
dimension.

The orbifold nature of # .M (k) can be observed at differentials (X, ) which have
extra symmetries (since they project to orbifold points in Mg). A prominent example
occurs when a differential is hyperelliptic, that is, preserved under some involution
of X which acts by —1 on homology. In this case, @ is obtained by pulling back a
(necessarily meromorphic) quadratic differential ¢ on the Riemann sphere along a
(branched) covering map whose branch locus is contained in the singularities of g.

A stratum J€ .M (k) is not necessarily connected, but the work of Kontsevich and
Zorich classifies its connected components. Before we state their theorem, we must
record one more definition.

Suppose that (X, w) € H M(k); then w defines a divisor

@)=Y kipi

i=1

on X, where p; € X is the point at which w has a zero of order k;. When all k; are
even, the divisor (w)/2 is equivalent to a section of some line bundle £ such that
£22 = Kv,
Definition 2.1. Suppose that (X,w) € H M(k), where gcd(k) is even. The line
bundle £ defined above is called the spin structure associated to (X, w).

The parity of £ is h°(X,£) (mod 2), the dimension mod 2 of the space of
holomorphic sections of £ — X.

Theorem 2.2 ([29, Theorem 1]). If g > 4, then any stratum of abelian differentials

over moduli space has at most three connected components:

o Ifk = (2g—2) or (g—1, g—1) then there is one component H M (x)™P consisting
entirely of hyperelliptic differentials.

e [f gcd(k) is even then there are two non-hyperelliptic components of H M(k),
distinguished by the parity of their induced spin structure.



372 A. Calderon CMH

o Ifgcd(k) is odd, there is one non-hyperelliptic component of H M (k).

For uniformity of notation, we will always write H#M(k)*™ to denote a
component of J M (k) with specified parity of spin structure, even when gcd(x)
is odd. In that case, the spin term will be understood to be vestigial, as such abelian
differentials do not determine (2-)spin structures. Similar naming conventions will
be adopted throughout the paper.

2.1. Hyperelliptic components and Birman-Hilden theory. In the case when 2
is the hyperelliptic component of either H M(2g — 2) or HM(g — 1,g — 1), its
topology is much more tractable. In Theorem 2.3, we record the topological types of
these strata as quotients of configuration spaces.

We then discuss the theory of Birman and Hilden relating hyperelliptic mapping
class groups to braid groups (Theorem 2.5) and explain how to use this theory to
classify the hyperelliptic connected components of H T (k) (Corollary 2.6). While
Corollary 2.6 is a consequence of existing statements in the literature and is certainly
known to experts, we include a proof of it for completeness and to put our results into
context.

Recall that a hyperelliptic differential (X, w) € 2 is obtained by pulling back an
integrable quadratic differential g on C via a branched cover X — C.

Theorem 2.3 (Folklore, see [32]). The strata J M (2g—2)"P and H M(g — 1, g — 1)MVP
are isomorphic to quotients of configuration spaces of points on the Riemann sphere
by the action of the group of (2g + 1)*, respectively (2g + 2)™, roots of unity.

In particular, this implies that H MQ2g — 2)™° and HM(g — 1,g — D)™ are
orbifold classifying spaces for finite extensions of the corresponding braid groups.

We outline the geometric intuition of this theorem below, and direct the curious
reader to [32, §1.4] as well as [4, §4.2] for a dynamical perspective.

Sketch of Proof. Let (X, w) be a hyperelliptic abelian differential, coming from a
quadratic differential g on C. Because (X,w) is completely determined by the
zeros of g, one may take the configuration of the singularities of ¢ as moduli for
the space of hyperelliptic differentials in 2. We note that this can only be done
locally: there is an action of the multiplicative group C* on this configuration space,
and its respective action on the universal hyperelliptic curve over the configuration
space has nontrivial kernel. In particular, we note that the action of —1 € C* is the
hyperelliptic involution.

To see how many singularities g has, we consider the action of the hyperelliptic
involution . Suppose first that Q = J M(2g — 2)™P; then since the zero of w must
necessarily be fixed under ¢, ¢ must have a zero of order 2g — 3. Therefore, by the
Poincaré—Hopf theorem, it also has 2g + 1 simple poles.
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Similarly, if @ = HM(g — 1, g — 1)WP then since ¢ necessarily interchanges the
two zeros,* the differentials in €2 are obtained from a quadratic differential g on C
with a single zero of order 2¢g — 2 and 2g + 2 simple poles. Ll

In order to relate this result to the geometric monodromy groups of the strata, we
will appeal to the work of Birman and Hilden on symmetric mapping class groups.

Definition 2.4. If ¢ is some hyperelliptic involution of a surface S (for the moment,
closed), then the symmetric mapping class group SMod(S) (with respect to ¢) is the
centralizer of ¢ in Mod(S).

The theory of Birman and Hilden (developed over a series of papers in the 1970s,
see the survey [33] or [17, §9.4]) relates SMod(.S) to the mapping class group of the
quotient S /.

By the Riemann—Hurwitz formula, the quotient ¥ = S/¢ is a sphere with 2g 4 2
branch points, and so its mapping class group Mod(X) is just the mapping class
group of a (2g + 2)-times punctured sphere, which is a Z, quotient of the spherical
braid group on 2g + 2 strands [17, p. 245]. Suppose that « is an arc on X connecting
branch points b; and b,; then the half-twist H, on « interchanges »; and b, by a
clockwise twist in a neighborhood of «. If ¢ is a curve on S whose quotient is «, one
may observe that Hy lifts to the Dehn twist on c¢. See Figure 1.

Figure 1. Lifting a half—twist Hy to a Dehn twist 7'(c).

In this case, the Birman—Hilden theory states that:
Theorem 2.5 (Birman-Hilden). Ler ¢ be a hyperelliptic involution of a closed
surface S and ¥ = S /1. Then
SMod(S)/{t) = Mod(Z).

One may perform a similar construction when the surface S has punctures.
Suppose first that S has a unique puncture fixed by ¢, so that ¥ has 2g + 1 branch
points and a unique puncture. Then the appropriate mapping class group Mod(X)

4This follows because the underlying surface is isomorphic to a plane curve of the form w? =

]_[,-2172(2 — z;) and the hyperelliptic involution interchanges the two points at infinity.
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is the subgroup of Mod(Sp,2¢+2) Which preserves the puncture but is allowed to
interchange the branch points. When § has two punctures which are interchanged
by ¢, then X has 2g + 2 branch points and a unique puncture and Mod(X) is defined
similarly. In both of these cases, one has the same conclusion as in Theorem 2.5,
namely, that

SMod(S) /() = Mod(%). (1)

Finally, as it will play a large role in Appendix A, we also consider the case
when § has no punctures but two boundary components which are interchanged by ¢.
In this case, the quotient £ again has 2g + 2 branch points but has a single boundary
component, so Mod(X) is exactly the braid group Bag42 on 2g + 2 strands. Half-
twists still lift to Dehn twists, but now the hyperelliptic involution ¢ is not a mapping
class of the surface S since it interchanges the boundary components. Therefore, one
has that

SMod(S) = Mod(X) = Bag4a. (2)

One may of course perform similar constructions for surfaces with more punctures
or boundary components, but the restrictions on which points may be interchanged
become more involved.

Combining Theorems 2.3 and 2.5, we arrive at a classification of the hyperelliptic
components of HT (2g —2)and HT (g —1,g —1).

Corollary 2.6. For any g > 3, the strata T (2g —2) and T (g —1,g — 1) each
have infinitely many hyperelliptic connected components.

Proof. Suppose that 2 is the hyperelliptic component of either H M (2g — 2) or
HM(g—1, g—1); then by Theorem 2.3 its fundamental group is a finite extension of a
spherical braid group. Therefore, its punctured geometric monodromy group §°(£2)
must be

§°(Q2) = Mod(X) x Zz = SMod(Sg ») 3)

where n is the number of zeros of a differential in €2, and the corresponding
hyperelliptic involution ¢ either preserves the single zero (in the case k = (2g —2)) or
interchanges the two zeros (whenk = (g—1, g —1)). Note that the last isomorphism
of (3) is just (1), the Birman—Hilden correspondence for the surface punctured at the
zeros of the differential.

The hyperelliptic involution ¢ remains a hyperelliptic involution after forgetting
the puncture(s), and so we see that the image of SMod(Sy ) under the forgetful map
lies inside of a different (unpunctured) symmetric mapping class group SMod(Sy ).>
We may therefore conclude that

£(2) < SMod(S,).

5This map is by no means an isomorphism. When #» = 1, the map SMod(Sg,1) = SMod(Sy) is
injective but not surjective [7, Theorem 3.1]. When 7 = 2, the map SMod(Sg.2) — SMod(Sy) is
surjective but not injective |7, Theorem 3.2].
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Now for ¢ > 3 any symmetric mapping class group has infinite index [17,
Proposition 7.15] and hence by the correspondence between monodromy groups
and connected components (see §4.3), there must be infinitely many connected
components of J T (k) covering 2. ]

Remark 2.7. One can also use the above correspondence to prove that in genus 2
(where every surface and every differential is hyperelliptic), the stratum H 7 (1, 1)
is connected while the stratum 7 (2) has 6 components, corresponding to the
6 Weierstrass points on a genus 2 surface.

3. Higher spin structures

In this section, we collect the necessary results on higher spin structures. As
these objects do not appear frequently in the flat surfaces or Teichmiiller theory
literature, we take a more expository approach and summarize many of their important
properties.

In §3.1, we give two equivalent definitions of r-spin structure, and in §3.2 recall
an important invariant of r-spin structures, called the Arf invariant (Definition 3.3).
In order to compare r-spin structures on different surfaces, in §3.3 we explain how
r-spin structures interact with a marking and how a geometric homology basis can be
used to determine equality of two r-spin structures (Lemma 3.9). Finally, we explain
how this theory can be used to classify the action of Mod(S) on the set of r-spin
structures (Theorem 3.11).

Depending on the reader’s mathematical taste, it may be helpful to read §4.1,
in which we give a differential-geometric characterization of r-spin structures, in
tandem with (or even before) this section.

3.1. Two equivalent definitions. The most natural way to define an r-spin structure
is in analogy with the (classical) spin structures constructed in §2. Recall that a spin
structure on a Riemann surface X is a square root of the canonical bundle, that is, a
(complex) line bundle £ — X suchthat £®? =~ K.

Definition 3.1. An r-spin structure on a Riemann surface X is an r™ root of the
canonical bundle, that is, a line bundle £ — X such that £%" ~ K.

Observe that we do not require the root £ to admit a holomorphic section. In
fact, if £ — X does admit a section then X must admit an abelian differential with
certain constraints on its divisor (see §4).

From this definition, it is easy to see that there are exactly r%& r-spin structures
up to isomorphism. Indeed, the r-spin structures can be put into (non-canonical)
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bijection with torsion elements of the Jacobian J(X):® if £ is an r-spin structure
on X and j is an r-torsion element of J(X), then we have that

(E® )N =%% Q% =~ Ky ®0 = Ky,

where O is a trivial bundle over X. Therefore £ ® j is an r-spin structure.
Likewise, if &£ and &£, are r-spin structures, then &£; ® &£ is r-torsion, for

(T @ =7 ¥ =Ky kL 2 6.

We will now reformulate the definition of an r-spin structure on a surface
without reference to the underlying holomorphic structure. For more details on
this equivalence, see [40] or [38, §§2,3].

Choose some r-spin structure £ on X. Puncturing (that is, removing the
zero sections from Ky and £) induces an (unramified) cover of the corresponding
punctured bundles. The punctured canonical bundle is clearly homotopy equivalent
to the unit cotangent bundle 7,7 X, and likewise we see that the punctured £ bundle
is homotopy equivalent to some circle bundle Q. Moreover, since the process
of tensoring &£ — £®" locally has the form z +— z”, we see that the cover
Q — T4 X induces the standard (connected) r-fold cover of § 1 5 S!onfibers [40,
Proposition 2.3].

Let  denote an S fiber of 7y X. Now (a) is central inside of (T X), hence
the cover Q of the preceding paragraph corresponds to a map

¢ Hi(Ty X, Z) — G,

where G is some group of size |G| = r. Since the induced map on the fibers is given
by z — z", wesee that G =~ Z, and ¢p () = 1.

A choice of Riemannian metric on X induces an isomorphism between 7, X
and Ty X, giving the following (co)homological characterization of r-spin structures:

Theorem 3.2 ([40, Theorem 1], see also [38, §§2,31). The r™ roots of the canonical
bundle are in Mod(S)-equivariant bijection with elements of

@, :={p € H' (ToX,Z;) : p(e) = 1}. )

We will often use @, in the sequel as shorthand for “the set of all 7-spin structures
on X, freely passing between r' roots of the canonical bundle on a Riemann surface
and their induced cohomology classes.

6Recall that the Jacobian J(X) of a genus g Riemann surface X is a g-dimensional complex torus.
By the Abel-Jacobi theorem, J(X) parametrizes degree-0 divisor classes on X, equivalently, degree—0
line bundles on X. Given this identification, it naturally has the structure of an abelian group whose
addition is given by taking sums of divisor classes. In the line bundle formulation, addition takes the form
of the tensor product and the inverse of a line bundle &£ is its dual bundle £*. See, e.g.[20, pp. 224-39,
333-63)).
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A reader familiar with the literature will note that Sipe’s original statement of
the theorem requires that ¢ («) = —1 instead of 1. This sign arises because she
uses a Hermitian metric on X and by conjugate-linearity, the isomorphism between
a Hermitian vector space and its dual reverses orientation.” If one instead uses a
Riemannian metric, as appears here and in [39] and [38], then the isomorphism
preserves orientation and thus does not flip the fiber.

3.2. The induced Arf invariant. An r-spin structure ¢» on X comes with more
data than just an r™ root. Indeed, observe that any r-spin structure induces an entire
family of intermediate roots of the canonical bundle simply by taking intermediate
powers. More formally, if s|r, then for any ¢ € ®, we have that p®/%) € ®;. In
particular, when r is even, any ¢ € ®, induces a 2-spin structure ¢®/2).

For any 2-spin structure v, Atiyah showed in [3] that A°(X,v¥) mod 2, the
dimension of the space of holomorphic sections X — ¥ mod 2, is deformation
invariant. Johnson later proved that this value is the same as the Arf invariant of a
certain quadratic form on H{ (X, Z,) [27]. We briefly sketch Johnson’s construction
below (see also [39, §3.1]).

To begin, we recall that a Z, quadratic form on a (nondegenerate) symplectic
vector space (V, (-, -)) over Z, is a function g: V' — 7., such that for any v,w € V,

q(v +w) =qv) +qw) + (v, w).

Definition 3.3. If {vy,..., v, wy,..., wg} is a symplectic basis for V' (i.e. a basis
such that (v;, w;) = §;;) then the Arf invariant of q is the value

g
Arf(q) := ) q(v)q(w;) mod 2. 5)

i=l1

Arf proved in [2] that this value depends only on the quadratic form and not on the
choice of basis. Moreover, the symplectic group Sp(V') acts on the set of quadratic
forms with two orbits, distinguished by the Arf invariant. There is also a count of
how many quadratic forms have even and odd parity, respectively.

Lemma3.4. Let V be a symplectic 7., vector space of dimension 2g. Then exactly
(257 1(2% + 1)) of the (nonsingular) Z-valued quadratic forms on V have even
parity and (2671(28 — 1)) have odd.

A 2-spin structure ¢ in the sense of (4) does not itself define a quadratic form on
homology with Z, coefficients, but can be made into one by considering the Johnson
lift of ahomology basis.® To that end, fix a symplectic basis for H; (X, Z) consisting

“In all truth, Sipe actually induces the isomorphism via the Bergman Hermitian metric on the universal
curve over Teichmiiller space [40, §5]. This metric restricts to a Hermitian metric on each fiber, as does
the induced isomorphism.

8We note that the map presented here is the same as Johnson’s original lifting [27], and hence does
not match the convention appearing in Salter’s work [39].
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of smooth simple closed curves. Mimicking [39], we call such a basis geometric. For
each curve a in the basis, the framed curve @ defines an element in H, (To X, Z),
and reducing coefficients mod 2 removes dependence on the initial orientation.

The framing is not a homology invariant since the framing of a small nulhomotopic
loop returns «, the class of the S ! fiber. However, the mapa — d = T+ o is.

Definition 3.5. Let a = ZINZI nia; be an integral multicurve (so that g; are all
pairwise disjoint simple closed curves) on a surface X. The Johnson lift of a is

N
4 = Zni(ﬁi\ +a) € Hi(To X, Z>).

i=1
Johnson proved that this lift only depends on the homology class, and has a certain

twist-linearity condition:

Lemma 3.6 ([27, Theorems 1A and 1B]). The map a +— a is well-defined on
homology classes in Hi(X, Z,), and obeys the following:

(@a+b)=d+b+ (a b,

where all coefficients are taken mod 2.
Therefore for any ¥ € &,, the function gy (¢) = ¥(d) is a quadratic form
on Hy (X, Zy), for
qy(a +b) = gﬁ((a + b))

=y (@+ b+ (a, b))

=v@ +y(b) + (a.b)

= qy(a) + gy (b) + (a, b),
where the third equality follows because ¥ (@) = 1.

Definition 3.7. If r is even, then an r-spin structure ¢ is called even (respectively
odd) if the Arf invariant of the induced quadratic form g,®«/2) is 0 (respectively 1).

We note that since the map from @, to ®; is just reduction mod s, (5) can be
written as

g —
Arf (qge0/2) = Y (@) +1)(¢(hi) + 1) mod 2 ©)
i=1
for any r-spin structure ¢, whenever {a1,...,ag.b1,...,bg} is a geometric basis

for H1(X, 7).
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3.3. Marked r-spin structures. In order to compare r-spin structures on different
Riemann surfaces, we need to identify X with a reference topological surface S. This
will give us an easy way to tell if two r-spin structures are equivalent (Lemma 3.9)
and another way of counting them (Lemma 3.10).

To that end, we define a marked r-spin structure to be a marked Riemann surface
(X, 1) together with an r-spin structure ¢ on X . If the reference surface S is endowed
with a smooth structure and the marking map is smooth, then f:S — X induces a
homeomorphism Df: TS — T X of tangent bundles (and of their unit sub-bundles,
which we will also denote by D). We can therefore use Df to pull back an r-spin
structure ¢ on X to one on the reference surface S.

Definition 3.8. We say that two marked r-spin structures (X, f, ¢) and (Y, g, ¥) are
topologically equivalent if
(Df)*¢ = (Dg)"y
as elements in H (T, S, Z,).
In particular, this gives us an easy way to tell if two r-spin structures are
topologically equivalent.

Lemma 3.9 (c.f. [24, Theorem 2.5]). Two marked r-spin structures are topologically
equivalent if and only if they take the same values® on a geometric basis for Hy (S, 7).

The cohomological formulation of r-spin structures also provides another way to
count r-spin structures without appealing to torsion in the Jacobian of a reference
holomorphic structure.

Lemma 3.10. There are exactly r¢ topological equivalence classes of marked r-spin
structures on a surface of genus g. If v is even, then exactly

(r/2)% (287128 + 1))

have even parity and

(r/2%(2571(2% - 1))
have odd.

Proof. Elements of H!(TyS,7Z,) are determined by their values on a basis of
H{(TyS,Z), and one can choose a basis consisting of the framings of a geometric
basis for Hy (S, Z) together with the class @ of a fiber. An r-spin structure must
evaluate to 1 on «, but can take any value in Z, on each framed basis curve.
Since H1(S, Z) has rank 2g, there are therefore r2& possible topological equivalence
classes of r-spin structures.

The second statement follows from equation 6 together with the count of quadratic
forms with given Arf invariant (Lemma 3.4). L]

90ne can evaluate an r-spin structure ¢ on an oriented simple closed curve ¢ by lifting ¢ to a framed
curve ¢ as in 3.2 and then computing qb(?). Such a lift is not well-defined on homology classes
in §, since a nulhomotopic loop evaluates to either =1, depending on its orientation. See, e.g. [39, §3.1]
or [41, Proposition 1].
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Since we already have perfectly good notation for the set ®, of r-spin structures
on a given Riemann surface X, we will assume the generosity of the reader and
subsequently conflate ®, with the set of topological equivalence classes of marked
r-spin structures on the underlying (topological) surface S.

3.4. Action of the mapping class group. The mapping class group Mod(S) acts
naturally on the space of marked r-spin structures by change of marking. In order to
understand this action (and in particular to understand the stabilizer of a given r-spin
structure, see Definition 3.12), we will relate the action of Mod(S) on ®, to its action
on H{(S,7).

Choose a geometric basis for H,(S,Z). By taking the framings of these curves
as in §§3.2 and 3.3, these together with the circular fiber @ determine a homology
basis for H1(TyS, 7). Lemma 3.9 tells us that the values of ¢ € ®, on this basis
completely determine ¢, so to understand the action of Mod(S) on @, it suffices to
consider the action on homology.

With this description, one can carry out explicit matrix multiplication to
understand the action of the mapping class group on ®,. The following theorem
appears in multiple places in the literature, for example in §4 of [39] and as
Theorem 3.2 in [25]. It can also be deduced from Sipe’s work in [41]. Morally
similar computations also appear in the proof of [45, Theorem 41].

Theorem 3.11. Let S be a surface of genus at least 2. If r is odd, then Mod(S) acts
transitively on the set ®, of r-spin structures. If r is even, then Mod(S) acts with
two orbits, distinguished by the parity of the induced 2-spin structure.

Definition 3.12. Let ¢ be an r-spin structure. The stabilizer of ¢ under the Mod(S)
action is called an r-spin mapping class group, and is denoted by Mod(S)[¢].

By the orbit-stabilizer theorem and Lemma 3.10, the following statements are
immediate.

Corollary 3.13. Let ¢ € ®,. Then the stabilizer Mod(S)[¢] has the following index
in Mod(S):

o 128 ifris odd.

o (r/2)%6(2871(2% + 1)) if r is even and ¢ has even parity.

o (r/2)%8(28571(28 — 1)) if r is even and ¢ has odd parity.

Moreover, if y € ®, is any other r-spin structure (with the same parity if r is even),
then Mod(S)[¢] and Mod(S)[y] are conjugate subgroups of Mod(S).

Since Mod(S) is finitely generated and Mod(S)[¢] is of finite index, it is also
finitely generated. In [39], Salter gave a criterion for a finite collection of Dehn twists
to generate Mod(S)[¢]. We record his theorem below.

First, define a network of curves on a surface (possibly with nonempty boundary)
to be a set of simple closed curves such that any two curves in the network intersect
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at most once. A network is connected it the union of all curves in the network is
connected (as a topological space), and arboreal if the graph whose vertices are
curves and whose edges represent intersections is a tree. A network is filling if the
union of the curves cuts the surface into disks and boundary—parallel annuli.

Salter then defines the D, 3 configuration to be the the arrangement of simple
closed curves

{al,ai,cl,---,czr-c-l}

appearing in Figure 2. Observe that the boundary of a regular neighborhood of
ay Uaj Uecp U--- U cy, is isotopic to the multicuve Ag U a,41 U a;_H.

Figure 2. The D2, 43 configuration on a surface.

Theorem 3.14 ([39, Theorem 9.5]). Suppose that ¢ is an r-spin structure on a closed
surface Sg and C = {c; } is a connected filling network on S satisfying the following:

(1) ¢(c;) = Oforalli, where ¢; is the framing of the (oriented) curve c;.

(2) There is some subset {cy,...,cary4} 0f Csuch that {cy,...,cory3} is arranged
inthe D3y, 3 configuration and cay 44 corresponds to ay 41, as shown in Figure 2.

(3) If d is the curve corresponding to Ag in the Dy, 3 configuration, then there is
some ¢ € Csuch thati(c,d) = 1.

(4) If C' is the subnetwork of C containing the curves which do not intersect d,
then C' has a further subnetwork C" which is a connected arboreal filling network
for S\ d.

Then:
* frisoddand g > 5, (T(c;) : ¢; € C) = Mod(S)[¢].

* ifrisevenand g > g(r), where

13 re=4,
g(r) = 221 =128,
5  otherwise,

then (T (c;) : ¢; € C) is of finite index in Mod(S)[¢].
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We remark that while Salter’s theorem as stated in [39] requires C’ to be an
arboreal filling network for the cut surface, an analysis of his methods reveals that it
is enough to require that C’ contains such a subnetwork (c.f. [39, Lemma 9.4]).

By a more careful analysis of the subgroup (T'(¢;) : ¢; € C), Salter is also able
to say something about its image under the symplectic representation ¥: Mod(S) —
Sp(2g, 7).

Lemma 3.15 (c.f. [39, Lemmas 5.4 and 6.4]). Suppose that ¢ is an r-spin structure
on a closed surface Sg and C = {c;} is as in Theorem 3.14.

e Ifrisoddand g > 5, then y({T(c;) : ¢c; € C)) = Sp(2g, Z).

o Ifrisevenand g > g(r), then Y ({T(c;) : ¢j € C)) is the stabilizer in Sp(2g,7Z)
of the Z/2-quadratic form qgr/>.

4. Abelian differentials and winding numbers

We have already seen in Definition 2.1 how any pair (X,®) € # M(k) defines a
square root of the canonical bundle Kx whenever r = gcd(k) is even. In a similar
way, it also defines an r-spin structure on X .

Below, we give an algebro-geometric interpretation of this correspondence before
giving an equivalent formulation in terms of winding numbers (Proposition 4.4).
Using this equivalence, in Proposition 4.7 we prove that the induced r-spin structure
is an invariant of connected components of H T (k), and in §4.3 investigate the
implications of this fact for the geometric monodromy group (Definition 4.10).

Lemma 4.1. If X is a Riemann surface, then there exists an effective r-spin structure
L — X if and only if X admits an abelian differential w such that r| gcd(k).

Proof. As (X,w) € J M(k), the associated divisor (w) = > ;_; k; p; is divisible
by r, via

n
(@)/r =) (ki/r)pi.
=i

By the standard correspondence between divisor classes and line bundles (see,
e.g. [20, pp. 133-4]), this divisor gives rise to a holomorphic line bundle £ =
L(w)/r — X whose r™ tensor power is (isomorphic to) Ky. This &£ is therefore an
r-spin structure on X .

Moreover, (w)/r is effective because its coefficients are all positive. Therefore
the standard correspondence also yields a holomorphic section o: X — & such that
o® X — £® =~ Ky is a section of Ky with

©@®") =r(0) =r(@)/r = (o).
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On the other hand, suppose that X is a Riemann surface equipped with an r-spin
structure £ and a holomorphic section o: X — £. Then by same manipulations as
above, we see that ®”: X — Ky is an abelian differential with divisor r (o). L]

4.1. Marked r-spin structures as winding numbers. While the above construction
is natural (indeed, almost tautological) from an algebro-geometric perspective, it does
not shed any light on the relation between r-spin structures and the flat geometry
of (X, w). In order to investigate this connection, we give one final interpretation of
r-spin structures which will allow us to make the link with flat structures explicit.'?
Observe that every abelian differential w with divisor Z;’zl k; p; on a Riemann
surface X naturally defines a (nonvanishing) horizontal unit vector field H, on
X \{p1,..., pn}. Forevery x € X \ {p1,..., pn}, the vector H,(x) is the unique
unit tangent vector such that w(H,(x)) € R-o. Note that the horizontal foliation
of w exactly consists of the integral curves for this vector field, and at each point p;

we have that
indexp, (Hy,) = —ki, (7)

where we recall that the index of a vector field at a singular point is the degree of the
Gauss map on a small loop about that point.

wn(ay) = —3/2

Figure 3. The horizontal foliation around the zero of an abelian differential. The winding
numbers of the (oriented) arcs «; and a2, which are homotopic across the zero, differ by the
degree of the zero.

Define the winding number wnx 4)(c) with respect to H, of any (smooth)
oriented simple closed curve ¢ on X \ {p1,..., pn} by counting the number of

10To the best of the author’s knowledge, this relationship first appears explicitly in print in work of
Trapp [42], though a preliminary sketch appears in the proof of Proposition 3.2 of [40]. More recently, it
has resurfaced in [38] and [39] and in a partial form in [45].
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times the tangent vector of ¢ turns about H,. Observe that this assignment is not
homotopy invariant, for a homotopically trivial counterclockwise loop has winding
number 1 with respect to the horizontal vector field.!' One may also compute that
any small counterclockwise loop about p; has winding number exactly k; + 1.

In order to make the above notion of winding number coherent for (smooth,
oriented) simple closed curves on our original surface X, we need to understand
what happens to winding numbers when we fill in a puncture. As a curve passes
from one side of a zero to the other, its winding number must change by plus or
minus the index of the vector field at that singularity, so by (7), the winding number
changes by the multiplicity of the zero (where the sign depends on which side of
the curve the zero lies, see Figure 3). Therefore, taking all winding numbers mod
r = ged(k) yields a well-defined function on isotopy classes of (smooth, oriented)
simple closed curves on X. Note that a small nulhomotopic loop always has winding
number 1 mod r.

Moreover, this winding number function satisfies a twist linearity condition:1?

Lemma 4.2 ([13, Lemma 4.2]). If r = ged(k) and (X, w) € H M(k), one has
wniy (T(h) - ¢) = wniy () + (b.c)wniy ,,(b) modr (8)
where b and c are oriented simple closed curves on X, T (b) is the Dehn twist about b,

and (b.c) is the algebraic intersection number.

In [24], Humphries and Johnson classified such twist-linear winding number
functions, and in our case, their work implies that the winding number function
factors through H(Ty X, Z).

Lemma 4.3 (c.f. [24, Theorem 2.5]). There is some ¢ € H(ToX,Z,) so that
wnfx,w) = ¢ o h, where

h:{oriented simple closed curves} — H1(To X, Z)
is the map which sends an oriented simple closed curve to the homology class of its
framing.

Since the framing of a small nulhomotopic loop is homotopic to a fiber o, we
have that ¢(«) = 1, hence

Proposition 4.4. Let (X, w) € H M(k) where gcd(k) = r. Let ¢ € HY(Ty X, Z,)
be the cohomology class resulting from Lemma 4.3; then ¢ is an r-spin structure.

'The correct notion is invariance under regular homotopy, which in particular includes isotopy. See[12]
and | 13] for a careful discussion of this construction.

12Chillingworth actually only considers winding number functions corresponding to nonvanishing
vector fields on punctured surfaces, and the mod 2g —2 winding numbers obtained by taking a nonsingular
vector field on Sg 1 and filling in the single puncture. For us, these correspond to the winding
numbers functions obtained from a differential in the minimal stratum H T (2g — 2). However, his
work immediately generalizes to vector fields obtained by filling in multiple punctures.
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Tracing through the definitions, the reader should convince herself that this
cohomology class is the same as the one corresponding to the r-fold cover of 7y X
induced by the r™ root £ (w)/r of Ky discussed in the introduction to this section.

Moreover, given any r-spin structure ¢ on any Riemann surface X, a
(meromorphic) section u: X — &£ defines a horizontal vector field H,, on X away
from the zeros and poles of © and hence a corresponding mod r winding number
function. Therefore we see that there is a natural one—to—one correspondence between
r-spin structures and mod r winding number functions.

By the work of Humphries and Johnson, we also have the following homological
coherence property:

Lemma 4.5 ([24, Lemma 2.4], see also [39, Proposition 3.8]). Suppose that ¢ is any
r-spin structure on (X, ) and Y is a subsurface of X with boundary components
C1,...,Cm. Then if the c; are oriented such that Y always lies on the left—hand side
of ¢,

m
D #(@) =x(¥) modr.
=l
The above equivalence between mod r winding number functions and r-spin
structures then allows us to state the following geometrically obvious generalization
of [29, Lemma 1].

Lemmad.6. Let (X, f,w) € HT (k) be amarked abelian differential with gcd(k) =r,
and set ¢ to be the r-spin structure induced by w. Then if ¢ is a curve everywhere
transverse to the horizontal foliation, ¢(¢) = 0. Similarly, if c is the core curve of
a horizontal cylinder on X, we have ¢ (¢ ) = 0.

4.2. Invariance of winding number under deformation. Now that we have inter-
preted r-spin structures in flat geometric language, we can use this to construct an
invariant of components of 7 (k). The arguments in this section are modeled on
ideas contained in [45, Proposition 1].

Proposition 4.7. The mod r winding number of any (smooth, oriented) simple closed
curve is constant on each component of H T (k).

Proof. Suppose that (X, f,®) and (Y, g, n) lie in the same component of H T (k)
and ¢ is a (smooth, oriented) simple closed curve on our reference surface S. Then
we need to show that

wnly oy (F(0) = wnfy g (8(C)).

We prove below that the mod r winding number of ¢ is continuous on H 7 (k).
Therefore since it is a continuous map into the discrete space Z,, it must be constant
on the connected components of its domain.
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To demonstrate continuity, we pull everything back to our reference surface S
and compare winding numbers there. To that end, observe that if ¢ is a simple closed
curve on S and (X, f, w) is a marked abelian differential, then we can push forward
the vector field H,, on X to a vector field (Df ')« H, on S. One can analogously
define a mod r winding number of any (smooth, oriented) simple closed curve on S
with respect to (Df 1)« H,,, and it is immediate that

wnZS,(Df—l)*Hw)(C) - w”fX,Hw)(f(C))- 9

Since the horizontal vector field H,, depends continuously on @, the left hand side
of (9) is continuous in (X, f, ). Therefore the right hand side must be, and so the
mod r winding number of ¢ is constant on components of KT (k). ]

Choosing a geometric basis of H (S, Z) and taking the corresponding framed
curves, this implies that

Corollary 4.8. Any two marked abelian differentials in the same connected
component of HT (k) define the same (topological equivalence class of) r-spin
structure.

Proof. Let Q2 be a connected component of T (k) and pick a geometric basis B
of Hy(S,Z). Suppose that (X, f,w) and (X', f’, ®") are both in  and define r-spin
structures ¢ and ¢’. By Proposition 4.7,

¢(h) = ¢'(h) forallb e B
and therefore by Lemma 3.9, it must be that ¢ = ¢'. O]
In particular, this allows us to put a lower bound on the number of connected
components of strata over Teichmiiller space.
Theorem 4.9. If ¢ > 3 and k is a partition of 2g — 2 with gcd(k) = r, then there

exist at least r*8 non-hyperelliptic connected components of 36T (k).

Proof. First, assume that r is odd; then by Theorem 2.2, the stratum F M(k) is
nonempty and connected (unless r = g — 1, in which case

HM(g—1,g— 1)\ HMg—1,g— 1)

is nonempty and connected). Choose some (X, w) € # M(k),fix a marking f:S — X,
and let 2 denote the component of J T (k) containing (X, f, ®).

Now by the discussion above, (X, f, ®) defines a marked r-spin structure ¢ which
by Corollary 4.8 must be topologically equivalent to the marked r-spin structure
coming from any marked abelian differential in 2. Since Mod(S) acts transitively
on ®,, there are elements {¢ = g1, ..., g,2¢} C Mod(S) such that

gio#gip forali # j.
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Therefore by Corollary 4.8, g1€2,..., g,2:€2 are all distinct, and the statement is
proved.

The proof for even r is analogous, but now there are non-hyperelliptic components
of # M(k) corresponding to both parities of spin structures. For this situation, one
must choose a differential and a marking for each component, and note that Mod(.S)
acts transitively on the set of r-spin structures with fixed parity (Theorem 3.11). [

4.3. Winding numbers and monodromy. In order to put an upper bound on the
number of connected components of # T (k), we will use some elementary covering
space theory to rephrase the problem in terms of subgroups of the mapping class
group.

For spin € {even, odd}, the forgetful map p: ¥ M, — M, induces a map of
orbifold fundamental groups

D ni)rb(geMQC)Spin’ (X, 0))) s JTQrb(Mg,X) MOd(X)

(recall that when r is odd the spin superscript is assumed to be empty).

Definition 4.10. The geometric monodromy group §(k,spin) of the stratum
H M (k)™ is the image of p inside of Mod(X).
Remark 4.11. Note that our definition of & (k, spin) depends on our choice of
basepoint (X, @), and while change of basepoint will result in isomorphic groups, it
does not necessarily result in the same subgroup of Mod(X). Because of this, we
consider & (k, spin) only ever up to conjugation within Mod(X).

A choice of marking f:S — X identifies Mod(S) and Mod(X), and moreover
identifies g (k, spin) with the stabilizer of the component  of T (k)" containing
(X, [, w).

Corollary 4.12. Let g > 3 and k a partition of 2g — 2 with gcd(k) = r. If r is even,
also choose spin € {even, odd}. Choose some marked abelian differential (X, [, ®)
living inside a component 2 of HT (k)™ and let ¢ € D, be the (marked) r-spin
structure induced by @. Then

8, spin) = pa (1 (JEME)™™, (X, ))) 2 Stabyas)(2) < Mod(S)[h]-

Proof. Suppose that g € §(k, spin); then it can be represented as a loop y inside of
H M (k)" based at (X, ). Lifting y toapath ¥ in T ()™, we see that § connects
(X, f,w) and g - (X, f, w) and so g must preserve the connected component Q.
Similarly, if g € Mod(S) stabilizes €2, then since €2 is also path—connected we
may connect (X, f, @) to g - (X, f. ) via some path whose projection to F M (k)™
under the covering map will be a loop based at (X, w). O

The rest of the proof of Theorem 1.1 consists of showing that this containment is
in fact an equality when r is odd, and that it is of finite index when r is even (and

r#2g—2,g—1).
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5. Construction of prototypes

In this section, we show how to construct a special (marked) abelian differential with
given singularity and 2-spin data. First, we construct a flat metric on a Riemann
surface with the correct cone angles (Construction 5.2) and then in Lemma 5.3 prove
that the metric actually comes from an abelian differential. Finally, we show that the
differential so constructed induces a spin structure of the correct parity (Lemma 5.4).

Throughout, we suppress the marking f:S — X. However, since it is important
exactly which curves are realized as the core curves of cylinders in X, the marking
will be implicit in much of our discussion.

Before all else, we must fix a set of simple curves whose complement has
combinatorial type compatible with a stratum. In order to define these, we adopt
different naming conventions for simple closed curves on S as pictured in Figure 4,
depending on the parities of gcd(k) and spin, together with the residue class of
g mod 4. We will subsequently conflate these curves with their images on X under
the marking /:S — X.

5}3 5'633 5?3 fig ) E)g

(b) Labels in case (3) of Definition 5.1.

Figure 4. Naming conventions for simple closed curves, depending on ged(k), spin, and g.
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Definition 5.1. Let g > 4 and k = (k1,...,k,) a partition of 2g — 2. If ged(k) is
even, let spin € {even, odd}. Label the simple closed curves of S in the following
way:

(1) If ged(k) is odd, then label the curves of S as in Figure 4a.
(2) If ged(k) is even and either:

(a) g = 1or2 mod 4 and spin = odd;

(b) g =30r0 mod 4 and spin = even,

then label the curves of S as in Figure 4a.
(3) If gcd(k) is even and either:

(a) g =1or2 mod 4 and spin = even;

(b) g =3 0r0 mod 4 and spin = odd,

then label the curves of S as in Figure 4b.

For either of the labeling schemes, set
A= {a;} U{a;}
and define the curve system of type (ic, spin) to be

V4
CQc,spin):AU{bi =3+ k; forj :1,...,n}

j=1

where indices are understood mod 2g — 2.13

Observe that the components of S \ C(k, spin) are all disks. Moreover, if k =
(k1,...,kn), then there are exactly n disks D1, ..., D; and the closure of each D; is
an (immersed) 4(k; + 1)-gon whose edges lie on C(k, spin).

Construction 5.2 (Prototypes). To upgrade our curve system into an actual flat
structure, we will employ a standard construction often attributed to Thurston and
Veech. Consider C(«, spin) as an embedded 1-complex in S, with edges the simple
arcs of C(k, spin) and vertices their points of incidence. Since C(k, spin) fills S,
the dual complex O defines a square-ulation of S. Simply by declaring each square
of §\ D to be a flat unit square, we get a flat cone metric o on S with cone angles

%-4(1@- +1) = 2(k; + D,

13The reason for starting at b3 instead of by or by is to facilitate our proofs in Section 6.1 and to keep
notation consistent between cases. The construction outlined below works just as well if one instead starts
at any b;, but then some extra work must be done to always recover a system of curves satistying the
conditions of Theorem 3.14.
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one contained in each D;. In addition, one can check by inspection that the curves
of Cj and C, are the core curves of cylinders on the surface.

Let (X, f) denote the underlying (marked) Riemann surface so defined, and call
(X, f,0) a prototype for the pair (k, spin).

In general, the metric constructed above only comes a quadratic differential on X .
To show that o comes from an abelian differential, we must analyze its holonomy.

Lemma 5.3. The flat metric o on the prototype (X, [) defined in Construction 5.2
comes from an abelian differential; that is, there is some w so that o is (isometric to)
the metric induced by w.

Proof. To show that the flat metric comes from an abelian differential, we construct
a horizontal (unit) vector field V' with singularities only at the cone points. This then
implies that o has trivial holonomy and hence (X, o) is isometric to the flat metric
on (X, w) for some abelian differential w (see, e.g. [50, §1.2]).

In order to build V', we will show that the squares tiling (X, o) can be coherently
oriented so that the right hand side of any square is glued to the left side of another,
and similarly the top of a square is glued to the bottom of another.'* Each square
can then be equipped with the rightwards—pointing horizontal vector field, and the
coherence condition then guarantees that the resulting vector field extends over the
edges of the squares.

Partition the curves of C(x, spin) into two maximal multicurves C; and C,, (for
concreteness, say Cy, consists of those curves labeled by some a; and C,, consists of
those labeled by either b; or a;). To orient the squares, we note that it suffices to
orient the curves of C(«, spin) so that each curve of Cy intersects C, positively at
each point of intersection; then the horizontal direction is given by the orientation
of Cy and the vertical by that of C,. See Figure 5a.

For a, b, € C(k, spin), define

(a.b) ifa € Cyandb € Cy,
{a.b} == {(b.a) ifb € Cyanda € Cy,
0 else,

where (a.b) is the algebraic intersection number of @ and b. This function returns
the algebraic intersection number of a and b, ordered to take the intersection of Cy,
with C,. Our goal is thus to orient the curves of C(k, spin) so that if i (a,b) = 1
then {a.b} = 1.

In order to construct the desired orientation, choose an arbitrary orientation fora; .
We claim that we can inductively extend this choice to a globally coherent orientation
on C(«, spin). Indeed, observe that the curves of C(k, spin) form a connected, arboreal

140bserve that this construction also directly exhibits (X, o) as a translation surface, glued together
from squares.
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network. Let N, denote the r-neighborhood of @; in the intersection graph A (recall
that A has one vertex for each curve of C(k, spin) and an edge whenever two curves
intersect).

Suppose that we have induced a coherent orientation on all of the curves of N,.
Since C{(k, spin) is arboreal, each curve a in N, \ N,_; intersects exactly one curve b
of N,_1, and hence there is a unique choice of orientation on ¢ which makes {a.bh}
positive. See Figure 5b.

Therefore, by induction (and the fact that A is connected) we see that we caninduce
an orientation on the curves of A so that whenever i(a,b) = 1 we have {a.h} = 1.

(a) Extending the orientation of C(«, spin) (b) Extending a local choice of orientation
to a horizontal vector field. to a global orientation of C(k, spin).

Figure 5. Proving that the flat square-ulation dual to C(k, spin) has trivial holonomy.

The horizontal vector fields on each square therefore glue together coherently, and
so X admits a horizontal unit vector field with singularities only at the cone points.
It follows that the metric is induced by some abelian differential w. U

Finally, we need to show that the choice of spin used in the construction of the
prototype actually matches the parity of the prototype abelian differential (X, f, w).

Lemma 5.4. When r = gcd(x) is even, the prototype (X, f, w) for the pair (k, spin)
has parity equal to spin.

Proof. We use the homological coherence property of winding number functions
(Lemma 4.5). Let ¢ be the r-spin structure determined by the marked abelian
differential (X, f, ).

First, suppose that gcd(k) is even and either:

e g= lor2 mod 4 and spin = odd; or

* g=30r0 mod 4 and spin = even.
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Then the curves are labeled as in Figure 4a, and so for any i > 4 the set
{b3, a’3, 05 ,a;_l, b,}

bounds an (i — 1) times—punctured sphere. Similarly, {,, a, b3} and {b, a}, a5, b3}
bound a thrice—punctured sphere and four times—punctured sphere, respectively.
Therefore by Lemmas 4.5 and 4.6, we have that ¢(E) is even if and only if i is
odd. Applying (5), we get

g
Arf(gger) = Y (@) + 1)(¢(bi)+1) =#1 <i < g:iisodd} mod 2,

=]
whichisOwhen g =0or3 mod4andlifg=1o0r2 mod 4.
Now suppose gcd(k) is even and either:
e g =1or2 mod 4 and spin = even; or
* g=30r0 mod 4 and spin = odd.

Then likewise, we have that {5, @}, b3} bounds a thrice—punctured sphere and for
each4 <i <g,

{hs,ay,...,a;_;,bi}

bounds an (i — 1)-times punctured sphere. However, now b,z is symplectically
dual to the basis element a; while b, is not. Therefore since {h,g 2, a’g, b3} bounds

a thrice—punctured torus, we have that qﬁ(?zg_z) is odd by Lemmas 4.6 and 4.5. It
follows that (5) tells us that

N g —
Arf (ggoe/2) = (¢@1) + 1)(¢(bg—2) + 1) + Y (#(@i) + 1) (¢(bi) + 1)
i=2
=#2<i<g:iisodd} mod?2

which is O when g = 1 or2 mod 4 and 1 when ¢ = 0 or 3 mod 4.
Therefore in both cases the parity of the 2-spin structure induced by the abelian
differential matches the label used to construct the curve system. L]

For ease of reference, we package the results of Construction 5.2 and Lemmas 5.3
and 5.4 together into the following:

Proposition 5.5. For any (k, spin), there is an abelian differential
(X, fiw) € HT (k)*"

such that C(k, spin) is set of all horizontal and vertical cylinders on 'Y .
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6. Generating the geometric monodromy

In this section, we prove our main theorems. Throughout, we will let (X, f, @) denote
the prototype for the pair (k, spin) where r = ged(k) ¢ {2g — 2, g — 2} and ¢ the
marked r-spin structure induced by w. As in Section 4.3, the marking induces an
identification

% (k, spin) = Stabpeq(s) (ﬁ),

where Q is the component of # T (k) containing (X, f, w).
The main result of this section is Theorem 1.2, which virtually identifies the
groups §(k, spin), Mod(S)[¢], and the following group generated by Dehn twists:

Definition 6.1. Let C(«, spin) be defined as in Definition 5.1. Then set

['(k, spin) = (T (c) : ¢ € C(x, spin)).

In the process of proving Theorem 1.2, we also arrive at an understanding of the
action of Mod(S) on the set of connected components of # T (k) (Theorem 1.1).

Our strategy is to realize the elements of I'(k,spin) as flat deformations
(Lemma 6.2) and then to show that these twists are enough to generate the entire
geometric monodromy group (or if r is even, a finite—index subgroup thereof). While
in some special cases the latter statement follows easily from Theorem 3.14, in general
we must implement some sort of iterative procedure to reduce down to a special case.
As we describe in §6.2, this procedure in turn is the consequence of a loose analogy
between our curve systems and modular arithmetic, which allows us to use the
Euclidean algorithm to complete C(k, spin) to C((r?8=2/7)_spin) (Theorem 6.7).

6.1. Cylinder shears and Dehn twists. The first thing we must do is show that
Dehn twists in the curves of C(«, spin) can be realized as flat deformations of our
prototype surface.

Since each curve ¢ € C(k, spin) is realized as the corve curve of a cylinder on
(X, f,w), we may twist along the cylinder without exiting the stratum J 7 (k). We
briefly recall the construction of [48] below, and direct the interested reader there for
a much richer picture of these deformations.

Let (X, f,w) be any marked abelian differential and let £ be a maximal flat
cylinder of (X, f, w) with core curve f(c). Set m to be the inverse modulus of £ (the
ratio of its width to its height). Without loss of generality, we may assume that the
cylinder is horizontal and apply the horocyclic flow

to the cylinder & while fixing the rest of the surface. This operation yields a family of
cylinder shearsuy (&) (X, w) of our original surface, as shown in Figure 6. Moreover,
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a full shear by the inverse modulus m preserves the flat structure and acts by Dehn
twisting in f(c), that is,

um(€) - (X, f0) = (X, T(f() o fiw) = (X, foT() " w). (10)

cut and paste

Figure 6. A full shear in the cylinder &, both on the surface and on a polygonal presentation.

Using these deformations, we can realize twists on C(«, spin) inside the geometric
monodromy group.

Lemma 6.2. There is an inclusion I (k, spin) < §(x, spin).

Proof. Let ¢ be a curve of C(k, spin); by Proposition 5.5, it is realized as the core
curve of a cylinder & on the prototype (X, f, w).

By twisting on &, we see that u,(£) - (X, f,w) fort € [0,m] gives a path y from
(X, fiw)to (X, f o T(c)"!, w) (10). Moreover, since no zero of  is contained in
the interior of £ and the bordered surface X \ int(§) is fixed throughout the shearing
process, we see that the surface

u(§) - (X, fiw) e HT () forallzt.

Thus the projection of y to # M (k) is a loop from (X, w) to itself. Since the mapping
class group acts by precomposition (by inverses) with the marking, this demonstrates
that 7'(c) € §(k, spin).

Repeating this for each curve of C(k, spin) gives the desired inclusion. L]

Our final goal is to understand the relation of both groups with Mod(S)[¢]. We
begin by considering a special case, which is an easy consequence of our definitions
together with Theorem 3.14.
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Proposition 6.3. If r is odd, then
G((r®&=2/"), spin) = Mod(S)[¢].

If r is even, then § (k, spin) is a finite index—subgroup of Mod(S)[¢].

Before we can prove the proposition, we record a quick inequality which will
be used to ensure that there is enough space on the surface to perform the required
manipulations.

Lemma 6.4. Suppose that g and r are positive integers so that g > 5, r < g — 1,
and r divides 2g — 2. Then

r<g-—2.

Proof. Suppose towards contradiction that »r = g — 2; but now both r and g — 1
divide 2g — 2, and since g — 1 and g — 2 are coprime, it must be that

(g —1g—2)=lem(g —1,8—2) = 2g -2,
which is equivalent to the inequality
g2 —5g+4<0.

But this happens only for g between 1 and 4, and we have assumed that g > 5, a
contradiction. ]

Proof of Proposition 6.3. Observe that by Lemma 6.2 and Corollary 4.12, we have
that

I'(k, spin) < & (k, spin) < Mod(S)[¢].
Therefore in order to prove the statement, we need only prove that
I"(k, spin) = Mod(S)[¢]

(or when r is even, is of finite index). This reduces to checking the hypotheses of
Theorem 3.14.

(0) Observe that by construction, C((r?¢~2)/7), spin) is a connected, filling network.
Moreover, in this special case the definition of the curve system reduces to

C((r®=2/r), spin) = AU{h; :i =3 mod r}.

(I) Since each curve is realized as a cylinder on the prototype (X, f,w), we see by
Lemma 4.6 that ¢ (') = 0 for each ¢ € C((r®8=2/"), spin).
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(2) The reader can verify that in both of the labeling schemes of Definition 5.1, the
collection

{bs,ay,a3,d%, ..., 4r42,d) 5, dr43}) C C((r(zg_z)/r), spin )

is arranged in the D,,;3 configuration and the labeled curve b, 3 corresponds
to the a,41 curve of the D;,43 configuration. Observe that by Lemma 6.4, we
have r + 3 < g and so this configuration fits on the surface. See Figure 7.

(3) The curve b, corresponds to A in the D;, 43 configuration, and i (b, a3) = 1.

(4) If the curves are labeled as in Figure 4b, is clear by inspection that the subnetwork
C(k, spin) \ {a2} is a connected arboreal network which fills S \ h,.

Figure 7. The sets of curves in the D>, 4 3 configuration and a, 41, together with the subsurfaces
which they fill.

When the curves are labeled as in Figure 4a, the resulting subnetwork C(k, spin) \ {a2}
is not a filling network for S \ b, (and indeed, is not even connected). To rectify this
issue, we enhance our generating set by constructing a curve ¢ such that ¢(¢) = 0,
T(c) € I'(k, spin), and so that

C':= C((r®&=2/7),spin) U {c}

is a network satisfying all of the hypotheses of Theorem 3.14. Once we have
constructed such a ¢, then we will have that

G(¢) = (T(c): c € C'y = T'((r®=2/7), spin) < Mod(S)[s],

where G(¢) = Mod(S)[¢] when r is odd and is of finite index when r is even. In
either case, this will allow us to conclude our proof.

To find this curve, we will use a new, auxiliary curve ¢z 34,) Which is the “top”
boundary component of the chain

/ !
(@3, Tgs By « o 5887

See Figure 9. We claim (and prove below, see Proposition A.2) that ¢z 34,) is in
the I"(k, spin) orbit of bs.
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Allowing this, let Sa denote the subsurface filled by A. By the Birman—Hilden
theory (§2.1, see also §A.1), the image of ¢(3 34, encircles the 5™ through (6 4 2r)™
branch points of Sa mod its obvious hyperelliptic involution. This curve can then
be braided so that it encircles the 1%, 2", and through (2g — 2r + 1)* through 2g"
branch points.

Lifting the braid action up to the action of the hyperelliptic mapping class group
yields a curve ¢ which is in the I'a-orbit of ¢(3,34,), and hence the I'(x, spin) orbit
of h3. In particular, by Lemma 6.4 we have that

2¢—2r+1>5

and so ¢ does not intersect h,. See Figure 8.
Now since ¢ is in the I'(k, spin) orbit of b3, we have T'(c¢) € I'(k, spin). Note
that since

I"(x, spin) < Mod(S)[¢]

and ¢ (b3) = 0, it must be that ¢(T) = 0.

ba 4 3

Figure 8. Completing C(k, spin) \ {a>} to an arboreal, filling network on S \ {h2}.

The new collection of curves C is still a connected, filling network which contains
the appropriate D, 3 configuration, and the subnetwork A U {b3, c} is a connected
arboreal subnetwork which fills S \ {,}.

Therefore in either case, we can apply Theorem 3.14 to deduce that I"(«, spin) is
either Mod(S)[¢] (if r is odd) or a finite—index subgroup thereof (if r is even). [

6.2. The Euclidean algorithm on simple closed curves. In order to complete the
proof of our main theorem, we need to extend Proposition 6.3 to general partitions «
of 2g — 2. In particular, we need to show that we can recover the Dehn twists in the
curves of C((#?6=2)/7), spin) by twisting in C(k, spin).

Let (X, f, ) be the prototype constructed above for the curve system C(k, spin).
While the (framed lifts of the) curves of C((r?€=2)/7) spin) all evaluate to 0 under
the r-spin structure ¢ induced by (X, f, @) (by homological coherence, Lemma 4.5),
there is a priori no reason that we should expect to be able to twist in them.
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It is tempting to speculate that every curve ¢ such that ¢(¢) = 0 is realized as
a cylinder on some (X', f’,®’) living in the same component of H T (k)"" as our
prototype (X, f,w), but this is not the case.

For example, consider the stratum M (1, 2g—3) for g > 4. Theorem 1.2 implies
that its monodromy group is the entire mapping class group, and in particular contains
a Dehn twist about a separating curve ¢ whose complementary subsurfaces S \ ¢
both have genus at least 2. However, if ¢ were realized as a cylinder on some abelian
differential (X, w) € K M(1,2g —3) then the induced flat cone metrics on the pieces
of X \ N(c) (where N.(c) denotes a flat e-neighborhood of ¢) would have cone
angles 4 and (4g — 4)m with flat geodesic boundary of zero curvature. But this
contradicts the Gauss—Bonnet theorem, and so ¢ can never be realized as a cylinder
on a surface in £ M(1,2g — 3).

We will therefore put aside our geometric interpretation of the monodromy group
for the moment and instead appeal to perhaps the most established method of reducing
to a greatest common divisor. That is to say, we are going to apply the Euclidean
algorithm to the curve system C(k, spin).

In order to use the Euclidean algorithm, one must first be able to “add” and
“subtract” the quantities in question. In Proposition 6.5 below, we demonstrate
how to model the operations of arithmetic with simple closed curves by employing
manipulations which are reminiscent of those arising in the derivation of the Lickorish
generators from the Humphries generators [23].

Recall that if the curves of S are labeled as in Figure 4a, then we denote by A the
set of all curves labeled by some a; or a;. Then define

I'a =(T(a) :a €A).

Observe that no matter the pair (k, spin), we have that A C C(k, spin) and hence
[a < I'(k, spin).

Proposition 6.5 (addition and subtraction). Let the curves of Sy be labeled as in
Figure 4 and suppose that x < g — 2. Then

T (hit2x) € (T(b;), T(hi+x),a),

where indices are taken mod 2g — 2. Analogously,

T(bl) € (T(bi+x)’ T(bi+2x)’ FA)

In order to prove the first claim of Proposition, we will find some f €
(T'(b;), T(b; + x), "'a) which takes one of {b;, bj+x} to bj+>5 and then apply the
following standard fact:

Fact 6.6. If ¢ is any simple closed curve on S and f € Mod(S)), then

ST ™ =T ().
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The construction of the required element uses a detailed analysis of the group I'a
and its action on certain auxiliary curves. In the interest of the reader, we will only
give a schematic of its construction in a specific (but representative) case and defer
the full proof to Appendix A (see in particular Proposition A.2 and the proof of
Proposition 6.5 at the very end of the Appendix).

Sketch of Proposition 6.5. Suppose that (x,spin) and g determine the labeling
scheme pictured in Figure 4a, and that

l<i<i4+x<i+2x<g.

In this case, we define an auxiliary type of curve, c(;, ), which is one of the boundary
curves of an e-neighborhood of a; Ua} Uajy; U---U a;._l Ua;. See Figure 9.

C(i,5)

Figure 9. The curve ¢(; ).

The main idea of the proof is to understand the structure of the T's and (Ta, b; )-
orbits of both the c¢(;, ;) and the b; curves. These orbits are investigated in detail in
Appendix A, but in our case we can distill the relevant results into the following

Heuristic. Any group containing both T'a and two of {T(b;), T(b;).T(cu,j))}
contains the third.

Thatis, if {u, v, w} = {b;,b;,¢(, )}, we have
T(u) € (Ta, T(v), T (w)).

With this rule, we can now sketch the construction of an f taking b; to bj +2x.
Applying the heuristic, we observe that we have

T(cG,i+x)) € (LA, T(bi), T(hitx))- (11

Now I's acts transitively on the set of ¢(; ;) with fixed difference j —i (Lemma A.1),
so there is an element of I'a which takes ¢(; ; 4 x) t0 ¢(; 4 x,i +2x) and hence

T(Ci+x,i+2x)) € {Ta, T(c(,i+x))- (12)
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By applying the heuristic again, we see that

T(hit2x) € (Uas T'(bitx), T(Ci+x,i+2x)))- (13)
Combining (11), (12), and (13) then yields the desired containment. See Figure 10
for an overview of this construction. l

—_—
(Ca, Tbita))

b; bitz bit2c : bit22
y

Clipa,i+2x)

(FA; T(bi-i—a:

e se0 ))Ill LI ) ® 89 s e
TR CR
: \ 4
b b

b,; bi+r bi+2$ i iz ef;; +2%

Figure 10. Obtaining the twist on b; 4, from the twists on b; and b; 4 x.

Of course, in the general case, one must take into account the different curve
labeling schemes appearing in Figure 4. Moreover, there is no guarantee that all
of the curves {b;, b;+x,bit+2x} will lie on the lower half of the surface (i.e. that
i +2x < g). In order to deal with the latter issue, we will need to understand how
to “go around the ends of the surface,” the nuances of which account for a significant
portion of the technical difficulty of the proof.

Assuming these simple closed curve analogues of addition and subtraction, we
can iteratively apply the Euclidean algorithm to the curve system C(k, spin) and
reduce it to the case considered in Proposition 6.3.

Theorem 6.7. Let ¢ > 4 and k a partition of 2g — 2. If gcd(k) = r is even, choose
spin € {even, odd}. Then
['(k, spin) = [((r@~2/7), spin).

Proof. In order to complete C(x, spin) to C((r®¢=2/7), spin), we pass through a
filtration by intermediate partitions of 2¢g — 2, each related to the subsequent by an
application of the Euclidean algorithm.

To that end, set r; = ged(ky, ...,k ),

J
dj = ( ki)/i’j,
i—1

1
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and define 2
I_Cj — (i‘jj,kj_,_l,...,kn)
foreach j = 1,...,n. Note that r; = k; and k1 = k, while
ra=r =ged(k) and K, = (r2/7),
Observe also that d; > 1 forall ;.
Therefore, to prove the theorem it suffices to show foreach j = 1,...,n —1 that
['(kj,spin) = I'(k;+1, spin).

Observe that since the orders of zeros k; were assumed to be given in increasing
order, we know that r; < kj41. To begin, we first run the Euclidean algorithm
on r; and k ;4 1; that is, we find a sequence of non-negative integers Qp and Ry such
that Ry < Qg for all £ and

kjy1 = 0Q1r; + Ry,
rj - Q2R1 + RZ’
Ri = Q3R> + Ra,

Ry-1=0OnN+1RNy +0. (14)

Then the Euclidean algorithm certifies that Ry = ged(rj, kj41) =rj41.
To ease our notational burden, we define the following indices:

j F4
Yo=3+) ki, Yo=3+) ki

i=1 i=1
y1=Yyo+ Qu1rj, y1 =Yoo+ (Q1—Drj,
y2 =y1— Q2Ry, y2 =y1—(Q2— DRy,
y3=y2 + Q3R>, y3=y2+(Q3—DRs,

N1 =8 + (DY ON RN Yy =y + (DY (Qn1 — DRy, (15)
Now by construction of this recursive labeling scheme, we have
Yo =ye+ (1) Rey
soforall £ > 1,

e = vo_il = [(re—1 + (DT QeRe—1) — (ve—1 + (=D ' Ress))|
= Rp—2— Q¢Re—1 = Ry. (16)
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We can now realize the series of equations appearing in (14) as a sequence of
curve diagrams by repeated application of Proposition 6.5, an example of which
appears in Figure 11. In order to keep our notation readable, we will denote the Dehn
twist in b; by 7'(i) for the rest of the proof.

Since the k ; are assumed to be ordered from least to greatestand r ¢{2g — 2, g — 1},
we have that

rn<ki<g-2

As the Euclidean algorithm mandates that successive remainders always decrease
(i.e. Ry < Ry_1), we see that the x value added to and subtracted from indices never
exceeds g — 2, thereby justifying our use of Proposition 6.5.

First, we note that by construction, both T'(y¢) and T'(y;) are elements of
['(kj, spin). Moreover, since d; > 1 (as it is the quotient of the partial sum ) /_, k;
by r;), we have that

T(yo—rj)=T@B+rjld;j—1))

is also an element of I'(k;,spin). Therefore after applying the first half of
Proposition 6.5 (addition) with x = r; for Q1 — 1 and O times, respectively,
we see that

T(y1), T(n) € T'(x;, spin).

But now since T'(y;) and 7'(y;) are both in the group, and we have from (16)
that y, — y1 = Ry, we may apply the second half of Proposition 6.5 (subtraction)
with x = R; to deduce that both

T(y3), T(y2) € T(k;,spin).

Likewise, the difference between y, and y] is R», so again applying Propostion 6.5
(addition) with x = R, for Q3 — 1 and Q3 steps yields

T(y3), T(y3) € T'(x;, spin).

Continuing in this way, alternating between addition and subtraction of indices,
we can work our way through the series of equations in (14) until terminating at
T(yn+1). See Figure 11.
In particular, both T'(yx) and T (y},_,) are in I'(k;, spin), but by (14) and (16)
we have that
lyn = ¥y_1l = Ry = ged(rj . kj+1) = rj41.

Therefore, by applying Proposition 6.5 to yy and yy—1 = yny —rj withx = r; we
see that

T(yn —2rj) € T'(k;,spin).

15Since Ry 1 = 0, we must have that yy 11 = y/y.
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C((5,7,...),spin)

bgW 513 515

7T=1-5+2

bs bo™—5"b11"5" bi3

(co0 e eeeaeeeRess ™

p RO W T wwwww

1 =1 ~1 =1  +1 41 +1 +1 +1
C((112,...),sp111)

§=2-2+41

Figure 11. Using the Euclidean algorithm to show I'((5,7,...), spin) = I'((1!2,...), spin).

Applying Proposition 6.5 to yy —r; and yy — 2r; we likewise have
T(yn —3r;) € I'(k;, spin).

Repeatedly applying Proposition 6.5 in the same way, we see that
T3+ prj+1) € I'(kj, spin)

forany 0 < p <d; 4, and hence
I['(k;,spin) = I'(xj+1,spin).

By iterating the above procedure on j, it follows that
[(k,spin) = I'(k3,spin) = --- = ['(ky, spin) = I‘((r(zg_z)/"), spin )
and so the theorem is proved. 0

Combining the above statements, we can now give a short proof of our main
theorems.

Proof of Theorems 1.1 and 1.2. Suppose k = (k1, ..., kp) is given, and if r = ged (k)
is even, that spin € {even, odd}. Suppose also thatr ¢ {2g —2, g —1}. Let (X, f, @)
be the (marked) prototype for the pair (k, spin), and let ¢ € ®, be its induced r-spin
structure.
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By Lemma 6.2 and Corollary 4.12, we have that
[ (k, spin) < §(k,spin) < Mod(S)[¢].
Combining Theorem 6.7 and Proposition 6.3, it follows that if 7 is odd, then
['(x, spin) = F((r(zg—z)/z)’ spin ) = Mod(S)[¢].

Similarly, if 7 is even, then I'(k,spin) = I'((r®8=2)/2) spin) is a finite index
subgroup of Mod(S)[¢]. Therefore the same conclusions must hold for §(k, spin).
This concludes the proof of Theorem 1.2.

Consider now the action of Mod(S) on the set of connected components
of HT (k)**™. By Theorem 2.2, every connected component must contain some
(X, g,), where g: S — X is a marking, and hence by Theorem 3.11, the action
of Mod(S) on the set of components of # 7 (k)" is seen to be transitive. Therefore
by the orbit—stabilizer theorem the number of connected components is the same as
the index of ¥ (k, spin) inside of Mod(.S). Applying Corollary 3.13 (which counts the
number of r-spin structures of given parity) finishes the proof of Theorem 1.1. [

We can also deduce the image of & (k, spin) under the symplectic representation.

Proof of Corollary 1.4. Let y:Mod(S) — Sp(2g, Z) denote the standard symplec-
tic action of a mapping class on homology, and suppose « is such that

r=ged(k) ¢ {2¢ -2,2—1}.

If r is even, also choose spin € {even, odd}.

By Theorem 1.2, the geometric monodromy group ¥ (k,spin) is either the
stabilizer of an r-spin structure ¢ (for r odd) or is a finite—index subgroup thereof
(for r even).

If r is odd, then by Lemma 3.15, Mod(S)[¢] surjects onto the entire symplectic
group. Whenr is even, the lemma together with Theorem 6.7 states that ¥ (I"(x, spin))
is the stabilizer Sp(g) of the quadratic form g = g,er/2. Moreover, since Mod(S)[¢]
preserves ¢, it preserves ¢p®” /2 and therefore g, so its image under ¢ is also Sp(q).
But now

I'(k, spin) < G (k, spin) < Mod(S)[¢]

and hence it must be that ¥ (& («, spin)) = Sp(q). ]

7. Remarks and further directions

It would be interesting to understand the robustness of the relationship between
cylinder shears and monodromy groups. By our choice of prototype surface in §5,
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we could deduce that Dehn twists in the prototype’s cylinders generated the entire
monodromy group (or a finite—index subgroup for r even). Our combinatorial
arguments hinge on the specific structure of the curve system C(k, spin), but the
result may be more general.

Question. Let k be any partition of 2g — 2 and if gcd(k) is even, choose spin €
{even,odd}. If (X, @) is any square-tiled surface in J M(k)P™, do the Dehn twists
in the cylinders of (X,w) generate §(k,spin)? What if (X,w) is an arbitrary
differential in H M (k)%™ ?

Update. New work of Nick Salter and the author gives a much larger class of
generating sets for r-spin mapping class groups, providing a framework to answer
most instances of this question. See [9, Corollary 3.11].

Parallel to our main theorems, one could also investigate the components of strata
of quadratic differentials. Walker began an investigation into these questions in [44,
45], and [46], but her results are incomplete and techniques generally insufficient
(see §81.2 and 1.3).

Recall that if k. = (ky,...,ky,) is a partition of 4g —4 and 0 # k; > —1 for
each i, then the stratum Q.M (k) is space of all quadratic differentials with zeros (or
simple poles) of degrees kq,...,k, which are not squares of abelian differentials,
and @7 (k) is the corresponding space of marked quadratic differentials.

Question. How many connected components does QT (k) have? What is the
geometric monodromy group of a component of @ M(x)?

It is noteworthy that quadratic differentials generally do not define r-spin
structures since their horizontal foliations generally are not orientable; one must
instead define an R P1-valued Gauss map and consider the winding number of a
curve with respect to the horizontal line field.

Importantly, the action of Mod(S) on the set of these winding number functions
(equivalently, roots of K 58(’2 which are not roots of Kx) is not fully understood, though
Chen and Moller have proven in low genus that it is not transitive [11, Theorems 1.1
and 1.2].

A. Modular arithmetic and simple closed curves

In this section, we prove Proposition 6.5 and demonstrate more generally how one
can model the operations of arithmetic with simple closed curves. The high—level
idea is the same as presented in the proof sketch in §6.2, and the bulk of our proof
consists of justifying and refining the heuristic used therein. For the convenience of
the reader, we restate this principle below.

Recall that c; ;) denotes one of the boundary curves of an g-neighborhood of
ai Ua, U---Uaj, as shown in Figure 9.
Heuristic. Any group containing both I'x and two of {T(b;), T(b;),T(cu,j))}
contains the third.
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The final form of this heuristic is Proposition A.2, which allows us to replace c;, j)
with another auxiliary curve ¢, ¢) where

t—k=j—i (mod2g—2).

In Section A.1, we relate the group I'a to hyperelliptic mapping class groups of
certain subsurfaces of S; this connection allows us to investigate the I'y orbits of
simple closed curves with relative ease. Once we have developed this machinery, we
will put it to use in Section A.2, where we carry out explicit computations on curves
(Lemmas A.4 through A.7), culminating in the proofs of Propositions A.2 and 6.5.

Since the curve labeling schemes given in Figure 4 are the same away from the
left—hand side of S, we will generally assume that we are in the case when the curves
are labeled as in Figure 4a and note where changes must be made on the indices if
curves are labeled as in Figure 4b. We will denote these scenarios by (1 + 2) and (3),
respectively (corresponding to the cases given in Definition 5.1).

A.1. Braiding and hyperelliptic subsurfaces. In order to investigate the I's action
on the set of ¢(;, ;) and b; curves, we must first understand the group itself. Once we
have developed this geometric insight, we will use it to show that ' acts transitively
on the set of ¢(; ;) curves (Lemma A.1).

Suppose for the moment that we are in case (1 + 2); then the set A is a chain of
simple closed curves which fills a subsurface Sa of S (that is, A may be ordered so
that each curve a; intersects only a;—; and a;+1). This subsurface has genus g — 1
and two boundary components, and has a natural hyperelliptic involution ¢ which

interchanges the boundary components and reverses the orientation of each curve
of A. Let

q:Sa —> X = Sa/t

denote the corresponding branched covering map. We will depict these coverings as
in Figure 12a, where the Half-twists in the arcs in the figure lift to the Dehn twists
on the a; curves.'®

Now by the theory of Birman and Hilden (see §2.1), we have that the centralizer
SMod(Sa) of ¢ is isomorphic to the (2g-stranded) braid group B of the quotient X,
see (2). One may verify by inspection that the Dehn twists in the group I' are lifts
of the standard half-twist generators for B, and therefore

['a = SMod(S,) = B. (17)

If instead we are in case (3), then the obvious involution ¢ of Sp (induced by the
involution of A, considered as a 1-complex embedded in .S) is not hyperelliptic, as it

16These arcs also serve as branch cuts for the covering g: Sa — X, where the sheets are the “top” and
“bottom” halves of Sa.
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(a) The involution demonstrating (b) The subsurfaces spanned by Ap, Az,
I'a = SMod(Sa). and As.

Figure 12. The subsurfaces associated with "4 and their hyperelliptic involutions.

swaps {aj,a’} with {a,, a5} and hence Sa/¢ has genus 1. Instead, we consider the
following subchains of A:

Ar = {az,a5,a3,....ay_y.ag},
Az = {ar.d} as, ... djy_y.ag).

P / !’
A3 = {alaalaa3y ty, aZ}'

See Figure 12b. The corresponding subsurfaces Sa,, then all admit hyperelliptic
involutions which interchange their boundary components and fix the subchain A,
so as above we have that

Ta, =SMod(Sh,) = B. (18)

where 'y, denotes the subgroup of I'y generated by the twists in the curves of Ay,
and B is a braid group on 2g — 2 strands if m = 1,2 and on 6 strands it m = 3.

We will often use (17) and (18) to simplify our investigation of I'a orbits. In
particular, if ¢ is a simple closed curve on Sa, then one can understand its SMod(S)
orbit by projecting ¢ down to a (possibly non-simple) closed curve g(c) on £ = Sa/t.
The action of the braid group B on the curve g(c) is now much easier to visualize,
and by lifting a curve in B - g(c) back up to Sa we recover a curve in ['a - c.

The same analysis works for curves which are not entirely contained in Sa. In
this case, the intersection of ¢ with Sa is a collection of pairwise disjoint simple
arcs {«1, ..., ¢, and therefore they project to a collection of (possibly non-disjoint,
non-simple) arcs on X. One may similarly lift the action of an element of the braid
group to the action of some g € I'a; then the image of the curve ¢ under the lifted
element of I's may be obtained by replacing each «; in ¢ N S with g («;) (here we use
the fact that the symmetric mapping class group must fix the boundary pointwise).

This trick allows us to (relatively) painlessly determine explicit elements of I'a
which take one specified curve on Sa to another. For example, with this framework
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we can easily prove that I'a acts transitively on the set of the c(;, ;) whose elements
each encircle the same number of holes.

Recall that for i < j < g we define ¢(;, ;) to be the “top” boundary curve of an
e-neighborhood of

a; Ua;UaH.l Ua§+1 L,I---L,la"j_1 Ua;

as in Figure 9. If we are in Case (3) and i = 1, then we will alter our definition
so that c(; ) is the top boundary component of Sa,, while for each j > 3, the
curve c(1, ) is the top boundary component of the subsurface filled by the chain

ayUayUazUayU---Ud;_ Ua;.

Note that in this case, c(y, ;) does not meet b, but does meet bag .

In order to treat cases wheni < j < g and g < i < j uniformly, we will also
define

C(2g—j,2g—i) = C(i,j)

forall 3 <i < j < g. Incase (1 + 2), we will set
while in case (3) we set

C(2g—j,28-2) = €(1,j)-

Note that with these naming conventions, c(; ;) meets b;, b; 1, ..., b; in order when
traversed in the counter-clockwise direction.

Lemma A.l. Suppose that the curves of S are labeled as in Figure 4 and that
i<j<gandk <l <g.

e Incase(1+4+2),ift —k=j—i<g—1,then
Ck,e) € Ta- cq,jy-
e Incase 3), ifi #1 #kandl —k =j—i <g—1, then
Cke,e) € I'a- ¢ j)-
Ifi =1#kandl —k = j —2, then
Cie,e) € Tas cqa,jy-

Proof. By the definition of the ¢(; ), it suffices to restrict to the cases when j, £ < g.
By our discussion above, we can reduce the proof of this lemma to proving that
q(c,e)) € B -q(cq,j)), where B is some appropriate braid group.
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In case (1 + 2), one can observe that the curve ¢(; ;) is always contained inside
of Sa and ¢(c(;, j)) is a simple closed curve which encircles the (2i — 1)™ through
(2 )" branch points. Therefore, since {—k = j —i, wesee thatg(c(, jy) and ¢(c(k.¢))
encircle the same number of branch points, and so it is easy to construct an element
b € B as in Figure 13 which takes ¢(c(, j)) to g(c(,¢)). Lifting b via the Birman—
Hilden isomorphism (17) yields an element g € I' such that g - ¢(; ;) = cw.p).

2 2

L ’F\_’ - \T_T i I / T_T | |

Sa/t

=)

2 2% 2% Sa/t

Figure 13. Braiding the branch points of S/« to take g(c(;_ ;) to g(c(x.¢)). Such a braid lifts
via the Birman—Hilden correspondence to an element of I'y which takes c(; ;) to ¢k ¢).

The proof in case (3) is similar, but now one must keep track of which subsurface(s)
contain the curves in question.

(a) If i # 1 # k, then ¢(; ;) and ¢ ¢) are both contained in Ay, and so one may
apply the same argument as in case (1 + 2).

(b) Ifi =1 # k and j # 2, then a similar analysis with A, in place of A; shows
that

c@3.j+1) € La- cq,j)-
The result for general (k, ) with £ — k = j — 2 then follows from (a).

(¢c) Ifi =1 and j = 2, then we must be slightly more clever. To that end, let «
denote the arc of intersection of c(; 5y with Sa,; then g(«) separates the first through
fourth branch points of Sa, /¢, and by braiding one can take g («) to an arc separating
off the third through sixth branch points. See Figure 14.

Lifting this arc up to Sa, and replacing « with itresults in a curve isotopic to ¢(3 4),
and lifting the braid via (18) gives an element of I' taking ¢(; 2) to ¢(2,4). Applying
(a) and (b) then gives the result for general (k, £).

This completes the proof of the lemma. L]
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-
Sis.

Figure 14. Taking c(1.2) to ¢(2,4) using the Birman—Hilden theory.

A.2. Justification of the heuristic. Now that we have established the conceptual
basis for our analysis, in this section we state and prove a generalized version of our
motivating heuristic.

Proposition A.2. Let 1 <i,j < 2g — 2 be such that the residue class of j —i mod
2g — 2 is at most g — 2. Suppose that2 < k < { < gissuchthat{ —k = j —i
mod 2g — 2. Then

bj € (Ta,T(ck,e))) -bi and cey € (Ta, T(h))) - bi.

As noted in the main body of the text, there are multiple different regimes we must
consider in our proof, depending on how the b; curves are positioned our surface. In
order to define these in a uniform way, we consider the counterclockwise order on b;
as a cyclic order on Z,4 >, so that

e <1 <2< <28 -2<1 <2<,

With this ordering, we observe that for a given z and a given ordered pair (x, y), all
distinct, either z separates x and y with respect to the cyclic order (thatis, x < z < y)
oritdoesnot (sothatz < x < y < z).

We can now describe the different possible arrangements of b; and b; on S.

Definition A.3. Suppose that i, j € Zjg_5 are such that the residue class of j —i
mod 2g — 2 is at most g — 2.
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If the surface S is labeled as in case (1 + 2), then we say that the ordered pair (i, )
is in the:

* one-sided regime if neither 1 nor g separates (i, j);
* two-sided regime if either 1 or g separates (i, ).

If the surface S is labeled as in case (3), then we say that the ordered pair (i, j)

is in the:

* one-sided regime if no element of {2, g,2g — 2} separates (7, j);

* two-sided regime if exactly one element of {2, g, 2¢g — 2} separates (i, j);
* three—sided regime if both 2 and 2g — 2 separate (i, j ).

Observe that in case (1 4 2), by our restrictions on j — i we know that g and 1
cannot both separate (i, j). Likewise, in case (3) it follows that g cannot separate
(i, j) if either (2g — 2) or 2 does.

The proof of Proposition A.2 when (i, j) lies in the one—sided regime is quite
straightforward:

Lemma A4. Suppose that the pair (i, j) is in the one—sided regime. Then
T(h;)~(eq,j)) = T(ea,jy)(bj) € Ta-bi.
Similarly, one has
T(bi)(c,jy) = T(cq,j)) " (bi) € Ta-b;.
Proof. Note that the equality in the statement is clear by inspection, and in fact
T(a)"'(h) = T(h)(a)

for any two simple closed curves a and b intersecting once on S.

Inorder to find an element of ['a taking b; to T'(h;) ™" (¢, j)), we use the procedure
outlined in § A.1. The proof is best understood by scrutinizing Figure 15, but for the
convenience of the reader we trace its construction below.

First, suppose that we are in case (1 + 2); then the intersection of b; with Sx is an
arc o whose image g (o) under the hyperelliptic involution separates the first (2i — 1)
branch points of X from the others. By braiding the (2i — 1) branch point behind
each of the (27 )™ to the (2 )™ strands (and shifting each of 2i through 2; to the left
by one), we can take ¢ («) to a new arc B. The lift of the corresponding braid under
the Birman—Hilden isomorphism (17) is an element of I'4, and can be seen to take ¢
to

(c\a)Ug™ (B) = T (b)) (cq.j))-

In case (3), one must use one of the subsurfaces Sa,, and groups I'a,, = SMod(Sa,,)
(where the subsurface is determined by how i and j relate to 2, g, and 2g — 2 in the
cyclic order), but otherwise the procedure is completely analogous.

The second statement follows by braiding the (2/)™ strand behind the (2i — 1)
to the (25 — 1)%. ]
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Figure 15. A braid which takes b; N Sa to T(h;) " (ci. j)) N Sa.

In the one—sided regime, this lemma is enough to justify the heuristic, for we
immediately note that

ci,j) € (Ua, T(by)) - bi,
bj € (Ua, T (cg,jy)) - bis

and hence by Fact 6.6, the twists on any two of {b;,b;,c( j)} together with I'y are
enough to recover the twist on the third.

When (i, j) in the two—sided regime, the curve c(; ;) is no longer defined, and so
the initial form of the heuristic makes no sense. However, we may still show that a
similar statement still holds: from I'a, 4;, and an auxiliary curve c one can obtain b;
(and vice—versa). This case should be thought of as allowing us to “pass around” a
single end of the surface S when applying addition (or subtraction).

Lemma A.5. Suppose that the curves of S are labeled as in Figure 4 and 1 < i <
g < j < 1(in the cyclic order) are so that j —i < g — 2. Then

T(cg—j+i,)T(bg)(c(g, ) € Ta- bi.
Incase (14 2),ifg<i<1<j<gandj—i <g—2, then likewise
T(ca,2g-i+j—1)T(b1)(cq,j)) € Ta- bi.
Incase (3), if g < i <2g — 2, then likewise

T(ca,2g-i+1)T(b2g—2)(c1,3)) € Ta- bi

and for 2 < j < g, one has

T(C(z,j+1))T(b2)(C(2,j)) (= FA . bl.
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Before proving the lemma, we note how it implies Proposition A.2 (the generalized
heuristic) in any of the above scenarios. In the case in which one has the twists on b;
and c(g— j +i,g) it follows from Lemmas A.4 and A.5, respectively, that

Fa-bj 3 T(bg)(c,j)) € (Ta. T(c(g—j+ig)) - bis

and therefore b; € (Ca, T (c(g—j+i,g))) * bi-

To see that one can get the twist on ¢(g—j+;,¢) from those on b; and b, observe
that the 7'(a)~'(h) = T(h)(a) relation together with the commuting property of
nonintersecting Dehn twists implies that

T(c(g—j+i,8) T (bg) (g, ) = T(cg—j+i, ) T(e(e,i)) " (bg)
= T(c(g, ) T(eig—j+ig)(be)
= T(ce.) " Thg) ™ (cg—j+ig)
= T(ce,j)  T(bg) ' Tce. ) Cg—j+ig) (19)

and by Fact 6.6, one has

. _ = -1
T(c, ) 'T(bg) 1T(C(g,j))(c(g—j+i,g)) = T(T (e, ) l(bg)) (C(g—j+i.g)-
(20)
Now by Lemma A.4, we have that T(c(,,j)) "' (bg) € T'a - b; and therefore

. =
T(T(c(g,) " (bg)) € (Ta, T(h)))- 21)
Putting together (19), (20), and (21) with Lemma A.5, we have that

c(g—j+ig) € (La, T (b)) - bi.
A similar analysis may be performed for each of the other statements.

Proof. The proofs of all of the statements are exactly the same up to reindexing (and
when in case (3), the use of the appropriate chain A,,), so we will assume that we are
inthecasewhen 1 <i < g < j <1landj—i < g — 2 and leave the remaining
cases to the scrupulous reader.

In order to find an element of I's sending b; to

T(c(g—(j—i).e)) T (hg)(c(g, )

we will employ the same strategy as in Lemma A.4. Intersect b; either with the
surface Sp or Sa, (when in cases (1 + 2) and (3), respectively) to get an arc «.
Upon passing to the quotient X = Sa/t, @ becomes an arc which separates the last
2g — 2i + 1 branch points from the rest.

The lift of the braid which takes the (2i)" through (2¢ — 1)* points in front of
the (2¢ —2j + 2i — 1)* through (2i — 1)* points is then our desired element of ['a.
A schematic of this construction is presented in Figure 16. 0
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Clg-i+i)

Clg—j-+i.9)

29—2;' +2% 2%

|

e
x—-x Che WEX e
‘JUX} e

2j — 2g — 1 branch points 2j — 2g — 1 branch points

Figure 16. The construction of a braid demonstrating Lemma A.S.

2—2h+2 4g—2—2 4g—2h—2 2 —2h+2 49g—2—2 4g—2h—2
| ! !

R

-

braid

4g — 2i — 3 branch points 4g - 2i — 4 branch points

C\ﬁu’ﬁ‘,,ﬁ“r

Figure 17. A generalization of the braid appearing in Lemma A.S.

In order to deal with the left-hand side of a surface labeled as in case (3), we
require a slightly generalized version of Lemma A.S5.

Lemma A.6. Suppose that the curves of S are labeled as in case (3) and g > h <
i <2g—2 Then

T(c1,26—h)) T (h2g—2)(c1,i—n+2)) € Ta-bi.

The construction of the desired element follows as above, braiding the 2" through
(4g —2i —3)™ strands of Sa, /¢ behind the (4g — 2i —2)" through (4g —2h —2)".
We depict the corresponding braid in Figure 17 by way of proof.

Finally, we record below the last tool we need to prove Proposition A.2 when the
surface is labeled as in case (3) and the pair (7, j) is in the three—sided regime. In
this scenario, one needs to be able to “pass around” both the a; and a, handles on
the left—hand side of the surface.
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Figure 18. A sequence of braids which allows us to “pass around” the left hand side of a surface
labeled as in case (3).

Lemma A.7. Ifthe curves of S are labeled as in case (3) and2 < j < g, then

T'(h2)(c2,j)) € Ta+ T(bag—2)(c,j+2))-

Proof. To construct the desired element of I's, we make use of all three hyperelliptic
subsurfaces Sa,, and their respective symmetric mapping class groups. An overview
of the construction is presented in Figure 18.
For ease of notation, throughout this proof we will write ¢ for T'(hag2)(c(1, j+2))-
We begin by intersecting ¢ with Sa, ; call this arc «v. Its quotient in Sa, /¢ is an arc
which separates off the third through (4; + 4)™ branch points. By braiding the first
and second branch points in front of these, we arrive at an arc separating off the first
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through (4j 4 2)™ branch points, whose lift (with the same endpoints as o) we will
denote by &’. The Birman—Hilden theory then implies that there exists some element
of I'a; = SMod(Sx,) which takes ¢ to

¢ =g\ o Ua

See Figure 18.

Now intersect ¢’ with Sa,. Upon quotienting by the appropriate hyperelliptic
involution, this yields an arc which separates the last branch point from the other
five. Braid the fifth and sixth strands of Sa, /¢ in front of the other four and lift back
up to Sa,; as before, Birman—Hilden implies that the resulting curve ¢” is in the I,
orbit of ¢’.

Finally, consider the intersection of ¢” with Sa,. The resulting arc on the quotient
surface Sa,/t separates the fifth through (2;)™ branch points from the others, so
by braiding the third and fourth branch points behind these and lifting back up, one
arrives ata curve ¢ € Ty, - ¢” whose intersection with S, is an arc which encircles
the handles corresponding to a3 througha;.

Tracing through this construction, one observes that the resulting curve ¢’ is
isotopic to T'(h2)(c(2,)), and

= FA2 .c” C FA2FA3 ¢ - FAZFA:; FAI “.C
thus concluding the proof of the lemma. L]
We may now finish the proof of (the refined form of) our motivating heuristic.

Proof of Proposition A.2. This proof naturally breaks into multiple cases, depending
on the labeling scheme of the surface S and the sided-ness of the pair (i, j). The
one- and two-sided cases have already been justified above (see the discussions after
Lemmas A.4 and A.S5, respectively, together with Lemma A.1) and so we will not
reproduce those arguments here.

That leaves the three—sided case to consider. To that end, we may suppose that
the surface S is labeled as in case (3) and that2 < j < g <i <2g — 2,50

J—i+QR2g—2)<g-2.

In particular, this implies thati — j > g. Therefore, setting 7 = i — j in Lemma A.6
yields

T(ca2g—i+)) T (b2g—2)(cq,j+2)) € a+ bi. (22)
Now we note that by Lemma A.7 we have that
T(h2g—2)(c(1,j+2)) € Ta- T(b2)(c(2,j)) (23)
and by Lemma A.4,

T'(h2)(c(2,j)) € Ta- bj. (24)
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Therefore, by combining (22), (23), and (24) it follows that

hj € (Ta, T(c12g—i+j))) - bi-
Now by definition we have that c(y 2g—i+ j) = ¢(i—j 2¢—2), and so by Lemma A.1 we
know that
c(1,2g—i+j) € Ta* Clhe,0)-
Therefore we may conclude that

b; € (Ca. T(cr,e)) - bi

as desired.
In order to prove the second statement, we apply the same manipulations appearing
in (19) and (20) to (22) to deduce that

_ -1
T(c1,2g—i+7))T(h2g—2)(c1,j+2) = T(T(cqr,j+2)) (bag—2)) (c,2g—i+7))-
(25)
Applying the T'(a)~!(h) = T(h)(a) relation once more, we have that

T(ca,j+2))  (bag—2) = T(b2g—2)(c(1,j+2)) € Ta- T(h2)(c2,jy) S Ta-(Ta- b)),

where the second and third inclusions follow from Lemmas A.7 and A .4, respectively.
Therefore

T(T(cq,j+2) " (bag—2)) € (Ta, T(b}))
and so by (25) and Fact 6.6, we have that

C1,2g—i+j) = Ci—j2g-2) € (La, T (b)) - bi.
A final application of Lemma A.1 finishes the proof. L]

With this general form of the heuristic, it is now very simple to prove
Proposition 6.5; indeed, the entire argument appears in the sketch in §6.2. For
completeness, we reproduce it below.

Proof of Proposition 6.5. By Fact 6.6, in order to show that
T(bi+2x) € G := (T (hi), T(hi+x), Ta),

one need only find an element ¢ € G which takes b;  to bj 7.

First, note that since x < g — 2, we know that there is some pair (k, £) with
2 <k <€ < g (i.e. lying in the one—sided regime) such that £ — k = x. Therefore
we may apply Proposition A.2 and deduce that there is some element of (", T (b 4+x))
taking b; to ¢ ¢y, and therefore T (cx.¢)) € G.

A second application of Proposition A.2 yields an element of (I'a, T'(c(x,¢))) € G
which takes b; 4, to bjy2x, thereby proving the first statement (addition) of the
proposition. The proof of the second statement (subtraction) is completely analogous.

]
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