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Algebraic varieties are homeomorphic
to varieties defined over number fields

Adam Parusinski and Guillaume Rond*

Abstract. We show that every affine or projective algebraic variety defined over the field of
real or complex numbers is homeomorphic to a variety defined over the field of algebraic
numbers. We construct such a homeomorphism by carefully choosing a small deformation of
the coefficients of the original equations. This deformation preserves all polynomial relations

over Q satisfied by these coefficients and is equisingular in the sense of Zariski.
Moreover we construct an algorithm, that, given a system of equations defining a variety V,

produces a system of equations with coefficients in Q of a variety homeomorphic to V.

Mathematics Subject Classification (2010). 14Q20, 14D15, 14P99.

Keywords. Deformation of singularities, Zariski equisingularity, semialgebraic map, algorithmic

in algebraic geometry.

1. Introduction

In computational algebraic geometry one is interested in computing the solution set

of a given system of polynomial equations, or at least in computing various algebraic

or geometric invariants of such a solution set. Here by computing we mean producing
an algorithm that gives the desired result when it is implemented in an appropriate

computer system.
Such an algorithm should be stable with respect to a small perturbation of the

coefficients. But in general the shape of the solution set may change drastically
under a small perturbation of the coefficients. This difficulty is particularly apparent
if one has to deal with polynomial equations whose coefficients are neither rational

nor algebraic numbers. The main goal of this paper is to show that, when we are

interested in the topology of such a solution set, one can always assume that the

polynomial equations have algebraic number coefficients precisely by choosing in an

effective way a particular perturbation of its coefficients.

*Research partially supported by ANR project LISA (ANR-17-CE40-0023-03).
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Theorem 1. Let V c K" (resp. V c P^ j be an a/fine (resp. projective) algebraic set,

where K M or C. Then there exist an affine (resp. projective) algebraic set W C DC"

(resp. PP C Pgj and a homeomorphism h: K" —» K" (resp. h: such

that:

(i) the homeomorphism maps V onto W;

(ii) W is defined by polynomial equations with coefficients in Q D K;
(iii) the homeomorphism h is semialgebraic and arc-analytic.

Arc-analytic semialgebraic homeomorphisms play an important role in real

algebraic geometry, see Remark 12.

Remark 2. In fact we prove a more precise and stronger result. See Theorem 11 for
a precise statement.

In the proofofTheorem 11 we show that W can be obtained by a small deformation
of the coefficients of the equations defining V. Let denote these coefficients by giM.
The deformation is denoted by t i-> giM(t) with gha(0) glA. This deformation
is constructed in such a way that every polynomial relation with rational coefficients
satisfied by the gha is satisfied by the gi,a(t) for every t, c.f. Theorem 4. So we

can prove that the deformation is equisingular in the sense of Zariski since this

equisingularity condition can be encoded in term of the vanishing and the non-
vanishing of polynomial relations on the gi,a(t). In particular this deformation is

topologically trivial.
The first part of this paper is devoted to the proof of Theorem 4, an approximation

result similar to the one given in [20]. In the next part we recall the notion of Zariski
equisingularity. The proof of Theorem 11 is given in the following part. Finally we

provide an algorithm that, given the equations defining V, computes the equations
defining W. This algorithm is based on the proof of Theorem 11.

1.1. Topologically trivial stratifications. Theorem 1 can be also proven by the

following general argument. Denote, as above, the coefficients of the polynomials
Fi, Fr defining V by gi<a and denote their number by N. Let Vcl" x K"
be the zero set of F\,...,Fr, where we consider their coefficients as parameters

(ci.ct) 6 IK Thus V is the fiber of V over (gi,a)- There exists a stratification S

of the coefficients space IK^ such that the fibres of V are locally topologically trivial
over each stratum. Such a stratification can be, for instance, constructed by Zariski
equisingularity, and in this case, by construction, each stratum S of S is described

by polynomial equations and inequalities in ci;0. with coefficients in Q. Therefore,
Theorem 1 follows from the fact that Q n S is dense in S (this follows, for instance,
from our Theorem 4). It seems that this argument was known to specialists in

equisingularity theory, though we couldn't have found it in literature.
In the real algebraic (or semialgebraic) set-up one can put the above argument

in terms of Tarski's transfer principle, cf. [4, Ch. 5]. More precisely, let us first
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work over the real closed field of algebraic numbers Maig Q OM. By Hardt's
trivialization theorem [9] there is a stratification of Aa]g of KaTg that trivializes V.
Moreover, the trivialization maps are semialgebraic. By Tarski's transfer principle
both the stratification and the trivializations extend to M, that is the same equations and

inequalities give a stratification S of R^, that is locally trivial with the trivializations

given exactly by the same formulae.

Our approach is slightly different since we do not stratify the coefficient space.
Instead, as we explained above, we produce a deformation of the coefficients, that

preserves polynomial relations with rational coefficients and therefore is topologically
trivial. For the last argument we use Zariski equisingularity, since it works over
both M and C, and gives trivialization with many additional properties (including
semialgebraicity). This deformation is based directly on the properties of the field
extension of Q generated by the coefficients gitCe. For instance, it is particularly
simple if this extension is purely transcendental, see Remark 13.

Acknowledgements. We would like to thank an anonymous referee for drawing our
attention to the role of transfer principle in this context.

Notation. For a vector of indeterminates x (x\,, xn), xl denotes the vector of
indeterminates (xi,..., x;). To avoid confusion, variables will be denoted by normal
letters t and elements of K will be denoted by bold letters t. For a field IK the ring of
algebraic power series is denoted by K(x).

2. An approximation result

Let £2 C Kr be open and non-empty and let <p be an analytic function on £2. We say
that (p is a Nash function at a G £2 if there exist an open neighborhood U of a in £2

and a nonzero polynomial P G K[fi,... ,tr,z] such that P(t, <p(t)) 0 for t G U or,
equivalently, if the Taylor series of cp at a is an algebraic power series. An analytic
function on £2 is a Nash function if it is a Nash function at every point of £2. An
analytic mapping cp: £2 -> KN is a Nash mapping if each of its components is a Nash

function. Note that if £2 is connected and <p is Nash then, by analytic continuation, it
satisfies one polynomial equation Fft, <p(t)) 0 everywhere on £2.

We call a Nash function <p: £2 -> K, Q-algebraic (and we note (p G QA(£2)) if
(locally) it is algebraic over Q[f], i.e. it satisfies a polynomial relation P(t, <p(t)) 0

for every t G £2 with P G Q[?i,... ,tr,z\, P / 0. It is well known, in the case
when £2 is connected, that this means that the Taylor expansion of <p at a point
with coordinates in Q (or Q) is an algebraic power series whose coefficients lie in
a common finite field extension of Q, i.e. this Taylor expansion belongs to k(x),
where k is a subfield of IK which is finite over Q (see [18] for example).
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Remark 3. Usually, Nash functions are defined as real analytic functions defined

on an open set ß c Mr whose graph is semialgebraic. In particular, £2 has to be

semialgebraic. Here, we need a definition valid both for IK R and C. Moreover,
in practice, the open set £2 will always be connected, and one may choose £2

semialgebraic. Nash functions, as we defined above, are used sometimes in complex
algebraic geometry, see for instance [14], Therefore, we have chosen a simple
definition, that is slightly more general than the usual one in the real case, but easier

to handle when we consider simultaneously the cases K E and C.

Theorem 4. Let I E or C. Let y £ lKm \ Qm. Denote by k the field extension

of Q generated by the components y,- ofy. The field k is a primitive extension of a
transcendental finitely generated field extension ofQ: k Q(ti,..., tr)(z) where
the ti £ IK are algebraically independent over Q and z 6 K is finite of degree d
over Q(ti,... ,tr).

Then there exist an open, connected and non-empty neighborhood of t (ti,..., tr
U C IKR a vector function well defined on K x I of the form

y(t,z)£Q(t)[z]m,
and a scalarfunction z(t) £ QA(K) such that

z z(t), y y(t,z),
andfor every f {}>) £ Q[_y]p, where y (y i,..., ym is a vector of indeterminates,
such that f(y) 0, we have

f(y(t,z(t))) 0.

Moreover, the function z(t) is algebraic ofdegree d over <Q(t).

Proofof Theorem 4. We denote, as in the statement of the theorem, by k the field
extension of Q generated by the components of y, so k c K. Since there are finitely
many such coefficients, k is a finitely generated field extension of <Q>. Let ti,..., tr
be a transcendence basis of k over Q (with r > 1 because y £ Qm) and set

L := Q(ti,..., tr). By the primitive element theorem, there exists an element z k
finite over L and such that L(z) k.

For every i 1,..., m we can write

_ Pi,k(ti, • 'Ir) Jc

fc=o
q>'k(tl tr)

where d is the degree of z over L, Pi,k(t), di,k(f e Q[f] an(l 4i,k(ti> • • > U) ^ 0.

By multiplying the pi^ by some well-chosen polynomials we may assume that all
the are equal, let us say to q{t).

Let P(t, z) £ Q(f)[z] be the monic polynomial of minimal degree in z such that

F(ti,...,tr,z) 0.
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Let D c Kr be the discriminant locus of P(t, z) seen as a polynomial in z (i.e. D
is the locus of points a e Kr such that a is a pole of one of the coefficients of P

or such that P(a, z) has at least one multiple root). Since />(ti,tr,z) has no

multiple roots in an algebraic closure of L, the point t is not in D. Then there exist
U C Kr\D a simply connected open neighborhood of t and analytic functions

wi : U —> K, i — 1..... t/

such that
d

P(t,z) [~[(z - Wi(t))
1 1

and iui(ti,..., tr) z.

Moreover the t i—> w, (t) are algebraic functions over Q[/]. Let us set Qk Q
when K M and Qk Q + /Q when K C. Then w\ e QA(U) and the Taylor
series of wi at a point of K n QJ^ is an algebraic power series whose coefficients

belong to a finite field extension of <Q>.

Since the polynomial q is not vanishing at t the function

t Kr\{q 0} -L
9(0

is a Nash function whose Taylor series at a point of 0} is an algebraic

power series with rational coefficients.
Let b := (b\,...,br) fl K\{<? 0}. Let us denote by cpi(t) the Taylor

series of w\. Then let (pj(t) Q{t) denote the Taylor series of t \—> 1 /q(t) at b.

For simplicity we can make a translation and assume that b is the origin of Kr.
For every i 1 m let us define

d-1

yi(ti,...,tr,z,v) := v^2pitk(ti,...,tr)zk (2.1)
k=0

and

y(t,z,v) := (y1(t,z,v),...,ym(t,z,v)).
Let f(y) 6 Q[y]p such that /(y) 0. We have that

/(>(t„...,tr,z.^L)) o

or equivalently

f{y(ti,..., tr, cpi (ti,..., tr), (jo2(ti,..., tr))) 0.

But the function

t I > f {y(h, ,tr,<Pl(h, ,tr),<P2(h, ,tr)))
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is an algebraic function over Q[f] and ti,..., tr are algebraically independent over Q.
Thus we have that

f(y(h,... ,tr,<Pi(h, ,tr),<P2(h, ,tr))) 0.

Indeed, write f (fi,..., fp) and for each i 1,..., m consider the complex
valued function

(0 fi(y(h,...,tr,<Pi(ti,...,tr), <Pi(h tr))).

Note that 4>, e QA(U) because so is wj. Let e Q[?i tr,z] be a polynomial
of minimal degree such that P\,i(t, dh'O)) 0- Note that P\ is irreducible. Write

degPi ,i

P\,i(t,z)= ^ <ii,k(t)zk.
k=0

Then 0 since 0,(t) 0. Therefore a,,o(0 0 because are

algebraically independent over Q. Hence P\j Pijz for some polynomial P2J,
and P2,i is a unit since P\j is irreducible. Therefore (t) vanishes identically on K.

This proves the theorem by defining

y(t,z) =y(t,z,(p2{t))

and z(t) w\(t). Indeed the coefficients of the components of y{t,z,(p2{t)) seen

as polynomials in z are rational power series by (2.1). Moreover <p\{t) belongs to a

finite field extension of Q(t) of degree d since P(t, z) is irreducible.

The following lemma will be used in the proof of the main theorem:

Lemma 5. Let(p(t)eC(t) be a power series algebraic over Q [t \ and P(t, (fi) eO|/, O]
be a nonzero polynomial of degree d in O such that P(t, <p(t 0. Let t e Qr
be such that t is not in the vanishing locus of the coefficients of P(t, 4>) seen as

a polynomial in O, and such that t belongs to the domain of convergence of cp(t).
Then (p(t) is an algebraic number ofdegree < d over Q.

Proof The proof is straightforward: just replace? by t in the relation P(t,cp(t)) 0.

3. Zariski equisingularity

Zariski equisingularity of families of singular varieties was introduced by Zariski
in [28] (originally it was called the algebro-geometric equisingularity). Answering
a question of Zariski, Varchenko showed [24—26] that Zariski equisingular families
are locally topologically trivial. In the papers [25, 26] Varchenko considers the
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families of local singularities while the paper [24] deals with the families of affine

or projective algebraic varieties. A new method of proof of topological triviality,
giving much stronger statements, was given recently in [17]. The case of families
of algebraic varieties was considered in Sections 5 and 9 of [17]. The version

presented below follows from the proof of the main theorem, [17, Theorem 3.3]; see

also [24, Theorems 3.1 and 4.1 ] in the complex case and [24, Theorems 6.1 and 6.3]
in the real case, and [17, Proposition 5.2 and Theorem 9.2] where the algebraic global
case is treated.

Theorem 6 ([17] and [24]). Let V be an open connected neighborhood oft in Kr
and let Oy denote the ring ofK-analytic functions on V. Let t (t\,, tr) denote

the variables in "V and let x (x\,..., xn) be a set ofvariables in IK". Suppose that

for i ~ko, n, there are given

di

Fi(t,x') xf' + yjTjai-ij(t,x,~1)xfi~j e Oy[xl],
7=1

with di > 0, such that:

(i) for every i > ko, the first non identically equal to zero generalized discriminant

of Fi(t,xl~] ,Xi) equals F,_i (t, x'-1) up to a multiplication by a nowhere

van ish ing function of O y ;

(ii) the first non identically zero generalized discriminant of FiC() is independent ofx
and does not vanish on V.

Let us setfor every q V, Kq {(q, x) e "V x K" | Fn(q, x) 0}.
Then for every qeV there is a homeomorphism

hq: {t} xP^ {q} x Kn

such that Aq(Tt) Kq- Moreover, ifFn G\ ,GS then for every j 1,..., s

hq{Gj\0) n ({t} xK")) GJ1 (0) n (]q}xP).

For the notion of generalized discriminants see Subsection 6.3.

Remark7. The homeomorphism/!qofTheorem 6 can be written/2q(t, x) (q, ipq(x)),
i.e. as a family of homeomorphisms 4iq:Kra —>• K". If F, are homogeneous
polynomials in x, then the homeomorphisms 4iq satisfy, by construction,

VA G K*, Vx e Kn 4yAx) Aipq(x).

Hence if we define P(Kq) {(q, x) G V x | Fn (q, x) 0}, the homeomorphism hq

induces an homeomorphism between P(Ft) and P(Fq).
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Remark 8. By construction of [24-26] and [17], the homeomorphisms hq can be

obtained by a local topological trivialization. That is there is a neighborhood TP of t
in lKr and a homeomorphism

4>: TP x Kn -» TV x Kn

such that 4>(q,jc) (q, hq(x)). Moreover, as follows from [17], we may require
that:

(1) The homeomorphism 4> is subanalytic. In the algebraic case, that is in the case

considered in this paper, we replace in the assumptions Oy by the ring of IK-valued

Nash functions on V. Then <4> can be chosen semialgebraic.

(2) <1> is arc-wise analytic; see [17, Definition 1.2]. In particular each hq is arc-

analytic. It means that for every real analytic arc y(.v): (—1,1) —> IK", hq o y is real

analytic and the same property holds for h~l.

4. Generic linear changes of coordinates

Let / G K[x] be a polynomial of degree d and let k be a field extension of Q
containing the coefficients of /. We denote by / the homogeneous part of degree d
of /. The polynomial

fix i,.. 1) fé 0,

otherwise / would be divisible by xn — 1 which is impossible since / is a

homogeneous polynomial. So there exists

(p-\, fi-n-i) £ Qn 1

such that c := /(/r i,..., /r„-i, 1) f 0. Then let us denote by cpß the linear change
of coordinates defined by

Xf I—> Xi + ßiXn for i < n,

xn I > xn.

We have that

<Pß(f) cx^ + h,

where h is a homogeneous polynomial of degree d belonging to the ideal generated

by x\,..., xn-i. So we have that

d

<Pß(f) cxdn 4-^2aj(xn~1)x^~J
j=i

for some polynomials aj(xn~x) G k[x"-1].
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Remark 9. If g gi gs is a product of polynomials of k[x], then the linear
change of coordinates tpß defined above also satisfies

d

<Pn(gi) Q4' +J2ai'j(Xn~^Xn~J
7 1

for some nonzero constants c, 6 k.

Remark 10. For every / k[x] of degree d where Ici and /x 6 Q"_1, we have

that

<P-ti ° <Pn(f) f
Let us define the support of / faxa as

Supp(/) := {a N" | fa ± 0}.

Let us assume that

for some coefficients /œ' 6 k. Then the coefficient fa has the form

fa — failli..... fXfi—l, fß)
for some polynomial Pa 6 Z[/x, fL] depending only on the with \ß\ |a|.

5. Main theorem

We can state now our main result:

Theorem 11. Let V C IK" (resp. V c Pj" be an affine (resp. projective) algebraic set,

where IK R or C. Then there exist an affine (resp. projective) algebraic set IL C IK"

(resp. W C Pg) and a homeomorphism h\W —» IK" (resp. h: P^ —> P^) such

that:

(i) The homeomorphism maps V onto W;

(ii) IL is defined by polynomial equations with coefficients in Q fl K;
(iii) The variety W is obtained from V by a Zariski equisingular deformation. In

particular the homeomorphism h can be chosen semialgebraic and arc-analytic;

(iv) Let g\,..., gs be the generators of the ideal defining V. Let us fix e > 0.

Then W can be chosen so that the ideal defining it is generated by polynomials

g[,..., g's 6 Q[x] such that ifwe write

8i J2 Sbccx" and Si J2
œeN" «6N»

then for every i and a we have that:

\gi,a ~ g'i,a\ < e;
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(v) Every polynomial relationship with rational coefficients between the gßa will
also be satisfied by the g't

Remark 12. Arc-analytic semialgebraic maps were introduced first in [11 J. By [2]
they coincide with the category of blow-Nash maps (i.e. blow-analytic and

semialgebraic maps), and thus as blow-analytic homeomorphisms they appeared

already in the classification of real singularities in [10]. Arc-analytic semialgebraic

maps and homeomorphisms are often used in real algebraic geometry. They
share many properties of regular morphisms but are more flexible. For instance,

arc-analytic semialgebraic homeomorphisms preserve the weight filtration and the

virtual Poincaré polynomial [15], but the equivalence relation defined by such

homeomorphisms does not have continuous moduli [17]. For more, the interested
reader may consult the survey [13] and the Kucharz-Kurdyka talk on 2018ICM [12].

Remark 13. We will see in the proof the following: let Ik denote the field extension
of Q generated by the coefficients of the g, and assume that Ik f Q (otherwise there
is nothing to prove). By the primitive element theorem, Ik is a simple extension of a

purely transcendental extension L of Q, i.e. Q —» L is purely transcendental and

L —> k is a simple extension of degree d. Then the coefficients of the g- belong to
a finite extension of Q of degree < d.

In particular if Q —> k is purely transcendental then W is defined over <Q>.

Remark 14. In fact, (v) implies that:

Vz'.a gi,a 0 =>• g\ a 0.

If e is chosen small enough we may even assume that

Vz, ot gi,a 0 4=4> g'Ua 0.

ProofofTheorem //. Let us consider a finite number ofpolynomials g i,..., gs eK[x]
generating the ideal defining V and let us denote by gga their coefficients as written in
the theorem. After a linear change of coordinates <pß with p e Q"-1 as in Section 4

we can assume that

Pr

<Pfi(gr) Crxfif + ^2bn-Urj(x"~1)xPr~J ^ an^ßxß Vr 1,...,J.
7=1 ßeN"

Moreover by multiplying each (pß(gr) by \/cr we can assume that cr 1 for every r.
We denote by fn the product of the <pß (gr) and by an the vectors of coefficients anß,ß
The entries of an are polynomial functions in the with rational coefficients, let
us say

ttn (5.1)

for some An (An>r>ß)rtß e Q(zz;-,a)iV" for some integer Nn > 0 and some new
indeterminates zz;-ia.
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Let ln be the smallest integer such that

An,ln(fln) # 0,

where Anj denotes the /-th generalized discriminant of fn. In particular we have

that

An,l(ßn) 0 V/ < ln.

After a linear change of coordinates x"_1 with coefficients in Q we can write
An,ln(an) en-\.fn-\ with

fn-1 Y a"-hßxß Xt"-\ + Y K-2,j(xn~2)x^n_f~J
ßeNn~l j=1

for some constants en-i,an-ij k, withc„_i f 0, and some polynomials bn-2,j £

k[x"-2]. We denote by a„-i the vector ofcoefficients an-\tß. Let/„_i be the smallest

integer such that

Aw-l,/„_, {cin-l) # 0,

where denotes the /-th generalized discriminant of fn-\ •

We repeat this construction and define a sequence of polynomials fj(xJ), j
ko,... ,n — I for some ho, such that

d,

A;+t,L+i(öy+i) ej(xdjJ +J2bj-i,k(xJ~1)xdjJ k)
k= 1

ej( Y aJ>ßxß) eifj
ßm j

is the first non identically zero generalized discriminant of fj+\, where aj denotes

the vectors of coordinates auß in k^', i.e. we have that:

Ay+i,L+i (aj+i) ej Y außxß) ej fj ^5-2)

ßeNJ

and

Ay+i,/(ay+i) 0 V/ <lj~ri, (5.3)

until we get fk0 1 for some ko > 0.

By (5.2) we see that the entries of aj and ej are rational functions in the entries

of a j+1 for every j < n. Thus by (5.1) we see that the entries of the and the ej
are rational functions in the giM with rational coefficients, let us say

ak — Ak(gi,a)i ej Ej (gi,a)
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for some A^ e Q(uha)Nk and Ej e Q(uha) for every k and j, where the Ui,a are

new indeterminates for every i and a.
By Theorem 4, there exist a new set of indeterminates t (t\,tr), an open

domain U C Kr, (ti,...,tr) G K, polynomials gi,a(t,z) G <Q>(f)[z], for every i
and a, and z(t) G QA(K) such that z(t)) gi>a for every i and a.

Since the ai and the ej are rational functions with rational coefficients in the gI>a,
the system of equations (5.3) is equivalent to a system of polynomial equations with
rational coefficients

f(gi,a) 0. (5.4)

By Theorem 4 the functions g;,a(L z(t)) are solutions of this system of equations.
Because <?/ (g;,a) ej (g^a (t, z(t))) / 0 for every j, we have that none of the

ej (gi,œ(t, z(t))) vanishes in a small open ball V c U centered at t.
In particular we have that

ej(gi,a(t,z(t)))^0 Vj,VteV. (5.5)

For t G V and r 1,..., s, we define

g'r(t,x):= ^ giA(t,z(t))xa,
cteNn

s

Fn(t,x) Y\ Gr(t,x),
r= 1

where Gr(t,x) ^ An,rj(gi,a(t, z(t)))xß, r l,...,s,

and for j ko,— 1

Fj(Ex)= Y!, Aj,ß(gi,<x(t>z(t)))xß.

ßeNJ

In particular we have that Gr(t, x) (pß(gr(x)) for every r.
Let us denote by Oy the ring of K-analytic functions on V. In particular we have

that Fj (/, x) is a polynomial of Oy [xl ], of degree dj in Xj, such that the coefficient

of xdd is ej(gi,a(t,z{t))) and whose discriminant (seen as a polynomial in Xj) is

equal to e/-i(g;,a(L z(t)))Fj-i(t, x) G Oy[xj~l] for every j by (5.4).
Thus the family (Fj )j satisfies the hypothesis of Theorem 6 by (5.5). Hence, the

algebraic hypersurfaces

X0 := {Fn(0,x) 0} and Xx := {Fn(1,*)}

are homeomorphic. Moreover the homeomorphism between them maps every
component of X0 defined by Gr(0, x) 0 onto the component of X\ defined

by Gr(l, x) 0. This proves that the algebraic variety defined by

Wß(gi) • (pß(gs) 0}
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is homeomorphic to the algebraic variety

{G1(0,x) --- GJ(0,x)-0},

which is defined by polynomial equations over Q. Thus V is homeomorphic to

w teito ••• g's(x) 0}.

Moreover since Q (T K is dense in K, we can choose q 6 Q as close as we
want to t. In particular by choosing q close enough to t we may assume that (iv) in
Theorem 11 is satisfied, since y, t z(t) and the gi,a are continuous functions.

Finally we have that z(q) is algebraic of degree < d over Q by Lemma 5 (see

Remark 13).

Thus Theorem 11 is proven in the affine case. The projective case is proven is the

same way by Remark 7.

We can remark that Theorem 11 (v) implies that several algebraic invariants are

preserved by the homeomorphism h. For instance we have the following corollary:

Corollary 15. For s > 0 small enough the Hilbert-Samuel function of W is the

same as that of V.

Proofof Corollary 15. Let h\ hm be a Gröbner basis of the ideal I of K[jc]
generated by the gi with respect to a given monomial order ;<. Let us recall that for

/ E f*x° e f + °<

beN"

we denote the leading term of / by

LT(/) faoxa°,

where a0 is the largest nonzero exponent of the support of / with respect to the

monomial order:

Supp(/) {a G N" I fa + 0}.

A Gröbner basis of / is computed by considering S-polynomials and divisions (see [6]
for more details):

- the S-polynomial of two nonzero polynomials / and g is defined as follows: set

LT(/) ax01 and LT(g) bx& with a, b e I*, and let xs be the least common
multiple of xa and x&. Then the S-polynomial of / and g is

YS—a YS~ß

S(f,g) / 7—g-
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- the division of a polynomial / by polynomials f\,..., /; is defined inductively
as follows: firstly after some renumbering one assumes that

LT(/i) LT(/2) -<•••< LT(//).

Then we consider the smallest integer i such that LT(/) is divisible by LT(/,-). If
such an i exists one sets

qP and qP 0 for j ^ i and Z1-1 0.
1 LT(ft) ^

Otherwise one sets q^p 0 for every j and r(l) LT(/). We repeat this process
by replacing / by

7 1

After a finite number of steps we obtain a decomposition

l

f T,ijfj + r>

7=1

where none of the elements of Supp(r) is divisible by any LT(fi). The polynomial r
is called the remainder of the division of / by the fi.

Thus we can make the following remark: every remainder of the division ofsome

S-polynomial S (g,-, gj) by g\,..., gs is a polynomial whose coefficients are rational
functions on the coefficients of the g^.

The Buchberger's algorithm is as follows: we begin with gi,..., gs the generators
of / and we compute all the S-polynomials of every pair of polynomials among the gi.
Then we consider the remainders of the divisions of these S-polynomials by the gi.
If some remainders are nonzero we add them to the family {gi,..., g.v}. Then we

repeat the same process that stops after a finite number of steps.

By the previous remark if h denotes the remainder of the division of a .S'-poly¬

nomial S(gi, gj) by the gk then we have a relation of the form

S(gi,gj) Yhhl8l + h (5-6)

l=i
and the hi belong to the field extension of Q generated by the coefficients of the g;.
Let hß denote the coefficient of in h. Then for those hß that are nonzero,
Equation (5.6) provides an expression of them as rational functions in the g/j0., let us

say

Wß e Supp(h) hß Hß(gi<a). (5.7)
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For those hß equal to zero Equation (5.6) provides a polynomial relation with rational
coefficients between the

V/^Supp (A) Hß{gUa) 0. (5.8)

And Equation (5.6) is equivalent to the systems of equations (5.7) and (5.8). This
remains true if we replace the gi by polynomials whose coefficients are rational
functions in the giyCt with rational coefficients. Thus the fact that h\,...,hm is a

Gröbner basis obtained from the gi by Buchberger's algorithm is equivalent to a

system of equations
Qk(gi,a) 0 fork E, (5.9)

where £ is a (not necessarily finite) set. Thus by Theorem 11 (v) we see that these

equations are satisfied by the coefficients of the g-, hence the ideal defining W has

a Gröbner basis h\,..., h'm obtained from the g- by doing exactly the same steps in

Buchberger's algorithm, and Supp(/?- c Supp(/?;) for every i.
Moreover, the initial terms of the hi are rational functions in the with rational

coefficients, let us say Hi{giA) for some rational functions H,. By choosing e small

enough we insure that

Hi(g'i,a)^0 Vi.

Thus the leading exponents of the h't are equal to those of the h,. In particular the

Hilbert-Samuel function of W is the same as that of V, and (iv) in Theorem 11 is

proven.

Remark 16. In fact we have proven that the ideal of leading terms of / is the same

as the ideal of leading terms of the ideal defining W. So we could have concluded

by [8, Theorem 5.2.6] for instance.

6. Complete algorithm

6.1. Settings.

Input. (1) Polynomials gi,...,gs G K[x] whose coefficients gi;Q, belong to a

finitely generated field extension k over Q;

(2) A presentation
k =Q(ti,...,tr,z),

where the t, are algebraically independent over Q and z is finite over Q(ti,..., t, );

(3) The minimal polynomial P(z) of z over Q(ti,..., tr);

(4) The gitCt are given as rational functions in the t; and z, and the coefficients of P(z)
as rational functions in the t, ;

(5) A positive real number s.
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Moreover we assume that the t, and z are computable numbers [23], Let us
recall that a real computable number is a number x G R for which there is a Turing
machine that computes a sequence (q„) of rational numbers such that |x—q„| < £ for

every n > l.A computable number is a complex number whose real and imaginary
parts are real computable numbers. The set of computable numbers is an algebraically
closed field [19]. More precisely if tj,..., tr are computable numbers such that for

every i e {1,..., r} (qis a sequence of Q + iQ computed by a Turing machine

with |t; — qi,n I < ^ for every n, and if z G C satisfies P(t, z) 0 for some reduced

polynomial P{t,z) G Q[t,z], then one can effectively find a Turing machine that

computes a sequence (q„)„ of Q + iQ such that |z — q„ | < for every integer n.

Output. Polynomials g\,..., g's e (Q fl K)[x] with the properties:

(1) The pairs (F(g,), K") and (F(g-), E" are homeomorphic, and the homeomor-

phism is semialgebraic and arc-analytic;

(2) The coefficients g- a of g- satisfy the properties:

Si,a 7^ 0 5—V gi,a f 0,

I Si,a ~ Si,a I < £ for every i and a,

and every polynomial relation with coefficients in <Q> satisfied by the g;i0, is also

satisfied by the g • a.

6.2. Algorithm. We present here the successive steps of the algorithm.

(1) We make a linear change of coordinates with coefficients in Q, denoted by (pß

with ji g Q"_1, such that each of the g,- is a monic polynomial in xn of degree deg(g,-).
We denote by fn the product of the g, after this change of coordinates, and by an

the vector of the coefficients of the g,- after this change of coordinates (seen as a

polynomial in xn).

(2) For every j from n to 1 we do the following: let us assume that fj is a polynomial

in xi,..., Xj having a nonzero monomial e7 G k*. We denote by a j
the vector of the coefficients of fj seen as a polynomial in xj. We consider the

generalized discriminants Ajj of fj with respect to Xj, and we denote by lj the

smallest integer such that

^ j,lj iaj 7^ 0.

These polynomials Ajjj (cij) can be effectively computed (see 6.3).
We perform a linear change of coordinates (with coefficients in <Q>) in x\,..., Xj-\

such that Ajjj (cij becomes a unit times a monic polynomial of degree deg(A_,y. (cij
in Xj-1, and we denote by fj-\ this new monic polynomial.

(3) We stop the process once we have that fj-\ is a nonzero constant.
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(4) We consider (5.2) as a system of polynomial equations that will allow us to

compute the expression of the ej as rational functions in the glM.

(5) We denote by P(t, z) the monic polynomial of <Q(t)[z] such that P(t, z) P(z)
is the minimal polynomial of z over Q(t).

By replacing s by a smaller positive number we may assume that

dist(t, Ap) > 2s,

where Ap denotes the discriminant locus of P(t,z) seen as a polynomial in z.
This discriminant is computed as ResZ(P, dP/dz). See [7] or [5, Theorem C] for a

practical way of choosing such a s.

(6) Let zi := z, z2,..., zd be the distinct roots of P(t, z). These are computable
numbers and so we can compute rj e Q>o such that all the differences between two z,•

are strictly greater than rj.

Let z(t) be the root of P(t. z) such that z(t) z. We can write

w(t) := z(t +t) y, zata, z0 z.

asNr

We write
P(t,z) Po(t) + P\(t)z + ••• + pd-i(t)zd 1

+ zd,

where the Pi(t) e IK(f). Set

M := 1 + max max |p;(t')|.
0<i<d-1 t'eß(0,2e)

Then \za\ < M/(2s)'"' for every a (by the Cauchy bounds for the roots of a

monic polynomial since w(t) is convergent on B(0,2s) by (5)). Let W^U) be

the homogeneous term of degree k in the Taylor expansion of u;(f):

wk(t) ta
\a\=k

Then
M (k + r- A

We have that

Vffl(0,s) \Wk(t')\<
2K \ r — 1

M k + r-\\ M2r kr
~ik > r —H I <

2k\ r — 1 ~ (r -\)\2k'
Then choose ko > r such that kr / 4/2 < 1 for all k > k0. Therefore

M2r 1

Vt' e B(0, e), Vk > k0 \Wk(t')\ <
(r ~ 1)! 72
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and

Vt' G B(0, e), Wk > k0 I

W' ^
l>k

M2r V2
<

(r-1)! V2-1 V2fc CV2'k '

(7) Now we want to determine the computable number z(q) tu(q — t) for a given
choiceofq G B(t, e) n (Q + /Q)r. This number is one of the roots of P(q,z). These

roots are computable numbers and so we can bound from below all the differences
between each two of them: let 8 G Q>o be such a bound.

By the previous step one can compute an integer k such that

Vt' G 5(0, e), |][V/(f) <C
1

l>k 72'

8
< -k - 2

So we can distinguish z(q) from the other roots of P(q. z).

(8) Choose q G (Q + iQ)r such that:

(i) q is not in the discriminant locus of P(t,z) seen as a polynomial in z;

00 llq-t|| <
(iü) ej(gi,a(q,z(q))) ^ 0.

The first condition is insured by the choice of e in (5).
In order to check that ey (gI;Q;(q, z(q))) 7^ 0, one only has to choose q such that

||t — q II is small enough and this can be done effectively. Indeed the ej (g;,,«) are
rational functions in the t; and z, thus we can effectively bound the variations of ej
locally around t.

(9) Then we evaluate the gi,a(t,z(t)) at (q, z(q)). We denote these values by g-a
and we define the polynomials

si := E
asN'!

6.3. Generalized discriminants. We follow Appendix IV of [27], [ 1], or [21 ]. The

generalized discriminants, or subdiscriminants, A/ of a polynomial

<ixd~jf Xd+YJbj-
j=1

can be defined as follows: Let £1 be the roots of / (with multiplicities), and

set Si J2k=1 7 for every i G N. Then

Ad+i-l

so ^t
sx s2

si-i si

s1-1
Si

s21-2
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Thus Ai is the classical discriminant of /. The polynomials A/ may be effectively
computed in term of the ,v,-, and those can be effectively computed in terms of the 7»,

The polynomial / admits exactly k distinct complex roots if and only if

Ai ••• Ad-k 0 and A^-k+i ^ 0.
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