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Rational equivalence and Lagrangian tori on K3 surfaces

Nick Sheridan and Ivan Smith

Abstract. Fix a symplectic K3 surface X homologically mirror to an algebraic K3 surface Y
by an equivalence taking a graded Lagrangian torus L C X to the skyscraper sheaf of a
point y € Y. We show there are Lagrangian tori with vanishing Maslov class in X whose class
in the Grothendieck group of the Fukaya category is not generated by Lagrangian spheres. This
is mirror to a statement about the “Beauville—Voisin subring” in the Chow groups of Y, and
fits into a conjectural relationship between Lagrangian cobordism and rational equivalence of
algebraic cycles.

Mathematics Subject Classification (2010). 53D37, 14C25.

Keywords. Homological mirror symmetry, Chow group, Lagrangian cobordism, Beauville—
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1. Introduction

1.1. Context. Let X = (X, w) be a symplectic Calabi—Yau manifold which is hom-
ologically mirror to a smooth algebraic variety ¥ over the Novikov field A = C(¢®)),
in the sense that there is a quasi-equivalence

FX)Y ~ DY)

between the split-closed derived Fukaya category of X and a DG enhancement of the
derived category of coherent sheaves on Y. Then there is an induced isomorphism
of Grothendieck groups

K(F(X)re?) ~ K(D(Y)), (1.1)

and the right-hand side is isomorphic to the algebraic K-theory K(Y). This can
be studied via the following twisted version of the Chern character (introduced by
Mukai):

v K(Y) - CH.(Y)o (1.2)
v*H(E) = ch(E)/td(Y),

which becomes an isomorphism after tensoring with Q.
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On the other hand, Biran—Cornea construct a natural map
n: Cob"™ (X ) — K (F(X)P), (1.3)

from the unobstructed Lagrangian cobordism group of X to the Grothendieck group of
the Fukaya category [5] (its image is the subgroup K(F(X)™)). There are numerous
open questions concerning the map 7, in particular whether it is injective. By
composing it with the isomorphism (1.1) and the map v®H, these questions can be
related to ones about rational equivalence of algebraic cycles on Y.

For the rest of this paper we assume that X and Y are K3 surfaces, so the
denominators can be removed from the map v“", which defines an isomorphism
K(Y) ~ CHx(Y) (see [22, Chapter 12, Corollary 1.5]). Thus we have maps

Cob"™(X) 5> K (F(X)"*) ~ CH.(Y),

which are our main focus.

Remark 1.1. Relations between Lagrangian cobordism and the Grothendieck group
of the mirror were first explored for elliptic curves in [20]; the relation to rational
equivalence of cycles was made explicit, more generally for symplectic manifolds
X(B) = Ty B/ T, B associated to tropical affine manifolds B, in [36]. In that setting,
cylindrical cobordisms in C* x X (B) were closely related to tropical curves in R x B.
In this paper we again focus on Lagrangian tori, and intuition comes from the SYZ
viewpoint, but we use different techniques — partly because we do not require our
tori to be fibres of a global SYZ fibration, and partly because even if such a fibration
existed it would necessarily have singularities.

1.2. Spherical objects. LetY be analgebraic K 3 surface over an algebraically closed
field K of characteristic zero (such as the Novikov field). Whereas CHy(Y)=Z - [Y]
and CH, (Y) ~ Pic(Y') have finite rank, the behaviour of CHq(Y) is more mysterious:
in particular, when K is uncountable Mumford [25] proved that CHy(Y) is infinite-
dimensional. Nevertheless, Beauville and Voisin [10] showed that any point y lying
on a rational curve in Y has the same class [y] = ¢y € CHo(Y), and considered the
finite-rank subgroup

R(Y):=Z cy ® CH,(Y) ® CHy(Y) C CH.(Y).

The corresponding subgroup R(Y) C K(D(Y')) can be given a purely categorical
interpretation. Namely, let S(Y) C K(D(Y)) be the subgroup generated by spherical
objects; Huybrechts [21] and Voisin [39] have shown that S(Y) C R(Y), and in
fact R(Y') is the saturation of S(Y) (see Appendix A).

We introduce the corresponding subgroup S(X) C K(F(X)?*") generated by
spherical objects, and its saturation R(X). When X and Y are homologically
mirror, the resulting isomorphism of Grothendieck groups (1.1) clearly identifies
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the subgroups S(X) and S(Y), and therefore their saturations R(X) and R(Y). In
particular, since R(Y) has finite rank, so do R(X) and S(X). It follows that the
subgroup of K(F(X)P*"f) generated by Lagrangian spheres also has finite rank, since
it is obviously contained in S(X) (indeed in some cases the two are known to be
equal [35]).

Remark 1.2. Beauville and Voisin proved that R(Y") is closed under the intersection
product, hence is a subring, and it is usually referred to as the Beauville—Voisin ring.
However we will treat it as a subgroup of K(D(Y)), rather than as a subring. That
is because the ring structure on K(D(Y)) comes from the tensor product structure
on D(Y), which we do not want to use (e.g. because existing proofs of homological
mirror symmetry for K3 surfaces are not known to respect such a structure). Indeed,
if we were allowing ourselves to use the ring structure, it would be simpler to
characterise R(Y) as the subring generated by S(Y'), rather than as the saturation
of S(Y).

Remark 1.3. Some of the references quoted in this section assume that K = C, but
this assumption can be removed using the Lefschetz principle, since rational curves
and spherical objects on K3 surfaces in characteristic zero are rigid (cf. [22]).

1.3. Point-like objects. Next we consider O-cycles on Y, in particular closed points
of Y (which correspond to point-like objects of the derived category, the next-simplest
objects after spherical objects). For any subset H C CHg(Y ), we consider the locus
Ly (Y) C Y consisting of closed points y € Y such that [y] € H. The following
result is due to Mumford:

Lemma 1.4 (Mumford [25]). Suppose that the field of definition K of Y is uncount-
able. If H C CHgo(Y) is countable, then the set Ly (Y) is a countable union of
subvarieties of dimension < 1.

Proof. Given aclass h € K(Y), Mumford [25] proved that the locus Ly (Y) is
a countable union of algebraic subsets; he also showed that CHy(Y') is “infinite-
dimensional”, and in particular has rank > 1, so none of these subvarieties can be
full-dimensional. One then takes the union over all 7 € H. L

We use this observation to prove the following:

Theorem A. Let X be asymplectic K3 surface and T C X a Maslov-zero Lagrangian
torus. Suppose there is an algebraic K3 surface Y over A and a closed pointy € Y,
such that there exists a homological mirror equivalence

F(X)PT ~ DY)

taking T to the skyscraper sheaf ©y,. Then for any countable subset H C K(F(X yerry,
any open neighbourhood of T in X contains a Maslov-zero Lagrangian torus T’
with [T'] ¢ H.
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We note that there are examples in which the hypotheses of Theorem A are
satisfied. The mirror quartic and mirror double plane are particular K3 surfaces
arising from the Greene—Plesser mirror construction, for which we have:

Theorem 1.5 ([35]). If X is the mirror quartic or mirror double plane, equipped
with an ambient-irrational Kdhler form o, and T C X a Maslov-zero Lagrangian
torus, then (X, w) is mirror to an algebraic K3 surface Y over A by an equivalence
taking T to a skyscraper sheaf O, over a closed point y € Y.

Proof. In [35] we show that (X, w) is homologically mirror to an algebraic K3
surface ¥ with Pic(Y) ~ (4) (for the mirror quartic) or (2) (for the mirror double
plane). It follows from the proof of [35, Lemma 4.10] that the mirror equivalence can
be composed with an autoequivalence so that it takes 7" to a skyscraper sheaf @,,. [

Remark 1.6. One “geometrically meaningful” example of a countable subset
of K(F(X)"*") is the subgroup generated by Lagrangian spheres; another is its
saturation. Both of these have finite rank by the previous section, and are therefore
countable. For the examples of Theorem 1.5, whilst (X, ®w) contains Lagrangian
spheres, the fact that [T’] € K(F(X)?) is not generated by Lagrangian spheres
for any torus 7’ near T actually holds for homological reasons (see Remark A.6).
However the fact that no non-zero multiple of [T’] is generated by Lagrangian spheres
seems to have no elementary proof.

Combining Theorem A with the existence of the homomorphism 7, we immedi-
ately obtain:

Corollary 1.7. In the situation of Theorem A, suppose we are furthermore given a
countable set of Lagrangians { L; }. Then any neighbourhood of T contains a Maslov-
zero Lagrangian torus T' which is not contained in the subgroup of Cob"™?(X)
generated by the L;.

However this also holds for elementary reasons of flux, see Corollary 7.8. We
remark that the proof via flux exhibits intriguing parallels with Mumford’s argument
proving infinite-dimensionality of CHy (Y ), cf. Lemma 7.9. Inview of such analogies,
Theorem A provides modest evidence for the expectation that the map

n: Cob™™(X) — K (F(X)™)

is a (rational) isomorphism when X has projective mirror.

Remark 1.8. All of our arguments crucially use the uncountability of R, and in
particular the impossibility of covering a positive-dimensional real vector space with
countably many hyperplanes. The real numbers enter the story via the Novikov field
A = C(¢®). However we recall that if [w] € H?(X;Q) is rational, then it is
possible to define the rational Fukaya category F,;(X) over Q((g@)) by restricting
the objects to be “rational” Lagrangians, and to prove versions of homological
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mirror symmetry over this field (see [32]). Our proof of Theorem A does not
work in this case, and nor does our elementary proof of Corollary 1.7 (fundamentally
because you can cover a finite-dimensional rational vector space with countably
many hyperplanes). The coefficient field Q(g@)) is uncountable, so one still expects
the Grothendieck group of the Fukaya category to be “large” by mirror symmetry,
but the large number of objects of the Fukaya category really has to do with the
large number of local systems on a single Lagrangian rather than a large number of
geometrically distinct rational Lagrangians. Thus it is interesting to consider whether
the cobordism group of rational Lagrangians (without local systems) should be very
large, in analogy with CHy(Y) for a K3 surface over an uncountable field, or very
small, in analogy with the Bloch—Beilinson conjecture which says that CHy(Y) >~ Z
for a K3 surface over Q.

1.4. Comments on proof of Theorem A. The idea of the proof of Theorem A is,
roughly, to show that homological mirror symmetry matches tori 7/ near T with
skyscraper sheaves @, for points y” near y. Then it suffices to show that some
nearby torus 7’ gets matched with a point y” which misses L g (Y) (we identify H
with a subgroup of K(Y) via the isomorphism K(F(X)?*?) ~ K(Y) induced by
mirror symmetry).

It is already clear that we will need to use some notion of topology on Y: the
relevant notion is not the Zariski topology, but rather the analytic topology arising
from the non-Archimedean valuation on the Novikov field, val: A — R U {co}.
We take the opportunity to introduce the notation | - | = exp(—val(-)) for the
corresponding norm, Ux = val™'(0) = | - |71(1) for the unitary group of the
Novikov field, and A~ = val™!(R~) for the subring of elements with positive
valuation.

Werecall how rigid analytic geometry arises on the symplectic side, following [17].
Lagrangian perturbations of 7', modulo Hamiltonian isotopy, are parametrized by
a neighbourhood A of 0 € H'(T;R). Perturbations equipped with a U -local
system are parametrized by LS(4) = A x H(T;U,). We denote the object
of F(X) corresponding to a € LS(A) by T®. Assuming for simplicity that A4 is a
polytope, LS(A) can be naturally endowed with the structure of an affinoid subdomain
val"1(4) ¢ HY(T; A™).

We consider the locus LSy (A) C LS(A) of all points a such that [Talf] € H.
Suppose for the moment that there were an analytic map ¥:LS(A) — Y identifying
LS(A) with an analytic neighbourhood of y, such that the homological mirror functor
identified TJS with Q). Then LSz (A) = ¥ Y(L g (Y)) would be contained in
a countable union of analytic curves in LS(A) by Lemma 1.4. The projection of
an analytic curve under the “tropicalization map” val: LS(A) — A is a tropical
curve; the complement of a countable union of tropical curves in A is everywhere
dense, and in particular non-empty. A point in this complement corresponds to
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a Lagrangian torus 7" such that [(7”, §)] is not generated by objects with K-class
in H C K(F(X)P*7) for any unitary local system £. This holds in particular for the
trivial local system, which would complete the proof of Theorem A assuming the
existence of the map .

If homological mirror symmetry had been proved via family Floer theory [2, 17],
and the torus 7" were a fibre of the SYZ fibration, then the map ¥ would exist by
construction. However the existing proofs of homological mirror symmetry for K3
surfaces, at least in [32,34], are different: they identify the categories via deformation
theory (and even if one had proved homological mirror symmetry via family Floer
theory, one may want to consider tori 7" which are not fibres of the SYZ fibration). In
particular, the fact that the homological mirror functor matches 7 with @,, does not
immediately imply that nearby tori get matched with skyscraper sheaves of nearby
points: this requires an argument involving the deformation theory of these objects.

It is natural to study the deformation theory of objects of the Fukaya category
using the framework of bounding cochains, rather than local systems. We consider
the set BC = H(T; A-¢) of positive-energy bounding cochains on T, whose
points @ € BC parametrize objects T¢ of F(X). Using formal deformation
theory, together with Artin’s approximation theorem [3] to guarantee a finite radius
of convergence, we prove that there exists an analytic map ¢ from an analytic
neighbourhood BC' C BC of the zero bounding cochain to an analytic neighbourhood
of y, having the property that the homological mirror functor takes T;’C t0 Op(q)-

We recall that the object 7%, corresponding to the torus 7' equipped with a
bounding cochain ¢ € BC, is quasi-isomorphic in F(X) to the object Te];p(a),
corresponding to the torus 7 equipped with the local system exp(a) [17]. The
exponential map identifies BC’ with an analytic neighbourhood LS'(4) C LS(A)
of the trivial local system on 7, so we obtain an analytic map ¥ = ¢ o exp™!
from LS’(A) to an analytic neighbourhood of y such that the homological mirror
functor takes 7. to Oy ().

This is still not quite enough to implement the proof of Theorem A outlined
above, because the analytic neighbourhood LS'(A4) C LS(A) is not ‘large enough’:
its points correspond to local systems on the single torus 7" which are sufficiently
close to the trivial local system in the analytic topology, so cannot give us information
about the other tori 7’. A further argument is needed: we prove that the subset
LSy (A) C LS(A) is a countable union of differences of analytic sets, without
reference to mirror symmetry. This relies on a general result that we can parametrize
the quasi-isomorphism classes of objects with K-class in H by a countable set of
affine varieties, together with a careful application of Chevalley’s theorem. The
intersection LS g (A) N LS’(A) coincides with ¥ (L g (Y)), which is contained
in a countable union of curves. It follows that no component of LS (A4) is full-
dimensional, which implies that this set is contained in a countable union of curves,
which allows us to conclude.
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1.5. Plan. We summarize well-known background on the formal deformation theory
of objects in A, categories in Section 2, and on constructions of algebraic families
of objects in Section 3. In Section 4 we recall the construction of the affinoid domains
BC and LS(A) and the relationship between them, and prove that LSz (A) C LS(A)
is a countable union of differences of analytic sets. In Section 5 we show how
to construct the map ¢ relating points on Y to tori with local systems in X. The
proof of Theorem A is completed in Section 6. We explain the alternative proof
of Corollary 1.7 via flux in Section 7, together with some interesting analogies
between flux arguments and Mumford’s proof of infinite-dimensionality of CHy.
We conclude with the speculative Section 8, concerning the mirror to the O’Grady
filtration [26], which is a filtration So(Y) C S1(Y) C --- C CHo(Y') whose first part
is So(Y) =7 - cy.

Acknowledgements. Denis Auroux pointed out the elementary proof of Corollary 1.7
via flux considerations. Paul Seidel suggested a different route to proving Theorem A;
we found that technically harder to implement, but it influenced our understanding.
Thanks to both of them, to Daniel Huybrechts for helpful conversations, and to the
anonymous referee for useful queries.

N.S. was partially supported by a Royal Society University Research Fellowship,
a Sloan Research Fellowship, and by the National Science Foundation through Grant
number DMS-1310604 and under agreement number DMS-1128155. LS. was
partially supported by a Fellowship from EPSRC and, whilst holding a Research
Professorship at MSRI during Spring semester 2018, by the National Science
Foundation under Grant No. DMS-1440140.

2. Deformations of objects in A, categories

The purpose of this section is to summarize some basic results about deformation
theory of objects in Ao, categories, following e.g. [12—16]. We prove only the results
we will need, and make no attempt at generality.

Let C be an A category defined over a field K. We use the conventions of [31],
in which the cochain-level morphism spaces are denoted hom®(Cy, C1) and the
cohomological morphism spaces are Hom®(Cy, C;) := H*(hom®(Cy, C1), u1).

2.1. Maurer—Cartan equation. Let C be anobjectof C. Anelement§ € hom!(C, C)
satisfies the Maurer—Cartan equation if

D p*@.....8) =0. 2.1)

The left-hand side is an infinite sum, so needs a reason to converge. We assume
the morphism spaces of € come equipped with exhaustive complete decreasing
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filtrations F=* hom®(Cy, C1), respected by the Ay structure maps in the obvious
way, and we only consider the Maurer—Cartan equation for § € F=!hom'(C, C).
The sum then converges by completeness.

One can define a new Ay, category whose objects are pairs (C,§) and whose
Ao structure maps are deformed by the Maurer—Cartan solutions. For example, the
formula for the deformed differential is

'uéoytsl thom®((Co. do). (C1.81)) — hom.—H((CO»BO), (C1,81))
whos, (@) =3 w*@o.....80.c.81.....8).  (22)

Once again, the infinite sum converges by completeness of the filtration. See, e.g. [31,
Equation (3.20)] for the general formula.

2.2. Obstructions. Let C be an object of C, and F=* hom®(C, C) a decreasing
filtration which is degreewise finite (i.e. F=*hom®(C, C) is a finite filtration for
each e). A family of deformations of C parametrized by an affine variety A is an
element § € F=! hom!(C, C) ® O(A) satisfying the Maurer—Cartan equation (2.1)
(which converges because the filtration on hom®(C, C) ® O(A) is degreewise finite
and in particular complete in the graded sense). In particular, §(a) € hom'(C, C)
is a Maurer—Cartan solution for any a € A. We denote the corresponding deformed
object by C, := (C, §(a)).

For any Zariski tangent vector v € T, A, we have an element v(§) ehom' (Cy, Cy).
Taking the derivative of the Maurer—-Cartan equation along v shows that v(3)
i 145y 5(a)-closed.

Definition 2.1. The obstruction map of the family ¢ at the pointa € A is

0: T, A — Homl(Ca, Ca)
o(v) == [v(d)].

Now suppose we have families §; of deformations of objects C; parametrized by
the same affine variety A, and a family of morphisms f € hom®(Cy, C;) ® O(A)
which is closed in the sense that

1
Hs0(a),81(a) (f)=0 (2.3)
in hom®(Cy, C1) ® O(A).
Lemma 2.2. Foranyv € T, A, we have
‘Mgo(a)ﬁ()(a)(()()(v)’ )+ /'Lgl (a),31(a)(f’ 01(v)) =0
in Hom®(Cy 4, C1,4), where 0; is the obstruction map of §;.

Proof. Differentiating (2.3) along v, we find that the sum of these two terms is equal
to —,uéo @).8 (a)(v(f )) on the cochain level, and in particular is exact. ]
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We can also consider formal deformations of an object, which can be defined
without reference to an auxiliary filtration. Let (R, m) be a complete local ring.
A family of deformations of C parametrized by Spec(R) is a solution of the
Maurer—Cartan equation § € hom'(C,C) ® m, where the hat denotes the m-adic
completion of the tensor product. The completeness of the m-adic filtration
guarantees convergence of the Maurer—Cartan equation. The obstruction map is
defined at the unique maximal ideal:

0: (m/m*)* — Hom'(C, C), (2.4)

and the analogue of Lemma 2.2 holds.

2.3. Versality. Let R = K[xy,..., x;] be a formal power series ring, and m C R
the maximal ideal. We say that a family § of deformations of C parametrized
by Spec(R) is versal if the obstruction map (2.4) is an isomorphism.

Remark 2.3. The versal deformation space of an object in an Ay, category may in
general be some more complicated formal scheme, but we will only consider point-
like objects whose versal deformation space takes this particularly simple form.

Note that if S = K[y1,..., ] is another power series ring, and n: R — S
a homomorphism, we obtain a pullback family 1(é) of deformations parametrized
by Spec(S). The word ‘versal’ suggests that any family of deformations of C should
be pulled back from the family §. We now prove a result of this flavour, which we
will use later.

Let D be another object of C, quasi-isomorphic to C, and consider a family
of deformations of D parametrized by Spec(S) where S = K[y1,..., yx]. This
corresponds to a solution of the Maurer—Cartan equation € € hom'(D, D) ®n,
where n C S is the maximal ideal.

Lemma 2.4. In the above situation, suppose that § is versal. Then there exists
a homomorphism n: R — S, and a morphism f € hom®(C,D)® S which is
,(.L717 (5).¢-Closed, such that £(0) € hom®(C, D) is a quasi-isomorphism.

If € is also versal, then 1 is necessarily an isomorphism.

Proof. We expand in multi-indices m:
§(X) =Y Smx™, nlx) =D M y™ FO) =D fa™
m m m

and solve the equation
M}?((g),e(.f) =0

for n and f, order-by-order in |m|. The first step of the induction is to set
fo € hom®(C, D) equal to a quasi-isomorphism between C and D. This is ! -closed



310 N. Sheridan and I. Smith CMH

by definition, so the equation is solved for |m| = 0. Having solved to a certain order
|m| < k, the equation at next order yields

2(3 8 s fo) + 1 (f) = (known), forall |m| = k. (2.5)

The RHS is p'-closed, using the fact that pt; 5 0 pp s (f) = 0 for any n
and f. In addition, since fj is a quasi-isomorphism, composition with fy is a
quasi-isomorphism of chain complexes. Finally, any class in Hom!(C, C) can be
represented by a linear combination of the §;, because § is versal. It follows that (2.5)
admits a solution for all m, which completes the inductive step.

For the second part, observe that we have a diagram

(m/mz)* [n]* (n/nz)*

l05 Oe

Hom!(C, C) 2L Hom!(C, D) ¥ Hom!(D, D)

which commutes up to sign by Lemma 2.2. If both § and ¢ are versal, then both
obstruction maps are isomorphisms; and since fy is a quasi-isomorphism, left- or
right-composition with [ fp] is an isomorphism. It follows that []* is an isomorphism,
and hence that 7 is an isomorphism by the inverse function theorem. L]

3. Algebraic families of objects

Let € be a proper triangulated A, category defined over a field K. The purpose of
this section is to show, using as little technology as possible, how certain families
of quasi-isomorphism classes of objects of € can be parametrized by affine varieties
(we follow [33, Lemma A.14]). We will assume that C is strictly proper, i.e. finite-
dimensional on the cochain level, and that it admits strict units, since this involves no
loss of generality (one can replace C with a strictly unital minimal model) and can be
arranged in appropriate models of the Fukaya category.

Remark 3.1. We are using “parametrizing” in a loose sense here: we mean that to
each point in one of our affine varieties there corresponds an object of €, and every
object of € of the relevant flavour is quasi-isomorphic to that represented by a point
in one of these affine varieties (but not necessarily a unique point).

3.1. Twisted complexes. Recall that an object C of C is said to be generated by
the objects {C; } if it is contained in the smallest triangulated subcategory of € which
contains the objects C;.
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Construction 3.2. Let {C;} be a countable set of objects of €. We construct a
countable set of affine varieties A‘}" parametrizing all quasi-isomorphism classes of
objects generated by the C;.

We recall the definition of the A4, category C™ of twisted complexes over an A,
category C, see [31, Chapter 3]. An object is generated by the C; if and only if it is
quasi-isomorphic to a twisted complex built from the C;.

Let V C € be the subcategory whose objects are shifts of the C;. We introduce a
category V®/ whose objects are pairs (V, f) where V = @ jeJg V; is a finite formal
direct sum of objects of V, and f: J — Z is a function. The morphisms and structure
maps are as in the additive enlargement V& and we have a finite filtration

FZ*hom*((V. /). (W.g)) == €D  hom*(V;, Wy).
g(0)z%+1())

Then we have a vector space
APV, f) == F="hom' (V. /), (V. [))

parametrizing possible differentials é in a pre-twisted complex (V, §) respecting the
filtration induced by f* (see [31, Section 31]). This vector space is finite-dimensional,
by our assumption that € is strictly proper.

The subset of twisted complexes consists of those § satisfying the Maurer—Cartan
equation (2.1), which is polynomial in § because the filtration F=* is finite. Thus the
subset A™(V, ) C AP™(V, f) of twisted complexes is naturally an affine variety.
It is clear that all twisted complexes built from the objects C; are isomorphic to
some (V, 8), where § € A™(V, f). Itis also clear that there are countably many such
(V, 1), so this completes the construction. ]

Remark 3.3. In this case every twisted complex over the C; is isomorphic to one
represented by a point in one of our affine varieties, but our future use of the word
“parametrizing” will not always have this stronger sense.

3.2. Idempotent summands. Suppose now that C is split-closed. Recall that an
object is said to be split-generated by the objects {C; } it it is contained in the smallest
split-closed triangulated subcategory of € which contains the objects C;.

Construction 3.4. Let {C;} be a countable set of objects of C. We construct a
countable set of affine varieties A’} parametrizing all quasi-isomorphism classes of
objects split-generated by the C;.

We recall the definition of a homotopy idempotent g in an A, category C, and its
abstract image in €™ (see [31, Chapter 4]). An object is split-generated by the C; if
and only if its Yoneda image is quasi-isomorphic to the abstract image of a homotopy
idempotent g of a twisted complex (V, §) over the C;.
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A homotopy idempotent g of a twisted complex (V,d) consists of elements
p? e hom{;vd(V, V), d > 1, satisfying

d—1

i sy )8 d even, 3.1

Explicitly, the equation » = 1 says that the endomorphism g! is closed, and the
equation 7 = 2 says that it is idempotent up to the coboundary of p2. Note that
hom{ﬁd (V, V) vanishes for d sufficiently large (since the total rank of hom%,. (V, V)
is finite). It follows that we again have a finite set of polynomial equations in the

finite set of variables §, p¢, whose common zero-set yields an affine variety A}”. 0

Remark 3.5. Note that, as in Remark 3.3, every homotopy idempotent of a twisted
complex over the C; is in fact isomorphic to one represented by a point in one of the
affine varieties A’

Let us explain how homotopy idempotents fit into the Maurer—Cartan framework
of the previous section. Let ec denote the strict unit of an object C € €. Following
[31, Remark 4.10], we consider a category £~ C of infinite twisted complexes C =
(C°,C~1,C2,..)) with C' € Ob G, and with an element ¢ € hom%_.(C, D)
comprising an essentially lower-triangular matrix

a = (@), ¥ e hom T/ T(CP, D7), 3N suchthata’ =0forj <i—N.

There is an exhaustive complete filtration on the morphism spaces of £~ €, with
FZ*hom$,_o(C, D) consisting of morphisms with a/ = 0 for j < i + *.
There is then a category C~, whose objects are pairs (C,§) with C € Ob ¥7C
and § € F=! homy_,(C, C) satisfying the (resultingly convergent) Maurer—Cartan
equation (2.1).

There is a canonical embedding € < €™ realised by taking the A,,-subcategory
of objects (C°,0,0,...). Furthermore, any homotopy idempotent g for an object
C € € defines an object (C, g¢) of €~ with underlying sequence (C,C, C,...) and

ok i=2k, j=i+1=<0,
pl—ey i=2k+1, j=i+1<0,
<5oj"i i+1<j<0,

0 else.

i —
8 =

The homotopy idempotent equation (3.1) is equivalent to the Maurer—Cartan equation
for 8,. We denote the subcategory of €~ consisting of objects of these two types
by C”. The category CP := (€™)” is a model for the split-closure of C.

Now a point a € A’ determines a twisted complex (V. d,) equipped with a

homotopy idempotent g,, and hence an object V, of €7, The Maurer—Cartan
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elements (04, d,, ) combine to form a single Maurer—Cartan element for an element
of (C®)~. This places us within the framework of Section 2.2, and in particular we
have an obstruction map

0: Ty A — Homp,(Va, Va).

Remark 3.6. It is worth saying a word about the auxiliary filtration which ensures
convergence of the Maurer—Cartan equation in this context. Because we assume C to
be strictly proper, each of its hom-spaces is concentrated in finitely many degrees, and
it follows that the filtration F=* on the morphism spaces of C7¢/ is degreewise finite.
One can combine the degreewise-finite filtration F=* with the finite filtration G=*
arising from the filtration on the twisted complex, to form a degreewise-finite filtration

FE* . @Mi+sz*F2i A Gz

on the endomorphism algebra of V,. The Ay structure maps respect this filtration
solong as M and N are non-negative, and by taking them to be sufficiently large we
may ensure that

(8asp,) € F=' homg,, (Va, Va)

(using 8, € G=!' N F=°,§,,, € F=!, and the finiteness of G=*).

3.3. Point-like objects. For the purposes of this paper (in which all categories con-
sidered are 2-Calabi—Yau), an object C of C is called point-like if its cohomological
endomorphism algebra is isomorphic to the cohomology algebra of a 2-torus,
H®(T?; A) (i.e. an exterior algebra on two generators in degree 1).

Construction 3.7. Let € be split-closed and admit a countable set of split-
generators {C; }. We construct a countable set of affine varieties A;’ ! parametrizing
all quasi-isomorphism classes of point-like objects in C.

For each of the affine varieties A7 from Construction 3.4, we define A‘; e AT
to be the subset of points corresponding to point-like objects. It suffices to show that
each Af ! carries the structure of an affine variety.

There is a coherent sheaf & — A7 with fibre over P = (V, /4, p) being the
degree i part of the cohomological endomorphism algebra

H'(hom*(P, P)) == [p'] - H' (hom3. ((V,8), (V,8))) - [p"].

The stratification by rank is lower-semicontinuous, so the subset defined by rk &' =
k H i(Tz; A) is a difference of affine subvarieties. Within this subset, the condition
that the product H! ® H' — H? is non-vanishing defines a Zariski-open subset,
which is precisely the set of points in A’J? corresponding to point-like objects. A
Zariski-open subset of a difference of affine subvarieties carries the structure of an
affine variety, so we are done. L]
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3.4. Objects representing classes in K -theory. The next construction will make
use of the following theorem of Thomason [38], or more precisely its immediate
corollary:

Theorem 3.8 (Thomason). Let C be a split-closed triangulated category. There is
a bijection between the set of split-generating triangulated subcategories D C C
and the set of subgroups G C K(C). The subgroup corresponding to D C C
is K(D) C K(C), and the subcategory corresponding to G C K(C) consists of all
objects C with [C] € G.

Corollary 3.9. Let C be a split-closed triangulated category, {S;} a set of split-
generators for C, and {C} a set of objects of C. If C is an object of C such that the
class [C] € K(C) lies in the abelian subgroup generated by the classes [C;), then C
is generated by the objects {C;} U {S; @ S;[1]}.

Proof. The triangulated subcategory generated by the objects {C;} U {S; ® S;[1]}
is split-generating, since it split-generates the objects S;. Therefore it coincides with
the subcategory of all objects C with [C] lying in the subgroup generated by the
classes [C}] together with the classes [S; @ S;[1]] = O, by Theorem 3.8. ]

We now make the following:

Construction 3.10. Let C be split-closed, {S;} be a countable set of split-generators,
and H € K(€). Then we construct a countable set of affine varieties A 5{ paramet-
rizing all quasi-isomorphism classes of objects V with [V] = H.

Let Cy be an object with [Cy] = H. Thenany object V with [V] = H isgenerated
by the objects {Co} U {S; @ S;[1]} by Corollary 3.9. The set of quasi-isomorphism
classes of such objects is parametrized by the countable union of affine varieties from
Construction 3.2. The K-class is constant on each of these affine varieties, so a subset
of this countable set of affine varieties parametrizes quasi-isomorphism classes of
objects with K-class H. ]

4. Families of tori

Let X be a symplectic K3 surface! such that F(X') is non-degenerate, which implies
that there is a finite set of Lagrangians {L;} which split-generate T(X)*”. Let
T C X be a Maslov-zero Lagrangian torus. In this section we consider “the family
of objects near 7.

'All Lagrangians we consider are implicitly equipped with a brane structure, which consists of an
orientation, grading, spin structure and w-tame almost-complex structure J such that the Lagrangian
bounds no non-constant J-holomorphic disc and intersects no non-constant J-holomorphic sphere. Any
orientable Lagrangian with vanishing Maslov class admits such a brane structure: in particular, the
condition on J is generic for virtual dimension reasons (see [32, Lemma 8.4]).
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4.1. Analytic functions. We start by recalling some basic notions from non-Archi-
medean analysis, namely the algebras of convergent functions on polydiscs and
polytope domains. Everything we present here is completely elementary and suffices
for our purposes, but the interested reader can find more information about these
algebras and the role they play in rigid analytic geometry in [8, 11].

Recall that the field A has a non-archimedean valuation

val: A - R U {o0}, va](ZaAqk) = min{A € R|ay # 0}, val(0) = +c0

with associated norm | - |: A — R given by

le _ e—val(x)-
The norm defines the analytic topology on A.

A polydisc is a subset P(b) C A" of the form {x : val(x;) > b;, i = 1,...,n}.
A power series

f(x) = Zfl) 'xV = Aﬂxl" '-’xnﬂ
v
converges on the polydisc if

lim val(f,)+v-b =00
[v]—o00
where || - || denotes any choice of norm on Z". The convergent power series form
a subalgebra of the formal power series (the Tate algebra), and a convergent power
series can be evaluated at any point on the polydisc. We will call a function from
the polydisc to the Novikov field analytic if it is given by evaluation of a convergent
power series.
Next we consider the map

val: (A™)" — R”",

val(xq,...,x,) = (val(xy),...,val(xy)).

If P C R” is a bounded rational polytope, we define the polytope domain Yp =
val~!(P). A formal Laurent series f(x) = > ,ezn fv - xV converges on Yp if

lim val(f,)+v-p=4oco forall pe P.
Ivl—o00

The convergent Laurent series form an algebra, and can be evaluated at any point
on the polytope domain. We will call a function from the polytope domain to the
Novikov field analytic if it is given by evaluation of a convergent Laurent series.

A subset of a polydisc or polytope domain is called an analytic subvariety if it is
the zero-set of a finite collection of analytic functions. We will call a subset naively
constructible if it is a countable union of differences of analytic subvarieties.
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4.2. Bounding cochains. We recall that the morphism spaces of the Fukaya category
come equipped with the exhaustive and complete energy filtration, so the Maurer—
Cartan equation (2.1) converges for positive-energy §; and a positive-energy solution
of the Maurer—Cartan equation is called a bounding cochain [15]. We consider the
space of bounding cochains on 7". Since hom;( x)(T,T) = C*(T; A) is formal, the
Maurer—Cartan equation is trivial. Therefore the space of bounding cochains is

BC = HY(T; Aso).

For any a € BC we denote the corresponding object of F(X) by T.>°. Note that for
any & > 0, the subset BC, = H!(T'; A.) of bounding cochains with energy > ¢ is
a polydisc.

We will consider the subcategory of the Fukaya category F(.X') with the finite set
of objects {L; } together with the objects {7.*} epc, . It is essentially immediate from
the definition that the A, structure maps in this category are analytic in a € BCq,
for any ¢ > 0.

4.3. Local systems. An open neighbourhood U of T" C X is fibred by Lagrangian
tori over an open neighbourhood of the origin A C H!(T; R), with T’ corresponding
to the fibre Fy over the origin. (It may be helpful to imagine the case in which X
carries a global singular SYZ fibration and A is an open subset of the base.)

Note that we have an isomorphism

A* > Rx Uy

a — (val(a), u,),
where 1, = gY@ . 4. This induces an isomorphism
HY(T:;A*) ~ H(T;R) x HY(T:Uy),
where the projection to the first factor is the map
val: HI(T; A*) - HY(T;R)
induced by the valuation map val: A* — R. We define the subset
LS(A) = val ™! (4);

the points a € LS(A) correspond to objects 7. of F(X), consisting of the fibre Fy(4)
equipped with the unitary local system with holonomy u, € H! (Fraia); UA)-
Abouzaid [2], following Fukaya [17], proved the following key result.

Theorem 4.1 (Abouzaid, Fukaya). Consider the subcategory of the Fukaya category
F(X) with the finite set of objects {L;} together with the objects {T*}se1s(4). By
shrinking A if necessary, and making appropriate choices of perturbations and bases
in the morphism spaces, we can arrange that the Ao Structure maps are analytic
ina € LS(A).
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The appropriate choice of basis in the morphism spaces involves some rescaling
by flux, see [2, Lemma 3.2, Equation 3.19].

The relation between bounding cochains and local systems has been established
by Fukaya in [17, Lemma 13.1]. It involves the map exp: BC — LS(A) induced by
the exponential map exp: Asg — U,.

Theorem 4.2 (Fukaya). For any a € BC, the object T* is quasi-isomorphic to the
object T" @ " F(X).

exp

4.4. Objects with fixed K -class. Now let us fix a class H € K(F(X)?7), and
consider the subset LSy (A) C LS(A) (respectively, BCy C BC) consisting of
objects with [T] = H (respectively, [T>] = H).

Lemma 4.3. The subset LSy (A) C LS(A) (respectively, BCy C BC) is naively
constructible.

We will give the proof for local systems, as the argument for bounding cochains is
identical. In order to prove Lemma 4.3, we observe that the objects 7 parametrized
by points a € LS(A) are point-like; combining Constructions 3.10 and 3.7, we have
a countable set of affine varieties parametrizing quasi-isomorphism classes of point-
like objects split-generated by the {L;} and having the given K-class. Therefore it
suffices to prove the following:

Lemma 4.4. Let A be one of these affine varieties. Then the subset of points
a € LS(A) consisting of objects T;S lying in one of the quasi-isomorphism classes
parametrized by A, is a finite union of differences of analytic subvarieties.

Proof. The points of A parametrize pairs (6, ), where § is a Maurer—Cartan
element for a fixed V' = @&L;,[o;;], upper triangular with respect to a fixed
filtration, and g is a homotopy idempotent for the twisted complex (V, §), satisfying
appropriate constraints so that the object (V, 6, ) is point-like. By Theorem 4.1,
we may assume (possibly after shrinking A, and making appropriate choices in the
definition of the Fukaya category) that the vector spaces hom®(V, TJ“), homO(T‘lS, V)
and hom?(T!®, T!*) are independent of @, and the A structure maps are analytic
in a. Recall that hom® (T8, T)*) =~ C*(Fya(q); A) (since the endomorphisms of a
rank one local system are trivial). We take a strictly proper chain-level model for
the Fukaya category, as in [32], in which this cochain complex is concentrated in
non-negative degrees and has rank one in degree zero. The identity cochain e, = e
is independent of the holonomy of the local system and depends on a at most through
rescaling by a function analytic in a.

We consider the subset

O C LS(A) x A x hom®(V, T) x hom®(T, V)
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consisting of all (a, (8, &), f, g) such that

H’é,a(f) o O’
lu’(ll’s (g) = 01
uls(u2s(fr9').8) = eq is the identity in hom®(T,%, T,").

The object T)® is a direct summand of the object (V, 8, ) if and only if there exist
(f, g) such that (a, «, f, g) lies in Q (using the fact that hom™ (7, T') is concentrated
in non-negative degrees, so any element cohomologous to ¢, € homO(TJS, TJS) is e4
itself). The rank of the degree-0 endomorphism algebra of (V, 4, ) is equal to 1,
so any non-trivial direct summand is quasi-isomorphic to (V, §, ). It follows that
the desired subset of L.S(A) is precisely the projection pr;(Q), where pr; denotes
projection onto the first factor.

The defining equations of Q are linear in f, g and g!, polynomial in §, and
analytic in a by Theorem 4.1. They do not involve p=2. We now observe that
only finitely many analytic functions in @ can enter into these defining equations,
as there are finitely many non-zero coefficients in each of the finitely-many defining
polynomials in 8, f, g, p!.

Let us suppose that there are N of these analytic functions. They define an
analytic map ¢:LS(A4) — A®. We have a corresponding set

O c AN x A x hom®(V, T) x hom®(T, V)

defined by equations which are linear in f, g and p!, polynomial in §, and linear in
the coordinates on A" standing in for the analytic functions on LS(A), so that Q is the
preimage of O under the map ¢ xid x id x id. It follows that pry (Q) = ¢~ (pry (D).

Since Q is an algebraic subvariety (and A is an algebraically closed field), it
follows by Chevalley’s theorem that pr, (Q) is a finite union of differences of algebraic
subsets. Therefore pry(Q), being its pullback under the analytic map ¢, is a finite
union of differences of analytic sets as required. [l

5. Matching points with tori

Throughout this section we work in the setting of Theorem A: X is a symplectic K3
surface which is homologically mirror to a K3 surface Y over A, and T C X is
a Maslov-zero Lagrangian torus which the homological mirror functor sends to the
skyscraper sheaf @,, of a closed point y € Y.

We fix a finite set of objects {L;} of F(X) which split-generate F(X)?7, and
denote the subcategory with those objects by V. We denote the corresponding objects
of D(Y) by {&;}, and denote the subcategory with those objects by W.
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5.1. Families of points near y. Recall that given the split-generators { L; } of F(X )7,
Construction 3.7 produces a countable set of affine varieties Aj’ ! parametrizing all

quasi-isomorphism classes of point-like objects of F(X )7

Lemma 5.1. There exists a Zariski-open neighbourhood B of y € Y, and a morphism
of affine varieties y:B — Af " for some j, such that Oy is quasi-isomorphic to the
image of x(b) under the homological mirror functor, for all b € B.

In order to prove Lemma 5.1, it will help to start with a preliminary result about
families of modules.

We start with some background. Let B be an affine variety and V a DG category.
Recall the notion of a family of (right) DG V-modules parametrized by B: it is an
Op-linear DG functor V” ® O — €, where € is the DG category of cochain
complexes of projective Og-modules. Note that if M is a family of DG V-modules
parametrized by B and » € B, the specialization M}, is an ordinary DG V-module.
We will say thata family of DG V-modules M is classified by amorphism f: B — A;.’
to one of the affine varieties from Construction 3.4, if M} is quasi-isomorphic to the
abstract image of the homotopy idempotent g r(p), for all b € B.

We will call a family of DG V-modules strictly proper if the corresponding functor
lands inside ©/*, the cochain complexes which are free and finitely-generated on the
cochain level.

Lemma 5.2. Suppose that'V is a homologically smooth DG category, and M a strictly
proper family of DG V-modules parametrized by the affine variety B. Then M is
classified by a morphism f:B — A’j’ .

Proof. All functors, modules and categories in the proof are assumed to be DG. We
start by considering the case that B = Spec K is a point, so M is simply a V-module.
We recall some background on categories of DG modules, cf. [30] and [ 18, Section 2].

The category of left V-modules is denoted V-mod, the category of right V-modules
is mod-"V, and the category of V-V-bimodules is V-mod-V (the notation follows [18,
Section 2], but note that we only consider DG modules — these form a quasi-
equivalent full subcategory of the category of A, modules considered in op. cit.).
We have left and right Yoneda functors

YV - mod-V, Y&V 5 Vomod,
a tensor product functor
V-mod ® mod-V — V-mod-V,
convolution functors given by tensoring with a (bi-)module, e.g.

M ®vy (—): V-mod-V — mod-V
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(cf. [30, Section 2] — note that the bar resolution provides a canonical way of
taking an appropriately derived tensor product, but this remains a DG rather than A
functor), and a quasi-isomorphism of functors

M &y Y{(—) = M(-)

(given by the augmentation M(Y) ® hom(X, Y) — M(X) of the bar resolution).
Combining these pieces, we obtain a homotopy-commutative diagram of functors

& r
vr oy —2%" v mod-v
M@idl lM@v(—)
€ gy —KoWBY)  odV.

We now take twisted complexes in this diagram. We also observe that there is a
‘tensor with a finite-dimensional cochain complex” functor

et gy —s P

(however note that the functor does not exist if we replace €/ with € due to the
finiteness constraint on twisted complexes). Using the fact that M is strictly proper,
we obtain another diagram of DG functors

(VP @ V)™ — (V-mod-V)™

| |

V¥ (mod-V)™ ,

commutative up to homotopy.

Now by the definition of homological smoothness of V, there exists a twisted
complex (C,8) € (V? ® V)", together with a homotopy idempotent g, whose
image in (V-mod-V)™ represents the diagonal bimodule V. Since M ®y VA ~ M,
it follows by commutativity that the image of this homotopy idempotent in V"
represents M.

Thus, given a resolution of the diagonal, we obtain a natural way of forming a
twisted complex together with a homotopy idempotent representing a given strictly
proper V-module. We now apply this to a strictly proper family of V-modules M
over an arbitrary affine variety B. We obtain a family of twisted complexes with
homotopy idempotents representing the fibres; and this family must be pulled back
from one of the affine varieties A’ by the universality of the construction of the latter
(see Remark 3.5). [

Proof of Lemma 5.1. Since Y is a smooth variety, we may assume that the split-
generators &; are bounded complexes of locally free sheaves of finite rank.
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To define our DG enhancement D(Y) of the bounded derived category
D? Coh(Y), we use a Cech model following [32, Section 5], i.e. we choose a finite
affine open cover £l of ¥ and set

hom, (€. F) = C* (L, Hom(E, F)).

We may assume that y lies in the common intersection of the affine open sets in
our cover. The complexes &€, are locally free of finite rank, so their restrictions to a
sufficiently small open affine neighbourhood B of y are free. Shrinking B further, we
may assume that it is contained in the common intersection of the sets in our cover.
If :: B < Y is the inclusion, then the complexes C (L, L*L*é’i\’) are free Og-modules
of finite rank, whose fibres over a point b € B coincide with hom:D(Y) (&i,Op).

Thus, we have constructed a strictly proper family of right DG 'W-modules
parametrized by B, representing the Yoneda images of the skyscraper sheaves O
for b € B. Since W is a homologically smooth DG category we may apply
Lemma 5.2, to obtain a family of homotopy idempotents of twisted complexes
over W parametrized by B. Twisted complexes and homotopy idempotents are
functorial under A, functors (see [31, Section 3m] for twisted complexes; homotopy
idempotents are functorial because they can be regarded as non-unital A, functors
from the ground field [31, Section 4b], which can be post-composed with any 4
functor), so applying the homological mirror functor we obtain a corresponding
family of homotopy idempotents of twisted complexes over V. The objects
represented by points b € B are all clearly point-like, so this family is classified
by a morphism B — AJR !, by the universality of the construction of the latter (see
Remark 3.5). L]

5.2. Versality of the family of points. It is well known that the family of skyscraper
sheaves of points is a versal family, cf. [14, Section 5]. In particular we have:

Lemma 5.3. The resulting obstruction map
o
TyB = Homy xer (X (), X (7))
is an isomorphism.
Proof. This is areflection of the fact that the homomorphism
T,Y — Ext'(0,,0,), (5.1)

arising from the connecting homomorphism for the short exact sequence of coherent
sheaves
0—>Ty*Y®(9y—>(9y/J§—>(9y—>O, (5.2)

is an isomorphism.
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To make the connection we use the notion of a naive short exact sequence of
W-modules

0—-P—-Q—->R—->0,

which consists of the inclusion P C Q of a submodule, i.e. a subspace P(W) C Q(W)
for each object W preserved by all structure maps, together with the projection to
the quotient module R. A choice of splittings of the short exact sequences of vector
spaces determines a connecting morphism in hom!._, o (R, P), whose cone is strictly
isomorphic to Q, cf. [30, Section 2] and [31, Section 3p].

Let M denote the strictly proper family of W-modules parametrized by B that
was constructed in the proof of Lemma 5.1, representing the Yoneda images of
skyscraper sheaves of points » € B. Taking the tensor product of M with the short
exact sequence of @g-modules

0 — (m/m?) ® Op/m — Op/m?> - Og/m — 0, (5.3)

we obtain a naive short exact sequence of W-modules representing the Yoneda image
of the short exact sequence of coherent sheaves (5.2).

The connecting homomorphism is an element of Hom? . 1o (M,, m/m? ® M,),
which can be regarded as a homomorphism

T,B — Hom! , 1v (M, M,).

It is routine to verify that this coincides with the Yoneda image of the isomorph-
ism (5.1), and hence is an isomorphism. On the other hand, there is a canonical
splitting for the short exact sequence (5.3) given by the map Op/m — Op/m?
sending f +— f(y); this determines a splitting of the short exact sequence of
'W-modules, and it is routine to verify that the corresponding connecting morphism
coincides on the chain level with the obstruction map for the family of modules M.
Hence the latter is an isomorphism, and therefore so is the obstruction map for the
corresponding family of objects of Wre7, ]

5.3. Families of bounding cochains on 7. The next result uses Artin’s approxi-
mation theorem [3, Theorem 1.2], which says roughly that if an analytic system of
equations admits a formal solution, then it admits an analytic solution. Precisely,
consider a finite collection {f;(x,y)}i1<i<ny of convergent analytic functions in
variables x € A", y € A™. Then we have:

Theorem 5.4 (Artin). [f there is a formal (power series) solution q(x) of
{fi(x,9(x)) = 0}1<i<n, with g(0) = O, then there is a convergent solution Q(x).
Moreover, for any k, there exists a convergent solution whose k-jet coincides with
that of the formal solution.
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We combine Artin’s theorem with the formal deformation theory from Section 2.3
to prove:

Lemma 5.5. There exists an analytic neighbourhood B¢ of y € B, together with an
analytic map n:Be — BC sending y to 0, which is an analytic isomorphism onto a
neighbourhood of O € BC, such that the object O, is quasi-isomorphic to the image
of Tr:)(cz) under the homological mirror functor, for all z € B,.

In order to prove the Lemma we will work with the category Q D 'V whose
objects are the chosen finite set of split-generators {L;} for F(X), together with the
objects T for a € BC. Using homotopy units as in [15], there is a strictly unital
chain-level model for Q. We remark that we work with a slightly different construction
of the Fukaya category from [15], following [32], which has the advantage that it
is strictly proper (as is required for our constructions). Homotopy units have been
constructed in this framework in [18].

Since Q admits strict units, we may consider the split-closure Q" constructed
in Section 3.2. Even though Q is strictly proper, 97 need not be. Nevertheless,
it has a weaker finite-dimensionality property. Namely, we recall that 9”7 has two
types of objects: objects X of Q™, and objects (Y, ) corresponding to a homotopy
idempotent of an object Y of Q". Using the fact that Q is strictly proper, one easily
verifies that the morphism groups homgpe,f(X ,(Y,$)) and hom’é,,,,,f((Y, ), X) are
finite-dimensional in each fixed degree k.

In particular, the category 97¢/ contains both the objects T(?C and objects quasi-
representing idempotents up to homotopy as parametrized by the affine varieties A f !
and morphisms between objects of the respective types are finite-dimensional in each
degree. (One can also construct a split-closure for Q as a subcategory of the category
of modules Q™% which however does not satisfy this finite-dimensionality condition;
in the application below, this could lead to infinite systems of analytic equations, for
which Artin’s theorem would not guarantee convergent solutions with a common
positive radius of convergence.)

Proof of Lemma 5.5. The proof is structurally somewhat similar to that of Lemma4.4.
Let B — A = A‘;’t be the map of Lemma 5.1, given explicitly as

x(2) = (V,8(2), p(2)).

Note that x(z) determines an object of the category Qrerf The vector spaces E' =
homy,,, (x(z), 7<) do not depend on « or z, and we have a map

®:BCxBx E® - E!, (g, 2, 1) = ;L(S,,erf(r).
Schematically,

®(a,z,r) :Zi,u,*(a,...,a,r,ﬁ,...,8,5p,5,...,5,559,...,5@,8,...,8),
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where § and §, are algebraic functions of z. Using the fact that Q is strictly proper
and hence its hom-spaces are degree-bounded, there is a fixed NV such that 7"/ = 0 for
all j <i— N, forall r € E°. It follows that we have an upper bound on the number
of times that d,, can appear in (5.4). We also have an upper bound on the number of
times that § can appear between consecutive appearances of 8y, by the strict lower
triangularity of §, and therefore we obtain an upper bound on the total number of
times that § can appear. Thus ®(a, z, r) is a polynomial in z whose coefficients are
convergent power series in a € BCy for any &’ > 0, and linear in r, so it is analytic
on BC, x B x E°.

Now the restriction of the family of objects 7 to a formal neighbourhood
of a = 0 is clearly versal; similarly the restriction of the family of objects y(z) to a
formal neighbourhood of z = y is versal by Lemma 5.3. Therefore, there exists a
formal solution (a(z), r(z)) to ®(a(z),z,r(z)) = 0 by Lemma 2.4, with a(0) =0
and r(0) = rg equal to the quasi-isomorphism between T = Té’“ and y(y), and
the function z +— a(z) is an isomorphism of formal neighbourhoods. Artin’s
theorem then yields a convergent analytic solution, whose 1-jet at the origin co-
incides with that of the formal solution, and it follows by the inverse function
theorem [1, Theorem 10.10] that z > a(z) is a local analytic isomorphism.

We have an analytic family of cochain complexes over an analytic neighbourhood
of y € B, finite-dimensional in each degree and with acyclic fibre at z = 0, given by
the mapping cones

12 g (7 (2)

Cone ( homgperf (T;(CZ), x(2)) hom’, iAW s N

a(z)’ “a(z)

Since the rank of cohomology is upper semicontinuous, for any i there exists
an analytic neighbourhood of 0 on which the degree-i cohomology vanishes. It
follows that there exists an analytic neighbourhood B, of the origin such that the
cohomological unit lies in the image of uépe,f(-, r(z)) for each z € B,, which implies
that Té’fz) is an idempotent summand of y(z). However, both objects are point-like,
in particular have rank one endomorphisms in degree zero so admit no non-trivial
idempotent decomposition, therefore r(z) is a quasi-isomorphism for z € B,.

Since analytic maps are continuous, the cocycle a(z) belongs to BC in some
analytic neighbourhood of z = 0. Shrinking B, if necessary, we obtain a bounding
cochain a(z) on T quasi-isomorphic to @, for each z € B, and this defines the
required map 7(z) := a(z) from B, to BC. L]

6. Proof of Theorem A
6.1. Naively constructible subsets. Let Y be a polydisc or a polytope domain over

a bounded convex rational polytope. We will say that a naively constructible subset
V = U;(D; \ E;) in Y has codimension > 1 if we may take D; # Y for all i.
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Lemma 6.1. Let Y be as above. If V C Y is a naively constructible subset whose
intersection with an open set (in the analytic topology) has codimension > 1, then V
itself has codimension > 1.

Proof. Suppose to the contrary that some D; = Y, with E; # Y. Then V would
contain a set of the form Y \ E; where E; is a proper analytic subvariety. It would
follow that the open set could be covered by E; together with a countable set of
proper analytic subvarieties, which is impossible. L]

6.2. Bounding cochains. We now consider the locus BC g C BC consisting of all a
such that [T?°] is contained in the countable subset H C K(F(X)"7).

Lemma 6.2. The locus BC g is naively constructible of codimension > 1.

Proof. We know that BCp is naively constructible by Lemma 4.3. By Lemma 1.4,
the locus of points y € B, such that [y] is contained in the corresponding subset
H C CH«(Y) is naively constructible of codimension > 1. It follows that the
intersection of BC g with the image of the local isomorphism y: B, — BC provided
by Lemma 5.5 has the same property, and therefore that BCy has the same property
by Lemma 6.1. L]

6.3. Localsystems. We now consider the locus LS 7 (4) C LS(A) consisting of all a
such that [T>] € H .

Lemma 6.3. The locus LS (A) is naively constructible of codimension > 1.

Proof. We know that LSy (A) is naively constructible by Lemma 4.3. The
exponential map defines an isomorphism from BC, to an open subset of LS(A),
for any & > 0. It identifies BC gy with the intersection of LS g (A) with this open
subset, by Theorem 4.2. Since BCp is naively constructible of codimension > 1
by Lemma 6.2, it follows that LSz (A) is naively constructible of codimension > 1
by Lemma 6.1. O]

6.4. Valuation image. Let P be a bounded convex rational polytope, and Yp the
corresponding polytope domain. Any analytic subvariety Z C Yp admits a
decomposition into finitely many irreducible components, each of which has a well-
defined (Krull) dimension (see [8, Section 7] for background).

The next result describes the image of an irreducible analytic subvariety of a
polytope domain Yp under the valuation map val: Yp — P. It dates back to [7]
(see also [11]). A proof in the present setting follows from [6, Corollary 6.2.2] (see
also [19, Proposition 5.4], or [27, Section 8] for the special case of an algebraic
hypersurface in ¥ p in the language of rigid analytic spaces).
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Theorem 6.4. Let Z C Yp be an irreducible analytic subvariety of dimension k.
Then the image val(Z) C P is a locally finite rational polyedral complex of
dimension k.

We can now complete the proof of Theorem A:

Proof of Theorem A. By Lemma 6.3, LSy (A) is contained in a countable union of
proper analytic subvarieties, each of which has dimension < 1 by Krull’s principal
ideal theorem. Therefore Theorem 6.4 implies that the image val(LSg(A4)) C A
is contained in a countable union of locally finite rational polyhedral complexes of
dimension < 1. In particular there exists a point a € A that does not lie in the image.
This means that the torus 7/ = F, has the property that no unitary local system
on T’ defines an object with K-class lying in H. This holds in particular for the
trivial local system, which completes the proof. Cl

7. Cobordisms and flux

In this section we describe the most basic obstructions to the existence of a cobordism,
which arise from flux. Related ideas appear in [28] and [24, Proposition 4.6].

7.1. Cobordism groups. Let X = (X, w) beaclosed symplectic manifold equipped
with an oo-fold Maslov cover of its oriented Lagrangian Grassmannian. We define a
Lagrangian brane to be a Lagrangian submanifold L C X equipped with a grading
relative to this Maslov cover, and a spin structure.

A cobordism between Lagrangian branes L, L’ C X is a Lagrangian brane
V C (C x X, wc @ w) which projects properly to C, and which outside a compact
set co-incides with the Lagrangian branes

(L' x (—00, —1)) U (L x (1, 00)).

There is an obvious notion of Lagrangian cobordism between tuples L™ :{LJ_-}

and L = {L,‘:} by allowing the cobordism to have more ends at either or both of
positive and negative real infinity, or of a Lagrangian nullcobordism if one of the sets
of ends is empty. See [4,5] for background.

We let Cob(X) denote the Lagrangian (brane) cobordism group, i.e. the abelian
group generated by Lagrangian branes modulo relations from brane cobordisms.
The ‘U-turn’ cobordism shows that shifting the grading of a Lagrangian by [1]
changes the sign of the corresponding class in Cob(X). (The group Cob"™*®(X)
appearing in the Introduction, in which relations are imposed only when they arise
from Floer-theoretically unobstructed cobordisms, comes with a canonical map
Cob"™?(X) — Cob(X).)
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Remark 7.1. A variant on the definition, introduced in [36], is to consider cobordisms
over C*, i.e. Lagrangian branes in (C* x X, wc+ @ @) which carry LF over radial
half-lines in a neighbourhood of the ends of C*. Any cobordism over C yields
a cobordism over C* by quotienting the plane C by a large imaginary translation.
Cylindrical cobordisms play no specific role here, but are more directly comparable
to the Chow group of O-cycles on the mirror as explained in [36].

Traces of Hamiltonian isotopies, and of Lagrange surgeries which respect brane
structures appropriately, both yield cobordisms. The construction extends to Morse—
Bott Lagrange surgeries, i.e. surgeries along clean intersections.

Example 7.2. Let X be a symplectic Calabi—Yau surface which contains Lagrangian
spheres S, S’ which meet transversely at two points {p, ¢} of the same Maslov
grading. There is a shift £ and a graded Lagrange surgery

T=sK?Xs,

which is a Lagrangian torus graded cobordant to S[¢] L S’. Varying the surgery
parameters, one obtains a one-parameter family of Hamiltonian isotopy classes of
such tori T, all of which have the same class S[£] + S’ in Cob(X).

Example 7.3. Let X be asymplectic Calabi—Yau surface which contains a Lagrangian
sphere S which meets a Lagrangian torus 7 cleanly inacircley = SN7T C T.
There is a one-parameter family 7; of Hamiltonian isotopy classes of Lagrangian tori
obtained as the images of 7" by isotopies of flux f«, where & € H!(T;R) vanishes
on the class of the loop y, which one can arrange to also meet S cleanly in a family
of parallel circles y;. The Morse—Bott Lagrange surgery of 7; and § is a Lagrangian
sphere S;, whose Hamiltonian isotopy class S’ is independent of ¢. It follows that
the one-parameter family of tori 7} all have the same class S — S’ in Cob(X). (This
example has a tropical interpretation, considering the family of SYZ fibres lying over
interior points in an edge of the tropicalization of a rational curve.)

7.2. Flux constraints. If L C X is a Lagrangian, we recall that the flux homomor-
phism

{small deformations of L} / Ham. isotopy ANy 58 (L;R)

is given by integrating the symplectic form over the cylinders swept by loops in L
under the deformation. It is an isomorphism onto a neighbourhood of the origin
Uz, C HY(L;R): the inverse takes a class @ € Uy to the graph of a closed one-
form representing « in de Rham cohomology, in a Weinstein neighbourhood of L.
We denote this Hamiltonian isotopy class by L(a) = ¢; ! (a).
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Similarly, if V C C x X is a cobordism with (positive and negative) ends L. = {L; },
there is a flux homomorphism ¢y fitting into a commutative diagram

{small deformations of V'} / Ham. isotopy S HY(V;R) (7.1)

| |

{small deformations of I} / Ham. isotopy AL, H1 (0V;R),

where @, is the direct sum of all of the flux homomorphisms ¢y,., mapping to

P H'(Li:R) = H'(V;R).

The only difference from the standard case of a single Lagrangian recalled above
is in the construction of the inverse to the flux homomorphism ¢y : one chooses
the Weinstein neighbourhood of V, and the closed one-forms representing classes
in H'(V;R), torespect the product structure near 3V . To prove that the diagram (7.1)
commutes, one observes that wc vanishes over a neighbourhood of 9V because the
projection of the neighbourhood to C is contained in a one-dimensional subset.

Now let . = {L;} be a finite tuple of Lagrangian branes in X, and let
UL =]1; Ur,. We consider the map

f: Up, — Cob(X)
fu(e) = ZLi (o).

Note that each Hamiltonian isotopy class L;(«;) gives a well-defined element of
Cob(X) because Hamiltonian-isotopic Lagrangians are cobordant.

Lemma 7.4. Let L, L™ be finite tuples of Lagrangians. Then

{@r o) e Ups x UL—: fr+ (@) = fa-(@)} = | Zv.
Vev

where the indexing set 'V is countable, and to each YV € 'V there is associated an
oriented manifold V with oriented boundary 3V = 37V U0~V and an identification
0tV ~ Lii, such that Zv is identified with an open subset of an affine subspace
parallel to im(H'(V;R) — H(3V;R)).

Proof. We define a topological cobordism between L~ and L™ to be a smooth
map i: V — C x X which is asymptotic to the Lagrangians outside a compact set
(in the same way that a Lagrangian cobordism is); we require V' to be oriented,
compatibly with the boundary. We say two topological cobordisms are homotopic if
they are homotopic relative to a neighbourhood of V. By choosing each Uy, to be
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simply connected, we may ensure that the set of homotopy classes V of topological
cobordisms between L.~ and IL* can be canonically identified with those between
L~ (a7) and Lt (a™), for any @® € Uy +. The set 'V of such homotopy classes is
countable, by the simplicial approximation theorem.

Associated to a homotopy class of topological cobordisms is a cohomology class
[i(*(wc @ w)] € H?(V,dV;R), whose non-vanishing obstructs the existence of a
Lagrangian representative. Moving the ends I ¥ of the cobordism by flux o changes
this class by the image of @™ under the map

H'OV:R) — H*(V,dV;R).

Applying the long exact sequence for the pair (V, V'), we see that the set of fluxes a™
for which the obstruction vanishes is (the intersection of Uy + x Uy,— with) an affine

subspace Z,, parallel to

im(H'(V:R) — H'(3V;R)).

2L =) L)

Now, any relation

i
is generated by a finite set of Lagrangian cobordisms {V;}. Gluing the ends of
the V; together we obtain a (possibly immersed) Lagrangian cobordism V' between
L~ (¢™) and L™ (a™); thus («™, a7) lies in the affine subspace Z’[V]. Furthermore,
deformations of V' give rise to deformations of the V'; by restriction, so the cobordism
relation can be deformed precisely in the directions corresponding to
im(H'(V;R) — H'(3V;R)),

by (7.1). Itfollows that the subset Z[y;; C Z’[V] represented by Lagrangian cobordism
relations is open, completing the proof. O

Now suppose that dim(X) = 2n. We have an n-form €2 on Uy, given by
Q(a1,...,0n) ::f o U---Uay, (7.2)
UiL;

fora; € TUyp, ~ H'(U;L;;R). When n = 2 this is a symplectic form.
Lemma 7.5. The restriction of 2 to each of the subspaces Zv from Lemma 7.4
vanishes. Whenn = 2, the subspaces Zv are furthermore Lagrangian.

Proof. Ifa; € TUy ~ H'(3V;R)lie in the tangent space to Z[y, then they are the
image of some f; € H'(V;R) under the restriction map H'(V;R) — H'(dV;R)
by Lemma 7.4. Thus

Q(al,...,oz,,):f piu---uUp, =0,
v

because [dV'] vanishes in H,(V; R).
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In the case n = 2, this means each Zy is isotropic for the symplectic form €2. The
additional fact that the image of H!(V;R) — H!(dV;R) is half-dimensional, and
hence Lagrangian, is proved by a well-known argument using Poincaré—Lefschetz
duality. []

7.3. Infinite-dimensionality. We use the results of the previous section to analyse
the fibres of the maps fr,: Ur, — Cob(X).

Lemma 7.6. Let IL be a finite tuple of Lagrangian branes. Then for any z € Cob(X)
we have

i@ = Xv
A\

where the union is countable, and each Ky is an open subset of an affine subspace
on which 2 vanishes.

Proof. 1t is immediate from Lemma 7.4 that

S @) = | K.
Vv

where Ky = Zy N (UL x {a}) C Ur. Furthermore, 2 vanishes on each Zy C
U, x Uy, by Lemma 7.5, and hence on its intersection with Uy, x {a}. ]

Remark 7.7. Examples 7.2 and 7.3 exhibit one-dimensional families of Lagrangian
tori in symplectic K3 surfaces, whose class in Cob(X) is constant. On the other
hand, the n = 2 case of Lemma 7.6 shows that there is no two-dimensional family
of Lagrangian tori whose class in Cob(X) is constant, because an isotropic subspace
is at most half-dimensional.

For the next Corollary, we will apply Lemma 7.6 in the case that L = {L} is a
singleton, so Uy, = Uy C H'(L;R) is a neighbourhood of 0 € H'(L;R). Note
that if L is a torus or an oriented surface of strictly positive genus, then the n-form €2
defined in (7.2) is non-vanishing on U7 .

Corollary 7.8. Let{L;} be a countable set of Lagrangian branes, and L a Lagrangian
brane such that Q is non-vanishing on Uy,. Then there is a deformation L’ of L
whose class in Cob(X) is not generated by the {L;}.

Proof. Note that any subspace of Uy on which 2 vanishes must have positive
codimension, and Uy, cannot be covered by a countable set of such subspaces. Since
the set of classes in Cob(X) generated by the set {L; } is countable, the result follows
immediately from Lemma 7.6. (|

Corollary 7.8 shows that, if X contains a Lagrangian brane L as in the statement,
then Cob(X) is not countably generated. When X is four dimensional, this simply
means that L contains a Lagrangian of genus > 1. In fact the following result shows
that in this case, Cob(X) is not even ‘finite-dimensional’:
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Lemma 7.9. Suppose X is four dimensional, and contains a Lagrangian brane L
of genus > 1. Then Cob(X') cannot be covered by the images of maps fy,;, for any
countable set of finite tuples {IL; } such that the dimensions of the Uy,; are bounded
above.

Proof. Suppose to the contrary that Cob(X) is covered by the images of such
maps f,;; then in particular, im(f+) is covered by these images for any LT,
This implies that the projections of the sets Uy, Zy, C Uy,+ x Ug,; from Lemma 7.4
to U+ cover all of Up,+. Since there are countably many Zv,, and they are
Lagrangian and in particular half-dimensional by Lemma 7.5, this can only be true if

dim(Uyg,+) < dim(Uy,;)

for some i. However the dimension of Uy + can be made arbitrarily large by taking
sufficiently many copies of L, so we have a contradiction to the bound on the
dimension of Uy, . O

Remark 7.10. Inthe loose analogy between cobordism and Chow groups, Lemma 7.9
is mirror to Mumford’s theorem [25] that CHy(S) is infinite dimensional for a
K3 surface S over A. Our proof bears striking similarities with Mumford’s, both
obtaining a dimension bound from the isotropic condition.

Remark 7.11. Observe that there are countably many Hamiltonian isotopy classes of
Lagrangian spheres in any symplectic manifold of dimension > 4. Thus Corollary 7.8
shows that for any Lagrangian L as in the statement, there exists a deformation L’
of L which is not generated by Lagrangian spheres. In fact, Corollary 7.8 can be
strengthened to show there exists a deformation L', no non-zero multiple of which is
generated by the L;; so there exists a deformation L', no non-zero multiple of which
is generated by Lagrangian spheres. We mention this slight strengthening because of
the relationship with the categorical characterisation of the Beauville—Voisin subring
as the saturation of the subgroup generated by spherical objects, cf. Section 1.2.

8. The O’Grady filtration

Let Y be an algebraic K3 surface over C. There is a filtration
Zi-cy = So(Y) CS1(Y) C---C Sg(Y) C--- CCHp(Y),

introduced by O’Grady [26] and further studied in [39], with lowest-order part
generated by the Beauville—Voisin class cy (see Section 1.2). In this final section
we discuss a possible symplectic counterpart. Recall from the Introduction that
Z-cy C S(Y) C K(Y) lies in the saturation of the group generated by spherical
objects, so one expects the mirror to So(Y) to involve Lagrangians (a multiple of)
whose cobordism class is generated by Lagrangian spheres.
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8.1. Configurations in symmetric products. Let Y be an algebraic K3 surface
over C. By definition, O’Grady sets

Sg(Y) = {z € CHo(Y) | z = z’ + acy, with z’ effective of degree g and a € Z}.

This has a number of equivalent and more geometric characterisations; for instance
O’Grady proves that Sg (Y') comprises the cycles z € CH(Y') for which there is some
curve C C Y with normalisation C ¥, with the sum of genera of components of C*
being at most g, and with z € Im(CHy(C) — CHgy(Y)) (see [26, Corollary 1.7]
and [39, Proposition 2.7]).

Voisin [39] has given another characterisation of the induced finite filtration

SK(Y) C SK(Y) c S¥(¥) c---C SF(Y) € CHo(Y) Ndeg™ (k),
where deg: CHo(Y) — Z is the degree homomorphism and k > 0. Let

Zi(Y,z) = {(x1,....x) € Sym*(Y) | Y [x;] = z € CHo(Y)}

be the orbit of the 0-cycle z under rational equivalence; this is a union of algebraic
subsets, and its dimension is by definition the supremum of the dimensions of its
irreducible components. Mumford [25] showed the components of Zi(Y,z) to
be isotropic for the holomorphic symplectic form induced on (the smooth locus
of) the symmetric product by the holomorphic symplectic form on Y, hence of
dimension < k.

Theorem 8.1 (Voisin). For g <k,
SE(Y) = {z € CHy(Y) Ndeg™ (k) | Z(Y,2) # 0, dim(Zy(Y,z)) >k —g}.

In particular, Zy (Y, z) is Lagrangian if and only if z = k - cy.

The dimension constraint dim(Zg(Y,z)) < k, arising from the isotropic
condition, is analogous to Lemma 7.6. Thus it is natural to wonder if Theorem 8.1
has a similar analogue.

8.2. Target genus of a cobordism. Fix a symplectic K3 surface X containing a
Maslov-zero Lagrangian torus L, and let U := Uy. For any k € Z-,, let
¥ := {k copies of L}, so Upx = U¥. For z € Cob(X) we define

Zk (X’ Z) — f]L_kl (2)7

which is an isotropic subset of UX and therefore has dimension < k, by Lemma 7.6.

Remark 8.2. In view of Theorem 8.1, and the fact that Z - cy lies in the saturation of
the subgroup generated by spherical objects, it is natural to ask if dim(Z, (X, z)) =k
if and only if some multiple of z is generated by Lagrangian spheres. Note
that Examples 7.2 and 7.3 give one-parameter families of tori with constant class
in Cob(X), so dim(Z(X, z)) = 1; in both of these examples the tori are generated
by Lagrangian spheres by construction.
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Let Cob¥ (X, U) C Cob(X) denote the image of fj«. We define a filtration by
minimal possible “target genus” of a cobordism with given input:

Cob* (X, U)g := {k-tuples which are cobordant to
a union of Lagrangians of total genus < g}.

Then

Cob* (X, U)y C Cob*(X, U); C Cob*(X,U)p C ---
-+ C CobF (X, U = Cob*(X, W),

and the lowest order piece Cob* (X, U)o comprises exactly the k-tuples of elements
of U whose sum is generated by Lagrangian spheres. This filtration should be
compared with [37, Speculation 0.1 (b)].

Lemma 8.3. Ifz € Cob*(X, W), then Zi (X, z) has dimension > k — g.

Proof. Letz=Y_; L; where L; have total genus g. Setting L™ ={L;}and Lt = ILE
we have

Zi(X,2) = f+(fL-(0).

Lemma 7.5 then implies that Z; (X, z) is the intersection of a countable union of
subsets Zy C Up— x Uy + (which are Lagrangian, hence of dimension g + k) with
the subset {0} x U* (which has codimension 2g). Therefore it has dimension at least
g+k—-2g=k—g. ]

Suppose now that we have a homological mirror equivalence F(X )77 ~ D(Y)
with an algebraic K3 surface Y over A, taking 7 to @,. Suppose furthermore
that the O’Grady filtration is well-defined and satisfies the previously discussed
properties for Y, even though it is defined over A rather than C. Then we expect that
Coh“ebk(x ) ¢ corresponds, under mirror symmetry, to a subset of S g'(Y). In
light of Theorem 8.1, Lemma 8.3 provides some modest evidence for this expectation.

However it is also clear that Cob“ K (X, U)g needs to be enlarged in order
to be mirror to all of S;,‘(Y). For example, the pieces Sy (Y) of the O’Grady
filtration are invariant under multiplication by Z [26, Corollary 1.7]. The filtration
Cob* (X, U), introduced above need not have this property (for example, there exist
symplectic K3 surfaces X which contain Maslov-zero Lagrangian tori, but only in
primitive homology classes [35], in which case it is clear that k - Cob} & Cob”lc for
any k > (). The most naive modification would be to allow repeated copies of the
same Lagrangian to only contribute once to the total genus; however the proof of
Lemma 8.3 would become much harder with this modified version and we will not
pursue it further.



334 N. Sheridan and 1. Smith CMH
A. The Beauville-Voisin ring and spherical objects

Let Y be an algebraic K 3 surface over an algebraically closed field K of characteristic
zero, R(Y) C CHx(Y) the Beauville-Voisin subring, and S(Y) C CH.(Y) the
subgroup generated by Mukai vectors of spherical objects in D(Y). The aim of this
appendix is to prove the following:

Theorem A.1. The subgroup R(Y) C CHx(Y) is the saturation of the subgroup
S(Y) C CH«(Y).

(We recall that a subgroup A of an abelian group B is saturated if the quotient B/ A
is torsion free, and the saturation A* of a subgroup A is the smallest saturated
subgroup containing A.)

The hard part of the proof is to show that S(Y) C R(Y), which was proved by
Huybrechts and Voisin [21,39]. To finish the proof, we start by showing:

Lemma A.2. The subgroup R(Y) C CH.(Y) is saturated.

Proof. Observe that the inclusion Z-cy C CHg(Y') is split by the degree map, and this
induces a splitting of the inclusion of the Beauville-Voisin ring R(Y) C CH4(Y):

CH*(Y) -~ R(Y) & CHO(Y)h()m-
The result now follows from the fact that CHg(Y )nom is torsion free [9,29]. ]

The proof of Theorem A.1 is now completed by the following:
Lemma A.3. The saturation of S(Y) C R(Y) is all of R(Y).

Proof. We equip CH4 (Y ) with the Mukai pairing, which has the property that
X(E, F) = —@u™(E), v (F)) (A1)

for objects E, F of D(Y') (see [22, Chapter 9]). It is clear from (A.1) that the Mukai
vector v°H(E) of a spherical object E has square —2, and we know that it lies in R(Y)
by the aforementioned result of Huybrechts and Voisin.

In fact conversely, every element of R(Y ') of square —2 is the Mukai vector of a
spherical object: this follows for K = C by a result of Kuleshov [23], and thus for
general K by the Lefschetz principle. In particular the subgroup S(Y) C R(Y) is
generated by the elements of square —2. Observing that

R(Y) ~ U & Pic(Y),

where U denotes the hyperbolic lattice ( e ), the result now follows from Lemma A.4
below. 0

Lemma A.4. Let L be a lattice with non-zero pairing, and S C U & L the sublattice
spanned by elements of square —2. Thenthe saturationof S C U® L isallof U@ L.
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Proof. For any £ € L, the class (1, (—¢?> — 2)/2, £) has square —2 so lies in S.
Subtracting (1,—1,0) € S, we see that (0, —£2/2,£) € S. It follows that

(0,—m2€2/2,mt) —m - (0,—2/2,€) = (m —m?)-£2/2-(0,1,0) € S.

We may choose (m—m?)-€2/2 # 0,50 (0,1,0) € $%. Similarly (1,0,0) € S®
Subtracting appropriate multiples of these classes from (1, (—£? — 2)/2,{) shows
that (0,0, £) € S, s0 S = U @ L. O

We conclude with an example, showing that the inclusion S(Y) C R(Y) may be
strict:

Example A.5. If L = (2n) where n £ 3 (4), then the class (1,0,0) € U & L does
not lie in 5.

Proof. Let (a,b, c) be a class of square —2, so ab + nc?> = —1. If n is even, this
implies a +b = 0(2);if n = 1 (4), this implies ¢ + b + ¢ = 0 (2); hence the same
is true of any element of S. Since (1,0, 0) does not satisfy either of these equations
it cannot lie in §. L

Remark A.6. Example A.5 shows that if Pic(Y) ~ (2n) with n # 3(4), then the
Beauville—Voisin class cy is not spanned by Mukai vectors of spherical objects. This
implies that on the mirror, the homology class of a fibre of the SYZ fibration is not
spanned by Lagrangian spheres.
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