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Singular genuine rigidity

Luis A. Florit and Felippe Guimaräes*

Abstract. We extend the concept of genuine rigidity of submanifolds by allowing mild
singularities, mainly to obtain new global rigidity results and unify the known ones. As one of the

consequences, we simultaneously extend and unify Sacksteder and Dajczer-Gromoll theorems

by showing that any compact «-dimensional submanifold of M"+/' is singularly genuinely rigid
in for any q < min{5, n} — p. Unexpectedly, the singular theory becomes much simpler
and natural than the regular one, even though all technical codimension assumptions, needed in
the regular case, are removed.

Mathematics Subject Classification (2010). 53C40, 53B25.
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1. Introduction

One of the fundamental problems in submanifold theory is the (isometric) rigidity in

space forms, i.e., whether an isometric immersion of a given Riemannian manifold is

unique up to rigid motions. Satisfactory solutions to the local version of the problem
in low codimension were obtained under certain nondegeneracy assumptions on the

second fundamental form, like the ones in [1,2,4,9,13], Recently, the concept of
rigidity was extended to the one of genuine rigidity in order to deal with deformations
that arise as deformations of submanifolds of larger dimension; see [6] and [11].
This reduction is important since the difficulties in understanding rigidity aspects of
submanifolds grow together with the codimensions, not with the dimensions. This

concept also allowed to generalize and unify the papers mentioned above, among
others, by treating them under a common framework.

Global rigidity results are considerably more difficult to obtain. The most

important is the beautiful classical Sacksteder's theorem [15], which states that a

compact Euclidean hypersurface is rigid provided its set of totally geodesic points
does not disconnect the manifold. Outside the hypersurfaces realm there is only the

paper [8], where Dajczer and Gromoll showed that, along each connected component
of an open dense subset, any compact Euclidean submanifold in codimension 2 is

*The authors were partially supported by CNPq-Brazil.
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either genuinely rigid or a submanifold of a special kind of deformable hypersurface.

Although the authors did not have the tools to justify it at the time, they had to
allow certain simple singularities in these hypersurfaces. The necessity to introduce
these singularities was justified recently in [10], and this is precisely what motivated
this work: to allow singularities in the genuine rigidity theory, mainly with the

double purpose of obtaining new global results and unifying the known ones. In
the process, we found out that introducing these mild singularities is quite natural
and straightforward, even for local purposes, enabling us to substantially simplify
the theory. In fact, after completing this work, we regard the presence of mild
singularities in rigidity problems of submanifolds not only as a necessary assumption
to obtain global results but, more importantly, as the natural setting for a deeper

understanding of the phenomena in an area where singularities rarely appear.

In order to state our main results, let us introduce the key concepts. We say that

a pair of isometric immersions

/: M" -* and /: Mn -> Rn+<i

singularly extends isometrically when there are an embedding j : Mn <—> Nn+S into
a manifold Nn+S with s > 0, and isometric maps

F ; Nn+s Rn+p and p. Nn+s R«+<?

such that f F o j and / F o j, with the set of points where F and F fail to be

immersions (that may be empty) contained in j(M). In other words, the isometric
extensions F and F in the following commutative diagram are allowed to be singular,
but only along j(M):

An isometric immersion /: M" -> Mn+C/ is a strongly genuine deformation of a

given isometric immersion f:Mn if there is no open subset U C M " along
which the restrictions f\u and f\u singularly extend isometrically. Accordingly,
the isometric immersion / is said to be singularly genuinely rigid in R"+<? for a fixed

integer q if, for any given isometric immersion /: Mn -> Rn+q, there is an open
dense subset U c Mn such that f\u and f\y singularly extend isometrically.

More geometrically, an isometric deformation of a Euclidean submanifold Mn is

strongly genuine if no open subset of Mn is a submanifold of a higher dimensional



Vol. 95 (2020) Singular genuine rigidity 281

(possibly singular) isometrically deformable submanifold, in such a way that the

isometric deformation of the former is induced by an isometric deformation of the

latter, while (possibly) including singularities along Mn. The key point here is that,
since all our extensions are ruled, the singularities that eventually appear are quite
mild and easy to understand, as it is classically done for the classification of flat and

ruled surfaces in M3.

The following is our main global result. Recall that an immersion / is called
Dd -ruled, or simply d-ruled, if Dd c TM is a rank d totally geodesic distribution
whose leaves are mapped by / to (open subsets of) d-dimensional affine subspaces.
Two immersions are said to be mutually d-ruled if they are Dd -ruled with the same

rulings Dd.

Theorem 1. Let f : M" -> Mn+/' and /: M" -> Kn+Cl be isometric immersions of
a compact Riemannian manifold with p + q < n. Then, along each connected

component of an open dense subset of Mn, either f and f singularly extend

isometrically, or f and f are mutually d-ruled, with d > n — p — q + 3.

In particular, for p + q <4, Theorem 1 easily unifies Sacksteder and Dajczer-
Gromoll Theorems in [8] and [15] cited above, states that the only way to isometrically
immerse a compact Euclidean hypersurface in codimension 3 is through compositions
(which in turn were classified in [3] and [10]), and provides a global version of the

main result in [7]:

Corollary 2. Any compact isometrically immersed submanifold Mn of M"+/' is

singularly genuinely rigid in W+q for q < min{5, n} — p.

From Theorem 1 we get the following topological criteria for singular genuine
rigidity in line with the rigidity question proposed by M. Gromov in [12, p. 259] and

answered in [8] (and thus also in Corollary 2), without any a priori assumption on
the codimensions:

Corollary 3. Let Mn be a compact manifold whose k-th Pontrjagin class satisfies that
lPk\ 0for some k > \{p+q— 3). Then, any analytic immersion f : Mn —> B"+/'
{with the induced metric) is singularly genuinely rigid in R"+<? in the C°°-category.

Our global results are based on a local analysis whose main tool is the bilinear form
that we construct next. Consider a pair of isometric immersions /: M" —> M"+/'
and /: Mn 1"+«. Let

r\Ll C TfM ->Ll C TjM
be a vector bundle isometry and suppose that it preserves the second fundamental
forms and the normal connections restricted to the rank I vector normal subbundles
Z/ and Ll. Equivalently, its natural extension

r Id ® r: TM © Ll TM © Le
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is a parallel bundle isometry. Let

fix'. TM x (TM ® Ll) -> L1 x L1

be the flat bilinear form given by

fix(X,v) ((yxv)L±, (Xxrv)i±), X £ TM, v TM ® Ll,

where V stands for the connection in Euclidean space and L1 x Lx is endowed with
the semi-Riemannian metric }|l_l — )|£j_. A subset S C LL © Lx is

called null if (r\, f) 0 for all 77, £ e S.

In order to present our local statements we need to extend the concept of Dd -ruled
for arbitrary distributions Dd c TM. In this case, we say that / is Dd-ruled if,
for each p £ Mn, there is a totally geodesic submanifold of Mn tangent to D(p)
at p which is mapped by / to an (open subset of) a d-dimensional afflne subspace.
Observe that such an / is of course also d -ruled as before, but usually with bigger
rulings when Dd is not totally geodesic.

We can now state our main local result, which applies even to I 0 and r 0.

Theorem 4. Let f : Mn —> Mn+q be a strongly genuine deformation off : Mn -»
M"+/> and z: iß C Tj-M —> if C TjM a parallel vector bundle isometry that

preserves second fundamental forms. Let D C TM © Z/ be a subbundle such that

fix(TM, D) is a null subset. Then D c TM and, along each connected component
of an open dense subset of Mn, f and f are mutually D-ruled.

The usefulness of Theorem 4 relies on the fact that it deals with easily to construct
null subsets instead of nullity distributions of flat bilinear forms. A good example
of an application of this fact is the following singular version of Theorem 1 in [6]

removing the technical assumption on the codimensions. Recall that Y £ Tx M is a

regular element of (pT at x if rank (<p^) i ((pT)(x), where (pT( Y, • and

i((px)(x) := max (rank ((/.A) : X £ TXM}.

Denote by RE(<f>x) C TM the open dense subset of regular elements of cpT. Using a

well-known property of flat bilinear forms we immediately conclude from Theorem 4:

Corollary 5. Under the assumptions ofTheorem 4, along each connected component
of an open dense subset of Mn, i((pT) '-v constant and f and f are mutually Dd-
ruled for any smooth vector field Y £ RE (fix), where Dd := ker(0x) C TM. In

particular, f and f are mutually d-ruled with d n + f — 7 (fix) > n — p — q + 31.

As it is clear from the statements, the rulings in the above are larger and easier to

compute than the ones in the main result in [6]. The bundles obtained in this work
are also better suited for certain global applications.

By allowing singular extensions we recover all the corollaries in [6], even without
the technical restrictions on the codimensions required there. For example, from

Corollary 5 we conclude the following extension of Corollary 5 in [6].
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Corollary 6. Any isometrically immersed submcinifold Mn of Mn+P with positive
Ricci curvature is singularly genuinely rigid in Wl+q,for every q < n — p.

As we will see, the proof of the local Theorem 4 works for any simply connected

space form. Moreover, the global Theorem 1 and Corollary 2 still hold for complete
submanifolds, even if the ambient space is the hyperbolic space, as long as one of the

immersions is bounded. For complete submanifolds in the round sphere we show:

Theorem 7. Let f : Mn —> Sn+P and f : M n —> Sn+q be isometric immersions ofa
complete submanifold with p +q <n— pn. Then, along each connected component
ofan open dense subset of Mn, either f and f singularly extend isometrically, or f
and f are mutually d-ruled, with d > n — p — q + 3.

In the above statement pn is defined as

pn max{k : p(n — k) > k + I},

where p(m) — 1 is the maximum number of pointwise linearly-independent vector
fields on Sm_1 and is given by

p((odd)24d+b) Sd + 2b,

for any nonnegative integer d and be {0,1,2, 3}. Some values of pt„ are:

pn n — (highest power of 2 < n)

for n < 24, pn < 8d — 1 for n < 1 bd and p2d 0-

From Theorem 7 we obtain the corresponding version of Corollary 2 for complete
submanifolds in the sphere:

Corollary 8. Any complete isometrically immersed submanifold M" of Sn+P is

singularly genuinely rigid in En+q for q <3 — p ifA < n <l,orq <4 — p ifn > 8.

The paper is organized as follows. In Section 2 we first provide the basic properties
of the bilinear form (pT, and then we show how it can be used to obtain regular and

singular isometric extensions, which is all that is needed to prove our local results.

Section 3 is devoted to revisit the theory of compositions using (j>T. As an application
we show that, generically, (n - l)-ruled submanifolds are compositions. In Section 4

we prove Theorem 1, and Section 5 is dedicated to the proof of Theorem 7.

2. The flat bilinear form 0T

In this section we study some properties of the bilinear form fr, which was introduced
in [6] but not used in its full strength. We will see that it is a powerful tool to deal

with isometric rigidity problems.
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Consider two isometric immersions /: M" —> Rn+P and /: M" —> M"+9 with
second fundamental forms a and a and normal connections V-1 and V 1 defined on
their normal bundles TjrM and Tf M, respectively. Endow TfM x TfM with

its natural semi-Riemannian metric (,} of type (p, q) and compatible connection V,

i&b.M) Vx(li) (Vj&v£f),

for %,rj G TfM,t-,rj G TfM, and Y G TM. By the Gauss equation, the symmetric

bilinear form
ß a ®a:TM kTM -> TfM x T~M

is flat, that is,

(ß(X, Y), ß(Z, T)) (ß(X, T),ß{Z, Y)), WX, Y,Z,T G TM.

The concept of flat bilinear forms was introduced by Moore in [ 14] to study isometric
immersions of the round sphere in Euclidean space in low codimension, and was
used afterwards in several papers about isometric rigidity, even implicitly, following
a remark also in [14]. For example, it can be used to prove the classical Beez-Killing
theorem in [13], in which case the objective is to show that Im (ß) is everywhere a

null set. Notice that flatness makes sense even for nonsymmetric bilinear forms.
Outside the realm of hypersurfaces it is important to obtain information about the

normal connections too, so a different (nonsymmetric) flat bilinear form is needed.

Yet, unexpectedly and in contrast to the strongest known local rigidity results, we
will not make use of a priori nullity estimates like the one in Theorem 3 in [4] in
ours since we will not deal with nullity spaces. In particular, this will allow us to get
rid of the usual technical constraints on the codimensions.

Throughout this work,

r: Ll C TfM -* Ll C TfM

will denote a vector bundle isometry that preserves the induced second fundamental
forms and normal connections in the rank I normal subbundles L and L. That
is, r o aL c?£ andr= (V^r£)£ for every X G TM, £ G L, where we

represent the orthogonal projections onto L and L with the corresponding subindexes.

Equivalently, its natural extension

x Id ® r: TM ® L -> TM ® L,

is a parallel vector bundle isometry. Let

4>x\ TM x (TM © L) -> L1 x L1 C TfM x TfM
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be the bilinear form defined as

4>r(X,v) ((Vxv)L±,(Vx)z±),

where V denotes the connection of the Euclidean ambient spaces. Notice that,

if t 0, then r 0 and <f>0 ß. On L1 x L1 we will always consider
the semi-Riemannian metric and compatible connection induced from the ones in

TjrM x T~M, still denoted by and V, respectively.f
The main two properties of cj)x are given by the following.

Proposition 9. (f>x is a flat Codazzi tensor.

Proof. For X, Y 6 TM and v,w eTM © L, using that r is parallel we get

(<t>r(X,\v),<f>x(Y,w)) ((Xxv)l±,(Xyw)l±) - {(Vxrv)Lj_,(yYrw)i±)
{Xxv, Vyu;) — (Vxru, VyTw)

—(v, VyXxw) + {TV, VyXxTw)

—{v, VxVyiu) + (rv, Vx^y^w)
(4>r(Y,v),(px(X,w)).

The very same approach shows that (f>x is a Codazzi tensor, that is,

(Vx</>t)(T, v) := Xx<px(Y, v) - <px(VxY, v) — 4>X(Y. (Xxv)tm®l)
(Vy0r)(V, V),

so we have left the computation to the reader.

Denote the left nullity space of <pT by AT and its dimension by vx, i.e.,

At := {X TM : <j>T(X, •) 0}, vT:=dimAT, (2)

and let U C Mn be a connected component of an open dense subset where vx is

locally constant. Since <px is a Codazzi tensor, AT is a smooth integrable distribution
on U.

Corollary 10. The space Im (fir)1 is parallel along the leaves of Ar in U. In
particular both the nullity space and the light cone bundle of(, \

[nl ((j>T)± are smooth

and parallel along these leaves on any open subset U' C U where they have constant
dimension.

Proof. The parallelism of Im ((j>x)1' is a consequence of the fact that (px is a Codazzi

tensor, since

Xx(i>z(Y,v)) (px([X. T],r) +cpx(Y, (Xxv)TM(bl) e span Im (<pT)

for every X e Ax, Y e TM, v e TM © L. The last assertion follows from the

compatibility of V with respect to
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Observe that such a x as above arises naturally when / and / singularly extend

isometrically. Indeed, with the notations in Diagram 1 in the Introduction, if F and F
are regular we just take

Ls F*(Tj~ M), Ls F*(Tj-M), and r (F*(Ç)) A(£).

If they are not regular, at least locally we can consider a sequence of submanifolds

jk:Mnk -> Nn+S \ j(Mn)

smoothly converging to j as k —» oo, and then take IF and U as an accumulation
of F*(Tj-Mk) and F*(Tj~k Mk), respectively. In particular, we have:

Lemma 11. The metric induced on Im (/j)1- C T^M ®T~M is almost everywhere

definite if and only if x =0 is locally the only vector bundle isometry preserving
second fundamental forms. In this situation, f is a strongly genuine deformation

off-
Proof Both conditions are clearly equivalent to the non-existence of unit vector
fields £ TfM and £ TF M defined on some open subset U C Mn such that

Aç

2.1. The form <pT and genuine rigidity. In general, we show that a pair of isometric
immersions {f /} as above is genuine, i.e., each one is a (regular) genuine
deformation of the other, by explicitly constructing, locally almost everywhere,
isometric immersions

j: Mn —> Nn+S, F:Nn+s^Rn+p, and F:^ M"

as in Diagram 1, that is, satisfying / F o j and f F o j. Usually, we also

require F and F to be ruled extensions of / and / since a genuine pair must be

mutually ruled by the main result in [6]. Since in this paper we work with singular
extensions, the ruled ones have the additional advantage that their singularities are

quite easy to characterize and deal with.

In order to build ruled extensions of / and/, choose any smooth rank s subbundle

A c TM © L, and define the maps

F FAJ:A-+R"+P and F FA A-» R"+<?

as

F(v) f(p) + v, F(v) f(p) + xv, v e \p, p e Mn. (3)

One of the main reasons that make the form (f>x useful in any flavour of genuine
rigidity is that it gives the precise condition that guarantees that these two maps are

isometric:
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Proposition 12. The maps F and F in (3) are isometric ifand only if(f>r(TM, A) is

a null set.

Proof. It follows easily from the fact that r is parallel since, for every smooth local
section v of A and Z e TM, we have that

||(F o u)*Z||2 - ||(F o u)*Z||2 ||Z + Vzf ||2 - ||Z + Vzri;||2

\\&Zv)Lx\\2 -\\&zxv)zA2
(<pt(Z,v),(pt(Z,v)).

In particular, if in addition A n TM 0, both maps are immersions in a

neighborhood Nn+S of the 0-section of A, and thus induce the same Riemannian
metric on Nn+S. Therefore F and F are (regular) isometric ruled extensions of f
and /. Similarly, if A (f TM, along each open subset U C Mn where the subspaces

A' A n (A n TM)1-

have locally constant dimension s' > 0, we have that the restrictions

F'W Fa>,f\u and F'\K> Fa,jUj

also give (regular) isometric ruled extensions of f\u and f\u defined in a

neighborhood Nn+S of the 0-section of A' along U.

We proceed to characterize singular ruled extensions, that occur above when

Ac TM. We say that F Faj in (3) is a singular extension of f if it is an

immersion in some open neighborhood of the 0-section of A, except of course at the

0-section itself. We say that F nowhere induces a singular extension of f if, for

every open subset U C Mn and every subbundle A' f 0 of A | u, the restriction of F
to A' is not a singular extension of f\jj. We show next that F nowhere induces a

singular extension of / only when the latter is A-ruled.

Proposition 13. Let f : Mn -» Wl+P he an isometric immersion and A C TM a
smooth distribution. Then, Fa,/ nowhere induces a singular extension of f if and

only iff is A - ruled along each connected component ofan open dense subset ofMn.

Proof. Clearly, it is enough to give a proof for the direct statement and for a rank

one distribution, i.e., A span {A} for some nonvanishing vector field X on Mn.
Consider the map F: A ^ Mn xl^ E"+/' given by (3), that is,

F(p,t) f(p) + tX(p).

This map will be a singular extension in some open neighborhood of p e Mn if and

only if it is an immersion in a neighborhood of (p, 0), except at the points in Mn x{0}.
Therefore, for all p e Mn there exists a sequence

(.Pmitm) ~y (P'0),
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with tm 7^ 0, such that rank= n. Define the tensors

K(Z) VzZ and Ht(Z) Z + tK(Z)

for Z e TM. Thus, there is Ym e TPmM such that F^Pm^tm)Ym X(pm), since

Ht ^ Id as t y 0 and

FZà, X, F*Z Ht(Z) + ta(X, Z), V Z G TM.

Let Sx be the Z-invariant subspace generated by X,

Sx span {Z, K(X), Z2(Z), Z3(Z),...}.

Observe that the equality F^Pmttm)Ym X(pm) is equivalent to HtmYm X(pm)
and a(X(pm), Ym) 0. In particular, if tm is sufficiently small,

a(X(pm),H-m\X(pm))) 0 (4)

and

lim H~HX(Pm)) X(p).
m->-oo m

Consider a precompact open neighborhood U C Mn of p, so ||a|| < c and ||Z|| < c

for some constant c > 1. Hence for e / -\) we have that Flt is invertible
on U,and

H'1 £(-0lK\
i> 0

since

K') Id — (—t)N+l Kn+1.
i=0

We claim that a(X, Sx) 0 along Mn. Assume otherwise, define

j := min{A: N : a(X(q), Kk(X(q))) / 0, q e M")

and take p e M" such that a(X(p), Z7(Z(/?))) ^ 0. By (4) we obtain that

J2(-tmYa(X(pm), K'iXipm))) 0.

i>j

Dividing the above by t]m and taking m -> oo we conclude that

a(X(p),KJ(X(p))) 0,

which is a contradiction.
Now, since a(X, Sx) 0 on Mn, for any t e I and p U we get

F^iH-HX)) X
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since Ht '(A-) e Sx- It follows that rank(/7*) n in all U x /, and therefore

F(U x 7) /((/).

Hence a segment of the line generated by V is contained in f(U).

We are now able to prove our main local result.

Proofof Theorem 4. Locally, if D <£_ rTM along some open set U then we have

regular isometric extensions of f\u and f\u by extending them as in (3) along

any subbundle A c D such that D (D fl TM) © A. Hence, D c TM
and by Proposition 13 we conclude that / and f are mutually D-ruled almost

everywhere.

The following lemma due to Moore [ 14] immediately gives Corollary 5 by

applying Theorem 4 to r and Dd ker(<px), since it tells us that <px(TM, ker(<^))
is null.

Lemma 14. Let f¥xV'-> Wfe a flat bilinear form, and set <px <p(X, •).
Then,

<p(V, ker(<p*)) C Im (cpx) fl Im V AT G RE(<p).

In particular, if the inner product in W is definite, we have that ker(^) -X ((p)

for all X G RE((p), where

Jsf(ip) := {w e V' : tp(-, w) 0}

is the (right) nullity of (p.

Remark 15. While Corollary 5 with its estimate d > n — p — g + 3fis immediate
from Lemma 14, the corresponding regular result, Theorem 14 in [6], requires several

pages just to give a proof of the estimate on d. In addition, it uses the very long
and technical Theorem 3 in [4], and therefore it is only valid for mm{p,q} < 5;

see [5], The simplifications gained with the singular theory reside in the fact that,
while here we use Lemma 14 to easily obtain null subsets, the main results in [6]
require the computation of estimates of ranks of several bundles and nullities of
trickily constructed bilinear forms.

Remark 16. In several applications we have that D -M(aL±) H M(âj1) even
in the singular case. For example, this is the case if d n — p — q + 31 in

Corollary 5, or if £ min {p, q}, or if one of the codimensions is low enough. In this

situation, Ld C L, x\ld is also parallel and preserves second fundamental forms,
and therefore we recover the structure of the normal bundles in Theorem 1 in [6]; see

Lemma 21 below.
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3. Compositions revisited through (pr

In this section we revisit the theory of compositions using the form (pz.

Let f : M" -» Mn+P be an isometric immersion of a simply connected Riemann-
ian manifold M" with second fundamental form a, and L C T^M a rank I normal
subbundle. Define the bilinear form

fL±:TM x (TM ©L) ->LX, flL±(Z,v) (Vzv)L±.

We can build another isometric immersion of M" using <pL when it is flat:

Proposition 17. The bilinearform (pL± is flat ifand only if there exists an isometric

immersion f: Mn -» Wl+f: and a parallel vector bundle isometry a: L s TPM

such that the secondfundamental form off is â a o aL. In this case, fL± <p„.

Proof By projecting the fundamental equations of / onto L we easily see that
flatness of <pL±_ is equivalent to the fact that the pair (oil, (Vj)|/J satisfies the

fundamental equations of Euclidean submanifolds. Indeed, flatness of <j>L± with the

four vectors in EM is equivalent to Gauss equation, with three vectors in TM and

one in L we get Codazzi equation, while two vectors in TM and two in L recovers
Ricci equation.

The following is a reinterpretation of Proposition 8 in [4], which is the main
tool to construct compositions. Recall that, for / and / as in the previous section,

we say that / is a (regular) composition of / when they extend isometrically as

in Diagram 1 with s q. In this case, F is a local isometry and thus, if f is an

embedding, there is an open neighborhood U C Nn+q of j(Mn) and an isometric
immersion

h F\u o (F\u)~l- W c R"+,sr -» M"+/'

of the open subset W F(U) D f(M) satisfying / h o f. Recall also that

i(f>L-l)(x) := maxjrank (4>*±) ' X g TxM}.

Proposition 18. Suppose that cf>L l is flat, and let f be given by Proposition 17.

Ifi((pL±) is constant and i(<flL±_) i(aL_l), then f is a composition of f.
Proof Observe that, since L T~M and (j>L± flo, the image of both <pL and

aL± I TM vTm are Riemannian. Thus, by Lemma 14 we have that

kcr((j)*±) .X((j>L±) and ker(a^ L M (aL i

for every X e RE((pL±) Pi RE(aL±). The result follows from Proposition 12 taking
the rank t subbundle

A JT(<pL±) D M(aLj_)x,

which is transversal to Mn.
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Remark 19. By allowing singular flat extensions h, Proposition 13 provides a

singular version of Proposition 18: if there is a rank I subbundle A C W(0Lx)
such that F^j is an immersion near the 0-section of A, except possibly along it,

then / is locally almost everywhere a singular composition f h o /, where h is

an immersion except (possibly) along /(M).
Remark 20. By Theorem 4 applied to r a, if / in Proposition 17 is a strongly
genuine deformation of /, then they must be at least mutually (n — p + 2f)-ruled,
and by Proposition 18,

i(aL_l) < i{<pL±) <p-i.
3.1. The (n — l)-ruled case. As an application of the above, here we study general
(n — l)-ruled «-dimensional Euclidean submanitblds. We show that such a sub-

manilbld is locally a composition if its codimension is bigger than the rank of its

curvature operator. Although this fact has independent interest, it will be used to

prove Corollary 2.

Until the end of this section X, Y will denote vectors in a totally geodesic
distribution D C TM, and Z e TM.

Lemma 21. Iff is D-ruled, then the normal subbundle

Ld:= spana(TM, D) C TfM (5)

is parallel along D on any open subset V where Id '= dim L d is constant.

Proof. Since D is totally geodesic, the lemma follows from Codazzi equation since

y^a(Z.Y) =-a(VxZ,Y)-a(Z,VxY)-a(VzX,Y)-a(X,VzY) eLD.

In particular, if rank D n — 1, Ld CL and L is also parallel along D, our
form (j>L± is flat since (pL± (Dn~y. TM © L) 0. Therefore Proposition 17 gives:

Corollary 22. Suppose f is Dn~l -ruled and L C Tjr M is a rank i normal sub-

bundle parallel along Dn~x such that Ld C L. Then, there is a D"^1 -ruled
isometric immersion

f: Mn - M"+£

and a parallel vector bundle isometry

a:L -* TjM

such that the secondfundamental form of f is a — a o ai. In particular, taking V
in Lemma 21 simply connected, there exists a Dn~x -ruled isometric immersion

fo'V C Mn -> M.n+lD

with a o o &ld.
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Notice that, if rank D n — 1, f £> is intrinsic since it agrees with the rank of the

curvature operator of Mn. Our purpose is to show that / is locally a composition
of fD.

Proposition 23. Under the assumptions of Corollary 22, if Ima(.i) (f L fx) for
some x 6 Mn, then f is a composition off near x, that is, there is a neighborhood U

ofx and an isometric immersion

h: W c M"+£ -> Rn+P

ofan open set W containing f(U) such that f h of on U.

Proof. The hypothesis is equivalent to the existence of an orthogonal decomposition

Tfv L © S 0 N,

on an open neighborhood V of x, where S is a line bundle and

N {r] Lx: Av 0}.

We proceed by induction on the codimension p > I + 1 of /. For p I + 1 we get
that / is a composition of / near x by Proposition 18 since

1 < i(aL±) < i((pL-l) < rankLx 1.

Suppose the lemma holds for p — 1, and let L' C TjrM be any subbundle of
rank p — 1 parallel along D with L c L'. By Corollary 22 there is a D"-1-ruled
isometric immersion

f: Mn -> Rn+p-1

whose second fundamental form is o' o a^, where a': L' Tjr,M is a parallel
bundle isometry.

Now, choosing L' such that S(x) <£ L'(x)-1, by the inductive hypothesis /'
is a composition of / near x, i.e., f h! o f near x for some local isometric
immersion h' between Rn+(: and If we further choose L' in such a way
that S(x) <f L'(x), then / is a composition of /' near x, f h" o /', again by

Proposition 18. We conclude that

f h" of (h" o h') o f
is also a composition of / nearx.

Corollary 24. On each connected component U ofan open dense subset of Mn, f is

a composition of fo
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Proof. Consider an open dense simply connected subset where Id is locally constant,
and work on a connected component V of it where fp exists by Corollary 22. Along
the open subset of V where Im a (f Lp, the corollary follows from Proposition 23

applied to L L d • On the other hand, if Im a c Lp along a connected open
subset!/ c V, Codazzi equation for r\ e gives

/l /1y A — A (xjA- A — 0.
(VzI?)z.D (VxVi'-D

That is, LJD is a parallel normal subbundle. Since Im et c Lp, we have that

is actually constant in M"+-p. Thus /(!/) C Wl+l° and the result also follows
on U.

Remark 25. Observe that in the proof of Proposition 23 we did not apply

Proposition 18 directly to / and fp, but instead inductively. This is so because

all our isometric extensions are extensions by relative nullity: applying directly
Proposition 18 would give an isometric immersion h with relative nullity of
codimension one only, while the relative nullity of h in Proposition 24 generically
has codimension p — Ip. The reader should take this into consideration when trying
to apply our results to submanifolds that are already ruled with big rulings.

Corollary 26. Iff in Corollary 22 is a genuine deformation of f, then Mn is flat,

Lp Lp 0, Im a C L, and Dn~l M (a)

almost everywhere. Moreover, f and f singularly extend isometrically along each

connected component ofan open dense subset ofMn and, in particular, f is nowhere

a strongly genuine deformation of f.
Proof. By Corollary 24 we only need to prove the last assertion. Since Imœ C L,
we have that

4>a{TM, TM) 0.

Since / and / are nowhere totally geodesic, by Theorem 4 we singularly extend

them isometrically using any vector field in Mn not in Dn~l.

We point out that all results obtained until now remain valid when the ambient

space is the simply connected space form Qf of constant sectional curvature c, just
by using the exponential map of Qf when constructing the extensions, e.g., as in (3).

4. Global applications

The purpose of this section is to give the proofof Theorem 1 and its corollaries. To do

this, we use compactness to transport information along the leaves of relative nullity
to the whole manifold. The use of the intersection of relative nullities makes the proof
short and straightforward, even in the hypersurface case of the original Sacksteder's

theorem, without the need of inductive arguments or case by case analysis.
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4.1. The intersection of the relative nullities. First, we establish some well-known
properties of the splitting tensor adapted to our problem. Let M" be a Riemannian
manifold and D a smooth totally geodesic distribution on M" The splitting tensor C
of D is the map C: D x Dx —> D1- defined by

CYX := C(Y,X) -(VxY)d±.
Let /: Mn Q" p be an isometric immersion of M" with second fundamental
form a and suppose further that D is contained in the relative nullity AT(a) of /. Let

y : [0, b] —> M" be a geodesic such that y([0, h)) is contained in a leaf of D. Using
the curvature tensor of Q"+p we easily see that Cy> satisfies the Riccati type ODE

C'y Cy2, + cl, (6)

where we denote with a ' the covariant derivative with respect to the parameter of y.
Recall that the shape operator of / in the direction £ 6 Tjr M, denoted by Aç, is

defined as

(AèX,Y) (a(X,Y),Ç)
for X, Y e TM. For all Y e D we easily obtain from Codazzi equation that

AçCy + Ay±ç,

where we understand the operators restricted to If Ç is parallel along y this
reduces to

4 AçoCy. (7)

We will use the splitting tensor of the intersection A0 of the relative nullities of
two isometric immersions, i.e., A0 Af (ß) for ß <f>0 a (B a, which is (2)
for r 0. We thus need the following two results for A0.

Lemma 27. Let f : M" —> and f :: Mn —r Q"+? be isometric immersions of
a Riemannian manifold Mn. Then, along each connected component U of an open
dense subset ofM" where v0 dim Ao is constant, Ao is an integrable distribution
with totally geodesic leaves in Mn, Q"+p andQ"+<1. In particular, there is a splitting
tensor associated to Ao on U.

Proof By Proposition 9, ß is a Codazzi tensor. So taking X, Z e A0 and Y e TM
we get

ß(Y, VXZ) -(^xßXY, Z) -(V$ß)(X, Z) 0,

and the lemma follows.

Lemma 28. Let U C Mn be an open subset where v0 is constant, y : [0, h] -> Mn a

geodesic with y([0, b)) contained in a leafofA0 in U joining x y(0) and y y(b),
and Py the parallel transport along y beginning at t 0. We have that

AoO) Py(A0(x))(b),
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and the splitting tensor Cyr of Ao smoothly extends to t h. In particular, the

ODE (7) holds up to time t h. Moreover,

RE(ß(y)) Py(RE(ß{x)))(h) and i(ß)(y) i(ß)(x).

Proof. Let J : A^(y) —> Aq (y) be the unique solution in [0, h) of the ODE

J' + CyoJ 0, 7(0) I. (8)

From (6) it follows that J also satisfies the linear ODE with constant coefficients

J" + CJ 0,

and hence it extends smoothly to t h, where it is defined in ^V(Aq (x))(è).
For any pair of vector fields X eTM and V G A^- parallel along y, since ß is

Codazzi we have

Vi (/?(*, J(V))) ß(X, u' + Cy> O J)(V)) 0.
dt

Thus ß(X, J(V)) is parallel along y. Since A(0) is arbitrary, J is invertible in [0, h].
Moreover, since Py (A0(x))(h) c Ao(y) by continuity, it follows that

Py(A^(x))(h) Aq (y).

We conclude that Cy> extends smoothly to [0, A] as CY> —J' o J~x by (8). The
last two assertions follow from the parallelism of ß(X, J(V)).

4.2. Proofs of the global statements. The only ingredient we need to easily obtain
Theorem 1 from our local statements is the following.

Proposition 29. Let f : Mn —> R"+p and f : Mn —> Mn+(l he isometric immersions

ofa compact Riemannian manifold Mn with p + q < n. Then, at each point in Mn,
either i(ß) < p + q — 3, or there are unit vectors £ G TjrM and ç G ï'f M such

that Aç /1ç. Moreover, the second case holds globally ifmm{p, q J < 5.

Proof. Let W c Mn be the open subset where such unit vectors do not exist, i.e.,
where the metric in Im (ß)1- c T^M © T~M is definite, and i(ß) > p + q — 2

if min{p, q} > 6. We claim first that u0 > 0 on W.

At a fixed a point in W, ß is nondegenerate since Im (ß)± is definite. If
min{p, q} < 5, the claim is just Theorem 3 in [4]. If otherwise, this is actually
the easiest case in the proof of that theorem for which no hypothesis on min{p, q\ is

needed. Indeed, if A G RE{ß) we have that

dim Im (ßX) f~l Im (ßX)± < dim Im (ßX)'L p + q - dim Im (ßx) < 2.
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In this situation, Lemma 6 in [4] easily implies that there is Y e RE(ß) such that

A0 ker(ßx) Fl ker(ßY) ker(A),

for A := ßY\ker(ßxy But since ß is flat we have that Im (A) C Imljß*)-1-, and

therefore

u0 dim ker(A) n — dim Im (ßx) — dim Im (À) >n - p — q > 0,

as claimed.
Let W' C W be the open subset where vQ > 0 is minimal in W, and y C W' a

maximally defined unit geodesic contained in a maximal leaf of A0 in W'. Since, by
Lemma 27, y is mapped onto a straight line by both / and / and M" is compact,

y must be defined in a bounded interval (a,h). By Lemma 28 the values of vo

and i(ß) are constant along y up to t b, so y := y (h) $ W. Hence, since

i(ß)(y) i(ß)(y(0)) > p + q - 2,

there are unit vectors e ^f(y)^ ar|d ço G M suchthat Aç0 A^. Iff and f
are their parallel transports along y, by uniqueness of the solutions of the extended

ODE (7) obtained in Lemma 28 we get Aç A^ also along the whole y C W, which
contradicts the definition of W. We conclude that W is empty.

Remark 30. Observe that in the proof above we only used the non-existence of
an unbounded geodesic contained in A0. In particular, Proposition 29, and thus

Theorem 1 and Corollary 2, hold for complete manifolds if we require that either

/(M) or /(M) contains no complete straight line instead of compactness.

Proofof Theorem 1. Let V c M" be the open subset where i (ß)(x) > p + q — 2.

By Proposition 29 and Corollary 10 applied to fo ß, there exists a trivially parallel
isometry of line bundles parallel along A0,

r: L span {f} -> L span {f},

defined on an open dense subset U of L, and that preserves second fundamental forms.
The result now follows from Corollary 5 applied to each connected component U'
of U with this r, and to Mn \ V with x 0 since, in either case,

n + I + i(<px) > n — p — q + 3.

Although Corollary 2 can be easily proved directly from Theorem 1 and

Corollaries 5 and 10, we will use the results obtained in Section 3.1.

ProofofCorollary 2. By Theorem 1 we only need to show that, for p + q 4,

the immersions singularly extend isometrically almost everywhere on a subset U
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where d > n — 1 is constant. Clearly, this is the case if d n, since both immersions
would be totally geodesic in U and we isometrically extend them with Nn+1 U xM,
F / x Id and F f x Id.

If d n — 1 on U, we have as in the proof of Theorem 1 and again by Corollary 5

that

p + q 4, f 1. i (<px) 2,

and

Z)""1 ,V(aLx) n <V(a£x)

along an open dense subset of U. If U' C 1/ is the open subset where in (5) is

nonzero, then L Ld, L Ld, Jd /o, and thus by Corollary 24 / and f
(regularly) extend isometrically almost everywhere on {/'. On U \ U', Ld 0 and
Z)"_1 A0 almost everywhere, so Corollaries 10 and 22 tell us that there is an

isometric immersion

/': U -* M"+1

with second fundamental form a/. a?£. By Corollary 26, the pairs {/, /'}
and {/,/'} both singularly extend isometrically, and since the codimension of fis one, the pair {f /} also singularly extends isometrically almost everywhere
on U \ U'.

Remark 31. Corollary 2 for p q 2 reduces to the main result in [8], except for
the fact that singular flat extensions can occur in the former. This is a consequence of
a gap in [8], whose long and involved case by case proof did not cover all possibilities.

ProofofCorollary 3. By Proposition 26 in [6] and Theorem 1, if an isometric immersion

f : Mn -x R"+? is a strongly genuine deformation of /: Mn then the

&-th Pontrjagin form p£ of Mn vanishes for any k such that 4k > 3(p + q — 3).

5. The space forms case

As we pointed out, Theorem 1 and Corollary 2 hold for compact manifolds when
the ambient space is the hyperbolic space following the same proofs. In this section

we show that they also hold for complete submanifolds in the sphere under a mild
codimension condition.

For the following, recall that p(m) — 1 is the maximum number of pointwise
linearly-independent vector fields on §m_1.

Lemma 32. Let f:Mn —> Sn+p be an isometric immersion and Dd a nontrivial
totally geodesic distribution contained in the relative nullity of f. If there exists

a nonconstant geodesic o : [0, oo) —* Mn in Dd, then the splitting tensor Ca>

associated to Dd has no real eigenvalues. In particular, such a geodesic cannot
exist ifp(n — d) < d + 1.



298 L. A. Florit and F. Guimaräes CMH

Proof. By (6), Ca> is given by

(Pf1 o Ca' o Pa)(t) (sin(t)I + cos{t)Ca>(0))(cos(t)l - sin(t)Ca/(0))_l,

where Pa is the parallel transport along a. Since Cff/ is defined for all t > 0, we
easily conclude that CCT/(0) has no real eigenvalues.

For the last assertion, choose a basis {7j,..., Tj} of D(x). By the first assertion,
for any unit vector Z e D±(x) and a, a\,... ,aj £l, the equation

d

0 aZ + a,CV(. Z aZ + CtZ
i=1

implies that a a, 0, where T Ym=i ai Ti Hence Z, Cpx Z,, Cjd Z are

linearly independent in D±(x). Since this holds for any unit vector Z 6 D±(x),
considering Z as the position vector of the unit sphere C D±(x) we get d
nonvanishing linearly independent vector fields in S" Hence,

d < p(n — d) — 1.

Proofof Theorem 7. By Lemma 32, geodesies in A0 cannot be defined for arbitrary
large time if pn < n — p — q when the ambient space is the sphere. Thus, as observed
in Remark 30, Proposition 29 holds for complete manifolds when the ambient spaces
are spheres as long as p + q < n — n„.
Proofof Corollary 8. It is analogous to the one for Corollary 2 using Theorem 7

instead of Theorem 1, just observing that for small codimensions we can simplify the

assumptions on pn.
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