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Poisson brackets of partitions of unity on surfaces

Lev Buhovsky, Alexander Logunov and Shira Tanny

Abstract. Given an open cover of a closed symplectic manifold, consider all smooth partitions
of unity consisting of functions supported in the covering sets. The Poisson bracket invariant of
the cover measures how much the functions from such a partition of unity can become close to
being Poisson commuting. We introduce a new approach to this invariant, which enables us to

prove the lower bound conjectured by L. Polterovich, in dimension 2.

Mathematics Subject Classification (2010). 53D99.

Keywords. Poisson bracket invariant, Poisson non-commutativity, partition ofunity, symplectic
surface.

1. Introduction and results

Let (M, <w) be a closed connected symplectic manifold and let 11 : {C/j}iez be a

finite open cover of M by displaceable1 sets. Any subordinate2 partition of unity
•F {.fi}iei cannot be Poisson commuting, as follows from the nondisplaceable
fiber theorem [2]. Note that the assumption on the displaceability of sets in 11 is

crucial — any partition of unity on S2 C M3 that depends only on the height z
is Poisson commuting. The study of lower bounds for this non-commutativity was
initiated in [4], where M. Entov, L. Polterovich, and F. Zapolsky used symplectic
quasi-states to prove that

max ||{f, fj} || > const/1 /13.
i,j

Here and further on, || • || : C°°(M, K) —M stands for the uniform (or the L°°) norm,
11/11 maxm l/l- Below, we present an improvement of this bound for the case
where M is a surface, see Corollary 1.12.

1 We say that a subset S C M is displaceable if there exists a Hamiltonian diffeomorphism 0 : M —> M
that displaces its closure, namely (j>(S) H S 0.

2Given an open cover 11 := {!/,},<=/ of M, we say that a partition of unity IF {fi}ie/ is

subordinate to 11 if supp(/} C U, for all i 6 I.
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The non-commutativity of partitions of unity subordinate to a cover V. can be also

measured by the Poisson bracket invariant, which was introduced by L. Polterovich
in [10]:

pb(U):= inf max II{^xt./[, yjfj! » 0-1)
F x,y«=[-!,1]"' II 1

.eI ,e/
1

where the infimum is taken over all partitions of unity 3~ subordinate to K. In [ 10,11 ],
Polterovich explained the relations between this invariant and quantum mechanics

and conjectured a lower bound for pb(VL) in terms of the magnitude of localization
of U:

Conjecture 1.1. Let (M, co) be a closed symplectic manifold, and let V. {(/,};<=/
be an open cover of M by displaceable sets. Then, there exists a constant C

C(M,co) > 0 depending only on the symplectic manifold, such that

pm)>^-Y (..2)

where e(U) := max,-e/ e Uj and efUf) is the displacement energy3 ofUi.
Polterovich also proved several lower bounds for this invariant, which were then

improved and extended by S.Seyfaddini in [12] as well as by S.Ishikawa in [5],
These lower bounds decay in the degree of the cover (which was defined in [11]),
and their proofs rely on "hard" symplectic topology (for example, properties of
spectral invariants). In this paper, we prove Conjecture 1.1 in dimension 2 using only
elementary arguments. Let us mention a recent work of J. Payette [8,9] which in
particular provides a different (elementary) proof of Conjecture 1.1 in dimension 2,

for all closed symplectic surfaces except for the sphere. See also related recent works
of F. Lalonde and J. Payette [6] and of G. Lu and K. Shi [7],

Remark 1.2. For a closed symplectic surface (M, co), a connected subset S C M
is displaceable if and only if it is contained in an embedded open topological disc
V C M with smooth boundary and area(F) < area^M). in this case, the infimum of
the area of such a topological disc V is precisely the displacement energy e(S). If a

subset S C M is not displaceable then we have e(S) +oo.
The following lemma holds for manifolds of general dimension, but we will apply

it to closed surfaces.

Lemma 1.3. Let (M2n ,a>) be a closed symplectic manifold ofdimension In. Then,
there exists a constant c(n) > 0 depending only on the dimension, such thatfor every
finite collection ofsmooth functions {/} },e/ on M,

max,,,^c(«)-m.ax J2
=r_i n|/| II * I II M ^

iel jel i,/e/
3For a displaceable subset S C M, the displacement energy of S is the infimum of a Hofer length

l\\u((H) — /J maxA/ — min^/ H{-, t) dt, for all time-dependent smooth Hamiltonian functions
H:M x [0,1] —> R such that the time-1 map <j>: M —> M of the Hamiltonian flow generated by H,
displaces the closure of S: <p(S) 0 5 0.



Vol. 95 (2020) Poisson brackets of partitions of unity on surfaces 249

In fact, we prove that a pointwise inequality holds, see Appendix A. In Section 1.1

we prove lower bounds for the L°° and the L1 norms of the sum J2i jei \{fi> fj}\ on

a closed symplectic surface (M2, co), and use Lemma 1.3 for the case where n 1

to conclude that the same holds for pb(U) up to a constant.

1.1. Poisson bracket on surfaces. The present subsection contains the main results

of this paper (Theorems 1.5 and 1.7) concerning symplectic geometry in dimension

two, and Sections 2 and 3 are devoted to their proofs. The formulations and proofs of
the main results do not assume any knowledge in symplectic geometry, beyond what
is explained in Remark 1.4 below.

Remark 1.4. Given a surface M, endowed with an area form co (in that case we say
that (M, co) is a symplectic surface), the Poisson bracket of a pair of smooth functions

on M, is itself a smooth function on M, which measures how much the differentials of
the functions are non-collinear at each point. More precisely, given /, g £ C°°(M),
their Poisson bracket {f,g} £ C°°(M) is defined by df A dg {f,g}co. For

example, if M M2 with coordinates (x, y), and co dx A dy is the standard area

form, then {/, g} fxgy — fygx is the determinant of the 2x2 matrix whose rows
are the gradients of / and g. In higher dimensions, the Poisson bracket is naturally
defined on any symplectic manifold, and we refer the interested reader to [1] for
details.

Let (M, co) be a closed connected symplectic surface. Recall that given an open
cover U := {Ul },-6/ of M, we say that a partition of unity 3~ {/,; }I/ is subordinate

to XL if supp( /, c Ui for all i el. As before, we denote by || • ||: C°°(M, M) —> M

the uniform norm, || /1| max at | /1. Let us pass to our first main result.

Theorem 1.5. Let M, co) be a closed and connected symplectic surface. Let {f }iei,
isj}jej be partitions of unity on M, such that for some real number 0 < A <
area(M)/2, the support of each /; lies in some topological disc ofarea not greater
than A, and similarly, the support of each gj lies in some topological disc of area
not greater than A. Then,

££ / =EE/ '«.«A(1.3)is/jej iel jej
Our second main result is applicable only to a certain class of covers.

Definition 1.6. Given an open cover U {Ui}i&i of M, we say that a set Ui £ V. is

essential if 11 \ {U(} is not a cover, that is, Uf M. We denote by Itss(V.) c I
the subset of indices corresponding to essential sets in U.

Theorem 1.7. Let (M, co) be a closed and connected symplectic surface. Let U :=
{(J,}, 6/ be an open cover of M by topological discs of area less than area(M)/2,



250 L. Buhovsky, A. Logunov and S. Tanny CMH

and let IF {fi };e/ be any partition of unity subordinate to U. Then,

f £ |{^/,-}|û>>|7e«(t0|,
Jm ijel

(1.4)

max £ \{fi,fj}\ > — 7Tt~\' (L5)
m min^6/css(1() -drcMUt)

where we set the minimum of an empty set to be infinity.

Remark 1.8. • Applying Lemma 1.3 to the lower bounds (1.4), (1.5), we get
corresponding lower bounds for the Poisson bracket invariant pb(VL):

urns ^
C ' I'essC^OI ^"hm-area(M)' <L6)

pb(U) > 7 —-, (1.7)
mui£e/ess(l0 area(t/)

for an absolute constant c > 0.

• If U is a minimal cover, every set is essential and thus /. In this case

Theorem 1.7 implies that

f £ > |/|,^ i

and maxM E/,ye/ K/». /y)l > l/(mini6/ area(f/j))-

• When the cover K has no essential sets, 7ess(t() 0 and Theorem 1.7 gives a

trivial lower bound for sum of Poisson brackets.

Theorem 1.5 can be reformulated in terms of a cover (whereas now, the cover
can be general, i.e. it does not require to admit essential sets or to consist only of
topological discs):

Theorem 1.5'. Let (M, co) be a closed and connected symplectic surface. Let
U {Ui }iei> T {Vj\jej be finite open covers of M, and let \ f\ }!ei, {gj}jej
be partitions ofunity subordinate to U, V correspondingly. Then,

Here e(U) max;e/ e(Ui) and e(Ui) is the displacement energy4 of Ui (resp.,

e(V) maxyg/ e(Vj) and e(Vj) is the displacement energy of Vf). See Remark 3.5

for an explanation of equivalence of Theorems 1.5 and 1.5'.

Applying the theorem for K V and {f} {gj}, and using Lemma 1.3, we
obtain the affirmative answer to Conjecture 1.1 in dimension 2, as a corollary:

4See Remark 1.2 regarding the notion of the displacement energy in dimension 2.
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Corollary 1.9. Let (M, co) be a closed and connected symplectic surface. Let 11

{Ui },<=/ be an open displaceable cover of M, then for an absolute constant c > 0 we

have

Remark 1.10. The bound in Corollary 1.9, and bounds (1.6) and 1.7) in Remark 1.8,

are sharp in the following sense: on every closed symplectic surface (M, co), one can

construct a sequence of open displaceable covers {Ilk };teN by topological discs, such

that I /essC^yfc) I ~ k, min,6/ area(Ui) & max,-6/ area((/,) sa \/k, and pb(11k) ~ k.
See Example 3.7 for details.

The following definition of a degree of a cover is slightly different than the one

presented by Polterovich in [11 ]. In fact, the degree below is not larger, and therefore
lower bounds with respect to it hold also for the standard definition.

Definition 1.11. Given a cover 11 {!/; },• e/ of M, we dehne its degree to be

d := max#{f I : x e Ui}.
xeM

Corollary 1.12. Let (M,co) be a closed and connected symplectic surface. Let
U {Ui },;e/ be open displaceable cover ofM and let IF {fi}iei be a subordinate

partition of unity. Then,

max, IIif. fjIII >
0 l2

1

> (1 -9)
ijei 2dz e( U.)

where d is the degree of the cover 11.

Remark 1.13. The dependence on d in the bound presented in Corollary 1.12 is

optimal. To see this, take any open displaceable cover 11 {Ui }i £/ of M and a

subordinate partition of unity F { f },e/. and denote

b(F) := max \\{f,fj}\\.hjl
We have b(F) > 0 (by the nondisplaceable hber theorem [2], or by Corollary 1.12).
For every me N let Um := Ut },e/ be the cover obtained by taking m

copies of each set in 11 (i.e. 11m contains \I\-m sets and is of degree d m, where d
is the degree of 11). Consider the subordinate partition Fm :=
Then

I-1/,-1/,))
1

l m m
b(Fm) max

hie/ I m m

decays quadratically in the degree of the cover.

~^b(F)

Remark 1.14. The following observation was also independently made by Payette
in [9] while the current article was in press (cf. [8, Remark 4.1 and Lemma 4.3,

p. 14]). In Theorem 1.5, in the case when M is not a sphere, the assumption that
0 < A < area(M)/2 can be omitted. Indeed, assume that M is not a sphere.



252 L. Buhovsky, A. Logunov and S. Tanny CMH

Of course, then without loss of generality we can assume that 0 < A < area(M),
by slightly shrinking the topological discs containing the supports of the functions.
Denote by g ^ 1 the genus of M, and consider a double cover jt : Ml M, where M
is a closed surface of genus 2g — 1. M is naturally endowed with the symplectic form
<3 n*(o. Lift the functions to M, denoting fi fi on and gj gjon. Each fi is

supported inside a topological disc D, c M of area not greater than A, and by simple
connectedness of £>;, its pre-image n~l(Dj) is a disjoint union of two topological
discs, where each of these discs has area equal to that of D,. This allows us to
decompose fi fit\ + /;;2 where each of fifi, /i;2 is supported in a corresponding
topological disc (of area not greater than A < area(M) arca(M)/2). Similarly,
each gj can be decomposed into gj gjj + gj<2, where the supports of gjti, g
are disjoint, and each of the supports lies in a topological disc of area not greater
than A < area(M)/2. By applying Theorem 1.5 to the collections {gj,l) of
functions on M, we conclude that

EE/" i&.&./}i® EEf I{fi>gj}\°
k,l=1 iel j£J iel jeJjM

[ irr ii ^ area(M) area(M)

iel jej ZA A

which implies the inequality (1.3).
Similarly, in Theorem 1.7, in the case when M is not a sphere, the assumption

for the Ui's to have areas less than area(M)/2, is redundant.

1.2. Bounds in higher dimensions. From Corollary 1.9 one can conclude that when
the sets in K are small, pb(V.) must be large. The following proposition was

explained to us by Leonid Polterovich and shows that this is true in higher dimensions
as well.

Proposition 1.15. Let (M,u>) be any closed symplectic manifold of dimension 2n
and let p be any Riemannian metric on M. For any e > 0, let Ue be a finite cover
of M by open subsets ofdiameter at most e (with respect to the metric p). Then,

pbfiW) —> oo. (1.10)
->•0

One should expect the rate of convergence in Proposition 1.15 to be quadratic
in 1/e. This is due to the fact that the Poisson bracket is homogeneous of degree 2

with respect to composition with homothetic transformations of R2" : Given smooth
functions g, h:R2n —r M, and a homothetic transformation fic: M2" -> M2",
fie (x) c • x for some c > 0,

{g ofic,ho xfc}{x) c2{g, h}(cx).

The next theorem shows that this is indeed the case.

E
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Theorem 1.16. Consider the setting of Proposition 1.15 and assume in addition
that p is compatible with to. Then, there exists a constant c c(n) > 0 depending
only on the dimension, and a constant S 8(M,co,p) > 0, depending on the

symplectic manifold (M, co) and the metric p, such that for every e < 6,

Acknowledgements. We are deeply grateful to Fedor Nazarov, without whose help
this paper would not have been written. He explained to us his proof of a preliminary
version of the statement appearing in Corollary 1.12, and his ideas have had a

significant impact on the paper. Unfortunately, he decided not to be a coauthor of the

paper.
We also thank Efim Gluskin, Leonid Polterovich and Misha Sodin for fruitful

discussions. Shira Tanny extends her special thanks to Leonid Polterovich for his

mentorship and guidance.
L. B. was partially supported by ISF Grants 1380/13 and 2026/17, by the ERC

Starting Grant 757585, and by the Alon Fellowship. A. L. was partially supported
by ERC Advanced Grant 692616 and ISF Grants 1380/13 and 382/15, and by a Clay
Research Fellowship. S.T. was partially supported by ISF Grants 178/13, 1380/13,
and 2026/17.

2. Essential sets and Poisson bracket

Let M be a closed connected surface, endowed with an area form co. For any
smooth function /, we denote by cp(f the set of its critical points and by cv(f
/(cp(f the set of its critical values. Our first lemma explains the relation between
the L1 norm of the Poisson bracket of two functions and intersections of their level

sets.

Lemma 2.1. Let fg: M —» R and denote := (fg): M —M2. Consider the

function ÄLM2 —> M U {oo} defined by

Note that the integral on the left-hand side is taken with respect to the volume

density given by co. For the proof of the lemma, see Appendix B.
Lemma 2.1 suggests that one can estimate the L1 norm of the Poisson bracket

of two functions by counting intersections of their level sets. It turns out that when

/ := fi corresponds to an essential set {/; e K, one can bound from below the

pb(Ue) > 4.
e1

(1.11)

(2.1)
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Figure 1. The grey domain on the sphere and its enclosing disc (whose area is hatched).

number of intersections of level sets of f and level sets of any other function fj
from the partition of unity. For a more formal description we need to present some
notations. Given an open cover K and a subordinate partition of unity
F {fi}iei, denote

Ui(t) := {x M : fi(x) > t}, (2.2)

for i e I, t >0. Clearly, for any such t, Ui(t) C (/*. Moreover, the boundary
of Ui (/) is contained in the t-level set of f, namely,

dUi(t) c {x e M : fi(x) t}.

For a subset U C M,we denote by Uc := M \ U its complement. The following
definitions will be useful:

Definition 2.2. Let M be a smooth closed surface, and let V CM be an open (or
closed) set. We say that V has a piecewise smooth boundary if d V is a finite union of
disjoint curves Ti,..., Vm, such that each Ty is a simple, closed, piecewise smooth
and regular curve.

Definition 2.3. Let V C M be an open (or closed) connected subset with a

piecewise smooth boundary, which is contained in a topological disc of area less

than area(AF)/2. There exists a unique connected component of M \ V of area

greater than area(M)/2. The enclosing disc of V is by definition the complement of
this connected component, and it is denoted by V (see Figure 1 for an example).

Remark 2.4. • For any subset V C M as in Definition 2.3, we have dV C dV.

• Let V c M be a subset as in Definition 2.3. Then its enclosing disc V is the open
(respectively, closed) topological disc of minimal area that contains it. In particular,
if U is an open topological disc of area less than area(A-/)/2 which compactly
contains V, then U D V.
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Proofof Theorem 1.7. In the following we prove that if (/,• is essential then

(2.3)

Summing (2.3) over all i e Iess(V.) yields (1.4). To conclude (1.5), apply (2.3) to the

essential set of minimal area and notice that

f (l> 22 f œ - area(t/i) • max \ifk> fj}\-
7?IJm j tiJu> M fit,
We turn to prove (2.3). Fix i e 7ess, then there exists a point z,- e U, such that

tor all j f i, Zi f Uj. Since all functions but f vanish at z,-, we conclude that

fi (zi 1 and hence z,- e Ui (s) for all s e (0,1). For a regular value .v e (0, 1 of f,
denote by F, (.v) the connected component of Ui (s) that contains z,-, and by F (5) the

enclosing disc of F)(.v). We have 9 F (,v) C 9 F (,v). Denote

Vs := d Vi (s), (2.4)

then ys is connected and is contained in the level set {f\ ,v}. For every regular
value s (0, 1) of fi, fix ys e ys and for each j f i denote /j := fj (ys) e [0, 00).
Fix j i for which tj is positive, and let t G (0-F-) be a regular value of fj.
We have ys e Uj(t), since fj(ys) tj > t. Denote by D j (t) the closure of the

connected component of Uj(t) that contains ys, and denote by D j (t) the enclosing
disc of Dj(t). Then,

dDj(t) C dDj(t) C {fj t}.
See Figure 2 for a demonstration of this setting. We claim that ys has at least two
points of intersection with dDj(t). Since the interior of D j{t) intersects ys (as they
both contain y,s), it is enough to show that ys is not contained in D j(t). Recalling
that ys is the boundary of F(s), this is equivalent to showing that neither V (s),
nor its complement Vi(s)c, is contained in Dj(t). Recall that Uj is a topological
disc containing Dj (t), and hence Dj (t) c Uj. The topological disc V (a) contains

Zi f Uj and thus is not contained in Uj. In particular, we conclude that F F) is not
contained in Dj(t). Finally, to show that F F)c % Dj{t), recall that FF) C Ui

(since Ui is a topological disc containing F F)) an^ therefore

area(Dj(t)) < area(I/y) < area^^ K area((jf < area(FF)c)-

This implies that FF)C 2 Dj{t) and hence we conclude that ys intersects dDj(t)
at least twice.

We conclude that for any j f i, any regular value s e (0, 1) of f, and any
regular value t G (0, tj) of fj, because of ys C {f x} and dDj(t) C {fj — t},
we have

#{fi .F n {fj =t}> 2.
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7s C {/,: s}

Figure 2. An example for the setting described in the proof of Theorem 1.7. In this example,
the gray region is F/Çv), the solid lines are the ,v-level set of and the outer component
is ys. The dashed line is the boundary of Dj(t), which is a part of the f-level set of fj, for
some t < fj{ys).

Putting Kjj (,v, t) := #{f ,v} n {fj t} and applying Lemma 2.1 to f and fj
with S2 := {(s, t) : t e (0, tj), s e (0,1)} we obtain

f \{f,fj}\o>> [
JM J0^(i2)

/ Kij(s,t) ds dt
Jq

> f f 2 dtds 2 f tjds.
Jo Jo Jo

Now, recalling that fj fj (>'v), and summing the above inequality overall / f i
we get

E/ \{f,fj}\co>2j2 f1 fj(ys)ds
jel jïiJ»

2 f E fj(j5) ds 2 f 1 -fi(ys)ds.
Jo Jo

Since we chose ys y" C {f s}, we have fi(ys) s and thus

E/ \{fi,fj}\o>>2 f1 l-sds 2-1- 1.
7M 7O 2

Remark 2.5. In Theorem 1.7 we assume that the covering sets [/,• are topological
discs. However, when an open cover U {Ui}iei does not necessarily consist of
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topological discs, but the covering sets have piecewise smooth boundary, then we

can pass to a cover by topological discs in two steps.

First, consider the collection V {Vj)jej of all connected components of all
the Ui s. Given any partition of unity 3~ {f };6/, subordinate to XL, we naturally
get a partition of unity 8 {gj}jj subordinate to V, as follows: for every Vj being
a connected component of we set gj fi 1 yy, where II p. is the characteristic
function of Vj on M. Moreover, we have

E E
ijel i,jeJ

This reduces proving estimates (1.4) and (1.5) from Theorem 1.7 for the cover XL, to

proving them for the cover V. Of course, if the covering sets (7,- are connected from
the beginning, the cover V is the same as XL.

Second, denoting by Vj the enclosing disc of Vj, for each j, we get a cover

V {Vjjjej by displaceable open topological discs, and the partition of unity
8 {gj }jej clearly subordinate to V as well. Therefore any lower bound for the

latter cover will also hold for XL. However, one should notice that when applying
the first part of Theorem 1.7 to such a general cover XL by open sets with piecewise
smooth boundaries (not necessarily by topological discs), the bound will depend on
the number of essential sets in V:

f El^'^l^l'essW (2-5)
JM ij

The second part of Theorem 1.7 can be written in terms of the displacement energy
of sets in V. Indeed, by Remarks 1.2 and 2.4, e{V) area(T). Applying the second

part of Theorem 1.7 to V yields

max E I { fi. fj} I > — — (2.6)
M

gj mintS/ess(V)e(yt)

3. Bounds for general covers

In the general case, estimating the number of intersections of level sets is more

complicated.

Definition 3.1. Two covers XL \Ui)iGi, V {Vj}jej of M are said to be in

generic position if the following triple intersections of boundaries are empty:

dUi n auk n dVj 0, dut n dVj n dve 0, (3.1)

for all i, k e I ,i jL k, and j, i J, j ^ I.
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The central lemma in the proof of Theorem 1.5 is the following:
Lemma3.2. LetVL {£/, };e/, "V {17j}jej be finite covers of M by open sets with
smooth boundaries, and assume that U and "V are in generic position. Moreover,

assume that for some 0 < A < area(M)/2, each element of Vi or "V is compactly
contained inside a topological disc of area not greater than A. Suppose in addition
that there exists Le N such that for any point x G M, #{i G / : x £ £/;} > L and

#{j G J : x G Vj} > L. Then

# Uij (dUi n 3Vj) > L2 • are^M). (3.2)

Let us illustrate the heuristics underlying the proof of Theorem 1.5 before giving
the details. Let K {(/,}/<=/, "V {Vj}jej be two open covers of M and let
!F {fi}iei, $ {gj}jej be subordinate partitions of unity, as in the theorem.

In light of Lemma 2.1, we wish to estimate the number of intersections of level sets.

Fix L G N sufficiently large and denote { /, > Vj^ := {gj >
where k and I are positive integers. Then the boundaries of and Vj^ are

contained in level sets of f, gj respectively. Given x G AT, let us estimate the

number of sets in {Ui^}i,k containing x. For fixed i e I,
#{k : x g Uifof {k : f (x) > k/L) > Lf(x) - 1.

Therefore, the number of sets Ui^ containing x is at least

J2(LMx)-l) L-\I\.
i

Similarly, one can show that the number of sets Vjti containing x is at least L — \J\.
In particular, when L is sufficiently large, {Uitk}i,k and {V}jx are open covers

of M, that satisfy the conditions of Lemma 3.2 for L := L — \I | — \ J \ (namely,

every point in M is contained in at least L sets). Applying Lemma 3.2 to the covers

{Ui,k}i,k, {Vj,t}j,t we obtain

tYu>p.^l.
i,k,j,t

On the other hand, one expects that in a generic situation, given i, j and sufficiently
large L, the sum

h Smu'*n dv'-' h E*(/r'(|) n«7'(|))
k,t k,l

will approximate the integral of Kij (.v, t) := #(f~l (.s) n gJ1 (/)). Using Lemma 2.1

and taking the limit L -> oo we obtain

/ L2 area(M)

lij
which implies Theorem 1.5.
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Now let us pass to the actual proofs. We will need the following definition:

Definition 3.3. Let yi,... ,ym CM be a finite collection of smooth regular curves
with a finite number of mutual intersection points. Denote F y\ U • • • U ym.

• A connected component of the complement M \ F is called a face of F.

• A point v T that lies in the intersection of two (or more) curves is called a vertex
of r.

• T is called an A-division ofM, ifevery face of F has a piecewise smooth boundary
(as in Definition 2.2) and is compactly contained in an open topological disc of
area not greater than A.

Lemma 3.4. Let T, V C M be A-divisions of M for some A < area(M)/2, and

assume that no vertex of F lies on T' and vise versa. Then,

#(r n r') > area(M). (3.3)
2A

Proof First, let us show that by removing parts from T and F', we may assume that

their faces are open topological discs. The fact that faces of T, F' are compactly
contained in open topological discs of area not greater than A will guarantee that F,

F' will remain /I-divisions after removing these parts. More formally, let P C M \ F
be a face of F, then it is compactly contained in an open topological disc of area not

greater than A. Let P D P be the enclosing disc of P. Then,

dp c dp c r
and hence, removing T Fl P from T, we obtain that P is a face of T which is an

open topological disc with piecewise smooth boundary (see Figure 3). Moreover,
since P is compactly contained in a topological disc of area not greater than A, so is

its enclosing disc P. Therefore, F remains an A-division after removing T fl P.
Having this assumption we turn to bound the number of intersections of F and F'.

We say that a face G of F is maximal if it is not properly contained in any face of F'.
Defining similarly maximality of faces of F', we observe that any non-maximal face

of T is contained in a maximal face of F'. Therefore, the union of maximal faces

of both F, F' covers M up to a subset of area zero. Let us assume, without loss of
generality, that the maximal faces of F cover at least half the area of M. Then, since

each face has area smaller than A, the number of maximal faces of F is at least

area (M
2A

'

Our next goal is to show that the boundary of every maximal face of F intersects T'
at least twice. Together with the fact that any intersection point of F and F' lies on
the boundary of exactly two faces of F (due to our assumption, that the intersection

points are not vertices) this will conclude the proof.
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Figure 3. In this example the dashed lines are removed from T.

Let G be a maximal face of T, then, there exists a face G' of f that intersects the

boundary of G,
3G nC f 0

(otherwise 3G C T', in particular #(r D T') oo, and we are done). We also claim
that

3G n (M \ G') + 0.

Indeed, otherwise we have 3G C G', and since M \ G' is connected (recall that
G' c M is an open topological disc with a piecewise smooth boundary), we have

either
G D M\G' or CcG'.

The first option is impossible since

area(M)
area(G), area(G < A <

and in the second option we get
G C G'

(since G' has a piecewise smooth boundary, 3G' does not contain interior points
of G') which contradicts the maximality of G.

Hence we conclude that

3GnG'/0 and 3G n (M \ G') f 0.

Since the boundary 3G is a simple closed curve, we get #(3G n 3G') >2.

Proofof Lemma 3.2. By our assumptions, the covers U and V are in generic position.
Therefore, we can slightly enlarge the G,'s and Vfs, to obtain:
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(a) After the perturbation, 3(7/ and 9 Uj intersect transversally for all i, j e I, i / j,
and dVi and 9Vj intersect transversally for all i, j J, i / j.

(b) The perturbation did not change the set of intersection points of 9C/, with d Vj,
for every i e I and j G ./. In particular, the covers V and V remain to be in

generic position after the perturbation.

(c) After the perturbation, each of the f/,-'s and F/s is still compactly contained in
a topological disc of area not greater than A.

In view of that, without loss of generality we can assume from the beginning that
the above property (a) is satisfied. Moreover, for the sake of convenience we assume
that / {1,2,..., |/|} and / {1,2,..., |/|}.

Now let a e Si, ß e Sj be permutations on the elements of I, J respectively,
and consider the unions of curves defined by

r« := U (3^4(0 n ua(i-i) n • • • n ^«(1)).
iel

rß-= U(dvß(nnvßu-i)n---nvm)-

Let us show that Va is an A-division of M. First, by the property (a), each connected

component of M \ ra is an open set with a piecewise smooth boundary. Let
P C M \ rœ be a connected component and assume for the sake of contradiction
that P is not compactly contained in any topological disc of area not greater than A.
Notice that this assumption implies that P % Ut for all i, since every set f/,- is

compactly contained in a topological disc of area not greater than A. We show by
induction on i G / that in this case

P c ua(ï> n • • • n u°{i)

for all i, which immediately leads to a contradiction, as nts/f/L., 0. Starting
with 7 1, notice that 'à(Ja(\) C Fa. Therefore,

p n 9i/a(i) c p n ra 0,

and since P % Ua( i), we conclude that P C Assuming P C
let us show that P C Ucr,. Indeed, sincea(i)

du<x(i) n u£(i_j) n••• n c ra and p c Ua(\) F • • • n

we conclude that P D VJa(i) C P n Fa 0. Together with the fact that P % Ua(i),
this implies P C U^{i) as retlu'rec'-

Similarly, one can show that T^ is also an A-division of M. The fact that the

covers V and V are in generic position guarantees that no vertex of Ta lies on F^
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and vice versa. Therefore, we may apply Lemma 3.4 and conclude a lower bound for
the number of intersection points of Va and T^:

^ ^ w ^ area(M)
#ra n Tg > ——— (3.4)

Clearly, Tœ C U,e/3t/; and F^ c UjejdVj, and hence

r„nr;c u^at/,- ndVj).

Take a point x G lJ,j(3f/; fl dVj) and let us count the number of permutations
a £ Si, ß £ Sj for which r e r„ fl Tj. Let i £ I such that x G 9f/;-, then xgL
only if a~1(i) < a~x(k) for any k e I such that x G U^. By our assumption, the

number of indices k G / for which x G Ujç is at least L. By symmetry, the number

of permutations a a~x for which o(i) < o{k) for at least L indices k G / is

at most |/|!/(L + 1). Similarly, the number of permutations ß for which x e Vß

is at most |i|!/(L + 1). As a consequence, the number of intersection points in

Uij(dUi n 3Vj) can be bounded by averaging inequality (3.4) over all permutations
a £ Si and ß £ Sj:

# u,j m n 9vj) > AC E TTjr E#r«n L

- v ^ ' mi /—! in
area(M)

area(M) areaQW)
y ' 2A 2 A

Proofof Theorem 1.5. Given L £ N sufficiently large, we wish to use the functions

{ft} iej, {gj} jej to construct covers that satisfy the assumptions of Lemma 3.2.

For every i £ I and j £ J pick mt,nj £ N such that > maXM.fi and

> maxm gj- For any i £ I and 1 <k<ml consider the interval

â
rk — 1 k i

i,k L L ' LJ

and denote by g an independent variable. We think of as representing
a value of the function fi. We equip the interval f.k with the normalized Lebesgue

measure := Ldst^. Similarly, for j £ J and 1 < I < nj, consider the interval

„ vi-\ fi
' L ' Li

and let tjj £ fjj: be an independent variable. We think of tjj as representing
a value of the function gj, and equip with the normalized Lebesgue measure
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Vjj := Ldtjj. Denote by

£:=n n ^ s:=n n
iell<k<mj jsj1<£<n j

the products of the intervals, then C C Rm, 'D C R" for m := Yliei mi an(J

n := J2jejnj- Fors := e ^ and t := (tj,e)j,£ e <£>, consider the open
sets

Ui,k := Ui,k(si,k) ifi > si,k}> 1 <k < mt, i G I,

v),i '= vjMtjd) {gj > tj/h l<Z<nj, je J.

Note that when L is sufficiently large, Ks := {U*k}i%k and "V1 := {Vjg}j,£ are open
covers of M, for any sef and te D. Let us show that these covers satisfy the

assumptions of Lemma 3.2. Let x e M, then for every i e /,

#{1 < k < mt : x e U-k} #{1 < k < : f(x) > si}k)

> #|l < k < mt : f{x) >

> Lf(x)-\.
Therefore, the number of sets in W covering x is at least

J2(Lf(x)-l) L-\I\>L-\I\-\J\.
iel

Similarly, the number of sets in V4 covering x is at least L — \ J\ > L-|/| —kiln
addition, we claim that for almost all (s, t) G C x <0 (namely, except for a set

of measure zero) the covers Us and V are in generic position. Indeed, by Sard's

theorem, for almost all (s, t) G C x J), fv,^, tjj) is a regular value of the map

M -> M2, x (fi(jx),gj(x))
for all i, k, j and i. In particular, for such (s, t), the boundaries 3(7?k and 3Vjt
intersect transversely at a finite number of points. Therefore, by restricting the set

of (s, t) slightly further, we can guarantee that the covers W and V1 are in generic
position. Recalling that

Ulk =ifi > si,k) C SUPp(/i) C Ui,

we conclude that each U*k lies in a topological disc of area not greater than A.

Similarly, each Vj f lies in a topological disc of area not greater than A. This

completes the verification of the assumptions of Lemma 3.2, and applying it for
L L — |/| — |./| and almost every (s, t), we obtain
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Averaging the above inequality over (s, t) efxfl with respect to the normalized

product measure /x x v where /x := ]"[, k and v := J~[y- k v/y we obtain

2A

<

L area(M)
^ J # ^^ (9[/^ n jv(t)

f E #W.*na^) x//x(s)r/u(t)
i,*,./,

r~ r —

E L L, n 9K/,Z diM,k(si,k)dvj4h,i)
-• »- • £

^ ^ ~x~

/• — /»-

E /,: L #(ac/a n 9FZ) (3-5)
K ; (i J i J ~~f

x "~zr
k_

L2

i,k,j,l " ~
For any values of and tj^, we have 9(7?^ 9{ /j > Sj^} c / 1

(.v;,£) and

9F1
^ 9{gy- > tjj} C Hence from (3.5) we conclude

L2-area(M) (L — |/1 — |/|)2 • area(M)
2ÏÏ 2/1

(36)
k

< L2 E /*!, #(z1 (*«.*)n #,1 (0,7)) dtu-
i,k,j,t l " l

Now we wish to use Lemma 2.1 in order to obtain a lower bound for the Poisson
brackets of the functions. Denote

*»,/ := M2

and set
_ /li-1 h /f — 1 h
M *~~

V L ' Z/ X
V L ' Z)-lei2.

Applying Lemma 2.1 to each term of the sum in (3.6), we obtain

(L — I /1 - I y I)2 • area(M)

i,k,j,tJÇik-e
E [ #(Z Vi.fc) n A'y VlZ) dsi,k dtj,t

L2 E /*_, KZ'^}I Û)

i,k,j,£ iJ

<l2 e/ l{//,*,•}!*>,
TT /m

where in the last inequality we use the fact that the domains are disjoint,
and so are their pre-images under <t>,j for fixed i,j (in fact, it follows from the proof
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of Lemma 2.1 that this inequality is an equality, since the union of the Qk,t s contains

<£>ij (M) up to a set of measure zero). We conclude that

V- I area(M)
T.Jm K/'-wî^a 12 2T-

area(M)
L—>-oo 2/4

which proves the claim.

Remark 3.5. Let us comment about equivalence of Theorems 1.5 and 1.5'

(cf. Remark 2.5). Due to Remark 1.2, in case when the partitions of unity U
and "V consist of connected open sets, the statement of Theorem 1.5' is equivalent to
Theorem 1.5. If, however, not all the elements of the covers U and V are connected,
then the statement of Theorem 1.5' still follows from Theorem 1.5.

Indeed, consider the collection U {0, }.gj of all connected components of
all the Ui% and similarly, consider the collection V {Vj},ef of all connected

components of all the Vf s. Given any partition of unity {/; },<=/, subordinate

to U, and a partition of unity 8 {gj }jej, subordinate to V, we naturally get a

partition ofunity !F {fi}iej subordinate to U and a partition ofunity § {gj}jej
subordinate to V, as follows. For every U\ being a connected component of (/,, we
set

fk Mffk,

where 1q is the characteristic function of Uk on M. The description of the partition

of unity ~§ is similar. Of course, in general the covers U and V might be infinite,
but since the functions f and g j have compact support, it follows that /,; and g j are

non-trivial only for a finite number of / G / and j e ,/. We have

E E
ieî,jeJ ieljej

on M. This reduces proving the statement of the theorem for the covers U, V, to

proving it for the covers U, V consisting of connected open sets.

Remark 3.6. In fact, the following more generalized formulation of Theorem 1.5

holds. Let M be a closed and connected surface endowed with an area form u>, and

let {fi}iei, {gj}jej be smooth functions on M, such that for some real number
0 < A < area(M)/2 we have:

(1) The support of each fc lies in some topological disc of area not greater than A,
and similarly, the support of each gj lies in some topological disc of area not

greater than A.
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(2) Eis/ \fi \ > 1 and Jfjej \gj\ > 1-

Then, (1.3) holds for {ft}, {gy}.
To see this, notice first that the proof of Theorem 1.5 holds for non-negative

functions with the above properties. Therefore, given arbitrary functions { //}, {gy}
that satisfy these conditions, one can construct non-negative functions in the following
way. Fix S > 0 sufficiently small and let p: M —> [0, oo) be a smooth even function
satisfying:

• p(t) 0 for t £ [—(5, 5],

• p(0 > |f I — 28 for all tel,
• p'(0 < 1 for all t £ M.

Setting

fi := (1 -2\I\8)~l -pof and gj - 2\J\8)~l p o gj,

they are clearly non-negative and they are supported in U, and Vy respectively. In
addition, for any x £ M,

£.£(*) (i-2|/is)-1 ;£Po y;
i&I iel

> (1 -2I/I5)-1 -2<5)
iel

> (1 2|/15)—1 (1 —2|/|<5) 1.

Similarly, gj (x) > 1 and hence we may apply Theorem 1.5 to the functions

{gy}y and conclude

area(M) ^ f ~ _

(1-2|/|«)(1-2|/|«)X; f \{pofi,pogj}\œ
ij Jm

<(1-2|/|S)(1-2|/|«5)W
U Jm

Taking 8 -> 0 we obtain (1.3).

Let us explain how to deduce Corollary 1.12 from Theorem 1.5.

Proofof Corollary 1.12. Applying Theorem 1.5' for V. V and {f} {gy} we
obtain

f u y r -h ^ area(M)

J"ujli~MvT'
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The Poisson bracket of two functions {f\, fj} is supported in the intersection of their

supports
supp(yi) n supp(/y) C Ut n Uj.

Hence, given x e M, the function {f, fj } does not vanish at x only if x e Ui D Uj.
Therefore, by the definition of d, the number of non-vanishing terms in the sum

YtMufi) I to
i,j

is at most d2. We conclude that

f J2 a - area(M) max J] \{fu fj}\
Jui%

< d2 area(M) max \\{fi,fj}\\.
i>7 s/

The following example shows that the bounds appearing in Theorem 1.7 and

Corollary 1.9 are sharp.

Example 3.7. Let (M, co) be a closed and connected symplectic surface. In order to
demonstrate the sharpness of the bounds presented in Theorem 1.7 and Corollary 1.9,

let us construct a family of open covers {V.e}e>o of M by topological discs, such that

pb(U£)<C/e2, |/ess(Ke)| > c/e2, and ce2 < area(t/,) < Ce2,

for some constants 0 < c < C < oo.

During our construction below, c and C will denote two constants, that can in

principle vary from time to time. At the end of the construction we set the value of c to
be the minimal, and the value of C to be the maximal, among all possible values of c
and of C that appeared in the construction, respectively. For the sake of convenience,
the euclidean norm on M2 is denoted by | • |. Throughout the construction, we use

the convenient notations for a pushforward and a pullback of a map5.
Consider a cover of M by Darboux charts

(pi'.Wi -+ Ui C M, i 1,... ,m,

where Wi C M2 is an open set. For each i, choose W- <e IF,;, such that {W-} is still
a cover of M, and moreover for some topological disc D c W[ we have

MD)n<pi(Wi') 0

for all if 1.

5 Assume that we are given a map <p: A -> B. Then tor any subset C C B and a map / : C —> D, the

pullback of / by 0 is the map <j>*f / o </>: (C) —> D. If in addition, </> is injective, then for any
C C A and a map g: C D, the pushforward of g by <t> is the map <t>*f f ° <P~] ' 4>(C) D.
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Let h:R2 -* R be a smooth non-negative bump function compactly supported
in R2 such that:

• The integer translations of {h > 0} /?"' oo)) cover R2, namely, setting
hT(z) := h(z — r), r G Z2, we have UreZ2 {hT > 0} R2.

• There exists a topological disc V D supp(h), such that the integer translations

{V + t}t6Z2 form a minimal cover of R2.

Further, denote

/te>T(z) hx(z/e) h(z/e — r) and VejZ er + eV Cl2
for every e > 0 and r G Z2. Note that |V/ie>T| ^ C/e on R2.

Let e > 0 be small enough. Consider the functions g (<pi)*h(tT, for those r Z2
when the support of /z;T is contained in IT/, where by extending by 0 we view
each such g as a function g: M -» M. For every such g, denote Ug := r/>, (L6jr).
Collect all such functions g for all 1 ^ i ^ m, and denote them by gi,..., gjy, also

setting Ui := Ugr By smoothness of fa and since W( <s W{ for each i, we have
I V(/Tgj I T C/f each time when the support of gj intersects <p>l (IT/).

Denote G := J/fLi Si- F°r small e we have 0 < c $ G ^ C. Moreover,
since for each p e M all but at most C functions among gi,... g# vanish on a

neighbourhood of p, we conclude that for any choice of x\,..., xn g [—1,1] we
have

|Vtf(*igi + ••• + *ivgiv)| c/e
on W-. In particular, \W<p*G\ T C/e on If/'. Denoting f g//G, we conclude
that for any choice of x\,..., xn £ [— 1,1] we have

|V</>*(xi/i -I F xn/n)\ ^ |V0*(*tgt -I h xNgN)\/<p*G

+ |xlgl + ••• + xNgNI • |V<£*G|/(4>*G)2

^C/g

on If/-'.
We claim that K := {C/,-is a desired cover of A/, when g > 0 is small

enough. First, it is a cover of M since {IF/} is a cover of M. Second, clearly

ce2 < area(Ui) < Ce2

for all i. Since for the topological disc D C W[ we have <p\(D) Pi c/;,(IT/) 0 for
all i / 1, and since {Fe>T}TSZ2 is a minimal cover of R2, it follows that

|/ess(We)| >c/G2.

Finally, to show that

pb(U) < C/g2,
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we use the subordinate to V partition of unity f\,, ff that we constructed. Let
x (xi,..., Xff), y (yi,..., yn) £ [—1, l]w. Given any p £ M, choose i such

that p £ W[, and put z (pf1(p). We have

|{xi/i H + xNfN,yifi H f yNfN}(p)\
IW>*Oi/i +--- + xNfN),(pf(yifi + • + yN /n)}(z) I

^\Vti{xxfi + - + xNfN)\-\Vtf(y1fl+- + yNfN)\
C/e2.

This implies that

||{*i/i + • • • + xnIN> Ji/i + • • + yNIN}\\ ^ C/e2

for all x,y £ [—1, 1]^, so we get pb(U) < C/e2.

4. Poisson brackets of small covers

As Leonid Polterovich explained to us, Proposition 1.15 is a surprising application
of the C°-rigidity of Poisson bracket. Let us recall the statement of the C° rigidity
of the Poisson bracket, which was proved by Leonid Polterovich and Michael Entov
in [3]:

Theorem. Let (M, a>) be a symplectic manifold, and let fg: M —> M be compactly
supported smooth functions. Then

\\{f,g}\\= liminf \\{F, G}||,
Loo

F,G >f,g

where in the limit inferior F,G : M —> E are compactly supported smooth functions
as well.

Here || • [| stands for the uniform norm, as before. Now we turn to the proof of
Proposition 1.15.

ProofofProposition 1.15. For any large number R > 0, fix functions g, h:M [0, 1]

such that ||{g, h}\\ > R. Let I > 0 be larger than the Lipschitz constants of both g
and h (with respect to the metric p). Let Vf := {Ui}f=l be a finite open cover such

that the diameter of each [/,• is less than e. For each i £ N}, pick z,- £ Ui,
and notice that for every point z £ Ui,

\g(z) - g(zi)I < le and |h(z) - A(z,-)| < le.

Let F {fi}f=1 be any partition of unity subordinate to Vf and put

x := (g(zi), ...,g(zN)) £ [0,1]^, y := {h{zx),...,h(zN)) £ [0,1]^.
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Then, the functions JT x; f\, yj fj are e-close to g, h respectively: For any point
Z M,

N

g oo - 22Xi fc ^ 122^^ - z(zi ))/» •

i i 1

Since /;(z) 0 whenever z ^ f/;- and |g(z) — g(z,)| < whenever z G t/;, we
have

N

g(z)~22xif>(z) ^Çi^oo-^(z0i./î(z) <22^^)= e-
i i

Similarly,

i=i

h(z)~22yjfj(z) < te

and hence the functions J2i xi fi> 12j yj fj converge uniformly to g, h respectively
when e -> 0. The C°-rigidity of Poisson brackets guarantees that for small enough e,

\\22Xifi(zf22yjfj(-z)\l - Ri1-

This argument holds for any subordinate partition of unity f, and therefore,

pb(Ue) > R/2.

Proofof Theorem 1.16. Let us extend a bit the notion of the Poisson bracket invariant
of a cover. Given a symplectic manifold (M, co), a compact subset K C M, and a

finite open cover K {£/;};<=/ of K, we define

pb(U;K):=inf^ max ||{ £>/,, £ |],

iel 7 6/

where the infimum is taken over all collections 3~ Jf },-6/ of smooth non-negative
functions satisfying fi 1 on K.

Now consider R2" with the standard euclidean metric po, the standard symplectic
form a>o and the standard symplectic coordinates q\, p\,... ,qn, pn. Let B C R2"
be the closed unit ball and let ß: B —> [0,1] be a radial bump function ß ß(r) that
vanishes in a neighborhood of the boundary dB and equals 1 on a neighborhood of
the origin. Consider the functions g q\ ß, h := p\ ß, then the uniform norm
of their Poisson bracket (as functions on B) is at least 1, namely,

\\{g,h}\\>\.
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As before, C°-rigidity of Poisson brackets guarantees the existence of a constant
<$o > 0 (depending on g and h, and therefore on the dimension 2n) such that for any
cover Us° of B consisting of open sets of diameter at most <50,

pb(Us»-,B)>l-\\{g,h}\\>1-.

Without loss of generality we can assume that $o < 1/2.
Given any symplectic manifold (M, &>) with a compatible Riemannian metric p,

there exists 0 <r < 1 and a symplectic embedding <p: rB -> M. Clearly, q>*(a>) m0
and (p*(p) is compatible with co0. One can check that there exists a linear symplecto-
morphism T: ffi2" -> R2" such that T*(cp*p)(0) p0. Denote p := T*(p*p, then

by decreasing r, one can guarantee that (p o T is well defined on rB and that

p\rB > -Po\rB

Let 0 < e < r/4. Given an open cover Ue of M consisting of sets of diameter
at most e with respect to the metric p, we denote by V the collection of pre-images
(<p o T)~l(U) for all U £ U with U C <p o T(rB). Note that V in particular contains
the pre-images by <p o T of all U U intersecting tp o T(^B), hence

pbiy,r-B) < pb{U%

In addition, the diameter of every Kef with respect to p0 is at most 2c.

Denote by fc : Wi2n M2" the homothetic transformation i//f. (x) ex. When
e < • r/4 =: 8(M, p), V := {^0/26(^) I V e V} is an open cover of B, where
the diameter of each V' V is at most 80 with respect to po- Therefore, by our
previous arguments pb(V'-, B) > 1/2. In addition, for any c > 0 and any cover XL

of a compact set K C R2" we have

pb({^c(U) I fell}; fc(K)) 1/c2 • pb(U; K).

In particular,

1 4/ 26 \ 46^ / T \ 46^

2-pHV:8)-
The required bound easily follows.

A. Bounding pbÇU) by the sum of absolute values of Poisson brackets

Proposition A.l. Let (R2", u>q) be the standard symplectic vector space, and let

v\,...vpj £ M2" be vectors that satisfy

N N

£ IM < £11^ II

; 1 i 1
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far all S G Sp(n). Then, there exists a constant c(n) > 0 depending only on the

dimension such that

(A.l)max (o0(J2xiVi, > c(n) • (V|Ml) •

1,1]^ V—, — / V—, '
i l j= 1 i l

Corollary A.2. Let V\,... ,Vn g E2" he any collection of vectors, then

NN N

max m0( Vxm, y^yjVj) > c(n) • Y] \(o0(vi,Vj)\. (A.2)
X,y<i[-\,1]N v —; '

1 1 7 1 1,7 1

We will first prove Corollary A.2 using Proposition A.l.

ProofofCorollary A.2. First, let us show that we may assume that the vectors

vi, spanIR2". Denote V : span{ v i,..., vn }, then it can be decomposed into
a symplectically orthogonal direct sum of a symplectic vector space and an isotropic
one: V Vs © V/- Denoting by P: V -> Vs the projection, both sides of (A.2) are

invariant under the replacement 1>,• i->- Pvi (since a>q\v, 0, and since Vj and Vs

are symplectically orthogonal). Clearly the vectors {Pvi} span the symplectic vector

space Vg. Replacing {uj with {Pvt} and (R2",ft>o) with {Vs.cof), and recalling
that

(F5,ûio) (M2/I,,mo)

for some n' < «Justifies the assumption that the vectors {u;}fLi sPan ®^2"-

Consider the map

N

Sp(n) R, S g»
1 1

This map is continuous with respect to the operator norm, and we claim that it
admits a minimum on Sp(rc), denoted Amin. To see this, take any S G Sp(«)
with II SIIop > L, then the maximal eigenvalue of ST S satisfies X > L2. Let
u G M2" be a corresponding unit eigenvector of STS, namely STSu Xu. Then
for every v G M2",

Il Au II2 (Sv, Sv) (v,STSv) > X (u,v)2 > L2 (u, v}2.

Therefore, î ll^i II
—

A • JA |(w, u,-)| > L a, where

a := min |(w, u,)| > 0
lwl=1 té^N

is independent of S (note that a > 0 due to our assumption, that {u,},- span M2").
This yields a lower bound for the map S g> ]jfLi || S || which grows with operator
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norm. Therefore, the map S i-> Yl!i=i \\$vi j indeed admits a minimum. The

minimizing matrix 5min is symplectic, and therefore both sides of (A.2) are invariant
under composition with it. By replacing {u;} with {Vminu;} we may assume that

N N

i 1 i 1

for every S e Sp(n). Applying Proposition A.l and recalling that

N N N 2

Y \coo(vi,Vj)\ < Y INIHM (X>ll)
i,j — 1 i,j 1 i 1

yields (A.2).

Remark A.3. Let V be a real vector space of dimension 2n, endowed with a non-

degenerate 2-form co. Since (V, co) is linearly isomorphic to (R2", coo), Corollary A.2
implies that for any v\,..., vn e f we have

NN N

\co(vi,Vj) |. (A.3)
7=1

Jy TV jN

t
®(E *«"'» Eyjvj) ^ ck) • E

i l 7 1 7,7 1

Remark A.4. We were informed by Efim Gluskin, that the inequality (A.3) can be

deduced from the Grothendieck inequality, and moreover, this way one gets the sharp

asymptotics of order for the optimal coefficient c(n).

ProofofLemma 1.3. Let (M2n,co) be a closed symplectic manifold and let

{fi}iei C C°°(M) be a finite collection of smooth functions. Without loss of
generality, assume I {1,..., N} for some Ne N. Let p e M be any point.

Applying Remark A.3 to V TpM and vt Xy. (p) (where Xp. denotes the

symplectic gradient of f yields

N N

c(n) Y l{7i'/y}l(p) c(») • E Hz/«(P)<z/7(P))I
i,y=i ij=i

<
x

max M(YxiXfi (P) ' E yJ Xfj {Pï)
<y l » J

g* j

f ,s E v'k/'E ^v.//max
x,3>e[—1,1]
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If we take p G M to be the point where maxm 5Zfy=t Kfi > fj } I's achieved, we
conclude

N N

X

M
(«) max Y \{f ' fj)\ c(n) ' E

1)7 1 ')7 1

< max
*,ye[-

1 7

Before we prove Proposition A.l, let us present some notations. Let {Cy}=1
be a collection of m m(n, 9) cones of angle 9 G (0, 7t/4) that cover the space.
Namely, there exist unit vectors [zj } such that

{u,Zj)
Cj := jw G M2" :

Z* > cosöj,

and UyLjCj — E2n. Below we refer to zj as the center of Cj. Let C G {Cj \J=,
be a cone with maximal sum of norms, namely for all 1 < j < m,

Y nii - E NII-
vi eCj vi eC

ProofofProposition A. 1. First, let us notice that it is enough to prove that there exists

a constant A(n, 6) > 0 such that

2 NNE imi) <A(n,0)- max
^

&>0 ]TE; Y yjvj)- (A-4)
VieC *,ye[-l,l] i=1 j=1

Indeed, by our choice of C we have

N

(ENIl) <m(n,9)2 Y Nil)
i — 1 i),eC

(A4)
TV TV

< m(n, 9)2 A(n, 6) max cop( ^Y.xi vi< El 47 vj)•
1 1 7=1

Setting c := (m2 • A) 1
yields the proposition. Therefore, it remains to prove (A.4).

Set v := (E„,.ec u«)/II Etirée "ill and consider the orthogonal decomposition

M2" span(u) © span(7oii) © (span(u) © span^i))1-
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Here Jo : K2" -^K2" is the linear map satisfying <y(f, rj) (£, J0rj) foranyf, rjel
where (•, •) is the scalar product on M2" (thus, Jo is the "multiplication by the

imaginary unit", if we naturally identify K2n C").
Let S Sp(«) be the symplectic linear map defined by

S(av + bJ0v + w) -av + 2bJ0v + w

for and w e (span(u) © span(Jou))x. Then for every u G M2", looking at

the decomposition u av + bJ0v + w e W2n as above, we get

IIP „ m M
ll^ll2 - INI2 „ II5"!!2 - INI2

||5w|| — ||u|| —— <
||5M|| + || t/1| || M ||

_
a2/4 + 4b2 + ||w;||2 - a2 - b2 - |H|2

INI
3b2

< —— < 3|fi| 3|<w0(M,U)|.
\\u\.

For u e C,a (u, v) > cos(26) ||u|| and

||5m|| \Ja2j\ + 4b2 + ||u>||2

< ^/-cos(20)2 + 4sin(20)2 • ||u||

2
< -\\u_ 3M ii.

where the last inequality holds when we take 6 small enough (e.g. 6 < jt/30).
Writing vj ajV + bjJov + Wj, we have

N

0<£ll5"/ll-l
r'=i

Y II Ml~ IM + Y IIMI-IN
vjtC

-'{y II "til +3 Y I®oOm>/)I-

Vj eC vj £C

We conclude that

Y IM - 9 Y |Û»o(«.WJ)I-

vjeC Vj£C
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Recall that v (X^, eC vi )/ll EVieC v> ||. Setting Xi 1 ifv,- e C and 0 otherwise,

yj sign coo(v, vj) if vj £ C and 0 otherwise, we have

N N

I 12 iivj n) —9 12x'v' ' 12 yjvj)
r,eC vj eC i= 1 7=1

Since C is a cone of angle 9 with a center z, for any u e C we have (m, z) >
cos(0) • || u ||. Therefore,

I 12 v> -(12 Vi'z) 12 (Vi'z) - cos(0)' S IM-
i),eC »,-eC u,-eC vyeC

Combining the above inequalities we obtain

29 NN£ IM) < JJ-- max Ù)0(J2 xivi^ 12 yJvA
\~tc ' vcos(0) ^i-up .e; '

This proves (A.4) and hence the proposition.

B. Proof of Lemma 2.1

We prove the lemma in three steps.

Step 1. We first show the statement of the lemma for measurable subsets £2 c
R2 \ cu(<t>). For doing that, it is enough to consider the case when £2 is compactly
contained in R2 \ cv(<F). Indeed, any given £2 c R2 \ cu(4>) can be exhausted by a

non-decreasing sequence of measurable subsets compactly contained in R2 \ cu(4>).
In particular, (2.1) holds for each subset from the sequence, and by passing to the

limit, we conclude that £2 satisfies (2.1) as well.
Moreover, by partitioning £2 into small pieces, we may assume that £2 is a subset

of a sufficiently small neighbourhood of a given point z R2 \ cv(<$>). Now let

z G R2 \ cu(4>), then z is a regular value of the map 4>, and hence for a small

neighbourhood U of z, the preimage <F_1(t/) is a disjoint union

d>-1(f/)=uf=1^

of open subsets Vk C M, where 3>| vk'-Vk — U is a diffeomorphism for each k.
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Note that N K(s, t) for any (,s\ t) e U. As a result, for any measurable £2 c (/,
we have

f I{/. £}| 0) V [ \df A r/tfl

tV

J] /
fc=t ^
tv

y1 / In
k=iJu

N I ds dt
Jo.

/ K(s,t) ds dt.
Jo.

Step 2. Assume that £2 c cu(«t>), then by Sard's theorem, £2 is of measure zero, and

hence the right hand side of (2.1) vanishes. Denote by Z c O"1 (cw(O)) the set

of regular points of <f> in d>~'(ct;(<I>)). Since O restricts to a diffeomorphism on a

neighborhood of each point in Z, and <t>(Z) c cu(d>) is of measure zero in M2, we
conclude that Z is of measure zero in M (again, with respect to the volume density
given by co). In addition, |{/, g}| equals to the Jacobian of and thus vanishes

on cp(<$>). Therefore, for

d>-1(£2) c <D-1(<m(<ï>)) ZU cp(<i>),

we have

f \{f,g}\o>< [ I{f,g}\<»+ f \{f,g}\(o 0.
J<t>"' (£2) JZ Jcp(<t>)

We conclude that the left hand side of (2.1) vanishes as well, which proves the claim
for this case.

Step 3. Assume £2 c M2 is measurable, and consider the decomposition

£2 (£2 \ cw(<î>)) U (£2 fl cu(O)).

Then, by the previous steps, (2.1) holds for both £2 \ cw(<b) and £2 fl cu(<b), and

therefore holds for their disjoint union as well.
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