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Poisson brackets of partitions of unity on surfaces

Lev Buhovsky, Alexander Logunov and Shira Tanny

Abstract. Given an open cover of a closed symplectic manifold, consider all smooth partitions
of unity consisting of functions supported in the covering sets. The Poisson bracket invariant of
the cover measures how much the functions from such a partition of unity can become close to
being Poisson commuting. We introduce a new approach to this invariant, which enables us to
prove the lower bound conjectured by L. Polterovich, in dimension 2.

Mathematics Subject Classification (2010). 53D99.

Keywords. Poisson bracket invariant, Poisson non-commutativity, partition of unity, symplectic
surface.

1. Introduction and results

Let (M, w) be a closed connected symplectic manifold and let U := {U;j}ies be a
finite open cover of M by displaceable! sets. Any subordinate? partition of unity
F = {fi}ier cannot be Poisson commuting, as follows from the nondisplaceable
fiber theorem [2]. Note that the assumption on the displaceability of sets in U is
crucial — any partition of unity on §2 C R? that depends only on the height z
is Poisson commuting. The study of lower bounds for this non-commutativity was
initiated in [4], where M. Entov, L. Polterovich, and F.Zapolsky used symplectic
quasi-states to prove that

i I1{fi, £}l > const/|1]>.

Here and further on, || - ||: C*°(M,R) — R stands for the uniform (or the 2.°°) norm,
| £l = maxas|f|. Below, we present an improvement of this bound for the case
where M is a surface, see Corollary 1.12.

"We say that a subset § C M is displaceable if there exists a Hamiltonian diffeomorphism ¢: M — M
that displaces its closure, namely ¢(S) N S = 0.

2Given an open cover U = {U;}ies of M, we say that a partition of unity ¥ = {f;}ier is
subordinate to W if supp(f;) C U; foralli € I.
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The non-commutativity of partitions of unity subordinate to a cover U can be also
measured by the Poisson bracket invariant, which was introduced by L. Polterovich

in [10]:
(Y s Y vifib) (1.1)
iel JjeIl

where the infimum is taken over all partitions of unity ¥ subordinate to U. In [10,11],
Polterovich explained the relations between this invariant and quantum mechanics
and conjectured a lower bound for ph(U) in terms of the magnitude of localization
of U:

Conjecture 1.1. Let (M, w) be a closed symplectic manifold, and let U = {U;}icy
be an open cover of M by displaceable sets. Then, there exists a constant C =
C(M,w) > 0 depending only on the symplectic manifold, such that

b(U) :=inf  max
P ( ) F x,ye[-1,1]1

C
pb(U) > o)’ (1.2)
where e(U) := max;ey e(U;) and e(Uj;) is the displacement energy? of U;.
Polterovich also proved several lower bounds for this invariant, which were then
improved and extended by S. Seyfaddini in [12] as well as by S.Ishikawa in [5].
These lower bounds decay in the degree of the cover (which was defined in [11]),
and their proofs rely on “hard” symplectic topology (for example, properties of
spectral invariants). In this paper, we prove Conjecture 1.1 in dimension 2 using only
elementary arguments. Let us mention a recent work of J. Payette [8, 9] which in
particular provides a different (elementary) proof of Conjecture 1.1 in dimension 2,
for all closed symplectic surfaces except for the sphere. See also related recent works
of F. Lalonde and J. Payette [6] and of G. Lu and K. Shi [7].

Remark 1.2. For a closed symplectic surface (M, ®), a connected subset S C M
is displaceable if and only if it is contained in an embedded open topological disc
V' C M with smooth boundary and area(V') < f‘ri“éﬂ In this case, the infimum of
the area of such a topological disc V' is precisely the displacement energy e(S). If a
subset S C M is not displaceable then we have e(S) = +o0.

The following lemma holds for manifolds of general dimension, but we will apply
it to closed surfaces.

Lemma 1.3. Let (M?", w) be a closed symplectic manifold of dimension 2n. Then,
there exists a constant c(n) > 0 depending only on the dimension, such that for every
finite collection of smooth functions { f;}icy on M,

. f. . of. > . i .
(D xifi 2o yiti}| = e -max 3710 Sl
iel JEI i,jel
3For a displaceable subset S C M, the displacement energy of S is the infimum of a Hofer length
Lhor(H) = fol maxys H(-,t)—minys H(-,t) dt, for all time-dependent smooth Hamiltonian functions
H:M x[0,1] — R such that the time-1 map ¢: M — M of the Hamiltonian flow generated by H ,
displaces the closure of S: ¢(S)N S = @.

max
x,ye[—l,l]lil
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In fact, we prove that a pointwise inequality holds, see Appendix A. In Section 1.1
we prove lower bounds for the L* and the L! norms of the sum Zi’jel I{fi, fj}l on
a closed symplectic surface (M2, w), and use Lemma 1.3 for the case where n = 1
to conclude that the same holds for ph(U) up to a constant.

1.1. Poisson bracket on surfaces. The present subsection contains the main results
of this paper (Theorems 1.5 and 1.7) concerning symplectic geometry in dimension
two, and Sections 2 and 3 are devoted to their proofs. The formulations and proofs of
the main results do not assume any knowledge in symplectic geometry, beyond what
is explained in Remark 1.4 below.

Remark 1.4. Given a surface M, endowed with an area form w (in that case we say
that (M, w) is a symplectic surface), the Poisson bracket of a pair of smooth functions
on M , is itself a smooth function on M, which measures how much the differentials of
the functions are non-collinear at each point. More precisely, given f, g € C*°(M),
their Poisson bracket { f, g} € C*(M) is defined by df ndg = {f g}w. For
example, if M = R? with coordinates (x, y), and @ = dx A dy is the standard area
form, then { f, g} = fxg&y — fy&x is the determinant of the 2 x 2 matrix whose rows
are the gradients of f and g. In higher dimensions, the Poisson bracket is naturally
defined on any symplectic manifold, and we refer the interested reader to [1] for
details.

Let (M, w) be a closed connected symplectic surface. Recall that given an open
cover U := {U;}ie; of M, we say that a partition of unity ¥ = { f; };es is subordinate
to U if supp( f;) C U; foralli € I. As before, we denote by || - ||: C*°(M,R) — R
the uniform norm, || /|| = maxas | f|. Let us pass to our first main result.

Theorem 1.5. Let (M, w) be a closed and connected symplectic surface. Let{ f;}icr,
{gj}jers be partitions of unity on M, such that for some real number 0 < A <
area(M) /2, the support of each f[; lies in some topological disc of area not greater
than A, and similarly, the support of each g ; lies in some topological disc of area
not greater than A. Then,

area(M )

ZZ[ |dfz/\dg1|—ZZf 1{fi.gi}l @ (1.3)

iel jeJ iel jeJ

Our second main result is applicable only to a certain class of covers.

Definition 1.6. Given an open cover U = {U;}ier of M, we say thataset Uy € U is
essential it U\ {Uy} is not a cover, that is, U; £, U; # M. We denote by o (U) C 1
the subset of indices corresponding to essential sets in U.

Theorem 1.7. Let (M, w) be a closed and connected symplectic surface. Let U :=
{U;}ier be an open cover of M by topological discs of area less than area(M)/2,
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and let ¥ = { fi }ie1 be any partition of unity subordinate to U. Then,

[ 3 1 sl (14)
M, el

1
mingejcss(u) area(Uy) ’

max ) i 331 = (1.5)
i,jel
where we set the minimum of an empty set to be infinity.

Remark 1.8. « Applying Lemma 1.3 to the lower bounds (1.4), (1.5), we get
corresponding lower bounds for the Poisson bracket invariant ph(U):

c- |I\,ss(u)|
pb(U) > “arcaM) (1.6)
ph(U) > . (1.7)

mingeg, (u) area(Up)’
for an absolute constant ¢ > 0.

» If U is a minimal cover, every set is essential and thus /. (U) = I. In this case
Theorem 1.7 implies that

| X i sz

i,jel
and maxyy Y je; Ui £33 = 1/ (minies area(Up)).
* When the cover U has no essential sets, /.(U) = & and Theorem 1.7 gives a

trivial lower bound for sum of Poisson brackets.

Theorem 1.5 can be reformulated in terms of a cover (whereas now, the cover
can be general, i.e. it does not require to admit essential sets or to consist only of
topological discs):

Theorem 1.5'. Let (M,w) be a closed and connected symplectic surface. Let
U = {Ui}ier, V = {V;}jes be finite open covers of M, and let { f;}ic1, {&j}jes
be partitions of unity subordinate to U, 'V correspondingly. Then,

- - area(M)
IMZZ|{'ﬁ’g’}I Y= 2 max(e(U). e(V))’ (1.8)

iel jeJ

Here e(U) = max;e; e(U;) and e(U;) is the displacement energy# of U; (resp.,
e(V) = max;ey e(V;) and e(V;) is the displacement energy of ;). See Remark 3.5
for an explanation of equivalence of Theorems 1.5 and 1.5’.

Applying the theorem for U = V and {f;} = {g;}, and using Lemma 1.3, we
obtain the affirmative answer to Conjecture 1.1 in dimension 2, as a corollary:

4See Remark 1.2 regarding the notion of the displacement energy in dimension 2.
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Corollary 1.9. Let (M, ) be a closed and connected symplectic surface. Let U =
{Ui }icr be an open displaceable cover of M, then for an absolute constant ¢ > 0 we

have
c

e(U)’

Remark 1.10. The bound in Corollary 1.9, and bounds (1.6) and (1.7) in Remark 1.8,
are sharp in the following sense: on every closed symplectic surface (M, w), one can
construct a sequence of open displaceable covers { Uy }xecn by topological discs, such
that | I.ss(Ug )| ~ k, min;cy area(U;) ~ max;ey area(U;) =~ 1/k, and pb(Ug) ~ k.
See Example 3.7 for details.

pb(U) =

The following definition of a degree of a cover is slightly different than the one
presented by Polterovich in [11]. In fact, the degree below is not larger, and therefore
lower bounds with respect to it hold also for the standard definition.

Definition 1.11. Given a cover U = {U, }jc; of M, we define its degree to be

d:=max#{i €l : x € U;}.
xeM
Corollary 1.12. Let (M,w) be a closed and connected symplectic surface. Let
U = {U; }ieq be open displaceable cover of M and let ¥ = { f; }ie1 be a subordinate
partition of unity. Then,
(1.9)

I
max e S 2 sy

where d is the degree of the cover U.

Remark 1.13. The dependence on d in the bound presented in Corollary 1.12 is
optimal. To see this, take any open displaceable cover U = {U;}iey of M and a
subordinate partition of unity ¥ = { f; }ies, and denote

b(¥) = max [{fi, fi}l.
i,jel

We have b(F) > 0 (by the nondisplaceable fiber theorem [2], or by Corollary 1.12).
For every m € N let U™ := {U;,...,U;}ier be the cover obtained by taking m
copies of each set in U (i.e. U™ contains |/ | - m sets and is of degree d - m, where d
is the degree of U). Consider the subordinate partition ™ := {L £ /... L £y, ..
Then

b(F™) = max
i,jel

(VI

m

decays quadratically in the degree of the cover.

Remark 1.14. The following observation was also independently made by Payette
in [9] while the current article was in press (cf. [8, Remark 4.1 and Lemma 4.3,
p. 14]). In Theorem 1.5, in the case when M is not a sphere, the assumption that
0 < A < area(M)/2 can be omitted. Indeed, assume that M is not a sphere.
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Of course, then without loss of generality we can assume that 0 < A < area(M),
by slightly shrinking the topological discs containing the supports of the functions.
Denote by g = 1 the genus of M, and consider a double cover 7: M — M, where M
is a closed surface of genus 2g — 1. M is naturally endowed with the symplectic form
@ = n*w. Lift the functions to M, denoting f, = fiomandg; = gjom. Each f; is
supported inside a topological disc D; C M of area not greater than A, and by simple
connectedness of D;, its pre-image 7! (D;) is a disjoint union of two topological
discs, where each of these discs has area equal to that of D;. This allows us to
decompose f; = f, 1+ ﬁ » where each of ﬁ 1 f, » is supported in a corresponding
topological disc (of area not greater than A < area(M) = area(M) /2). Similarly,
each g; can be decomposed into g; = g;1 + &;,2, where the supports of g; 1, g2
are disjoint, and each of the supports lies in a topological disc of area not greater
than 4 < area(M)/2 By applying Theorem 1.5 to the collections {ﬁ k¥ 18,1} of
functions on M , we conclude that

> EF [ Wwwslo=T ¥ [ 1F 5

k,l=1i€l jeJ iel jeJ
area(M) area(M )
233 [ Hhee = 25, .
iel jeJ

which implies the inequality (1.3).
Similarly, in Theorem 1.7, in the case when M is not a sphere, the assumption
for the U;’s to have areas less than area(M)/2, is redundant.

1.2. Bounds in higher dimensions. From Corollary 1.9 one can conclude that when
the sets in U are small, pb(U) must be large. The following proposition was
explained to us by Leonid Polterovich and shows that this is true in higher dimensions
as well.
Proposition 1.15. Let (M, w) be any closed symplectic manifold of dimension 2n
and let p be any Riemannian metric on M. For any € > 0, let U be a finite cover
of M by open subsets of diameter at most € (with respect to the metric p). Then,
pb(U) —> oo. (1.10)

€e—>0
One should expect the rate of convergence in Proposition 1.15 to be quadratic
in 1/€. This is due to the fact that the Poisson bracket is homogeneous of degree 2
with respect to composition with homothetic transformations of R?”: Given smooth
functions g,h:R?” — R, and a homothetic transformation v.:R2" — R2",
V¥:(x) = ¢ - x for some ¢ > 0,

{g o Ye, hoye}(x) = *{g, h}(cx).

The next theorem shows that this is indeed the case.
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Theorem 1.16. Consider the setting of Proposition 1.15 and assume in addition
that p is compatible with w. Then, there exists a constant ¢ = c(n) > 0 depending
only on the dimension, and a constant 5 = §(M,w,p) > 0, depending on the
symplectic manifold (M, ®) and the metric p, such that for every € <6,

ph(US) = . (1.11)
€
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2. Essential sets and Poisson bracket

Let M be a closed connected surface, endowed with an area form w. For any
smooth function /', we denote by cp( f) the set of its critical points and by cv(f) =
f(cp(f)) the set of its critical values. Our first lemma explains the relation between
the L' norm of the Poisson bracket of two functions and intersections of their level
sets.

Lemma 2.1. Let f,g: M — R and denote ® := (f,g): M — R2. Consider the
function K:R? — R U {co} defined by

K(s, 1) =#(fT' () N g7 ' (1)) = #D7 ' (s5,1),

then for any Lebesgue measurable set Q C R2,

[ {f g} @ :f K(s,t)dsdt. 2.1)
—1(Q) Q

Note that the integral on the left-hand side is taken with respect to the volume
density given by w. For the proof of the lemma, see Appendix B.

Lemma 2.1 suggests that one can estimate the L! norm of the Poisson bracket
of two functions by counting intersections of their level sets. It turns out that when
[ := f; corresponds to an essential set U; € U, one can bound from below the
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Figure 1. The grey domain on the sphere and its enclosing disc (whose area is hatched).

number of intersections of level sets of f; and level sets of any other function f;
from the partition of unity. For a more formal description we need to present some
notations. Given an open cover U = {U;};er and a subordinate partition of unity
¥ = {fi}ier, denote

Ui(t) :={x e M : f;(x) > t}, (2.2)

fori € I,t > 0. Clearly, for any such ¢, U;(¢t) C U;. Moreover, the boundary
of Uj (t) is contained in the ¢-level set of f;, namely,

al(t) C {x € M & [i(x) = 1}

For a subset U C M, we denote by U¢ := M \ U its complement. The following
definitions will be useful:

Definition 2.2. Let M be a smooth closed surface, and let V' C M be an open (or
closed) set. We say that V' has a piecewise smooth boundary if 9V is a finite union of
disjoint curves I'y, ..., Iy, such that each I'; is a simple, closed, piecewise smooth
and regular curve.

Definition 2.3. Let V C M be an open (or closed) connected subset with a
piecewise smooth boundary, which is contained in a topological disc of area less
than area(M)/2. There exists a unique connected component of M \ V of area
greater than area(M ) /2. The enclosing disc of V' is by definition the complement of
this connected component, and it is denoted by V (see Figure 1 for an example).

Remark 2.4. * For any subset V C M as in Definition 2.3, we have 8V C dV'.

e Let V C M be asubset as in Definition 2.3. Then its enclosing disc V is the open
(respectively, closed) topological disc of minimal area that contains it. In particular,
if U is an open topological disc of area less than area(M)/2 which compactly
contains V, then U D V.
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Proof of Theorem 1.7. In the following we prove that if U; is essential then

Zf i fil @ = 1. 2.3)

jel

Summing (2.3) over all i € I.(U) yields (1.4). To conclude (1.5), apply (2.3) to the
essential set of minimal area and notice that

> [ hste=3 fl{ﬁ,f,}|w<area(0) max 3 14 fie 7}
Jel jeI

j.kel

We turn to prove (2.3). Fix i € I, then there exists a point z; € U; such that
forall j # 1, z; ¢ U;. Since all functions but f; vanish at z;, we conclude that
fi(zi) = landhence z; € U;(s) forall s € (0, 1). Foraregularvalue s € (0, 1) of f;,
denote by V;(s) the connected component of U; (s) that contains z;, and by V;(s) the
enclosing disc of V;(s). We have V; (s) C dV;(s). Denote

S = Vi (s), (2.4)

then y* is connected and is contained in the level set { f; = s}. For every regular
value s € (0,1) of f;, fix y* € y* and for each j # i denote ] := f;(y*) € [0, 00).
Fix j # i for which t; is positive, and let ¢ € (0,7}) be a regular value of f;.
We have y* € U; (1), since f;(y®) = t; > t. Denote by D;(t) the closure of the
connected component of U; () that contains y*, and denote by D j (¢) the enclosing
disc of D (). Then,
dD;(1) c aD; (1) € {f; = 1}.

See Figure 2 for a demonstration of this setting. We claim that y* has at least two
points of intersection with 3D ;j(2). Since the interior of D j () intersects y* (as they
both contain y*), it is enough to show that y* is not contained in D; i (). Recalling
that y* is the boundary of Vi(s), this is equivalent to showing that neither V; (s),
nor its complement V; (s)¢, is contained in D; j(#). Recall that U; is a topological
disc containing D ; (), and hence D j () C U;. The topological disc 17,'(3') contains
z; ¢ U; and thus is not contained in U;. In particular, we conclude that V;(s) is not
contained in D j(¢). Finally, to show that Vi(s)¢ € D j (1), recall that Vi(s) C U;
(since U; is a topological disc containing V; (s)) and therefore

i -
&() < area(Uf) < area(V;(s)°).

area(ﬁj (1)) <area(U;) <
This implies that V;(s)¢ € D ;j(¢) and hence we conclude that y* intersects 3D ()
at least twice.
We conclude that for any j # i, any regular value s € (0,1) of f;, and any
regular value ¢ € (0,) of f;, because of y* C {f; = s}and dD;(r) C {f; = 1},
we have

#fi=sIN{f; =1} =2
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Figure 2. An example for the setting described in the proof of Theorem 1.7. In this example,
the gray region is V;(s), the solid lines are the s-level set of f;, and the outer component
is y*. The dashed line is the boundary of D ;(t), which is a part of the ¢-level set of f;, for

some t < f;(y%).

Putting K;; (s, 1) := #{f; = s} N{f; = t} and applying Lemma 2.1 to f; and f;
with Q := {(s,1) : t € (0, t}?),s € (0,1)} we obtain

fl{f;-,fj}lwz/ i fiY @
M >-1(Q)
:/ Kij(S,[)del‘
Q

1 tj. 1
2[ f 2dtds=2f t}‘fds.
o Jo 0

Now, recalling that#; = f;(y*), and summing the above inequality overall j # i
we get

1
> [ ithstez2Y [ o0

jel J#i
1 1
=2 200 =2 [ 1- 500 ds
J#i

Since we chose y* € y* C {f; = s}, we have f;(y*) = s and thus
' 1

> [t soz2 [ 1osds=21 =1 -

fef ¥ ¥ 0

Remark 2.5. In Theorem 1.7 we assume that the covering sets U; are topological
discs. However, when an open cover U = {U;};es does not necessarily consist of
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topological discs, but the covering sets have piecewise smooth boundary, then we
can pass to a cover by topological discs in two steps.

First, consider the collection V = {V;} ;¢ of all connected components of all
the U;’s. Given any partition of unity ¥ = { f;}ier, subordinate to U, we naturally
get a partition of unity ¥ = {g; } je; subordinate to 'V, as follows: for every V'; being
a connected component of U;, we set g; = fily;, where 1y, is the characteristic
function of V; on M. Moreover, we have

ST L= D] Hai.gill-

isj€l i,jeJ

This reduces proving estimates (1.4) and (1.5) from Theorem 1.7 for the cover U, to
proving them for the cover V. Of course, if the covering sets U; are connected from
the beginning, the cover V is the same as U.

Second, denoting by V; the enclosing disc of V;, for each j, we get a cover
V= {Vj} jes by displaceable open topological discs, and the partition of unity
9 = {gj}je clearly subordinate to V as well. Therefore any lower bound for the
latter cover will also hold for U. However, one should notice that when applying
the first part of Theorem 1.7 to such a general cover U by open sets with piecewise
smooth boundaries (not necessarily by topological discs), the bound will depend on
the number of essential sets in V:

fMZI{ﬁ’fJ}|w2 |Iess(:ﬁ)|- (2.5)
1,]

The second part of Theorem 1.7 can be written in terms of the displacement energy
of sets in V. Indeed, by Remarks 1.2 and 2.4, e(V') = area(}V'). Applying the second
part of Theorem 1.7 to 'V yields

1

. . (2.6)
ming., ) e(Ve)

max Y [Lfi, £33 2
LJ

3. Bounds for general covers

In the general case, estimating the number of intersections of level sets is more
complicated.

Definition 3.1. Two covers U = {U;}ier, V = {V;}jes of M are said to be in
generic position if the following triple intersections of boundaries are empty:

oU; NaUE N 3Vj =@, JdU;N 3Vj Naovy =0, (3.1)

foralli,ke I,i #k,and j,L € J, j #¢.
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The central lemma in the proof of Theorem 1.5 is the following:
Lemma 3.2. Let U = {U;}ie1, V = {V}} es befinite covers of M by open sets with
smooth boundaries, and assume that U and 'V are in generic position. Moreover,
assume that for some 0 < A < area(M)/2, each element of U or V is compactly
contained inside a topological disc of area not greater than A. Suppose in addition
that there exists L € N such that for any point x € M, #{i € I : x € U;} > L and
#jeJ:xeVj}>L. Then

5 G2, area(M).
- 24

Let us illustrate the heuristics underlying the proof of Theorem 1.5 before giving
the details. Let U = {U;}ier, V = {Vj}jes be two open covers of M and let
¥ ={fitier, § = {g;} jes be subordinate partitions of unity, as in the theorem.
In light of Lemma 2.1, we wish to estimate the number of intersections of level sets.
Fix L € N sufficiently large and denote U;x = {fi > %}, Vie = {g;j > %},
where k and £ are positive integers. Then the boundaries of U;; and V; 4 are
contained in level sets of f;, g; respectively. Given x € M, let us estimate the
number of sets in {U;  }; x containing x. For fixed i € /,

#k:x €Uyt ={k: fix) >k/L} > Lfi(x) - 1.

Therefore, the number of sets U; ; containing x is at least

Y Lfix)-1) =L—|I].

#U;; (QU; N aVy) (3.2)

Similarly, one can show that the number of sets V; ¢ containing x is at least L —|J|.
In particular, when L is sufficiently large, {U; x}; x and {V;¢};¢ are open covers
of M, that satisfy the conditions of Lemma 3.2 for L:=1— |[I| — |J]| (namely,
every point in M is contained in at least L sets). Applying Lemma 3.2 to the covers
{Uik}ik- 1V} je we obtain

R M
3 #0Ux NV, > j2 . arealM)
— ’ ’ 24
l’k’.]"e

On the other hand, one expects that in a generic situation, given i, j and sufficiently
large L, the sum

% g#an,k NaVje = é g#(.ﬁ"l(%) “gfl(%))

will approximate the integral of K;; (s, ) := #(f;~" (s) N g7 (). Using Lemma 2.1
and taking the limit L — oo we obtain

L% area(M)
. . > i s iy e e 6
;[Mufl,g,}m_gmwm s,

which implies Theorem 1.5.
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Now let us pass to the actual proofs. We will need the following definition:

Definition 3.3. Let yq,...,y, C M be a finite collection of smooth regular curves
with a finite number of mutual intersection points. Denote [' = y1 U -+ U y,,.

* A connected component of the complement M \ I' is called a face of I

* A point v € I" that lies in the intersection of two (or more) curves is called a vertex
of I.

e ["iscalled an A-division of M , if every face of I" has a piecewise smooth boundary
(as in Definition 2.2) and is compactly contained in an open topological disc of
area not greater than A.

Lemma 3.4. Let I', TV C M be A-divisions of M for some A < area(M)/2, and
assume that no vertex of T lies on T'" and vise versa. Then,

area(M)
24

Proof. First, let us show that by removing parts from I" and I/, we may assume that
their faces are open topological discs. The fact that faces of I', T'" are compactly
contained in open topological discs of area not greater than A will guarantee that I,
I’ will remain A-divisions after removing these parts. More formally, let P C M\ T’
be a face of ', then it is compactly contained in an open topological disc of area not
greater than A. Let P O P bethe enclosing disc of P. Then,

#rnr) > (3.3)

P COP CT

and hence, removing I" N P from [, we obtain that P is a face of I" which is an
open topological disc with piecewise smooth boundary (see Figure 3). Moreover,
since P is compactly contained in a topological disc of area not greater than A, so is
its enclosing disc P. Therefore, I' remains an A-division after removing I N P.

Having this assumption we turn to bound the number of intersections of I" and T"’.
We say that a face G of ' is maximal if it is not properly contained in any face of I''.
Defining similarly maximality of faces of I/, we observe that any non-maximal face
of I is contained in a maximal face of I"/. Therefore, the union of maximal faces
of both I', IV covers M up to a subset of area zero. Let us assume, without loss of
generality, that the maximal faces of I" cover at least half the area of M. Then, since
each face has area smaller than A, the number of maximal faces of I' is at least

area(M)
24

Our next goal is to show that the boundary of every maximal face of I" intersects I'/
at least twice. Together with the fact that any intersection point of I and I’ lies on
the boundary of exactly two faces of I (due to our assumption, that the intersection
points are not vertices) this will conclude the proof.
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Figure 3. In this example the dashed lines are removed from I".

Let G be a maximal face of T, then, there exists a face G’ of I'’ that intersects the
boundary of G,
0GNG #£0

(otherwise G C I", in particular #(I' N T"") = oo, and we are done). We also claim
that 3
0G N (M \ G') #£ 0.

Indeed, otherwise we have G C G’, and since M % G’ is connected (recall that
G’ C M is an open topological disc with a piecewise smooth boundary), we have
either 3 3

GOM\G o GCG'.
The first option is impossible since

M
area(G), area(G') < A < %(),

and in the second option we get
GcdG’

(since G’ has a piecewise smooth boundary, G’ does not contain interior points
of G') which contradicts the maximality of G.
Hence we conclude that

GNG' #0 and G N(M\G’) #0.
Since the boundary dG is a simple closed curve, we get #(dG N dG’) > 2. O

Proof of Lemma 3.2. By our assumptions, the covers U and V are in generic position.
Therefore, we can slightly enlarge the U;’s and V;’s, to obtain:
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(a) After the perturbation, dU; and dU; intersect transversally foralli, j € 1,i # J,
and 0V; and @V intersect transversally for all i, j € J,i # j.

(b) The perturbation did not change the set of intersection points of dU; with dV;,
for every i € I and j € J. In particular, the covers U and V remain to be in
generic position after the perturbation.

(c) After the perturbation, each of the U;’s and V/;’s is still compactly contained in
a topological disc of area not greater than A.

In view of that, without loss of generality we can assume from the beginning that
the above property (a) is satisfied. Moreover, for the sake of convenience we assume
it § =152 | patd F =81, 2.5 | |k

Now let ® € S7, B € S; be permutations on the elements of 7, J respectively,
and consider the unions of curves defined by

T = U (0Uqqy N Uy—py N+ N Uof(l))’
iel

/(R . Cc e c
jer

Let us show that 'y, is an A-division of M. First, by the property (a), each connected
component of M \ 'y is an open set with a piecewise smooth boundary. Let
P C M \ I'y be a connected component and assume for the sake of contradiction
that P is not compactly contained in any topological disc of area not greater than A.
Notice that this assumption implies that P < U; for all i, since every set U; is
compactly contained in a topological disc of area not greater than A. We show by
induction on i € [ that in this case

for all i, which immediately leads to a contradiction, as N;c; U Of(i) = (). Starting
with i = 1, notice that dUy ;) C I'y. Therefore,

and since P & Uy(1), we conclude that P CUJ ). Assuming P CUZ (yN---NUZ,
let us show that P C Uof(l.). Indeed, since

we conclude that P N dU,;y C P NTy = @. Together with the fact that P & Uy ;),
this implies P C Ucf(i) as required.
Similarly, one can show that I‘"g is also an A-division of M. The fact that the

covers U and V are in generic position guarantees that no vertex of 'y lies on [‘:3
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and vice versa. Therefore, we may apply Lemma 3.4 and conclude a lower bound for

the number of intersection points of I'y, and F;}:

area(M)
24

Clearly, 'y C UjeydU; and F”g C UjesdV;, and hence

#Tg NTp > (3.4)

'y N F;} C U;,; (U; N aV;).

Take a point x € U; ;(dU; N dV;) and let us count the number of permutations
a € Sy, B € Sy for which x € Ty N F;}. Leti € I such that x € 9U;, then x € T,
only if = 1(i) < a~ (k) for any k € I such that x € Ug. By our assumption, the
number of indices k € I for which x € Uy is at least L. By symmetry, the number
of permutations ¢ = a~! for which (i) < o(k) for at least L indices k € I is
at most |7|!/(L + 1). Similarly, the number of permutations f for which x € I'g
is at most |J|!/(L + 1). As a consequence, the number of intersection points in
U;,; (0U; N @V;) can be bounded by averaging inequality (3.4) over all permutations
ae Srand B € Sy:

L+1 L-f-l
#U;; (QU; Navy) > Tir Z Z#F nry
a€S1 ﬁESJ

9 area(M)
> L0 Z T e

aESy BeS,
L1y area(M) S I2. area(M) .
24 24

Proof of Theorem 1.5. Given L € N sufficiently large, we wish to use the functions
{fi}ier, {gj}jes to construct covers that satisfy the assumptions of Lemma 3.2.
For every i € I and j € J pick m;,n; € N such that % > maxy f; and
"L—j > maxy gj. Foranyi € [ and 1 < k < m; consider the interval

= ( 0

k—1 k ]
L L
and denote by s; x € J; x an independent variable. We think of s; ; as representing

a value of the function f;. We equip the interval J; x with the normalized Lebesgue
measure [; x := Lds; ;. Similarly, for j € J and 1 < £ < nj, consider the interval

son 4

Ji,k = [

and let t;, € &;¢ be an independent variable. We think of ¢, as representing
a value of the function g;, and equip ;¢ with the normalized Lebesgue measure
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v; ¢ := Ldt;¢. Denote by

e=[] [1 4e ©:=[] [] 4

i€l 1<k<m; JE€J 1<b<n;

the products of the intervals, then € C R™, O C R" for m := ) ;.; m; and
n:=) icyn;. Fors = (six)ix € €andt:= (¢j,);¢ € D, consider the open
sets
Uy = Uik(sig) ={fi > six}, 1=k =m, i€l
Vig=Vieltjo) ={g; >tje}, 1<L=<n;, jel.
Note that when L is sufficiently large, U := {U, }i x and V* := {V},};  are open

covers of M, forany s € € and t € . Let us show that these covers satisfy the
assumptions of Lemma 3.2. Let x € M, then foreveryi € /,

#H1<k<m: xEUSk}—#{l <k <mj: fi(x)> s}
z#{l <k<m;: fi(x)> Z}
= Ljjx) — 1.
Therefore, the number of sets in U® covering x is at least

D Ufix—)=L—|I|>L—-|I|—-|J|

iel
Similarly, the number of sets in V! covering x is at least L — |J| > L — |[I| —|J|.
In addition, we claim that for almost all (s,t) € € x D (namely, except for a set
of measure zero) the covers U* and V' are in generic position. Indeed, by Sard’s
theorem, for almost all (s, t) € € x D, (s; k, ;) is a regular value of the map

M —R? x> (fi(x),8;(x))

for all i, k, j and £. In particular, for such (s, t), the boundaries anS,k and BV;,K
intersect transversely at a finite number of points. Therefore, by restricting the set
of (s, t) slightly further, we can guarantee that the covers U and V* are in generic
position. Recalling that

Uy = fi > six} Csupp(fi) C Ui,

we conclude that each U 5. lies in a topological disc of area not greater than A.

Similarly, each V]t lies in a topological disc of area not greater than A. This
completes the verification of the assumptions of Lemma 3.2, and applying it for
L:=L- |I| —|J | and almost every (s, t), we obtain

2. area(M )

#U aUs, Nav!
tk]E( k g) A4
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Averaging the above inequality over (s, t) € € x D with respect to the normalized
product measure y x v where p := []; x pik and v := [T, , v, we obtain

L2 - area(M)

e s f # Uikt QU NOVE ) dpu(s) do(t)

< [ 3 HOUS NVY,) du(s) dv()

i,kij"e

K ¢
T T

— E ﬁ] [@1 #(ans’k N 3Vj[,£) Ak (six) dvj,g(tj,g)
ket Jeot

ik,jt

k ¢
L L
=1* ) L—l /z_l #OUF, NV} ) dsikdijg. (3.5)

ik,jt® L YL

For any values of s; x and ¢; ¢, we have U}, = d{ f; > six} C fi_l(s,-,k) and
WV}, = dlg; > tje} C g5 (),0)- Hence from (3.5) we conclude

L?-area(M) (L —|I|—|J|)? area(M)
24 N 24

k £
L s

= L? 2 ﬁ—l L_l #(fi_l (i) N g}l (Ij,z)) dSi,k dtj’g.
E )

ik,jt

(3.6)

Now we wish to use Lemma 2.1 in order to obtain a lower bound for the Poisson
brackets of the functions. Denote

b =i.g))M — R?
and set k-1 & B 4
. — 1k —1 < 2
Qk,g = (—L ,L)X(—L ,L)CR .
Applying Lemma 2.1 to each term of the sum in (3.6), we obtain

L—|I|—]|J])?-area(M —~ -
(L—=|I|—1|J]) ( )SLZ Z[ #OT Gig) N g7 (t5.0)) dsige ditjg
2A ik _],e Qk.f

-y | (i g5} o
0797 Qk.e)

i,k,J,
=2y [ thele
g3 M

where in the last inequality we use the fact that the domains {Q ¢}« ¢ are disjoint,
and so are their pre-images under ®; ; for fixed i, j (in fact, it follows from the proof
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of Lemma 2.1 that this inequality is an equality, since the union of the € ¢’s contains
®; ; (M) up to a set of measure zero). We conclude that

(L—|I|—1|J])* area(M)
> {fi.gi} o= :
ujj; '

L2 24

area(M)
Lsoo 24

which proves the claim. [

Remark 3.5. Let us comment about equivalence of Theorems 1.5 and 1.5
(cf. Remark 2.5). Due to Remark 1.2, in case when the partitions of unity U
and 'V consist of connected open sets, the statement of Theorem 1.5’ is equivalent to
Theorem 1.5. If, however, not all the elements of the covers U and V are connected,
then the statement of Theorem 1.5 still follows from Theorem 1 5.

Indeed, consider the collection U = {U };<7 of all connected components of

all the U;’s, and similarly, consider the collection V= {V } 7 of all connected
components of all the V;’s. Given any partition of unity ¥ = { f, }ier, subordinate
to U, and a partltlon of unity % = {gj}jes, subordinate to 'V, we naturally get a

partition of unity 7 =T ﬁ }; <7 subordinate to U and a partition of unity g = {8/ }J cF

subordinate to 'V, as follows. For every Uk being a connected component of U;, we
set

Jie = filg,,
where ]lﬁk is the characteristic function of Uy on M. The description of the partition
of unity € is similar. Of course, in general the covers U and V might be infinite,

but since the functions f; and g; have compact support, it follows that f; and g; are
non-trivial only for a finite numberof i € I and j € J. We have

Yo S EN= Y 1ifgs

ief,jef iel,jed

on M. This reduces proving the statement of the theorem for the covers U, V, to
proving it for the covers U, 'V consisting of connected open sets.

Remark 3.6. In fact, the following more generalized formulation of Theorem 1.5
holds. Let M be a closed and connected surface endowed with an area form w, and
let { fitier, {gj}jes be smooth functions on M, such that for some real number
0 < A < area(M)/2 we have:

(1) The support of each f; lies in some topological disc of area not greater than A,
and similarly, the support of each g; lies in some topological disc of area not
greater than A.
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@) Yierlfil = land Y ;o lgil > L.
Then, (1.3) holds for { f;}, {g;}.

To see this, notice first that the proof of Theorem 1.5 holds for non-negative
functions with the above properties. Therefore, given arbitrary functions { f;}, {g;}
that satisfy these conditions, one can construct non-negative functions in the following

way. Fix § > O sufficiently small and let p: R — [0, c0) be a smooth even function
satisfying:

 p(t) =0fort € [-4,4],

e p(t) > |t|—26forallt € R,
« o/(t) <1forallt € R.
Setting

fi=Q0=2118)" -po fi and F;:=(1-2J18)" -pog,

they are clearly non-negative and they are supported in U; and V; respectively. In
addition, for any x € M,

Y fix)=@a-2118)7"D po f;
iel iel

> (1=2/118)~" ) (1fil —26)
iel

> (1-2|118)7'(1 - 2|118) = 1.

Similarly, »_ j gj(x) > 1 and hence we may apply Theorem 1.5 to the functions
{ﬁ}i, {g;}, and conclude

area(M) - 2
T_;[Ml{fl,g,}m
= (1=2[1|15)(1 =21J18) Y | Wpo fi.pog}w
irJ [M J

5(1—2|1|5)(1—2l1|5)z /i, 8} @.

Taking § — 0 we obtain (1.3).

Let us explain how to deduce Corollary 1.12 from Theorem 1.5.

Proof of Corollary 1.12. Applying Theorem 1.5" for U = 'V and {f;} = {g;} we

obtain (M)
area
[lgli{ﬁ,ff}l =
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The Poisson bracket of two functions { f;, f;} is supported in the intersection of their
supports

supp(f;) N supp(fj) C Ui N U;.

Hence, given x € M, the function { f;, f;} does not vanish at x only if x € U; N Uj;.
Therefore, by the definition of d, the number of non-vanishing terms in the sum

> KA i)

L,J

is at most d?. We conclude that

[ 1th fitlo < araymax 3 1 S}
i,jel i,jel
< dzarea(M)in}a;; I{fis fiH- O

The following example shows that the bounds appearing in Theorem 1.7 and
Corollary 1.9 are sharp.

Example 3.7. Let (M, w) be a closed and connected symplectic surface. In order to
demonstrate the sharpness of the bounds presented in Theorem 1.7 and Corollary 1.9,
let us construct a family of open covers { U€ }¢~o of M by topological discs, such that

ph(US) < C/e?, |Ies(US)| > /€2, and ce? < area(U;) < Ce?,

for some constants 0 < ¢ < C < 0.

During our construction below, ¢ and C will denote two constants, that can in
principle vary from time to time. Atthe end of the construction we set the value of ¢ to
be the minimal, and the value of C to be the maximal, among all possible values of ¢
and of C that appeared in the construction, respectively. For the sake of convenience,
the euclidean norm on R? is denoted by | - |. Throughout the construction, we use
the convenient notations for a pushforward and a pullback of a map3.

Consider a cover of M by Darboux charts

oW, —U,CM, i=1,...,m,

where W; C R? is an open set. For each i, choose W/ € W, such that {W}} is still
a cover of M, and moreover for some topological disc D C W] we have

p1 (D) N (W) =0
forall i # 1.

5 Assume that we are given amap ¢: A — B. Then for any subset C C B andamap f:C — D, the
pullback of f by ¢ is the map ¢* f = fo¢p:¢~(C) — D. If in addition, ¢ is injective, then for any
C C Aandamap g: C — D, the pushforward of g by ¢ is themap ¢ f = fo¢p 1:¢(C) — D.
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Let #:R? — R be a smooth non-negative bump function compactly supported
in R? such that:

* The integer translations of {# > 0} = hA~1((0,00)) cover R?, namely, setting
he(z) := h(z — 7), v € Z?, we have U g2 {hy > 0} = R2,

* There exists a topological disc V D supp(h), such that the integer translations
{V + t},cz2 form a minimal cover of R2.

Further, denote
heo(z) = h.(z/e) =h(z/e —1) and V., =€t +€eV CR?

for every € > 0 and t € Z2. Note that |Vhe ;| < C/e on R2.

Let € >0 be small enough. Consider the functions g = (¢; )+ ¢, for those t € Z?
when the support of h ; is contained in W)/, where by extending by 0 we view
each such g as a function g: M — R. For every such g, denote Uy := ¢; (Ve ¢).

Collect all such functions g for all 1 < i < m, and denote them by g1,...,gn, also
setting U; := U,,;. By smoothness of ¢; and since W/ € W; for each i, we have
|V¢*gi| < C/e each time when the support of g; intersects ¢; (W)).

Denote G := Y | g;. For small ¢ we have 0 < ¢ < G < C. Moreover,
since for each p € M all but at most C functions among g¢,...,gn vanish on a
neighbourhood of p, we conclude that for any choice of xi,...,xy € [—1,1] we
have

Vo (x181 + -+ xngn)| < C /e
on W/. In particular, |[V¢ G| < C/e on W/. Denoting f; = gi/G, we conclude
that for any choice of x,...,xy € [—1,1] we have

Ve (x1 f1 + -+ xn /)| < VP (x181 + -+ xngn)I/¢7C
+xig1 + -+ xvgnl - [VH]GI/ (4] G)’
<C/e
on W/.
We claim that U := {U;};=1,... ~ is a desired cover of M, when € > 0 is small
enough. First, it is a cover of M since {W/} is a cover of M. Second, clearly

ce? < area(U;) < Cie®

for all i. Since for the topological disc D C W| we have ¢;(D) N ¢;(W}) = @ for
alli # 1, and since {V ;},cz2 is a minimal cover of R?, it follows that

| Loss (US)| = ¢/ €2.

Finally, to show that
ph(U) < C /€2,
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we use the subordinate to U partition of unity fi,..., fy that we constructed. Let
x=(x1,....,xn5),y = 1,...,yn) € [-1,1]". Given any p € M, choose i such
that p € W/, and put z = ¢; ' (p). We have

[{x1/1+--+xnfn.y1/1+ -+ yn Ini(p)l
= o7 (x1 i+ +xnIN) @7 i+ + yn fN)}E)]
S|V (e fi+ -+ xn SN IV O fi + -+ yn i)
< C/é.

This implies that

{x1 fi+-+xvfv.nfi+-+ynfnil <C/e

forall x, y € [-1, 1], so we get ph(U) < C/€>.

4. Poisson brackets of small covers

As Leonid Polterovich explained to us, Proposition 1.15 is a surprising application
of the C-rigidity of Poisson bracket. Let us recall the statement of the C rigidity
of the Poisson bracket, which was proved by Leonid Polterovich and Michael Entov
in [3]:

Theorem. Let (M, w) be a symplectic manifold, and let f,g: M — R be compactly
supported smooth functions. Then

If.83ll = liminf [[{F, G},

F.G——> f,g
where in the limit inferior FF,G: M — R are compactly supported smooth functions
as well.
Here || - || stands for the uniform norm, as before. Now we turn to the proof of

Proposition 1.15.

Proof of Proposition 1.15. For any large number R > 0, fix functions g, h:M — [0, 1]
such that |[{g, A}|| > R. Let £ > 0 be larger than the Lipschitz constants of both g
and A (with respect to the metric p). Let U€ := {U; }1N= , be a finite open cover such
that the diameter of each U; is less than €. Foreachi € {1,..., N}, pick z; € U;,
and notice that for every point z € U;,

lg(2) —g(zi)| <te and |h(z) —h(z)| < Le.

LetF = {f; }zN=1 be any partition of unity subordinate to U€ and put

x:=(g(z1),....,g(zn)) € [0, 11V, y = (h(z1),...,h(zn)) € [0, 1]V,
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Then, the functions ) ; x; fi, > j ¥jfj are e-closeto g, h respectively: For any point
zeM,

N
2 = Y xi fi2)| = | D@ — G /).
i i=1

Since fi(z) = 0 whenever z ¢ U; and |g(z) — g(z;)| < £e whenever z € U;, we
have

N
8@ =Y x5 fi)| = Y12 - gGIfi(2) = Y befi(z) = te.
i i i=1

Similarly,

he@) Yy fi()| < te
J

and hence the functions ) ; x; fi, > i Vi fj converge uniformly to g, h respectively
when € — 0. The C-rigidity of Poisson brackets guarantees that for small enough e,

[{ S siser T yis@)] = v
Y j

This argument holds for any subordinate partition of unity ¥, and therefore,
pb(U°) > R/2. ]

Proof of Theorem 1.16. Letus extend a bit the notion of the Poisson bracket invariant
of a cover. Given a symplectic manifold (M, w), a compact subset K C M, and a
finite open cover U = {U; }ies of K, we define

{inﬁ,zyf'fj}”,
iel jel

b(U; K) :=inf max
P ) F x,ye[-1,1]/11

where the infimum is taken over all collections ¥ = { f; }ie; of smooth non-negative
functions satisfying ) ;.; fi = 1 on K.

Now consider R2" with the standard euclidean metric py, the standard symplectic
form wg and the standard symplectic coordinates q1, pi....,Gn, Pn. Let B C R?"
be the closed unit ball and let 8: B — [0, 1] be a radial bump function 8 = B(r) that
vanishes in a neighborhood of the boundary dB and equals 1 on a neighborhood of
the origin. Consider the functions g := ¢q; - B, h := p; - B, then the uniform norm
of their Poisson bracket (as functions on B) is at least 1, namely,

I{g. A}l = 1.
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As before, C-rigidity of Poisson brackets guarantees the existence of a constant
do > 0 (depending on g and h, and therefore on the dimension 2n) such that for any
cover U% of B consisting of open sets of diameter at most &g,

1 1
POU™: B) = (g}l =

Without loss of generality we can assume that 69 < 1/2.

Given any symplectic manifold (M, w) with a compatible Riemannian metric p,
there exists 0 <r <1 and a symplectic embedding ¢:rB — M. Clearly, ¢* (@) =wy
and ¢™* (p) is compatible with wy. One can check that there exists a linear symplecto-
morphism 7': R?” — R?" such that T*(¢*p)(0) = po. Denote p := T*¢*p, then
by decreasing r, one can guarantee that ¢ o 7" is well defined on r B and that

1
P|rB = 2,POIrB

Let 0 < € < r/4. Given an open cover U€ of M consisting of sets of diameter
at most € with respect to the metric p, we denote by 'V the collection of pre-images
(poT) W (U) forall U € U with U C ¢ o T(rB). Note that 'V in particular contains
the pre-images by ¢ o T of all U € U intersecting ¢ o T'(5 B), hence

pb(V: 3 B) < ph(U).

In addition, the diameter of every V' € V with respect to pg is at most 2e.

Denote by ¥.: R2" — R2" the homothetic transformation ¥.(x) = cx. When
€ <8g-r/4=:8(M,p),"V = {Y3,2(V) |V € V}is an open cover of B, where
the diameter of each V' € V' is at most &y with respect to pg. Therefore, by our
previous arguments ph(V’; B) > 1/2. In addition, for any ¢ > 0 and any cover U
of a compact set K C R?" we have

pb({Ye(U)|U € U}y (K)) = 1/c*- ph(U; K).

In particular,

1 . 4¢2 2¢ 4¢2 4€? .
= < ph(V';B) = 82 pb( 5 B) < 82 pb('V 23) < 52 = PB{U").

The required bound easily follows. O

A. Bounding ph(U) by the sum of absolute values of Poisson brackets

Proposition A.1. Let (R?",wq) be the standard symplectic vector space, and let
v1,...vn € R?" be vectors that .s'ati.sfy

levzll <Z|[sz||

i=1
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for all S € Sp(n). Then, there exists a constant ¢(n) > 0 depending only on the
dimension such that

N N N »
max ao( Y xivi, Y yi0;) zeon- (X lul) . AD
=1 j=1

x,y€[-1,1]V i=1
Corollary A.2. Let vy, ...,vy € R?" be any collection of vectors, then
N N N
max wo(ZXfo,Zijj) > c(n) - Z lwo (vi, vj)l. (A.2)
x,yel-L1% =1 F=1 ij=1

We will first prove Corollary A.2 using Proposition A.1.

Proof of Corollary A.2. First, let us show that we may assume that the vectors
v1,...,vyspanR?” Denote V := span{vy,..., vy}, thenitcanbe decomposed into
a symplectically orthogonal direct sum of a symplectic vector space and an isotropic
one: V = Vs & V. Denoting by P:V — Vg the projection, both sides of (A.2) are
invariant under the replacement v; — Pv; (since wo|y, = 0, and since V7 and Vg
are symplectically orthogonal). Clearly the vectors { P v; } span the symplectic vector
space Vg. Replacing {v;} with {Pv;} and (R?",w,) with (Vs,wg), and recalling
that
(Vs, wp) = (R*™, wg)

for some n” < n, justifies the assumption that the vectors {Ui}?": , span R2",
Consider the map

N
Sp(m) >R, S>> [|Svil.

i=1

This map is continuous with respect to the operator norm, and we claim that it
admits a minimum on Sp(n), denoted S,;,. To see this, take any S € Sp(n)
with || S|lop > L, then the maximal eigenvalue of ST S satisfies A > L2. Let
u € R2" be a corresponding unit eigenvector of S7 S, namely S” Su = Au. Then
for every v € R?”",

ISv|> = (Sv, Sv) = (v, STSv) > A - (u,v)* > L? (u,v).

Therefore, Z;N=1 |Svi|| = L->; [{u,v;})| = L -a, where

a := min Z [(w,v;)| >0
lwi=1, =y
is independent of S (note that ¢ > 0 due to our assumption, that {v;}; span R?").

This yields a lower bound for the map S ZIN:I |Sv;|| which grows with operator
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norm. Therefore, the map S ZlNz 1 1Sv;]| indeed admits a minimum. The
minimizing matrix Spyin is symplectic, and therefore both sides of (A.2) are invariant
under composition with it. By replacing {v; } with {Sminv;} we may assume that

Zuv, I < ZnSv,n

i=1
for every S € Sp(n). Applying Proposition A.1 and recalling that

N

N N 2
> loo(i vl = 3 lill-llogl = (2 il)

ij=1 i,j=1 i=1

yields (A.2). u

Remark A.3. Let V be a real vector space of dimension 2n, endowed with a non-
degenerate 2-form . Since (V, w) is linearly isomorphic to (R?”, ), Corollary A.2
implies that for any vy, ...,vy € V we have

N N N
max a)(inv;—,Zijj) > c(n) - Z lw(vi,vj)|. (A.3)

o N
x,y€l-1,1] i=1 J=1 1, je=1

Remark A.4. We were informed by Efim Gluskin, that the inequality (A.3) can be
deduced from the Grothendieck inequality, and moreover, this way one gets the sharp

asymptotics of order —L_ for the optimal coefficient ¢(n).
Jn

Proof of Lemma 1.3. Let (M?",w) be a closed symplectic manifold and let
{fitier C C®(M) be a finite collection of smooth functions. Without loss of
generality, assume [ = {1,..., N} for some N € N. Let p € M be any point.

Applying Remark A3 to V = T,M and v; = X 1, (p) (where X ¢, denotes the
symplectic gradient of f;) yields

N N
c(n)- D Lfi. fi}l(p)=cm)- > |o(X;(p). Xz, (p))]

i j=1 bf=1

< max (szXf,(P) ZyJXf,(p))

_x,yE[—l,l]N

~  max {lefz,Zy,fj}(p)

x,ye[-1,11¥
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If we take p € M to be the point where max s ij=l |{fi. fj}| is achieved, we
conclude

N N
c(n) -max D |{fi i}l =) Y Wfi £i3(p)

i,j=1 i,j=1
<  max { xi fi, }
el N Z i fi Z)’j Jit(p)
S NT) N8 S e
xoyelo11]V ZE: lfl Zj:yjfj

Before we prove Proposition A.1, let us present some notations. Let {C; }'J’?:l
be a collection of m = m(n, 8) cones of angle 8 € (0, w/4) that cover the space.
Namely, there exist unit vectors {z;} such that

(u,z;)
4l

and UT_,C; = R2", Below we refer to z; as the center of C;. LetC € {C; Y1
be a cone with maximal sum of norms, namely forall 1 < j < m,

> vl = Y il

v;€C; v;eC

Ci = {ueRZ”: ECOSQ},

Proof of Proposition A.l. First, let us notice that it is enough to prove that there exists
a constant A(n, #) > 0 such that

N N
2
||v-|[) <A(m,0)- max wo( Xy 075 y-v-). (A4)
(U,Ze:c ; L ; Vi ; ey
Indeed, by our choice of C we have

o 2 5 2

(D twill)” < mer.0)- (3 il

i=1 v, eC

(A4)

N N
< m(n,9)2.A(n,8)- max a)g(Zx,-vi,Zijj).
i=1 i =1

x,y€[-1,1]

Setting ¢ := (m? - A)~! yields the proposition. Therefore, it remains to prove (A.4).
Set v := (3_,,ec Vi)/ll 2o, ec vill and consider the orthogonal decomposition

R?" = span(v) @ span(Jov) ® (span(v) &) span(ng))l.
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Here Jo: R?" — R2" is the linear map satisfying (£, n) = (€, Jon) forany £, n € R?",
where (-,-) is the scalar product on R?" (thus, Jy is the “multiplication by the
imaginary unit”, if we naturally identify R>" >~ C").

Let S € Sp(n) be the symplectic linear map defined by

1
S(av +bJov + w) = Eav +2bJov + w

for a,b € R and w € (span(v) @ span(Jov))*. Then for every u € R?", looking at
the decomposition ¥ = av + bJyv + w € R?" as above, we get

|Sul® — Ilul® _ [1Sul® — flul?

[[Suell — flull = =
[Sull + fJu] ]
a’/4 + 407 + |w|® —a® — b* — |w]?
[Jul
2

< ] = < 3|h| = 3|wo(u, v)|.

Foru e C,a = (u,v) > cos(20) - |u|| and

ISull = va2/4 + 4b2 + ||w]|?

1
< \/Z c0s(20)? 4 45sin(260)2 - ||u]|
2
= g”””’

where the last inequality holds when we take 6 small enough (e.g. 6 < m/30).
Writing v; = ajv + b; Jov + w;, we have

0<Z||Sv,u vl
= Z 1S Il = loll+ > I1Svjll = llvjll

UJEC v; ¢C
<—= Z il +3 D lwo(w, v))l.
vjeC v;j¢C

We conclude that

D il 9 ) lwo(v.v))-

v;eC v, ¢C
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Recall thatv = (3_,,. cc vi)/ [ 2_y,ec Vill- Setting x; = 1ifv; € C and O otherwise,
yj = signwo(v,v;) if v; ¢ C and O otherwise, we have

| 2ol ) =en( L o)

Since C is a cone of angle 6 with a center z, for any u € C we have (u,z) >
cos(0) « ||u||. Therefore,

“ Z V; 2( Z vi,z): Z(vi,z) > cos(6) - Z vl
v;eC

v;eC v;eC v;eC

Combining the above inequalities we obtain

(3 o) < mx,ye[-11]~ (Zx,ul,Zy,w)

v,eC i=1

This proves (A.4) and hence the proposition. []

B. Proof of Lemma 2.1
We prove the lemma in three steps.

Step 1. We first show the statement of the lemma for measurable subsets 2 C
R? \ cv(®). For doing that, it is enough to consider the case when € is compactly
contained in R? \ cv(®). Indeed, any given Q C R? \ cv(®) can be exhausted by a
non-decreasing sequence of measurable subsets compactly contained in R? \ cv(®).
In particular, (2.1) holds for each subset from the sequence, and by passing to the
limit, we conclude that €2 satisfies (2.1) as well.

Moreover, by partitioning €2 into small pieces, we may assume that €2 is a subset
of a sufficiently small neighbourhood of a given point z € R? \ cv(®). Now let
z € R?\ cv(®P), then z is a regular value of the map ®, and hence for a small
neighbourhood U of z, the preimage ®~1(U) is a disjoint union

o N U) = U¥_ W

of open subsets Vy C M, where ®|y,:Vy — U is a diffeomorphism for each k.
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Note that N = K(s,t) for any (s,t) € U. As a result, for any measurable Q C U,
we have

N
[ |{f,g}lw=2f |df Adg]
o-1(Q) = Ivne1@)

N
= Z[ lo-10) - | df A dg|
Vi

= f K(s,t)dsdt.
Q

Step 2. Assume that 2 C cv(®), then by Sard’s theorem, €2 is of measure zero, and
hence the right hand side of (2.1) vanishes. Denote by Z C ®~1(cv(®)) the set
of regular points of ® in ®~!(cv(®P)). Since ® restricts to a diffeomorphism on a
neighborhood of each point in Z, and ®(Z) C cv(®) is of measure zero in R?, we
conclude that Z is of measure zero in M (again, with respect to the volume density
given by w). In addition, |{f, g}| equals to the Jacobian of ® and thus vanishes
on ¢p(®). Therefore, for

Q) C o7 (cv(P) = Z Ucp(d),

we have

/d:'—'(sz)'{'ﬁg}lwszl{ﬂg}lw+fcp(¢)|{ﬂg}|w:0.

We conclude that the left hand side of (2.1) vanishes as well, which proves the claim
for this case.

Step 3. Assume 2 C R? is measurable, and consider the decomposition
Q = (Q\ cv(®) U (QNcu(d)).

Then, by the previous steps, (2.1) holds for both 2 \ cv(®) and Q2 N cv(P), and
therefore holds for their disjoint union as well.
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