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Simple groups of birational transformations in dimension two

Christian Urech*

Abstract. We classify simple groups that act by birational transformations on compact complex
Kahler surfaces. Moreover, we show that every finitely generated simple group that acts non-
trivially by birational transformations on a projective surface over an arbitrary field is finite.
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1. Introduction and results

Let S be a surface over a field k and denote by Bir(S) its group of birational
transformations. If S is rational, this group is particularly rich and interesting. In
this case it is isomorphic to the plane Cremona group

Cr2(k) := Bir(P2).

In the last decade numerous results about the group structure of the plane Cremona

group have been proven (see [10] for an overview). One of the main techniques to
better understand infinite subgroups of Cr2(k) was the construction of an action by
isometries of the plane Cremona group on an infinite dimensional hyperbolic space
H°°(P2) and the use of results from hyperbolic geometry and group theory. For
instance, it had been a long-standing open question, whether the plane Cremona group
is simple as a group until Cantat and Lamy showed in 2012 that it is not [13]. The
main idea to prove this result was to use techniques from small cancellation theory,
an approach that has been refined by Shepherd-Barron and Lonjou (see [27,33]).
In this paper we take these results as a starting point to give a classification of all

simple groups that act non-trivially by birational transformations on compact complex
Kahler surfaces. Our main result is the following:

Theorem 1.1. Let G be a simple group. Then:

(1) G acts non-trivially by birational transformations on a rational complex
projective surface ifand only if G is isomorphic to a subgroup of PGL3(C).

(2) G acts non-trivially by birational transformations on a non-rational compact
complex Kühler surface ofnegative Kodaira dimension ifand only if G is finite
or isomorphic to a subgroup of PGL2(C).

(3) G acts non-trivially by birational transformations on a compact complex Kühler
surface S ofnon-negative Kodaira dimension ifand only if G is finite.

It should be emphasized that part (2) and (3) of Theorem 1.1 are not hard to

prove using some well-known facts about groups of birational transformations of
non-rational compact complex surfaces (see Section 2.7). Whereas for the proof of
the first part we will use some rather difficult theorems and lengthy arguments.

An element / 6 Cr2(k) is called elliptic, parabolic or loxodromic if the

isometry of the hyperbolic space H°°(P2) induced by / is elliptic, parabolic
or loxodromic respectively. This distinction is closely linked to the dynamical
behavior of / (see Section 2.2). The subgroup $ C Cr2(C) of elements preserving
a given rational fibration is called the de Jonquières subgroup. It is isomorphic
to PGL2(C) k PGL2(C A faithful and regular action of an algebraic group H on

a rational projective surface S induces an embedding of H into Cr2(C) defined up to

conjugation; the image is called an algebraic subgroup (see Section 2.4 for details).
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We will give the following precise description of simple subgroups of Cr2(C):
Theorem 1.2. Let G C Cr2(C) be a simple group. Then:

1 G does not contain loxodromic elements.

(2) If G contains a parabolic element, then G is conjugate to a subgroup off.
(3) Ifall elements in G are elliptic, then either G is a simple subgroup ofan algebraic

subgroup ofCr2(C), or G is conjugate to a subgroup off.
Theorem 1.1 naturally leads to the question about the classification of simple

subgroups of PGL3(C) and PGL2(C). Obvious classes of simple subgroups
of PGL2(C) are finite simple subgroups, or subgroups of the form PSL2(k),
where k C C is a subfield. It is unclear, whether there exist other examples. In
fact, already the following question seems to be open:

Question 1.3. Does PSL2(Q) contain proper infinite simple subgroups?

Question 1.3 can be seen in the context of a more general question that has been

asked by McKay and Serre (see [11], [30, 15.57] for details).
If we consider only finitely generated simple subgroups of Bir(S), we do not

have to restrict ourselves to the field of complex numbers and we can use different
techniques. Recall that a group G satisfies the property of Malcev if every finitely
generated subgroup T C G is residually finite, i.e. the intersection of normal
subgroups of finite index is the identity. Malcev showed that linear groups satisfy this

property [28], Other groups that fulfill the property of Malcev include automorphism

groups of schemes over any commutative ring [2, Corollary 1.2]. In [8], Cantat asked

whether the plane Cremona group has the property of Malcev, a question that is still
open. Finitely generated simple subgroups of groups with the property of Malcev
are always finite. We will prove the following result (where surfaces are always
considered to be geometrically irreducible):

Theorem 1.4. Let S be a surface over a field k and V C Bir(.S') a finitely generated
simple group. Then T is finite.

In other words, all finitely generated simple groups of birational transformations
in dimension 2 are finite. From the classification of finite subgroups of Cr2(C)
(see [20]) we obtain in particular:

Corollary 1.5. A finitely generated simple subgroup ofCr2(C) is isomorphic to

Z /p Z, for some prime p, A5, A6, PSL2(7).

The conjugacy classes of these finite groups are classified in [20],

Acknowledgements. I express my warmest thanks to my PhD-advisors Jérémy Blanc
and Serge Cantat for their guidance during this work, their constant support and

helpful comments on previous versions of this text. I am indebted to Michel Brion
and Ivan Cheltsov for numerous helpful comments on this work. I also thank Vincent
Guirardel, Stéphane Lamy, Anne Lonjou and Susanna Zimmermann for interesting
discussions.
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2. Preliminaries

We always assume that k is a fixed algebraically closed field (unless stated explicitely
otherwise). If we choose homogeneous coordinates [x : y : z] of P£, every element

/ e Cr2(k) is given by

[x : y : z] [f0(x,y,z) : fi(x,y,z) : f2(x,y,z)\,

where fo, f\, f2 £ k[jc, y, z] are homogeneous polynomials of the same degree and

without a non-constant common factor. We will identify / with [f0 : j\ : f2]
by abuse of notation. With respect to affine coordinates (x,y) [x : y : 1], the

birational transformation / is given by (x, y) i—> (F, G), where

^ fo(x,y, 1) ^ fi(x,y, 1)_,,F ~r< iw G m r: e
f2(x,y, 1) f2(x, y, 1)

When working with affine coordinates, we identify / with (F,G).

2.1. The Picard-Manin space. Let X be a projective surface. Then Bir(A') acts

by isometries on an infinite dimensional hyperbolic space H°°(2f). Since this

construction has been described in detail in various places, we will just briefly
sketch the main ideas and refer to [29] and [8] for proofs (see also [10] and [13]).

We start by a construction that is due to Manin [29]. The bubble space IB(X)
of a smooth projective surface X is the set of all points that belong to X or are

infinitely near to X. It is defined as the set of all triples (v, L, 7r), where Y is a

smooth projective surface, y 6 Y and iz: Y I a birational morphism, modulo
the following equivalence relation: A triple (y, Y, n) is equivalent to (yY', jz')
if there exists a birational map cp: Y —> Y' that restricts to an isomorphism in a

neighborhood of y that maps y to y', and that satifies n' o <p jr. A proper point
of A is a point p £ i8(A) that is equivalent to (x, X, id). All points in <S(A) that

are not proper are called infinitely near. If there is no ambiguity, we will denote a

point (y, Y, ji) in the bubble space just by y.
Denote by S(f) the base-points of a birational map / : X —> Y of projective

surfaces X and Y. A birational morphism n\X—?Y of surfaces induces a bijection

(tti).: S(X) -* S(T) \ S(TT_1),

where 7T.(x, X, cp) := (x, X, jzozp). A birational transformation of smooth projective
surfaces / : X —> Y defines a bijection

/.:£(X)\ £(/)->
by /, := {n2), o (^i)"1, where tï\ \ Z -> X, jt2: Z -» Y is a minimal resolution

off.
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We define the Picard-Manin space of a smooth projective surface X by

Z(X):= lim NS(V),
jr'.Y ^X

where the direct limit is taken over all birational morphisms of smooth projective
surfaces n: Y -» X. The intersection forms on the groups NS(T) induce a quadratic
form on Z(X) of signature (l,oo), by the Hodge index theorem. For a point
p £ <S(2f) we denote by ep the class of the exceptional divisor of the blow-up of p
in Z(X). The Picard-Manin space has the following decomposition

Z(X) NS(V) ©
peS(X)

where ep ep — 1 and ep • eq =0 for all p ^ q, as well as ep D =0 for all
D £ NS(V). Consider the following completion of the real vector space Z(X) <g) R:

Z(X) := ju + E o.pep I v £ bJS(9f) fê) 1KI, xxp £ 1^, ap oo^.

peS(X) pe£(X)

The intersection form on Z(V)<g)M extends continuously to a quadratic form on Z(X)
with signature (1, oo). We fix a vector e0 £ Z(X) that corresponds to an ample class

on X and define H°°(V) as the set of all elements v in Z(X) such that t; • v 1

and e0 v > 0. This yields a distance d on H°°(V) by

d(u,v) := arccosh(w • v).

With this distance, the space H00^) is a complete metric space that is hyperbolic.
The boundary d H°°(2f) o/HI00(V) is the space of lines in the isotropic cone.

Let 7t : Y -» X be a birational morphism between smooth projective surfaces.

Then n induces an isomorphism 7r*: Z(Y) -> Z(X) in the following way: Let

NS(T) NS(^)©Ze„ ® — ®ZePn,

where p\,..., pn £ S(V) are the points blown up by n, and ePi is the irreducible

component in the exceptional divisor that is contracted by n to p, We now define
the map n* by n*(ep) en%(p) for all p £ S(Y), n*{ePi) ePi and it*(D) D
for all D £ NS(V) c NS(T), with respect to the inclusion given by the pull-back
of jr. For a birational map /: Y —> X we define an isomorphism

UZ(Y)^Z(X)
by /* (jt2)* o (jti)jT1, where ji\ :Z —> Y, 7r2: Z —> X is a minimal resolution of
indeterminacies. If / G Bir(Z), then /* induces an automorphism of Z(Z)®E, that
extends to an automorphism of the completion Z(X) and preserves the intersection
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form. This yields in particular an isometry on H°°(A) and we obtain an action by
isometries of Bir(A) on H°°(A).

Recall that there are three types of isometries of hyperbolic spaces: elliptic,
parabolic, and loxodromic isometries. Let / be an isometry of H00 (A) and define

L(f) := inf{d(f(p),p)\peM°°(X)}.

If L(f) 0 and the infimum is attained, i.e. / has a fixed point in H°°(A), then /
is elliptic. If L(f) 0 but the infimum is not attained, / is parabolic. It can be

shown that a parabolic isometry fixes exactly one point p on the border 3H°°(A).
If L(f) > 0 then / is loxodromic. In this case the set

{p e H""1 I d(h(p),p) L(h)}

is a geodesic line in H°°(A), the so-called axis Ax(/) of /, and L(f) is called the

translation length. A loxodromic isometry has exactly two fixed points in 3 H00(A
one of them attractive and the other one repulsive (see [8]). An element / G Bir(A)
is called elliptic, parabolic or loxodromic if the corresponding isometry on HI00(A)
is elliptic, parabolic or loxodromic respectively, and the axis Ax(/) of a loxodromic
element / e Bir(A) is the axis in H°°(A) of the isometry corresponding to /.
2.2. Degrees. Let A be a projective surface with a polarization H and / G Bir(A).
The dynamical degree of / is defined by

A(/) := lim deg
n—yoo

The following result is well known (see for example [10, Lemma 4.5]):

Proposition 2.1. The dynamical degree A (/) ofa birational transformation fG Bir(A)
does not depend on the choice of the polarization H. Moreover, f is loxodromic if
and only ifX(f) > 1. In this case, the translation length of the isometry of H°°(A)
induced by f is log(A(/)).

In [6], Blanc and Cantat studied the spectrum of possible values that can be

obtained as dynamical degrees of birational transformations of a given projective
surface.

Theorem 2.2 ([6, Corollary 1.7], [19]). Let X be a projective surface over an

algebraically closedfield k and let f G Bir(A) with A (/) > 1. Then A (/) is either
a Pisot or a Salem number. Moreover, A(/) > Al, where Ai > 1 is the Lehmer
number.

Recall that the Lehmer number A i ~ 1.1762 is the unique root > 1 of the

irreducible polynomial

x10 + x9 - x1 - x6 - x5 - x4 - x3 + X + 1.
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The fact that there is no birational transformation / of a surface such that 1 <
X(f) < Xl is usually referred to as the gap property. One of the consequences of
Theorem 2.2 is the following:

Theorem 2.3 (Cantat-Blanc [6, Corollary 1.5]). Two loxodromic elements f g G

Cr2(k) ofdegree < d are conjugate ifand only if they are conjugate by an element

ofdegree < (2d)57.

The dynamical behavior of a birational transformation / of a surface X, in

particular the growth of its degree under iteration, is closely linked to the type of the

isometry of Hœ(X induced by f, as the following important theorem states (we
refer to [10] for details and references):

Theorem 2.4 (Gizatullin; Cantat; Diller and Favre). Let X be a smooth projective
surface over an algebraically closed field k with a fixed polarization H and

f Bir(2f). Then one of the following is true:

(1) / is elliptic, the sequence {deg#(/")} is bounded and there exists a k e Z+
and a birational map <p:X —> Y to a smooth projective surface Y such that
q>fk(p~1 is contained in Aut°( K the identity component of the automorphism

group Aut(T).

(2a) / is parabolic and deg#(/") ~ cn for some positive constant c and f
preserves a rational fibration, i.e. there exists a smooth projective surface Y, a
birational map cp: X —-> Y, a curve B and a fibration it: Y —> B, such that a

general fiber ofn is rational and such that (pf<p~~l permutes the fibers of it.

(2b) / is parabolic and deg#(/") ~ cn2 for some positive constant c and f
preserves a fibration of genus 1 curves, i.e. there exists a smooth projective
surface Y, a birational map <p: X —> Y, a curve B and a fibration ji: Y —» B,
such that <pf\p~l permutes the fibers ofn and such that n is an ellipticfibration,
or a quasi-elliptic fibration (the latter only occurs //'char(k) 2 or 3).

(3) / is loxodromic and degH(fn) cX(f)n + 0(1) for some positive constant c,
where X (/) is the dynamical degree of f. In this case, f does not preserve
any fibration.

Theorem 2.4 has lead to various remarkable results on the group structure
of Bir(A); we will state some of them in the following sections. From the point
of view of geometric group theory, the plane Cremona group acting on H0°(2f) has

some analogies with other groups acting on hyperbolic spaces such as for example
the mapping class group of a surface acting on the complex of curves or groups of
outer automorphisms of a free group with n generators acting on the outer space.

2.3. Groups preserving a fibration. Let us recall the structure of subgroups ofCr2 (k)
that preserve a given fibration. The de Jonquières subgroup $ of Cr2(k) is the
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subgroup of elements that preserve the pencil of lines through the point [0 : 0 : 1]

eP2. With respect to affine coordinates [x : y : 1], an element in g is of the form

(ax-\-b a(x)y + ß(x)\
X,y

vcx + d ' y(x)y + S(x) )'

where (achd) PGL2(k) and s(xj) 6 PGL2(k(x)). This induces an

isomorphism

g ~ PGL2(k) x PGL2(k(x)).

By a Theorem of Noether and Enriques [3, III.4], every subgroup of Cr2(k) that

preserves a rational fibration is conjugate to a subgroup of g.
Two smooth cubic curves C and D in P2 intersect in 9 points p\,..., p9 and

there is a pencil of cubic curves passing through these 9 points. By blowing up

pi,..., /?9, we obtain a rational surface X with a fibration it: X -> P1 whose fibers
are genus 1 curves. More generally, we-can consider a pencil of curves of degree 3m
for any m e Z+ and blow up its base-points to obtain a surface X. Such a pencil
of genus 1 curves is called a Halphen pencil and the surface X a Halphen surface
of index m. A surface X is Halphen if and only if the linear system | — mKx | is
one-dimensional, has no fixed component and is base-point free. Up to conjugacy
by birational maps, every pencil of genus 1 curves of P2 is a Halphen pencil and

Halphen surfaces are the only examples of rational elliptic surfaces. We refer to [12]
and [24, Chapter 10] for proofs and more details. A birational transformation / that

preserves the genus 1-fibration of a Halphen surface X preserves in particular the
canonical divisor Kx of X. This implies that / is an automorphism. A subgroup G
of Cr2 (k) that preserves a pencil of genus 1 curves is therefore conjugate to a subgroup
of the automorphism group of some Halphen surface. The automorphism groups of
Halphen surfaces are studied in [22] and in [ 12], see also [23], We need the following
result, which can be found in [12, Remark 2.11]:

Theorem 2.5. Let X be a Halphen surface. Then there exists a homomorphism
p: Aut(A —> PGL2(C) with finite image such that ker(p) is an extension of an
abelian group of rank < 8 by a cyclic group oforder dividing 24.

We also recall the following result from [8] (see also [34, Lemma 2.5]):

Lemma 2.6. Let G C Cr2(C) be a group that does not contain any loxodromic
element but contains a parabolic element. Then G is conjugate to a subgroup of the
de Jonquières group g or to a subgroup of Aut(T), where Y is a Halphen surface.

2.4. Groups of elliptic elements. The group Bir(X) can be equipped with the so
called Zariski topology (see [18], [32], and [7] for details), which is defined in the

following way: Let A be an algebraic variety and f: A x X —> Ax X a birational

map of the form

(a,x) I—> (a, f(a,x))
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that induces an isomorphism between open subsets U and V of A x X such that
the projections from U and from V to A are both surjective. For each a e A we
obtain therefore an element of Bir(A) defined by x p2(f(a,x)), where p2 is

the second projection. A map A -* Bir(A) of this form is called a morphism. The

Zariski topology on Bir(A) is defined as the finest topology such that, for all algebraic
varieties A, all the morphisms /: A — Bir(A) are continuous (with respect to the

Zariski topology on A).

Theorem 2.7 ([35, Theorem 4.3]). The dynamical degree is a lower semi-continuous

function. More precisely, let A C Cr2(k) he a family ofbirational transformations
parametrized by an algebraic variety A. Then for all lei, the set

{fe A I X(f) > X}

is open in A.

Theorem 2.8 ([35, Theorem 1.6]). Let d >2 be an integer. Denote by Cr2(k)(j the

space of Cremona transformations ofdegree d. Then for any X < d, the set

UX {feCr2(k)d \Xl(f)>X}
is open and Zariski-dense in the algebraic variety Cr2(k)^.

An algebraic subgroup of Bir(V) is the image of an algebraic group G by a

morphism G -» Bir(A) that is also an injective group homomorphism. Algebraic

groups are closed in the Zariski topology and of bounded degree in the case of
Bir(A) Cr„(k). Conversely, closed subgroups of bounded degree in Cr„(k) are

always algebraic subgroups with a unique algebraic group structure that is compatible
with the Zariski topology (see [7]). In [7], it is shown moreover, that all algebraic

subgroups of Cr„ (k) are linear.

Every algebraic subgroup ofCr2(C) is contained in a maximal algebraic subgroup.
The maximal connected algebraic subgroups of Cr2(C) have been classified by
Enriques. Using modern techniques, Blanc extended this result to a classification of
all maximal algebraic subgroups of Cr2(C). Each of them can be realized as some

automorphism group of a complex projective variety [5,21]:

Theorem 2.9 ([5]). Every algebraic subgroup ofCr2(C) is contained in a maximal

algebraic subgroup. The maximal algebraic subgroups of Cr2(C) are conjugate to

one of the following groups:

(1) Aut(P2) ~ PGL3(C);

(2) Aut(P! x P1) ~ (PGL2(C))2 x Z /2Z;
(3) Aut(5ô) — (C*)2 x (-§3 x Z /2Z), where S6 is the del Pezzo surface of

degree 6;

(4) Aut(F„) ~ C[x,y]n x GL2(C)//r„, where n > 2 and F„ is the n-th

Hirzebruch surface and jin C GL2(C) is the subgroup of n-torsion
elements in the center o/GL2(C);
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(5) Aut(S, it), where n: S —x P1 is an exceptional conic bundle;

(6)-(10) Aut(S), where S is a del Pezzo surface of degree 5, 4, 3, 2 or 1. In this

case, Aut(S) is finite;

(11) Aut(S, it), where (S, it) is a (Z /2Z)2-conic bundle and S is not a del
Pezzo surface. There exists an exact sequence

1 —> V —x Aut(S, it) —x Hy -x 1,

where V ~ (Z /2Z)2 and Hy C PGL2(C) is a finite subgroup.

A subgroup of Cr2(C) consisting only of elliptic elements is called a group of
elliptic elements. In [34] groups of elliptic elements of Cr2(C) have been classified.
In particular, the following result is shown:

Theorem 2.10 ([34, Theorem 1.1 and 1.2]). Let G C Cr2(C) be a subgroup of
elliptic elements. Then one of the following is true:

(1) G is conjugate to a subgroup ofan algebraic group;

(2) G preserves a rational fibration;

(3) G is a torsion group and G is isomorphic to a subgroup of an algebraic group.

We also recall the following result, which in the original version was stated for
the case of complex numbers. However, the proof only relies on hyperbolic geometry
of H°°(P2) and does not depend on the characteristic of the base field:

Theorem 2.11 ([8, Proposition 6.14]). Let k be an algebraically closed field and
let T C Cr2(k) be a finitely generated subgroup of elliptic elements. Then V is

either contained in an algebraic subgroup, or F preserves a rational fibration and is

therefore conjugate to a subgroup of

$ ~ PGL2(k) ix PGL2(k(0).

2.5. Monomial transformations. The subgroup of diagonal automorphisms T2 c
PGL3 (k) is a torus of rank 2. It is maximal in the following sense: all algebraic tori
in Cr2(k) are of rank < 2 and are conjugate in Cr2(k) to a subtorus of T2 [4,18], A
matrix A (ay) GL2(Z) determines a rational map fj of P2, which we define

by

fA (x°n y"12, x°21 y"22).

We thus obtain an injective homomorphism GL2(Z) -> Cr2(k). By abuse of
notation, we will identify its image with GL2(Z). The normalizer of T2 in Cr2(k) is

the semidirect product

NormCr2(k)(r2) T2 xl GL2(Z).

Elements in T2 xi GL2(Z) are called monomial transformations. We say that / 6

Cr2(k) is of monomial type, if / is conjugate to an element in T2 x GL2(Z). We call
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a matrix A e GL2(Z) loxodromic, if the corresponding birational monomial map
in Cr2(k) is loxodromic.

Lemma 2.12. Let m e GL2(Z) c Cr2(k) be a loxodromic monomial transformation
and d e T2 a diagonal automorphism. There exists a diagonal automorphism
d' T2 such that d'~ldmd' m.

Proof. Assume that m (xayb, xcyd), where A := (" %) £ GL2(Z). Then m

acts by conjugation on T2 by sending {c\x,c2y) to (c[x,c2y), where c[ c"c2
and c'2 c\c2. We therefore have

(cix,c2y)~lm{c\x,c2y) (d\x.d2y)m,

where d\ cf~lc2 and d2 ccx c2 _1. To show the claim of the lemma it is therefore

enough to show that the homomorphism <pA-\d of T2 given by

{cix,c2y) (dix,d2y)

is surjective. Since m is loxodromic, the matrix A has no eigenvalue of modulus 1

and hence the determinant of A — id is not 0. This is equivalent to the kernel of <pA~id

being finite, which implies surjectivity.

Lemma 2.13. Let m e GL2(Z) C Cr2(k) he a loxodromic monomial map and

A2 C T2 an infinite subgroup that is normalized by m. Then A2 is dense in T2 with

respect to the Zariski topology.

Proof. Let A® be the identity component of the Zariski-closure of A2. If A® has

dimension 2, we are done. Otherwise, A® is of dimension 1, since A2 is not finite.
It follows that a general orbit of Äj has dimension 1. Since m normalizes A° it
permutes the orbits. This implies that m preserves a fibration. But this is not possible
since m is loxodromic, by assumption.

Lemma 2.14. Let f Cr2(k) be a birational transformation such that

fT2/-1 C T2 xGL2(Z).

Then f Ef2x GL2(Z).

Proof. Since ,fT2 f~l is an algebraic subgroup, it is of bounded degree. Since

GL2(Z) contains only finitely many elements of a given degree, fT2f~l is therefore
contained in a group of the form H k T2, where H is finite. Since fT2f~l is

connected, it is contained in T2, which implies that / normalizes T2.

Let M e GL2(Z) and [m be the corresponding birational transformation. The

dynamical degree A(/m) of Jm is exactly the spectral radius of the matrix M. This
shows in particular that the dynamical degree of a monomial matrix is always a
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quadratic algebraic integer. If M e GL2(Z) has spectral radius strictly larger than 1,

the birational map /m is loxodromic. As stated above, the normalizer of T2 is exactly
T2 xi GL2(Z). We thus obtain examples of loxodromic elements that normalize an

infinite subgroup consisting only of elliptic elements. The following theorem shows

that, up to conjugacy, these are the only examples with this property if we work
over the field of complex numbers C. A first version has been proven by Cantat
in [17, Theorem 7.1], the more general version, which we state below, can be found
in [34]:

Theorem 2.15. Let N C Cr2(C) be a subgroup containing at least one loxodromic
element. Assume that there exists a short exact sequence

1 -* A^N B -> 1,

where A is an infinite group ofelliptic elements. Then N is conjugate to a subgroup
ofT2 xi GL2(Z).

2.6. Small cancellation. Small cancellation has been one of the fundamental tools
used by Cantat and Lamy to show that Cr2(C) is not simple. Dahmani, Guirardel
and Osin applied similar arguments in the context of mapping class groups [16]. We

refer to [15] for an overview of the subject.
Let e, B > 0. We say that two geodesic lines L and L' in H°° are (e, B)-close,

if the diameter of the set

S {x e L I d(x, L') < e}

is at least B.

Definition 2.16. Let G be a subgroup of Cr2(k) and g G G a loxodromic element.
We call g rigid in G if there exists an e > 0 and a B > 0 such that for every element
h G one has: ^(Ax(g)) is (c, ß)-close to Ax(g) if and only if h(Ax(g)) Ax(g).

Wecallg tightin G if itis rigid in G andifh(Ax(g)) Ax(g) implies hgh~l g
or hgh~l g~x for all h e G.

Example 2.17. Let m G GL2(Z) C Cr2(k) be a loxodromic element. Then the

group T2 fixes the axis of m pointwise and no power of m is tight in Cr2(k) [10,

Example 7.1]. More generally, if G C Cr2(k) is a subgroup containing m and an

infinite subgroup A2 C T2, then no power of m is tight in G.

Lemma 2.18. Let g G GL2 (Z) be a loxodromic element and f G Cr2 (k) an element
such that fgf~x is contained in T2 xi GL2(Z). Then f gT2» GL2(Z).

Proof. Assume that /g/-1 G T2 xi GL2(Z). Then the axis of the loxodromic
element fgf~l is fixed pointwise by both, fT2 f~x and T2 (see Example 2.17).
Hence, the group A generated by fgf x and T2 is bounded. By Theorem 2.15, A is

conjugate to a subgroup of T2. This implies that fT2fx c T2 and therefore, that

/ G T2 xiGL2(Z).
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In [13] the authors show that a power of a generic element in Cr2(C) is tight
in Cr2(C) and prove the following theorem to argue that Cr2(C) is not simple.
In [27] Lonjou showed that a power of a Hénon transformation is tight in Cr2(k),
where k is an arbitrary field in order to show that Cr2(k) is not simple.

Theorem 2.19 ([13, Theorem 2.10]). Let G c Cr2(C) be a subgroup and let g G G

be an element that is tight in G. Then every element h in ((g)), where ((g)) denotes
the normal subgroup of G generated by g, satisfies the following alternative: Either
h id or h is loxodromic and L(h) > L(g). In particular, for n > 2, the element g
is not contained in ((g" and G is therefore not simple.

A couple of years later, Shepherd-Barron has classified tight elements in Cr2(C)
using Theorem 2.15:

Theorem 2.20 ([33]). In Cr2(C) every loxodromic element is rigid. Ifg is conjugate
to a monomial map, then no power ofg is tight. In all the other cases, there exists an

integer n such that gn is tight.

Note that if G C Cr2(C) is a subgroup and g G Cr2(C) is a rigid element, then g
is rigid in G as well. The same is true for tight elements. However, there exist

subgroups G C Cr2(C) and loxodromic elements g G G such that g is tight in G but
not in Cr2(C). From the proof of Theorem 2.20 (see [33, p. 18]) and Lemma 2.13
the following Theorem follows. We will briefly sketch its proof.

Theorem 2.21. Let G C Cr2(C) be a subgroup and g G G a loxodromic element.
The following two conditions are equivalent:

(1) no power ofg is tight in G ;

(2) there is a subgroup A2 C G that is normalized by g and a birational trans¬

formation f G Cr2(C) such that / A2 f~l C T2 is a dense subgroup and

M~l eT2x GL2(Z).

Proof. We closely follow the proof from [33, p. 18]. Let g G G be a loxodromic
element such that no power of g is tight. Let H C G be the subgroup of elements

/ e G satisfying
/(Ax(g)) Ax(g).

Denote by H+ C H the subgroup of index at most two consisting of elements that

preserve the orientation of Ax(g). Let n: H+ —> M be the group homomorphism
such that an element / G H+ acts on Ax(g) by a shift of length n{ fj. The
kernel A of k consists of elliptic elements and the image is discrete by Theorem 2.2.

Let go G H+ be an element such that 7r(g0) generates the image of n. We obtain
that

H+ ~ A xi (go).

If A is infinite, then Theorem 2.15 and Lemma 2.13 imply (2). Assume that A is

finite, which implies that gg centralizes A for some s G TL, i.e. gg is in the center



224 C. Urech CMH

of H+. We can write g ag for some a e A and m e Z, hence gs cgs for
some c A. Let te Z be divisible by the order of A. Then

„st __ t mst _ mst
b — c b0 — 60

and in particular, gst is contained in the center of H+. Hence hgsth"1 gst for
all h e H+. One shows similarly that hgsth~l g~st for all h H \ H +. By
Theorem 2.20, g is rigid in Cr2(C) and therefore it is also rigid in G and hence tight.

On the other hand, assume that there exists a subgroup À2 C G that is normalized

by g and a birational transformation / e Cr2(C) such that/A2/_1 C7"2isadense
subgroup and fgf~x e T2 x GL2(Z). Then no power of g is tight (Example 2.17).

From Theorem 2.19 and Theorem 2.21 one deduces directly the following lemma:

Lemma 2.22. Let G C Cr2(C) be a simple subgroup. Then for every loxodromic
element g e G there exists an infinite subgroup Af C G and an element f Cr2(C
that conjugates A| to a dense subgroup ofT2 and g to an element ofT2 >i GL2(Z).

In positive characteristic Theorem 2.15 does no longer hold, as the following
example shows:

Example 2.23. Let k be a field ofcharacteristic p. The loxodromic element (y, x+yp)
normalizes the additive group of elliptic elements k2.

However, it turns out that these kind of examples are the only exceptions (see [33 ]

and [10]). We only need the following result, which follows from the proof of
Theorem 7.2 in [33, p. 18]:

Theorem 2.24. Let k be an algebraically closedfield and G C Cr2(k) a subgroup.
Let g G be a loxodromic element such that no power ofg is tight then g normalizes

an infinite group of elliptic elements that is either conjugate to a subgroup of 7'2 or
to a subgroup of k2.

2.7. Non-rational surfaces. In this section we treat the case of non-rational compact
complex Kähler surfaces of Theorem 1.1.

Lemma 2.25. Let S be a non-rational compact complex Kähler surface of Kodaira
dimension —oo and G C Bir(S) a simple subgroup. Then G is either finite or
isomorphic to a subgroup of PGL2(C).

Proof. There exists a non-rational curve C such that S is birationally equivalent
to P1 xC, hence

Bir(A) PGL2(C(C)) x Aut(C).

It follows therefore that G C PGL2(C(C)) or G C Aut(C). In the first case we are
done, since the function field C(C) can be embedded into C and hence PGL2(C(C))
is a subgroup of PGL2(C). In the second case the lemma follows since Aut(C) is
either finite or contains a normal abelian subgroup of finite index.
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Lemma 2.26. Let S be a compact complex Kühler surface ofnon-negative Kodaira
dimension and let G C I3ir(.V) be a simple subgroup. Then G is finite.

Proof. The class of compact complex Kähler surfaces that are birationally equivalent
to S contains a unique smooth minimal model S'. It follows that

BirCS) ~ Bir(S') Aut(S').

The group Aut(V) acts by linear transformations on the cohomology. This gives a

linear representation

cp: Aut(S') -» GL(H*(S'\ Z)),

where Z) is the direct sum of the cohomology groups of S'. The kernel of <p is

an algebraic group (see [26]) and hence an extension of a complex torus by a complex
linear algebraic group. Let G c Aut(S") be a simple group, then either G is contained

in GL„(Z) for some n, and therefore finite. Or G is isomorphic to a subgroup of an

algebraic group. Since S' is of non-negative Kodaira dimension, there are no linear

algebraic groups of positive dimension operating on S', since otherwise S' would be

uniruled. Hence H is abelian up to finite index and therefore G is finite.

3. Subgroups containing loxodromic elements

In all of Section 3 we always work over the field C of complex numbers. The main
result of this section is the following:

Theorem 3.1. A simple subgroup G C Cr2(C) does not contain any loxodromic
element.

The starting point to prove Theorem 3.1 is Lemma 2.22. It states that all
loxodromic elements in a simple group G are of monomial type and that, up to

conjugation, G contains a dense subgroup A2 C T2 for each of its loxodromic
elements. Our strategy is to show that if G contains a loxodromic element, these

conditions imply that G is conjugate to a subgroup of T2 xi GL2(Z) and from this

we will deduce a contradiction to the simplicity of G.

In Section 3.1 we first prove a result about the degrees of elements that conjugate
loxodromic elements to monomial elements. In Section 3.2 we take a closer look at

the dynamical behavior of exceptional curves and base-points. This will allow us to

prove Theorem 3.1 in Section 3.3.

3.1. Degree bounds. We start with some facts about loxodromic monomial elements.

Lemma 3.2. Let A e SL2(Z) be a loxodromic element. Then either A or —A is

conjugate in GL2(Z) to a matrix B such that all entries of B are non-negative.
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Proof. In [25, Theorem 7.3] it is shown that for a loxodromic element A e SL2(Z)
either A or —A is conjugate to a matrix of the form (£ cd where d > b > a > 0.

If a 0 then ad — be 1 implies c > 0 and we are done. If a 0, then we
calculate

1 c\ (\ —1\
_

(b c + d — b\
0 1J r/y yO 1 )~\h d-b J'

Since d — h and b are positive, it follows that c + d — b >0. If c + d — b 0 the

matrix is not loxodromic anymore, hence c + d — b > 0 and we are done.

With the help of Lemma 3.2 the following well-known lemma can be proved:

Lemma 3.3. For an integer n £ Z there exist only finitely many conjugacy classes

of loxodromic elements in GL2(Z) with trace n.

Lemma 3.4. Let X > 0 and g e T2 x GL2(Z) C Cr2(C). If X\{g) < X then g is

conjugate in GL2(Z) to an element ofdegree < C(X), where the constant C(X) only
depends on X.

Proof By Lemma 2.12, we may assume that gh e GL2(Z). The dynamical
degree Xi(g) is the spectral radius of g, i.e. the absolute value of the eigenvalue
of the matrix g that is strictly larger than 1. The condition Ai(g) < X implies that

|trQr)| lAiGO + Ajte)-1! <A + 1.

So tr(g) is contained in the finite set of integers between —(A + 1) and (A + 1). By
Lemma 3.3, there exist only finitely many conjugacy classes in GL2(Z) to which g
can belong. Denote by f\,..., /„ représentants of these classes. We set

C(A) max{deg(/i),... ,deg(/„)}.

Finally, we are able to prove the main result of this section:

Lemma 3.5. Let g e Ct2(k) be a loxodromic element ofmonomial type. Then there

exists an m £ T2 xi GL2(Z) and a constant K depending only on d : deg(g), such

that g is conjugate to m by an element ofdegree < K.

Proof. We observe that Ai(g) < d. By Lemma 3.4, there exists a constant C(d
such that g is conjugate to an m 6 T2 x GL2(Z) of degree < C(d). By Theorem 2.3,

g can be conjugated to m by an element of degree < K, where K (2r)51
for r ma\{d, C(d)}.

3.2. Base-points and toric boundaries. Let S be a smooth projective surface with a

given regular 7'2-action that has an open orbit U C S. The fixed points of this action
are called toric points, the algebraic set 35 := S \ U is called the toric boundary. In
what follows, we consider IP2 equipped with the standard action of T2, or blow-ups
of toric points n: S —> IP2 with the pull-back of the standard action of T2 on P2. In
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this case, 3S is always a curve whose irreducible components are curves isomorphic
to P1 with self-intersection < 1.

A toric point in the bubble space ,S(P2) is a point of the form (p, S, it), where

7t: S P2 is the blow-up of toric points and p e 5' is a toric point. If a toric
point q\ £ S(P2) lies above a point q2 £ i8(P2), then q2 is toric as well.

Let C be a curve on a surface S and / £ Bir(S). In what follows, we denote

by /(C) the strict transform of C under /, i.e. the closure of f(C \ {Ind(/)}),
and by /_1(C) the strict transform of C under f~l. Note that with this notation,

/_1 (C) does not contain all the points that are mapped by / to C.
Let S be a projective surface, / £ Bir(5), and assume that / contracts a curve

C c S. If /(C) p £ S we say that / contracts C to p. We extend this

notion to infinitely near points. Consider a point in the bubble space fß(S) with a

representative (p, T, it). Let / £ Bir(7) be given by / := it"1 fit and denote by C
the strict transform of C under it. We say that / contracts C to p if /(C) p.
If p lies above a point q in £ (S) and / contracts a curve C c S to p, then /
also contracts C to q. Note as well, that if a birational transformation / £ Cr2(C)
contracts a curve C to a non-toric point in £ (P 2), then there exists a blow-up of toric
points it: S —> P2 such that it"1 fit(C) is a proper non-toric point of S.

By abuse of notation, in this section we will sometimes denote the lift of a

birational transformation / 6 Cr2(C) under a blow-up of toric points it : S P2

again by /. This will simplify the notation, as the choice of it will always be clear
from the context. Similarly, we will identify a curve C on P2 with its strict transform

on S, if there is no ambiguity.

Definition 3.6. Let S be a projective surface and / £ Bir(S). We denote by E(f)
the number of irreducible components of the exceptional divisor of /.
Remark 3.7. For / £ Cr2(C), the numbers E(f) can be bounded by a constant

depending only on the degree of /. If / and g are two Cremona transformation,
then

E(fg) < E(f) + E(g).

Lemma 3.8. Let S be a rational projective surface, f £ Bir(S) of monomial type
and it: S —> P2 a birational transformation. ThenE(fn) is uniformly boundedfor
all n by a constant K only depending on it and the degree of itfit

Proof The birational transformation it: S —> P2 only contracts finitely many
irreducible curves. So E(fn) is uniformly bounded for all n if and only if E(jtfnit~l)
is uniformly bounded. It is therefore enough to consider the case / £ Bir(P2).

By Lemma 3.5, there exists a g £ Cr2(C) of degree < C, where C only depends

on deg(/), such that

gfg-1 meT2* GL2(Z).
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We have E(mn) < 3 for all n. By Remark 3.7, E(g) is bounded by a constant K'
depending only on deg(g) and hence only on deg(/). Therefore,

£(/") E(gmng-1) < IK' + 3

and we thus set K := 2K' + 3.

Lemma 3.9. Let f e Cr2(C) be a loxodromic element that is not contained
in T2 xi GL2(Z). There exists an n Z+ and a dense open set V C T2 such

that fnd~l f~nd is loxodromic for each d V.

Proof. Let a+ G 3 H°° be the attracting fixed point of the isometry of H00 induced

by /, and let a~ e 3 H°° be its repulsive fixed point. The axis Ax(/) is the geodesic
line between ot+ and a~. We claim that there exists a dense open subset U C T2

of elements that fix neither a+ nor a". Denote by G C Cr2(C) the subgroup of
all elements that fix a+. Let L C Z(P2) be the one-dimensional subspace that

corresponds to a+. Since G fixes a+, its linear action on Z(P2) restricts to an

action on L by automorphisms preserving the orientation. This yields a group
homomorphism

p\ G —x

Loxodromic elements don't fix any vector in Z(P2). Let us note as well that the

group G does not contain any parabolic element since a+ is fixed by a loxodromic
element and does therefore not correspond to the class of a fibration. It follows that
the kernel of p is a subgroup of elliptic elements, which is normalised by /. If ker(p)
is infinite, there exists, by Theorem 2.15, an element h e Cr2(C), such that

hGh~l C T2 x GL2(Z).

As / is not in T2 xi GL2 (Z), the transformation h is not in T2 x GL2(Z) and therefore,

by Lemma 2.14, h~lT2h D T2 is a proper closed subset of T2. In particular, there

exists a dense open set U\ C 7'2 that is not contained in G. If ker(p) is finite, the

existence of such a dense open U\ C T2 follows trivially. With the same argument,
we obtain a dense open set U2 C T2 that does not fix a~. Define

U :=Ui n U2.

This proves the claim.
Let U2 {d2 |e U} and let d e U n U2 be arbitrary. Then d does neither

fix a+ nor a~ and d(a+) f a~. Denote by ß+ e 3H°° the attracting fixed point
of the loxodromic isometry d~x f~ld and by ß~ e 3H°° its repulsive fixed point.

By the above observation, a+,a~,ß+ and ß~ are pairwise disjoint. Let .Sj+ be a

small neighborhood of a+ in 3 H°° and Sj~ a small neighborhood of a~. Similarly,
let be a small neighborhood of ß+ and Sf a small neighborhood of ß~. We may
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assume that Sj+, SJ", S^1" and .S'^ are pairwise disjoint. Since ß+ is attractive, there
exists an /; i Z+ such that

d~xf-nid{SÎ) c S+.

Similarly, let n2 G Z+ be such that /"2(S^) c Sj+ is a proper subset. For
n := max{«i,n2}, we obtain that fnd~xf~nd(S+) is a proper subset of 5,+.

Analogously, if we choose n large enough, fnd-1 f~nd)~x (Sf) is a proper subset

of S2 Thus, fnd~1 f~nd has an attractive fixed point in Sj+ and a repulsive fixed

point in Sf. In particular, fnd~x f~nd is loxodromic.
Consider the family of birational transformations

{fnd~lf-nd I d e T2}.

It contains one element of dynamical degree A > 1. By Theorem 2.7, the dynamical
degree is a lower semi-continuous function. Hence, there exists a dense open
subset V c T2 such that the dynamical degree of fnd~x f~n d is > 1 forallJ G V,
which is equivalent to fnd~x f~nd being loxodromic.

Lemma 3.10. Let m be a loxodromic monomial transformation and (x, y) affine
coordinates. Let Lx be the line given by x 0 and Ly be the line given by y 0.

Then m(Lx) ^ Lx and m(Ly) Ly.

Proof. By Lemma 2.12, we may assume that m G GL2(Z), since d(Lx) Lx and

d(Ly) Ly for all d e T2.
It is now enough to observe that m(Lx) Lx implies that m is of the

form (xyk,y±x) and m(Ly) Ly implies that m is of the form {x±x ,xky) for
some k G Z. No transformation of the form (xyk, ±1) or of the form (x^1, xky)
is loxodromic.

Lemma 3.11. Let m be a loxodromic monomial transformation and n: S -»F2 a

blow-up oftoric points. Let L C dS be an irreducible boundary component, then

jt~xmjt(L) L.

Proof. Assume that there exists a blow-up of toric points n: S P2 and a line
L C dS such that

7T~lmn(L) L.

By Lemma 3.10, the line L is not the strict transform of a line in P2. After possibly
contracting components of 9 S different from L, we can write

IC — Jtjç O 7Xjç—\ O O TTI,

where each 717 : S;_ 1 -> Si is the blow-up of a single toric point pi such that

TTi{L) px and itt o ••• o jt\{L) ni(pi-i) pi
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for all 1 < I <k. We have 50 — S and S& P2. Since tt lmn(L) L, we have

that pi is a fixed point of the pull-back of m on 5/ for all 1 < / < k.
Let (x(), jo) be focal affine coordinates of S such that L is defined by x0 0 and

let (x\, ji) be focal affine coordinates of 5] such that p\ (0, 0) and the exceptional
divisor of jt2 is given by x2 0. We proceed inductively and define local affine

coordinates (x/, j/) of 5/ in such a way that pi (0,0) and the exceptional divisor
of 7T/+i is given by x; =0 for all 1 < I < k. With respect to the local affine

coordinates (x/, j;), the blow-up np. Si-1 —> Si is then given by

(x/,yi) i-> (x/,x/j/) or (xi,yi) i-> (x;j/,x/)

and hence n: S -^-P2 is of the form (x^, yk)^(xrkysk, x'kyk), where (rt su) e GL2(Z).
Since m is a monomial transformation, it is of the form m (xayb, xcyd).

Hence we obtain that locally jt~lmn (x" y\ Xj jf where

u' b'\ fr s\ fa b\ fr A"1
c' d'J \t uj d)\t uj

Since (acbd) is a loxodromic matrix, the matrix hJ, is loxodromic as well.
Lemma 3.10 now yields a contradiction to the assumption that L.

Remark 3.12. Let S -» P2 be a blow-up of toric points. Lemma 3.11 implies
in particular that a loxodromic monomial transformation m does not preserve any
irreducible curve on S, i.e. there exists no irreducible curve C such that m(C) C.
Indeed, for curves contained in 3S the claim is proven in Lemma 3.11. Assume now
that there is an irreducible curve C C S that is not contained in 3S that satisfies

m(C) C. Let S' -x S be a blow-up of toric points such that C intersects 35"
in a non-toric point p and let L be the irreducible boundary component of 35' that
contains p. Since m preserves the complement of 35' and C intersects 3S' in only
finitely many points, there exists a positive integer n such that mn(p) p. But this

implies m(L') L', which contradicts Lemma 3.11.

Lemma 3.13. Let K be a positive integer and let f Cr2(C) be a birational
transformation that contracts a curve C C P2 that is not contained in 3P2 to a
non-toric point p in the bubble space jg(P2). Let Ui, f/2 C T2 be the subsets such

thatfor all d <E U\ and all 1 < I < K we have:

• (tf)~l (C) is a curve not contained in 3 P2;

andfor all £ l/2 and all 1 < / < K:

* (tf )l (C is a non-toric point.

Then the sets U\ and t/2 are open. Itfollows that for all t e if fl [/2, the transformation

(tf) contracts at least K different irreducible curves.
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Proof. For all 1 < I < K the condition that / lt[1f 1 •••/ % 1 (C) is not
contained in the exceptional locus of /_1 nor in 3 P2 is an open condition on (T2)1.
Hence there is an open set V\ c (T2)K such that for all (t\,...,tk) e Pi and

all 1 < / < K we have that f~x is not contained in the

exceptional locus of f~l nor in 3P2. We embed 7'2 into (T2)K by identifying it
with the diagonal. In that way we can define U\ := 7"2 n V\.

To construct U2 we proceed similarly. First we note that there is an open set

V2 C {T2)k such that for all 1 < I < K and all {t\, tf) £ V2 the point
tu.f» - h.(/(C)) is not a base-point of / and is not a point that is mapped to a

toric point by /,. Here, we consider the points as elements in the bubble-space and f,
denotes the transformation of the bubble-space induced by / (see Section 2.1 We

then define U2 := V2 fl T2.

Define K e Z to be the integer from Lemma 3.3 such that for all loxodromic
transformations of monomial type g of degree < deg(/) one has that gn contracts at

most K - 1 different curves. Assume that the open sets U\ and U2 from Lemma 3.13

are non-empty. By choosing a t £ U\ (T U2 such that tf is loxodromic, we obtain
that tf is loxodromic but not of monomial type. The main idea of the proof of
Theorem 3.1 will be to use this kind of argument together with Lemma 2.22 to
show that loxodromic elements in a simple group G C Cr2(C) only contract curves
contained in 3P2. From this we will then deduce that all loxodromic elements in G

are in fact monomial which will lead to a contradiction. However, the cumbersome

part is to construct a loxodromic transformation / in G for which the two open
sets U1 and U2 are non-empty.

Lemma 3.14. Let f £ Cr2(C) be a birational transformation that contracts a

curve C that is not contained in 3 P2 and assume that /(C) is a point not contained
in 3 P2. Let K £ Z + be a constant. Then there exists a dense open set U C 7"2 such

that (t f)n(C) is a point not contained in 3 P2 for all 1 < n < K and all t e U.

Proof. By Lemma 3.13 there exists an open set U C T2 such that (tf)n(C) is a

point not contained in the toric boundary for all 1 < n < K and all / G U. It is

therefore enough to show that there exists one t G T2 with this property. For this,
consider a point q £ C that is not contained in 3P2 and is not an indeterminacy
point of / and let t e T2 be the transformation that maps the point /(C) to q. It
follows that (f/)"(C) q for all n £ Z+.

Lemma 3.15. Let m £ Cr2(C) be a monomial loxodromic transformation, n £ Z+
and p £ P2 a point not contained in 3 P2. The set {(dm)n (p) \ d £ T2} contains a
dense open set in P2.
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Proof. By Lemma 2.12 we may assume that m e GL2(Z). We can write m

(xay xcyd) for some matrix

_ (a b\
\c d) GL2(Z).

Let d={d\x, d2y) e T2. One calculates md=d'm, where d'=(d\ad2bx, d\cd2dy).
Let

B:=([ S) \d+A + --- +An~l
\t uJ

Then (dm)n d'mn, where d' (d\rd2sx, d\ d2uy). In order to prove the

lemma, we need to show that the morphism cpB'- T2 -> T2 given by

0d\x,d2y) {d\rd2sx,d\d2uy)

is dominant. First note that

(A-id)B A" - id.

Since A is loxodromic, A" does not have 1 as an eigenvalue; hence det(T" — id) / 0

and therefore det(ß) f 0. By the Smith normal form, we can write

B M\ DM2,

where M\,M2 G GL2(Z) and D is a diagonal integer matrix of rank two as

det(B) f 0. Since the morphisms from 7'2 to itself induced by the matrices M\, D
and M2 are all dominant, the morphism cpß is dominant.

Lemma 3.16. Let f Cr2 (C) he a birational transformation that contracts a curve C
that is not contained in 3 IP2. Let m Cr2(C) be a loxodromic monomial transformation.

Then, for every K Z+, there exists a dense open subset Uk C 72 such that

far all d G Uk the birational transformation hd '= fdmf satisfies the following
properties:

• The strict transform
Cd := (7m/"1)"1 (C)

is a curve not contained in d P2, in particular, hd contracts Cd;

• hfl (Cd) is a curve not contained in df2 for all 1 < / < K.

Proof. Let p e C be a point that is not contained in d P2. Let X be the union of
the exceptional locus of / and the curves that are mapped to 3 P2 by /. Denote

by V[ C T2 the set of all diagonal automorphisms d such that (dm)~l(p) is not
contained in X, where 1 < / < K. By Lemma 3.15, the sets F/ contain a subset,

which is open and dense in T2. Hence, the intersection V\ (T • • • n Vk+i contains a
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subset Uk that is open and dense in T2. Since, by the construction of Uk, the point
(dm)~l (p) is not contained in X, it follows that the strict transform

Cd 0dmf~l)~l{C)

is indeed a curve and not contained in 3 P2. This is because (dm)~l(C) is a curve
as dm is monomial and C is not contained in 3 P2. Moreover, the choice of d ensures
that (dm)~l (C) is not contained in X. Similarly,

0hd)~l(Cd) f{dm)-lf-\Cd) f{dm)-l~\C)

is a curve not contained in 3 P2 for all 1 < / < K.

Lemma 3.17. Let fG Cr2(C) a birational transformation that contracts a curve C
that is not contained in 3 P2 and assume that f (C) is a point not contained in 3 P2.

Let m 6 Cr2(C) be a monomial loxodromic birational transformation. Then, for
every K G Z+, there exists a dense open subset Uk C T2 and for each d e Uk
there exists a dense open subset V£ C T2 such that:

• for all elements d\ G Uk and for all d2 vfd the birational transformation
(d2fd\m f~l)K is loxodromic and contracts K different irreducible curves.

Proof. By Lemma 3.16, there exists a dense open set Uk C T2 such that for
all di G Uk the strict transform

C := (dxmf-l)-\C)
is a curve not contained in 3 P2, and such that

(.fdxmf-xT\C)

is a curve not contained in 3 P2 for all 1 < I < K and all d\ G Uk-
Fix now any d\ G Uk- Since, by assumption, fd\mf~l(C) is not contained

in 3 P2, we can apply Lemma 3.14. In other words, there exists a dense open subset

Vp c T2 such that

(d2fd1mf-1)l(C)

is a point not contained in the toric boundary for all d2 G K' and all 1 < / < K.
This implies in particular, that (,d2fd\mf~l)K contracts K different curves, namely
the curves (d2fd\mf~x)~l(C) for 1 < / < K. After possibly shrinking L^1, we

may assume that d2 fd\mf~x is loxodromic, by Theorem 2.7.

Lemma 3.18. Let f G Cr2(C) be a birational transformation that contracts a

curve C that is not contained 3 P2 and assume that /(C) is a point not contained
in 3P2. Let m G Cr2(C) be a monomial loxodromic birational transformation and
let A2 C T2 be a dense subgroup. Then the group {fm, A2) contains a loxodromic
elemen t that is not ofmonomial type.
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Proof. Let d := deg(/)2 deg(m) and let K be the constant given by Lemma 3.8
such that all elements in g Cr2(C) of monomial type of degree < d satisfy the

property that the number of irreducible curves E(gn) contracted by gn is < K for
all«. Let Uk C T2 and L^1 forallr/i G Uk be the subset given by Lemma 3.17 and

fix a d\ G Uk H A2 and d2 e if n A2. The birational transformation d2 fd\mf 1

is therefore loxodromic, of degree < d and (d2fd\ mf~l)K contracts K different
irreducible curves. It follows that d2fd\mf~1 G (/, m, A2) is loxodromic but not
of monomial type.

Lemma 3.19. Let f G Cr2 (C be a birational transformation that contracts a curve C
that is not contained in 3 P2 to a non-toric point in ,S(P2). Let m G Cr2(C) be a
loxodromic monomial transformation and A2 C T2 be a dense subgroup. Then the

group (fm, A2) contains a loxodromic element f with the following properties:

• contracts a curve C not contained in 3 P2 to a non-toric point in S (P2);

• there exists a dense open subset U C T2 such thatforall d G U the transformation
f'd~x f'~ld is loxodromic.

Proof. By Lemma 3.16, there exists for each K > 0 a dense open set Uk C T2 such

that

Cd := (dmf-xrl{C)
is a curve not contained in 3 P2, and

(.fdmf-xr\Cd)
is a curve not contained in 3 P2 for all 1 < I < K. We fix a e G C\k£Z+

By Lemma 3.9, there exists an « G Z+ and a dense open subset U C T2 such

that the transformation

(femf~x)nd~1(femf~1)~nd

is loxodromic for all d G U. By Theorem 2.7, the subset V c (T2)2 consisting of
elements (d\,d2) such that

(fd1mf-1)"df1(fdlmf-1)-nd2

is loxodromic, is open and dense. Define the dense open set V := V D (Un x T2)
and fix (d\,d2) V fl A2 x A2. We define now

f := (fdimf'lr (fm, A2)

and

C := (fdmf-lrn+1(Cdl).
Again by Theorem 2.7, there exists a dense open U C T2 such that fd
loxodromic for all d e U.

~x f'~ld is
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Lemma 3.20. Let G C Cr2(C) be a simple group that contains a loxodromic
monomial element m. Then G contains no element that contracts a curve that is not
contained in the toric boundary 3 P2 to a non-toric point in £(P2).

Proof. Since G is simple it contains no tight elements. Hence, by Lemma 2.22,
all loxodromic elements in G are of monomial type and G contains a subgroup À2
that is dense in T2. Assume now that there is an element / e G that contracts a

curve C C P2 that is not contained in 3 P2 to a non-toric point in £(P2), i.e. there

exists a blow-up of toric points jv: S -> P2 such that /(C) G S is not a toric point
(recall that, by abuse of notation, / also denotes the lift of / by jv).

The group G contains no element that contracts a curve that is not contained
in 3P2 to a point that is not contained in 3P2, by Lemma 3.18. Hence for all
elements g G that contract a non-toric curve D, the point g(D) is contained
in 3P2.

By Lemma 3.19, there exists a loxodromic element f G fm, A2) C G and

a curve C in P2 not contained in 3P2 that is contracted by f to a non-toric

point in <S(P2), as well as a dense open set U C T2 such that for all d G U the

transformation

gd := d-\f'df'-1
is loxodromic. Moreover, we may choose the dense open set U C 7'2 in such a way
that for all d e U we have that

cd (df'-lrl{C) fd~\c)
is a curve not contained in 3 P2 and g(j contracts Cd to a non-toric point in S(S).

Let Tt\: Vi P2 be a blow-up of toric points and let L C 3.S) be an irreducible

component of dSi. We claim that one of the following is true:

(1) There exists a dense open subset Ul C U such that gd(L) is not contained
in 35i for all d G UL.

(2) There exists a dense open set Ul C U such that gd contracts L to a non-toric
point p in <S(Ai) for all d G Ul- More precisely, there exists a blow-up of toric
points JV2. S2 > Si and an irreducible boundary component L2 C 3S2 such

that gd(L) is a proper non-toric point of L2 for all d G Ul (in particular, L2
does not depend on the choice of d G Ul)-

(3) There exists a dense open set Ul c U such that for every d G Ul n A2 there is

an element r G G satisfying that rgd (L) is not contained in 3Si.

Let us now prove the claim. The first observation is that if f'~l(L) is not contained
in 3Si, then there is a dense open set Ul C U such that for all d G Ul, the image
û?(/'_1(L)) is neither contained in the indeterminacy locus of f nor in the set of
points that is mapped by f to 35i. This implies that for all d G Ul the image

gd{L) d-lf'df'-\L)
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is not contained in 3Si and we are in situation (1) of our claim. Hence, in what
follows we may assume that (/')_1 (L) is contained in dSi.

We now distinguish various cases:

Case (a). Assume that there is a dense open set Uj_ C U such that for all d G Ul,
the map gd does not contract L and that gd(L) L. Since G is simple, for
all d G A2 n Ul the transformation gd is loxodromic and hence of monomial type.
So there exists an hd Cr2(C) and a loxodromic monomial transformation md such

that

gd hdmdh~dx.

By assumption, gd{L) L, i.e.

hdmdh~d\L) L.

Note that by Lemma 3.11, the image h~^x (L) can not be a curve, since a loxodromic
monomial transformation does not preserve any curve on a blow-up of toric points.
Hence, either there exists a blow-up of toric points 52 —> 5i such that

h-d\L) L'

for some irreducible boundary component, or hdx contracts L to some non-toric

point p in i8(5i), which has to be a fixed point of md The first is not possible, since

md(L') ^ L'

by Lemma 3.11. In the latter case we conclude that p is not contained in dSi, using
once more Lemma 3.11. Since hdtndhj1 is contained in G, there exists a dense

subgroup c T2 such that hd&dh~ll is contained in G. Let W C T2 be the
dense open subset such that d(p) is not a base-point of hd and is not contained in
the set of points that is mapped to 3Si by hd. Fora c e D W and r :=hdchdx
we have

rgd hdcmdhdl,

and therefore

rgd(L) hdcmdhdl(L)

is not contained in dS\. Hence we are in situation (3).

Case (b). Assume that f'~l contracts L to a non-toric point in S(S\), i.e. there

exists a blow-up of toric points G J —* S\ and a smooth rational curve L\ C 3.S'[ such

that is a non-toric point on L\. Let Ul C U be the dense open set such

that df'~x(L) is neither contained in the indeterminacy locus off nor in the set of
points of L j that are mapped by /.' to a toric point in <S(NJ) for all d e Ul- We are
then in situation (2). Moreover, L2 does not depend on the choice of d e Ul-



Vol. 95 (2020) Simple groups of birational transformations in dimension two 237

Case (c). Assume that

f'-\L) Lu
where L\ C 3Si is an irreducible boundary component. In this case,

gd(L) L

for all d G U and we are in case (a).

Case (d). Assume that f'~l contracts L to a toric point in £(Si). In this case, there

is a blow-up of toric points S2 —> S1 such that

f-\L) L2,

where L2 C 3S2 is an irreducible boundary component. This reduces to case (c).

This proves the claim.

Let deU and consider for each eeT2 the loxodromic transformation gd^mg^1.
The transformation d\{gdemg\J1) is loxodromic for all d\ in a dense open subset

of T2, by Theorem 2.8. The degree of d\(gciemgd]) is at most deg(/')4 deg(m)
for all di,d,e G T2. By Lemma 3.8 there exists a constant K e Z, such that

if à\ (,gdcmgj1) is of monomial type, then (d\ (gdemg^l))n contracts at most K — 1

different curves for all n G Z.
There exists for every d e U\ := U a dense open subset Vl c T2 such that

C'e,d := <emg2lTx(Cd)

is a curve for all e G Vf (recall that Cj is a curve not contained in 3P2 that is

contracted by g4 )- Moreover, for all d G U\ and all e G Vf there exists a dense open
subset Wj of T2 such that

di{gdemg'dl)(C'ed)

is not a base-point of g^1 (such a dense open set exists, since (gdemg^ ){C'e d) is

not a toric point).
We will now inductively add additional open conditions on the sets U1, Vj,

and Wj. If p\ := di(gdemgdl)(C^ d) is not contained in the toric boundary for

some d\,d,e G T2, then p\ is not contained in the toric boundary for all d\, d, e

in a dense open subset T C (T2)3. By choosing (di,d, e) G T n (A2)3 we obtain

an element in G that contracts the curve C'e d, which is not contained in the toric
boundary, to a point outside the toric boundary, which is not possible, by Lemma 3.18.

Hence, p\ is contained in 3P2. After a blow-up of toric points Si —» P2 we may
assume that p\ is a proper non-toric point of 9Si, which is, by our condition on d\,
not a base-point of gjl.
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Let L\ c 3Si be the line containing pi, hence we are in one of the situations
(1) to (3) described above. The situations (1) and (3) do not occur since otherwise

we would obtain an element in G that contracts a curve not contained in the toric
boundary to a point outside the toric boundary. Hence we are in situation (2), i.e. there

exists a dense open set Ulx C T2 such that g^1 contracts L\ to a non-toric point
in <S(Si). We set

U2 :=ULl n Ui.

Let S2 -> Si be the blow-up of toric points such that

P2 gjHpi) gdX(Li)

is a proper non-toric point on a line L2 C dS2. The crucial point here is that p2 does

not depend on the choice of d\ nor on the choice of e.

After a blow-up of toric points S'2 —> S2, the monomial map m maps L2 to
another component L'2 C dS'2. We define for all d e U2 the set Vd as the set of
all e e Vj such that em(p2) is not an indeterminacy point of gd Again, by the same

argument as above, we obtain that gd contracts L2 to a non-toric point in !B{S2) that
lies on or above the toric bundary. After a blow-up of toric points S3 -> S2 we may
assume that

Pi, := gd(L2) gdem(p2) gdemgdx {dxgdemg~d)(C'ed)

is a proper non-toric point on a line L3 c 95*3. And again, p3 does not depend on
the choice of d\ and e, so we obtain an additional open condition on the choice of d\
and thus a dense open subset Wd C IVj.

We now continue this process and obtain a sequence of blow-ups of toric points

S2/c~ 1 —> • —S2 —> Si

and a sequence of lines L\, L2,..., L2k> where Li c dSi, as well as inclusions of
dense open sets

U2K C U2K-I C-C(/i
and, for every d e U2k, inclusions of dense open sets

Wd C ••• C Wd C W] and Vf C ••• C V2 C Vj

with the property that for all d e U2K and all d\ 1Vf, e e Vf, one has

that (digdemgd1)1 (C'e d) is a point on the line L2/_ 1 for all 1 < I < K,
and that gdl{d\gd<imgj1)1 {C'e d) is a point on the line L2;. In particular,

i4\gdemgd1)1 {C'e d) is a point for all 1 < I < K.
We fix an element d e U2k n Ä2. By Lemma 3.16, there exists a dense open set

V C T2, such that

(gdemgdl)~l{C'ed)
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is a curve not contained in 3 P2 for all 1 < / < K and all e e V. We fix an element

eevnvf na2.
By Lemma 3.13, there exists a dense open set W C Tz such that

d\ (gdemgj1)

is loxodromic for all d\ e W, and a dense open set W' c T2 such that

{digdemgalyl (C'e4)

is a curve not contained in 3P2. Fix ad] G W PI W' fl Wf D A2. Then the

transformation A := d\gdemgf1 has the following properties:

(1) h is contained in G;

(2) h is loxodromic;

(3) hl (C'e d) is a point for all 1 < / < K;

(4) h~l(C'e d) is a curve not contained in 3 P2 for all 1 < / < K.

The properties (3) and (4) imply that hK contracts K different curves. Hence, by
definition of K, h is not of monomial type. But this is a contradiction to G being
simple, as was explained before.

Lemma 3.21. Let f e Cr2(C) be a loxodromic element with the following property:

• For alln G Z no non-toric curve C is contracted by fn to a non-toric point in the

bubble space .S(F'2).

Then either f is monomial or there exists a dense open subset U <ZT2 and ann 7L

such that dfnd~l f~n is loxodromic and not ofmonomial type.

Proof Assume that / is not monomial. Then fn is not monomial for all n f 0. by
Lemma 2.18. By Lemma 3.9 there exists a dense open set U C T2 and an m e Z
such that dfmd~l f~m is loxodromic for all d G U.

All curves that are not contained in the toric boundary and that are contracted

by fm are contracted to toric points in ,S(P2) and these are fixed by diagonal
automorphisms. Hence, for all J eU the map

(.fmdf-m)n fmdnf~m

contracts only toric curves for all n G Z. Denote by B C 3 P2 the union of all the

coordinate lines that are contracted by fmdn f~m for some ne Z. We observe

that fmdn f~m is an isomorphism on P2\5. As dfmd~1f~m is loxodromic,
the map fmdf~m can not be an automorphism of P2. If B consists of one line,
then fmdf~m and d~l fmdf~m are automorphisms of A2. Since the dynamical
degree of an element in Aut(A2) is always an integer, it follows that d~l fmdf~m
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is not of monomial type. If B is the union of two coordinate lines, then fmdf~m
and d~x fmdf~m are automorphisms of A1 xA[. The A^fibration of A1 xA|
is given by the invertible functions on A1 x A J,, so automorphisms of A1 xA|
preserve this A^fibration. In particular, A1 x A J, does not admit any loxodromic

automorphism which implies that this case does not occur. Finally, if B is the union
of all the three coordinate lines, then fdf~l is an automorphism of Ai x Ai, i.e. a

monomial map. By Lemma 2.18, the transformation / is monomial.

3.3. Proof of Theorem 3.1. Let G C Cr2(C) be a simple subgroup and assume
that G contains loxodromic elements. By Lemma 2.22, all loxodromic elements are of
monomial type. Assume that G contains a loxodromic element m. After conjugation
we may therefore assume that m is monomial. From Lemma 3.20 it follows that all
the curves contracted by elements of G are toric, and hence Lemma 3.21 implies
that all loxodromic elements of G are contained in T2 xi GL2(Z). Let h e G be an

arbitrary element. Since hgh~l is loxodromic, it is monomial. By Lemma 2.18, h is

contained in T2 x GL2(Z) as well. Therefore

G C T2 x GL2(Z)

and we obtain a non-trivial homomorphism

y.G -» GL2(Z)

whose kernel contains À2 — a contradiction to G being simple. Therefore, G does

not contain any loxodromic element.

4. Proof of Theorem 1.1 and Theorem 1.2

4.1. The parabolic and elliptic case.

Lemma 4.1. Let G C Cr2(C) be a simple subgroup that contains no loxodromic
element, but a parabolic element. Then G is conjugate to a subgroup of the

de Jonquières group and G is isomorphic to a subgroup of PGL2(C).

Proof. By Lemma 2.6, we know that G is either conjugate to a subgroup of the

automorphism group of a Halphen surface or to a subgroup of the de Jonquières
subgroup $. By Theorem 2.5, automorphism groups of Halphen surfaces are finite
extensions of abelian subgroups. It follows that the automorphism group of a Halphen
surface does not contain infinite simple subgroups. Therefore, G is conjugate to a

subgroup of f. Let

1 -* PGL2(C(0) -* $ PGL2(C) -* 1
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be the short exact sequence from the semi-direct product structure of fr. Since G

is simple, it is either contained in the kernel or the image of (p. In both cases it is

isomorphic to a subgroup of PGL2 (C

Lemma 4.2. Let G c Cr2(C) be a simple subgroup of elliptic elements. Then

either G is a subgroup of an algebraic group in Cr2(C) or G is conjugate to a

subgroup of the de Jonquières group fr.

Proof. Let G c Cr2(C) be a simple subgroup of elliptic elements. If G is a subgroup
of an algebraic group or if G is conjugate to a subgroup of the de Jonquières group,
we are done. So by Theorem 2.10, it only remains to consider the case where G is

a torsion group. In this case, G is isomorphic to a subgroup of an algebraic group,
by Theorem 2.10, and as such it is a linear group. The Theorem of Jordan and Schur

implies that G has a normal abelian subgroup of finite index. This implies that G is

finite and therefore algebraic.

4.2. Proofs. We have now gathered all the results to prove Theorems 1.2 and 1.1:

Proofof Theorem 1.2. The first statement of the Theorem is proven in Theorem 3.1,
the second statement of Theorem 1.2 is proven in Lemma 4.1 and the third statement
in Lemma 4.2.

Proofof Theorem 1.1. Let G be a simple group acting non-trivially on a complex
rational surface S. If S is rational it follows from the classification of maximal

algebraic groups (Theorem 2.9) and Theorem 1.2 that G is isomorphic to a subgroup
of PGL3(C). If S is non-rational the proof follows from Lemma 2.25 and

Lemma 2.26.

On the other hand, if S is rational, then

PGL3(C) Aut(P2)

is a subgroup of Bir(S), and in particular, every simple subgroup of PGL3(C) acts

by birational transformations on S. If G is isomorphic to a subgroup of PGL2(C),
then it acts non-trivially by birational transformations on the surface P1 xC for all
curves C. For every finite group G there exists a curve of general type C such that

Aut(C) G.

Hence, G acts non-trivially by birational transformations on the non-rational surface

of negative Kodaira dimension P1 xC as well as on the surface of non-negative
Kodaira dimension C x C.
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5. Finitely generated subgroups

In this section we prove Theorem 1.4. The main advantage when working with a

finitely generated group T, is that we can reduce modulo p the coefficients needed

to define the elements in F. We start by explaining this construction and will then

apply it in a second step to our problem. The following lemma is well known. A
proof can be found for example in [31, Lemma 3.2 [ :

Lemma 5.1. Let A be a finitely generated domain. The intersection ofall maximal
ideals of A is 0. Moreover, if A is afield, then A is finite.

The following proposition shows how Lemma 5.1 can be applied to obtain
information about the structure of subgroups of Cr2(k) for any field k. A similar
statement has already been proved and applied by de Cornulier in order to show that
the Cremona group is sofic ([14], see also [9]).

Proposition 5.2. Let k be afield and let T C Cr„ (k) be a finitely generated subgroup
that is not the identity subgroup. Then there exists a finite field F and a non-
trivial group-homomorphism (p\ F —» Cr„(F) that satisfies deg(<p(/)) < deg(f)for
each f T.

Proof. If T ~ Z /2 Z the claim is true. Otherwise, let g\,..., gi e F be a symmetric
generating set of T (i.e. closed under inversion). We may assume that gi f id for
all i and I >2. Fix homogeneous polynomials

Gij *= C [xq xn]

such that gi [G/o : • • • : G,n |, and define the endomorphisms

Gi := (G/o,..., Gin) ^ End(A"+1).

Assume that gr1 gj and let

Fi := GioGj (Fi0,...,Fin)e An+l

Note that

gi ° gj [Fio : • • • : Fin] [x0 : : xn\,

i.e. Fij PiXj for some homogeneous polynomial Pi C[x0,... ,xn].
Let T be the finite set of all non-zero coefficients that appear in the

polynomials G/y, the F^ or the polynomials G,,G2/ — G\jG2i and denote by r
the product of all elements of T. Let A be the domain generated by the elements

of T and by 1. In particular, we may consider all our polynomials G(/ Fij, and

G\iG2j — G\jG2i to be elements of A[xo xn\. By Lemma 5.1, there exists a

maximal ideal / c A such that r f I. Reduction modulo / yields a homomorphism
7r: A F for some finite field F such that r and hence all elements in T are not
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contained in the kernel of jr. By reducing the coefficients modulo /, we obtain a ring
homomorphism

ifr:A[x0,...,xn\ -> F[x0,..., xn\.

Define the rational maps

<p(gi) Gin)]

Note that

<P(gi) 0(p(<8Ïl) If(Fii) t(Fin)\ [f{Pi)xo : ••• : f(Pi)xn] id,

so <p(gi) is a birational transformation of Pp. Assume that gilgi2 ••gil id for
some 1 <i\,... ,ii < k. Then

Gh o • • • o Git (Qx0,..., Qxn)

for some homogeneous polynomial Q. It follows that

[HQ)xo : ty(Q)xi : ••• : f(Q)x„\ id.

Therefore, the map y can be extended to a homomorphism of groups <p: F -4 Cr„ (F).
By construction, at least one of the polynomials x/r(Gii)i/r(G2j) — ^(Gij)x/j-(G2i) is

not zero and hence <p(g\) ^ <p(g2)l in particular, <p is not trivial.
Let g ghgh gi, e F. Then

g [H0 :Hi

where (H0,. Hn) G,-, o • • • o Gn. We then have

<P(g) [ty(Ho) : f{Hi) : ••• : f(Hn)\.

This shows that dcg((p{g)) < deg(g).

Together with Theorem 2.21 we obtain the following result:

Proposition 5.3. Let k be an algebraically closed field and let F C Cr2 (k) be

a finitely generated subgroup. If T contains a loxodromic element, then T is not

simple.

Proof. Let f e F be a loxodromic element. If there exists a n such that /" is tight
in T, the group F is not simple by Theorem 2.19 and we are done. If no power
of / is tight, it follows from Theorem 2.21 that T contains an infinite subgroup A2
that is normalized by / and that is conjugate either to a subgroup of T2 or to a

subgroup of k2. The group A2 being conjugate to a subgroup of 7'2 or k2 implies
in particular that the degrees of the elements in A2 are uniformly bounded by an
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integer K. By Proposition 5.2, there exists a finite field F and a non-trivial group
homomorphism <p: T —> Cr2(F) that satisfies

deg(<?(/)) < deg(/).

In Cr2(F) there exist only finitely many elements of degree < K, hence the

image <p(A2) is finite. It follows that <p has a proper kernel and therefore that T

is not simple.

We are now able to prove Theorem 1.4 using the same strategy as in the proof of
Theorem 1.2.

Lemma 5.4. Let C be a curve over an algebraically closed field k and T C
Bir(IP1 xC) be a finitely generated simple subgroup that preserves the IP1 -fibration
given by the projection to C. Then V is finite.

Proof. Since T is simple, it is either isomorphic to a subgroup of PGL2(k(C)) or to
a subgroup of Aut(C). Since both, PGL3(k(C)) and Aut(C) satisfy the property of
Malcev by [2, Corollary 1.2], the group V is finite.

Proofof Theorem 1.4. Let k be the algebraic closure of k. Since Bir(S'k) C Bir(S^),
it is enough to show the statement for algebraically closed fields.

First assume that our surface S is rational. By Proposition 5.3, T does not contain

any loxodromic element. If T contains a parabolic element, then T is conjugate to a

subgroup of the de Jonquières group

# ~ PGL2(C(0) * PGL2(C)

or to a subgroup of the automorphism group Aut(A) of a Halphen surface X. This
last case is not possible by the property of Malcev for automorphism groups [2,

Corollary 1.2]. If T is a subgroup of the claim follows with Lemma 5.4. If all
elements in T are elliptic, the claim follows from Theorem 2.11. In the first case, T

is finite by Lemma 5.4. As for the second case we recall that algebraic subgroups
of Cr2(k) are always linear. Hence T is linear and therefore finite, since linear groups
satisfy the property of Malcev.

If S is a non-rational ruled surface, the statement follows from Lemma 5.4.

If S is non-rational and not ruled, it has a unique minimal model S' (see [1, Corollary

10.22]). Hence T is conjugate to a subgroup of Bir(5") Aut(S") and is therefore
finite by the property of Malcev for automorphism groups [2, Corollary 1.2].
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