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Simple groups of birational transformations in dimension two
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Abstract. We classify simple groups that act by birational transformations on compact complex
Kihler surfaces. Moreover, we show that every finitely generated simple group that acts non-
trivially by birational transformations on a projective surface over an arbitrary field is finite.
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1. Introduction and results

Let S be a surface over a field k and denote by Bir(S) its group of birational
transformations. If S is rational, this group is particularly rich and interesting. In
this case it is isomorphic to the plane Cremona group

Cry (k) = Bir(P2).

In the last decade numerous results about the group structure of the plane Cremona
group have been proven (see [10] for an overview). One of the main techniques to
better understand infinite subgroups of Cr, (k) was the construction of an action by
isometries of the plane Cremona group on an infinite dimensional hyperbolic space
H (P?) and the use of results from hyperbolic geometry and group theory. For
instance, it had been a long-standing open question, whether the plane Cremona group
is simple as a group until Cantat and Lamy showed in 2012 that it is not [13]. The
main idea to prove this result was to use techniques from small cancellation theory,
an approach that has been refined by Shepherd-Barron and Lonjou (see [27,33]).
In this paper we take these results as a starting point to give a classification of all
simple groups that act non-trivially by birational transformations on compact complex
Kihler surfaces. Our main result is the following:

Theorem 1.1. Let G be a simple group. Then:

(1) G acts non-trivially by birational transformations on a rational complex
projective surface if and only if G is isomorphic to a subgroup of PGL3(C).

(2) G acts non-trivially by birational transformations on a non-rational compact
complex Kdhler surface of negative Kodaira dimension if and only if G is finite
or isomorphic to a subgroup of PGL,(C).

(3) G acts non-trivially by birational transformations on a compact complex Kihler
surface S of non-negative Kodaira dimension if and only if G is finite.

It should be emphasized that part (2) and (3) of Theorem 1.1 are not hard to
prove using some well-known facts about groups of birational transformations of
non-rational compact complex surfaces (see Section 2.7). Whereas for the proof of
the first part we will use some rather difficult theorems and lengthy arguments.

An element f € Cry(k) is called elliptic, parabolic or loxodromic if the
isometry of the hyperbolic space H*(P?) induced by f is elliptic, parabolic
or loxodromic respectively. This distinction is closely linked to the dynamical
behavior of f (see Section 2.2). The subgroup § C Cr,(C) of elements preserving
a given rational fibration is called the de Jonquiéres subgroup. 1t is isomorphic
to PGL, (C) x PGL,(C(¢)). A faithful and regular action of an algebraic group H on
a rational projective surface S induces an embedding of /1 into Crp(C) defined up to
conjugation; the image is called an algebraic subgroup (see Section 2.4 for details).
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We will give the following precise description of simple subgroups of Cr, (C):

Theorem 1.2. Let G C Cra(C) be a simple group. Then:

(1) G does not contain loxodromic elements.

(2) If G contains a parabolic element, then G is conjugate to a subgroup of §.

(3) Ifallelements in G are elliptic, then either G is a simple subgroup of an algebraic
subgroup of Cra(C), or G is conjugate to a subgroup of §.

Theorem 1.1 naturally leads to the question about the classification of simple
subgroups of PGL3(C) and PGL,(C). Obvious classes of simple subgroups
of PGL,(C) are finite simple subgroups, or subgroups of the form PSL;(k),
where k C C is a subfield. It is unclear, whether there exist other examples. In
fact, already the following question seems to be open:

Question 1.3. Does PSL,(Q) contain proper infinite simple subgroups?

Question 1.3 can be seen in the context of a more general question that has been
asked by McKay and Serre (see [11], [30, 15.57] for details).

If we consider only finitely generated simple subgroups of Bir(S), we do not
have to restrict ourselves to the field of complex numbers and we can use different
techniques. Recall that a group G satisfies the property of Malceyv if every finitely
generated subgroup I' C G is residually finite, i.e. the intersection of normal
subgroups of finite index is the identity. Malcev showed that linear groups satisfy this
property [28]. Other groups that fulfill the property of Malcev include automorphism
groups of schemes over any commutative ring [2, Corollary 1.2]. In [8], Cantat asked
whether the plane Cremona group has the property of Malcev, a question that is still
open. Finitely generated simple subgroups of groups with the property of Malcev
are always finite. We will prove the following result (where surfaces are always
considered to be geometrically irreducible):

Theorem 1.4. Let S be a surface over a field k and I' C Bir(S) a finitely generated
simple group. Then T is finite.

In other words, all finitely generated simple groups of birational transformations
in dimension 2 are finite. From the classification of finite subgroups of Cr,(C)
(see [20]) we obtain in particular:

Corollary 1.5. A finitely generated simple subgroup of Cr,(C) is isomorphic to
Z | p 7, for some prime p, s, HAg, PSL(7).

The conjugacy classes of these finite groups are classified in [20].

Acknowledgements. Iexpress my warmest thanks to my PhD-advisors Jérémy Blanc
and Serge Cantat for their guidance during this work, their constant support and
helpful comments on previous versions of this text. I am indebted to Michel Brion
and Ivan Cheltsov for numerous helpful comments on this work. I also thank Vincent
Guirardel, Stéphane Lamy, Anne Lonjou and Susanna Zimmermann for interesting
discussions.
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2. Preliminaries

We always assume that k is a fixed algebraically closed field (unless stated explicitely
otherwise). If we choose homogeneous coordinates [x : y : z] of PZ, every element
[ € Cry(Kk) is given by

[x:y:zlr=> [fo(x.y,2): fix,y.2) : falx,y, 2)],

where fy, f1, f> € K[x, y, z] are homogeneous polynomials of the same degree and
without a non-constant common factor. We will identify f with [fy : f1 : /2]
by abuse of notation. With respect to affine coordinates (x,y) = [x : y : 1], the
birational transformation f is given by (x, y) +—> (F, G ), where

_ fO(xay’l) _ fl(xsy’l) c
falx,y, 1) fa(x,3.1)

When working with affine coordinates, we identify f with (F, G).

k(x,y).

2.1. The Picard-Manin space. Let X be a projective surface. Then Bir(X) acts
by isometries on an infinite dimensional hyperbolic space H*°(X). Since this
construction has been described in detail in various places, we will just briefly
sketch the main ideas and refer to [29] and [8] for proofs (see also [10] and [13]).

We start by a construction that is due to Manin [29]. The bubble space B(X)
of a smooth projective surface X is the set of all points that belong to X or are
infinitely near to X. It is defined as the set of all triples (y, Y, x), where Y is a
smooth projective surface, y € ¥ and n: Y — X a birational morphism, modulo
the following equivalence relation: A triple (v, Y, ) is equivalent to (y',Y’, ')
if there exists a birational map ¢:Y --> Y’ that restricts to an isomorphism in a
neighborhood of y that maps y to y’, and that satifies 7’ o ¢ = m. A proper point
of X is a point p € B(X) that is equivalent to (x, X, id). All points in B(X) that
are not proper are called infinitely near. If there is no ambiguity, we will denote a
point (v, Y, ) in the bubble space just by y.

Denote by B( f) the base-points of a birational map f:X --> Y of projective
surfaces X and Y. A birational morphism : X — Y of surfaces induces a bijection

(71)e: B(X) = B(Y) \ B(x ™),

where o (x, X, ¢) := (x, X, mog). A birational transformation of smooth projective
surfaces f: X --> Y defines a bijection

[ B\ B(f) > BX)\ B/

by fo = (m2)e o (71)7", where 71: Z — X, m2: Z — Y is a minimal resolution
of f.
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We define the Picard—Manin space of a smooth projective surface X by

Z(X):=_lim NS(X),

where the direct limit is taken over all birational morphisms of smooth projective
surfaces : Y — X. The intersection forms on the groups NS(Y') induce a quadratic
form on Z(X) of signature (1,00), by the Hodge index theorem. For a point
p € B(X) we denote by e, the class of the exceptional divisor of the blow-up of p
in Z(X). The Picard—Manin space has the following decomposition

Z(X)=Ns(X)® P Ze,.
pEB(X)

where ¢, -¢, = —l and e, ¢, = O forall p # g, as well as e, - D = 0 for all
D € NS(X). Consider the following completion of the real vector space Z(X) ® R:

Z(X)::{v—l— Z apep | v € NS(X)®R, a, € R, Z a;<oo}.
peB(X) PEB(X)

The intersection form on Z( X ) ® R extends continuously to a quadratic form on Z(X)
with signature (1, co). We fix a vector ¢y € Z(X') that corresponds to an ample class
on X and define H*°(X) as the set of all elements v in Z(X) such that v - v = 1
and e¢g - v > 0. This yields a distance d on H*(X) by

d(u,v) := arccosh(u - v).

With this distance, the space H®(X) is a complete metric space that is hyperbolic.
The boundary 0 H*®(X) of H®*°(X) is the space of lines in the isotropic cone.

Let m:Y — X be a birational morphism between smooth projective surfaces.
Then 7 induces an isomorphism m.: Z(Y) — Z(X) in the following way: Let

NS(Y) = NS(X) @ Zep, @+ @ Zep,.

where p1, ..., p, € B(X) are the points blown up by 7, and e, is the irreducible
component in the exceptional divisor that is contracted by 7 to p;. We now define
the map m, by m.(ep) = ex,(p) forall p € B(Y), ni(ep,) = ep; and w(D) = D
for all D € NS(X) C NS(Y), with respect to the inclusion given by the pull-back
of . For a birational map f:Y --» X we define an isomorphism

fe:Z(Y) = Z(X)

by fx = (m2)« o (711); ', where m: Z — Y, m5: Z — X is a minimal resolution of
indeterminacies. If / € Bir(X), then f. induces an automorphism of Z(X)®1R, that
extends to an automorphism of the completion Z(X') and preserves the intersection
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form. This yields in particular an isometry on H°(X) and we obtain an action by
isometries of Bir(X) on H*(X).

Recall that there are three types of isometries of hyperbolic spaces: elliptic,
parabolic, and loxodromic isometries. Let f be an isometry of H°(X) and define

L(f)=inf{d(f(p), p) | p € H*(X)}.

If L(f) = 0 and the infimum is attained, i.e. f has a fixed point in H*°(X), then f
is elliptic. If L(f) = 0O but the infimum is not attained, f is parabolic. It can be
shown that a parabolic isometry fixes exactly one point p on the border d H*(X).
If L(f) > Othen f is loxodromic. In this case the set

{p e "' | d(h(p), p) = L(h)}

is a geodesic line in H* (X)), the so-called axis Ax(f) of f, and L(f) is called the
translation length. A loxodromic isometry has exactly two fixed points in d H*®(X),
one of them attractive and the other one repulsive (see [8]). An element f € Bir(X)
is called elliptic, parabolic or loxodromic if the corresponding isometry on H*(X')
is elliptic, parabolic or loxodromic respectively, and the axis Ax( /') of a loxodromic
element f € Bir(X) is the axis in H® (X) of the isometry corresponding to f.

2.2. Degrees. Let X be a projective surface with a polarization H and f € Bir(X).
The dynamical degree of f is defined by

A(f) = lim degp (f")7.

The following result is well known (see for example [10, Lemma 4.5]):

Proposition 2.1. The dynamical degree A( ) of a birational transformation f €Bir(X)
does not depend on the choice of the polarization H. Moreover, [ is loxodromic if
and only if A(f) > 1. In this case, the translation length of the isometry of H*(X)
induced by f is log(A(f)).

In [6], Blanc and Cantat studied the spectrum of possible values that can be
obtained as dynamical degrees of birational transformations of a given projective
surface.

Theorem 2.2 ([6, Corollary 1.7], [19]). Let X be a projective surface over an
algebraically closed field k and let | € Bir(X) with A(f) > 1. Then A(f) is either
a Pisot or a Salem number. Moreover, A(f) > Ap, where Ay > 1 is the Lehmer
number.

Recall that the Lehmer number A; ~ 1.1762 is the unique root > 1 of the
irreducible polynomial

x10+x9—x7—x6—x5—x4—x3—|—x+1.
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The fact that there is no birational transformation f of a surface such that 1 <
A(f) < Ay is usually referred to as the gap property. One of the consequences of
Theorem 2.2 is the following:

Theorem 2.3 (Cantat—Blanc [6, Corollary 1.5]). Two loxodromic elements f,g €
Cry(K) of degree < d are conjugate if and only if they are conjugate by an element
of degree < (2d)*”.

The dynamical behavior of a birational transformation f of a surface X, in
particular the growth of its degree under iteration, is closely linked to the type of the
isometry of H*®(X') induced by f, as the following important theorem states (we
refer to [10] for details and references):

Theorem 2.4 (Gizatullin; Cantat; Diller and Favre). Let X be a smooth projective
surface over an algebraically closed field k with a fixed polarization H and
| € Bir(X). Then one of the following is true:

(1) f is elliptic, the sequence {degy (f")} is bounded and there exists ak € 7.4
and a birational map ¢: X --> Y to a smooth projective surface Y such that
of %o~ is contained in Aut®(Y), the identity component of the automorphism
group Aut(Y).

(2a) f is parabolic and degy (f") ~ cn for some positive constant ¢ and f
preserves a rational fibration, i.e. there exists a smooth projective surface Y, a
birational map ¢: X --> Y, acurve B and a fibration .Y — B, such that a
general fiber of 7 is rational and such that ¢ f ¢! permutes the fibers of .

(2b) [ is parabolic and degg (f™) ~ cn? for some positive constant ¢ and f
preserves a fibration of genus 1 curves, i.e. there exists a smooth projective
surface Y, a birational map ¢: X --> Y, a curve B and a fibrationw:Y — B,
such that of @~ permutes the fibers of w and such that  is an elliptic fibration,
or a quasi-elliptic fibration (the latter only occurs if char(k) = 2 or 3).

(3) f isloxodromic anddeggy (f") = cA(f)" + O(1) for some positive constant c,
where A(f) is the dynamical degree of f. In this case, [ does not preserve
any fibration.

Theorem 2.4 has lead to various remarkable results on the group structure
of Bir(X); we will state some of them in the following sections. From the point
of view of geometric group theory, the plane Cremona group acting on H*(X) has
some analogies with other groups acting on hyperbolic spaces such as for example
the mapping class group of a surface acting on the complex of curves or groups of
outer automorphisms of a free group with n generators acting on the outer space.

2.3. Groups preserving a fibration. Let us recall the structure of subgroups of Cr; (k)
that preserve a given fibration. The de Jonquiéres subgroup § of Cra(K) is the
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subgroup of elements that preserve the pencil of lines through the point [0: 0: 1]
€ P?. With respect to affine coordinates [x : y : 1], an element in g is of the form

ax +b a(x)y + ﬁ(x))
cx+d yx)y +8(x) )

(x,y) +—> (

where (¢ %) € PGL,(k) and (ggg ’83((3) € PGL,(k(x)). This induces an iso-
morphism

g ~ PGL2(K) x PGLy(k(x)).

By a Theorem of Noether and Enriques [3, [11.4], every subgroup of Cry(Kk) that
preserves a rational fibration is conjugate to a subgroup of ¢.

Two smooth cubic curves C and D in P? intersect in 9 points p1,..., pe and
there is a pencil of cubic curves passing through these 9 points. By blowing up
P1, ..., P9, we obtain a rational surface X with a fibration 7: X — P! whose fibers
are genus 1 curves. More generally, we-can consider a pencil of curves of degree 3m
for any m € Z and blow up its base-points to obtain a surface X. Such a pencil
of genus 1 curves is called a Halphen pencil and the surface X a Halphen surface
of index m. A surface X is Halphen if and only if the linear system | — m K| is
one-dimensional, has no fixed component and is base-point free. Up to conjugacy
by birational maps, every pencil of genus 1 curves of P2 is a Halphen pencil and
Halphen surfaces are the only examples of rational elliptic surfaces. We refer to [12]
and [24, Chapter 10] for proofs and more details. A birational transformation f that
preserves the genus 1-fibration of a Halphen surface X preserves in particular the
canonical divisor Ky of X. This implies that / is an automorphism. A subgroup G
of Cry (k) that preserves a pencil of genus 1 curves is therefore conjugate to a subgroup
of the automorphism group of some Halphen surface. The automorphism groups of
Halphen surfaces are studied in [22] and in [12], see also [23]. We need the following
result, which can be found in [12, Remark 2.11]:

Theorem 2.5. Let X be a Halphen surface. Then there exists a homomorphism
p: Aut(X) — PGLL(C) with finite image such that ker(p) is an extension of an
abelian group of rank < 8 by a cyclic group of order dividing 24.

We also recall the following result from [8] (see also [34, Lemma 2.5]):

Lemma 2.6. Let G C Cry(C) be a group that does not contain any loxodromic
element but contains a parabolic element. Then G is conjugate to a subgroup of the
de Jonquiéres group § or to a subgroup of Aut(Y ), where Y is a Halphen surface.

2.4. Groups of elliptic elements. The group Bir(X) can be equipped with the so
called Zariski topology (see [18], [32], and [7] for details), which is defined in the
following way: Let A be an algebraic variety and f: A x X -—» A x X a birational
map of the form

(a,x) +—> (a, f(a,x))
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that induces an isomorphism between open subsets U and V' of A x X such that
the projections from U and from V to A are both surjective. For each a € 4 we
obtain therefore an element of Bir(X) defined by x +— p,(f(a, x)), where p, is
the second projection. A map A — Bir(X) of this form is called a morphism. The
Zariski topology on Bir(X) is defined as the finest topology such that, for all algebraic
varieties A, all the morphisms f: A — Bir(X) are continuous (with respect to the
Zariski topology on A).

Theorem 2.7 ([35, Theorem 4.3]). The dynamical degree is a lower semi-continuous
function. More precisely, let A C Cra(K) be a family of birational transformations
parametrized by an algebraic variety A. Then for all A € R, the set

{feA[A(f)> A}
is open in A.

Theorem 2.8 ([35, Theorem 1.6]). Let d > 2 be an integer. Denote by Cry(K)y the
space of Cremona transformations of degree d. Then for any A < d, the set

Uy = {f €Cralk)g | A1()f) > A}

is open and Zariski-dense in the algebraic variety Cra(K)4.

An algebraic subgroup of Bir(X) is the image of an algebraic group G by a
morphism G — Bir(X) that is also an injective group homomorphism. Algebraic
groups are closed in the Zariski topology and of bounded degree in the case of
Bir(X) = Cr, (k). Conversely, closed subgroups of bounded degree in Cry, (k) are
always algebraic subgroups with a unique algebraic group structure that is compatible
with the Zariski topology (see [7]). In [7], it is shown moreover, that all algebraic
subgroups of Cr, (k) are linear.

Every algebraic subgroup of Cr, (C) is contained in a maximal algebraic subgroup.
The maximal connected algebraic subgroups of Cry(C) have been classified by
Enriques. Using modern techniques, Blanc extended this result to a classification of
all maximal algebraic subgroups of Cr,(C). Each of them can be realized as some
automorphism group of a complex projective variety [5,21]:

Theorem 2.9 ([5]). Every algebraic subgroup of Cr,(C) is contained in a maximal
algebraic subgroup. The maximal algebraic subgroups of Cr(C) are conjugate to
one of the following groups:
(1) Aut(P?) ~ PGL3(C);
(2) Aut(P! xPl) ~ (PGL,(C))2 %7 /27;
(3) Aut(Sg) ~ (C*)? x (83 x Z /2 Z), where Sg is the del Pezzo surface of
degree 6;
4 Aut(F,) ~ Clx, yln % GL2(C)/un, where n > 2 and F, is the n-th
Hirzebruch surface and |, C GLy(C) is the subgroup of n-torsion
elements in the center of GL, (C);



220 C. Urech CMH

(5) Aut(S,m), where m: S — Plisan exceptional conic bundle;
(6)—-(10) Aut(S), where S is a del Pezzo surface of degree 5, 4, 3, 2 or 1. In this
case, Aut(S) is finite;
(11) Aut(S, ), where (S, m) is a (Z /2 7)?*-conic bundle and S is not a del
Pezzo surface. There exists an exact sequence

1>V > Aut(S,7) > Hy — 1,

where V ~ (Z /2 7Z)? and Hy C PGL,(C) is a finite subgroup.
A subgroup of Cr,(C) consisting only of elliptic elements is called a group of

elliptic elements. In [34] groups of elliptic elements of Cr,(C) have been classified.
In particular, the following result is shown:

Theorem 2.10 ([34, Theorem 1.1 and 1.2]). Let G C Cry(C) be a subgroup of
elliptic elements. Then one of the following is true:

(1) G is conjugate to a subgroup of an algebraic group;

(2) G preserves a rational fibration;

(3) G is a torsion group and G is isomorphic to a subgroup of an algebraic group.
We also recall the following result, which in the original version was stated for

the case of complex numbers. However, the proof only relies on hyperbolic geometry
of H*(P?) and does not depend on the characteristic of the base field:

Theorem 2.11 ([8, Proposition 6.14]). Let k be an algebraically closed field and
let ' C Cra(K) be a finitely generated subgroup of elliptic elements. Then T" is
either contained in an algebraic subgroup, or I' preserves a rational fibration and is
therefore conjugate to a subgroup of

g ~ PGL, (k) x PGL, (k(?)).

2.5. Monomial transformations. The subgroup of diagonal automorphisms 72 C
PGL3(k) is a torus of rank 2. It is maximal in the following sense: all algebraic tori
in Cr, (k) are of rank < 2 and are conjugate in Cr, (k) to a subtorus of 72 [4,18]. A
matrix A = (a;;) € GL2(Z) determines a rational map f4 of IP?, which we define
by

,fA — (xallyal2,xa21y022)_

We thus obtain an injective homomorphism GL;(Z) — Cry(k). By abuse of
notation, we will identify its image with GL,(Z). The normalizer of T2 in Cr, (k) is
the semidirect product

NormCrz(k)(Tz) = T? x GL,(2).

Elements in T2 x GL,(Z) are called monomial transformations. We say that f €
Cr, (K) is of monomial type, if f is conjugate to an element in T2 x GL, (Z). We call
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a matrix A € GL,(Z) loxodromic, if the corresponding birational monomial map
in Cr, (k) is loxodromic.

Lemma 2.12. Letm € GL,(Z) C Cra(K) be a loxodromic monomial transformation
and d € T? a diagonal automorphism. There exists a diagonal automorphism
d’ € T? such that d""'dmd’ = m.

Proof. Assume that m = (x%y®, x¢y?), where A := (9 5) € GLy(Z). Then m
acts by conjugation on 72 by sending (c1x,c2y) to (¢}x,chy), where ¢] = cfcg

and ¢ = c{cg. We therefore have

(o %, czy)_lm(clx, c2y) = (dix,dry)m,

where d; = cﬁ"l cg andd, = cfcg_l . To show the claim of the lemma it is therefore
enough to show that the homomorphism ¢ 4_;q of T2 given by

(c1x,02y) > (d1x,d2y)

is surjective. Since m is loxodromic, the matrix A has no eigenvalue of modulus 1
and hence the determinant of A —id is not 0. This is equivalent to the kernel of ¢ 4—ig
being finite, which implies surjectivity. [

Lemma 2.13. Let m € GLy(Z) C Cry(k) be a loxodromic monomial map and
Ao C T? an infinite subgroup that is normalized by m. Then A, is dense in T? with
respect to the Zariski topology.

Proof. Let AY be the identity component of the Zariski-closure of A,. If A9 has
dimension 2, we are done. Otherwise, Zg is of dimension 1, since A, is not finite.
It follows that a general orbit of A) has dimension 1. Since m normalizes A it
permutes the orbits. This implies that m preserves a fibration. But this is not possible
since m is loxodromic, by assumption. Ll

Lemma 2.14. Let [ € Cry(Kk) be a birational transformation such that
fT2f € T?2 x GLo(7).
Then f € T? xGLy(Z).

Proof. Since fT? f~! is an algebraic subgroup, it is of bounded degree. Since
GL,(7Z) contains only finitely many elements of a given degree, /7% f ! is therefore
contained in a group of the form H x T2, where H is finite. Since fT2f~!is
connected, it is contained in 72, which implies that f normalizes T2. O

Let M € GL,(Z) and fpr be the corresponding birational transformation. The
dynamical degree A( far) of fas is exactly the spectral radius of the matrix M. This
shows in particular that the dynamical degree of a monomial matrix is always a
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quadratic algebraic integer. If M € GL,(Z) has spectral radius strictly larger than 1,
the birational map fj is loxodromic. As stated above, the normalizer of T'2 is exactly
T? x GLy(Z). We thus obtain examples of loxodromic elements that normalize an
infinite subgroup consisting only of elliptic elements. The following theorem shows
that, up to conjugacy, these are the only examples with this property if we work
over the field of complex numbers C. A first version has been proven by Cantat
in [17, Theorem 7.1], the more general version, which we state below, can be found
in [34]:

Theorem 2.15. Let N C Cry(C) be a subgroup containing at least one loxodromic
element. Assume that there exists a short exact sequence

l>A—->N->B->1,

where A is an infinite group of elliptic elements. Then N is conjugate to a subgroup

of T2 x GL,(Z).

2.6. Small cancellation. Small cancellation has been one of the fundamental tools
used by Cantat and Lamy to show that Cr,(C) is not simple. Dahmani, Guirardel
and Osin applied similar arguments in the context of mapping class groups [16]. We
refer to [15] for an overview of the subject.

Let €, B > 0. We say that two geodesic lines L and L’ in H® are (¢, B)-close,
if the diameter of the set

S={xel|d(x,L)<é¢}

is at least B.

Definition 2.16. Let G be a subgroup of Cry(k) and g € G a loxodromic element.
We call g rigid in G if there exists an € > 0 and a B > 0 such that for every element
h € G one has: h(Ax(g)) is (¢, B)-close to Ax(g) if and only if 2(Ax(g)) = Ax(g).
We call g tight in G ifitis rigid in G andif h(Ax(g)) = Ax(g)implieshgh™ = g
orhgh™' =g 'forallh € G.
Example 2.17. Let m € GL2(Z) C Cra(k) be a loxodromic element. Then the
group T2 fixes the axis of m pointwise and no power of m is tight in Cr, (k) [10,
Example 7.1]. More generally, if G C Cr,(k) is a subgroup containing m and an
infinite subgroup A, C T2, then no power of m is tight in G.

Lemma 2.18. Let g € GLy(Z) be a loxodromic element and f € Cr, (K) an element
such that fgf =" is contained in T? x GL,(Z). Then f € T? xGLy(Z).

Proof. Assume that fgf~' € T? x GL,(Z). Then the axis of the loxodromic
element fgf ! is fixed pointwise by both, f72 f~! and T? (see Example 2.17).
Hence, the group A4 generated by fg ! and T2 is bounded. By Theorem 2.15, 4 is
conjugate to a subgroup of 7°2. This implies that £ 72 f~! C T2 and therefore, that
f e T2 xGLy(Z). 0
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In [13] the authors show that a power of a generic element in Crp(C) is tight
in Cry(C) and prove the following theorem to argue that Cr,(C) is not simple.
In [27] Lonjou showed that a power of a Hénon transformation is tight in Cra(Kk),
where Kk is an arbitrary field in order to show that Cr, (k) is not simple.

Theorem 2.19 ([13, Theorem 2.10]). Let G C Cry(C) be a subgroup and let g € G
be an element that is tight in G. Then every element h in ((g)), where (g)) denotes
the normal subgroup of G generated by g, satisfies the following alternative: Either
h = id or h is loxodromic and L.(h) > L(g). In particular, for n > 2, the element g
is not contained in (g" ) and G is therefore not simple.

A couple of years later, Shepherd-Barron has classified tight elements in Cr,(C)
using Theorem 2.15:

Theorem 2.20 ([33]). In Cra(C) every loxodromic element is rigid. If g is conjugate
to a monomial map, then no power of g is tight. In all the other cases, there exists an
integer n such that g" is tight.

Note that if G C Cry(C) is a subgroup and g € Cr,(C) is arigid element, then g
isrigid in G as well. The same is true for tight elements. However, there exist
subgroups G C Cr,(C) and loxodromic elements ¢ € G such that g is tight in G but
not in Cr,(C). From the proof of Theorem 2.20 (see [33, p. 18]) and Lemma 2.13
the following Theorem follows. We will briefly sketch its proof.

Theorem 2.21. Let G C Cra(C) be a subgroup and g € G a loxodromic element.
The following two conditions are equivalent:

(1) nopower of g is tight in G;

(2) there is a subgroup A, C G that is normalized by g and a birational trans-
formation f € Cro(C) such that fA, f~1 C T? is a dense subgroup and
fef 1€ T? x GLy(Z).

Proof. We closely follow the proof from [33, p.18]. Let g € G be a loxodromic
element such that no power of g is tight. Let H C G be the subgroup of elements
[ € G satisfying

f(Ax(g)) = Ax(g).

Denote by H4 C H the subgroup of index at most two consisting of elements that
preserve the orientation of Ax(g). Let m: Hy — R be the group homomorphism
such that an element f € H acts on Ax(g) by a shift of length 7 (f). The
kernel A of r consists of elliptic elements and the image is discrete by Theorem 2.2.
Let gy € H4 be an element such that w(go) generates the image of w. We obtain
that

Hi >~ A% (go).

If A is infinite, then Theorem 2.15 and Lemma 2.13 imply (2). Assume that 4 is
finite, which implies that g centralizes A for some s € Z, i.e. g is in the center
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of H,. We can write g = agg' forsome a € A and m € Z, hence g = cgy" for
some ¢ € A. Lett € Z be divisible by the order of A. Then

t _mst mst

st _
;T =C% =&

8
and in particular, g% is contained in the center of H,. Hence hg®'h—! = g% for
all h € H,. One shows similarly that hgs*h™! = ¢~ forallh € H \ HT. By
Theorem 2.20, g is rigid in Cr,(C) and therefore it is also rigid in G and hence tight.

On the other hand, assume that there exists a subgroup A, C G thatis normalized
by g and a birational transformation f € Cr,(C) such that fA, f~! C 7% is a dense
subgroup and fgf ! € T? x GL,(Z). Then no power of g is tight (Example 2.17).

O

From Theorem 2.19 and Theorem 2.21 one deduces directly the following lemma:

Lemma 2.22. Let G C Cra(C) be a simple subgroup. Then for every loxodromic
element g € G there exists an infinite subgroup A5 C G andan element f € Cr,(C)
that conjugates A3 to a dense subgroup of T* and g to an element of T> x GL,(Z).

In positive characteristic Theorem 2.15 does no longer hold, as the following
example shows:

Example 2.23. Letkbe afield of characteristic p. The loxodromic element(y, x+y?)
normalizes the additive group of elliptic elements k2.

However, it turns out that these kind of examples are the only exceptions (see [33]
and [10]). We only need the following result, which follows from the proof of
Theorem 7.2 in [33, p. 18]:

Theorem 2.24. Let k be an algebraically closed field and G C Cra(k) a subgroup.
Let g € G be a loxodromic element such that no power of g is tight then g normalizes
an infinite group of elliptic elements that is either conjugate to a subgroup of T? or
to a subgroup of K>.

2.7. Non-rational surfaces. Inthis section we treat the case of non-rational compact
complex Kihler surfaces of Theorem 1.1.

Lemma 2.25. Let S be a non-rational compact complex Kihler surface of Kodaira
dimension —oo and G C Bir(S) a simple subgroup. Then G is either finite or
isomorphic to a subgroup of PGL,(C).

Proof. There exists a non-rational curve C such that S is birationally equivalent
to P! xC, hence

Bir(S) = PGL,(C(C)) x Aut(C).
It follows therefore that G C PGL,(C(C)) or G C Aut(C). In the first case we are
done, since the function field C(C') can be embedded into C and hence PGL, (C(C))

is a subgroup of PGL,(C). In the second case the lemma follows since Aut(C) is
either finite or contains a normal abelian subgroup of finite index. Ll
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Lemma 2.26. Let S be a compact complex Kdhler surface of non-negative Kodaira
dimension and let G C Bir(S) be a simple subgroup. Then G is finite.

Proof. The class of compact complex Kéahler surfaces that are birationally equivalent
to S contains a unique smooth minimal model S’. It follows that

Bir(S) ~ Bir(S") = Aut(S").

The group Aut(S’) acts by linear transformations on the cohomology. This gives a
linear representation

@: Aut(S") — GL(H*(S"; Z2)),

where H*(S’; 7) is the direct sum of the cohomology groups of S’. The kernel of ¢ is
an algebraic group (see [26]) and hence an extension of a complex torus by a complex
linear algebraic group. Let G C Aut(S’) be a simple group, then either G is contained
in GL, (Z) for some n, and therefore finite. Or G is isomorphic to a subgroup of an
algebraic group. Since S’ is of non-negative Kodaira dimension, there are no linear
algebraic groups of positive dimension operating on S’, since otherwise S’ would be
uniruled. Hence H is abelian up to finite index and therefore G is finite. L]

3. Subgroups containing loxodromic elements

In all of Section 3 we always work over the field C of complex numbers. The main
result of this section is the following:

Theorem 3.1. A simple subgroup G C Cry(C) does not contain any loxodromic
element.

The starting point to prove Theorem 3.1 is Lemma 2.22. It states that all
loxodromic elements in a simple group G are of monomial type and that, up to
conjugation, G contains a dense subgroup A, C T? for each of its loxodromic
elements. Our strategy is to show that if G contains a loxodromic element, these
conditions imply that G is conjugate to a subgroup of 72 x GL,(Z) and from this
we will deduce a contradiction to the simplicity of G.

In Section 3.1 we first prove a result about the degrees of elements that conjugate
loxodromic elements to monomial elements. In Section 3.2 we take a closer look at
the dynamical behavior of exceptional curves and base-points. This will allow us to
prove Theorem 3.1 in Section 3.3.

3.1. Degree bounds. We start with some facts about loxodromic monomial elements.

Lemma 3.2. Let A € SLy(7Z) be a loxodromic element. Then either A or —A is
conjugate in GL,(Z) to a matrix B such that all entries of B are non-negative.
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Proof. In [25, Theorem 7.3] it is shown that for a loxodromic element A € SL,(Z)
either A or —A is conjugate to a matrix of the form (§ ), whered > b > a > 0.
If a # 0 then ad — bc = 1 implies ¢ > 0 and we are done. If a = 0, then we

calculate
1 1 0 ¢ 1 =lY%. b c+d-5b
0 1 b d 0 1) \»b d—>b ’

Since d — b and b are positive, it follows thatc +d — b > 0. Ifc +d — b = O the
matrix is not loxodromic anymore, hence ¢ + d — b > 0 and we are done. O

With the help of Lemma 3.2 the following well-known lemma can be proved:

Lemma 3.3. For an integer n € Z there exist only finitely many conjugacy classes
of loxodromic elements in GLy(Z) with trace n.

Lemma 34. Let A > 0and g € T? xGL2(Z) C Cra(C). If Mi(g) < A then g is
conjugate in GLy(Z) to an element of degree < C(A), where the constant C(L) only
depends on A.

Proof. By Lemma 2.12, we may assume that gh € GL;(Z). The dynamical
degree A;(g) is the spectral radius of g, i.e. the absolute value of the eigenvalue
of the matrix g that is strictly larger than 1. The condition A;(g) < A implies that

[tr(g)| = [A1(2) + A (@) <A+ 1.

So tr(g) is contained in the finite set of integers between —(A + 1) and (A + 1). By
Lemma 3.3, there exist only finitely many conjugacy classes in GL»(Z) to which g
can belong. Denote by fi,..., f, representants of these classes. We set

C(A) = max{deg(f1),....deg(/n)}. .

Finally, we are able to prove the main result of this section:

Lemma 3.5. Let g € Cry(k) be a loxodromic element of monomial type. Then there
existsanm € T? x GLy(Z) and a constant K depending only on d = deg(g), such
that g is conjugate to m by an element of degree < K.

Proof. We observe that A1(g) < d. By Lemma 3.4, there exists a constant C(d)
such that g is conjugate to anm € T2 xGL,(Z) of degree < C(d). By Theorem 2.3,
g can be conjugated to m by an element of degree < K, where K = (2r)>’
for r = max{d, C(d)}. ]

3.2. Base-points and toric boundaries. Let S be a smooth projective surface with a
given regular 7'%-action that has an open orbit U C S. The fixed points of this action
are called roric points, the algebraic set dS := S \ U is called the toric boundary. In
what follows, we consider IP? equipped with the standard action of 72, or blow-ups
of toric points 77: S — P2 with the pull-back of the standard action of T2 on P2. In
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this case, dS is always a curve whose irreducible components are curves isomorphic
to P! with self-intersection < 1.

A toric point in the bubble space B(PP?) is a point of the form (p, S, ), where
n:S — P? is the blow-up of toric points and p € S is a toric point. If a toric
point g; € B(P?) lies above a point g, € B(P?), then g, is toric as well.

Let C be a curve on a surface S and f € Bir(S). In what follows, we denote
by f(C) the strict transform of C under f, i.e. the closure of f(C \ {Ind(f)}).
and by f~!(C) the strict transform of C under f~!. Note that with this notation,
f~1(C) does not contain all the points that are mapped by f to C.

Let S be a projective surface, f € Bir(S), and assume that f contracts a curve
C CS. If f(C) = p € S we say that [ contracts C to p. We extend this
notion to infinitely near points. Consider a point in the bubble space B(S) with a
representative (p, T, ). Let / € Bir(T) be given by f =71 fmrand denote by C
the strict transform of C under w. We say that f contracts C to p if f (C ) =
If p lies above a point g in B(S) and f contracts a curve C C S to p, then f
also contracts C to g. Note as well, that if a birational transformation f € Cr,(C)
contracts a curve C to a non-toric point in B(IP?), then there exists a blow-up of toric
points : S — P? such that 7~ fx(C) is a proper non-toric point of S.

By abuse of notation, in this section we will sometimes denote the lift of a
birational transformation f € Cr,(C) under a blow-up of toric points 7: S — P2
again by f. This will simplify the notation, as the choice of = will always be clear
from the context. Similarly, we will identify a curve C on P? with its strict transform
on S, if there is no ambiguity.

Definition 3.6. Let S be a projective surface and f € Bir(S). We denote by E(f)
the number of irreducible components of the exceptional divisor of f.

Remark 3.7. For f € Cr(C), the numbers E( f) can be bounded by a constant
depending only on the degree of f. If f and g are two Cremona transformation,
then

E(f8) = E(f)+ E(g).

Lemma 3.8. Let S be a rational projective surface, f € Bir(S) of monomial type
and 7w: S -—> P? a birational transformation. Then E( f™) is uniformly bounded for
all n by a constant K only depending on 7 and the degree of w fr ™1

Proof. The birational transformation 7: S --> IP? only contracts finitely many irre-
ducible curves. So E( f") is uniformly bounded for all n if and only if E(x /"7~ 1)
is uniformly bounded. It is therefore enough to consider the case f € Bir(P?).

By Lemma 3.5, there exists a g € Crp(C) of degree < C, where C only depends
on deg( 1), such that

gfe "t =me T? xGLy(Z).
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We have E(m™) <3 for all n. By Remark 3.7, E(g) is bounded by a constant K’
depending only on deg(g) and hence only on deg( /). Therefore,

E(f") = E(gm"g™") <2K'+3
and we thus set K := 2K’ + 3. O

Lemma 3.9. Let f € Cry(C) be a loxodromic element that is not contained
in T? x GLy(Z). There exists an n € Z and a dense open set V. C T? such
that f"d=' f="d is loxodromic for eachd € V.

Proof. Leta™ € 9 H™ be the attracting fixed point of the isometry of H* induced
by f,andleta™ € d H® be its repulsive fixed point. The axis Ax( f) is the geodesic
line between o and @~. We claim that there exists a dense open subset U C T2
of elements that fix neither «™ nor @~. Denote by G C Cr,(C) the subgroup of
all elements that fix . Let L C Z(P?) be the one-dimensional subspace that
corresponds to «t. Since G fixes o, its linear action on Z(IP?) restricts to an
action on L by automorphisms preserving the orientation. This yields a group
homomorphism
p:G —R%.

Loxodromic elements don’t fix any vector in Z(IP?). Let us note as well that the
group G does not contain any parabolic element since a™ is fixed by a loxodromic
element and does therefore not correspond to the class of a fibration. It follows that
the kernel of p is a subgroup of elliptic elements, which is normalised by f. If ker(p)
is infinite, there exists, by Theorem 2.15, an element 2 € Cr,(C), such that

hGh™! C T? x GL,(Z).

As fisnotin T? xGL5(Z), the transformation  is not in 72 x GL;(Z) and therefore,
by Lemma 2.14, h~'T2h N T2 is a proper closed subset of T'2. In particular, there
exists a dense open set U; C T2 that is not contained in G. If ker(p) is finite, the
existence of such a dense open U; C T2 follows trivially. With the same argument,
we obtain a dense open set U, C T2 that does not fix a~. Define

U = U] ﬂUz.

This proves the claim.

Let U2 = {d? |e U} and let d € U N U? be arbitrary. Then d does neither
fix ¥ nor o~ and d(ax*) # «~. Denote by 1 € 0 H™ the attracting fixed point
of the loxodromic isometry d ! f~!'d and by B~ € d H® its repulsive fixed point.
By the above observation, @™, o™, B and B~ are pairwise disjoint. Let Sl+ be a
small neighborhood of @™ in d H*™ and S| a small neighborhood of &~ Similarly,
let S;r be a small neighborhood of B and S, a small neighborhood of B~. We may
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assume that S}, S;, S5F and S5 are pairwise disjoint. Since 8% is attractive, there
exists an ny € Z4 such that

d='fTmd(s;H) c S

Similarly, let n, € Z4 be such that _f”2(S2+) C Sl+ is a proper subset. For
n = max{ny,n,}, we obtain that f*d ' f~"d(S;") is a proper subset of Sl*"
Analogously, if we choose n large enough, (f"d ™! f~"d)~1(S5) is a proper subset
of S;'. Thus, f"d ' f™"d has an attractive fixed point in Sl+ and a repulsive fixed
pointin S, . In particular, f"d~! f"d is loxodromic.

Consider the family of birational transformations

(frd7l M | d e T2,

It contains one element of dynamical degree A > 1. By Theorem 2.7, the dynamical
degree is a lower semi-continuous function. Hence, there exists a dense open
subset V C T2 such that the dynamical degree of f”d ! f~"d is > 1 foralld € V,
which is equivalent to f"d ™! f~"d being loxodromic. L]

Lemma 3.10. Ler m be a loxodromic monomial transformation and (x,y) affine
coordinates. Let L be the line given by x = 0 and Ly be the line given by y = 0.
Thenm(Ly) # Lx and m(Ly) # L,.

Proof. By Lemma 2.12, we may assume that m € GL,(Z), since d(Ly) = L and
d(Ly) = Ly foralld € T?.

It is now enough to observe that m(L,) = L, implies that m is of the
form (xy*,y*!) and m(Ly) = L, implies that m is of the form (x*!, x*y) for
some k € 7. No transformation of the form (xy*, y*1) or of the form (x*!, x*y)
is loxodromic. Il

Lemma 3.11. Ler m be a loxodromic monomial transformation and w: S — P? a
blow-up of toric points. Let L. C 0S8 be an irreducible boundary component, then

a Ymn(L) # L.

Proof. Assume that there exists a blow-up of toric points 7: S — P? and a line
L C 0. such that
7 tmn(L) = L.

By Lemma 3.10, the line L is not the strict transform of a line in IP%. After possibly
contracting components of 9§ different from L, we can write

T = M O Mk—1 0"+ 07,
where each 7;: ;1 — S; is the blow-up of a single toric point p; such that

m(L)y=p1 and mjo---om(L)=m(pi—1) = pi
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forall 1 </ <k. We have So = S and S} = P2, Since Jr"lmn(L) = [, we have
that p; is a fixed point of the pull-back of m on S; forall 1 </ <k.

Let (xg, yo) be local affine coordinates of S such that L is defined by xo = 0 and
let (x1, y1) be local affine coordinates of S such that p; = (0, 0) and the exceptional
divisor of 75 is given by x, = 0. We proceed inductively and define local affine
coordinates (x;, y;) of S; in such a way that p; = (0, 0) and the exceptional divisor
of ;41 is given by x; = O for all 1 <[ < k. With respect to the local affine
coordinates (x;, y;), the blow-up 7;: S;_; — §; is then given by

(xr,y1) = (xp, xpy1) or (xp,y1) = (x1y1,X1)

and hence r: § — P2 is of the form (xg, yx) — (xpys, xpyi), where (7 ;) € GLy(Z).
Since m is a monomial transformation, it is of the form m = (x?y?, x¢y%).
4 7 / /
Hence we obtain that locally 7~ 'mm = (x¢ y{’ = yf ), where

E0-=Caency

Since (2 5) is a loxodromic matrix, the matrix (‘C’; Z’,) is loxodromic as well.

Lemma 3.10 now yields a contradiction to the assumption that 7 " 'mnw (L) = L. [

Remark 3.12. Let S — P2 be a blow-up of toric points. Lemma 3.11 implies
in particular that a loxodromic monomial transformation m does not preserve any
irreducible curve on S, i.e. there exists no irreducible curve C such thatm(C) = C.
Indeed, for curves contained in S the claim is proven in Lemma 3.11. Assume now
that there is an irreducible curve C C S that is not contained in 9. that satisfies
m(C) = C. Let §" — S be a blow-up of toric points such that C intersects 9.5’
in a non-toric point p and let L be the irreducible boundary component of 9.5’ that
contains p. Since m preserves the complement of dS’ and C intersects dS’ in only
finitely many points, there exists a positive integer n such that m”(p) = p. But this
implies m(L’) = L', which contradicts Lemma 3.11.

Lemma 3.13. Let K be a positive integer and let [ € Cro(C) be a birational
transformation that contracts a curve C C P? that is not contained in 3P? 1o a
non-toric point p in the bubble space B(P?). Let Uy, U, C T'? be the subsets such
that forall d € Uy and all 1 <1 < K we have:

o (tf)7I(C) is a curve not contained in 3 P?;
andforallt € Uyandalll <[ < K:
s (tf)(C) is a non-toric point.

Then the sets Uy and U, are open. It follows that for all t € Uy N U,, the transform-
ation (t )X contracts at least K different irreducible curves.
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Proof. For all 1 < | < K the condition that f‘ltl_lf_1 7)) s not
contained in the exceptional locus of f~! nor in d P2 is an open condition on (T,
Hence there is an open set V; C (T2)X such that for all (f1,...,%) € V; and
all 1 <1 < K we have that f—ltl_lf_l .. f7H71(C) is not contained in the
exceptional locus of £~ nor in dP2. We embed T2 into (72)X by identifying it
with the diagonal. In that way we can define U; := T2 N V.

To construct U, we proceed similarly. First we note that there is an open set
Vo C (T?)X such that for all 1 < I < K and all (¢t1,...,t) € V, the point
f1efo..-11e(f(C)) is not a base-point of f and is not a point that is mapped to a
toric point by f,. Here, we consider the points as elements in the bubble-space and fe
denotes the transformation of the bubble-space induced by f (see Section 2.1). We
then define U, = V, N T2. O

Define K € Z to be the integer from Lemma 3.3 such that for all loxodromic
transformations of monomial type g of degree < deg( f) one has that g” contracts at
most K — 1 different curves. Assume that the open sets U; and U, from Lemma 3.13
are non-empty. By choosing a ¢t € U; N U, such that ¢f is loxodromic, we obtain
that ¢/ is loxodromic but not of monomial type. The main idea of the proof of
Theorem 3.1 will be to use this kind of argument together with Lemma 2.22 to
show that loxodromic elements in a simple group G C Cr,(C) only contract curves
contained in d P2. From this we will then deduce that all loxodromic elements in G
are in fact monomial which will lead to a contradiction. However, the cumbersome
part is to construct a loxodromic transformation f in G for which the two open
sets U1 and U, are non-empty.

Lemma 3.14. Let [ € Cry(C) be a birational transformation that contracts a
curve C that is not contained in 3 P? and assume that f(C) is a point not contained
indP2. Let K € Z . be a constant. Then there exists a dense open set U C T? such
that (¢ f)"(C) is a point not contained in dP? forall 1 <n < K and allt € U.

Proof. By Lemma 3.13 there exists an open set U C T2 such that (£/)"(C) is a
point not contained in the toric boundary forall 1 <n < Kandallz € U. Itis
therefore enough to show that there exists one ¢ € T2 with this property. For this,
consider a point ¢ € C that is not contained in dP? and is not an indeterminacy
point of f and let ¢ € T? be the transformation that maps the point f(C) to g. It
follows that (/)" (C) = g foralln € Z .. ]

Lemma 3.15. Let m € Cry(C) be a monomial loxodromic transformation, n € 7.4
and p € P? a point not contained in 3 P>. The set {(dm)"*(p) | d € T?} contains a
dense open set in P2.
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Proof. By Lemma 2.12 we may assume that m € GL,(Z). We can write m =
(x?y?, x¢ y9) for some matrix

A= (i 2) € GL»(Z).

Let d=(dyx,d»y) € T?. One calculates md =d’m, where d’:(dladsz, dlcdzdy)‘
Let

B = (r S) —id4+A 4.4 AL,
I u

Then (dm)" = d'm", where d’ = (d\"d>*x,d\"d,"y). In order to prove the
lemma, we need to show that the morphism @g: T? — T2 given by

(dlx, dzy) = (dlrdzsx, d]tdguy)
is dominant. First note that
(A—id)B = A" —id.

Since A is loxodromic, A" does not have 1 as an eigenvalue; hence det(A” —id) # 0
and therefore det(B) # 0. By the Smith normal form, we can write

B = M DM,

where My, M, € GL,(Z) and D is a diagonal integer matrix of rank two as
det(B) # 0. Since the morphisms from 7?2 to itself induced by the matrices M;, D
and M, are all dominant, the morphism ¢p is dominant. O

Lemma 3.16. Let f € Cry(C) be a birational transformation that contracts a curve C
that is not contained in d P?. Let m € Cry(C) be a loxodromic monomial transform-
ation. Then, for every K € 7., there exists a dense open subset Ux C T? such that
forall d € Uk the birational transformation hy = fdmf ™! satisfies the following
properties:

* The strict transform
Cq = (dmf~)71(C)
is a curve not contained in 3 P2, in particular, hy contracts fd i

. h;l (64) is a curve not contained in P forall1 < < K.

Proof. Let p € C be a point that is not contained in d P%. Let X be the union of
the exceptional locus of f and the curves that are mapped to 3 P? by f. Denote
by V; C T? the set of all diagonal automorphisms ¢ such that (dn2)~!(p) is not
contained in X, where 1 <[ < K. By Lemma 3.15, the sets 1 contain a subset,
which is open and dense in T2. Hence, the intersection V3 N---N VK +1 contains a
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subset Uk that is open and dense in 72. Since, by the construction of Ug, the point
(dm)~1(p) is not contained in X, it follows that the strict transform

Ca = (dmf~H7H(C)

is indeed a curve and not contained in d P2. This is because (dm)~'(C) is a curve
as dm is monomial and C is not contained in 3 P2. Moreover, the choice of d ensures
that (dm)~!(C) is not contained in X . Similarly,

(ha) " (Ca) = fdm)™ f7H(Cq) = fdm)™'71(C)
is a curve not contained in d P2 forall 1 </ < K. ]

Lemma 3.17. Let f € Cry(C) a birational transformation that contracts a curve C
that is not contained in 3 P? and assume that f(C) is a point not contained in 3 P2
Let m € Cra(C) be a monomial loxodromic birational transformation. Then, for
every K € 7., there exists a dense open subset Ux C T? and for each d € Uk
there exists a dense open subset Vl‘g C T? such that:

* for all elements di € Uk and for all d, € Vgl the birational transformation
(ds fdim f YK is loxodromic and contracts K different irreducible curves.

Proof. By Lemma 3.16, there exists a dense open set Ux C T2 such that for
all dy € Uk the strict transform

C = (dimf~)71(C)
is a curve not contained in d P2, and such that

(fdimf~H7HC)

is a curve not contained in d P2 forall 1 </ < K and all d; € Uk.

Fix now any d; € Ug. Since, by assumption, fdimf ~1(C) is not contained
in 9 P2, we can apply Lemma 3.14. In other words, there exists a dense open subset
V& © T2 such that

(dafdimf~ 1) (C)

is a point not contained in the toric boundary for all d, € VI‘;’ andall 1 <[] < K.
This implies in particular, that (d» fd;m f~')X contracts K different curves, namely
the curves (s fdymf~1)"I(C) for 1 <1 < K. After possibly shrinking v we
may assume that do fdymf ! is loxodromic, by Theorem 2.7. O

Lemma 3.18. Let [ € Cry(C) be a birational transformation that contracts a
curve C that is not contained 9 P* and assume that f(C) is a point not contained
in dP2. Let m € Cry(C) be a monomial loxodromic birational transformation and
let Ay C T? be a dense subgroup. Then the group { f,m, Ay) contains a loxodromic
element that is not of monomial type.
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Proof. Let d := deg(f)?deg(m) and let K be the constant given by Lemma 3.8
such that all elements in g € Crp(C) of monomial type of degree < d satisfy the
property that the number of irreducible curves E(g") contracted by g" is < K for
alln. Let Uy C T? and VI?' forall d; € Uk be the subset given by Lemma 3.17 and
fixad, €e Uk NAyandd, € Vg‘ N A,. The birational transformation do fd;mf !
is therefore loxodromic, of degree < d and (d» fdimf~1)X contracts K different
irreducible curves. It follows that d5 fdimf~! € (f,m, A,) is loxodromic but not
of monomial type. L]

Lemma3.19. Let f € Crp(C) be a birational transformation that contracts a curve C
that is not contained in P2 to a non-toric point in B(P?). Let m € Cry(C) be a
loxodromic monomial transformation and Ao C T? be a dense subgroup. Then the
group { f,m, A3) contains a loxodromic element [’ with the following properties:

e contracts a curve C not contained in 3P to a non-toric point in B(P?);
* there exists a dense open subset U C T? suchthat forall d € U the transformation
f'd=' f'=1d is loxodromic.

Proof. By Lemma 3.16, there exists for each K > 0 a dense openset Ux C T2 such
that

Ca = (dmf~H71(C)
is a curve not contained in 9 IP’Z, and
(fdmf™)7(Ca)

is a curve not contained in P2 forall 1 </ < K. Wefixae € ﬂKGZ+ Uk.

By Lemma 3.9, there exists an n € Zy and a dense open subset U C 72 such
that the transformation

(femf=1'd™' (femf=H)™"d

is loxodromic for all d € U. By Theorem 2.7, the subset V C (T2)? consisting of
elements (d1, d») such that

(fdimf~)"dy ' (fdimf ™) "dy

is loxodromic, is open and dense. Define the dense open set V' := V N (U, x T?)
and fix (dy,d2) € V' N Ay x A,. We define now

fi=(fdumf)" € (fim, Az)

and
€ = (fdmf 1y Cy, ).

Again by Theorem 2.7, there exists a dense open U C T2 such that f'd =1 f'~1d is
loxodromic for all d € U. O
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Lemma 3.20. Let G C Cra(C) be a simple group that contains a loxodromic
monomial element m. Then G contains no element that contracts a curve that is not
contained in the toric boundary 3 P? to a non-toric point in 8 (IP?).

Proof. Since G is simple it contains no tight elements. Hence, by LLemma 2.22,
all loxodromic elements in G are of monomial type and G contains a subgroup A,
that is dense in 72. Assume now that there is an element f € G that contracts a
curve C C IP? that is not contained in d P2 to a non-toric point in B (P?), i.e. there
exists a blow-up of toric points 7z: S — P2 such that £(C) € § is not a toric point
(recall that, by abuse of notation, f also denotes the lift of f by ).

The group G contains no element that contracts a curve that is not contained
in dPP? to a point that is not contained in d P2, by Lemma 3.18. Hence for all
elements ¢ € G that contract a non-toric curve D, the point g(D) is contained
in 9 P2.

By Lemma 3.19, there exists a loxodromic element /' € {(f,m, A;) C G and
a curve C in P? not contained in dP? that is contracted by f’ to a non-toric
point in B(P?), as well as a dense open set U C T2 such that for all d € U the
transformation

ga=d" flaf!
is loxodromic. Moreover, we may choose the dense open set U C T2 in such a way
that for all d € U we have that

Ca == (df™H (") = fld7(C)

is a curve not contained in d P* and g4 contracts C, to a non-toric point in B(S).
Let 7r1:S7 — P2 be a blow-up of toric points and let L. C 95 be an irreducible
component of d57. We claim that one of the following is true:

(1) There exists a dense open subset Uy, C U such that g4 (L) is not contained
indS; forall d € Uy.

(2) There exists a dense open set Uy, C U such that g4z contracts L to a non-toric
point p in B(S7) forall d € Uy. More precisely, there exists a blow-up of toric
points w5: 82 — S; and an irreducible boundary component L, C 9.5 such
that g4(L) is a proper non-toric point of L, for all d € Up (in particular, L,
does not depend on the choice of d € Up).

(3) There exists a dense open set Uy, C U such that for every d € U, N A, there is
an element r € G satisfying that rg4 (L) is not contained in 0.57.

Let us now prove the claim. The first observation is that if f’~1(L) is not contained
in dS1, then there is a dense open set Uy, C U such that for all d € Uy, the image
d( f'~1(L)) is neither contained in the indeterminacy locus of f” nor in the set of
points that is mapped by f’ to dS;. This implies that for all d € Uy, the image

ga(L)=d~' f'df'~'(L)
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is not contained in dS5; and we are in situation (1) of our claim. Hence, in what
follows we may assume that ( /')~ (L) is contained in 3.5 .
We now distinguish various cases:

Case (a). Assume that there is a dense open set Uy, C U such that forall d € Uy,
the map g, does not contract L. and that g;(L) = L. Since G is simple, for
all d € Ay N Up the transformation g4 is loxodromic and hence of monomial type.
So there exists an iy € Crp(C) and a loxodromic monomial transformation m 4 such
that

gy = hdmdhgl.
By assumption, g4z (L) = L, i.e.
hdmdhgl Ll =

Note that by Lemma 3.11, the image hd_1 (L) can not be a curve, since a loxodromic
monomial transformation does not preserve any curve on a blow-up of toric points.
Hence, either there exists a blow-up of toric points S, — .S such that

W Ly = 1

for some irreducible boundary component, or h;l contracts L to some non-toric
point p in B(S1), which has to be a fixed point of m,. The first is not possible, since

mq(L') # L'

by Lemma 3.11. In the latter case we conclude that p is not contained in dS;, using
once more Lemma 3.11. Since hdmdhgl is contained in G, there exists a dense
subgroup AT¢ C T? such that iy AT k7" is contained in G. Let W C T? be the
dense open subset such that d(p) is not a base-point of 44 and is not contained in
the set of points that is mapped to 351 by hg. Forac € AT N W andr := hgch!
we have

rgq = hdcmdhgl,

and therefore
rga(L) = hgemgh;' (L)

is not contained in 9.57. Hence we are in situation (3).

Case (b). Assume that f'~! contracts L to a non-toric point in B(S;), i.e. there
exists a blow-up of toric points S — S and a smooth rational curve L] C dS] such
that f'~'(L) is a non-toric point on L. Let U, C U be the dense open set such
that df"~1(L) is neither contained in the indeterminacy locus of f” nor in the set of
points of L’ that are mapped by f,’ to a toric pointin B(S7) forall d € Uy. We are
then in situation (2). Moreover, L, does not depend on the choice of d € Uy.
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Case (¢). Assume that

L) = 1,
where L.; C 98 is an irreducible boundary component. In this case,
ga(L) =

for all d € U and we are in case (a).

Case (d). Assume that /"~ contracts L to a toric point in B(S;). In this case, there
is a blow-up of toric points S, — §; such that

UL = La,
where L, C 95, is an irreducible boundary component. This reduces to case (c).

This proves the claim.

Let d €U and consider for each ¢ € T'? the loxodromic transformation gzem g_
The transformation d;(ggemg, 1Y is loxodromic for all d; in a dense open subset
of T2, by Theorem 2.8. The degree of d1(gzemg}") is at most deg(f")* deg(m)
for all dy,d,e € T?. By Lemma 3.8 there exists a constant K € Z, such that
if d1(gaemg ;") is of monomial type, then (d(ggemg"))" contracts at most K — 1
different curves for all n € Z.

There exists for every d € Uy := U a dense open subset V7 C T2 such that

L 4= (emgz")N(Ca)

is a curve for all e € V& (recall that Cy is a curve not contained in 9 P? that is
contracted by g4). Moreover, foralld € U; and all e € Vld there exists a dense open
subset W of T? such that

di(gaemg; ) (C, )

is not a base-point of g;l (such a dense open set exists, since (gdemggl)(é ., : 4) 18
not a toric point).

We will now inductively add additional open conditions on the sets U, le,
and Wdl. If py == dy (gdemggl)(ée”d) is not contained in the toric boundary for

some di,d,e € T?, then p; is not contained in the toric boundary for all dy,d, e
in a dense open subset T C (7). By choosing (d1,d,e) € T N (Az)* we obtain
an element in G that contracts the curve C " ., which is not contained in the toric
boundary, to a point outside the toric boundary, WhiCh is not possible, by Lemma 3.18.
Hence, p; is contained in 3 P2. After a blow-up of toric points S; — P2 we may
assume that py is a proper non-toric point of 95, which is, by our condition on d,
not a base-point of g
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Let L; C 0S8 be the line containing p;, hence we are in one of the situations
(1) to (3) described above. The situations (1) and (3) do not occur since otherwise
we would obtain an element in G that contracts a curve not contained in the toric
boundary to a point outside the toric boundary. Hence we are in situation (2), i.e. there
exists a dense open set Uz, C T2 such that g contracts L; to a non-toric point
in B(S1). We set

Us =l L, NU;.

Let S, — S be the blow-up of toric points such that

p2=g;" (p1) =g; (L)

is a proper non-toric point on a line L, C 9.5,. The crucial point here is that p, does
not depend on the choice of d; nor on the choice of e.

After a blow-up of toric points S5 — S, the monomial map m maps L, to
another component L, C 9S5. We define for all d € U, the set de as the set of
alle € Va} such that em(p,) is not an indeterminacy point of g;. Again, by the same
argument as above, we obtain that gz contracts L, to a non-toric point in 8(S>) that
lies on or above the toric bundary. After a blow-up of toric points S3 — S2 we may
assume that

p3 = ga(L2) = gaem(pz) = gaemgy" (drgaemg;")(C. )

is a proper non-toric point on a line .3 C dS3. And again, p3 does not depend on
the choice of d; and e, so we obtain an additional open condition on the choice of d
and thus a dense open subset W7 C W .

We now continue this process and obtain a sequence of blow-ups of toric points

SZk—l — —>S2 —>S1

and a sequence of lines L1, L,, ..., Lok, where L; C 90S;, as well as inclusions of
dense open sets

Usx CUzg1 C---C Uy

and, for every d € Uk, inclusions of dense open sets
wkc...cwcw} and V¥c...cVvicV)

with the property that for all d € U?K and all d; € WdK , e € VdK, one has
that (dlgdemggl)l(@’d) is a point on the line L, forall 1 < [/ < K,
and that g;l(dlgdemggl)l(ﬁé,d) is a point on the line L,;. In particular,
(dlgdemggl)l(éé,d) isapointforall 1 </ < K.

We fix an element d € Upx N A,. By Lemma 3.16, there exists a dense open set
V C T2, such that

(gaemgg ) (Cl )
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is a curve not contained in d P2 forall 1 </ < K and all ¢ € V. We fix an element
ecVNVENA,.
By Lemma 3.13, there exists a dense open set W C T2 such that

di(gaemg")

is loxodromic for all d; € W, and a dense open set W’ C T2 such that
(drgaemgg )™ (C, )

is a curve not contained in dP2. Fixad; € WN W' nN WdK N A,. Then the
transformation h := d; gdemg('l‘l has the following properties:

(1) A is contained in G;

(2) h is loxodromic;

3) hl(ée’,d) isa pointforall1 </ < K;

4) h‘l(éé ) is a curve not contained in d P2 forall1 <[ < K.

The properties (3) and (4) imply that hX contracts K different curves. Hence, by
definition of K, A is not of monomial type. But this is a contradiction to G being
simple, as was explained before. U

Lemma 3.21. Let [ € Cry(C) be a loxodromic element with the following property:

e Foralln € Z no non-toric curve C is contracted by f" to a non-toric point in the
bubble space B (P?).

Then either f is monomial or there exists a dense open subsetU C T? andann € 7
such that df *d =" =" is loxodromic and not of monomial type.

Proof. Assume that f is not monomial. Then f” is not monomial for all n # 0, by
Lemma 2.18. By Lemma 3.9 there exists a dense open set U C T2 and anm € Z
such that df™d =1 £~ is loxodromic for all d € U.

All curves that are not contained in the toric boundary and that are contracted
by f™ are contracted to toric points in B(PP?) and these are fixed by diagonal
automorphisms. Hence, for all d € U the map

(frdfTmyt =

contracts only toric curves for all n € Z. Denote by B C 9 P? the union of all the
coordinate lines that are contracted by f™d" f~™ for some n € Z. We observe
that f™d” £~ is an isomorphism on P?\B. As df™d~' f~™ is loxodromic,
the map f™df ™™ can not be an automorphism of P2. If B consists of one line,
then f™df ™ and d~' f™df ™ are automorphisms of A. Since the dynamical
degree of an element in Aut(A?) is always an integer, it follows that d 1 f™df ™
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is not of monomial type. If B is the union of two coordinate lines, then f™df ™™
and d~' f™df ™ are automorphisms of A’ x Al. The A'-fibration of Al x Al
is given by the invertible functions on Al xAl, so automorphisms of A’ x Al
preserve this A!-fibration. In particular, A’ x Al does not admit any loxodromic
automorphism which implies that this case does not occur. Finally, if B is the union
of all the three coordinate lines, then fdf ! is an automorphism of ALl x Al ie. a
monomial map. By Lemma 2.18, the transformation f is monomial. ]

3.3. Proof of Theorem 3.1. Let G C Cr,(C) be a simple subgroup and assume
that G contains loxodromic elements. By Lemma 2.22, all loxodromic elements are of
monomial type. Assume that G contains a loxodromic element 7n. After conjugation
we may therefore assume that m is monomial. From Lemma 3.20 it follows that all
the curves contracted by elements of G are toric, and hence Lemma 3.21 implies
that all loxodromic elements of G are contained in 72 x GL,(Z). Let h € G be an
arbitrary element. Since Agh~! is loxodromic, it is monomial. By Lemma 2.18,  is
contained in 72 x GL,(Z) as well. Therefore

G C T? xGL,(Z)
and we obtain a non-trivial homomorphism
0:G — GLy(Z)

whose kernel contains A, — a contradiction to G being simple. Therefore, G does
not contain any loxodromic element. [

4. Proof of Theorem 1.1 and Theorem 1.2

4.1. The parabolic and elliptic case.

Lemma 4.1. Let G C Cry(C) be a simple subgroup that contains no loxodromic
element, but a parabolic element. Then G is conjugate to a subgroup of the
de Jonquiéres group and G is isomorphic to a subgroup of PGL,(C).

Proof. By Lemma 2.6, we know that G is either conjugate to a subgroup of the
automorphism group of a Halphen surface or to a subgroup of the de Jonquieres
subgroup &. By Theorem 2.5, automorphism groups of Halphen surfaces are finite
extensions of abelian subgroups. It follows that the automorphism group of a Halphen
surface does not contain infinite simple subgroups. Therefore, G is conjugate to a
subgroup of . Let

1 - PGL,(C(t)) - § — PGL,(C) — 1
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be the short exact sequence from the semi-direct product structure of §. Since G
is simple, it is either contained in the kernel or the image of ¢. In both cases it is
isomorphic to a subgroup of PGL,(C). Ll

Lemma 4.2. Let G C Cry(C) be a simple subgroup of elliptic elements. Then
either G is a subgroup of an algebraic group in Cro(C) or G is conjugate to a
subgroup of the de Jonquiéres group §.

Proof. Let G C Cry(C) be asimple subgroup of elliptic elements. If G is a subgroup
of an algebraic group or if G is conjugate to a subgroup of the de Jonquieres group,
we are done. So by Theorem 2.10, it only remains to consider the case where G is
a torsion group. In this case, G is isomorphic to a subgroup of an algebraic group,
by Theorem 2.10, and as such it is a linear group. The Theorem of Jordan and Schur
implies that G has a normal abelian subgroup of finite index. This implies that G is
finite and therefore algebraic. (]

4.2. Proofs. We have now gathered all the results to prove Theorems 1.2 and 1.1:

Proof of Theorem 1.2. The first statement of the Theorem is proven in Theorem 3.1,
the second statement of Theorem 1.2 is proven in Lemma 4.1 and the third statement
in Lemma 4.2. Ll

Proof of Theorem 1.1. Let G be a simple group acting non-trivially on a complex
rational surface S. If § is rational it follows from the classification of maximal
algebraic groups (Theorem 2.9) and Theorem 1.2 that G is isomorphic to a subgroup
of PGL3(C). If S is non-rational the proof follows from Lemma 2.25 and
Lemma 2.26.

On the other hand, if S is rational, then

PGL;3(C) = Aut(P?)

is a subgroup of Bir(S), and in particular, every simple subgroup of PGL3(C) acts
by birational transformations on §. If G is isomorphic to a subgroup of PGL,(C),
then it acts non-trivially by birational transformations on the surface P! xC for all
curves C. For every finite group G there exists a curve of general type C such that

Aut(C) = G.

Hence, G acts non-trivially by birational transformations on the non-rational surface
of negative Kodaira dimension P! xC as well as on the surface of non-negative
Kodaira dimension C x C. 0
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5. Finitely generated subgroups

In this section we prove Theorem 1.4. The main advantage when working with a
finitely generated group I', is that we can reduce modulo p the coefficients needed
to define the elements in I". We start by explaining this construction and will then
apply it in a second step to our problem. The following lemma is well known. A
proof can be found for example in [31, Lemma 3.2]:

Lemma 5.1. Let A be a finitely generated domain. The intersection of all maximal
ideals of A is 0. Moreover, if A is a field, then A is finite.

The following proposition shows how Lemma 5.1 can be applied to obtain
information about the structure of subgroups of Cr, (k) for any field k. A similar
statement has already been proved and applied by de Cornulier in order to show that
the Cremona group is sofic ([14], see also [9]).

Proposition 5.2. Letk be afield and let I C Cry, (K) be a finitely generated subgroup
that is not the identity subgroup. Then there exists a finite field F and a non-
trivial group-homomorphism ¢: " — Cr,(IF) that satisfies deg(o( f)) < deg( f) for
each f € T.

Proof. It " ~ 7. /2 7 the claim is true. Otherwise, let g1, ..., g; € " be asymmetric
generating set of I' (i.e. closed under inversion). We may assume that g; # id for
all i and / > 2. Fix homogeneous polynomials

Gij € Clxg, ..., x4]
such that g; = [Gijq : --+ : Gj], and define the endomorphisms
G; = (Gip, ..., Gin) € End(A" 1),
Assume that ¢! = g; and let
F; .= G; 0 Gj = (Fyp,..., Fip) € A",

Note that
giogj=I[Fio:-:Fip] =[x0:-:xz],

i.e. F;j = P;x; for some homogeneous polynomial P; € C[xy,...,Xp].

Let 7 be the finite set of all non-zero coefficients that appear in the
polynomials G;;, the F;; or the polynomials G1;G2; — Gy G2; and denote by r
the product of all elements of 7. Let 4 be the domain generated by the elements
of T" and by 1. In particular, we may consider all our polynomials G;;, F;;, and
G1iG2j — G1jGy; to be elements of A[xp, ..., x,]. By Lemma 5.1, there exists a
maximal ideal / C A such that r ¢ /. Reduction modulo / yields a homomorphism
m: A — F for some finite field IF such that r and hence all elements in 7" are not
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contained in the kernel of . By reducing the coefficients modulo /, we obtain aring
homomorphism
v Alxg, ..., xn] = Flxo, ..., xn].

Define the rational maps

@(gi) = [V (Gio) : -+ : ¥(Gin)].

Note that

p(gi)op(gr ) = [W(Fi): Yy (Fin)] = [W(Pi)xo : -+ Y (Pi)xn] = id,

so ¢(g;) is a birational transformation of P. Assume that g;, gi, --- g, = id for
some 1 <iy,...,i; < k. Then

G,’l O---OG,'[ I(Q)C(),...,an)

for some homogeneous polynomial Q. It follows that

@(gi)e(gir) - 0(gi) = [Y(Q)xo : ¥(Q)x1 1 -+ Y (Q)xn] = id.

Therefore, the map ¢ can be extended to a homomorphism of groups ¢: I' — Cr, (IF).
By construction, at least one of the polynomials ¥ (G1;)¥(G2;) — ¥ (G1;)¥(Ga;) is
not zero and hence ¢(g1) # ¢(g>); in particular, ¢ is not trivial.

Let g = gi,8i, -8 € I'. Then

g=1[Hy: Hy:---: Hyl,
where (Hy. ..., H,) = G, o---0 Gj,. We then have

@(g) = [ (Ho) : y(Hy) < -+ - Y (Hy)].
This shows that deg(¢(g)) < deg(g). 1

Together with Theorem 2.21 we obtain the following result:

Proposition 5.3. Let k be an algebraically closed field and let T' C Cra (k) be
a finitely generated subgroup. If I' contains a loxodromic element, then I' is not
simple.

Proof. Let f € I' be a loxodromic element. If there exists a # such that /" is tight
in I', the group I' is not simple by Theorem 2.19 and we are done. If no power
of f is tight, it follows from Theorem 2.21 that I" contains an infinite subgroup A,
that is normalized by f and that is conjugate either to a subgroup of 72 or to a
subgroup of k2. The group A, being conjugate to a subgroup of T2 or k? implies
in particular that the degrees of the elements in A, are uniformly bounded by an
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integer K. By Proposition 5.2, there exists a finite field IF and a non-trivial group
homomorphism ¢: I' — Cr,(IF) that satisfies

deg(o(f)) < deg(f).

In Cry(IF) there exist only finitely many elements of degree < K, hence the
image ¢(A,) is finite. It follows that ¢ has a proper kernel and therefore that I’
is not simple. 0

We are now able to prove Theorem 1.4 using the same strategy as in the proof of
Theorem 1.2.

Lemma 54. Let C be a curve over an algebraically closed field k and T C
Bir(P! xC) be a finitely generated simple subgroup that preserves the P! -fibration
given by the projection to C. Then I is finite.

Proof. Since I' is simple, it is either isomorphic to a subgroup of PGL,(k(C)) or to
a subgroup of Aut(C). Since both, PGL3(k(C)) and Aut(C) satisfy the property of
Malcev by [2, Corollary 1.2], the group I' is finite. Ll

Proof of Theorem 1.4. Let Kk be the algebraic closure of k. Since Bir(Sx) C Bir(Sy),
it is enough to show the statement for algebraically closed fields.

First assume that our surface S is rational. By Proposition 5.3, I" does not contain
any loxodromic element. If I" contains a parabolic element, then I" is conjugate to a
subgroup of the de Jonquieres group

& ~ PGL(C(2)) x PGL,(C)

or to a subgroup of the automorphism group Aut(X) of a Halphen surface X. This
last case is not possible by the property of Malcev for automorphism groups [2,
Corollary 1.2]. If I is a subgroup of ¢, the claim follows with Lemma 5.4. If all
elements in I" are elliptic, the claim follows from Theorem 2.11. In the first case, I'
is finite by Lemma 5.4. As for the second case we recall that algebraic subgroups
of Cr, (k) are always linear. Hence I is linear and therefore finite, since linear groups
satisfy the property of Malcev.

If S is a non-rational ruled surface, the statement follows from Lemma 5.4.
If S is non-rational and not ruled, it has a unique minimal model S’ (see [1, Coroll-
ary 10.22]). Hence I' is conjugate to a subgroup of Bir(S”) = Aut(S’) and is therefore
finite by the property of Malcev for automorphism groups [2, Corollary 1.2]. 0
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