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On the universality of the Epstein zeta function

Johan Andersson and Anders Sodergren™

Abstract. We study universality properties of the Epstein zeta function £, (L, s) for lattices L
of large dimension # and suitable regions of complex numbers s. Our main result is that,
as n — 0o, En(L,s) is universal in the right half of the critical strip as L varies over all
n-dimensional lattices L. The proof uses a novel combination of an approximation result for
Dirichlet polynomials, a recent result on the distribution of lengths of lattice vectors in a random
lattice of large dimension and a strong uniform estimate for the error term in the generalized
circle problem. Using the same approach we also prove that,as n — oo, E,(L1,5)— En (L2, 5)
is universal in the full half-plane to the right of the critical line as (L, L) varies over all pairs of
n-dimensional lattices. Finally, we prove a more classical universality result for £, (L, s) in the
s-variable valid for almost all lattices L of dimension n. As part of the proof we obtain a strong
bound of E, (L, s) on the critical line that is subconvex for n > 5 and almost all n-dimensional
lattices L.

Mathematics Subject Classification (2010). 11E45, 30K10, 41A30; 11H06, 60G55.
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1. Introduction

In 1975 Voronin [27,28] proved the following remarkable approximation theorem
for the Riemann zeta function:

Theorem 1.1 (Voronin). Let K = {s € C : |s — 2| < r} for some r < §, and
suppose that [ is any nonvanishing continuous function on K that is analytic in the
interior of K. Then, for any & > (),

| ) .
l;rn_)gf;meas {t €[0,7T]: rsrgéqé’(s +it)— f(s)] < 8} > 0.

This theorem, known as Voronin’s Universality Theorem, shows that any
nonvanishing analytic function in a small disc may be approximated by a vertical

*The second author was partially supported by a postdoctoral fellowship from the Swedish Research
Council, by the National Science Foundation under agreement No. DMS-1128155, as well as by a grant
from the Danish Council for Independent Research and FP7 Marie Curie Actions-COFUND (grant id:
DFF-1325-00058).
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shift of the Riemann zeta function. It has been improved and generalized in various
directions (see Steuding’s monograph [20] and Matsumoto’s survey paper [14] for
detailed discussions); for example it is known that the set K may be chosen as any
compact set with connected complement that lies in the vertical strip

D:={seC:1<Re(s) <1} (1.1)
Let us also note that, since {(s) has an Euler product, it is necessary to assume that
the function f in Theorem 1.1 is nonvanishing on K. However, for zeta functions
without an Euler product, such as the Hurwitz zeta function {(s, ) with rational or
transcendental' parameter 0 < a < 1, o # % this condition can be removed.

Similar universality theorems have been proved for large classes of zeta functions
and L-functions. Here we will content ourselves with a short review of the situation
for Dirichlet L-functions. In his thesis, Voronin [30] proved? the joint universality
of Dirichlet L-functions, i.e. that vertical shifts of Dirichlet L-functions attached to
nonequivalent Dirichlet characters can be used to simultaneously approximate any
finite number of nonvanishing analytic functions on K. In a different direction,
Bagchi [1] has proved a universality theorem for Dirichlet L-functions L(s, ) in
which the imaginary shifts in the complex argument s from Theorem 1.1 has been
replaced by a variation of the character y over the set of characters of prime modulus.
To be precise, let K be a compact subset of D with connected complement and let f
be a nonvanishing continuous function on K that is analytic in the interior of K.
Then, for any ¢ > 0,

lim inf

p~o ¢(p)

Recently Mishou and Nagoshi [15, 16] proved a related result for Dirichlet

L-functions associated with real characters. Let D% (resp. £ ™) denote the set

of positive fundamental discriminants (resp. negative fundamental discriminants)
and define

#{X mod p : max |L(s, x) — f(s)] < 8} = 0, (1.2)

DEX):={deD*:|d| < X}
For a discriminant d, we let y; denote the quadratic Dirichlet character modulo |d |
defined by the Kronecker symbol y,4(n) = (%).

Theorem 1.2 (Mishou-Nagoshi). Let Q be a simply connected region in D that is
symmetric with respect to the real axis. Then, for any € > 0, any compact set K C 2
and any nonvanishing holomorphic function f on Q which takes positive real values
on 2 N R, we have

.y 1 %
I}Pl,ifof #chi(X)#{d € D (X): max |L(s, xa) — f(s)| <&} > 0.
1For the case of algebraic irrational a, the Hurwitz zeta function does not have an Euler product and it
is likely to be universal without assuming the nonvanishing condition. However, proving this seems quite
difficult and constitutes a major open problem in the theory of universality.
2Similar results were established (independently) by Gonek [9] and Bagchi [1].
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The purpose of the present paper is to prove universality results for the Epstein
zeta function that turn out to have similarities with both Theorem 1.2 and Bagchi’s
result described in (1.2) above. In order to state and describe our results, we first
need to properly introduce the setting.

Let X, denote the space of all n-dimensional lattices L C R” of covolume
one and let i, denote Siegel’s measure [18] on X,,, normalized to be a probability
measure. For L € X, and Re(s) > %, the Epstein zeta function is defined by

B L8] 5= Z |m |25 .

meL\{0}

En(L,s) has an analytic continuation to C except for a simple pole at s = 7 with
residue 77 2" (%)_1 . Furthermore, E, (L, s) satisfies the functional equation

Fo(L,s) = F,(L*,%2 —5), (1.3)

where F,(L,s) := n 5T (s)E,(L,s) and L* is the dual lattice of L. The Epstein
zeta function has many properties in common with the Riemann zeta function. In fact,
the functions E,(L,s) (actually a slightly more general family of functions) were
introduced by Epstein [5,6] in an attempt to find the most general form of a function
satisfying a functional equation of the same type as the Riemann zeta function. Note
in particular the relation

E(Z,s) = 2C(2s).

However, we stress that there are also important differences between FE,(L,s)
and {(s). Typically E,(L,s) has no Euler product and it is well known that the
Riemann hypothesis for E, (L, s) generally fails (cf., e.g., [21] and the references
therein).3

Let V,, denote the volume of the n-dimensional unit ball. We recall the explicit
formula 2

n
Va = JZ— )
't ==1)

and stress that V,, decays extremely fast as n — oc. In most of our results V,, will
appear naturally as part of a factor normalizing £, (L, s).

Our first main result is a universality theorem for £, (L, s) in the lattice aspect,
i.e. a universality result where the lattice L varies over the space X, but no vertical
shifts are applied to the complex variable s. The situation is related to the one in
Bagchi’s theorem (1.2), and similarly, in order to obtain still finer approximations it
is natural to consider the limit n — co. Let us also point out that the relation with
Theorem 1.2 lies in the fact that both L(s, yz) and E, (L, s) are real-valued for real
values of s, resulting in the same sort of conditions on the involved functions and

3Here the words typically and generally are to be interpreted in terms of the measure (4.
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regions. However, since E, (L, s) typically has no Euler product, the nonvanishing
condition on the function f can be removed.

Theorem 1.3. Let Q2 be a simply connected region in D that is symmetric with respect
to the real axis. Then, for any ¢ > 0, any compact set K C Q and any holomorphic
function f on 2 that is real-valued on @ N R, we have

T . s—1ly,—s ﬂ o ; }
lim inf Prob, {LeXn.gréaIé(IZ v E,,(L, 2) ()| < >o0.

Remark 1.4. In particular it follows from Theorem 1.3 that, given ¢ > 0, K C Q
and f as above, there exists some n € ZT and a lattice L € X, such that

max |21V, E,, (L, "—2‘) . f(s)‘ <

seK
As an immediate consequence of Theorem 1.3, we have the following denseness
result.
Corollary 1.5. For any fixed s € D \ (D N R) the set

{23—1 V;SE,,(L, "7”) neZt Le X,,}
is dense in C. Moreover, for any fixed x € D N R, we have
i v nx
{2x ly xEn(L,T):neZJr,LeX,,}:IR{. (1.4)

To prove the first part of the corollary, it is sufficient to note that for any ¢ € C
we may use Theorem 1.3 to approximate f(s) = ¢ on the set K = {s} to arbitrary
precision. Next, to prove (1.4) we note that forany N € Z* we may use Theorem 1.3,
with e = 1 and K = {x}, to approximate the two functions

) =—-N—-1 and fo(s)=N +1.

It follows that for all sufficiently large n (depending on N) there exist lattices
Ll, L2 e Xn such that

2-ly—*p, (Ll, %) <—N and QX_IVH_"En(Lz,%) > N.

We note that in contrast to the situation in [15, Corollary 1.2], the lattice variable L
varies continuously in X, and, moreover, the Epstein zeta function is continuous in
the lattice variable.* Hence, since X, is connected and the Epstein zeta function is
real-valued on the real line, the intermediate value theorem implies that

nx

[N, N] C {Zx_an_xEn(L, . ) L e X,,}

4In fact, E, (L, s) is an Eisenstein series associated to a maximal parabolic subgroup of SL(n, Z)
(see, e.g., [8, Section 10.7]). See also [26, Theorem 2].
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for all sufficiently large n. This confirms that the left-hand side of (1.4) is not only
dense in R, butin fact equal to R.

Let us also point out that Theorem 1.3, together with the Weierstrass
approximation theorem, readily gives a universality result for approximation of
continuous functions on closed subintervals of (%, 1).

Corollary 1.6. Let % < a < b < 1. Then, for any ¢ > 0 and any continuous
real-valued function f on [a,b], we have

oo v x—1y/—x E) - }
]}zrglo%fProan {L € Xy: xren[g’)zl [2° W, E,,(L, 5 f(x)| <e&p > 0.

We will now use Corollary 1.6 to give a short and more elementary proof of (one
part of) [25, Corollary 1.5]. Let ¢ < 1 and let, for any § € (0, ;lf), K5 denote the
closed interval [% +48,1—-46] C (%, 1). Now, by applying Corollary 1.6 with the
continuous function f(x) = —1 on Ky, we obtain the following result.

Corollary 1.7. Forany é € (0, %), we have

n—>00

lim inf Proby,, {L € X, : E,,(L, %) <Oforallx €[t +5,1 —5]} > 0.

Remark 1.8. It follows from [25, Corollary 1.5] that we can replace the liminf
in Corollary 1.7 by a proper limit. Let us also point out that it follows from [25,
Corollary 1.7] that this limit probability tends to zero as § tends to zero.

Our next corollary discusses zeros of E, (L, 2*) in the interval % <x < 1. Its

proof is an application of Theorem 1.3 with the function f(s) = sin ( (% +1).
together with Rouche’s theorem and the observation that since E,(L,%*) is real-
valued the zeros of E, (L, %) approximating the zeros of f(s) must remain on the
real line.>

Corollary 1.9. Let 1 <a < b < 1 and let m € Z'*. Then we have

nx
liminf Prob,,,, {L € X, E, (L, 7) has exactly m zeros in [a,b]} > (0.
h—C0
Let us give a brief sketch of the proof of Theorem 1.3, which is given in full detail
in Section 3. To begin, we decompose the expression under consideration into two
parts as

(23—1 VSE, (L, ”23) . é‘(s)) +(2(s) — f(s5)). (1.5)

and approximate the second part, i.e. {(s) — f(s) (which is holomorphic on the
compact set K), to any desired accuracy by a Dirichlet polynomial. We continue
by dividing the first part of (1.5) into a main term and a tail term. Using a recent

SIf we allow the number of zeros to also be greater than 2, then this result is an immediate consequence
of Corollary 1.6.
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result of the second author [22] on the distribution of lengths of lattice vectors in
a random lattice of large dimension, we show that the main term approximate the
Dirichlet polynomial found above as well as desired for a positive proportion of
lattices L. € X,,. To conclude the proof we use a strong uniform estimate of the error
term in the generalized circle problem (cf. [17,25]; see also Section 2.1) to show that
the tail term is sufficiently small.

Using the same general idea of proof, we arrive at our second main result. As far
as we are aware, this is the first example of a universality theorem that is valid in the
half-plane of absolute convergence (of the Dirichlet series under consideration).

Theorem 1.10. Let Q be a simply connected region in the half-plane Re(s) > %
that is symmetric with respect to the real axis. Then, for any ¢ > 0, any compact set
K C Q and any holomorphic function f on 2 that is real-valued on 2 N R, we have

lim inf Proby,, x s, {(Ll,Lz) € X2:
n—00

max
sekK

s g5 RSN _ ps—1y-—s nsy _ ‘ }
-1y E(Ll,z) 21y En(Lz,z) )| <&l >o.

Classical Voronin universality (variants of Theorem 1.1) for the Epstein zeta
function follows in some special cases, such as when the Epstein zeta function is (a
constant multiple of) a Dedekind zeta function of an imaginary quadratic number
field, since then it is a product of ¢(s) and a Dirichlet L-function, and universality
follows from the joint universality of Dirichlet L-functions. Universality has also
been proved in the case when the Epstein zeta function can be written as a linear
combination of Hecke L-functions by joint universality for such functions, see [13,
pp- 279-284] and [29]. The general case seems to be more difficult. While we cannot
prove classical universality for £, (L, s) with any single given lattice, we will prove
universality for almost every lattice L. € X,,. At present time our methods produce a
result in the strip % < Re(s) < 1.0

Theorem 1.11. Let n > 2. Then, for almost all L € X, and for any ¢ > 0, any
compact set K C {s € C : % < Re(s) < 1} with connected complement, and any
function f that is continuous on K and analytic in the interior of K, we have
1 n(s+ it
liminf — meas {t € [0, T'] : max ’E ( (—)) - f(s)‘ < 8} > 0.
T—ooo T sek 2 '

There are a number of standard corollaries of this type of universality (see,
, [20]). As one such example, we mention an immediate consequence of

Theorem 1.11 that follows by approximating f(s) = s — “+b on
b b—
K:{SEC:‘S—G+ ‘5 a}
2 2

and using Rouche’s theorem.

oWe note that a result recently stated by Blomer [3, p. 2| implies that Theorem 1.11 holds for all
compact sets K C D = {S € C : L <Re(s) < 1} with connected complement.
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Corollary 1.12. Letn > 2 and let% <a < b < 1. Then, for almost all L € X, we
have

lim inf —1—#{;0 € C:|Im(p)| <T,a <Re(p) < b, E, (L, @) = O} B (5
T—oo T 2

This corollary complements the recent results in [21], that treats zeros in the
half-plane Re(s) > 1, by showing that also the zeros in the strip {s : % < Re(s) < 1}
violates the Riemann hypothesis in a strong way. We also note that the corresponding
result for c-values (values s such that £, (L, %) = c¢) follows by a similar argument.

Finally, we mention that the proof of Theorem 1.11 uses a result of Drungilas—
GarunksStis—Kacénas [4] on universality of general Dirichlet series. The main
ingredient in the proof is a new mean square estimate that is valid for Re(s) > % and
almost all lattices L. € X, (cf. Theorem 5.1). In the process of proving this estimate,
we discover a strong bound on the growth of the Epstein zeta function on the critical

line, which we find interesting in its own right.
Theorem 1.13. Let n > 2 and let € > 0. Then, for almost all L. € X,,, we have

n
En(L.7 +it) = Ova((1+ 1)), (1.6)
Recalling that the corresponding convexity bound states that
n n
En(L.7 +ir) = Ora((1+11)*7)

for all L € X,, it follows that (1.6) provides a subconvex estimate for almost all
L € X, assoonas n > 5. In fact, the bound (1.6) is majorized by any positive power &
of the convexity bound, in all sufficiently large dimensions n (depending on §).

Theorem 1.13 has recently been improved by Blomer [3]; using the spectral theory
of automorphic forms, Blomer arrives at the estimate

En(L,% + it) = 0L:((1+11)2%)

for almost all L € X,,. (A detailed proof of this result is provided only for almost all
orthogonal lattices). See also [19] for the even stronger bound

1 1
Ez(L, 5 =+ it) = OL,E((l + Itl)}r{_g)

valid for almost all L. € X5.

2. Preliminaries

2.1. Poisson distribution of vector lengths. Recall that we use V, to denote the
volume of the unit ball in R”. Given a lattice L € X,,, we order its nonzero vectors
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by increasing lengths as vy, vy, *vs3,...,set{; = [v;| (thus 0 < &; < £, <
£3 < -..), and define
Vi(L) = v, (2.1

so that 'V; (L) equals one half of the volume of an n-dimensional ball of radius £;.
The main result in [22] states that the volumes {'V;(L)}72.; determined by a random
lattice I. € X}, converges in distribution, asn — oo, to the points of a Poisson process
on the positive real line with constant intensity 1. In other words, if, for # > 0, we let

Nn,p(1) = #{j : V;(L) < t},

then we have the following theorem.

Theorem 2.1. Let P = {N(¢),t > 0} be a Poisson process on the positive real line
with intensity 1. Then the stochastic process {Nn 1.(t),t > 0} converges weakly to P
asn — oo.

Given L € X, and t > 0, we define
Rp,p(t) := Np,p(¢) — 1. (2.2)

Note that 1 + 2R, 1(¢/2) equals the error term in the circle problem generalized
to an n-dimensional ball of volume ¢ and a general lattice L € X,,. We recall the
following bound on R,z (¢) and refer to [25, Theorem 1.3] (see also [17]) for a proof.

Theorem 2.2. For all € > 0 there exists Cc > 0 such that for alln > 3 and C > 1
we have

Proby,, {L € Xy : |Rn 1(t)] < Ce(CH)2(log1)3+%, ¥t > 5} > 1-C71. (23)

In our discussion, we will often find it convenient to work with a close relative
of Ry, 1(¢), namely

Snp(t) == Ny (t)—#{j € Z* : j <t} (1 =0). (2.4)

The following estimate is an immediate corollary of Theorem 2.2.
Corollary 2.3. For all € > 0 there exists Ce > 0 such that for alln > 3 and C > 1
we have

Proby,, {L € Xy : |Su.2(1)] < Co(Ct)Z(logt)3*8, Vi > 5} = 1—C\.

Remark 2.4. Let us note that in the case n = 2, Schmidt [17, Theorem 2] has proved
that for almost all L € X, and for all sufficiently large ¢ (depending on L and ¢), we
have
- 3+e
Ry, 1 (1)| Kpe 12 (logt)3e.

Hence, for the same L and ¢, we also have

1
1S2,1.(8)] Kpe 12 (logr)3+e.
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2.2. Normalization of E,(L,s). For any complex number s with Re(s) > 1, we
can use (2.1) to write E, (L, %) in the form

oo
En(L,%) =27V Y V(L)
j=1

We find it natural to consider the normalized function
En(L,s) :=2""WSE,(L, %),

so that "
En(L.s) =Y V;(L)™ (Re(s)> 1).
§=1

Note that &, (L, 5) has a simple poleat s = 1 withresidue 1. Note also thatif {7 }52
are the points of a Poisson process on the positive real line with intensity 1, then [24,
Theorem 1 and Remark 4] state that &,, (L, s) converges in distribution to Z?‘;l Tj_s ,
for any fixed s with Re(s) > 1, as n — oc.

3. Proof of Theorem 1.3

To begin with we state the following lemma of Mishou and Nagoshi (cf. [15,
Proposition 2.4] for a more general statement). We recall that D denotes the right
half of the critical strip (see (1.1)).

Lemma 3.1. Let 2 be a simply connected region in D that is symmetric with respect
to the real axis. Then, for any ¢ > 0, any compact set K C 2 and any holomorphic
function f on Q2 that is real-valued on Q N R, there exist Ny € ZT and numbers
aj € {—1,0,1}, 1 < j < Ny, such that

Ny

maxl Zajj—s —f(s)l <e.
j=1

seK

Given N € Z*, L € X, and s € C, we define

N
Py(L.s)i= Y Vi) =) L),
V;(L)<N ji=1
Clearly Py is analytic in C except for a simple pole at s = 1 with residue 1.

Remark 3.2. In the proof of Theorem 1.3 we find it convenient to subtract and
add {(s) to &, (L, s) (see (1.5)). The main reason is that &, (L, s) — {(s) is an entire
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function and its generalized Dirichlet series representation converges in Re s > % for
almost every L € X, (cf. the discussion in and just above Lemma 3.4 below). On the
other hand, the second copy of {(s) plays no essential role in this investigation.
We note that Py (L,s) is simply the sum of {(s) and a suitable truncation of
&,(L,s) — (s) that is easy to work with in connection with the approximation
of Dirichlet polynomials (see the proof of Proposition 3.3 below).

The following approximation result is the key technical ingredient in the proof of
Theorem 1.3.
Proposition 3.3. Let Q2 be a simply connected region in D that is symmetric with
respect to the real axis. Then, for any ¢ > 0, any compact set K C 2 and any

holomorphic function f on Q that is real-valued on Q N'R, there exist N € ZF and
a constant § > 0 such that

lim inf Prob,,, {L € Xy : malé( | Ppr(L,s) — f(s8)] < 6} >4 (3.1)
SE

n—00

holds for any fixed M > N.

Proof. Let h(s) := {(s)— f(s) and note that / is holomorphic on €2 and real-valued
on Q@ NR. By Lemma 3.1, there exist Ny € Z* and coeflicients a; € {-1,0,1},
1 < j < Ny, such that

No
s
i —h £ 32
ggg‘jgau ®)| <3 (3.2)

We let N > max(Ny, 5) be an integer and set

%1—61,- if1<j < No,
bi =

1 it Ng<j=<N.
Hence
N No
PN(Ls)—f() = 3 V)= b (h(s)—Zajj_s). (3.3)
V;(L)<N j=1 i=1

In addition it is useful to note that
N N
> b= Lo
j=1 j=1

for some N — Ny < N < N + Ny and a certain nondecreasing sequence {n j}j-vzl
of positive integers. Note in particular that n y = N.”

7It is in principal straightforward, but notationally impractical, to write down explicit formulas for all
the integers n ;.
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Next, we find that there exist N; € Z* and 8o > 0 (depending on K, N and ¢)
such that for n > N;, we have

N
Prob,,, {L € Xp : max‘ Z Vi(L)™ — Z e
j=1

sekK
Vi(L)<N

< g} >8. (34

We recall that nyy = N and definen o1 := N + 1. It is clear that (3.4) follows if,
for a sufficiently small 0 < 6 < 1 (depending on K, N and ¢),

nj—9<'Vj(L)<nj (j=l,...,=N+l)

holds with probability > 8, whenever n > N;. Hence, it is sufficient to prove that

N6
Vi(L) € I == (n1 —0om - 1), (3.5)
and that
0
'Vj_H(L)—Vj(L) € 1j+1 = (I’lj_|_1 —hj,Nj4+1 —Hj + N n ]) (36)

holds for 1 < j < N, with the given probability for all large enough n. To prove
this, we first note that it follows from Theorem 2.1 and [12, Section 4.1] that

{(ViL)} UV (L) — Vi (L)},

tend in distribution, as n — oo, toacollection {Y; }f:ll of independent exponentially
distributed random variables of mean 1. The probability that (Y7, ..., Yy 4+1) lies in
the open set ]_[j-v;ll I; may be explicitly calculated as

bg = (exp (JVL—I—I) - I)JVJrle_N_1 > 0.

Hence, it follows from [2, Theorem 2.1] that the lower limit as n — oo of the
probability that (3.5) and (3.6) holds for 1 < j < N is greater than or equal to §;.
We conclude that (3.4) holds for any 5 > do > O and alln > N; (where N depends
on dg).

Note that in the special case where M = N and § = &, the inequality (3.1)
follows from (3.2), (3.3), (3.4) and an application of the triangle inequality. It is also
clear from the argument above that we can increase N as much as we like at the cost
of having a possibly smaller constant &y. It remains to show that (3.1) holds with the
same right-hand side § for any fixed M > N. Hence, for M > N, we study the finite
sums

Onm(L,s):= Pu(L,s)— Pn(L,s)

M M
= Y  vWwrt- ) j‘s:fN 77 dSy,L(1),

N<V;(L)<M j=N+1

where S, 1.(¢) is defined in (2.4). Let o9 = min{Re(s) : s € K}andn = (00—%)/2.
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It follows from Corollary 2.3 with C = 2 that for each n > 3 there exists a set
Y, C X, with p,(Y,) = % and such that for all lattices L. € Y, and all 1 = 5 we

have Sy, 1(1)| <y £37 Here it is important to note that the implied constant is
independent of both n and L. Integrating by parts we get, for any L € Y, and all
M >N,

O (L) = \fNMr‘S ds,(0)|

M
= ‘[r‘s ,,,L(t)]ANl + s[ t_s_lSn,L(t)dt’ Ln.K Nz+1—00,
N

uniformly for all s € K. Since we can make the right-hand side above as small as we
desire by increasing N as needed, we obtain, forany M > N andn > 3,

Prob,, {L € X, : max| Oy (L, 9)] < g} > 3.7)

1
5

Finally, given M > N, we would like to use (3.2), (3.3), (3.4) and (3.7) to
conclude that (3.1) holds with (say) 6 = dy/4. In order to verify that this is possible,
we recall that Theorem 2.1 states that the volumes {V;(L)}%2; tend in distribution
(as n — 00) to the points of a Poisson process §” on the positive real line of constant
intensity 1. Note that the proof of (3.4) only uses the restriction of these processes to
the open interval (0, NV) and similarly that the proof of (3.7) only uses the restriction
of these processes to (N, co). Now the crucial observation is that the process  may
be realized as a union of a Poisson process on (0, N) and an independent Poisson
process on (N, o), both of intensity 1 (see, e.g., [12, Section 2.2]). Hence it follows
from (3.2), (3.3), (3.4) and (3.7), that when n > max(N;, 3) (where we might need
to increase N depending on M) we have

5
Proby,, {L € X,, : max | Py (L,$) = f(5)] < &} > ?0' (3.8)
sE

In fact, as n — oo we have the above inequality with any right-hand side strictly

smaller than %. Since the lower bound in (3.8) holds for any fixed M > N, the
proof is complete. |

Next we define, for N € Z1 and Re(s) > 1, the function

o0

OnL.s)i= X V- Y = [ s,

V;(L)>N j=N+1

and note that this integral representation is holomorphic in the half-plane Re(s) > %
for almost every L € X,,.



Vol. 95 (2020) On the universality of the Epstein zeta function 195

Lemma 34. Letn > 3. Let ¢,8 > 0 and let K be a compact subset of the half-plane

Re(s) > % Then there exists M € 1 such that

o
Prob,,,, {L € X, rvneaz(‘ fM, t~° dS,,,L(z‘)‘ < 8} >1-94

forall M'> M.

Proof. Let § > 0 be given. Recall from the proof of Proposition 3.3 that o9 =
min{Re(s) : s € K} and n = (09 — %) /2. It follows from Corollary 2.3 that for
eachn > 3 there exists a set Z,, C X, with u,(Z,) > 1 — 4 and such that for all
lattices L € Z, and all t > 5 we have |S,,L(?)| <54 t2+7 where the implied
constant is independent of n and L. Now, forany L € Z,, and all M > 5, we get

(e ] - (e ]
‘[ I ds,,,,_(r)‘ - |[z—ssn,L(r)]M +s[ =718, 1 (1) dt
M M

1 —
<<8,T/,K Mj""? UO,

uniformly for all s € K. Since we can make the right-hand side above as small as
desired by choosing M large enough, the proof is complete. |

Proof of Theorem 1.3. Lete > 0be given and let N and § be given by Proposition 3.3
applied with ¢/2, K and f. Let furthermore M be given by Lemma 3.4 applied
with ¢/2, /2 and K. (Note that we without loss of generality may assume
that M > N.) Hence, by Proposition 3.3 and Lemma 3.4, we find that

|En(L,5) — f($)] = [En(L, ) = C(s) +C(s) — f(s)]

e €
< 1P (L) = [O)] +10m (L9 < 5+ 2 =

holds, in the limit as n — oo, with a probability of at least §/2. This finishes the

proof. ]

4. Proof of Theorem 1.10

The general strategy for the proof of Theorem 1.10 is the same as in the proof of
Theorem 1.3. The main difference is that Lemma 3.1 is no longer at our disposal.
The following approximation lemma will take its place in the present argument.

Lemma 4.1. Let 2 be a simply connected region in C that is symmetric with respect
to the real axis. Then, for any ¢ > 0, any compact set K C €2 and any holomorphic
function f on Q that is real-valued on Q2 N R, there exists a Dirichlet polynomial

No
A(s) =) agA®

k=1
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with integer coefficients such that

max |A(s) — f(s)| <e.
Proof. The conditions on f and € are sufficient to ensure that

)= f® (s €Q). 4.1

Let K¥ = K U K, where K is the reflection of K in the real axis. By Runge’s
theorem (applied to a simply connected compact set K’ satisfying K* € K’ € Q)
there exists a polynomial P(s) such that

|P(s)— f()] <= (seKM.

By the symmetry of K # we have
PO-T®|<5 (sek?.
and by (4.1) and the triangle inequality it follows that

P& = fG) <5 (€K, (42)

where L B
P(s) + P(s)  P(s)+ P(s)
2 B 2
is a polynomial with real coefficients.
We now proceed to approximate the polynomial p(s) by Dirichlet polynomials
of the desired type. It is sufficient to prove that

p(s) =

Pm(s) = bms(s —1)---(s —m + 1)

may be approximated by a Dirichlet polynomial A,,(s), since p(s) canbe written as
a sum of such polynomials, that is,

M
p(s) =) pm(s)
m=0
for some nonnegative integer M and suitable real numbers {b, }ﬁf:o. Let
o{x) = bpi®,

It is clear that
g™ (x) = bps(s —1)---(s —m + D)x*™.
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Note that this derivative can be approximated up to any given accuracy by A}’ g(x),

where
_glx+h)—gx)

by choosing & small enough. Note also that

bm _ .
pabd =g ¥ 1 (’?)(x + jhy*.
j=0 -

It follows that any such A}’ ¢(x), where we choose x = 1 and & such that b,/ h™
is an integer, will be of the desired type and can be chosen as our Dirichlet
polynomial A,,(s). Thus, by choosing /4 sufficiently small, we can ensure that

| Am(s) — pm(s)] < m O<m=<M,seK). 4.3)

The result follows by choosing

M
AS) = Y An(s)
m=0

and applying the triangle inequality together with the inequalities (4.2) and (4.3). [

Given A € RY, two lattices L1, L, € X, and a complex number s € C, we
define

Pa(Ly,La,s):i= D ViL)™— Y VL)~

Vi(L)<A V;i(L2)<A

which clearly is an entire function of s.

Proposition 4.2. Let Q2 be a simply connected region in the half-plane Re(s) > %
that is symmetric with respect to the real axis. Then, for any € > 0, any compact set
K C Q and any holomorphic function | on Q2 that is real-valued on Q2 N R, there

exist constants 8, Ao € RT such that

lim inf Proby,,, x 0, {(L1, L2) € X7 : max |PA(L1, La,s) — f(5)] <&} > 68 (4.4)
se

h—>00
holds for any fixed A > Ay.

Proof. By Lemma 4.1, there exist an integer Ny > 1 and sequences {’lk}ijch
and {ay },1:21 of positive real numbers and integers respectively, such that

&

No
max ‘ Zak/l,zs — f(9)| < 3 4.5)
k=

seK
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Let Ag = 5, C1 = ) 4, sk and C2 =}, _q |ak|- By choosing Ap > max{Aj :
0 < k < Ny} sufficiently large, we find that there exist Ny € Z* and 85 > 0
(depending on K, A and ¢) such that forn > N;, we have

No
Prob,,,, xu,, {(Ll,Lz) € X,f : max ﬁAO(Ll,Lz,s) — Zakl,?" < f} > 8o .
seK P 3

(4.6)
The proof of (4.6) is essentially the same as the proof of (3.4) (see the proof of
Proposition 3.3). The only difference is that we in this case use the sequence
{V; (Ll)}jc.“=1 to approximate the numbers Ax with positive coefficients a; and the

sequence {'V; (Lz)}fil to approximate the numbers A with negative coefficients aj
(in both cases with multiplicities according to the sizes of the corresponding |ag|).
Now, in the case where A = A and § = &y, the inequality (4.4) follows from (4.5),
(4.6) and an application of the triangle inequality. Note that we may increase A at
the cost of having a possibly smaller constant &y.

In order to show that (4.4) holds with the same right-hand side § for any fixed
A > Ay, we study the finite sums

QA(),A(L1= La,s):= ﬁA(Ll, Ly,s)— ﬁA(,(Ll, L, 8

= Y VilyT - D) Vi)

Ao<V;(L1)<A Ao<V;(L2)=A
A A

= f s an’Ll(t)—f 1= an,Lz(t)’
Ao Ao

where R, 1.(¢) is defined in (2.2). Letog = min{Re(s) : s € K}andn = (00—%)/2.
It follows from Theorem 2.2 with C = 2 that for each n > 3 there exists a set
U, C X, with u,(U,) > % and such that for all lattices L € U, and all t > 5
we have |R,, (1) <y 13+, Integrating by parts we get, for all Ly, L., € U, and
all A > Ay,

A A
Onoai Lol | [ R @]+ | [ dRosa@
Ay Ag

%+'l—00

<<77,K A() ’ (47)

uniformly for all s € K. Thus, since we can make the right-hand side above as small
as we like by a sufficient increase of A, we obtain, forany A > Agandn > 3,

s € 1
PrOanxun {(L15 L2) € X}% : ?éaIé(IQA(),A(LIeLZaS)l = 5} = Z . (48)
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Finally, given A > Ag, we use (4.5), (4.6), (4.8) and Theorem 2.1 to conclude
that when n > max (N, 3) (where we might need to increase N depending on A)
we have

- §
Proby,, xu, {(L1, L2) € X2 cmax | Pa(L. Lo.s) = ()] < ¢} > §0 (4.9)
S€
This finishes the proof. O

We define, for each A € R and Re(s) > 1, the function

OalLi,La.s)i= Y. Vi)™= Y Vil

Vi(L1)>A Vi(L2)>A
[e.0) o0

:[ e dR,,,Ll(t)—f E Y ARy 11t);
A A

and note that this integral representation is holomorphic in the half-plane Re(s) > %
for almost every (L1, Ly) € X2.

Lemmad.3. Letn > 3. Lets,6 > 0 and let K be a compact subset of the half-plane
Re(s) > % Then there exists A € R™ such that

Proby, xyu, {(L1, L2) € X2 :

O o0
mas | [ a0~ [ dRap 0] <} 21 -
sekK ’ A/

forall A" > A.

Proof. The result follows from Theorem 2.2 applied with C > 2/§ to an estimate
similar to the one in (4.7). OJ

Proof of Theorem 1.10. Let ¢ > 0 be given and let Ay and § be given by
Proposition 4.2 applied with £/2, K, and f. Let furthermore A be given by
Lemma 4.3 applied with /2, §/2 and K. (We may assume that A > A,.) Then, it
follows from Proposition 4.2 and Lemma 4.3 that

184 (L1,5) — En(L2,s) — f(5)] < |Pa(L1, La,s) — f(s)| +|0a(L1, L2, 5)|
< &

holds, in the limit as » — oo, with a probability of at least §/2. L]
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5. Proof of the imaginary shift case (Theorem 1.11)

We will use Drungilas—Garunkstis—Kacénas variant [4, Theorem 2.1] of a result of
Gonek [9] for general Dirichlet series. To do this we need a mean square estimate in
a half-plane.®

Theorem 5.1. Let n > 2. Then, for o > % and for almost all L € X, we have

T .
n(o +1it)\|2
E,L,—— ’ dt €p o T.
fl\( ) i

By the definition of the normalized Epstein zeta function, the triangle inequality
and the well known mean square estimate for the Riemann zeta function in the
half-plane o > % (see e.g. Ivi¢ [11]), it is sufficient to prove that

T
[ |84 (L, @ A — Lo &+ P dt €1s T (5.1
1

We will prove this estimate using Gallagher’s lemma [7, Lemma 1].
Lemma 5.2 (Gallagher). Let§ = 6/T, with 0 < 0 < 1, and let

S(t) == Z cre(vgt)
k

be an absolutely convergent exponential sum having only real frequencies vy. Then

f_j]S(t)lZdt«g/m)S_] Z Ck

—a x<vp<x+8

2
‘ dx.

We will not be able to apply Gallagher’s lemma directly, since it assumes that the
exponential sum S(¢) is absolutely convergent. Thus, we will need to truncate our

Dirichlet series; in fact, we will apply the following weak approximate functional
equation.

Lemma 5.3. Let ¢ > 0. Let n > 2 and assume that Re(s) > % Then, forany X > 5
and almost every L € X, we have

En(L,s) —C(s) = Z Vi(L)™ - Z i+ 0L,g(|S|X%_RE(S)+8).

V(L)X 1<j=X

Proof. The lemma follows immediately from Lemma 3.4 and its proof (using the
estimate in Remark 2.4 in place of Corollary 2.3 in the case n = 2). U

8We note here that Blomer [3] recently stated a mean square estimate on the critical line % + it for
almost all L € X,,. Using this bound instead of our Theorem 5.1 in the proof of Theorem 1.11 would
result in a stronger universality result validin D = {s € C : 1 < Re(s) < 1}.
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Proof of Theorem 1.13. The theorem is a direct consequence of Lemma 5.3, the
functional equation (1.3) and the Phragmén—Lindelof principle. L

In order to apply Gallagher’s lemma, we also need estimates for short partial sums
of &,(L,s)— {(s). We define

A(x) = Ag,L,x (x) = A1(x) — Az(x), (5.2)
where
Av(x) =Agrxar)= Y VL)
V; (L)<min(e*,X)
and

AZ(X) = Aa,L,X;z(x) = Z _f_U.

1<j<min(e*,X)
To be precise, we need the following result.

Lemma 54. Let ¢ > 0. Let furthern > 2,06 > 1,0 <8 < l and a € R. Then, for
almost all L € X,,, we have

x+1
[ |Ac,L.x(x +8) —AgL.x (x)[z dx <1 e Sea(%—Za—Fa)'
4

Proof. To begin, we have

a+1
f |A(x + 8) — A(x)|*dx

T x€la,a+1

a+1
< max ]|A(x+5)—A(x)|[ |[A(x + 8) — A(x)|dx.

By Corollary 2.3 (or Remark 2.4 in the case n = 2) and integration by parts, we
obtain

min(e* 18 X)

AG +8) — AG)| = 1[

i dSn,L(t)| <<L,U,g ex(%—(r-’r—s)
min(e*,X)

for almost all L € X,. For the rest of this proof we restrict our attention to the set of
lattices satisfying the above estimate, for which we have

a+1 a+1
f |A(X+8)—AX)|? dx K1 g6 ea(%_aﬂ)f |A(x+8)—A(x)|dx. (5.3)
o o

Using (5.2) and the triangle inequality, we find that the latter integral is bounded by

2 a+1
Zf IA; (x + 8) — Aj(x)| dx. (5.4)
i=17%
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Since A; () is nondecreasing fori = 1, 2, the absolute valuesin (5.4) can be removed
and the above sum equals

> (faH Ai(x + 8 dx —fﬁl Ai(x)dx)_

=1
Changing variables y = x -+ § in the first integral, we obtain

2 a+1+8

Z(fm s - [

i=1

o+

1 2 a+§
Ai(x)dx) = Z[ (A; (x+1)— Aj(x)) dx,
=il <%

which by Corollary 2.3 (or Remark 2.4 in the case n = 2) is O ,(8¢*(179)). Using
this estimate, together with (5.3), we obtain the desired result. ]

Proof of Theorem 5.1. Let o > % be given. By the triangle inequality, the mean
square estimate for the Riemann zeta function and Lemma 5.3 (applied with X = T%)
we have, for almost all L € X,,,

[ len(a O P

<o | Y o T

Vi(L)<T* 1<j=<T4

2
dt +T. (5.5)

The integral in the right-hand side of (5.5) can be estimated by an application of
Lemma 5.2 with 6 = % resulting in the upper bound

oo ] )

O(Tz)[ lA(x + —) . A(x)‘ dx, (5.6)
oo 2T

where A(x) = Ag, 1, x(x) is defined in (5.2). The integrand has compact support

contained in [4, B], where A = log(min(V;(L),1)) + O(T™!) and B = 4logT.

By dividing the integral into parts of length 1 and using Lemma 5.4 to estimate each

term, we find that the expression in (5.6) is bounded by

LB]
O1.0.6(T) Z K20+
k=|A]

where the geometric sum is bounded with respect to T whenever we choose 0 < ¢ <
20 — % This finishes the proof. L]

Before we turn to the proof of Theorem 1.11, we introduce some more notation.
We let L denote a set containing one representative from each pair {m,—m} of
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primitive vectors® in L, and write '17-(1, 2 _. for the subsequence of {V; (L)}
J i=1 q J j=1

corresponding to vectors v € L. We also let
Napn(t) :=#{j :V;(L) <t} (t>0),

and note that

Nar= Y Far(=) (57)

n
l=m=(/V1(L)1/"n "

We will need a bound on the error term in the primitive circle problem, generalized to
an n-dimensional ball of volume ¢ and a generic lattice L € X,,, of the same quality
as the bounds in Theorem 2.2 and Remark 2.4.

Lemma 5.5. Let & > 0 and n > 2. Then, for almost all L. € X,, we have
A~ t 1
Nup(t) = — + O £(¢27°). 5.8

Proof. We begin by defining (for r > 0)

1
Na(r) = S#m € L\ {0} : |m| < tir}
and
Nor(r):=#meL:|m|<{r},

where £; denotes the length of a shortest nonzero vector in L. We note that these
counting functions are related to the ones in (5.7) by

Nn,L(t) = Nn,L(( t )%)

Vi(L)
and 1
Nap () = ﬁ”’L((vliL))n)'

Hence, writing x = x (¢, L) = (¢/V1 (L))", we can reformulate (5.7) as
~ X
N, (x) = Fnr (=),
n,L (x) Z n,L "

Now, using the Mobius inversion formula in the form given in [10, Theorem 268]
together with Theorem 2.2 and Remark 2.4, we obtain

By = 3 pemNar(S)= Y Mm)(#”ks(#)%ﬂ)

1<m<x l<m<x

9 A primitive vector (in a lattice L) is a non-zero lattice vector which is not a positive integral multiple
of another lattice vector.
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for almost every L € X,. Extending the upper bound in the summation of the main
terms to infinity and then estimating the error terms trivially, we arrive at the desired
result. ]

We further define

" = = X, i ¥
L9 =Rty Y (imt) " =14 30 (500) T @e >
j=2 1

mel

and note that

En(L, %) = 2 (ns)( )Sén(L,s). (5.9)

n
2V1(L)
Proof of Theorem 1.11. To begin, we note that since o9 = min{Re(s) : s € K} >
% ot %, we can for any &; > 0 choose Ny € Z* so that for n > 2

max
Re(s)>ag

—nsy 1
];[VO(l _ ) (:(ns)l <. (5.10)

Furthermore, it follows from [21, Lemma 2] that the set
{log V; (L) —log V(L) : j > 2}

is linearly independent over @Q for almost all lattices . € X,,. From now on we
restrict our attention to lattices L € X, with this property. We let

ro {20
0

V,,}

1>2}U{p :p < No}t U {2"91(L)

and choose I';x € I' to be maximal with respect to the property of having the
logarithms of all its elements linearly independent over Q. Since the differences
log 'V (L)—log Vl (L) for j > 2 are linearly independent over ) by assumption, we
will always include these elements in I,,,. We write

Cimax = {Ak}](zozl ;

Note that the logarithm of each element A in the finite set I' \ {'&A?j (L)/V (L)}5%,
can be written as

L i hia
log A = logA, = —= log A 5.11
0g kZ::ICIk,A 2 Ak ; N, g Ak (5.11)

for Ay € Timax> Gk € Q, hgy € Z and Ny, N, € ZT where Ny can be chosen as the
least common multiple of the denominators of the rational numbers g ; (for all k
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and 4). Note in particular that Ny and Ny are chosen independently of A. This is
possible since I" \ {’V (L)/'Vl(L)} >, is finite and the integers Ay ; are allowed to
be zero. We also find it convenient to introduce

N>

N3 = mfxz |l
k=1

Next, we define the Dirichlet series

N> o0
A@) =27 N A Re(s) > 1)

k=1 k=N>+1
and the Dirichlet polynomials

Ny

B(s) =Y (A —ag%)

k=1

C(s) := > A

Ak €lmax\{V; (L)/ V1 (L)},

and

Note that these functions are related to én (L,s) via
En(L,s) =1+ A(s) — B(s) — C(s). (5.12)

We are interested in applying [4, Theorem 2.1] to the Dirichlet series A(s). Hence
we need to verify that A(s) satisfies the four conditions in [4, Theorem 2.1] for almost
all L € X,. The first condition, the so-called packing condition, follows from (5.8)
which implies that for almost every L. € X, we have

~

|Nn,L(ex:t;;2) Na,(e¥)| >> >> e(1=8)x

for any ¢ > 0 and any & > O (which in turn immediately implies the packing
condition for A(s)). The second condition, the linear independence over QQ of the
logarithms log Ax corresponding to elements A € I'n,y, follows from the defining
property of ['y,,. The third condition follows immediately from the fact that é,, (L,s)
is absolutely convergent in the half-plane Re(s) > 1. Finally, the fourth condition (on
approximation) follows for almost all L € X, from (5.9), the mean square estimate
in Theorem 5.1 and [4, Proposition 2.2]. Thus, for almost all lattices L € X,,, we
may apply [4, Theorem 2.1] to A(s). For the rest of this proof we assume that we are
working with such a lattice L € X,,.

Let
f(‘) ( Va
20 (ns) \ 2V (L)

g(s) = )_S + B(s)+ C(s) — 1,
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where f(s) is the function given in the statement of the theorem, and let

B:= sup ‘2@(11;)( ) = max |2 nx) ( "~ ) ‘

Re (s)€[4 1] ZVI (L) x€[ 3 ,1] 2'V1 (L)
Then we can apply [4, Theorem 2.1], with suitable § and p, to A(s) and g (s) to
obtain, for a positive proportion of t € [0, T] as T — oo,

max |A(s + it) —g(8)| < — ﬂ (5.13)
and "
tl
“ 5 0% ” (5.14)
27TN1 3
for 1 < k < N,, where | - || denotes the distance to the closest integer. Note that it

follows from (5.11), (5.14) and the triangle inequality that

H 1log(p")
2n

‘<8

for all p < Ny and

H tlog(Vy, /(Zvl (L)) ”

Hence, using (5.10) and the absolute convergence of {(s) in Re(s) > 1, we obtain,
for all sufficiently small choices of &; and §,

NTUALCT00) I UAYIeART00) il g
sek 2L (ns) 2L (n(s + it)) 4B (maxgex |f(s)|+ 1)
(5.15)
Similarly, we use (5.14) with a possibly smaller constant § to conclude that
max | B(s) = B(s + i1)] < % and max|C(s) = C(s + in)] < ﬁ (5.16)

We stress that (5.15) and (5.16) holds for the same values of ¢ as (5.13) and (5.14).
Throughout, we restrict our attention to such values of ¢.

In order to finish the proof it remains to put the above pieces together. Using
(5.12), (5.13) and (5.16), together with the triangle inequality, we obtain

f(s)
28(ns)

) , 3¢
+rsnez}?|B(s) — B(s+it)| + max |C(s)— C(s +it)| < @

( Vn ‘_<_max|A(s+1t) g(s)]

max é’\n(L,s +it) —
seK 2V, (L)
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Next, it follows from the above and (5.15) that

én(L,S—I—i[)_ Sf(s) ( V, )—s_,

max - =
sek 2¢(n(s +i0)) \ 2V, (L)
- Vs 4
<max |&,(L,s +it)— AC) ( = )
sek 28(ns) \ 2V, (L)
_ Va/ @VL)™  (Va/@VIL) T e
EoE ) [ ) W +in) | B
Finally, we use (5.9) to arrive at
n(s+it)
g (1) =70
a . f(s) Vn st
< Bmax |E,(L,s +it)— ' - = <e,
_'BseK ( ) 2§(n(s—|—tt))(2vl(L))
which is the desired conclusion. L]
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