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On the universality of the Epstein zeta function

Johan Andersson and Anders Södergren*

Abstract. We study universality properties of the Epstein zeta function En (L, s) for lattices L
of large dimension « and suitable regions of complex numbers .v. Our main result is that,

as n —> oo, E„(L,s) is universal in the right half of the critical strip as L varies over all
«-dimensional lattices L. The proof uses a novel combination of an approximation result for
Dirichlet polynomials, a recent result on the distribution of lengths of lattice vectors in a random
lattice of large dimension and a strong uniform estimate for the error term in the generalized
circle problem. Using the same approach we also prove that, as n —> oo, En (L \, ,v) — En (L2, s)
is universal in the full half-plane to the right of the critical line as (L1, L2) varies over all pairs of
«-dimensional lattices. Finally, we prove a more classical universality result for En (L,s) in the

^-variable valid for almost all lattices L of dimension n. As part of the proof we obtain a strong
bound of En(L, ,v) on the critical line that is subconvex l'or n > 5 and almost all «-dimensional
lattices L.

Mathematics Subject Classification (2010). 11E45, 30K10, 41A30; 11H06, 60G55.

Keywords. Epstein zeta function, universality, random lattice, Poisson process, subconvexity.

1. Introduction

In 1975 Voronin [27,28] proved the following remarkable approximation theorem

for the Riemann zeta function:

Theorem 1.1 (Voronin). Let K {.v G C : |s — || < r) for some r < \, and

suppose that f is any nonvanishing continuous function on K that is analytic in the

interior of K. Then, for any e > 0,

This theorem, known as Voronin's Universality Theorem, shows that any
nonvanishing analytic function in a small disc may be approximated by a vertical

*The second author was partially supported by a postdoctoral fellowship from the Swedish Research

Council, by the National Science Foundation under agreement No. DMS-1128155, as well as by a grant
from the Danish Council for Independent Research and FP7 Marie Curie Actions-COFUND (grant id:
DFF-1325-00058).

liminf — meas it G TO. 71 : max |£(s + it) — f (,v)| < e} > 0.
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shift of the Riemann zeta function. It has been improved and generalized in various
directions (see Steuding's monograph [20] and Matsumoto's survey paper [14] for
detailed discussions); for example it is known that the set K may be chosen as any

compact set with connected complement that lies in the vertical strip

D := {s e C : \ < Re(s) < 1}. (1.1)

Let us also note that, since £(s) has an Euler product, it is necessary to assume that

the function f in Theorem 1.1 is nonvanishing on K. However, for zeta functions
without an Euler product, such as the Hurwitz zeta function Ç(s, a) with rational or
transcendental1 parameter 0 < a < 1, a ^ this condition can be removed.

Similar universality theorems have been proved for large classes of zeta functions
and L-functions. Here we will content ourselves with a short review of the situation
for Dirichlet L-functions. In his thesis, Voronin [30] proved2 the joint universality
of Dirichlet L-functions, i.e. that vertical shifts of Dirichlet L-functions attached to
nonequivalent Dirichlet characters can be used to simultaneously approximate any
finite number of nonvanishing analytic functions on A". In a different direction,
Bagchi [1] has proved a universality theorem for Dirichlet L-functions L(s,x) in
which the imaginary shifts in the complex argument s from Theorem 1.1 has been

replaced by a variation of the character x over the set of characters of prime modulus.
To be precise, let AT be a compact subset of D with connected complement and let /
be a nonvanishing continuous function on K that is analytic in the interior of K.
Then, for any e > 0,

liminf #{/ mod p : max |L(s, /) — /"(,v)| < e} > 0. (1.2)
p^oo (p(p) seK

Recently Mishou and Nagoshi [15, 16] proved a related result for Dirichlet
L-functions associated with real characters. Let D+ (resp. <£)") denote the set

of positive fundamental discriminants (resp. negative fundamental discriminants)
and define

D±(*) := {d 5)± : \d\ < X}.
For a discriminant d, we let Xd denote the quadratic Dirichlet character modulo \d\
defined by the Kronecker symbol Xd(n) (f )•

Theorem 1.2 (Mishou-Nagoshi). Let £2 be a simply connected region in D that is

symmetric with respect to the real axis. Then, for any s > 0, any compact set K (Z L2

and any nonvanishing holomorphic function f on £2 which takes positive real values

on £2 n M, we have

Hmmf
*

#{J X)±(X) : max |L(.v, Xd) ~ /(j)| < e} > °-
A->oo ttZD^jX) seK

'For the case of algebraic irrational a, the Hurwitz zeta function does not have an Euler product and it
is likely to be universal without assuming the nonvanishing condition. However, proving this seems quite
difficult and constitutes a major open problem in the theory of universality.

2Similar results were established (independently) by Gonek [9| and Bagchi [ 1 ].
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The purpose of the present paper is to prove universality results for the Epstein
zeta function that turn out to have similarities with both Theorem 1.2 and Bagchi's
result described in (1.2) above. In order to state and describe our results, we first
need to properly introduce the setting.

Let Xn denote the space of all «-dimensional lattices L c M" of covolume

one and let jjtn denote Siegel's measure [18] on Xn, normalized to be a probability
measure. For L e Xn and Re(,v) > the Epstein zeta function is defined by

En{L,s) := £
meL\{0}

m I 2s

En(L,s) has an analytic continuation to C except for a simple pole at ,v | with
residue 7T2r(|)_1. Furthermore, En(L,s) satisfies the functional equation

Fn(L,s) Fn(L*, I — s), (1.3)

where Fn(L,s) := ji~sY(s)En(L,s) and L* is the dual lattice of L. The Epstein
zeta function has many properties in common with the Riemann zeta function. In fact,
the functions En(L,s) (actually a slightly more general family of functions) were
introduced by Epstein [5,6] in an attempt to find the most general form of a function
satisfying a functional equation of the same type as the Riemann zeta function. Note
in particular the relation

E1(Z,s) 2Ç(2s).

However, we stress that there are also important differences between En(L,s)
and Ç(s). Typically En{L,s) has no Euler product and it is well known that the

Riemann hypothesis for En(L,s) generally fails (cf., e.g., [21] and the references

therein).3
Let Vn denote the volume of the n-dimensional unit ball. We recall the explicit

formula

V„
TT«/2

" r(| +1) '

and stress that Vn decays extremely fast as n —> oo. In most of our results Vn will
appear naturally as part of a factor normalizing En (L, .v).

Our first main result is a universality theorem for En(E,s) in the lattice aspect,
i.e. a universality result where the lattice L varies over the space Xn but no vertical
shifts are applied to the complex variable s. The situation is related to the one in

Bagchi's theorem (1.2), and similarly, in order to obtain still finer approximations it
is natural to consider the limit n —> oo. Let us also point out that the relation with
Theorem 1.2 lies in the fact that both L(s, Xd) and En(L, ,v) are real-valued for real

values of ,v, resulting in the same sort of conditions on the involved functions and

3Here the words typically and generally are to be interpreted in terms of the measure ptn.
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regions. However, since En(L,s) typically has no Euler product, the nonvanishing
condition on the function / can be removed.

Theorem 1.3. Let Q be a simply connected region in D that is symmetric with respect
to the real axis. Then, for any s > 0, any compact set K C ß and any holomorphic
function f on £2 that is real-valued on £2 fl R, we have

liminf Prob,, [l e Xn : max|2s~lV~s E„(l, —) — f(s)\ < el > 0.
n-*oo 1 seK \ 2 ' '

Remark 1.4. In particular it follows from Theorem 1.3 that, given s > 0, K C El

and / as above, there exists some n e Z+ and a lattice L Xn such that

max
seK

-xV-sEn(Ln-^)-f{s) < e.

As an immediate consequence of Theorem 1.3, we have the following denseness

result.

Corollary 1.5. For any fixed s e D \ (D D R) the set

J2?-iv-'En(L,) :neZ+,LeXn}

is dense in C. Moreover, for any fixed x I) fl R, we have

^-\v-*En(L-n eZ+,i e Xn^ K. (1.4)

To prove the first part of the corollary, it is sufficient to note that for any ce C
we may use Theorem 1.3 to approximate f(s) c on the set K {.v} to arbitrary
precision. Next, to prove (1.4) we note that for any N e Z+ we may use Theorem 1.3,

with e 1 and K {jc}, to approximate the two functions

,/i(.v) —N - 1 and f2(s) N + 1.

It follows that for all sufficiently large n (depending on IV) there exist lattices

L\, L2 Xn such that

2*-1F-*£„(L1,y) < -N and 2JC"1 V~xEn(L2, y) > N.

We note that in contrast to the situation in [15, Corollary 1.2], the lattice variable L
varies continuously in Xn and, moreover, the Epstein zeta function is continuous in
the lattice variable.4 Hence, since Xn is connected and the Epstein zeta function is
real-valued on the real line, the intermediate value theorem implies that

[-N, N] ç {2x~lV-xEn(L, y.LeXn
4In fact, En(L,s) is an Eisenstein series associated to a maximal parabolic subgroup of SL(n,l

(see, e.g., [8, Section 10.7]). See also [26, Theorem 2].
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for all sufficiently large n. This confirms that the left-hand side of (1.4) is not only
dense in M, but in fact equal to ®L

Let us also point out that Theorem 1.3, together with the Weierstrass

approximation theorem, readily gives a universality result for approximation of
continuous functions on closed subintervals of (|, 1).

Corollary 1.6. Let ~ < a < b < 1. Then, for any e > 0 and any continuous
real-valuedfunction f on [a,b\, we have

liminf ProbAtn \l Xn : max \2x~lV~xEh(l, - f(x)\ < e} > 0.
n->-oo t xe[a,b] V 2 / >

We will now use Corollary 1.6 to give a short and more elementary proof of (one

part of) [25, Corollary 1.5]. Let e < 1 and let, for any 8 £ (0, |), Kg denote the

closed interval + 8, 1 — 5] C (^, 1). Now, by applying Corollary 1.6 with the

continuous function f(x) — 1 on Kg, we obtain the following result.

Corollary 1.7. For any 8 £ (0, |), we have

lim inf Prob^ jL Xn : En (jL, —^ < 0 for all x £ + 8,1 — <5]j >0.

Remark 1.8. It follows from [25, Corollary 1.5] that we can replace the lim inf
in Corollary 1.7 by a proper limit. Let us also point out that it follows from [25,
Corollary 1.7] that this limit probability tends to zero as 8 tends to zero.

Our next corollary discusses zeros of En(L, ~) in the interval j < x < 1. Its

proof is an application of Theorem 1.3 with the function /(v) sin (7r(m^'s_~a) +
together with Rouche's theorem and the observation that since E„(L, is real-
valued the zeros of En(L, ^) approximating the zeros of f(s) must remain on the
real line.5

Corollary 1.9. Let ~ < a < h < 1 and let m £ Z+. Then we have

lim inf Prob^.,, jL £ Xn : En(^L, — j has exactly m zeros in [a,b] j > 0.

Let us give a brief sketch of the proof of Theorem 1.3, which is given in full detail
in Section 3. To begin, we decompose the expression under consideration into two
parts as

(2*-1 V~sEn(L, y) - £(*)) + (Ç(s) - f(s)), (1.5)

and approximate the second part, i.e. £(.v) — f{s) (which is holomorphic on the

compact set K), to any desired accuracy by a Dirichlet polynomial. We continue
by dividing the first part of (1.5) into a main term and a tail term. Using a recent

5If we allow the number of zeros to also be greater than m, then this result is an immediate consequence
of Corollary 1.6.
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result of the second author [22] on the distribution of lengths of lattice vectors in

a random lattice of large dimension, we show that the main term approximate the

Dirichlet polynomial found above as well as desired for a positive proportion of
lattices L e Xn. To conclude the proof we use a strong uniform estimate of the error
term in the generalized circle problem (cf. [17,25]; see also Section 2.1) to show that
the tail term is sufficiently small.

Using the same general idea of proof, we arrive at our second main result. As far

as we are aware, this is the first example of a universality theorem that is valid in the

half-plane of absolute convergence (of the Dirichlet series under consideration).

Theorem 1.10. Let U be a simply connected region in the half-plane Re(.v) > A

that is symmetric with respect to the real axis. Then, for any e > 0, any compact set

K C £2 and any holomorphic function f on £2 that is real-valued on U H IB., we have

liminfProbMnXju,„ [(L\,L2) e :

n—>oo I

max|2s-1V-sE„(lx, y) - 2'"1 V~s En (l2, y) - f(s) | < e] > 0.

Classical Voronin universality (variants of Theorem 1.1) for the Epstein zeta

function follows in some special cases, such as when the Epstein zeta function is (a

constant multiple of) a Dedekind zeta function of an imaginary quadratic number

field, since then it is a product of ((,v and a Dirichlet L-function, and universality
follows from the joint universality of Dirichlet L-functions. Universality has also

been proved in the case when the Epstein zeta function can be written as a linear
combination of Hecke L-functions by joint universality for such functions, see [13,

pp. 279-284] and [29]. The general case seems to be more difficult. While we cannot

prove classical universality for En(L, .v) with any single given lattice, we will prove
universality for almost every lattice L e Xn. At present time our methods produce a

result in the strip | < Re(,v) < I.6

Theorem 1.11. Let n > 1. Then, for almost all L e Xn and for any e > 0, any
compact set K C {s G C : | < Re(.v) < 1} with connected complement, and any
function f that is continuous on K and analytic in the interior of K, we have

n(s + it)N
lim inf — meas •11 e [0,T] : max E„(l, —y—) -/CO < > 0.

There are a number of standard corollaries of this type of universality (see,

e.g., [20]). As one such example, we mention an immediate consequence of
Theorem 1.11 that follows by approximating /(,v s — on

K

and using Rouche's theorem.

[y e C :
a + h h-

s <
t 2 - 2

6We note that a result recently stated by Blomer [3, p. 2] implies that Theorem 1.11 holds for all
compact sets ^CÔ {îC:]< Re(s) < l} with connected complement.
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Corollary 1.12. Let n > 2 and let | < a < b < 1. Then, for almost all L E Xn, we
have

liminf ^=#lp E C : [ Im(p)| < T,a < Re(p) < h, E„(l,—\ o) >0.t—>-oo T ' V 2 / '

This corollary complements the recent results in [21], that treats zeros in the

half-plane Re(.v) > 1, by showing that also the zeros in the strip {s : | < Re(.v) < 1}
violates the Riemann hypothesis in a strong way. We also note that the corresponding
result for c-values (values s such that En (L, —) c) follows by a similar argument.

Finally, we mention that the proof of Theorem 1.11 uses a result of Drungilas-
Garunkstis-Kacènas [4] on universality of general Dirichlet series. The main
ingredient in the proof is a new mean square estimate that is valid for Re(v) > § and
almost all lattices L E Xn (cf. Theorem 5.1). In the process of proving this estimate,
we discover a strong bound on the growth of the Epstein zeta function on the critical
line, which we find interesting in its own right.

Theorem 1.13. Let n >2 and let e > 0. Then, for almost all L Xn, we have

En(L, n- + if) Ol,8(( 1 + |f|)1+£). (1.6)

Recalling that the corresponding convexity bound states that

4
+ l'*) + 1*1)7

for all L E Xn, it follows that (1.6) provides a subconvex estimate for almost all
L E Xn as soon as n > 5. In fact, the bound (1.6) is majorized by any positive power S

of the convexity bound, in all sufficiently large dimensions n (depending on S).

Theorem 1.13 has recently been improved by Blomer [3] ; using the spectral theory
of automorphic forms, Blomer arrives at the estimate

En(L,-A+it) 0L,£({\ + \t\)^+e)

for almost all L E Xn. (A detailed proof of this result is provided only for almost all
orthogonal lattices). See also [19] for the even stronger bound

E2(yL,X-+it) 0L,s((\ + \t\Y+e)

valid for almost all L E X2-

2. Preliminaries

2.1. Poisson distribution of vector lengths. Recall that we use Vn to denote the
volume of the unit ball in iSLn. Given a lattice L e Xn, we order its nonzero vectors
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by increasing lengths as ±i>i, ±»2, ±»3, • • -, set Ij \vj\ (thus 0 < l\ < £2 <
I3 <), and define

Vj{L):=\Vninj, (2.1)

so that Vj(L) equals one half of the volume of an «-dimensional ball of radius ij.
The main result in [22] states that the volumes {Vj determined by a random
lattice L e Xn converges in distribution, as n 00, to the points of a Poisson process
on the positive real line with constant intensity 1. In other words, if, for t > 0, we let

Nn.Lit) := #{./ : yJ iL) < t},

then we have the following theorem.

Theorem 2.1. Let IP {Jf{t), t > 0} be a Poisson process on the positive real line
with intensity 1. Then the stochastic process {Nn,L(t), t > 0} converges weakly to IP

as n -> 00.

Given L e Xn and t > 0, we define

Rn,L(t)-= Nn,L(t)-t. (2.2)

Note that 1 + 2Rnti(t/2) equals the error term in the circle problem generalized
to an «-dimensional ball of volume t and a general lattice L e Xn. We recall the

following bound on Rn,L(t) and refer to [25, Theorem 1.3] (see also [17]) for a proof.

Theorem 2.2. For all e > 0 there exists Ce > 0 such that for all n > 3 and C > 1

we have

Prob/x„ {L 6 Xn : \Rn,L(t)\ < Ce(Ct)± (log t)i+E, W > 5} > 1 -C~\ (2.3)

In our discussion, we will often find it convenient to work with a close relative
of Rn,L(t), namely

Sn,L(t) := Nn,L(t) - #{j eZ+ : j < t} (t > 0). (2.4)

The following estimate is an immediate corollary of Theorem 2.2.

Corollary 2.3. For all e > 0 there exists Ce > 0 such that for all « > 3 and C > 1

we have

Prob^,, {L Xn : |S„,L(0| < Ce{Ct)^(\ogt)i+B, W > 5} > 1 - C~\

Remark 2.4. Let us note that in the case « 2, Schmidt [17, Theorem 2] has proved
that for almost all L G X2 and for all sufficiently large t (depending on L and e), we
have

IRi,l(01 «l,£ tl2(\ogt)i+e.

Hence, for the same L and t, we also have

\S2,l(0\ <^L,s t2(\ogt)2+e.
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2.2. Normalization of En(L,s). For any complex number s with Re(.v) > 1, we
can use (2.1) to write En(L, y) in the form

oo

£„(L,f) 21-Y;^F/(L)-s.
j=i

We find it natural to consider the normalized function

Sn(L,s) := 2s~lV~sEn(L,f),

so that
oo

Sn(L,s) J2Vj(LrS (ReCv)>l).
7=1

Note that 8„{L,s) has a simple pole at s 1 with residue 1. Note also that if {TjjJL^
are the points of a Poisson process on the positive real line with intensity 1, then [24,
Theorem 1 and Remark 4] state that 8n (L, ,v) converges in distribution to Tjs,
for any fixed s with Rc(.v) > 1, as n —> oo.

3. Proof of Theorem 1.3

To begin with we state the following lemma of Mishou and Nagoshi (cf. [15,
Proposition 2.4] for a more general statement). We recall that D denotes the right
half of the critical strip (see (1.1)).

Lemma 3.1. Let £2 be a simply connected region in D that is symmetric with respect
to the real axis. Then, for any s > 0, any compact set K C £2 and any holomorphic
function f on £2 that is real-valued on £2 fl K, there exist No g Z+ and numbers

Uj G {—1,0,1}, 1 < j < Nq, suchthat

No

max
seK Y.a'j

7 1

< s.

Given N G Z+, L G Xn and s G C, we define

N

Pn(L,S) := Vj(L)-s- J2j~S + &)
Vj(L)<N 7 1

Clearly Pn is analytic in C except for a simple pole at s 1 with residue 1.

Remark 3.2. In the proof of Theorem 1.3 we find it convenient to subtract and

add Ç(i) to 8n(L, s) (see (1.5)). The main reason is that 8n(L, s) — £(.v) is an entire
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function and its generalized Dirichlet series representation converges in Re s > \ for
almost every L G Xn (cf. the discussion in and just above Lemma 3.4 below). On the

other hand, the second copy of £(s) plays no essential role in this investigation.
We note that Pn(L,s) is simply the sum of Ç(s) and a suitable truncation of
8n (L, s) — £(.v) that is easy to work with in connection with the approximation
of Dirichlet polynomials (see the proof of Proposition 3.3 below).

The following approximation result is the key technical ingredient in the proof of
Theorem 1.3.

Proposition 3.3. Let LI be a simply connected region in D that is symmetric with

respect to the real axis. Then, for any e > 0, any compact set K CI LI and any
holomorphic function f on £2 that is real-valued on £2 D M, there exist N G Z+ and

a constant S > 0 such that

lim inf Prob,t iL G Xn : max \Pm(L,s) — /(s)| < e} > S (3.1)
n-*-oo SEK

holds for any fixed M > N.

Proof Let h(s) := (.v) — /(5) and note that h is holomorphic on £2 and real-valued

on £2 fl R. By Lemma 3.1, there exist Nq g Z+ and coefficients aj G {—1,0,1},
1 <7 < No, such that

Ao

max > a, j s — h(5)
seK

J

7=1
<5. (3-2)

We let N > max(A'(), 5) be an integer and set

if 1 < j < No,

if 7V0 < j < N.

Hence

N N0

Pn(L,S)—f(s) Y! yj(Lys - J2bJj~s + (Ä(s> ~ J2ajj~s)- (3.3)

Vj(L)<N 7=1 7 1

In addition it is useful to note that

N N T,»o- T.n~snj '
7=1 7=1

for some N — No < N < N + No and a certain nondecreasing sequence \n j)'f=\
of positive integers. Note in particular that N P

7It is in principal straightforward, but notationally impractical, to write down explicit formulas for all
the integers ny.
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Next, we find that there exist N\ e Z+ and <50 > 0 (depending on K, N and s)
such that for n > N\, we have

M

Prot\l e Xn max Y Vf(L) * ~ E n
l SEK —

—5

j
Vj(L)<N 7 1

<|}>V (3.4)

rj<

We recall that njj N and define nj^+i := N + 1. It is clear that (3.4) follows if,
for a sufficiently small 0 < 6 < 1 (depending on K, N and e),

rij — 6 < Vj (L) < rij (j 1,..., «V + 1)

holds with probability > <50 whenever n > N\. Hence, it is sufficient to prove that

Me
Vi(L)eh := («,-0,«!--^—^-), (3.5)

and that

VJ+i(L)-Vj(L) Ij+i := (nj+i-nj,nj+i -nj + -) (3.6)

holds for 1 < j < Jf, with the given probability for all large enough n. To prove
this, we first note that it follows from Theorem 2.1 and [ 12, Section 4.1 ] that

{Vi(L)}U{Vy+1(L)-V,-(L)}f=1

tend in distribution, as n -> oo, to a collection of independent exponentially
distributed random variables of mean 1. The probability that (Ti,..., Yj^+\) lies in
the open set nEi' Ij maY be explicitly calculated as

W+i
<*o* -M^r)+

Hence, it follows from [2, Theorem 2.1] that the lower limit as n -* oo of the

probability that (3.5) and (3.6) holds for 1 < j < M is greater than or equal to 5(*.

We conclude that (3.4) holds for any 8% > 80 > 0 and all n > Ni (where Ni depends

on <$o).

Note that in the special case where M N and 8 8o, the inequality (3.1)
follows from (3.2), (3.3), (3.4) and an application of the triangle inequality. It is also

clear from the argument above that we can increase N as much as we like at the cost

of having a possibly smaller constant 8q. It remains to show that (3.1) holds with the

same right-hand side 8 for any fixed M > N. Hence, for M > N, we study the finite
sums

Qn,m(L>s) '= Pm(L,s) — P^r(L,s)
M çMy wr*- E j~s= t~sdsn,L(t),

N<Vj(L)<M j=N+1 jN

where Sn^(t) is defined in (2.4). Let a0 min{Re(s) : s G K} and (er0 — \)/2.
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It follows from Corollary 2.3 with C 2 that for each n > 3 there exists a set

Yn C Xn with Hn(Yn) > \ and such that for all lattices L e Yn and all t > 5 we

have \S„,/,(/)| t?+v. Here it is important to note that the implied constant is

independent of both n and L. Integrating by parts we get, for any L G Yn and all

M > N,

fM
\Qn,m(L,s)\ \ I t s dSn L(t)

1 Jn
I m rM I

\[rSSn,L(t)]„ + s / rS~lSn,L(t)dt «r,,K «,
1 Jn

uniformly for all s e K. Since we can make the right-hand side above as small as we
desire by increasing N as needed, we obtain, for any M > N and n > 3,

Prob/*« iL e Xn: max\Qn,m(l>s)\ < ^
•

t seK 3 J Z
(3.7)

Finally, given M > N, we would like to use (3.2), (3.3), (3.4) and (3.7) to
conclude that (3.1) holds with (say) 8 <50/4. In order to verify that this is possible,
we recall that Theorem 2.1 states that the volumes {Vj tend in distribution
(as n —> oo) to the points of a Poisson process P on the positive real line of constant

intensity 1. Note that the proof of (3.4) only uses the restriction of these processes to
the open interval (0, N) and similarly that the proof of (3.7) only uses the restriction
of these processes to (N, oo). Now the crucial observation is that the process P may
be realized as a union of a Poisson process on (0, N) and an independent Poisson

process on (N, oo), both of intensity 1 (see, e.g., [12, Section 2.2]). Hence it follows
from (3.2), (3.3), (3.4) and (3.7), that when n > max(Nj, 3) (where we might need

to increase N\ depending on M we have

ProbM„ {L Xn : max | PM(L, s) - /00I < e} > -j (3.8)

In fact, as n -> oo we have the above inequality with any right-hand side strictly
smaller than Since the lower bound in (3.8) holds for any fixed M > N, the

proof is complete.

Next we define, for N e Z+ and Re(.v) > 1, the function

oo

qn(l,s) := yj(Lrs- J2 rs= /
ai /r x xr ; AT .1 «/A

OO

S

Vj (L)>N j=N+\ N
t s dSn,L(t),

and note that this integral representation is holomorphic in the half-plane Rc(,v) > ~

for almost every L e Xn.
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Lemma 3.4. Let n > 3. Let e,8 > 0 and let K be a compact subset of the half-plane
Re (a) > Then there exists M Z+ such that

ProbAt„ Il e Xn : maxl [ t s dSn>L(t)
1 seK I JMr

for all M' > M.

< > 1

Proof. Let <5 > 0 be given. Recall from the proof of Proposition 3.3 that cr0

min{Re(x) : s e K) and rj (cr0 — \)/2. It follows from Corollary 2.3 that for
each n > 3 there exists a set Z„ c X„ with jin(Zn) >1—8 and such that for all

lattices L e Z„ and all t > 5 we have \Sn^(t)\ f 2+'?, where the implied
constant is independent of n and L. Now, for any L e Zn and all M > 5, we get

n OO rOC

/ rsdsn,L{t) [r*sn,L(t)] + s
JM J M

t~s—1 0 dt

«S,ri,K

uniformly for all s K. Since we can make the right-hand side above as small as

desired by choosing M large enough, the proof is complete.

Proofof Theorem 1.3. Let e > 0 be given and let N and 8 be given by Proposition 3.3

applied with e/2, K and /. Let furthermore M be given by Lemma 3.4 applied
with e/2, 8/2 and K. (Note that we without loss of generality may assume
that M > N.) Hence, by Proposition 3.3 and Lemma 3.4, we find that

ISn(L,s) - f(s)I ISn(L,s) - m + m - As)I

< IPm(L.s) - /(a)I + \Qm(L,s)\ < I + I s

holds, in the limit as n -» oo, with a probability of at least 8/2. This finishes the

proof.

4. Proof of Theorem 1.10

The general strategy for the proof of Theorem 1.10 is the same as in the proof of
Theorem 1.3. The main difference is that Lemma 3.1 is no longer at our disposal.
The following approximation lemma will take its place in the present argument.

Lemma 4.1. Let LI be a simply connected region in C that is symmetric with respect
to the real axis. Then, for any s > 0, any compact set K Cl L2 and any holomorphic
function f on ß that is real-valued on ß n M, there exists a Dirichlet polynomial

N0

Ms) J2 akKs
k=1
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with integer coefficients such that

max IA (.v) - /(.s )| < e.
seK

Proof. The conditions on f and £2 are sufficient to ensure that

fis) m {se SI). (4.1)

Let AT" K U K, where K is the reflection of K in the real axis. By Runge's
theorem (applied to a simply connected compact set K' satisfying K' c K' cfl)
there exists a polynomial P{s) such that

\P{s)-f{s)\<S- {seK#).

By the symmetry of K$, we have

|^)-7©|<§ (seK*),

and by (4.1) and the triangle inequality it follows that

\p(s)-f(s)\<^ {seK), (4.2)

where
''(>) I ''ff) '(<) I I'l'iPis)

2 J

is a polynomial with real coefficients.
We now proceed to approximate the polynomial p{s) by Dirichlet polynomials

of the desired type. It is sufficient to prove that

Pm{s) bms{s - 1) • • • {s - m + 1)

may be approximated by a Dirichlet polynomial Am{s), since p{s) can be written as

a sum of such polynomials, that is,

M

p{S) - EPm^
m=0

for some nonnegative integer M and suitable real numbers {bm}^=0. Let

g{x) hmxs.

It is clear that
g{n\x) bms{s- 1) • • • {s -m + \)xs~m.
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Note that this derivative can be approximated up to any given accuracy by Ag(x),
where

a \ g(x + h)-g(x)Ahg(x) :=

by choosing h small enough. Note also that

A"sw ^E(-i r-'[m-)(x + jhr.
j=o J

It follows that any such Ag(x), where we choose x 1 and h such that bm/hm
is an integer, will be of the desired type and can be chosen as our Dirichlet
polynomial Am(s). Thus, by choosing h sufficiently small, we can ensure that

\Am{s) - Pm{s)\ < 2(m£+1) (0 <m<M,seK). (4.3)

The result follows by choosing

M

A(s) Afn(a)
m=0

and applying the triangle inequality together with the inequalities (4.2) and (4.3).

Given A e R+, two lattices L\,L2 e Xn and a complex number s C, we
define

PA(LuL2,s):= Vjih)-3- £
Vj(Lr)<A Vj(L2)<A

which clearly is an entire function of s.

Proposition 4.2. Let G be a simply connected region in the half-plane Re(.s) > \
that is symmetric with respect to the real axis. Then, for any e > 0, any compact set

K C Q and any holomorphic function f on £2 that is real-valued on £2 fl M, there
exist constants 8, Ao e R+ such that

liminfProbMnX/i„ {(Li,L2) e X„ : max\Pa(Li,L2,s) - /(s)| < e} > 8 (4.4)
n—*oo v seK

holds for any fixed A > Ao-

Proof. By Lemma 4.1, there exist an integer N0 > 1 and sequences {A^ \^'1{

and {aic}^l of positive real numbers and integers respectively, such that

No
e

max - f(s)
seK 1 A—'

k=1
<3' (4'5)



198 J. Andersson and A. Södergren CMH

Let A0 5, Cl Y,ak>oak and c2 T,ak<o \akl BY Choosing A0 > max{Afc :

0 < k < No} sufficiently large, we find that there exist N\ £ Z+ and 80 > 0

(depending on K, Ao and s) such that for n >N\, we have

rv()

Probenx/i„ ULi,L2) e X% : max PAo(h, L2,s) - V akX
' seK

N0

fc=1
<Î}>S„.

(4.6)
The proof of (4.6) is essentially the same as the proof of (3.4) (see the proof of
Proposition 3.3). The only difference is that we in this case use the sequence

{yj{L\)}CjL\ to approximate the numbers Xk with positive coefficients ak and the

sequence {T'y(L2)}yf=1 to approximate the numbers Xk with negative coefficients ak
(in both cases with multiplicities according to the sizes of the corresponding \ak\).
Now, in the case where A A0 and 8 So, the inequality (4.4) follows from (4.5),
(4.6) and an application of the triangle inequality. Note that we may increase A0 at
the cost of having a possibly smaller constant So-

In order to show that (4.4) holds with the same right-hand side 8 for any fixed
A > A0, we study the finite sums

Q Ao,a (A i, L2, • Pa (A 1, L2, .v) PAq(P\,L2,s}

y, T, vj(l2)~s
A0<V7-(L,)<A A„<V/(L2)<A

»A pApl\ n l\
/ rsdRn,Lx(t)~ / t~s dRn,L2(t),

JAn JAn/A0 JA0

where P«,l(0 is defined in (2.2). Leta0 min{Re(.v) : s £ K) and?) (rr0 —1)/2.
It follows from Theorem 2.2 with C 2 that for each n > 3 there exists a set

Un C Xn with iin{Un) > 2 and such that for all lattices L e Un and all t > 5

we have |P„,l(OI N+r> Integrating by parts we get, for all L\,L2 £ Un and

all A > A0,

»A rA\C \C
Qao,a(Li, L2,s)\ < / t s dRn,Lx(t) + / t s dRn,L2(t)

J-Ao JAo

<ri,K (4.7)

uniformly for all s £ K. Thus, since we can make the right-hand side above as small

as we like by a sufficient increase of A0, we obtain, for any A > A0 and n > 3,

Prob^x^,, {(Li,L2) g Xl : max |Ôa0,a(Ai, L2, s)| < ^ (4.8)
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Finally, given A > Ao, we use (4.5), (4.6), (4.8) and Theorem 2.1 to conclude
that when n > max(Vi, 3) (where we might need to increase Ni depending on A)
we have

Protv„XM„ {(Lr, L2) G X2n : max \PA(LU L2, s) - f(s)\ < e} > ^ (4.9)
SK O

This finishes the proof.

We define, for each A E+ and Re(.v) > 1, the function

Qa(Li, L2,s) := Y, VJ^yS- H 'VjiMr
Vy(L,)>A Vj(L2)> A

pOO poo
/ rsdRn,Ll(t)- / t~s dRn,L2(t),

Ja JA

and note that this integral representation is holomorphic in the half-plane Re(.y) > \
for almost every (Li, L2) G X„.

Lemma 4.3. Let n > 3. Let e,8 > 0 and let K be a compact subset of the half-plane
Re(.v) > 2- Then there exists A G M+ such that

Prob/r« x/ijj j(Li, L2) G Xn
2

max
seK

/»OO /»OO

/ t~s dRn,Lx(t) - \ t~s dRn,L2(t) < e| > 1

JA' JA' >

for all A' > A.

Proof The result follows from Theorem 2.2 applied with C > 2/8 to an estimate
similar to the one in (4.7).

ProofofTheorem 1.10. Let e > 0 be given and let A0 and 8 be given by

Proposition 4.2 applied with e/2, K, and /. Let furthermore A be given by
Lemma 4.3 applied with e/2, 8/2 and K. (We may assume that A > A0.) Then, it
follows from Proposition 4.2 and Lemma 4.3 that

\Sn(Lr,s) - Sn(L2,s) - f(s)I < \Pa(Li,L2,s) - f(s)\ + \Qa(Li, L2,s)\
< e

holds, in the limit as n oo, with a probability of at least 8/2.
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5. Proof of the imaginary shift case (Theorem 1.11)

We will use Drungilas-Garunkstis-Kacènas variant [4, Theorem 2.1] of a result of
Gonek [9] for general Dirichlet series. To do this we need a mean square estimate in

a half-plane.8

Theorem 5.1. Let n > 2. Then, for a > § andfor almost all L £ Xn, we have
4

fT r T
n(a + it)\ 2

J1 En\L' 2
dt «L,a T.

By the definition of the normalized Epstein zeta function, the triangle inequality
and the well known mean square estimate for the Riemann zeta function in the

half-plane a > | (see e.g. Ivic [11]), it is sufficient to prove that

I
T

I8n(L,a + it) - £(tr + it)|2 dt T. (5.1)

We will prove this estimate using Gallagher's lemma [7, Lemma 1].

Lemma 5.2 (Gallagher). Let 8 6/T, with 0 < 9 < 1, and let

s(0 ^2cke(vkt)
k

he an absolutely convergent exponential sum having only real frequencies v^. Then

-T roo 2/ C I

\S(t)\2dt«e r1 £-T J-oo
1

Ck

x^VkSx+S

dx.

We will not be able to apply Gallagher's lemma directly, since it assumes that the

exponential sum S(t) is absolutely convergent. Thus, we will need to truncate our
Dirichlet series; in fact, we will apply the following weak approximate functional

equation.

Lemma 5.3. Let s > 0. Letn > 2 and assume that Rc(.v) > Then, for any X > 5

and almost every L G Xn, we have

en(L,s)-t;(s)= J2 yj(Lrs- E +
Ty (L)<X 1 <j<X

Proof. The lemma follows immediately from Lemma 3.4 and its proof (using the

estimate in Remark 2.4 in place of Corollary 2.3 in the case n 2).

8We note here that Blomer [3] recently stated a mean square estimate on the critical line ^4-it for
almost all L e Xn. Using this bound instead of our Theorem 5.1 in the proof of Theorem 1.11 would
result in a stronger universality result valid in D {s C : ^ < Re(.v) < l}.
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ProofofTheorem 1.13. The theorem is a direct consequence of Lemma 5.3, the

functional equation 1.3) and the Phragmén-Lindelôf principle.

In order to apply Gallagher's lemma, we also need estimates for short partial sums

of 8n(L,s) — £(s). We define

A(x) Av,l,x(x) Ai(x) - A2(x), (5.2)

where

Ai(x) Aa,L,X;i(x) J2 yj(Lra
Vj(L)<mm(ex,X)

and

A2(x) Ao,L,X\2{x) j a-

To be precise, we need the following result.

Lemma 5.4. Let e > 0. Letfurther n > 2, <r > ^, 0 < <5 < 1 and a 1. Then, for
almost all L G Xn, we have

ra + \

/ |Aff>z.,*(x +8)- Aa,L,Ar(x)|2 dx <<L,a,£ 5ea(2-2(7+£).
Ja

Proof. To begin, we have

fa + l

/Ja
I A(x + <5) — A(x)|2 dx

/»Ctf + l
< max I A(x + 8) — A(x)| / | A(x + 8) — A(x)| dx.

xe[a,a+l] Ja

By Corollary 2.3 (or Remark 2.4 in the case n 2) and integration by parts, we
obtain

|A(x + 8) — A(x)| I f t ff dSn,L(t)
' Jmin(ex ,X)

min(ex~^s ,X)

«L,a,e ex^"ff+£)

for almost all L Xn. For the rest of this proof we restrict our attention to the set of
lattices satisfying the above estimate, for which we have

r»a~\-\ /»Of + l
/ |A(x+<5)-A(x)|2 dx <^L,a,s ea(2~°'+e) / |A(x+<5)-A(x)| r/x. (5.3)

Ja Ja

Using (5.2) and the triangle inequality, we find that the latter integral is bounded by

pQ

y, / |A,(x + 8) - A/(x)| dx. (5.4)

i=i Ja
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Since A,- (t) is nondecreasing for i 1,2, the absolute values in (5.4) can be removed
and the above sum equals

2
/ I"£ /.

i=l Ja

a+\ na+1
A, (x + S) dx — / Ai(x)dx).

Changing variables j x + 5 in the first integral, we obtain

2 ("or+l+<5 /-a+l 2 /•«+£

Y2( &i(y)dy- Ai(x)dx\ Y^ (Ai(x + l)-Ai(xj)dx,
J j Ja+S Ja Ja

which by Corollary 2.3 (or Remark 2.4 in the case « 2) is Oz,,a(5eû!^1_or^). Using
this estimate, together with (5.3), we obtain the desired result.

Proofof Theorem 5.1. Let a > I be given. By the triangle inequality, the mean

square estimate for the Riemann zeta function and Lemma 5.3 (applied with X T4)
we have, for almost all L e Xn,

fT n n(o + it)\
J. E"(L 2

«L

dt

p T 2/ I E w- E J
Vj(L)<T4 1 <j<T4

dt + T. (5.5)

The integral in the right-hand side of (5.5) can be estimated by an application of
Lemma 5.2 with 9 resulting in the upper bound

-AW Jx, (5.6)

where A(x) is defined in (5.2). The integrand has compact support
contained in [A. B], where A log(min(Vi(L), 1)) + 0{T~l) and B 4log T.
By dividing the integral into parts of length 1 and using Lemma 5.4 to estimate each

term, we find that the expression in (5.6) is bounded by

L-ßJ

f 3

Ol,oAT) £ ek^-2o+e\
k=\_A\

where the geometric sum is bounded with respect to T whenever we choose 0 < s <
3
2 '2<j — i. This finishes the proof.

Before we turn to the proof of Theorem 1.11, we introduce some more notation.
We let L denote a set containing one representative from each pair \m. m} of
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primitive vectors9 in L, and write {V/(L)}yLj for the subsequence of {V/(L)}yLj
corresponding to vectors tief. We also let

Nn,L(t) :=#{j :Vj(L)<t} (t > 0),

and note that

N.M»= E <5J)

l<i»<(f/Vi(i))1/n
We will need a bound on the error term in the primitive circle problem, generalized to
an «-dimensional ball of volume t and a generic lattice L e Xn, of the same quality
as the bounds in Theorem 2.2 and Remark 2.4.

Lemma 5.5. Let s > 0 and n > 2. Then, far almost all L e Xn, we have

Nn,L(t) -f- + 0L^+'). (5.8)
fan)

Proof. We begin by defining (for r > 0)

Mn,L(r) := e L \ {0} : \m\ < fir}
and

Nn,L(r) '= #{m e L : \m\ < fir},
where f i denotes the length of a shortest nonzero vector in L. We note that these

counting functions are related to the ones in (5.7) by

N,M>) M(vk>)i)
and

Nn,L(t) A,L((t^) )•

Hence, writing x x(t, L) (t/Vi (L))1/", we can reformulate (5.7) as

1 <m<x

Now, using the Möbius inversion formula in the form given in [10, Theorem 268]
together with Theorem 2.2 and Remark 2.4, we obtain

A,l(X)= M('»)^>l0= J] + 0L,e(~y+e)
l<m<x 1 <m<x

9A primitive vector (in a lattice L) is a non-zero lattice vector which is not a positive integral multiple
of another lattice vector.
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for almost every L e Xn. Extending the upper bound in the summation of the main

terms to infinity and then estimating the error terms trivially, we arrive at the desired

result.

We further define

8n(L,s) := ViiLY J2 {\vn\m\n)~S 1 + f] (Re(*) > 1)

j 2 1 vmeL

and note that

En(L, f) 2t{ns)(-Y-)S8n(L,s). (5.9)
v2Vi(L)^

Proofof Theorem 1.11. To begin, we note that since rr0 min{Re(.v) : .v e AT} >
I > we can for any E\ > 0 choose A'o e Z+ so that for « > 2

n o
ReOO>a0

1 Kins)
max < £\. (5.10)

Furthermore, it follows from [21, Lemma 2] that the set

{log Vj (L) — log Vi (L) : j >2}

is linearly independent over Q for almost all lattices L e Xn. From now on we
restrict our attention to lattices L e Xn with this property. We let

T itßY : j > 2} U {pn : p < N0} U
l'F, (L) ' (2Vi(L)'

and choose rmax ç T to be maximal with respect to the property of having the

logarithms of all its elements linearly independent over Q. Since the differences

log Vj (L) — log "Vi (L) for j >2 are linearly independent over Q by assumption, we

will always include these elements in rmax. We write

rmax iWkLv

Note that the logarithm of each element X in the finite set F \ {Vj(L)/V\ (L)}Jf2
can be written as

N2 N2

log X ^2 qx,x log Xk ^ logXk (5.11)
k=1 k=1

1

for Xk 6 rmax, qk,x 6 Q, hk.x G XL and N\, N2 e Z+ where N\ can be chosen as the

least common multiple of the denominators of the rational numbers qx,x (for all k
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and A). Note in particular that Ni and N2 are chosen independently of A. This is

possible since Y \ {Vj (L)/Vi (L)}JL2 is finite and the integers hk,x are allowed to
be zero. We also find it convenient to introduce

n2

N3 := max^2\hktx\-
k—\

Next, we define the Dirichlet series

N2 OO

d(s):=£ X~s/Nl+ J2 Ks (Re('V) > 1)

k 1 k=N2 +1

and the Dirichlet polynomials

n2

B(s) := Y. W""' - ÀD
k=1

and

C(s):=
A)termax\{VJ(L)/'Vl(L){°t2

Note that these functions are related to 8n (L, .v) via

8n(L,s) 1 + d(.v) - B(s) - C(s). (5.12)

We are interested in applying [4, Theorem 2.1] to the Dirichlet series 4(,v). Hence

we need to verify that A (x) satisfies the four conditions in [4, Theorem 2.1 ] for almost
all L £ Xn. The first condition, the so-called packing condition, follows from (5.8)
which implies that for almost every L £ Xn, we have

\Nn,L{ex±*2) - iïn,L(ex)I » ^ » e(1~e')x

for any c > 0 and any e' > 0 (which in turn immediately implies the packing
condition for A(x)). The second condition, the linear independence over Q of the

logarithms logA^ corresponding to elements Xk ^ Tmax? follows from the defining
property of Tmax. The third condition follows immediately from the fact that 8n (L, s)
is absolutely convergent in the half-plane Re(A-) > 1. Finally, the fourth condition (on

approximation) follows for almost all L £ Xn from (5.9), the mean square estimate
in Theorem 5.1 and [4, Proposition 2.2], Thus, for almost all lattices L £ Xn, we

may apply [4, Theorem 2.1] to A (s). For the rest of this proof we assume that we are

working with such a lattice L £ Xn.
Let

^('v) := îfr)(^Ph)~s + B(s) + c(s) ~ h
2Ç(ns) \2V^Ly
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where /(v) is the function given in the statement of the theorem, and let

Vn V

CMH

ß := sup
ReO)G[|,l]

2|(ns)(
2Vi(L)

max
X6[|,l]

2Ç(nx)( V" I.

V2Vi(L)'
'

Then we can apply [4, Theorem 2.1], with suitable 8 and /i, to A (,s) and g(s) to
obtain, for a positive proportion of t e [0, T} as T -> oo,

max |T(.v + it) - g(s)\ < —
seK Aß

and
t\og\k

<
8

(5.13)

(5.14)
2nNi

for 1 < k < N2, where || • || denotes the distance to the closest integer. Note that it
follows from (5.11), (5.14) and the triangle inequality that

tlog(pn)
2Ji

< 8

for all p < Nq and

flog(F„/(2'V1(L)))
2 7T

< 8.

Hence, using (5.10) and the absolute convergence of ((v) in Rc(,v) > 1, we obtain,
for all sufficiently small choices of e\ and 8,

max
seK

(yn/(2V\ (L)))~~s (Vn/{2V\ (L)))—s—it

<
2Ç(ns) 2Ç(n(s + it))

"
4ß(maxseK |/(s)| + l)'

(5.15)
Similarly, we use (5.14) with a possibly smaller constant 8 to conclude that

max IB(s) - B(s + it)\ < — and max \ C(s) — C{s + it)\ < —(5.16)
seK Aß seK Ap

We stress that (5.15) and (5.16) holds for the same values of t as (5.13) and (5.14).
Throughout, we restrict our attention to such values of t.

In order to finish the proof it remains to put the above pieces together. Using
(5.12), (5.13) and (5.16), together with the triangle inequality, we obtain

max
seK

St, -a /(*) t Vn \8n(L,s + it) — —— -1 ^
2Ç(ns) \2V1 (L)

< max IA (.v + it)- g(î)|
seK

3s
+ max I B(s) — B(s + it)\ + max |C(.v) — C{s -T it)I < —-.

seK seK Ap
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Next, it follows from the above and (5.15) that

f(s)

207

max
seK

Sn (Zj s 1 i t —

< max
seK

&n (L, S i t

2Ç(n(s + it))

m
(—)V2V1(L)/

—Y
i (L)J

+ max I /'(.v)| max
seK ' seK

2Ç(ns)\2Vl

(Vn/m (L)))~s (K„/(2V, (L)))-'-"
2Ç(ns) 2Ç(n(s + it))

<

Finally, we use (5.9) to arrive at

n(s + it)
max
seK

< ß max \ 8n(L,s + it) m (-JM-Vp-U, (T\JseK 2Ç{n(.v + it)) \2V\ (L)
< s,

which is the desired conclusion.
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