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Non-existence of geometric minimal foliations
in hyperbolic three-manifolds

Michael Wolf and Yunhui Wu

Abstract. We show that every three-dimensional hyperbolic manifold admits no locally
geometric 1-parameter family of closed minimal surfaces. Here such a geometric family has
normal deformations at a point that depend only the principal curvatures of that leaf at that
point.
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1. Introduction

The goal of this paper is to prove the following theorem.

Theorem 1.1. Let M be a three-dimensional closed hyperbolic manifold. Then there
does not exist a geometric foliation of M by closed minimal surfaces of genus g > 1.

Of course, our first task will be to define the term geometric in the statement
of the result and also to explain the context. We begin with an explanation of the
statement: the theorem asserts that such a foliation cannot occur as an instance of a
time-dependent geometric flow, in the sense of say, [7].

Indeed, we prove slightly more, in that we do not use the global structure of the
fibration. The main theorem is a special case of the following result.

Theorem 1.2. Let M be a three-dimensional hyperbolic manifold. Let S be a closed
surface of genus ¢ > 1 in M, and let N be a neighborhood of S in M. Then there
does not exist a geometric foliation of N by closed minimal surfaces of genus g > 1.

Remarks 1.3. (i) The manifold M in the theorem above does not need to be closed.
An example in Section 5 shows that the necessity of the hypothesis that S be closed.

(ii) The restriction on the genus of the surface S in Theorem 1.2 is somewhat
superfluous, as minimal surfaces are always saddle-shaped in their ambient spaces:
thus, a hyperbolic three-manifold induces on a minimal submanifold a metric of
curvature at most —1, forcing S to be of hyperbolic type.

(iii) Because Theorem 1.1 is an immediate corollary of Theorem 1.2, we see that the
exclusion of minimal geometric flows does not depend directly on global dynamical
qualities of the flow.
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Our definition of geometric foliation relates to the following perspective. Of
course, a foliation F of the three-manifold M denotes the decomposition of the
manifold M into leaves ' € ¥ which are homeomorphic to S with the following
property: for every point p € M, there is a neighborhood U of p so that U is covered
by the image of a map

F:(—€,e) xS > M,

where F, = F({t} x S), a leaf of ¥, is disjoint from other leaves F; when ¢ and ¢’
are distinct times.

Because the foliation has leaves of codimension one, it is possible to arrange
the mappings F so that the pushforward vectors v = F*—a% are normal to the image
leaf Fy, for each ty € (—€, €).

Then in this setting, a foliation ¥ of M is geometric if the norm ||v|| = || F*a%”
depends only on the local geometry of the leaf F;, = F({fy} x §), i.e. v depends
only on the first and second fundamental forms of the leaves of ¥ .

Note that in the case where M is hyperbolic and the leaves of ¥ are minimal (so
that the principal curvatures are additive inverses of one another), the condition that
v = v(p) depends only on the first and second fundamental forms is equivalent to
the existence of a function f = f(4) sothat v = v(p) = v(f(A(p))) depends only
on the size of the principal curvature A (p) of the leaf of ¥ through p. Thus we may
succinctly state the criterion for a foliation to be geometric as follows.

Definition 1.4. Let M be a three dimensional hyperbolic manifold. We say that M
contains a locally geometric 1-parameter family of closed minimal surfaces (or, more
briefly, that the minimal foliation is geometric) if there exists a closed surface S, a
constant € > ( and an embedding

hi(—€,6)x S — M

such that:
(i) the function A is C? with respect to botht and p € S;
(ii) for every t, each leaf h;(-) := h(¢,-) C M is a minimal surface;

(iii) for any p € §, the function

7t ) = ()2 ()7

t=0

only depends on the principal curvature of S at p. One may write as

[0, p) = £ (0. 141*(p),

where || A (p) is the square of the second fundamental form of {0} x S at (0, p)
in M;
(iv) For time ¢ = 0, the function f(0,-): S — R does not vanish identically.
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In particular, such a foliation would satisfy conditions (1.1) in [7, p.45] for a
time-dependent (i.e. allowed to vary as the leaves vary) geometric flow.

Of course, this definition provides a strong restriction on the possible foliations
that are excluded by Theorem 1.1. On the other hand, the theorem does rule out
foliations defined by local geometric rules, even ones that change from leaf to leaf.

1.1. The mathematical and historical context.. Interest in the problem of whether
one could possibly foliate a closed hyperbolic three-manifold by minimal surfaces
dates back to a paper by Anderson, and in particular to a conjecture he states [1, p. 289]
(see also [3, 11,13] for alternative expressions):

Conjecture 1.5 (Anderson). If M is a three-dimensional closed hyperbolic manifold,
then there does not exist a local 1-parameter family of closed minimal surfaces in M .

Since this conjecture was identified, there have been a few partial results. Both
Hass [5] and Huang—Wang [8] have found hyperbolic three-manifolds which fiber
over the circle but do not admit any minimal fibration.

The result in Theorem 1.1 represents something of a different approach to the
main problem in that the extra conditions it imposes are on the foliation on any
such manifold, rather than on (any foliation on) some particular class of closed
three-manifolds.

1.2. Method. Since the hypothesis we add to the conjecture is a restriction on the
foliation, naturally our proof of Theorem 1.2 relies on an analysis of the equations
governing the geometry of such foliations. We imagine the foliation as determining
a flow of minimal surfaces in a hyperbolic three-manifold determined by a function
of the local geometry of the minimal surface at a point. Naturally, the geometry
of the surface in a hyperbolic three-manifold is determined by its first and second
fundamental forms. Those forms, on any particular minimal leaf, are constrained
by Gaul3’s equation and the Simons equations. Most of our interest focuses on the
Simons equation on the second fundamental form.

On the other hand, that the foliation may be construed as a geometric flow provides
for a second equation governing the size of the flow vectors.

We then show that these two equations together preclude the existence of the
foliation. A brief analysis of this pair of equations results in restrictions on the
function s = ||A||? (where A4 is the second fundamental form) and its derivatives
which are not satisfiable on a closed surface. As there are geometric flows on open
surfaces (see Section 5), this last step necessarily uses some topology of closed
surfaces: in this case that is some elementary Morse theory on the level sets of the
function s in the setting where s is analytic but the Hessian of s does not vanish
identically.
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1.3. Organization. We present the Simons formula in Section 2, and the formula
governing the flow in Section 3. In Section 4, we combine these formulas to prove the
main result. That section begins with the governing equations providing a restriction
on the geometric function ¢: in particular we show that the critical sets for the
function s are level sets of s. We then conclude with an analysis of how those critical
sets might be defined on a closed surface. We close in Section 5 with some examples
to show that our restriction of the scope of the theorem to geometric foliations by
closed surfaces is necessary.

Acknowledgements. The authors appreciate several useful conversations with Zheng
(Zeno) Huang on this work, as well as the thoughtful comments of the referee. The first
author gratefully acknowledges support from the U.S. National Science Foundation
through grant DMS 1564374. He also acknowledges support from U.S. National
Science Foundation grants DMS 1107452, 1107263, 1107367 RNMS: Geometric
structures And Representation varieties (the GEAR Network). The second author is
partially supported by China’s Recruitment Program of Global Experts. And he also
would like to thank the Department of Mathematics at Rice University where this
joint work was partially completed.

2. A Simons identity

In this section we apply the Simons identity [12] to our setting.

Let M be a three-dimensional hyperbolic manifold and § C M be an immersed
minimal surface. Let A be the second fundamental form of § in M and let V be the
covariant derivative with respect to the induced metric on §. Let 7(S) and N(S)
denote the tangent and normal bundles of S, respectively; let Sym(S) denote the
bundle of symmetric transformations of 7(5), and

H(M) = Hom(N(S), Sym(S)).

We refer to [12] for the description of some of the objects we use below, in particular,
the various operators Ae I'(Hom(N(S), N(S))), A € I'(Hom(Sym(S), Sym(S))).,
and B € T'(Sym(S) ® N(S)) related to the second fundamental form A € T'(H(S))
used in the next proposition, an adaptation of a computation of Simons [12].

Proposition 2.1.
VZA = 24— ||A|*A,

where || A||? is the square of the norm of the second fundamental form A.

Proof. Since M is hyperbolic, in particular it is symmetric. So R’, defined in [12,
Equation (4.2.1)], vanishes. The fundamental identity of Simons [12, Theorem 4.2.1]
is

VZA=—-AoAd— Ao A+ R(A), Q@.1)

where we will soon recall the definition of R(A).



Vol. 95 (2020) No geometric minimal foliations 171

We next apply the argument in the proof of [12, Theorem 5.3.1]. Since § C M
is of codimension 1, from the definitions of A and A, we obtain that

AcA=0 and AoA=|A|*A. (2.2)

The term R(A) in (2.1) is defined by [12, Equation (4.2.2)]. We will show below
that

R(A) = —2A. (2.3)
Using this formula above, the conclusion then follows from (2.1), (2.2), and (2.3).
O

Proof of (2.3). Recall that M has constant curvature —1. Hence, for p € § and
v1,V2,v3 € Tp(S) we have
EUI,U2U3 = (Ul, v3)v2 — (Uz, U3)1)1. (2.4)

Let e;, e; be an unit frame in 7, (.S), w be the unit normal direction of S in M
at p and B(-, ) be defined in [12, Equation (2.2.2)]. Pick x, y € T,(S). We use (2.4)
to estimate the terms in [12, Equation (4.2.2)]. In our setting the dimension of the
ambient manifold is 3 and the submanifold § is of codmension 1. Now, Simons
defines [12, Equation (4.2.2)] the operator R(A) via its action as

2
(R¥(A)(x). y) = D> (2(Re;.y B(x.€;). w) + 2(Re; x B(y. ;). w)

= — (A" (x), Repei) = (A (7)., Rey wei)
+ (Re; Bx,y)€i» W) — 2{A4%(e), Re; x¥)). (2.5)

Since B(-, ) is orthogonal to TP(S ) by the definition, by (2.4) we have
(E,,y (x,e), w) =
(Re; xB(y, €1), w) =
(%), Re;,pei) =
)=
w) =
)=

!

(4 (A¥ (x), y) — (A (x), e}y, &),
(AY (1), Rey xei) = (AY (9), x) — (4¥ (), &) (x, i),
(Re B(x,y)¢i, W (B
(A (4
= {4

(el) Re[ xY

(x, ), w) = (4¥(x), y),
Y(ei), x)ei, y) — (A% () ei)(x. y),
P(x), ei)(ei, y).

Substituting the equations above into (2.5) we obtain

(R¥(A)(x), y) = D> (= (A" (x), y) + (A (x), &) (y. &)
=L (A (), x) + (A" (D), €} {x, i)
+(A¥ (x), ) — 2(A” (x). e:)ei, )
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= —2(4A"(x), y)
2

+ 3 (A2 (0. ) e) — (A (x). ei){er. ).

i=l1

Since
2
D (AP (), e)ix, e) = (A¥ (1), x)
i=1
2
and Y (A (x), e ) er, y) = (AV (%), ),
i=1
we have B
(RY(A)(x), y) = —2(4"(x), y).
This then proves (2.3). ]

We interpret Proposition 2.1 into a form that will be more convenient for us.
Let A be the Laplace operator with respect to the induced metric on §.

Theorem 2.2. Let S C M be an immersed minimal surface where M is three

dimensional hyperbolic and K be the Gauss curvature of S. Then, away from zeros
of |A|| we have

Alog (| A]*) = —4Ks = =22+ ||4]?). (2.6)
Proof. We denote || A]|?> by s. From the chain rule and Proposition 2.1 we have

As = 2(VZA, A) +2(VA,VA)
= 22+ 5)s +2(VA, VA). (2.7)

Let {e1, ez, €3} be an unit frame at p € S such that e3 is normal to S. Then the
second fundamental form A can be written as

A= Z hijwiwjeg.

1<i,j<2
Since S is minimal, h11 + A2 = 0. Thus,
hi1e +ha ik = 0.
The Gauss—Codazzi equation gives that

hijx = hik,j-
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Thus,
(VA,VA) = Z ht?j,k
1<i,j,k<2
= 4h%1,1 + 4h%1,2-

Let p € S with s(p) # 0. We may assume that h;;(p) = A;d;j where A; are
principal curvatures. Then

(Vs,Vs) =4 Z ( Z hijhij,k)2

1<k<2 1<i,j<2
=4 > Arhig + Aaha i),
1<k<2
Since hy1 4 + haox = 0and A1 + A = 0, we have
(Vs,Vs) =4 Y (A1 — A2)?h};

1<k<2
o 2
= 8s Z h11,k-
1<k<2

Thus,
(Vs,Vs) =2s(VA,VA). (2.8)

From (2.7) and (2.8) we know that away from zeros of s,

Vs, Vs
As = —22+ )5 + V5 V8 (2.9)
S

Thus, we have that away from zeros of s,

A Vs, Vs
Alogs = _s_#
s s

=-22+s). (2.10)
Since § C M is minimal, the Gauss equation tells that
Ks =—-1—5/2.

Thus,
Alogs = 4Ks = —2(2 + s). (2.11)
Ol
Remark 2.3. If § is closed, the maximum principle together with Theorem 2.2 yields
that the second fundamental form must vanish at some pointin S. Itis well known [6]
that the second fundamental form A can be viewed as the real part of a holomorphic
quadratic form on S. Thus, A has only finitely many zeros if S is compact.
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3. An equation for a minimal foliation

In addition to equation (2.6), we will need an equation governing the size of the flow
vector: deriving that relationship is the goal of this section.

Let M be a three-dimensional hyperbolic manifold. Assume that there exists a
local one-parameter family of minimal surfaces in M. More precisely, let e > O,
let S be a surface and suppose there exists a differentiable embedding

h:(—€,e)x S > M

such that for every ¢, each leaf h,(-) := h(¢,-) C M is a (distinct) minimal surface.
Denote 4(0, S) by S for simplicity. Let n be the unit normal vector field on S'.
Then there exists a positive function f € C?(S) such that

((ho)*(a—at))l = f -, 3.1)

where we have indicated by L the projection to the normal bundle to the leaf.
Proposition 3.1.

Af = (2—11417) f.

Proof. We use the same notations as in [12]. It follows from [12, Theorem 3.3.1]
that f -7 is a Jacobi field. That is,

V2(f -i) = R(f - i) — A(f - 7). (3.2)

We next use that M has constant curvature —1. Hence, for p € § and v, v, v3 €
T»(S) we have

Ry ,0,v3 = (v1,03)v2 — (v, v3) V1. (3.3)
Let e1, e2 be an unit frame in 7, (S). It follows from [12, Equation 3.2.1] and (3.3)
that
2

R(f -1) = Z(Ee,-,fﬁei)J—

i=1

2
= (fii —ei, fii)es)
i=1

—2f -7, (3.4)

The term A in (3.4) is defined in [12, Equation 2.2.5]. It follows from [12, Equa-
tion 2.2.7] that

A(f -7y = (A(f - 7i),n)ii
= (A(i), ) f - 7
= | A|f - 7. (3.5)
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It follows from (3.2), (3.4), and (3.5) that

VE(f -n) = (2 |AIP)(f - 7). (3.6)

On the other hand, after extending ey, e, 71 to vector fields E1, E5, N such that they
are pairwise orthogonal and Vg, E;(p) = 0 and Vg, N(p) = 0, it then follows from
[12, Proposition 1.2.1] that, evaluated at p, we have

2
V2(f i) = Y V&, Vi, (f7)

i=1

= A(f) 7. (3.7)

In the last equality above we apply that at p,
(in VE,‘ (ﬁ)’ ﬁ) - —(VE[- (ﬁ)’ in (ﬁ» =0.
Thus, it follows from (3.6) and (3.7) that

Af=@2-1417)f
as desired. L]

4. Proof of Theorem 1.2

In this section we will finish the proof of Theorem 1.2. We use the same notations as
in the previous sections.

Let M be a three-dimensional hyperbolic manifold and S be a closed surface.
Assume that

h:(—€,e) xS > M
is a local C? family of minimal surfaces in M which is geometric. That is,
(i) h is C? with respect to both ¢ and p;

(ii) A is an embedding;
(iii) forevery ¢, each leaf h,(-) := h(¢,-) C M is a minimal surface;

(iv) for any p € §, the function

766 = {04 (5 ) lmo

only depends on the principal curvature of S at p. One may write as f(0, p) =
£(0,5(p)), where s(p) = [|A*(p);
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(v) Fortime ¢t = 0, the function f(0,-): S — R does not vanish identically.

Recall that S = h¢(.S) and A is the Laplace operator with respect to the induced
metric on S. Theorem 2.2 and Proposition 3.1 then assert that the following system
of partial differential equations applies to a geometric foliation of minimal surfaces
in a hyperbolic three-manifold:

Alogs = —2(2 + 5),
Af =Q2-9)f.

We will now show that this system admits no solutions under our assumptions on
the local structure of this hyperbolic manifold near a leaf of the foliation. First the
chain rule gives that

Af(0.p) = Af(0,5(p)

@.1)

0?2 9
= ﬁf(o’s) IVsl? + g.f(O, s) - As. (4.2)
So we have
02 , 9
a5z ©.9) - IVs® + 22 £(0,5) - As = 2 = ) £(0,5). (43)

Recall that Theorem 2.2 gives that
s - (As) —||Vs|? = —25%(2 + s). (4.4)
Eliminating As, we obtain

$(2—5) f(0,5) + 2522 +5) - & £(0,5)
s+ 55 10.9) + £ £0.9)

IVs|? = (4.5)

at (¢, s) such that s - (,’as—zzf(t, s) + a%f(t, s) # 0. We will refine this analysis in the
next lemma.

To that end, define € := {p € §; Vs(p) = 0} which is the set of critical points
of s in §. A direct consequence of (4.5) is

Lemma 4.1. The set € consists of level subsets of s: S — RZ%. More precisely,
assume that p € €, then for any q € S with value s(q) = s(p) we have
q € C.

Proof. We begin with the equation Af = (2 —s) f from (4.1). First s is analytic
on S because the second fundamental form A can be viewed as the real part of a
holomorphic quadratic form on S [6]. By classical Schauder theory for elliptic partial
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differential equations (see [4, p. 110] for details) we know that since f satisfies the
elliptic PDE (4.1), the solution f is also analytic.
Set

$16) = 52 —9)[(0.5) +257Q +5)- = [(0.5)

02 J
and d2(s) :=5 - — f(0,5) + — f(0,s),
0s2 s

so that the real-valued functions ¢(s) and ¢,(s) of s are the numerator and
denominator of (4.5).
Let p € €. From (4.5) we know that ¢; (s(p)) = 0.

Case 1. If ¢o(s(p)) # 0, we are done, as (4.5) displays || Vs||? as a function of only s
(and f(s)): all points taking on a critical value of s are critical for s.

Case 2. If p2(s(p)) = 0, since both /" and s are analytic, and since f does not vanish
identically (see Definition 1.4(iv)), the Taylor expansions at s(p) may be written as

P1(s) = Z ar(s —s(p)* where a,, # 0 forsomen; € N (4.6)

kznl

and  ¢u(s) = Z b (s — s(p))* where b,,, # 0 for some n, € N. 4.7)

k=>no

It is clear that || Vs||? is smooth on the minimal surface S, hence so is || Vs||? =
%;%- In particular, we have
ny{ = HNo.

Thus, from (4.5), (4.6), and (4.7) we now see that for any g € S with s(q) = s(p),

IVs@I? = 5™ it ny = no, and V3@ = 0ifmy > na. (48)
na
That is, the set of critical points of s is a level subset of s. 0

Lemma 4.2. [f € contains a smooth arc c, then for any p € c,
s(p) = maxs(q).
qeSs

Proof. First by Remark (2.3) we know that s|. # 0 since ¢, as an arc, contains a
continuum, while the the set s~1(0) is the zero set of the holomorphic quadratic
differential on S defined as the complexification of A, whose zero set is discrete. Let
pec,X €Tp(c),and Y € T,(S) such that { X, Y} extends to a unit frame defined
near p in T»(S) and the vector field X is tangent to that arc c. At p we have

As = XX(s) — (Vx X)(s) + Y Y(s5) — (Vy Y)(5). (4.9)
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Since p € ¢ C €, we have that since (Vy X) is orthogonal to the arc ¢, and ¢ is critical
for s, then we must have (Vx X)(s)(p) = 0. Similarly (Vy Y)(s) = 0, again as p
is a critical point for s. Lemma 4.1 then gives that s|. = s(p). So XX (s)(p) = 0.
Thus,

As(p) =Y Ys(p). (4.10)

We thus conclude from (4.4), that for p € €, we have

YYs(p) = As(p) =-2s(p)(2+ s(p)) <0. (4.11)

Now, by definition the arc ¢ C € consists of critical points, so since the field X
is tangent to that arc ¢, we have

XXs(p)=0,Xs(p)=0 and Ys(p)=0. (4.12)

It then follows from (4.11) and (4.12) that for any p € €, the value s(p) is a local
maximum.

Moreover, by Lemma 4.1, for any p € € the value s(p) is also a global maximum:
to see this, connect p to a global maximum by a path, say I", whose initial point is at p
and whose terminal point is the global maximum. Then along the path I", because p
is a local maximum for s, the value of s first declines then attempts to rise to the
value for the global maximum: the intermediate value theorem then provides for a
later first ¢ € T" for which s(q) = s(p). But at that level s(g), we have from (4.5)
that ¢ is again a critical point for s. If that pointg € I' is a saddle point, then the level
set of s through ¢ locally separates values of s larger than s(g) from those smaller
than s(g) and hence contains an arc. Hence the level set of s through g contains an
arc and ¢ is a local maximum by the argument above. Iterating this argument yields
that the maximum that s can achieve on I' is actually the value s(p), as claimed. The
proof is complete. O

Corollary 4.3. If p € C, then either s(p) = 0 or s(p) = maxges 5(q).

Proof. First, the function s is real-analytic on .S because the second fundamental
form A can be viewed as the real part of a holomorphic quadratic form on S [6].
Secondly (4.11) shows that at non-zero critical points, we have that the Hessian Hess s
does not vanish identically. Hence, any arc in a level subset of s is smooth (one may
see [2] for more details). As noted in the proof of Lemma 4.2, if p € €, then if p
is a saddle point, then the s(p)-level set of s must contain a smooth arc, and hence s
attains its global maximum at p. Since s > 0 but has zeroes at only the (finitely
many) zeroes of A (see Remark (2.3)), we see that the only critical values obtainable
are either global maxima or zeroes (global minima): these account for all the critical
points in €. W
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We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We have not established that s: S — R is a global Morse
function, so we cannot immediately apply Morse theory to conclude the argument.
Our argument is hence just a bit more involved.

First since S is a minimal surface in a three-dimensional hyperbolic space, the
Gauss equation gives that the Gauss curvature K g of § is less than —1. In particular,
S is a closed surface of genus g > 2, which is not simply connected.

On the other hand, let m = max egs s(g). Since s is analytic on S (note once again
that the second fundamental form A can be viewed as the real part of a holomorphic
quadratic form on S [6]), and because (4.11) shows that at critical points we have that
Hess s does not vanish identically, it follows (see also [2, Lemma 3]) that the level
set s~ (m) consists only of a finite number of isolated points and a finite number
of circles. Thus, one may choose a neighbourhood V; of s~!(m) such that V; is a
collection of disks and annuli. Set

Va=S\{s"'(m)}.

From Corollary 4.3, the only critical points of s on V; are (finite) zeroes (absolute
minima), so it follows from the standard Morse theory [10] that V5 is topologically
trivial. That is, the open set V> is homeomorphic to a two-dimensional disk. In
particular, the Euler characteristic y(V2) = 1. Since S = V; U V5, we have that the
Euler characteristic y(.5) may be estimated by

x(S) = x(V1) + x(V2) — x(Vi N V)
= x(V) + x(V2)
>0+1
= L,

Here the second equality follows from properties of the Euler characteristic y when
one decomposes a surface into subsurfaces and that the intersection V; N V; is
homotopic to a collection of circles, each of which contributes zero to the sum.
The inequality follows because V is a collection of finite disks and finite annuli.
We conclude that the orientable surface S must have genus zero, contradicting the
conclusion of our first paragraph. [

5. A nontrivial example of a minimal disk foliation in H3

The argument just above finishing the proof of Theorem 1.2 could be construed to
leave open the possibility of a geometric foliation by minimal (topological) punctured
spheres (i.e. disks). In this concluding section, we exhibit a not-quite-trivial family,
suggesting a sharpness to our result.
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We begin by noting the trivial example: consider H? as the upper half-space with
coordinate (x, y, z) endowed with the standard hyperbolic metric

, dx*+dy? +dz?
ds = 3 .
z

Itis clear that the family {(z, y,z); y e R,z € R>0}te(_7',%) is a foliation by minimal
(actually totally geodesic) surfaces.

Leaving this trivial example aside, we remark in the remainder of this section on
a different minimal foliation whose leaves are not totally geodesic. We use the same
notations as in [9], whose example Example 7.2 in [9] we adapt for our purpose.

Consider the three-dimensional hyperbolic space (R3, ds?) with Fermi coordi-
nates (¢, x, y) where

ds? = dt? + e ?'(dx? + dy?).

Define

f:R?2x(0,1) > (R, ds?)
((u,v),t) — (p(u),t -/ezp(”)du,v),

where p(u) solves the ODE

dp

du

Kokubu [9, p. 377] shows that for each ¢, the image { f((-, ), ?)}, denoted by X,,

is a minimal surface in (R>, ds?). Thus, the family X, is a minimal foliation. We

will show that this minimal foliation is geometric and none of the leaves is totally
geodesic.

= (72 — tzez")%.

Fix ¢; then a direct computation gives that

a—(ﬂ,te ,0) and - = (0.0,1).

Then,

(&%)
ou’ ou
(&%)
+
(Bv Bv) e,

Thus, the induced metric ds)zjt on ¥, is

( ) 4+ e—ZP(u) . (teZP("))Z = 6—210(“) (5.1
0

(5.2)

(5.3)

dsk, = 7209 (du? + dv?),
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and the unit normal vector 71 of ds%[ is

n=

d
(_f,d_ﬁa()) :eZp(u)_(_I d_po)
V12 4 ez (22 du
A direct computation gives that the Gauss curvature K(X,) of ds%t is
K(Z) = —1 — 12200,

Sincet € (0, 1), we have X, is not totally geodesic in (R3, ds?).

As usual, let s = |A|? be square of the norm of the second fundamental form A
of 3;1in (R3, ds?). The Gauss equation gives that

s=|AP? =2 (=1 — K(Z,)) = 212,

The derivative of 2, in the f-direction is

%—}: = (O,/eZp(”)du,O).

Then,

(ﬂ ,;) _gOp / o200 gy, . 200 9P _ [ 2Py (72 _ 2020}

y du bl
which is denoted by F(u, ).

Since p is increasing with respect to w and s = 2 - (—1 — K(%;)) = 212e2P(),
we may also write F(u,t) as F(s,t) which is a function only depending on s and ¢.

Hence,
(B = Feny -

Therefore, the family %, is a geometric minimal foliation whose leaves are not totally
geodesic.
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