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Boundary rigidity of negatively-curved
asymptotically hyperbolic surfaces

Thibault Lefeuvre

Abstract. In the spirit of Otal [17] and Croke [3], we prove that a negatively-curved
asymptotically hyperbolic surface is marked boundary distance rigid, where the distance
between two points on the boundary at infinity is defined by a renormalized quantity.
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1. Introduction

1.1. Main result. We consider M a smooth compact connected (« +1 )-dimensional
manifold with boundary. We say that p: M -» K+ is a boundary defining function
on M if it is smooth and satisfies p 0 on 3M, dp 0 on 3M and p > 0 on M. Let
us fix such a function p. A metric g on M is said to be asymptotically hyperbolic if
(1) the metric g p2g extends to a smooth metric on M,
(2) \dp\p2g 1 on 3M.

The extension of the metric p2g on the boundary, that is p2g \ tom » is not independent
of the choice of p but its conformai class is — it is called the conformai infinity.

Such a manifold admits a canonical product structure in a neighborhood of the

boundary 3M (see [7] for instance) that is, given a metric ho on 3M (in the conformai
class [p2g\rdM])> there exists a smooth set of coordinates (p. y) on M (where p is

a boundary defining function) such that \dp\p2g 1 in a neighborhood of 3M and

p2g\rm ho- The function p is uniquely determined by h0 in a neighborhood
of 3M. Moreover, on a collar neighborhood near 3M, the metric has the form

g _ dp + hp
^ On(o, £)x3M, (1.1)

P

for some s > 0 and where hp is a smooth family of metrics on 3M. From
this expression, one can prove that the sectional curvatures of (M, g) all converge
towards — 1 as p goes to 0.



130 T. Lefeuvre CMH

The manifold M is not compact and the length of a geodesic a(x, x') joining two
points x and x' on the boundary at infinity is clearly not finite. However, in [8], a

renormalized length k(a(x. x')) for a geodesic a (x, x') is introduced, which roughly
consists in the constant term in the asymptotic development of the length of

a£(x, x') := u{x, x') D {p > e}

as s goes to 0. This yields a new object characterized by the asymptotically hyperbolic
manifold (M, g) and one can actually wonder, as usual in inverse problem theory, up
to what extent it conversely determines (M, g). Notice that the renormalized length
is not independent of the choice of the boundary defining function p, and thus, neither

of the choice of the conformai representative ho in the conformai infinity.
From now on, we further assume that M has dimension 2 and is negatively-

curved. If M is simply connected, then it is a well-known fact that there exists a

unique geodesic between any pair of points (x, x') £ 3M x 3M \ diag, where diag
is the diagonal in 3M x 3M. The renormalized boundary distance is defined as:

D: 3M x 3A/ \ diag —»• R, D(x,x') L(a(x,x')),

where L{a{x, x')) denotes the renormalized length of the unique geodesic joining x
to x'. In the terminology of [8], such surfaces are called simple: this definition
naturally extends the notion of a simple manifold (compact manifold with boundary
such that the exponential map is a diffeomorphism at each point) to the non-compact
setting.

More generally, we will deal with the case of negatively-curved surfaces with
topology. Then, the natural object one has to consider is the renormalized marked

boundary distance. In this case, given two points (x,x') £ 3M x 3M \ diag, there

exists a unique geodesic in each homotopy class [y] £ IPX,X' of curves joining x to x'
(tPxy being the set of homotopy classes). We define

3d := {(x,x', [y]), (x,x') £ 3M x 3M \diag, [y] e IPX,X>},

and introduce the renormalized marked boundary distance D as:

D:3)^R, D(x, x', [y]) L(ci{x, x', [y])), (1.2)

where a(x, x', [y]) is the unique geodesic in [y] joining x to x' and L the renormalized

length. Our main result is the following:

Theorem 1.1. Assume (M,g\) and (M,g2) are two asymptotically hyperbolic
surfaces with negative curvature. We suppose that gn and g2 admit the same

renormalized boundary distances, i.e. D\ D2. Then, there exists a smooth

diffeomorphism 4>: M —> M such that $*g2 g\ on M and <f>|gm Id.

Notice that if <î>: M — M is a diffeomorphism preserving the boundary, then

Lg L<&*g, where both renormalized lengths are computed with respect to the same
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representative in the conformai infinity. In other words, the previous theorem asserts

that the action of the group of diffeomorphisms preserving the boundary is the only
obstruction to the injectivity of the map g i-> Lg.

This result can be seen as an analogue of [11, Theorem 2] for the case of
asymptotically hyperbolic surfaces. It is new even in the simply connected case,
where the marked boundary distance is simply the ordinary renormalized boundary
distance. It is very likely that one can relax the assumption in Theorem 1.1 so that

only one of the two metrics has negative curvature (but still a hyperbolic trapped set).

In the usual terminology, Theorem 1.1 roughly says that an asymptotically hyperbolic
surface with negative curvature is marked boundary distance rigid among the class

of surfaces having negative curvature.
This result follows in spirit the ones proved independently by Otal [17] and

Croke [3] establishing that two negatively-curved closed surfaces with same marked

length spectrum are isometric. More recently, Guillarmou and Mazzucchelli [111

extended Otal's proof to the case of two surfaces with strictly convex boundary
without conjugate points and a trapped set of zero Liouville measure, one being
of negative curvature. In both cases, the central object of interest is the Liouville
current t], which is the natural projection of the Liouville measure ji (initially defined

on the unit tangent bundle S M) on the set of geodesies ^ of the manifold. Our

arguments follow in principle the layout of proof of these articles, but we need to
address new issues caused by the loss of the compactness assumption. The crucial

step in our proof to deal with the infinite ends of the manifold is a version of Otal's
lemma (see [17, Lemma 8]) with a stability estimate (Proposition 5.4). To the best

of our knowledge, this bound had never been stated before in the literature.
As far as we know, this is also the first boundary rigidity result obtained in

a non-compact setting. There is a long history of results regarding the boundary
rigidity question on simple manifolds in the compact setting. We here mention the

contributions of Gromov [9], for regions of M", the original paper of Michel [16] for
subdomains of the open hemisphere and the Besson-Courtois-Gallot theorem [2],
which implies the boundary rigidity for regions of H" (see also the survey of
Croke [4]). In the case of a manifold with trapping, the first general results
where obtained by Guillarmou-Mazzucchelli [11] for surfaces, where the local

boundary rigidity was established under suitable assumptions. Global boundary
rigidity theorems have also recently been obtained by Stefanov-Uhlmann-Vasy [21]
for simply connected non-positively curved manifolds with strictly convex boundary.
Let us eventually mention that boundary rigidity questions appear naturally in the

physics literature concerning the AdS/CFT duality and holography (see [5,191).

1.2. Outline of the proof. In Section 2, we introduce the notion of renormalized

length for a geodesic. We heavily rely on the cautious study made in [8] of the

geodesic flow near the boundary at infinity. In Section 3, we recall the definition of
the Liouville current rj on the space of geodesies of the universal cover M and prove
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that if the renormalized marked lengths agree, then the Liouville currents agree, just
as in the compact setting.

Section 4 is devoted to the construction of an application of deviation k. Like
in [ 17], we introduce the angle ofdeviation f between the two metrics on the universal

cover M. The idea is to make use of Gauss-Bonnet formula, in order to prove that
this angle is the identity. This requires to introduce an average angle of deviation.
Since we are in a non-compact setting, technical issues arise from the fact that the

volume is infinite. In particular, we need to consider its average (denoted by 0£) on

compact domains {p > e} parametrized by e and to study their limit as e -> 0.

Because of the possible existence of a trapped set, we are unable to prove a priori
that the averages 0£ are C1 (or at least uniformly Lipschitz), which would truly
simplify the proof. A cautious analysis of the derivative of the angle of deviation /
is needed to deal with these technical complications. Combined with a version of
Otal's lemma with an estimate (see Proposition 5.4), this allows to conclude that the

average angle of deviation is the identity in the limit e —» 0, which itself implies that
the angle of deviation / is the identity. We then conclude the proof by constructing a

natural application O which is an isometry between (M, gi) and (M, g2). Eventually,
a last difficulty comes from the fact that it is not immediate that the isometry obtained
is C°° down to the boundary of M.

If the reader is familiar with Otal's proof [17], he will morally see the same

features appear, but the novelty here is that we are able to deal with the asymptotic
ends of the manifold. The price we have to pay is that this requires to compute tedious

estimates in the limit e -> 0.

Acknowledgements. We warmly thank Colin Guillarmou for suggesting this result
and fruitful discussions. We also thank the anonymous referee for corrections and

valuable suggestions. We acknowledge partial support from ERC funding COG
IPFLOW No. 725967.

2. Geometric preliminaries

This section is not specific to the two-dimensional case, so we state it in full generality.

(M, g) is only assumed to be an (n + 1)-dimensional asymptotically hyperbolic
manifold. In our setting, it will be more convenient to work on the unit cotangent
bundle rather than on the unit tangent bundle, using the construction of Melrose [15]
of b-bundles.

2.1. Geometry on the unit cotangent bundle.

2.1.1. The b-cotangent bundle. The unit cotangent bundle is defined by

S*M := {(*, £) e T*M \ x e M, £ T*M, \Ç\2g 1}, (2.1)
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and we denote by n: S*M —> M the projection on the base. The geodesic flow
(<Pt)tem. is induced by the Hamiltonian vector field X, obtained from the Hamiltonian

H(x,Ç) y\Ç\g- We will denote by b:TM —T*M the Legendre transform
between these two vector bundles, that is v r-> g(v, •), and by J): T*M -> TM its
inverse. We stress that we will often drop the notation of these isomorphisms and

identify (without mentioning it) a vector with its dual covector.
There exists a canonical splitting of T{S*M) according to:

T(S*M) H © V, (2.2)

where V := kerdjv is the vertical bundle and H := ker JC is the horizontal bundle.

K is the connection map, defined for (.x, £) G S*M, Z G T(X^)(S* M), by

X(Z) V^«(0) G TXM,

where t i-> z(t) (x{t),%{t)) G S*M is any curve such that z(0) (x,£) and

z(0) Z (see [18] for a reference). The metric g on M induces a natural metric G

on S* M, called the Sasaki metric and defined by:

G(Z, Z') := g(dn(Z), dn{Z')) + g(X(Z), X(Z')) (2.3)

Recall from [15] that the b-tangent bundle hTM —> M is defined to be the

smooth vector bundle whose sections are vectors fields tangent to 3M. Let F be a

smooth vector field on M. If (p, vi...., yn) denotes smooth local coordinates in a

neighborhood of 3M, we can write

V adp + hidyi,
i

for some smooth functions a, bl. If F vanishes on the boundary, then a |aM =0, and

we can write a pa for some smooth function a. In other words, in coordinates,
is a local frame for hTM. Now, pdp is well defined on 3M, independently

of the choice of coordinates in a neighborhood of 9M. Indeed, if (p', y') denotes

another choice of coordinates, then one can write p' pA(p, y), y. Yj(p, y) for
some smooth functions (such that T(0,0) > 0) and one has

i
that is, both elements pdp and p'dy agree on the boundary as elements of bTM \^M.

The b-cotangent bundle bT*M is the vector bundle of linear forms on bTM. In
coordinates, (p~xdp, dy-t is a local frame of bT*M and p~xdp on 3M (the covector
associated to pdp) is independent of any choice of coordinates (and of the metric g).
From the coordinates

(p,y,l to dp + J^mdyi)
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on T*M, we introduce on bT*M the smooth coordinates

(x,t) (p,y,Ço,ri),

where to toP-1> that is

t top^dp + Y^Vidyi-
i

In particular, we see from the previous discussion that the function t ^ to
on bT*M\dM is intrinsic to the manifold, as well as the two subsets (to ±1}
oibT*M\m (they do not depend on the choice of coordinate (p, y), not even on the

metric g).
Note that given t top~ldp + JT hidyi e bT*M, one has:

Itlg to + P'lllv
where, here, hp actually denotes the dual metric on T*dM. We denote by:

S^M {(x,t) eèr*M, |tß l}.

One has for x G M :

SfM {(x,f)bT*M, to+P2|< 1}.

As a consequence, there is a splitting:

~S*M S*M Ud-S*M Ud+S*M,

whered±S*M {(x,t),x G 3M, to Tl} (which are independent ofany choice).
We see d-S*M (resp. d+S* M) as the incoming (resp. outcoming) boundary.

Lemma 2.1 ([8, Lemma 2.1]). There exists a smooth vectorfield X on S* M which
is transverse to the boundary

d-S*M U 3+S*M

and satisfies X pX on S*M. Moreover, for x G M sufficiently close to dM, in
suitable local coordinates as before, we have X dp + pY, for some smooth vector

field Y on S*M.

The flow on S* M induced by X will be denoted by <pT. For z G S* M and r > 0

such that ips(z) is defined for s G [0, r], one has <fit(z) <Pr(z)> where

t(z,z)= [ 1

ds. (2.4)
Jo P(<P?0))
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2.1.2. Trapped set. The results of the following paragraph can be found in |8, Section

2.1]. We recall them for the sake of clarity. Fors > 0 small enough, the compact
surfaces Ms := M <1 {p > s} are strictly convex with respect to the geodesic flow.

Lemma 2.2 ([8, Lemma 2.3]). There exists e > 0 small enough so that for each

(*,£) e S*M with p{x) < s,

n-1
£ =Ç0dp + YJlidyi

i=1

and £o < 0, the flow trajectory (pt(x, £) converges to some point z+ G 8+ S* M with
rate (9(e~') as t —> +oo and p(cpt(x, £)) < p(x, £) for all t > 0. The same result
holds with Ço > 0 and negative time, with limit point z_ e 8-S* M.

We define the tails T±: they consist of the points in S*M which are respectively
trapped in the past or in the future:

S*M \ rT := {z e S*M, p(^(z))f_±oo -> 0}. (2.5)

The trapped set K is defined by:

k := r+ n r_. (2.6)

In particular, in negative curvature, the trapped set has zero Liouville measure. We

can define the exit and enter maps

B±: S*M \ rT -» a±S*M

such that

B±(z) := lim <pt(z). (2.7)
ï^-±oo

These are smooth, well-defined maps and they extend smoothly to S*M \ T=f,
where Tzp is the closure of in S*M (see [8, Corollary 2.5]). There also exist
smooth functions r±: S*M \ r=p -» M± defined such that:

Vx±(r)(z) B±(z) G 8±S*M. (2.8)

Using the vector field X, another way of describing the sets T± is

T± ={ze S*M, r=p(z) ±oo}. (2.9)

The scattering map is the smooth map a: d-S*M \T_ -> d+S*M \ T+ defined by:

a(z) := B+(z) <pT+(z)(z). (2.10)
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2.1.3. Hyperbolic splitting in negative curvature. In this section, (M, g) has

dimension 2 and negative curvature k < 0. Since the curvature at infinity converges
towards —1, we know that k is pinched between two constants —k% < k < —k^ < 0.

It is a classical fact that the geodesic flow on such a surface is Anosov (see [6,12])
in the sense that there exists some constants C > 0 and v > 0 (depending on the

metric g) such that for all z (x, £) S* M, there is a continuous flow-invariant

splitting
TZ(S*M) RX(z) 0 Eu(z) © Es(z), (2.11)

where Es(z) (resp. Eu(z)) is the stable (resp. unstable) vector space in z, which

satisfy
\d(pt(z) Z\g < Ce~vt\Z\g, Vf> 0, Z e Es(z),

(2.12)
Id<pt{z) Z\G < Ce~v^\Z\G, Vt<0,Ze Eu{z).

The norm, here, is given in terms of the Sasaki metric. The bundles z Eu(z),
Es(z) are Holder-continuous everywhere on S* M. Moreover, the differential of the

geodesic flow is governed uniformly by an exponential growth (see [20, Chapter 3])
in the sense that there exists (other) constants C,k > 0 such that:

\d(pt(z) • Z\q < Cekt\Z\o, Vf > 0, VZ eTz(S*M). (2.13)

Let us now fix e > 0 small enough and consider Me := M D {p > e}. Like
in [10], we define the non-escaping massfunction Ve(T) on the domain ME by

Ve(T) := i-i({z e S*Me \ V.v e [0, T], <ps(z) e S*Ms}).

Since the trapping set is hyperbolic, there exists a constant Q < 0 such that

Q := lim sup log(F£(T))/T.
T—>-+oo

Note that this constant is independent of s (see [10, Proposition 2.4]). In the rest of
this paragraph, we fix some so > 0 small enough. For 0 < e < e0, we want to link
explicitly the decay of the non-escaping mass function VE to V£().

Lemma2.3. LetSe(Q,0). There exists a constante > Oandan integer NoeN\{0},
such thatfor all T > —No log(e):

Ve(T) < Ce-(1+4S}e~ST.

Proof For (x,£) f T_ we denote by (£,+ (x. Ç) the exit time of the manifold ME,

that is the maximum time such that: Vf [0, tSy+(x, ^)], cpt(x,f) G S*Me. By
Santalö's formula, we can express Vf:(T) as:

Ve(T) [ (te>+(x,%)-T)+dßv>s,
J d—S*Me
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(x',C) ^e(x,Ç)

{p °} {P e} {P £o)

Figure 1. The diffeomorphism \j/s in the proof of Lemma 2.3.

where x+ sup(x,0), d/j,v,e(x,Ç) |g(£, v)|/g5*M (dfi)1, v is the unit covector
conormal to the boundary, (d/x) is the restriction of the Liouville measure to
the boundary (the measure induced by the Sasaki metric restricted to dS* Me). There
exists a maximum time T*, such that given any (x,£) e d+S*MSo, <pr£(x,f) has

exited the manifold Ms. One can bound this time T* by log(Ceo/£)> where C > 0

is some constant independent of (x, £) and e (see the proof of [8, Lemma 2.3]). We
introduce Te := —2 Iog(e) > T* fore small enough. As a consequence, for T > 27),
one has:

is the diffeomorphism which flows backwards (by <pT) a point (x, Ç) G r)_ S * MEf) to
the boundary d-S*Me (see Figure 1).

The dependence of xfr~] on s is smooth down to s 0: this follows from the

implicit function theorem. In the local product coordinates (p, y), one can write

where [0, tt] 3 0 Ç(0) parametrizes the cosphere fiber, h is a smooth non-
vanishing function down to s 0. The point (x, £) corresponds to (y, 9) in these

coordinates and we write (y', 9') xffe(y, 9). If T is large enough, for the integrand
not to vanish, one has to require that the angle 9\\jre{y, 9)) is uniformly contained in
a compact interval of ]0, n[. In other words, ifwe fix some constante > 0, there exists

'The metric g here actually denotes the dual metric to g which is usually written g~1. As mentioned
in the introduction, we do not employ this notation in order to keep the reading affordable.

where

x/,-l:d-S*Meo -> ir;1(d-S*Meo) =: De c 3-S*Me

dixv,s l/fisin(0)A(e, y) dy d9,
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an integer No > 2 large enough (independent of s) such that for T > -N0 log(e),
if 9'(\/re(y, 9)) e [0, c] U [n — c, Jt], it will satisfy

(leo,+We(y,9))-(T-2Ts))+ 0.

We can now make a change of variable in the previous integral by setting (y', 9')
tyeiy, 9). Since the dependence of t/Ç1 is smooth in s (down to e 0) and

[0,£o]x{p £o} is compact, | det^"1 (y', 9')) \ is bounded independently of {y', 9')
and £. We get for T > — N0 log(fi):

f WeoAMx, £)) -IT- 2Ts))+dßv,e
Jd-S*MenDe

dydd
(4oMteiy, 9)) - (T - 2Te))+ sin(9)h(e, y)-Id-S*MeC\De £

[ (40,+(/> 9') -{T- 2Te))+ sin(0(Vf"1 (y1,9')))
h~S*M°o

h(s, y{f7\y', 0')))l det(^£-1(/, Ö'))l

—
C f (leo,+ (y',9')-(T-2Te))+

£

dO'dy

d9'dy'
< Cfi"1 f (leo(y', 9') -(T- 2Te))+h(s0, y) sin(9')-

Jd-S*MeQi+ £0

< Ce~lVeo(T-2Te),

for some constant C > 0 (which may be different from one line to another) and where
the penultimate inequality follows from the uniform bound on the angle (i.e. sin(ö') e

[sin(c), 1 ]). But we know that for any S G (Q, 0), there exists an(other) constant C > 0

such that for all T > 0, VEo(T) < Ce~ST. Thus, for T > —No log(£)

Ve(T) < Ce~xe-8(T-2Ts) < Ce~(1+4S)e~ST.

2.2. The renormalized length.

2.2.1. Definition. This paragraph provides the definition in [8, Section 4.1). Let

a(x,x') be a geodesic in M joining two distinct points at infinity x,x' e 3M. For
the sake of simplicity, we will only write« in this paragraph, instead of a(x, x'). The
renormalized length of the geodesic a is the real number defined by:

L(a) := lim l{a Pi {p > £}) + 21og(£), (2.14)

where t(•) denotes the Riemannian length. This limit exists and is finite by [8, Lemma

4.1].
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Note that there is a priori no canonical choice of the renormalized length L insofar
as it depends on the choice of the boundary defining function p. One can actually

prove that if p eœ p is another choice, then (see [8, Equation (4.2)]):

L(a(x, x')) — L(a(x, x')) a>(x) + co(x').

2.2.2. Action of isometries on the renormalized length. Let y be an isometry on

(M, g), then y acts smoothly on the compactification M (see the arguments given
in §6 for instance).

Lemma 2.4. Let a be a geodesic joining two points x, x' G i)M. We have:

L(y o a) L(a) + n"1 log (\dyx\\dyx>\),

where \dyx\ is the Jacobian of y\-,)M in x with respect to the metric h, n + 1 being
the dimension of M.

Proof We denote by z (x, £) the point in d-S*M generating a. Assume for the

sake of simplicity that a is a half-line joining x G 3M to a point in the interior M.
Let xt:=anjp £} and ae := a D {p > £}. We define e' := p(y(x£)). We have:

£(ae) + log(fi) (£(y(ae)) + log(£')) - log^'/e)- (2.15)

As £ -+ 0, the left-hand side converges to L(a) whereas the term between parenthesis

on the right-hand side goes to L(y(a)), so all is left to compute is the limit of e'/e
as £ -»• 0. We write e' p(y{n(ipTe{zj))), where re is defined to be the unique
time such that p((pZf (z)) e. By the implicit function theorem, e h* r£ is a smooth
function of s and it satisfies: p(<pTe(z)) e xE + 0(r|). Thus 3£t£|£=0 1 and:

Urn//*

dpy(x) (dyx (d Jtz (X (z))))
dpy(x)(dyx{dp(x)y).

Remark that at 9M, dyx(3p(x)) A(x)3p(y(x)) for some real number A depending
on x, since y sends geodesies on geodesies. If rji,...,rjn G Tx(dM) is an

orthonormal frame for the metric h, one can prove that

h(dyx(r)i),dyx(j]jj) X2(x)8ij

by using the fact that y*g g. As a consequence, the Jacobian of y\dM at x with
respect to the metric h is A"(x). Thus:

lim e'/e — \dyx\"
e—>0

Replacing this in (2.15), and adding the other part of the geodesic, we find the sought
result.
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3. The Liouville current

We denote by M the universal cover of M : it is a topological disk on which we fix an

orientation. All the objects (g, p. X,... lift to M and their corresponding object in
the universal cover is invariant by the action of the fundamental group ni M). Since

we will only work on M in the following, for the reader's convenience, we will often

drop the notation ~ when the context is clear, except for the universal cover itself M.
We define

8 := (3M x 3M) \ diag,

which can be naturally identified with the set of untrapped geodesies (neither in the

future nor the past) on M. If -M is the set of Borel measures on ~§ which are invariant

by the flip, then it is a classical fact from [17] that the Liouville measure induces a

measure rj G M called the Liouville current (see also [11] for a proof).

3.1. Expression in coordinates. Given x,x' G M, we can parametrize a, the

unique geodesic joining x to x', in the following way: if z (x,£) G d-S*M
denotes the point generating a, then we parametrize the geodesic by a(t) <pt (m (z)),
where m(z) <pr+(z)/2(z) 's the middle point (this is a smooth map according to
Section 2.1.2). We set y{t) := 7z(a(t)). We define

V := {(r, 0) G M x (0, tr), (y(x), Rey(t)) £ T_ U T+}, (3.1)

where Rq is the rotation by a positive angle 0 in the fibers of S*M. For x,x' G M,
we denote by !F(x,x') C 8 the open subsets of points (y, y') G 8 such that the

geodesic joining y to y' has a transverse and positive (with respect to the orientation)
intersection with the geodesic a in M. If we further assume that x,x' e 3M, we

can consider the ditfeomorphism fK h> IF(x,x') defined by <p(x,9) (_y,y'),
the two points in 3 M such that the geodesic connecting them passes through the

point (y(r), Rgy(r)) G S*M. The following lemma is a well-known fact (see [11,
Lemma 3.1 ] for instance) and we do not provide its proof.

Lemma 3.1. </>*?? sin(0) d6 dr.

Remark 3.2. In negative curvature, the tails F_ U T+ have zero Liouville measure.

This implies that the set c V C M x (0, jv) has zero measure in M x (0, jt) (for
the measure sin(6>) d6 dx). In particular, we will ignore trapped geodesies in the

computations of the integrals of Section 4.4.

From the previous expression in coordinates, we recover the classical formula for

x, x' G M (see [17]):

p7I fd(x,x')
r}(!F(x,x')) I / sin(0) dO dx 2d(x,x'), (3.2)

Jo Jo
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where d(-, •) denotes the Riemannian distance between the two points. For x, x' e 3M
and e > 0 small enough, we denote by xE and x'e the two intersections of a (the

geodesic joining x to x') with {p e} in a respective neighborhood of x and x'. We

have:

r](!F(xe, x'e)) + 41oge 2(d(xe,x'e) + 21oge)

2(£(a n {p > s}) + 2logs)

2L(a)

3.2. Liouville current and boundary distance. Let g\ and g2 be two negatively-
curved metrics such that their renormalized lengths agree. We denote by rp and rj2

their respective Liouville currents.

Lemma 3.3. p\ r)2.

Proof. We recall that 3 M is a countable union of real lines embedded in the circle S1.

The topology on 3M is that naturally induced by the topology on S1. It is sufficient
to prove that the two measures coincide on rectangles, namely on subsets (x\, x2) x
(x3, X4), such that (xi, x2), (x3, X4) c 3M are two intervals with disjoint closure,
since they generate the Borel o-algebra. We actually prove the:

Lemma 3.4. r?((x 1, X2)x(x3, X4)) |L(xi, X3)+L(x2, x^)—L{x2, x2)—L{x\, X4)|.

Note that that p((xi,x2) x (x3,X4)) |[xi,X2,X3,X4]|, the cross-ratio of the

four points (see [14]). In particular, this proves that the right-hand side of Lemma 3.4

is a cross-ratio in the sense of [14], which may not be obvious at first sight. Actually,
the properties of symmetry are immediate and the invariance by the diagonal action
of the fundamental group follows from Lemma 2.4.

Given some e > 0, we introduce the four horospheres e {1,..., 4} such

that Hi (e) intercepts x; and the point defined as the intersection of the geodesic

a(x,-,x,+2) (i + 2 is taken modulo 4) with {p s} in a neighborhood of x,.

Figure 2. Left: The four horospheres and the lengths <5, (e). Right: The horosphere H\ (e).
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We have:

L(xi, X3) + L(x2, -V4) — L(x2, X3) — L(x 1, X4)

lim £(a(x 1, X3) D {p > e}) + 2 loge + i(a(x2, X4) n {p > e}) + 2 loge
£->-0

— £(a(x2, X3) H {/O > e}) - 2 log e — £(a(x 1, X4) fl {/O > e}) — 2 log e

lim i(a(x 1, X3) n {p > e}) + £(a(x2, X4) n {p > e}) — £(a(x2, X3) n {p > e})
£->()

-£(a(xi,x4) H {p > e})

lim £(a(xi, x3) n Hext(s)) + £(a(x2, x4) n Hext(s)) - t(a(x2, x3) n Hext(e))
e—>-0

— £(a(xi, X4) n Hext(e)) - 5i (e) -S2(e) - S3(e)-S4(e),

where S, (e) is the algebraic distance on the geodesic between its intersection with

Hi(s) and {p e}, positively counted from x;-, and Hext(s) := M \ U^=] Ht{s).
Now, we know that the quantity

|£(a(xi, x3) n Hext(s)) + £(a(x2, x4) n Hext(s))

- £(a(x2,x3) n Hext(s)) - £(a(xi,x4) n //ext(e))|

is actually independent of e and equals rj([x1, x2] x [X3, X4]) (see [23] for instance). It
is thus sufficient to prove that Si («)^-0ase^ 0. Let us consider 5i (e) and s small

enough so that we can work in the coordinates where the metric g can be written in
the form g p~2(dp2 + h2(p, y)dy2) for some smooth positive function h2 (down
to the boundary).

We have:

<Si(e) d(cE,hE) < d{cE,aE) 4-d(ae,b£) < d(c£,ae) +l([ae,be]),

where the points aE,hE,cE,dE are introduced in Figure 2, [ae,bE\ denotes the

Euclidean segment joining aE to be. Note that by construction d(cE,aE) —> 0

as s -> 0 (the points are on the same family of shrinking horospheres).
The two geodesies a(xi,X3) and a(xi,X4) with endpoint xi, seen as curves

in M, can be locally parametrized by the respective smooth functions (p, y3(p)) and

(p, y4(p)), according to the implicit function theorem since the geodesies intersect

transversally the boundary (see Lemma 2.1). One has by derivating at p 0 that

3p + y'i(0)dy

for some constant A;, that is y-(0) 0 and A,- 1. In other words, we can

parametrize locally both geodesies by (p, jo + 0(p2)), where vp is some constant

depending on the choice of coordinates. Thus,

\y(ae) -y(bE)\ 0(e2).
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If we choose a parametrization y(t) (e, y(aE) + t{y(bE) — y(aE))), for t £ [0, 1],

of the euclidean segment [rr£, be], then one has:

t([ae,bs])=f g(y(t),y(t))l/2dt s~l\y(bE)-y(aE)\ f h(y(t))dt,
Jo Jo

where the integral is uniformly bounded with respect to s. Thus, by the previous
remarks, I([ae, be]) 0(e), which concludes the proof.

4. Construction of the deviation k

In this section, for the sake of simplicity, we will sometimes write A 0(s°°) in
order to denote the fact that for all n e N \ {0}, there exists Cn > 0, en > 0 such

that: Vf < e„, |4| < Cnen.

4.1. Reducing the problem. Suppose g\ and g2 are two asymptotically hyperbolic
metrics like in the setting of Theorem 1.1 that is, they are both negatively-curved and

their renormalized distances coincide for some choices of conformai representatives
in the conformai infinities. In local coordinates (p, y), for i £ {1,2}, one can write

gi p~2(dp2 -\-hpj), for some smooth metrics hpp on 3M (note that this is the same

boundary defining function for both metrics, see [8, Section 4.2]). By [8, Theorem 2],
there exists a smooth diffeomorphism \jr. M —> M fixing the boundary such that

ijj*g\ — g2 0(p°°) at dM (that is hp<\ — hPt2 0(p°°)). In the following, we
will argue with this new metric x/r*gi but we will still denote it g\ for the sake of
simplicity.

Remark 4.1. In particular, this implies that the respective renormalized vector fields

satisfy X\ - X2 0(p°°) at dM, that is their C°°-jet coincide on the boundary.
By Duhamel's formula (see [22, Lemma 2.2] for instance) this implies that on the

boundary 3-S*M, for any k > 0, one has \\(p\ - 0(r°°).

4.2. The diffeomorphism k. We denote by Me := M n {p > e} and by Mg its lift
to the universal cover. Like before, all the objects are lifted on the universal cover.
Unless it is mentioned, we will drop the notation ~, except for the universal cover
itself. S*Mj will denote the unit cotangent bundle with respect to the metric gi.

and §2 denote the set of geodesies connecting points on the ideal boundary dM,
with respect to the metrics g\ and g2. They will sometimes be identified with
3M x 3M \ diag.

Given (jc, £) £ S*Mi\rlur^_, we denote by (z, z') e dMxdM (resp. (y, y') £

dM x 3M) the two points on the ideal boundary induced by the geodesic carrying
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the point (x, £) (resp. (x, Rgtj) if 0 G (0, it) and (x, Rg^) G S*Mi \ ri U Rj_). This
defines a map:

KiiiVi -tSixSi\ diag, tcx (x, £, 0) (z, z', y, y'),

where

Wt := {(x, £, 9) G S* M\ x (0,7r) | (x,£), (x, Rrf) £ (ri U T|)}.

The map K\ is clearly bijective. It is smooth because each of the coordinates

(z, z', y, y') is smooth. Indeed, one has for instance

z(x, £, 9) Tt^p\_(x^{x,^)),

and this is a smooth application according to Section 2.1.2.
The g2-geodesics with endpoints (z,z') and (y,yr) intersect in a single point

(x(x, £, 0), E(x, £, 0)) (where E is the covector on the #2-geodesic with endpoints
(z,z')) and form an angle f(x, 9), which we call the angle of deviation. This
defines a map

k := Kf1 o/ci: W\ W2, ic(x,%, 9) (x(x,f, 0), E(x,£, 0), f(x,Ç,6)), (4.1)

where W2 is defined in the same fashion as W\. By the implicit function theorem,
one can prove that Kfl is smooth and thus k too. It is a bijective map whose inverse
k"1 /c^1 o K2 is smooth by the same arguments. As a consequence, ic is a smooth

diffeomorphism. Moreover, it is invariant by the action of the fundamental group
and thus descends to the base as a map k: (x, £, 0) 1-^ (x, E, /).

4.3. Scattering on the universal cover. On the universal cover M, the renormalized
distance can actually be extended outside the boundary, namely we can set for

p.q M:
Di(p,q) := di(p,q) + log(p(p)) + iog(p(^)),

where dj,i G {1,2} stands for the Riemannian distance induced by the metric g,. Di
is clearly smooth on Mx M \diag and using the fact that there exists a unique geodesic
connecting two points, one can prove like in [8, Proposition 5.15], that the extension

of Di to M x M \ diag is smooth. Now, as established in [8, Proposition 5.16]
the renormalized distance on the boundary actually determines the scattering map ol
(defined in (2.10)), that is:

Proposition 4.2. IfL\ L2, then ay a2.

The proof also applies here, in the universal cover. It is a standard computation
since we know that D,- is differentiable, which relies on the fact that the gradient of
q Li (ct(p, q)) (for p. q G 8 M) is the projection on the tangent space Tq8M of the
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gradient of q i-> Dl (p, q) and the latter corresponds to the direction of the geodesic

joining p to q when it exits M.
We fix e > 0 and define S*M'e := fl {p > e}. For i G {1,2}, given

(x, £) G d~S*Mls we can represent the vector Ç £(tw) by the angle co G [0, n]
such that sinew |g,(v,(x), £)|, where v,- stands for the unit covector conormal to
{p e} (with respect to the metric gi).

Lemma 4.3. There exists an angle a>e (only depending on e), such that for all
(x,£(a>)) d-S*Mç \ ri, given by an angle a> G [cos,n — a>s\, ifa\(p,q) denotes
the gi-geodesic generated by (x, Ç), with endpoints (p,q) e <)M x 3M, t/iew f/re

g2-geodesic ot2(p, q) with endpoints p andq intercepts the set{p > e). Moreover, for
any N E N \ {0}, there exists en> 0 such thatfor all e < sn, we can take cos eN.

Proof Let (x, £) G 3-S*M*. We set ourselves in the coordinates (p, y) induced by
the conformai representative h. The trajectory

t (p(t),y(t),Ç0(t),q(t)) e S* M

of the point (x, £) under the flow X is given by Hamilton's equation (see [8,
Equation (2.8)]). Flowing backwards in time with <pt, we know that (x, £) converges
exponentially fast towards a point (p, f) G 3-S*M (see [8, Equation (2.11)]) in the

sense that there exists a constant C (uniform in the choice of points) such that:

Vf < 0, p(t) < Cp(0)e_|ï| eCe~w.

In particular, the time r_ (x.f) taken by the point (x,f) to reach (/;, Ç) with the
flow ipl is (see (2.4)):

t_(x,|')= f p(t)dt<Ce.
J—OO

We also know, according to Hamilton's equations (see [8, Equation (2.8)]) that

p(0) p2(0)£o(0) £ sin(rv),

where cw satisfies Ço(0) pfo(0) sin(cw) |,gi (Ç, i>\(x))|. Let us fix an integer
N > 0 and assume that sN < cw < Jt — eN. Then p(0) > 2/n eN+1 so there exists
an interval [0, 3] such that for t G [0,3] :

e + t/7t • sN+1 < s + t/2 • p(0) < p(f) < le.

In particular, p(3) > e + 8/n eN+l.
We go back to the flow By our previous remark, we know that there exists a

time:
fs

to < Ce -F / p(f) dt < C'e,
Jo
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such that p((f>lo(p, £)) > e + 8/n • eN+2. But since gi g2 + we know

that X\ X2 + (9 (p°° and X\ X2 + G(p°°). Moreover, since the scattering

maps agree according to Proposition 4.2, we know that the two geodesies oq(p, q)
and a2(p, <?) are both generated by (p, Q. As a consequence, one has:

P(<PUP'0) P(<Pz(P'0) + 0(T°°)

(the remainder being independent of (p,Ç)). In particular, since To < C'e, there

exists a constant C" > 0 such that

\p{^p^))-p{^{p,m<c"sN+2.
Thus:

p(<p2X0{p, ?))>£+ V+1 - C"eN+2 > e,
it

if e is small enough.

Figure 3. The diffeomorphism \jrE.

In the following, we assume that such an integer N is fixed (and taken large

enough) and we apply the previous lemma with N + 1, that is coE eN+l.
This allows us to define a map xfr on

U := {(x, f (eu)) g S*M1, Ço > 0. o £ [p(x)'v+1,n — ^(x)^"1"1]},

in the following way: to a point (x, £) G U, which we see as a boundary
point (x,£(<w)) G d-S*M^ for e p(x), we associate the boundary point
(x', £') \j/(x, £) such that i//(x, £) G d-S*M2 is the point on the g2-geodesic

connecting ptoq. A formal way to define i// is to introduce another diffeomorphism
K —> d-S*M x [0, oo) such that Vq(x, |) (<PE_(x tJx, £)> p(x)) and to set

V(x,Ç) ÏÏ21 ^(^r-(x,f)(X'^))' (4.2)
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where \(r2 is defined in the same fashion and xp is the time taken to reach the

hypersurface {p p(x)\. Note that \f(x, f exists according to the previous lemma
and this point is well-defined (it is unique) according to Lemma 2.2. Moreover, it
is smooth on K thanks to the results of Section 2.1.2 (this mainly follows from the

implicit function theorem). Eventually, it is invariant by the action of the fundamental

group and descends on the base as a map xfr. We write UE := U D {p e}. What
we need, is to prove that \j/ is the identity plus a small remainder.

Lemma4.4. ||^£ — Id ||ci (9(s°°).

Proof. Since the two trajectories are (9(e°°) close, so will be the times rp and

—T-(x, £) by which the g\- and g2-geodesics generated by (p, £) hit {p e} (this
can be proved by contradiction for instance, like in the proof of Lemma 4.3), which
implies that \fr£(x, £) (x, ^) + 0(e°°), where the remainder is uniform in (x, f). To
obtain a bound on the derivatives, we see from the expression (4.2) and the fact that
the two flows are (9(e°°) close in the C1-topology (Remark 4.1), that it is sufficient
to show that the times satisfy rp(x,£) —r_(x,f) + (9(e°°) in the C^topology
with a uniform remainder. Let (p, £) (p\_^x ^(x, £). We have

P(<P-T-(X,Ç)(P> £)) £ P(<Pzf,(P> £))"

We are interested in the variations of x along {p e} and of the angle £(cv). If we
denote by z any of these two parameters, we get by derivating the previous equality:

d 9
+ dP(d<P-x-(dz(p, Ç))) ~fadP(X2) + dp{dVxp(dz(Pi t)))-

The two terms containing the differential of the flow coincide to order (9(e°°) and

we also have dp(X2) dp{X\) + (9(s°°) by Remark 4.1. Thus:

(-£-£)*<*>-«to.
But dp(X1) is precisely the sine of the angle with which the geodesic generated

by (p,Ç) enters the set {p > e} and this angle is contained in [sN,n — e^] by
construction of the set K, so dp(X\) > sN. By dividing by dp(X 1), this term is

swallowed in the (9(£°°), which provides the sought result.

Given (x,f) e 3-S*Mwe denote by l\. +(x. f the length of the geodesic

generated by this point in Me. Note that by strict convexity of the sets {p > s) the

intersections of the geodesies (for both metrics) with Ms have a single connected

component, so this length is well-defined.

Lemma 4.5. ||f£+ — ° Vvllc0 0(e°°), where the sup is computed over

3-S*M} \ ri.
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Proof. Recall that (/?,£) d-S*M is the point obtained by flowing backwards (x, f)
down to the boundary. If Z), denotes the renormalized distance for both metrics, then

we have:

Di(p,x) D2(p,x'(x,o))) + 0(e°°),

where the remainder is independent of (jc, £). Indeed, considering 0 < e' < s, and

denoting by ai (p, x) the gi -geodesic joining p to x, one has:

rxe
li(at(p, x) n {p > s'}) + logs' / ——— + logs'

Jzf P(<Ps (z))

r/ — + log s
Je' U

where r) and rj, are defined such that

p(<plri 00) e. p(vli 00) s',
xe V

and xfi : s p(ïpl (z)) is a diffeomorphism. Note that Vi (0) 0, (0) 1.

By assumption, the two metrics are close, thus ViCs) Vy2(-vj + 0(s°°) and

one can check (by induction) that this implies that 0//2~\)<^,(0)

for all k G N, that is i/'j-1)«) V^H«) + 0(w°°). Inserting this into the previous
integral expression, we get the claimed result.

The same occurs for the other bits of the geodesies: namely, if y and y' denote

the exit points of oi\(p, q) and ot2(p, q) in Me, then D\(q, y) D2{q, y') + 0(e°°).
Now, using the fact that the renormalized lengths agree on the boundary, we obtain:

Di(p,q) Di(p,x) + di(x,y) + Dx(y,q)

Di{p,x)+l\t+(x,Ç) + Di(y,q)
D2(p,q)

D2(p,x') +^>+(^e(x,£)) + D2(y',q).

Thus: ^>+(x, Ç) + (^e(x> £)) + ©(e00).

4.4. The average angle deviation. The angle of deviation / satisfies two elementary

properties:

Lemma 4.6. (1) It is n-symmetric, that is, for almost all (x,f) S*M\, 9 e [0, it],

f(x,Ç,0) jt-f(x,ReÇ,n-9). (4.3)

(2) It is superadditive in the sense that, for almost all (x,£) 6 S*M\,6\,62 G [0, jt]
such that 9\ + 02 £ [0, Jt],

f{x, 9l) + fix, R9i 02) 5 /(X, Ç, 01 + 02). (4.4)
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We will denote by M\fl\ —> ß2 the map that associates to a g\-geodesic with
endpoints z,z' e M the ^-geodesic with same endpoints. Note that when §\ and §2

are identified with 3M x 3M, Jf is simply the identity, but we will rather see as

the set of geodesies connecting two boundary points.

Proof. The 7r-symmetry is obtained from the very definition of /. As to the

superadditivity, it follows from Gauss-Bonnet formula in negative curvature. Indeed,
consider the three geodesies a\,ß\, y\ of 441, respectively carried by the points
(x, £), (x, RetÇ), (x, Rgi+Q2%). Their image by M (that is the corresponding
#2-geodesies with same endpoints) are three geodesies

a2 M{ai), ß2 M(ß2), Y2 M(y2),

forming a geodesic triangle which we denote by T, with angles

/(*,£, 00, fix, r962), nx,R9l+oj,n-e1-e2).
Now, we have by Gauss-Bonnet formula:

0> J k dvolg /(*,£, 0i) + /(x, 7?0,£, 62) +fix, Rgl+e2tj,n-6i-d2)-n.
(4.5)

Using jr-symmetry, we obtain inequality (4.3).

Note that the inequality (4.4) is saturated if and only if the geodesic triangle is

degenerate, that is it is reduced to a single point, since the curvature is negative. As
mentioned previously, f descends on the base as a function / which also satisfies
the properties of Lemma 4.6.

One of the ideas of Otal was to introduce the average angle ofdeviation. Since we
work in a non-compact setting, we are forced to consider partial averages depending
on s. We define for fixed s > 0:

®e(0) := f f(x,l,0)d/il(x,Ç) (4.6)
volgl(S*Mel) Js* mg

It also satisfies

©e(0) 0, ©£(7T) it. (4.7)

Since the rotations Rg preserve the Liouville measure, by integrating over S*Mj
the relations (4.3) and (4.4) given in Lemma 4.6, we see that 0£ also satisfies the

7r-symmetry:
V0 [0,7r], 0e(0) n - 0e(7T - G), (4.8)

and the superadditivity:

V(9i,02 £ [0, jt], s.t. 0\ + 02 £ [0, jt], 0£($i) + &£(02) < 0£(0i + 02). (4.9)
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We now show that 0£ satisfies the following lemma.

Lemma 4.7. Let J: [0, n] —> M be a convex continuous function. Then:

f*Jl fJl
/ Jißeiß)) sin(0) d0 < / J(0)sin(6»)û?0 + H/IIlocÖ^), (4.10)

Jo Jo

where the remainder only depends on s, N is fixed by Lemma 43.

Figure 4. A picture of the situation: in dark grey, the g2-geodesics, in light grey the g\-geodesies.

The proof of this lemma relies on the use of Santalo's formula, together with
the fact that the Liouville currents coincide. But let us make a preliminary
remark. Consider (x, Ç(a>)) e d-S*M* with co e [u>e, it — ojf;]. It generates
the gi-geodesic a\(p.q) with endpoints p,q £ 9M which enters (resp. exits) Me
at x (resp. y). We denote by a2 the g2-geodesic joining p and q which enters

(resp. exits) Ms at x' x'{firE{x, Ç)) (resp. y'). Let us denote by ^(x, j) c the

gi -geodesies which have a positive transverse intersection with the geodesic segment

aj := cf | n Me. 7r2(x'. y') denotes its analogue for the second metric, that is the

g2-geodesics having a positive transverse intersection with a2E := a2 D Me.
Since M preserves the Liouville measure (that is JC*?7i r)2), we have:

rn(Fi(x,y)) r)2(M(&i(x, y))).

We could hope that M (Fi (x, y)) F2(x', y') but this is not the case (see Figure 4),
insofar as there is a slight defect due to the fact that we are not looking at points
on the boundary, and this is where the arguments of Otal fail to apply immediately.
However, we have:

Lemma 4.8. (x, y)) q2(lF2(x', y')) + 0(e°°), where the remainder is

independent of (x, f).
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Proof. It follows from Lemma 4.5, combined with equation (3.2).

We can now establish the lemma on convexity. We will denote with a tilde ~ the

objects on the universal cover.

Proof. ci/ij/volÇ| (S* MI is a probability measure on S * M£ and by Jensen

inequality, we have, for all 9 G [0, n\.

<
1 f J(f(x, £, 9))dm(x,£).

volgi (S MJs*Mt
Multiplying by sin(ö), integrating over [0,7r] and applying Fubini's Theorem, we
obtain:

f J(@s(9)) sin(0) dO
Jo

- I 77V77T2 / f J(f(.x>Ç>0))sH0)d0dm(x,Ç).
volgl(S*Mj) Js*Mg Jo

Using Santalö's formula, we obtain for the last integral:

[ f J(f(x,Ç,6))sm(9)d9dfii(x,Ç)
Js*mI Jo

[ f f J(f(<pl(x,i;),6))sm(6)d9dTdfiiiV(x,i;),
Jd—S*Mg Jo Jo

where d/ii,v(x,£) \gi(£,v\)\i* ^dfif), is unit covector conormal to the

boundary, (d/n) is the restriction of the Liouville measure to the boundary

(the measure induced by the Sasaki metric restricted to dS*M£), and t\ + (x, £)
is the length of the geodesic starting from (x,f) in Ms. Note that we would

formally need to remove the set of trapped geodesies when applying Santalö's formula.
Flowever, as mentioned in Remark 3.2, they have zero measure and do not influence
the computation, so we forget them in order not to complicate the notations. By
parametrizing each fiber d-S*M£ with an angle m G [0, it], we can still disintegrate
the measure dpi\tV sin(co) dm dx, where dx is the measure induced by the metric g\
on 3Me and dm is the measure in the fiber 3-S*M£, so that:

f f J(f(x,Ç,0))sin(9)d9dfii(x,i;)
Js* m} Jo

p pn pn
/ J{f{tp\ (x, £), 0)) sin(0) d6 dx sin(cu) dm dx

JdMe Jo Jo Jo

p pit (Og pll+(x,Ç) pit/ / J(f(np\ (x, f), 6)) sin(0) dO dx sin(cu) dm dx
JdMe J(oe Jo Jo

+ ||/|Uoo0(e").
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Recall that we applied Lemma 4.3 with a)E 0(sN+l). The loss of 1 in the

exponent is due to the fact that we have to swallow uniformly the lengths t\ + (x, f)
&(— log e) in the integral.

Let us fix (jc, £(<«)) £ d-S* M} \ T_ and consider one of its lift on the universal

cover (5c, f(<w)) £ d-S*\ Ti. It generates a geodesic with endpoints (p,q) £
3M x 3M. We can rewrite the integral

/•tj.+tx.s; fx
/ / J{f((pl(x,Ç),6))sin(9)dd dr

Jo Jo

/•?],+(*,f) fK _ _
/ / J(f(<pî(x,Ç),6))sm(6)dQ dr.

Jo Jo

We will now use the diffeomorphisms Vi -> !F(p,q) (for i 1,2) introduced
in Section 3 (see Equation (3.1)). The gq -geodesic joining p to q is denoted by

a\(p,q): we choose a parametrization y:M -»• aq(p,q) by arc-length using the

middle point (see Section 3). Remark that the composition cj)^
1

o <f>\'.V\ -> V2 has

the form (r, 9) • / (y(t), y(r), 0)) (the first coordinate is of no interest to us).

Moreover,

(<jp2l o (pi)* sin(0) d9 dr (p*q2 (p*q\ sin(0) d9 dr,

since the two Liouville currents agree according to Lemma 3.3. We have:

rtli+(x,h r* „ _
/ / J(f {(p\(x,%),9))sm{9) d9 dr

Jo Jo

<Pi qi(J ° <i>2
1

°4>\ 1[r,r+l']+(-cJ)]x[o,3r])

91 {J °<t>2X -lFdx,y))

92 (J 0 <t>2X (xj)))
i2(^ o^1 • ly2(ï',T')) + II-/IIL^Ö^00)

/•fg+(x',f') /.jr
/ J(9)sin(9)d9dr + ||/^^©(e00)

3o Jo

ï2e+(x',f) [ J(9)sm(e)d9+ ||/||L<x>0(6°°).
Jo

where the fourth equality follows from Lemma 4.8. The constant T on the second

line is unknown and appears in the choice of parametrization of the geodesic segment
oq(x, 50 but does not influence the computation. The point (5c', £') if/e(5c, £) is

the image of (5c, f) by the diffeomorphism \/re defined in Section 4.3. We recall that
this diffeomorphism is invariant by the fundamental group and descends on the base

as fe.
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Inserting this into the previous integrals, we obtain:

f fJs*mI Jo
Jif (x> 0)) sin(ö) d9 dp,i (x, £)

TC—COsf J{9) sin(9)d9 f f f2 + (i/re(x, £(cu))) sin(tw) dco dx
J 0 J3A/g Jcog

+ \\J\\LOO0(SN).

According to Lemma 4.4, we know that i)re Id +0(£°°) in the C1 topology. In

particular, the Jacobian of \jfE is 1 + 0(s°°) and by a change of variable:

f IJ dMs J co

n-cog
2 (i/r£(x, f (&>))) sin((u) da> dxe,+

(Os

f IE(x', %') sin(m') dco' dx' + 0(eN)
Jm, Jo

volg2(S*M?) + 0(eN)

volgl(S*MEl) + 0(sN),

where the two volumes agree to order Ö(sN) according to the same computation with
J 1. Inserting this into the previous integrals, we obtain the sought result.

Remark that we can actually consider in Lemma 4.7 a family of functions J£,
instead of a single function. We can assume that H^Hl00 0(l/ea), for some

a > 0 which we may take as large as we want. Then, we can always apply the lemma
with N' := N + [aj + 1, so that in the end, the sup norm ||.4||l°° is swallowed in
the term 0(sN). We actually obtain for free a better version:

Lemma 4.9. Let N G N \ {0} be an integer and a > 0. Let Je\ [0,7T]-> WL he a

family ofconvex continuous function such that \\J= 0(s~a). Then:

S»Jl pTZ

/ JE(SE(d))sm(9)dd < / JE(9)sm(6)dO + 0(sN), (4.11)
Jo Jo

where the remainder only depends on e.

5. Estimating the average angle of deviation

As mentioned previously, we are unable to prove a priori that the 0£ are uniformly
Lipschitz. Nevertheless, we can show that they decompose as a sum ©g

*

+
where the 0^ are Lipschitz (and their Lipschitz constant is controlled) and the 0^
have a "small" C° norm. This will be sufficient to apply our version of Otal's estimate

(see Proposition 5.4).
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Note that we will sometimes drop the notation C for the different constants which

may appear at each line of our estimates and rather use the symbol <. By || A || < || B ||,

we mean that there exists a constant C > 0, which is independent of the elements A

and B considered and such that, Il A II < C II BII.

5.1. Derivative of the angle of deviation. The purpose of this paragraph is to
estimate the derivative (with respect to 9) of the angle of deviation /. We recall
that

W1 e S*M\ x (0,jt) | (x,Ç),(x, Rrf) £ (Vl_ U foj_)}.

Lemma 5.1. There exist constants C,k > 0 (independent of e) such that for all
(x,f,é>) G S*Ml IT W\:

Jq(x,%,6) < C exp (k(ll+(x, RgÇ) + \l\ _(x, Rff$)l)).

Proof We can write the derivative of / as:

aL=V(V) BldJL) (51)
de dy'VdoJ dy \dd)'

where y and y' are defined in Section 4.2 and study the different terms separately.
The idea is to study the behaviour (and more precisely the growth) of Jacobi

vector fields in a neighborhood of the boundary. Given a geodesic which enters the

set {p > e}, we will use the bounds (2.13) to estimate the Jacobi vector fields on the

segment contained in {p > e}. Then, by convexity, the geodesic exits {p > e) with a

coordinate fo < 0- On the set

{p < 5} n {to < 0}

(for some 8 > 0 small enough), we can study the behaviour of the geodesies more
explicitly. Namely, given any point (x,Ç) G S*M in 'C, we know that it converges
uniformly exponentially fast to the boundary in the sense that there exists C > 0

(uniform in (x, f)) such that if p(t) := p(<pt(x, £)), then one has

p(0)e~' < p(t) < Cp(Q)e~f

for t > 0 (see [8, Lemma 2.3]). From the expression of the metric (1.1) in focal

coordinates, one can check that the curvature is given by k — 1 + p • 0(1). As
a consequence, if K(t) k(it((pt(x, £))) and <5 > 0 is chosen small enough at the

beginning, one has that

-1 - — e~' < K(t) < -1 + — e~',
10 - w " 10
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for any such (x,f). If r i—> y(t) denotes the geodesic generated by this point and J
is a normal Jacobi vector field along y, we write

Jif) j{t)Rnl2Y{t),

where j satisfies the Jacobi equation j (t) + K(t) j(t) 0. Assume j(0) 0,

j (0) 1, then j{t) > 0 (there are no conjugate points) and thus

lit) < (l + -^e f)y(0-
10

By a comparison argument, j(t) < z{t) where z is the solution to z(?) -
(1 + jöe~')z(0 0 with z(°) AO), z(0) ./ (0).

But making the change of variable u 2y/\Öe~C2, z(u) z(t), one can prove
that z solves the modified Bessel equation of parameter 2 that is

,/2z dz 0
U -T-7T + U— (u2 + 22)z 0

du du

and thus z(m) A I2(u) + B K2{u) for some parameters ,4, B e R depending
on z(0), z(0), I2 and K2 being the modified Bessel functions of first and second

kind. Thus:

z(t) A I2(2VÜ)e~t/2) + B K2(2y/ÏÔe~t/2),

where

I^lsfïÔe-1'2) ~^+oo Ce~', K2(lVÏÔe-t/2) ~^+00 Ce'

(see [1, 9.6.7-9.6.9]). For instance, if j(0) 0, j (0) 1, which corresponds to a

vertical variation of geodesies, then we obtain

\dn o d(pt(V)I I/(0| < Ce'

for some constant C > 0 independent of the point. Using this technique of
comparison and decomposing any vector by its vertical and horizontal components,
one obtains that

\\dcptix,m<Ce'
for O, f) eC, where the constant C > 0 is uniform in (x, £).

We fix (xo, ço, 6o) and look at the variation 0 i-> (xo, /0,,+ôÇo)- F°r each 6, we
thus have a gi-geodesic t ye(t) generated by this point and it hits the boundary
in the future at y'id). We set y := yo. We denote by J{t) := foYoU) the Jacobi

vector field along y. Writing in short ll+>e f+;£(x0, R$0Ç,o), V K(x0, RgQtjo),

we have for t s + le,s > 0:

\Jit)\g\ \dn o d(ps+ii^ (F)| < Ces\dn o d(pie{V)\ < Ceseki+-e.
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The first inequality follows from our previous remarks whereas the second one is a

consequence of (2.13). Now, we know that

p{l\,E)e-s ee"' < p(t) < Cee~s Cp{t\je~s.

As a consequence, for t large enough, we have:

1/(01«, =p(t)\J(f)\gl <C-eeu+.°.

By making t -» +oo, we obtain that \%-\h < C sekl+-e.

Conversely, we consider a family of points y'(u) in a neighborhood of y'0 on the

boundary (such that 1) and we look at the g2-geodesics joining y to y'(u).
They intersect the g2-geodesic joining z to z' (the endpoints of the geodesic genreated

by (x, ç)) at some point x(u), and we obtain (x(w), S (m)) and an angle /(«). From
another perspective, we have a family of points (x(w), R /(„) 3 (u)) which generate
geodesies joining y'{u) (in the future) to y (in the past). Like before, we denote by y
the geodesic obtained for u 0 and by J the Jacobi vector field along y. Since the

point y joined in the past by the geodesic is fixed (it does not depend on u), J (more
precisely, its lift in TS* M) lies in the unstable bundle. We write

3„(x(m), RfMa(u)) dn~x(J(Q)) + 0)) A •£„,

where çu is one of the two unit vectors (with respect to the g2-Sasaki metric)
generating Eu. Note that the vertical component of this vector is precisely

and thus |A| > |§£|. We write L\ e f+,e(x, R/ a). For t s + i2+ e, s > 0:

l^(0l«2 \dn o d<pt(\$u)\

|A| • \dn o d(ps{d(pf2

> |A| • es\d(pt2 (lu)\
+ .e

> C\k\e'ekl+-e > C
3/
du

esekl+-e.

The term in e +<£ follows from (2.13) whereas the term es is a consequence on the
bounds of the curvature. More precisely, for fixed bounds, that is —k^ < k < —k2,

such a lower bound is obtained in [13, Theorem 3.2.17], and the same proof applies
here, except that we have bounds —1 - < ic(t) < — 1 + But the

argument of Klingenberg is based on Gronwall lemma and t e~' is integrable,
so we get the same result in the end. Multiplying by p(t) and taking the limit as

t -» +oo, we eventually obtain that |^-U 1 > Csek^+-s \j^\-
Putting the previous bounds together, and using (5.1), we obtain the sought

result.
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5.2. Derivative of the exit time. We set Te — N0 log s for some integer N0, like
in the proof of Lemma 2.3.

Lemma 5.2. There exist constants C,k > 0 (independent of e) such that for all
(x,f 6) S* M/ D W\ such that

Te<ll+(x,Reï) + \tl_(x,Reï)l

one has:

de{ll,+(x, Ret) + |<_(x, Re&\) < C exp {k(l\t+(x, Rgt) + |^_(x, Ret)|)).

Proof Let us deal with the case of the exit time in the future, the other case being
similar. The exit time is defined by the implicit equation:

Ml+(x,Re^X' R0&) S-

Differentiating with respect to 9, we obtain:

de(tl+(x, Ret))dp(Xl(<pley+(x R^)(x, Ret)))

+ dp(d(<pl rM)(MV(x, Ret)) 0,
£,+

where V(x, t) e V is the vertical vector in (x,t) (it is unitary with respect to the
Sasaki metric Gi). But:

\dp(Xi(<pll +(x,Reç)(x> Rd&))\ e\dp(Xi)\,

and dp(X\) is the sine of the angle with which the geodesic exits the region {p > e}.
If this angle is less than (any small constant works as long as the geodesies
concerned stay in a region where the metric still has the usual expression (1.1)), then
the geodesic will spend at most a bounded (independently of e) amount of time in the

region {p > e}, thus contradicting the condition:

Te -N0 log(e) < 4+(x, Ret) + Ret)I-

This can be proved using the Hamilton's equations, similarly to the proof of
Lemma 4.3 for instance. Thus \dp(X\)\ > -X.

As to the second term, using the fact that dp/p is unitary (with respect to the dual

metric of gi on the cotangent space), we obtain that:

^))| ^ £ld&h.+(*,Re^*-RMV(X'

< eekif+(x,ReH)
^

for some constant k, following (2.13). This provides the sought result.
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5.3. An inequality on the average angle of deviation. We know that / is almost

everywhere continuous and bounded, so 0£ is continuous by Lebesgue theorem. We

now prove that the homeomorphism 0£ satisfies the following estimate:

Lemma 5.3. For any 8 e (Q, 0) (defined in Lemma 2.3), for all ß > 0 small enough,
there exists ß' > 0 (depending on ß and converging towards 0 as ß —> 0) such that:

Wd1,e2[0,7t], |0£(#i) - ©e(ö2)| < e~ß'\6\ — 02f + es.

Proof. First, remark that it is sufficient to prove the lemma for 9\, 02 e [0, tt/2],
since the result will follow from the jr-symmetry of the homeomorphism 0£. We

fix e > 0. We introduce the smooth cutoff function /t (for some T > 0 which
will be chosen to depend on e later) such that yr(.v) 1 on [0, T] and /r(v) 0

on [2T, +oo). Note that we can always construct such a /T so that \\<)sxt\\l^ < 1

(as long as T > 1, which we can assume since it will be chosen growing to infinity
as e -> 0). We write 0£ @£a^'T + ©£^'r, where:

:= tswköj) L, *- K-a.
•/(*,£, 6)dp,i(x,Ç)

volgl(S*M})
fs*M>

where fr is defined to be the integrand and

:= ©£-0(ea)'r.

Morally, the cutoff function means that we integrate over the compact region

By the Lebesgue theorem, ©^'T is C1 on [0, tt/2]. For ß > 0, 6\, 02 e [0, jt/2],
one has:

10W-r(e1)-0(«)'r(02)| < sup \de®ia)'Tmß\öi - 02\ß.
ÖS[0,TT/2]

Let us estimate the former derivative. We have:

de©ia)'T(0)= / i- [ dofT(x,!;,d)dni(x,Ç),
volgi (S Mg) Js*mJ

and the derivative under the integral is composed of a sum of two terms which we

now estimate separately.

(1) By Lemma 5.1, the first term is bounded by:

\xr{t\t+(x, Rel) + I<_(*, *e£)|)3e/(*,£, 0)\

< exp {k(t\ +(x, Re%) + \l\ _(x, Rel)|)) < e2kT.
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(2) And the second term is bounded by Lemma 5.2:

|aö(4+(x,/^) + l4_(x,/?^))
• dsXT{ll+(x, Rel) + 14_(x, Roi;)\)f(x,i;,6)\ < e2kT.

Note that the constant k > 0 may be different from one line to another. Gathering

everything, we obtain that for all 0 e [0, n/2], |dö0^'T(0)| < e2kT and thus:

l©^'7^) - 0<fl)'r(02)| < e2kßT \9\ - e2f.

As to 0, r, we can write:

0f)'r(0)< 7*
.— f fdni

volg, (S*Ms )\Js*Aflr\{ll-+(x,ReÇ)>T}

+ f f dill).

If T > —No log(e) (N0 is a large integer defined in Lemma 2.3, independent of e),
then the two integrals can be estimated by Lemma 2.3 (note that we here divide by
the volume which is bounded by 0(e)). We obtain:

\®^'Tm<e-STs-4S.

We choose T := Te — Volog(e) and set 0^ := @{a^'Te, 0,^ := 0£^'r£.
Since N0 is taken large enough (greater than 5 at least to swallow the s~4S), we

obtain ||0,^ ||l°° < es And :

l<3ia)'r(0i) - 0?),r(02)| < s~2ßkN°|0! - e2\ß,

which provides the sought result by going back to 0£.

5.4. Otal's lemma revisited. In the spirit of Otal's lemma (see [17, Lemma 8]), we

prove:

Proposition 5.4. Assume 0£: [0, n] -> [0, n] is afamily of increasing homeomorph-
ismsfbr e G (0,5) such that:

(1) 0,(0) O,0,(tt) =jr;
(2) For all 9 G [0, n], 0,(tt — 9) jt — 0®(0);

(3) For all 0i, 02 G [0, n] such that 0i + 02 G [0, n],

0,(00 + 0,(02) < 0£(0I+02);
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(4) There exists constants C, ß, ß' > 0 and S > 0 (independent of s), such that for
all 0i, 02 G [0,7r],

|@e(0i) - @e(02)| < C(ss + £-ß' |0i - 021");

(5) There exists a > 2ß'/ß — \ such thatfor allfamily ofcontinuous convexfunctions
JE: [0, jt] —> M such that ||/e||i<x> 0{\/sa),

/»7r r>n

/ i£(0£(0)) sin(0) dd < / /e(0) sin(0) d6 + G(s).
Jo Jo

Then 0£ Id +(9(sy), where we can take any y up to the critical exponent

1 + a - 2ß'/ß
Y

\+2/ß '

as long as y < S.

Proof. We argue by contradiction. Assume there there exists a sequence en -> 0

such that ||0„ — Id H^oo > n£vn (where 0„ := 0£„). By 7r-symmetry, there exists

an interval [an,An\ such that for all 0 6 (an, An),

0«(0) < 0 — nsy

and we can choose

@n(an) an - neYn, 0„(A„) An - nsYn.

We also construct the largest interval [hn, Bn] D [an, An] such that for all 0 G

(bn, Bn),

®n(9)<0-evn,

and

0n(0«) f^n — SY, (Bn(Bn) ~en-

Eventually, we define the largest interval [c„, C„] D [b„, S„] such that for all 0 G

(cn, Cn),

0«(0) < 0,

and

0«(c„) C„, 0„(C„) C„.

The ir-symmetry implies that Q(n/2) it/2 and since 0(0) 0, 0(7r) jt, we
know that the points cn < hn < an < An < Bn < Cn all lie either in [0, jr/2] or
in [n/2, jt].
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Figure 5. The points cn < bn < an < An < Bn < Cn.

Remark that 0„ — Id also satisfies the fifth item, namely:

|(0„ - ld)(0j) - (0„ - ld)(02)| < |0„(0O - @n(e2)I + \9l - 021

< (si+ ~\el-e2\ß) + (ln)l-ß 16,-62^
Sn

~ Sn + ~«7 1^1 -
Sn

This implies that:

K©» -Id)(fl„) " (©» -Id)(MI in - \)svn < 4 + 4j(an-bnf.
Sn

Thus :

(,a„ - bnf >(n- 1 )sYn+ß' - ssn+ß' > (n - 1 )syn+ß',

for n large enough since 8 > y. The same inequalities hold for the other points and

we get, for n large enough:

an — bn > (n — 1 )1^ßs^,+ß ^ß, Bn — An > (n — l)1^s^+ß ^ß,

h — r > p(y+ß'Vß c — R > p(y+ß'yßun cn ^ \^n Dn ^ tn

Now, for h e (0, Cn — cn), by superadditivity:

Cn + h > 0„(c„ + h) > ®n(cn) + ®n{h) Cn + ®n(h),

that is &n(h) < h. In the same fashion, we have for h e (bn — cn. Bn — cn),
@„(h) < h — Sn.
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Let us now consider the continuous convex functions

Jn(x) := s~a sup(C„ -cn-x, 0) e~aJn(x)

on [0, Tt]. Using:

f Jn(®n(0))sm(0)d9 < f Jn(9)sin(0)d9 + Csln+a,
Jo Jo

where C > 0 is a constant independent of n, we obtain:

* C« ~cn
0 <[ '\®n(0)-0)sm(0)d9 + Cs1n+a

Jo
rbn—Cn nBn—cn rCn—cn
/ (0(0) — 6) sin(0) d9 + / "+ / " + Csln+a

Jo Jbn Cfi J jB/j Cfi

/> Bn Cn

<Csxn+a — eYn / sin(0)t/0,
Jbn—cn

where we used the bounds stated above and the fact that both bn — cn and Bn — cn

are in [0, ji/2\. But remark that:

Ç Bn ~cn
/ sin(0) d9 > ((Bn - cn) - (bn - cn)) sin(bn - cn)

îCV-i)"*?»»,
for some constant C' > 0, by inserting the previous bounds and using the inequality
sin(jc) > 2x/n on [0, 7t/2], Thus, we obtain:

0 < e\+a{C - C'(n - 1 ylß£(Vß+i)v+2ß'lß-i-ay

and (2/ß + l)y + 2ß'/ß — 1 — a < 0 by the definition of y, so the right-hand side

is negative as n goes to infinity.

Remark 5.5. Let us mention that the result is still valid in the limit 8 +oo, ß 1,

ß' 0 (the 0£ are uniformly Lipschitz) and a 0. It provides an exponent y 1/3.
Had we been able to prove a priori that the family 0£ was uniformly Lipschitz, this
would have been enough to conclude.

6. End of the proof

We can now conclude the proof.
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Proof. Combining Lemmas 4.9, 5.3 and Proposition 5.4, we conclude that 0£
Id T0(e*), for some N which we can choose large enough. Thus for 0j, 02 [0, jt]
such that 0i -I- 02 e [0' n]'

0< f /(*,£, 0i +-02) -/(*.£, 9i) - f(x, ReiÇ,92)diii(x,Ç)
vol(S*M}) JS*Mg

öe(öl + 02) — 6)£(0i) — 0£(02)

0(6*).

Since the integrand is positive and the inverse of the volume can be estimated by 0 (e),
this implies by taking e -> 0 that

/(*,£, 0i + 02) - f(x,Ç, 6{) - f{x, Rq^,62) 0,

so the inequality is saturated in Gauss-Bonnet formula. As a consequence, three

intersecting gx -geodesies correspond to three intersecting g2-geodesics with same

endpoints.
We can now construct the isometry T> between (M,gi) and (M,g2). We will

use in this paragraph the notation ~ to refer to objects considered on the universal

cover M. Given /? e M, we choose three g\-geodesies a, ß and y passing through p
with respective endpoints (x,x'), (y, y') and (z, z') in 3M x 3M. By the previous
section, we know that the g2-geodesics with same endpoints meet in a single point
which we define to be 4>(/?). Now, 4>(p) is well-defined (it does not depend on the

choice of the geodesies) and remark that for (jc, £) <f T_ U r+ (such a covector always

exists) and 9 such that (jc, /?e£) ^ U F+, we have <$>(p) x(x, 0), where x is

defined in (4.1) (in other words, k maps fibers to fibers). Thus <t> is C°° in the interior
(see Section 4.2) and extends continuously down to the boundary as Id.

Moreover, 0*(g2) gi. Indeed, it is sufficient to prove that Ö preserves the

distance. Given p,q e M, we have

$fp,q) $2(ß>{p)Mq))

and thus:

dgx{p,q) ^9g2^2(Hp),Hq))) dg2(<ï>(p),®(q)).

Now, observe that d> is invariant by the action of the fundamental group: it thus
descends to a smooth diffeomorphism 0: M M which extends continuously down

to the boundary and satisfies 4>*g2 gi.
We now conclude the argument by proving that O is actually smooth on M. In the

compact setting, it is a classical fact that an isometry which is at least differentiable is

actually smooth and our argument somehow follows the idea ofproofof this statement.
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More precisely, we show that a smooth isometry on an asymptotically hyperbolic
manifold actually extends as a smooth application on the compactification M. The

proof does not rely on the dimension two. Note that another proof could be given in
this case using the fact that is a conformai map.

Consider a fixed point p M in a neighborhood of the boundary. For any point
q e M in a neighborhood of p, we denote by Ç (q) the unique covector such that

w(q) := (p,Ç(q)) generates the geodesic joining p to q. The map q i-> Ç(q) is

smooth down to the boundary by [8, Proposition 5.13], Let us denote by z\ (q) the

time such that q (q)(u'(q)))- It is smooth down to the boundary too. Since $
conjugates the two geodesic flows, we can write:

<S>(q) Tcfâ2(q)(z(q))),

wherez(g) := (<î>(/7), d<£>p(Ç(q))), for some time T2O7). All is left to prove, is thus

that %2 is smooth down to the boundary. If t(q) denotes the y i-geodesic distance

between p and q (which is also that between <t>(p) and §(q) for g2), one has:

t{q)= f (-\(d\( tvi =-|°ë(1- + G(Ti(g)'w(^))'
Jo v r| («;((?))/

for some smooth function (r, z) m* G(t,z) down to the boundary (this is a

computation similar to the one carried out in Section 2.2.1, see also [8, Lemma 2.7]).
And:

r2(<7) tl(z(q)) - e~'(q\+(z(q))H(e~',z(q)),

for some smooth positive function H on [0, 1) x S*M \ (3-S* M U T_) (this stems

from the previous equality, or see also [8, Lemma 2.7]). As a consequence:

Tz(q) rl(z(q)) - (l )/(<?),
v r4 (w (<?))/

for some smooth function / down to the boundary, which can be expressed in terms
of H and G. This concludes the proof.
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