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Boundary rigidity of negatively-curved
asymptotically hyperbolic surfaces

Thibault Lefeuvre

Abstract. In the spirit of Otal [17] and Croke [3], we prove that a negatively-curved
asymptotically hyperbolic surface is marked boundary distance rigid, where the distance
between two points on the boundary at infinity is defined by a renormalized quantity.

Mathematics Subject Classification (2010). 35R30, 37D40, 53C22.
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1. Introduction

1.1. Mainresult. We consider M asmooth compact connected (n + 1)-dimensional
manifold with boundary. We say that p: M — R is a boundary defining function
on M if itis smooth and satisfies p = O on M, dp # 0on dM and p > Oon M. Let
us fix such a function p. A metric g on M is said to be asymptotically hyperbolic if

(1) the metric § = p?g extends to a smooth metric on M,

(2) |dpl|p2g =1 0n oM.

The extension of the metric p?>g on the boundary, that is p?g|7au , is not independent

of the choice of p but its conformal class is — it is called the conformal infinity.
Such a manifold admits a canonical product structure in a neighborhood of the

boundary dM (see [7] for instance) that is, given a metric #o on dM (in the conformal

class [p2g|ranm]), there exists a smooth set of coordinates (p, y) on M (where p is

a boundary defining function) such that |dp|,2, = 1 in a neighborhood of M and

02glTamr = ho. The function p is uniquely determined by 4, in a neighborhood

of dM . Moreover, on a collar neighborhood near dM, the metric has the form

2
g:w, on (0, &) x M, (1.1)

for some ¢ > 0 and where 4, is a smooth family of metrics on dM. From
this expression, one can prove that the sectional curvatures of (M, g) all converge
towards —1 as p goes to 0.
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The manifold M is not compact and the length of a geodesic a(x, x) joining two
points x and x’ on the boundary at infinity is clearly not finite. However, in [8], a
renormalized length L(x(x, x")) for a geodesic a(x, x”) is introduced, which roughly
consists in the constant term in the asymptotic development of the length of

e (x, x') = a(x, x') N {p > &}

as e goes to 0. This yields a new object characterized by the asymptotically hyperbolic
manifold (M, g) and one can actually wonder, as usual in inverse problem theory, up
to what extent it conversely determines (M, g). Notice that the renormalized length
is not independent of the choice of the boundary defining function p, and thus, neither
of the choice of the conformal representative h( in the conformal infinity.

From now on, we further assume that M has dimension 2 and is negatively-
curved. If M is simply connected, then it is a well-known fact that there exists a
unique geodesic between any pair of points (x, x") € dM x M \ diag, where diag
is the diagonal in dM x dM . The renormalized boundary distance is defined as:

D:OM x OM \ diag — R, D(x,x") = L(a(x,x")),

where L(a(x, x")) denotes the renormalized length of the unique geodesic joining x
to x’. In the terminology of [8], such surfaces are called simple: this definition
naturally extends the notion of a simple manifold (compact manifold with boundary
such that the exponential map is a diffeomorphism at each point) to the non-compact
setting.

More generally, we will deal with the case of negatively-curved surfaces with
topology. Then, the natural object one has to consider is the renormalized marked
boundary distance. In this case, given two points (x, x’) € dM x dM \ diag, there
exists a unique geodesic in each homotopy class [y] € Py x of curves joining x to x’
(P« x being the set of homotopy classes). We define

D= {(x,x",[y]). (x.x') € IM x M \ diag, [y] € Px x},
and introduce the renormalized marked boundary distance D as:
D:D —R, D(x,x',[y]) = L(x(x,x",[y])), (1.2)
where a(x, x’, [y]) is the unique geodesic in [y] joining x to x” and L the renormalized

length. Our main result is the following:

Theorem 1.1. Assume (M, gq() and (M, g,) are two asymptotically hyperbolic
surfaces with negative curvature. We suppose that g1 and g, admit the same
renormalized boundary distances, i.e. D1 = D,. Then, there exists a smooth
diffeomorphism ®: M — M such that ®*g, = g1 on M and ®|ypy = 1d.

Notice that if ®: M — M is a diffeomorphism preserving the boundary, then
Lg = Lgxg, where both renormalized lengths are computed with respect to the same
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representative in the conformal infinity. In other words, the previous theorem asserts
that the action of the group of diffeomorphisms preserving the boundary is the only
obstruction to the injectivity of the map g > Lg.

This result can be seen as an analogue of [11, Theorem 2] for the case of
asymptotically hyperbolic surfaces. It is new even in the simply connected case,
where the marked boundary distance is simply the ordinary renormalized boundary
distance. It is very likely that one can relax the assumption in Theorem 1.1 so that
only one of the two metrics has negative curvature (but still a hyperbolic trapped set).
In the usual terminology, Theorem 1.1 roughly says that an asymptotically hyperbolic
surface with negative curvature is marked boundary distance rigid among the class
of surfaces having negative curvature.

This result follows in spirit the ones proved independently by Otal [17] and
Croke [3] establishing that two negatively-curved closed surfaces with same marked
length spectrum are isometric. More recently, Guillarmou and Mazzucchelli [11]
extended Otal’s proof to the case of two surfaces with strictly convex boundary
without conjugate points and a trapped set of zero Liouville measure, one being
of negative curvature. In both cases, the central object of interest is the Liouville
current 1, which is the natural projection of the Liouville measure p (initially defined
on the unit tangent bundle SM) on the set of geodesics § of the manifold. Our
arguments follow in principle the layout of proof of these articles, but we need to
address new issues caused by the loss of the compactness assumption. The crucial
step in our proof to deal with the infinite ends of the manifold is a version of Otal’s
lemma (see [17, Lemma 8]) with a stability estimate (Proposition 5.4). To the best
of our knowledge, this bound had never been stated before in the literature.

As far as we know, this is also the first boundary rigidity result obtained in
a non-compact setting. There is a long history of results regarding the boundary
rigidity question on simple manifolds in the compact setting. We here mention the
contributions of Gromov [9], for regions of IR”, the original paper of Michel [16] for
subdomains of the open hemisphere and the Besson—Courtois—Gallot theorem [2],
which implies the boundary rigidity for regions of H" (see also the survey of
Croke [4]). In the case of a manifold with trapping, the first general results
where obtained by Guillarmou-Mazzucchelli [11] for surfaces, where the local
boundary rigidity was established under suitable assumptions. Global boundary
rigidity theorems have also recently been obtained by Stefanov—Uhlmann—Vasy [21]
for simply connected non-positively curved manifolds with strictly convex boundary.
Let us eventually mention that boundary rigidity questions appear naturally in the
physics literature concerning the AdS/CFT duality and holography (see [5, 19]).

1.2. Outline of the proof. In Section 2, we introduce the notion of renormalized
length for a geodesic. We heavily rely on the cautious study made in [8] of the
geodesic flow near the boundary at infinity. In Section 3, we recall the definition of
the Liouville current n on the space of geodesics of the universal cover M and prove
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that if the renormalized marked lengths agree, then the Liouville currents agree, just
as in the compact setting.

Section 4 is devoted to the construction of an application of deviation «. Like
in[17], we introduce the angle of deviation f between the two metrics on the universal
cover M. The idea is to make use of Gauss—Bonnet formula, in order to prove that
this angle is the identity. This requires to introduce an average angle of deviation.
Since we are in a non-compact setting, technical issues arise from the fact that the
volume is infinite. In particular, we need to consider its average (denoted by ®,) on
compact domains {p > ¢} parametrized by & and to study their limit as £ — 0.

Because of the possible existence of a trapped set, we are unable to prove a priori
that the averages ®, are C! (or at least uniformly Lipschitz), which would truly
simplify the proof. A cautious analysis of the derivative of the angle of deviation f
is needed to deal with these technical complications. Combined with a version of
Otal’s lemma with an estimate (see Proposition 5.4), this allows to conclude that the
average angle of deviation is the identity in the limit ¢ — 0, which itself implies that
the angle of deviation f is the identity. We then conclude the proof by constructing a
natural application @ which is an isometry between (M, g;) and (M, g,). Eventually,
a last difficulty comes from the fact that it is not immediate that the isometry obtained
is C > down to the boundary of M.

If the reader is familiar with Otal’s proof [17], he will morally see the same
features appear, but the novelty here is that we are able to deal with the asymptotic
ends of the manifold. The price we have to pay is that this requires to compute tedious
estimates in the limit ¢ — 0.

Acknowledgements. We warmly thank Colin Guillarmou for suggesting this result
and fruitful discussions. We also thank the anonymous referee for corrections and
valuable suggestions. We acknowledge partial support from ERC funding COG
IPFLOW No. 725967.

2. Geometric preliminaries

This section is not specific to the two-dimensional case, so we state it in full generality.
(M, g) is only assumed to be an (n + 1)-dimensional asymptotically hyperbolic
manifold. In our setting, it will be more convenient to work on the unit cotangent
bundle rather than on the unit tangent bundle, using the construction of Melrose [15]
of b-bundles.

2.1. Geometry on the unit cotangent bundle.

2.1.1. The b-cotangent bundle. The unit cotangent bundle is defined by

S*M :={(x.§) e T*M |x € M,§ e TIM,[§|> =1}, (2.1)
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and we denote by 7: S*M — M the projection on the base. The geodesic flow
(@1 )ser is induced by the Hamiltonian vector field X, obtained from the Hamiltonian
H(x,&) = %|§ |§, We will denote by b: TM — T*M the Legendre transform
between these two vector bundles, that is v — g(v,-), and by : T*M — TM its
inverse. We stress that we will often drop the notation of these isomorphisms and
identify (without mentioning it) a vector with its dual covector.

There exists a canonical splitting of 7(S™* M) according to:

T(S*M)=H@a®V, 2.2)

where V ;= ker d 7 is the vertical bundle and H := ker X is the horizontal bundle.
XK is the connection map, defined for (x,§) € S*M, Z € T, £(S*M), by

K(Z) = Vi£4(0) € Te M,

where t — z(t) = (x(¢),&(¢)) € S*M is any curve such that z(0) = (x,&) and
z(0) = Z (see [18] for a reference). The metric g on M induces a natural metric G
on $*M, called the Sasaki metric and defined by:

G(Z,7"):=gdn(Z),dn(Z") + g(K(Z), K(Z")) (2.3)

Recall from [15] that the b-tangent bundle bTM — M is defined to be the
smooth vector bundle whose sections are vectors fields tangent to dM. Let V be a
smooth vector field on M. If (p, y1, ..., yn) denotes smooth local coordinates in a
neighborhood of dM , we can write

V=ad,+ ) bidy,,
i

for some smooth functions a, b;. If V' vanishes on the boundary, then a3, = 0, and
we can write @ = pa for some smooth function «. In other words, in coordinates,
(pdy, 0y,) is alocal frame for 5T M. Now, pd,, is well defined on 3M , independently
of the choice of coordinates in a neighborhood of dM. Indeed, if (p’, y’) denotes
another choice of coordinates, then one can write p’ = pA(p, ). ¥; = Yi(p, y) for
some smooth functions (such that A(0, 0) > 0) and one has

/
pd, = (1+ %)p'ap, e %; 90(Y})dy .

that is, both elements pd, and p’d,y agree on the boundary as elements of DT M |

The b-cotangent bundle ? T* M is the vector bundle of linear forms on ®T M . In
coordinates, (p~'dp, dy;) is a local frame of ®T* M and p~'dp on M (the covector
associated to pd,) is independent of any choice of coordinates (and of the metric g).
From the coordinates

(P& = fodp + Y midyi)
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on T*M , we introduce on bT* M the smooth coordinates

()C, E) = (p’ yv§07 T]),

where £ = &p~!, that is

§=&p 'dp+ ) midyi.

In particular, we see from the previous discussion that the function & £o
on ®T*M |sps is intrinsic to the manifold, as well as the two subsets {§g = +1}
of 2T* M |p (they do not depend on the choice of coordinate (p, y), not even on the
metric g).

Note that given £ = &p~'dp + Y inidyi € bT*M , one has:

13

where, here, /1, actually denotes the dual metric on 7*0M . We denote by:

& + o°lnl,»

S*M = {(x,§) €°T*M, [£|7 =1}
One has for x € M:
SEM = {(x,§) € "T"M , & + p*|nf;, =1}
As a consequence, there is a splitting:
S*M = S*M UJ_S*M UdLS*M,

where 94+ S*M = {(x,£),x € M, & = F1} (which are independent of any choice).
We see d_S*M (resp. 04+S*M) as the incoming (resp. outcoming) boundary.

Lemma 2.1 ([8, Lemma 2.1]). There exists a smooth vector field X on S*M which
is transverse to the boundary

IS*M = 9_S*M LU 3.S*M

and satisfies X = pX on S*M. Moreover, Jor x € M sufficiently close to OM, in
suitable local coordinates as before, we have X = 0, + pY, for some smooth vector
field Y on S*M.

The flow on S* M induced by X will be denoted by @,. Forz € S*M and v > 0
such that @;(z) is defined for s € [0, ], one has ¢;(z) = @;(z), where

T 1
s — ——ds. :
z2) L e @4
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2.1.2. Trapped set. The results of the following paragraph can be found in [8, Sec-
tion 2.1]. We recall them for the sake of clarity. For & > 0 small enough, the compact
surfaces M, := M N {p > &} are strictly convex with respect to the geodesic flow.

Lemma 2.2 ([8, Lemma 2.3]). There exists € > 0 small enough so that for each
(x,€) € S*M with p(x) < &,

n—1
§=fodp+ ) &idy,
i=1

and &y < 0, the flow trajectory ¢, (x, €) converges to some point z4 € 94+ S*M with
rate O(e™") ast — +o0 and p(p;(x,£)) < p(x,&) for all t > 0. The same result
holds with &y > 0 and negative time, with limit point z_— € 0_S*M.

We define the tails I'y: they consist of the points in S*M which are respectively
trapped in the past or in the future:

S*M\Tx:={z€ S*M, p(¢:(2))i—+c0 — 0}. (2.5)
The trapped set K is defined by:
K:=T,Nnr_. (2.6)

In particular, in negative curvature, the trapped set has zero Liouville measure. We
can define the exit and enter maps

By:S*M\Ts — 0.8*M

such that
Bi(z) := lim ¢ (2). 2.7
t—>+o00

These are smooth, well-defined maps and they extend smoothly to S*M \ Tz,
where ' is the closure of F:F_in S*M (see [8, Corollary 2.5]). There also exist
smooth functions t4: S*M \ '+ — R4 defined such that:

P (z)(2) = B+(z) € 0+ 5™ M. (2.8)

Using the vector field X, another way of describing the sets '+ is
Ty ={zeS*M, tx(z) = +o0}. (2.9)
The scattering map is the smooth map o: d_S* M \T_ — 9. 5*M \ T'y. defined by:

0(z) := B4(z) = QB‘C_;_(Z)(Z)' (2.10)
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2.1.3. Hyperbolic splitting in negative curvature. In this section, (M, g) has dim-
ension 2 and negative curvature k < 0. Since the curvature at infinity converges
towards —1, we know that « is pinched between two constants —k3 <k < —kf <0.
It is a classical fact that the geodesic flow on such a surface is Anosov (see [6, 12])
in the sense that there exists some constants C > 0 and v > 0 (depending on the
metric g) such that for all z = (x, &) € S*M, there is a continuous flow-invariant
splitting

T,(S*M) =RX(z) ® Ey(z) ® Es(2), (2.11)

where E;(z) (resp. Ey(2)) is the stable (resp. unstable) vector space in z, which
satisfy

ldg:(2) - Z|g < Ce™|Z|g, Vit>0, Z € E2), @5
lde(z) - Z|g < Ce™"M|Z|g, Vi <0, Z € Ey(z). '

The norm, here, is given in terms of the Sasaki metric. The bundles z — Ey(z),
E(z) are Holder-continuous everywhere on S* M. Moreover, the differential of the
geodesic flow is governed uniformly by an exponential growth (see [20, Chapter 3])
in the sense that there exists (other) constants C, k > 0 such that:

ldei(z) - Z|g < Ce¥'|Z|g, Vi >0, VZ € T,(S*M). (2.13)

Let us now fix ¢ > 0 small enough and consider M, := M N{p > e}. Like
in [10], we define the non-escaping mass function Ve (T) on the domain M, by

Ve(T) := p({z € S*M, | Vs € [0, T], ps(z) € S*M,}).
Since the trapping set is hyperbolic, there exists a constant Q < 0 such that

Q := limsuplog(Ve(T))/T.
T—+o00

Note that this constant is independent of ¢ (see [10, Proposition 2.4]). In the rest of
this paragraph, we fix some g9 > 0 small enough. For 0 < ¢ < g9, we want to link
explicitly the decay of the non-escaping mass function V to Vg,,.

Lemma 2.3. Let§ € (Q,0). There exists aconstant C >0 andan integer Ny € N\ {0},
such that for all T > — Ny log(e):

Vg(T) < Ce_(1+45)e_5T.

Proof. For (x,&) ¢ I'_ we denote by £, +(x, &) the exit time of the manifold M,,
that is the maximum time such that: V¢ € [0,€, +(x,&)], ¢r(x,&) € S*M,. By
Santalé’s formula, we can express Ve (T) as:

W0 = [ Carn®) = Tadie,
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2/4 (z',€) = Ye(a, €)
0/

(,8)

{p=0} {o=¢} {p = eo}

Figure 1. The diffeomorphism v/, in the proof of Lemma 2.3.

where x4 = sup(x,0), du, (x, &) = |g(€, ")lia*S*ME (dw)', v is the unit covector
conormal to the boundary, iy¢. M. (dp) is the restriction of the Liouville measure to
the boundary (the measure induced by the Sasaki metric restricted to dS*M,). There
exists a maximum time 7", such that given any (x,§) € 045" M, ¢1.(x,&) has
exited the manifold M,. One can bound this time 7, by log(C¢¢/¢), where C > 0
is some constant independent of (x,&) and & (see the proof of [8, Lemma 2.3]). We
introduce Ty := —2log(e) > T, fore small enough. As aconsequence, for T > 27,
one has:

Vo(T) < f Coort (Ve(x, £)) — (T — 2T)) 4 dtvs
3_S*M.ND,

where
Yo 0_S*M,, — ¥ (0-S*M,,) =: D, C 0_S*M,

&

is the diffeomorphism which flows backwards (by ¢;) a point (x, §) € 0_S*M,, to
the boundary d_S* M, (see Figure 1).

The dependence of 1! on ¢ is smooth down to & = 0: this follows from the
implicit function theorem. In the local product coordinates (p, y), one can write

diy,e = 1/esin(0)h(e, y) dy db,

where [0,7] > 6 +— §£(0) parametrizes the cosphere fiber, 4 is a smooth non-
vanishing function down to ¢ = 0. The point (x, §) corresponds to (y, 6) in these
coordinates and we write (y’,0") = Y. (y,0). If T is large enough, for the integrand
not to vanish, one has to require that the angle 6’ (. (y, #)) is uniformly contained in
a compact interval of |0, r[. In other words, if we fix some constant ¢ > 0, there exists

I'The metric g here actually denotes the dual metric to g which is usually written g ~'. As mentioned
in the introduction, we do not employ this notation in order to keep the reading affordable.
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an integer No > 2 large enough (independent of ¢) such that for T > — Ny log(e),
if 0'(¥e(y,0)) € [0,c] U [ — ¢, x], it will satisfy

(Leg,+(Ye(y,0)) — (T —2T¢))+ = 0.

We can now make a change of variable in the previous integral by setting (y’,0") =
Ve(y,0). Since the dependence of ¥ ! is smooth in & (down to ¢ = 0) and
[0, £9] X {p = &0} is compact, | det(y; ' (3, 6"))| is bounded independently of (y’, 6”)
and e. We get for T > — Ny log(e):

f (Cop s (Wo(x, E)) = (T = 2T2)) 4 e
0—_S*M:ND,
dydo

£

= f (Leo,+ (We(y, 0)) — (T —2T¢)) + sin(0)h(e, y)
3_S*M:ND;

= f (Leo,+ (', 0") — (T —2T5))+ sin(8(y, ' (', 6")))
0_S* My,

h(e, (¥, N (v, 0M))) | det(y, (', 67)]
do'dy’

&

do’dy’

&

<c f (Cops (0.8 — (T —2Tp))4
d0_S* My,

/ /!

0'dy
€0

d
<cet [ (Lo (', #) — (T = 2T)) 1 h(e0, ) sin(8)
9_S* M., +

= Ce™! Veo (T —2T¢),

0

for some constant C > 0 (which may be different from one line to another) and where
the penultimate inequality follows from the uniform bound on the angle (i.e. sin(6”) €
[sin(c), 1]). But we know that for any 6 € (Q, 0), there exists an(other) constant C >0
such that forall T > 0, V,,(T) < Ce= T, Thus, for T > — Ny log(e)

VE(T) < C8—1€—5(T—2T8) < CS_(1+48)6_8T. 0
2.2. The renormalized length.

2.2.1. Definition.  This paragraph provides the definition in [8, Section 4.1]. Let
a(x, x’) be a geodesic in M joining two distinct points at infinity x, x’ € M. For
the sake of simplicity, we will only write « in this paragraph, instead of «(x, x"). The
renormalized length of the geodesic « is the real number defined by:

L(a) := 811_% U N{p = g}) + 2log(e). (2.14)

where £(-) denotes the Riemannian length. This limit exists and is finite by [8, Lem-
ma4.1].
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Note that there is a priori no canonical choice of the renormalized length L insofar
as it depends on the choice of the boundary defining function p. One can actually
prove that if p = e p is another choice, then (see [8, Equation (4.2)]):

L(a(x,x") — L(a(x, x")) = o(x) + w(x).

2.2.2. Action of isometries on the renormalized length. Let y be an isometry on
(M, g), then y acts smoothly on the compactification M (see the arguments given
in §6 for instance).

Lemma 2.4. Let « be a geodesic joining two points x,x' € oM. We have:
L(yoa) = L(@) +n~"log (|dyx|ldyx),

where |dyy| is the Jacobian of y|jm in x with respect to the metric h, n + 1 being
the dimension of M .

Proof. We denote by z = (x, §) the point in d_S*M generating «. Assume for the
sake of simplicity that « is a half-line joining x € dM to a point in the interior M.
Letx, :=aN{p =¢e}and o, := ¢ N {p > ¢}. We define ¢’ := p(y(x.)). We have:

€(as) + log(e) = (¢(y(ee)) + log(e)) — log(e'/e). (2.15)

As ¢ — 0, the left-hand side converges to L («) whereas the term between parenthesis
on the right-hand side goes to L(y(x)), so all is left to compute is the limit of &' /¢
as &€ —> 0. We write ¢/ = p(y(n(pr,(2)))), where t. is defined to be the unique
time such that p(¢.,(z)) = e. By the implicit function theorem, & — t, is a smooth
function of & and it satisfies: p(@y,(2)) = &€ = 7 + O(r2). Thus d,1¢|,_, = | and:

).-)))

limeé'/e = dpy(x)(d Vx (dnz(drs 9z, (z

e—>0 de 0t
= dpy () (dyx(dm: (X (2))))
= dpy ) (dyx(95(x)))-
Remark that at IM , dy,(9,(x)) = A(x)d,(y(x)) for some real number A depending
on x, since y sends geodesics on geodesics. If ny,...,n, € Tx(dM) is an

orthonormal frame for the metric £, one can prove that

h(dyx(mi), dyx(17)) = A2 (x)8;)

by using the fact that y*g = g. As a consequence, the Jacobian of y |37 at x with
respect to the metric 4 is A" (x). Thus:

lime' /e = |dyx|7.
e—0

Replacing this in (2.15), and adding the other part of the geodesic, we find the sought
result. u
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3. The Liouyville current

We denote by M the universal cover of M: itisa topological disk on which we fix an
orientation. All the objects (g, p, X, .. .) liftto M and their corresponding object in
the universal cover is invariant by the action of the fundamental group 71 (M). Since
we will only work on M in the following, for the reader’s convenience, we will often
drop the notation = when the context is clear, except for the universal cover itself M.
We define

= (0M x dM) \ diag,

which can be naturally identified with the set of untrapped geodesics (neither in the
future nor the past) on M . If M is the set of Borel measures on § which are invariant
by the flip, then it is a classical fact from [17] that the Liouville measure induces a
measure n € M called the Liouville current (see also [11] for a proof).

3.1. Expression in coordinates. Given x,x’ € M, we can parametrize «, the
unique geodesic joining x to x’, in the following way: if z = (x,§) € I_S*M
denotes the point generating o, then we parametrize the geodesic by « (1) = ¢;(m(z)),
where m(z) = @1 (z)/2(2) is the middle point (this is a smooth map according to
Section 2.1.2). We set y(t) := m(a(t)). We define

Vi=A{(r,0) e R x(0,7),(y(v), Roy(r)) - UT4}, 3.1)

where Ry is the rotation by a positive angle 6 in the fibers of S *M. For x,x’ € M,
we denote by F (x, x’ ) C g the open subsets of points (y,y’) € & such that the
geodesic joining y to ¥y has a transverse and positive (with respect to the orientation)
intersection with the geodesic « in M . If we further assume that x,x’ € M, we
can consider the diffeomorphism ¢: V' + % (x, x’) defined by ¢(z,0) = (y,)’),
the two points in dM such that the geodesic connecting them passes through the
point (y(t), Rgy(7)) € S*M . The following lemma is a well-known fact (see [11,
Lemma 3.1] for instance) and we do not provide its proof.

Lemma 3.1. ¢*n = sin(f)df dr.

Remark 3.2. In negative curvature, the tails I'_ U 'y have zero Liouville measure.
This implies that the set V' C R x (0,7) has zero measure in R x (0, ) (for
the measure sin(f) d6 dt). In particular, we will ignore trapped geodesics in the
computations of the integrals of Section 4.4.

From the previous expression in coordinates, we recover the classical formula for
x,x" € M (see [17]):

x pd(x,x")
n(F (x, x')) = [ f sin(0) df dv = 2d (x, x'), 3.2)
0 0
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where d (-, ) denotes the Riemannian distance between the two points. For x, x’ € oM
and ¢ > 0 small enough, we denote by x, and x, the two intersections of « (the
geodesic joining x to x") with {p = ¢} in a respective neighborhood of x and x’. We
have:

N(F (xe, x1)) + 4loge = 2(d(xg, x,) + 21log &)
=2 N{p>¢e})+2loge)
—>e—0 2L(C¥)

3.2. Liouville current and boundary distance. Let g; and g, be two negatively-
curved metrics such that their renormalized lengths agree. We denote by 1, and 7,
their respective Liouville currents.

Lemma 3.3. n; = 3.

Proof. Werecall that 9 M is a countable union of real lines embedded in the circle S'.
The topology on dM is that naturally induced by the topology on S!. It is sufficient
to prove that the two measures coincide on rectangles, namely on subsets (x1, x3) X
(x3,x4), such that (xj, x2), (x3,x4) C dM are two intervals with disjoint closure,
since they generate the Borel o-algebra. We actually prove the:

Lemma 3.4. n((xl : XZ)X()C:),, )C4)) = |L(x1 ; JC3)-|—L(.7C2, X4)—L(X2, X3)—L()C1 ; X4)|.

Note that that n((x1,x2) X (x3,Xx4)) = |[X1,X2, X3, X4]|, the cross-ratio of the
four points (see [14]). In particular, this proves that the right-hand side of Lemma 3.4
is a cross-ratio in the sense of [14], which may not be obvious at first sight. Actually,
the properties of symmetry are immediate and the invariance by the diagonal action
of the fundamental group follows from Lemma 2.4.

Given some ¢ > 0, we introduce the four horospheres H;(¢g),i € {1,...,4} such
that H;(¢e) intercepts x; and the point defined as the intersection of the geodesic
a(xi,xi+2) (i + 2 is taken modulo 4) with {p = &} in a neighborhood of x;.

{p=¢}

{p = 0}

1

Figure 2. Left: The four horospheres and the lengths §; (¢). Right: The horosphere H ().
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We have:
L(x1,x3) + L(x2,x4) — L(x2,x3) — L(x1,X4)
= slgr(l) Lla(xy,x3) N{p>e})+2loge + L(a(xz,x4) N{p>e})+2loge
—l(a(x2,x3) N{p>¢e}) —2loge — L(a(x1,x4) N{p >¢€}) —2loge
= lim £(a(x1, x3) N {p > &}) + E(@(n2, xa) N {p > e}) — Ealxz, x3) N {p > &)

—L(a(x1,x4) N{p > &})
= E“_ff('} Lo (xy, x3) N Hexi(8)) + €(a(x2, x4) N Hey(e)) — L(at(x2, x3) N Hexi(€))

= L’(a(xl,x4) N Hex[(a)) = 81 (8) - 82(8) — 53(8) — 54(8),

where §; (¢) is the algebraic distance on the geodesic between its intersection with
H;(s) and {p = &}, positively counted from x;, and He () := M \ U,‘-‘le,- (e).
Now, we know that the quantity

[€(a(x1, x3) N Hexi(€)) + £(a(x2, x4) N Hexi(€))
— L(a(x2,x3) N Hexi(e)) — €@ (x1, X4) N Hex(8))]

is actually independent of ¢ and equals 7n([x1, x2] X [x3, x4]) (see [23] for instance). It
is thus sufficient to prove that 6; (¢) — 0 as & — 0. Let us consider 6; (¢) and & small
enough so that we can work in the coordinates where the metric g can be written in
the form g = p~2(dp? + h?(p, y)dy?) for some smooth positive function A2 (down
to the boundary).

We have:

81(e) = d(ce, be) < d(ce,ae) +d(ae. be) < d(ce.as) + l([asibe])s

where the points a,, b, g, de are introduced in Figure 2, [ag,be] denotes the
Euclidean segment joining a, to b.. Note that by construction d(cs,a,) — 0
as ¢ — 0 (the points are on the same family of shrinking horospheres).

The two geodesics a(x, x3) and «a(xy, x4) with endpoint x;, seen as curves
in M, can be locally parametrized by the respective smooth functions (p, y3(p)) and
(p, y4(p)), according to the implicit function theorem since the geodesics intersect
transversally the boundary (see Lemma 2.1). One has by derivating at p = 0 that

Aid, = 0, + y{(0)d,

for some constant A;, that is y;(0) = 0 and A; = 1. In other words, we can
parametrize locally both geodesics by (p, yo + @(p?)), where yq is some constant
depending on the choice of coordinates. Thus,

|y(ae) — y(be)| = (9(82)-
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If we choose a parametrization y(t) = (g, y(ae) + 1 (y(be) — y(a.))), for t € [0, 1],
of the euclidean segment [a,, b.], then one has:

1 1
0(ae, b)) = jo g (). 7)) dt = 7y (be) — y(as)| fo h(y() dt,

where the integral is uniformly bounded with respect to €. Thus, by the previous
remarks, / ([a;, b:]) = O(g), which concludes the proof. O

4. Construction of the deviation «

In this section, for the sake of simplicity, we will sometimes write A = @(&*°) in
order to denote the fact that for all n € N \ {0}, there exists C,, > 0,&, > 0 such
that: Ve < ¢,, |A| < C,&".

4.1. Reducing the problem. Suppose g; and g, are two asymptotically hyperbolic
metrics like in the setting of Theorem 1.1 that is, they are both negatively-curved and
their renormalized distances coincide for some choices of conformal representatives
in the conformal infinities. In local coordinates (p, y), for i € {1, 2}, one can write
gi = p~>(dp®+h,,;), for some smooth metrics 4, ; on M (note that this is the same
boundary defining function for both metrics, see [8, Section 4.2]). By [8, Theorem 2],
there exists a smooth diffeomorphism ¥: M — M fixing the boundary such that
Y*g1 — g2 = O(p™) at M (thatis hp1 —hy2 = O(p>)). In the following, we
will argue with this new metric ¥*g; but we will still denote it g; for the sake of
simplicity.

Remark 4.1. In particular, this implies that the respective renormalized vector fields
satisfy X1 — X, = O@(p*>) at AM, that is their C*°-jet coincide on the boundary.
By Duhamel’s formula (see [22, Lemma 2.2] for instance) this implies that on the
boundary _S*M, for any k > 0, one has [|¢! — @2||cx = O(x™).

4.2. The diffeomorphism . We denote by M, :== M N {p > &} and by M, its lift
to the universal cover. Like before, all the objects are lifted on the universal cover.
Unless it is mentioned, we will drop the notation ~, except for the universal cover
itself. S*M; will denote the unit cotangent bundle with respect to the metric g;.
%, and §, denote the set of geodesics connecting points on the ideal boundary M,
with respect to the metrics g; and g,. They will sometimes be identified with
M x OM \ diag.

Given (x,£) € S*M;\I'' UT'L, we denote by (z, z') € M xdM (resp. (v, y') €
M x oM ) the two points on the ideal boundary induced by the geodesic carrying
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the point (x, £) (resp. (x, Rg€) if @ € (0,7) and (x, Rg&) € S*My \TLUTL). This
defines a map:

ki Wy — 6 x 6 \diag, k1(x,£0) = (z,2,y, ),
where
Wi = {(x,£,0) € S*My x (0,7) | (x,£). (x, Rg§) ¢ (TLUTL)}.

The map «; is clearly bijective. It is smooth because each of the coordinates
(z,Z’, y, ") is smooth. Indeed, one has for instance

z(x,§,0) = ”(@;,(x,g)(x»é))a

and this is a smooth application according to Section 2.1.2.

The g,-geodesics with endpoints (z,z") and (y, y) intersect in a single point
(X(x,&,0), g (x,£,0)) (where E is the covector on the g»-geodesic with endpoints
(z,2')) and form an angle f(x,§£,6), which we call the angle of deviation. This
defines a map

Ri=iky ok W — Wa, R(x,£0) = (X(x,£0), E(x,£,0), f(x,£,8)), &.1)

where Wz is defined in the same fashion as Wl. By the implicit function theorem,
one can prove that x5 1 is smooth and thus ¥ too. It is a bijective map whose inverse
K1 = k! o Ky is smooth by the same arguments. As a consequence, ¥ is a smooth
diffeomorphism. Moreover, it is invariant by the action of the fundamental group
and thus descends to the base as amap «: (x,&,0) — (x, E, f).

4.3. Scattering on the universal cover. On the universal cover M , the renormalized
distance can actually be extended outside the boundary, namely we can set for
p.q € M:

D;i(p.q) := di(p,q) + log(p(p)) + log(p(q)).

where d;, i € {1, 2} stands for the Riemannian distance induced by the metric g;. D;
is clearly smooth on M x M \ diag and using the fact that there exists a unique geodesic
connecting two points, one can prove like in [8, Proposition 5.15], that the extension

of D;j to M x M \ diag is smooth. Now, as established in [8, Proposition 5.16]
the renormalized distance on the boundary actually determines the scattering map o;
(defined in (2.10)), that is:

Proposition 4.2. If L = L,, then o0y = 05.

The proof also applies here, in the universal cover. It is a standard computation
since we know that D; is differentiable, which relies on the fact that the gradient of
q — Li(a(p,q)) (for p,q € dM) is the projection on the tangent space T,,d M of the
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gradient of ¢ — D;(p, q) and the latter corresponds to the direction of the geodesic
joining p to ¢ when it exits M.

We fix ¢ > 0 and define S*M; = S*M; N {p > &}. Fori € {1,2}, given
(x,8) € a_S*M;‘ we can represent the vector £ = £(w) by the angle w € [0, ]
such that sinw = |g;(v;(x), &)|, where v; stands for the unit covector conormal to
{p = &} (with respect to the metric g;).

Lemma 4.3. There exists an angle w. (only depending on ¢), such that for all
(x,&(0)) € 9_S*M}I\ T'L, given by an angle w € [w,, w — wy), if @1 (p. ) denotes
the g1-geodesic generated by (x, £), with endpoints (p,q) € M x dM, then the
ga-geodesic aa(p, q) with endpoints p and q intercepts the set {p > &}. Moreover, for

any N € N\ {0}, there exists ey > 0 such that for all ¢ < sy, we can take w; = &V

Proof. Let(x,&) € 0_S *]1781 We set ourselves in the coordinates (p, y) induced by
the conformal representative h. The trajectory

t > (p(t), y(2), &0 (1), n(t)) € S*M

of the point (x,&) under the flow X is given by Hamilton’s equation (see [8,
Equation (2.8)]). Flowing backwards in time with ¢;, we know that (x, £) converges
exponentially fast towards a point (p, &) € d_S*M (see [8, Equation (2.11)]) in the
sense that there exists a constant C (uniform in the choice of points) such that:

Vi <0, p(t)<Cp0)e ! =gce .

In particular, the time 7_(x,£) taken by the point (x, £) to reach (p, ) with the
flow ¢! is (see (2.4)):

0
r_(x,E):/ p(t)dt < Ce.

—00

We also know, according to Hamilton’s equations (see [8, Equation (2.8)]) that

p(0) = p*(0)&0(0) = &sin(w),

where w satisfies £9(0) = p&o(0) = sin(w) = |g1(€, v1(x))|. Let us fix an integer
N > 0and assume that eV < w < 7 — &V, Then p(0) > 2/x - eV 1 50 there exists
an interval [0, §] such that for ¢ € [0, §]:

e4t/m-eNT<e+41/2-p(0) < p(t) < 2e.

In particular, p(§) > & + 8/m - eV 1.
We go back to the flow @!. By our previous remark, we know that there exists a

time:
8

70 < Ce—i—f p(t)dt < C'e,
0
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such that (@l (p.¢)) > & + 8/m - eV *2. Butsince g1 = g2 + O(p™), we know
that X; = X, + O(p™) and X; = X, + O(p™). Moreover, since the scattering
maps agree according to Proposition 4.2, we know that the two geodesics a1 (p, q)
and a,(p, q) are both generated by (p, {). As a consequence, one has:

P(@: (P, 0)) = PPz (p,£)) + O ™)

(the remainder being independent of (p,{)). In particular, since tp < C’e, there
exists a constant C” > 0 such that

0@, (P, ) — p(Fr, (P, )| < C"eVH2.
Thus: )
p(@2 (p. ) = e+ ;sN“ — PN

if ¢ is small enough. O

(p, C)J N
N Pe(z,€)

SE (z,8)

as(p, q)

{p=c¢}
Figure 3. The diffeomorphism 1}8.

In the following, we assume that such an integer N is fixed (and taken large
enough) and we apply the previous lemma with N' 4 1, thatis w, = g,
This allows us to define a map 1 on

= {(x, &) € S*M", £ 20, w € [p(x)N 1, — p(x)VH1]},

in the following way: to a point (x,&§) € U, which we see as a boundary
point (x,§(w)) € 9-S *M ! for ¢ = p(x), we associate the boundary point
(x', &) = w(x £) such that W(x §) € 0— S"‘M2 is the point on the g,-geodesic
connecting p tog. A formal way to deﬁne 1// is to mtroduce another diffeomorphism
Vs U — 3_S* M x [0, 00) such that 1”1 (x,8) = (qpr e E)()c £), p(x)) and to set

J}(X’ E) = 1}2—1 © {51 ()C, ‘i:) = @p (@_(x,g) (x, g))a (42)
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where ¥, is defined in the same fashion and 7, is the time taken to reach the
hypersurface {p = p(x)}. Note that v(x, &) exists according to the previous lemma
and this point is well-defined (it is unique) according to Lemma 2.2. Moreover, it
is smooth on U thanks to the results of Section 2.1.2 (this mainly follows from the
implicit function theorem). Eventually, it is invariant by the action of the fundamental
group and descends on the base as a map . We write U, := U N {p = &}. What
we need, is to prove that 1; is the identity plus a small remainder.

Lemma 4.4. |V, —Id [|c1 = O ().

Proof. Since the two trajectories are @ (™) close, so will be the times 7, and
—1—(x, &) by which the g;- and g,-geodesics generated by (p, {) hit {p = ¢} (this
can be proved by contradiction for instance, like in the proof of Lemma 4.3), which
implies that ¥, (x, £) = (x, &)+ @(c>), where the remainder is uniform in (x, £). To
obtain a bound on the derivatives, we see from the expression (4.2) and the fact that
the two flows are 9 (¢*°) close in the C'-topology (Remark 4.1), that it is sufficient
to show that the times satisfy 7,(x,£) = —1_(x,£) + O(¢*) in the C!-topology
with a uniform remainder. Let (p,{) = @] ,(x,£). We have

PP (r)(P0) =& =p(@7 (P, D))

We are interested in the variations of x along {p = &} and of the angle & (w). If we
denote by z any of these two parameters, we get by derivating the previous equality:

dr_ — _ ot — s

—S=dp(X)) + dp(d,_(d:(p. ) = SLdp(X2) + dp(d 2, (@ (p. ).
The two terms containing the differential of the flow coincide to order O () and
we also have dp(X>) = dp(X1) + O (™) by Remark 4.1. Thus:

(-2 -T2V ap(k) = 0.

Z 0z
But dp(X,) is precisely the sine of the angle with which the geodesic generated
by (p, &) enters the set {p > &} and this angle is contained in [¢V, 7 — V] by
construction of the set U, so dp(X;) > V. By dividing by dp(X;), this term is
swallowed in the @ (£°°), which provides the sought result. ]

Given (x,§) € 8_S*A71‘;, we denote by Ei&(x,&') the length of the geodesic

generated by this point in A?g. Note that by strict convexity of the sets {p > ¢} the
intersections of the geodesics (for both metrics) with M, have a single connected
component, so this length is well-defined.

Lemma 4.5. ||€; g == ﬂg, 4L © Vsllco = O(e®), where the sup is computed over
A_S*MI\TL,
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Proof. Recallthat (p,{) € 0_S* M is the point obtained by flowing backwards (x, £)
down to the boundary. If D; denotes the renormalized distance for both metrics, then
we have:

D](]), )C) - DZ(p’x/(-xa C())) st (9(800)’
where the remainder is independent of (x, £). Indeed, considering 0 < ¢’ < ¢, and
denoting by o (p, x) the g1-geodesic joining p to x, one has:

1

Tg d
ten(p. 1o > O +oae' = [y

&

+log &

= f ) ’(Wfl);(u)du + logé’,

where r£1 and rsl, are defined such that
P(‘Etlsl (2)) = & P(@lll (z)) = &

and y1:s — p(@l(z)) is a diffeomorphism. Note that ¥(0) = 0,v{(0) = 1.
By assumption, the two metrics are close, thus ¥;(s) = ¥a(s) + O(s*°) and
one can check (by induction) that this implies that (y; )% (0) = (v, H®(0)
for all k € N, that is ¥ ' (1) = ¥5 ' () + Ou). Inserting this into the previous
integral expression, we get the claimed result.

The same occurs for the other bits of the geodesics: namely, if y and y’ denote
the exit points of 1 (p, ¢) and a2 (p, q) in M,,then Dy (q, y) = D2(q, y") + O (™).
Now, using the fact that the renormalized lengths agree on the boundary, we obtain:

Di(p,q) = Di(p,x) +di(x,y) + D1(y.q)
= D1(p.x) + 4 (x, ) + D1(¥.9)
= D2(p.q)
= Dy(p,x') +E§,+(V78(X, £)) + D2y, q).

Thus: €1 (x,£) = 2 (Ve(x.£)) + O(). O

4.4. The average angle deviation. The angle of deviation ]7 satisfies two element-
ary properties:

Lemma 4.6. (1) It is w-symmetric, that is, for almost all (x,£) € S*M,, 0 € [0, 7],
f(x.£,0) = x— [(x, Ro§, 7 —0). 4.3)

(2) It is superadditive in the sense that, for almost all (x,§) € S *1\21, 01,0, € [0, ]
such that 61 + 0, € [0, «],

S, E,600) + fx, RoyE,62) < f(x, 6,61 +62). (4.4)
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We will denote by J:9; — ¥, the map that associates to a gi-geodesic with
endpoints z, z’ € M the g,-geodesic with same endpoints. Note that when §; and §,
are identified with dM x dM, J is simply the identity, but we will rather see §; as
the set of geodesics connecting two boundary points.

Proof. The sr-symmetry is obtained from the very definition of ]7 . As to the
superadditivity, it follows from Gauss—Bonnet formula in negative curvature. Indeed,
consider the three geodesics «q, f1, 1 of ﬂl, respectively carried by the points
(x,8), (x,Rp,§), (x, Ry, +6,6). Their image by H (that is the corresponding
g2-geodesics with same endpoints) are three geodesics

ar = H(ar), P2=H(B2), y2=H(y2),

forming a geodesic triangle which we denote by 7', with angles

f(x,£,61), f(x,ReE 602, f(x,Ro1o,E 7 — 61— 6,).

Now, we have by Gauss—Bonnet formula:

0> [ k dvolg = f(x,£ 01)+ f(x, Re,£,02) + f (x, Re, 10, 7w — 01 —62) — 1.
T

4.5)
Using -symmetry, we obtain inequality (4.3). L]

Note that the inequality (4.4) is saturated if and only if the geodesic triangle is
degenerate, that is it is reduced to a single point, since the curvature is negative. As
mentioned previously, f descends on the base as a function f which also satisfies
the properties of Lemma 4.6.

One of the ideas of Otal was to introduce the average angle of deviation. Since we
work in a non-compact setting, we are forced to consider partial averages depending
on &. We define for fixed ¢ > 0:

®£(9) = .f(xa 'i:’ 9) d)“‘l (x’ S) (46)

1
VOlgl (S*Msl) AL*MSI

It also satisfies
B.(0) = 0,0.(7) = =. 4.7)

Since the rotations Ry preserve the Liouville measure, by integrating over S*M /!
the relations (4.3) and (4.4) given in Lemma 4.6, we see that ®, also satisfies the
m-symmetry:

VO € [0,r], O (0) =m — O (7 —0), (4.8)

and the superadditivity:

V01,0, €[0,7], sit. By + 6, € [0, ], O (0)) + O(02) < OL(01 + 62). (4.9)
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We now show that ®, satisfies the following lemma.

Lemma 4.7. Let J:[0, 7] — R be a convex continuous function. Then:

T

f i J(©,(0)) sin(0) do < f J(O)sin(0)dO + || J |L<O(Y),  (4.10)
0 0

where the remainder only depends on g, N is fixed by Lemma 4.3.

Figure 4. A picture of the situation: in dark grey, the g2-geodesics, in light grey the g1-geodesics.

The proof of this lemma relies on the use of Santald’s formula, together with
the fact that the Liouville currents coincide. But let us make a preliminary
remark. Consider (x, £(w)) € ELS*AZSI with @ € [w.,m — w]. It generates
the gi-geodesic a1 (p, ¢) with endpoints p,g € dM which enters (resp. exits) M,
at x (resp. ¥). We denote by o, the g,-geodesic joining p and g which enters
(resp. exits) M, at x’ = x'(Y(x, £)) (resp. y'). Let us denote by F1(x, y) C € the
g1-geodesics which have a positive transverse intersection with the geodesic segment
al i=a1 N M,. F»(x',y") denotes its analogue for the second metric, that is the
go-geodesics having a positive transverse intersection with oegz =o N AZ;.

Since J preserves the Liouville measure (that is #,n; = 1,), we have:

m(F1(x, y)) = n2(H(F1(x, ))).

We could hope that J (%1 (x, y)) = F2(x’, y’) but this is not the case (see Figure 4),
insofar as there is a slight defect due to the fact that we are not looking at points
on the boundary, and this is where the arguments of Otal fail to apply immediately.
However, we have:

Lemma 4.8. 71(F1(x,y)) = n2(F2(x', y")) + O(e*), where the remainder is
independent of (x, §).
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Proof. 1t follows from Lemma 4.5, combined with equation (3.2). L]

We can now establish the lemma on convexity. We will denote with a tilde ~ the
objects on the universal cover.

Proof. duy/volg, (S*M}) is a probability measure on S*M_! and by Jensen
inequality, we have, for all 6 € [0, n|:

J(B(0)) = J(f(x.§,0)dpr(x,5).

1
oS
Multiplying by sin(@), integrating over [0, 7] and applying Fubini’s Theorem, we
obtain:

f " J(@,(0)) sin(0) do
0

1 T .
= VOIgl(S*MgI) »[S'*Mglj(; J(f(xa‘i:a9))Sln(0)d9dl_,l,l(x’§)

Using Santald’s formula, we obtain for the last integral:

/ f J(F(x, E, 0)) sin(0) 46 dps (x, )
s*mt Jo

& L (x8) pn
—[ T [ 9066 sin6) d6 d du (.6,
a_s*ml! Jo 0

where du1,(x, &) = |g1(€, U1)|i;S*M81 (dt1), vy is unit covector conormal to the
boundary, i 5‘ % M (duy) is the restriction of the Liouville measure to the boundary
(the measure induced by the Sasaki metric restricted to 3S*M,), and K;’ +(x.8)
is the length of the geodesic starting from (x,&) in M,. Note that we would
formally need to remove the set of trapped geodesics when applying Santalé’s formula.
However, as mentioned in Remark 3.2, they have zero measure and do not influence
the computation, so we forget them in order not to complicate the notations. By
parametrizing each fiber d_S* M, with an angle w € [0, 7], we can still disintegrate
the measure d 11, =sin(w) dw dx, where dx is the measure induced by the metric g4
on dM, and dw is the measure in the fiber 8_S*M81, so that:

[ " I(f(x. £, 6)) sin(8) df dpuy (x. £)
s*ml Jo
b4 Eé (x,8) prm
:faMgfo fo v /0 J(f (@l (x,£),0))sin(®) dO d sin(w) dw dx

s EES (x"i:) T
B j f ) f J(f(pl(x,£),0))sin(8) d dtsin(w) dw dx
Mg Jwg 0 0
+ ||J”Loo(9(8N)
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Recall that we applied Lemma 4.3 with w, = ©@(e¥+!). The loss of 1 in the
exponent is due to the fact that we have to swallow uniformly the lengths £! et (x,8) =
O(—log &) in the integral.

Let us fix (x, £(w)) € d-S*M ]} \ I'_ and consider one of its lift on the universal

cover (X, ?;‘ (w)) € 9_S* M 1\ T'!. It generates a geodesic with endpoints (p, ) €
dM x dM . We can rewrite the integral

eé, (x,8) pm
[ ’ f J(f (s (x,§),0))sin(0) dO dt
0 0 ) )

B,EH o
_ f ’ [ J(F(@(E.B).0))sin(6) db d.
0 0

We will now use the diffeomorphisms ¢;: V; — F(p,q) (for i = 1,2) introduced
in Section 3 (see Equation (3.1)). The g;-geodesic joining p to ¢ is denoted by
a1(p,q): we choose a parametrization y: R — «1(p, g) by arc-length using the
middle point (see Section 3). Remark that the composition ¢ 1o ¢1: V1 — V3 has

the form (¢,0) — ( -, _f(y(t), y(7), 0)) (the first coordinate is of no interest to us).
Moreover,

(95" o p1)*sin(0)dOdt = pina = ¢ = sin(0) db d,

since the two Liouville currents agree according to Lemma 3.3. We have:

(LN EA)
f f J(F @A B).0))sin(6) db d
0 0
=¢im(J o ¢, oy e & Hixion)
=m(od;, - 1g,x5)

=n(J o ¢ 1@ &)
=n(J oy 1w .5) + I/ [|Leo O (%)

2 @E) pn
— [ [ J(0)sin(0) df dt + ||| oo O (%)
0 0

— 2, @.F) fo J(8)sin(8) d + | [ 1= O (™),

where the fourth equality follows from Lemma 4.8. The constant 7" on the second
line is unknown and appears in the choice of parametrization of the geodesic segment
a1(X, y) but does not influence the computation. The point (X, "g' ) = ¥ (%, é) is
the image of (X, f;') by the diffeomorphism Ws defined in Section 4.3. We recall that
this diffeomorphism is invariant by the fundamental group and descends on the base

as Y¥e.
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Inserting this into the previous integrals, we obtain:
b
[ [ g0 sin@) a0 dx.
s*m} Jo

_ f " J(0)sin(0)d6 [ [ R e, E0))) sin() dio dx
0 aMg Wge
+ [ L@ (™).

According to Lemma 4.4, we know that ¥, = Id +©(¢®) in the C! topology. In
particular, the Jacobian of ¥, is 1 + (9(¢°°) and by a change of variable:

/3M f — 8g§a+(%(x’g(w))) sin(w) dw dx

b3
= [ f 12(x, £") sin(w”) do’ dx' + O (V)
M. Jo
= volg, (S*M?2) + O(N)
= volg, (S*M}) + O(N),

where the two volumes agree to order @ (V) according to the same computation with
J = 1. Inserting this into the previous integrals, we obtain the sought result. [

Remark that we can actually consider in Lemma 4.7 a family of functions J,
instead of a single function. We can assume that ||J¢||zo = O(1/&%), for some
« > 0 which we may take as large as we want. Then, we can always apply the lemma
with N' := N + |a] + 1, so that in the end, the sup norm || J¢|| o0 is swallowed in
the term @ (V). We actually obtain for free a better version:

Lemma 4.9. Let N € N \ {0} be an integer and o > 0. Let J.:[0, 7] — R be a
family of convex continuous function such that || J¢|| Lo = O(e™%). Then:

f " J.(0.(8)) sin(6) df < f ' J.(0)sin(9) do + O(N),  (4.11)
0 0

where the remainder only depends on e.

5. Estimating the average angle of deviation

As mentioned previously, we are unable to prove a priori that the ®, are uniformly
Lipschitz. Nevertheless, we can show that they decompose as a sum @2“) + @)g”)
where the @ﬁ") are Lipschitz (and their Lipschitz constant is controlled) and the (H)S’)
have a “small” C° norm. This will be sufficient to apply our version of Otal’s estimate
(see Proposition 5.4).
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Note that we will sometimes drop the notation C for the different constants which
may appear at each line of our estimates and rather use the symbol <. By || 4| < || B,
we mean that there exists a constant C > 0, which is independent of the elements A
and B considered and such that, |A]| < C|| B]|.

5.1. Derivative of the angle of deviation. The purpose of this paragraph is to est-
imate the derivative (with respect to #) of the angle of deviation f. We recall
that

Wi = {(x.£,0) € S*Mi x (0,7) | (x,), (x, Ro§) ¢ (TLUT)}.

Lemma 5.1. There exist constants C,k > 0 (independent of &) such that for all
(x,£,0) € S*M} n Wy

of
060

Proof. We can write the derivative of f as:

of _af ¢dy'y  9f (0
5- L)

(x.8,0)| = C exp (K (€4 (x. Ro) + |EL_(x, Ro)])).

where y and y’ are defined in Section 4.2 and study the different terms separately.

The idea is to study the behaviour (and more precisely the growth) of Jacobi
vector fields in a neighborhood of the boundary. Given a geodesic which enters the
set {p > &}, we will use the bounds (2.13) to estimate the Jacobi vector fields on the
segment contained in {p > ¢}. Then, by convexity, the geodesic exits {p > ¢} with a
coordinate £ < 0. On the set

€ = {p <8 N{f <0}

(for some § > 0 small enough), we can study the behaviour of the geodesics more
explicitly. Namely, given any point (x,£) € S*M in €, we know that it converges
uniformly exponentially fast to the boundary in the sense that there exists C > 0
(uniform in (x, &)) such that if p(t) := p(p:(x, §)), then one has

p(0)e™ < p(1) < Cp(0)e™

for t > 0 (see [8, Lemma 2.3]). From the expression of the metric (1.1) in local
coordinates, one can check that the curvature is given by x = —1 + p - O(1). As
a consequence, if k(f) = k(w(p:(x,£))) and § > 0 is chosen small enough at the
beginning, one has that

1 1
—1——e P <k(t) <—-1+—e,
0¢ Sk =-l+4ge
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for any such (x,§). If t — y(¢) denotes the geodesic generated by this point and J
is a normal Jacobi vector field along y, we write

J(t) = j(t) R 27 (1),

where j satisfies the Jacobi equation J(@®) + k(@) j(t) = 0. Assume j(0) =0,
j(0) =1, then j(z) > O (there are no conjugate points) and thus

i < (14 5¢7)j 0.

By a comparison argument, j(t) < z(t) where z is the solution to Z(t) —
(1 + e ™)z (1) = 0 with z(0) = j(0), 2(0) = / (0).

But making the change of variable u = 2+/10¢7!/2, Z(u) = z(¢), one can prove
that Z solves the modified Bessel equation of parameter 2 that is

o e P - 2 =10

and thus Z(u) = A - I>(u) + B - K»(u) for some parameters A, B € R depending

on Z(0), Z(0), I, and K, being the modified Bessel functions of first and second
kind. Thus:

z(t) = A+ L (2v10e77%) + B - K»(2+/10e7"/?),
where
12(2\/Ee_t/2) ey s 1 o6 Ce_t, K2(2\/Ee_’/2) ~t—>+400 Cet

(see [1, 9.6.7-9.6.9]). For instance, if j(0) = 0, j (0) = 1, which corresponds to a
vertical variation of geodesics, then we obtain

ldm o de, (V)| = |J(1)] < Ce’

for some constant C > O independent of the point. Using this technique of
comparison and decomposing any vector by its vertical and horizontal components,
one obtains that

Idee (x, §)Il < Ce'

for (x, £) € €, where the constant C > 0 is uniform in (x, ).

We fix (xo, £o, 6o) and look at the variation € > (xo, Rg,+¢&0). For each 8, we
thus have a g-geodesic ¢ — yp(t) generated by this point and it hits the boundary
in the future at y’(0). We set y := y9. We denote by J(z) := dgyg(t) the Jacobi
vector field along y. Writing in short £} . = £} ,(x0, Rg,0), V = V(x0, Rg,0),
we havefort =5 + [, 5 > O:

[ (Olg, = ldn odg, 1 (V)] < Celdm o dpy, (V)] < Cefeke,
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The first inequality follows from our previous remarks whereas the second one is a
consequence of (2.13). Now, we know that

p(ﬁ},_,s)e_s =¢ge* <pt)<Cee™ = Cp(f}he)e_s.
As a consequence, for ¢ large enough, we have:

1Tz, = pO1T(O)]g, < C - ee*tre,

’ 1
By making t — 400, we obtain that |%—y9|;, < C -gefbte,

Conversely, we consider a family of points y’(u) in a neighborhood of y; on the
boundary (such that |%—): | = 1) and we look at the g,-geodesics joining y to y'(u).
They intersect the g,-geodesic joining z to z” (the endpoints of the geodesic genreated
by (x, £)) at some point x(u), and we obtain (x(u), E(x)) and an angle f'(#). From
another perspective, we have a family of points (x(u), R rq,)E(v)) which generate
geodesics joining y’(u) (in the future) to y (in the past). Like before, we denote by y
the geodesic obtained for ¥ = 0 and by J the Jacobi vector field along y. Since the
point y joined in the past by the geodesic is fixed (it does not depend on u), J (more
precisely, its lift in 7S* M) lies in the unstable bundle. We write

3y (x(), R o) B () = dn ™ (J(0) + K1V J(0)) = A -&u,

where &, is one of the two unit vectors (with respect to the g,-Sasaki metric)
generating F,,. Note that the vertical component of this vector is precisely %V

and thus |A| > |%|. We write Ei,e - Ei’s(x, RsE). Fort = s + E%ﬁs,s > 0:
[J(Dlg, = ldmw o dpi(A&4)]
= A+ ldmodps(dep (Eu))]
> M- 'ldgz ()l

0
= C|A|esekeiss > C‘a—f eSeklis,
u

2
The term in e*“+.¢ follows from (2.13) whereas the term e* is a consequence on the

bounds of the curvature. More precisely, for fixed bounds, that is —k% <K< —klz,
such a lower bound is obtained in [13, Theorem 3.2.17], and the same proof applies
here, except that we have bounds —1 — %e" < k(t) < -1+ Il—oe_t. But the
argument of Klingenberg is based on Gronwall lemma and ¢t + e is integrable,
so we get the same result in the end. Multiplying by p(#) and taking the limit as
t — +o00, we eventually obtain that |%iu,|;z == | & Csekﬂiﬁl%l.

Putting the previous bounds together, and using (5.1), we obtain the sought
result. ]
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5.2. Derivative of the exit time. We set 7, = — Ny log ¢ for some integer Ny, like
in the proof of Lemma 2.3.

Lemma 5.2. There exist constants C,k > 0 (independent of ) such that for all
(x,&,0) € S*M} N W, such that

Ty < €y 4 (x, Ro&) + |€; _(x, Rg£)],

one has:

3 (€54 (x, Ro) + |€;_(x, Ro§)I) < C exp (k(€; 1 (x, Ro§) + [€; _(x. ReE)])).

Proof. Let us deal with the case of the exit time in the future, the other case being
similar. The exit time is defined by the implicit equation:

1 _
p((oﬂé_+(x,R,,§)(x’ Rof)) = e.

Differentiating with respect to 6, we obtain:

00 (Le+- (v ReD)dp(X1(0g1 | (, g,y R68)))
T dp(d (P o ryey) oty V(0 RoE)) = 0,

where V(x,£&) € V is the vertical vector in (x, ) (it is unitary with respect to the
Sasaki metric GG1). But:

[dp(X1 (941 (c ryty > RoE)))| = eldp(X1)],

and dp(X 1) is the sine of the angle with which the geodesic exits the region {p > &}.

If this angle is less than - (any small constant works as long as the geodesics

10
concerned stay in a region where the metric still has the usual expression (1.1)), then
the geodesic will spend at most a bounded (independently of £) amount of time in the

region {p > ¢}, thus contradicting the condition:
Te = —Nolog(e) <€, | (x, Rg€) + |€} _(x, Rg§)|.

This can be proved using the Hamilton’s equations, similarly to the proof of
Lemma 4.3 for instance. Thus |dp(X1)| = 1—10.

As to the second term, using the fact that dp/p is unitary (with respect to the dual
metric of g; on the cotangent space), we obtain that:

dp
‘p7(d (Pe1 , eroty ooty V Rs8))| < eld (01, (x,ret)) rorat VO RoD,

< gkl 4 (xRo8).

for some constant &, following (2.13). This provides the sought result. ]
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5.3. An inequality on the average angle of deviation. We know that f is almost
everywhere continuous and bounded, so ®; is continuous by Lebesgue theorem. We
now prove that the homeomorphism ®, satisfies the following estimate:

Lemma 5.3. Forany§ € (Q,0) (defined in Lemma 2.3), forall B > 0 small enough,
there exists B’ > 0 (depending on 8 and converging towards 0 as 8 — 0) such that:

V01,6, € [0,7], |Oc(61) — Oc(62)| S 710, — 62)F + &5

Proof. First, remark that it is sufficient to prove the lemma for 0,6, € [0, /2],
since the result will follow from the w-symmetry of the homeomorphism ®,. We
fix ¢ > 0. We introduce the smooth cutoff function y7 (for some 7" > 0 which
will be chosen to depend on ¢ later) such that yr(s) = 1 on [0, T] and yr(s) =0
on [2T, +00). Note that we can always construct such a y7 so that |05y 1| 1o <1
(as long as T > 1, which we can assume since it will be chosen growing to infinity
as ¢ — 0). We write ©, = @2“”7" + 0P where:

1
W T @) = ———— x7 (€2 4 (x, Ro€) + €] _(x, RgE)|)

volg, (S*M}) §* M)
. f(x’é:s 9) dyu’l(x’g)

- | wrmee,

volg, (S*MJ}) Js=m!
where 7 is defined to be the integrand and
e®.7@) = e, - T,
Morally, the cutoff function means that we integrate over the compact region
(€5, (x, RE) + |4, _(x, RgE)| < T}.

By the Lebesgue theorem, ©T is C1 on [0, 7/2]. For § > 0, 61,6, € [0, 7/2],
one has:

0@ T (6;) —0@T (0] 5 sup (3097 (6)]P16, — 6,)°.
6¢el0,7/2]

Let us estimate the former derivative. We have:
1
a@(“)’T():—f 9 JE O duy(x, ),
§®;" (0) Volg, (S*MD) [ o¥r(x,§,0)dpi(x,8)

and the derivative under the integral is composed of a sum of two terms which we
now estimate separately.

(1) By Lemma 5.1, the first term is bounded by:

|xr (€L (x, Ro&) + €L _(x, Ro£)|)da f(x, £, 0)|
< exp (k (€] o (x, RgE) + €, _(x, Rgt)])) < 7.
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(2) And the second term is bounded by Lemma 5.2:
|96 (€24 (x, Ro&) + [€; _(x, RgE))
O xr (€L (x, Ro&) + €2 _(x. Ro§)|) f(x,&,0)| < e*T.

Note that the constant k > 0 may be different from one line to another. Gathering
everything, we obtain that for all 8 € [0, /2], |dg @é"”(@); < e%*T and thus:

0@ (6)) — O@D-T (0,)] < BT |0, — 6,|P.

As to @S’)'T, we can write:

0®)T () < fdu

volg, (S*M}) ([swg N{eLt (x,Rp&)>T}

B f S d#l)-
S*Mn{ley ™ (x,Re$)|>T}

If T > —Nglog(e) (Nyp is a large integer defined in Lemma 2.3, independent of ¢),
then the two integrals can be estimated by Lemma 2.3 (note that we here divide by
the volume which is bounded by @ (¢)). We obtain:

|®4(9b)7T(6)| 5 e—8T8—48 )

We choose T := T, = —Nylog(e) and set © := @@ P .= @',
Since Ny is taken large enough (greater than 5 at least to swallow the 74, we
obtain ||®f,b)||Loo <& And:

10@T (9,) — @@DT (g,)| < = 2PkNojg, — 6,

which provides the sought result by going back to O. ]

5.4. Otal’s lemma revisited. In the spirit of Otal’s lemma (see [17, Lemma 8]), we
prove:

Proposition 5.4. Assume ©;: [0, 7] — [0, ] is a family of increasing homeomorph-
isms for e € (0,8) such that:

(1) ©g(0) = 0,0,(r) = =;
(2) Forallf € [0, n],0.(r —0) =1 — O4(0);
(3) Forall 01,0, € [0, ] such that 6, + 6, € [0, ],

O (01) + OL(02) < Oy (01 + 02);
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(4) There exists constants C, B, B’ > 0and § > 0 (independent of ¢), such that for
all 61,6, € [0, ],

10:(61) — O (62)| < C(e° + 710, — 6:17);

(5) There exists a > 2B’/ B—1 such that for all family of continuous convex functions
Je: [0, 7] = R such that || J|| e = O(1/&%),

f ! J:(0:(0)) sin(6) df < f ’ Jo(6) sin(0) dO + O().
0 0

Then ®, = 1d + 0O ("), where we can take any y up to the critical exponent

. 1 4a—20"JB
142/

as long as y < 6.

Proof. We argue by contradiction. Assume there there exists a sequence ¢, — 0
such that |®, —Id ||z > nej) (where ®, := O, ). By m-symmetry, there exists
an interval [a,, A,] such that for all 0 € (a,, An),

On(0) <0 —nel
and we can choose
On(a,) = ay —nel, Ou(Ap) = Ap —nel.

We also construct the largest interval [b,, B,] D [an, An] such that for all 6 €
(bns Bl’l)u
®,(0) < 0 —¢l,

and
On(by) = by — 5;};5 On(By) = By _8;);-

Eventually, we define the largest interval [c,, Cy,] D [bn, B,] such that for all 6 €
(Cn ) Cﬂ)a
O,(0) < 6,

and
Onlen) =cny On(Cp) = C,.

The m-symmetry implies that ®(x/2) = 7/2 and since @(0) = 0,0(x) = w, we
know that the points ¢, < b, < a, < A, < B, < C, all lie either in [0, /2] or
in /2, x].
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Y

Figure 5. The points ¢;; < by, < an < Ay < By < Cy.

Remark that ®,, — Id also satisfies the fifth item, namely:
|(©n —1d)(61) — (@ — 1d)(02)] £ |On(61) — On(62)] + |61 — 2]

1 -
$ (88 + 5100 — 6a18) + @) |6y — 0,8
€n
1
S &+ 7161 — 62
En
This implies that:
1
(O —1d)(@n) — (On —1d)(bn)| = (n — &), < & + —7(an —bn)".
€n

Thus: , )
(an —bn)? 2 (0 = D} — 5P 2 (n— el TP,

for n large enough since § > y. The same inequalities hold for the other points and
we get, for n large enough:

an —by 2 (n—DVBHEVE B A > (n— 1)VBHENE
by —cp = 8’(17’+ﬂ’)/l3, C,— B, > 8§1V+.3')/ﬁ.
Now, for h € (0, C,, — ¢y), by superadditivity:
cn +h>0Ou(cy +h) > Oplcn) + Op(h) = cn + On(h),

that is ®,(h) < h. In the same fashion, we have for h € (b, — ¢y, By — cy),
On(h) < h—¢gl.



162 T. Lefeuvre CMH
Let us now consider the continuous convex functions
Jn(x) :=¢e,% sup(C,, — ¢, — x,0) = 8;"‘J~n(x)

on [0, r]. Using:
T - w -
/ Jn(©®,(0)) sin(f) db < [ Jn(8) sin(0) df + Celte,
0 0

where C > 0 is a constant independent of n, we obtain:
Cn"'Cn
0 < [ (On(0) — 0)sin(@) df + Ce, ™
0

bn—cn B, —cy Cn—cp
= f (®(0) — 0)sin(0) db + / s j "4 Ceglt®
0

bp—cn By—cn

n

B,,—cp
< Cai™ — g¥ f sin(0) do,
b

n—Cn

where we used the bounds stated above and the fact that both b,, — ¢, and B, — ¢,
are in [0, 7r/2]. But remark that:

By—cp
f $in(0) d6 = ((Bn — cn) — (b — ca)) in(Bn — cu)
b

n—Cn

> C’(n _ 1)1/ﬁ8§(7+ﬁ’)/ﬂ,

for some constant C’ > 0, by inserting the previous bounds and using the inequality
sin(x) > 2x/m on [0, /2]. Thus, we obtain:
0 < 8’1:'+a (C o C/(n o ])l/ﬂ81(12/ﬂ+1)y+2,6’/,6—1—a),

and 2/ + 1)y + 28’/ — 1 —a < 0 by the definition of y, so the right-hand side
is negative as n goes to infinity. ]

Remark 5.5. Let us mention that the result is still valid in the limit§ = 400, B = 1,
B’ = 0 (the ®, are uniformly Lipschitz) and ¢ = 0. It provides an exponenty = 1/3.

Had we been able to prove a priori that the family ®, was uniformly Lipschitz, this
would have been enough to conclude.

6. End of the proof

We can now conclude the proof.



Vol. 95 (2020) Boundary rigidity of surfaces 163

Proof. Combining Lemmas 4.9, 5.3 and Proposition 5.4, we conclude that ®, =
Id + O (g?), for some N which we can choose large enough. Thus for 8y, 6, € [0, 7]
such that 6, + 6, € [0, r]:

1
0< m . f(x,6,0, 4+ 62) — f(x,£601) — f(x,Rp,E 602)dpy(x,§)

= B.(01 + 62) —OL(01) — O(6,)
= O(eM).

Since the integrand is positive and the inverse of the volume can be estimated by ¢ (¢),
this implies by taking ¢ — O that

J(x,&,01 + 02) — f(x,E,61) — f(x, Ry, §,602) =0,

so the inequality is saturated in Gauss—Bonnet formula. As a consequence, three
intersecting g;-geodesics correspond to three intersecting g,-geodesics with same
endpoints.

We can now construct the isometry ® between (M, g1) and (M, g2). We will
use in this paragraph the notation ~ to refer to objects considered on the universal

cover M . Given p € M we choose three g1-geodesics «, ﬁ and y passing through p
with respective endpoints (x, x"), (v, ¥") and (z, z’) in IM x OM. By the previous
section, we know that the g-geodesics with same endpoints meet in a single point
which we define to be CD(p) Now, CD( p) is well- defined (it does not depend on the

choice of the geodesics) and remark that for (x, ) ¢ r_U I} (such a covector always

exists) and 6 such that (x, Rgf) ¢ I'_ U 'y, we have ®(p) = x(x, £, 0), where x is
defined in (4.1) (in other words, k maps fibers to fibers). Thus ® is C* in the interior
(see Section 4. 2) and extends continuously down to the boundary as CI>| anr = 1d.

Moreover, d* (g22) = £1. Indeed, it is sufficient to prove that ) preserves the
distance. Given p, g € M, we have

F1(p,q) = F2(D(p), D(q))

and thus:
1 1
dg,(p.q) = ngl(fl(p q)) = ngz(f'z(q)(p) ®(q))) = dz, (P(p), D(q)).

Now, observe that @ is invariant by the action of the fundamental group: it thus
descends to a smooth diffeomorphism ®: M — M which extends continuously down
to the boundary and satisfies ®*g, = g;.

We now conclude the argument by proving that ® is actually smooth on M . In the
compact setting, it is a classical fact that an isometry which is at least differentiable is
actually smooth and our argument somehow follows the idea of proof of this statement.



164 T. Lefeuvre CMH

More precisely, we show that a smooth isometry on an asymptotically hyperbolic
manifold actually extends as a smooth application on the compactification M. The
proof does not rely on the dimension two. Note that another proof could be given in
this case using the fact that ® is a conformal map.

Consider a fixed point p € M in a neighborhood of the boundary. For any point
g € M in a neighborhood of p, we denote by £(g) the unique covector such that
w(q) := (p,&(q)) generates the geodesic joining p to g. The map g — £(g) is
smooth down to the boundary by [8, Proposition 5.13]. Let us denote by 71(g) the
time such thatg = Jf((ﬁ}l ( q)(w (¢))). It is smooth down to the boundary too. Since ¢
conjugates the two geodesic flows, we can write:

P(g) = n((ﬁ?z(q)(z (q))),

where z(g) := (P(p), dP,(£(g))), for some time 12(g). Allis left to prove, is thus
that 7, is smooth down to the boundary. If #(g) denotes the gi-geodesic distance
between p and g (which is also that between ®(p) and ®(q) for g,), one has:

e ds 1(g)
= — g (1— -\ 4 G(ri(g), w(g))
@) /0 ot - (- TaE) + CE@ @)

for some smooth function (z,z) +— G(t,z) down to the boundary (this is a
computation similar to the one carried out in Section 2.2.1, see also [8, Lemma 2.7]).
And:

0(g) = 1 (2(@) — e PR (@) H e 2(q),

for some smooth positive function H on [0, 1) x S*M \ (0-S™M U I'_) (this stems
from the previous equality, or see also [8, Lemma 2.7]). As a consequence:

11(9)
(@) = @) — (1 - =7 =) 1@,
' o} (w(g))
for some smooth function / down to the boundary, which can be expressed in terms
of H and G. This concludes the proof. L]
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