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Kazhdan constants, continuous probability measures
with large Fourier coeflicients and rigidity sequences

Catalin Badea and Sophie Grivaux*

In memory of Jean-Pierre Kahane (1926-2017)

Abstract. Exploiting a construction of rigidity sequences for weakly mixing dynamical systems
by Fayad and Thouvenot, we show that for every integers p1, ..., pr there exists a continuous
probability measure y on the unit circle T such that

3 Ky .
inf ok s 0.
klE(),...,krz()“'L(pl py")l

This results applies in particular to the Furstenberg set F = {2K3X": k = 0, k’ = 0}, and
disproves a 1988 conjecture of Lyons inspired by Furstenberg’s famous x 2-x 3 conjecture.
We also estimate the modified Kazhdan constant of F and obtain general results on rigidity
sequences which allow us to retrieve essentially all known examples of such sequences.

Mathematics Subject Classification (2010). 43A25, 37A05, 37A25.
Keywords. Fourier coefficients of continuous measures, non-lacunary semigroups of integers,

Furstenberg conjecture, rigidity sequences for weakly mixing dynamical systems, Kazhdan
subsets of Z.

1. Introduction

Denote by T the unit circle T = {A € C; |A| = 1}, by M(T) the set of (finite)
complex Borel measures on T and by #(T') the set of Borel probability measures
on T. The Fourier coeflicients of u € M(T) are defined here as

i) = [T A" du(d).

A measure i € F(T) is said to be continuous, or atomless, if u({A}) = 0 for
every A € T. We denote the set of continuous probability measures on T by &£, (T').

*This work was supported in part by the project FRONT of the French National Research Agency
(grant ANR-17-CE40-0021) and by the Labex CEMPI (ANR-11-LABX-0007-01).
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According to a theorem of Wiener and the Koopman—von Neumann lemma, w is
continuous if and only if () tends to zero as n tends to infinity along a sequence
in N of density one. For every i € 2 (T), we define it by setting ;t(A) = p(A€) for
every Borel set A C T, with A° = {A; A € A}. Then v := u * jI has the property
that D(n) = |fi(n)|? = 0 forevery n € Z, and v belongs to £, (T) as soon as 1 does.

A conjecture of Russell Lyons. Our aim in this paper is to study some non-lacunary
sets of positive integers from a Fourier analysis point of view, and to construct some
probability measures which have large Fourier coefficients on such sets. In particular,
we disprove a 1988 conjecture of Lyons [33], called there Conjecture (C4), which
reads as follows:

Lyons’ Conjecture (C4). If S is a non-lacunary semigroup of integers, and if
w € Pe(T), there exists an infinite sequence (ng)x>1 of elements of S such that
i(ng) — 0ask — +oo.

This conjecture of Lyons is inspired by Furstenberg’s famous conjecture
concerning simultaneously invariant probability measures for two commuting
automorphisms of the unit circle T, Tpp: A —— A? and T;: A — A9, when p and ¢
are two multiplicatively independent integers (i.e. p and g are not both powers of the
same integer). In this setting, Furstenberg’s conjecture states that the only continuous
probability measure on T invariant by both 7', and T} is the Lebesgue measure on T'.
Furstenberg himself proved [23] that if S is any non-lacunary semigroup of integers
(i.e. if S is not contained in any semigroup of the form {¢” ;n > 0}, a > 2),
then the only infinite closed S-invariant subset of T is T itself. See [10] for an
elementary proof of this result and the references mentioned in [15, Chapter 2] for
several extensions. Since S = {p¥q* : k, k' > 0} is a non-lacunary semigroup
whenever p and g are multiplicatively independent, the only infinite closed subset
of T which is simultaneously T),-invariant and 7,-invariant is T. Starting with
the work of Lyons in [33], Furstenberg’s conjecture has given rise to an impressive
amount of related questions and results, concerning in particular the dynamics of
commuting group automorphisms. We refer the reader to the papers [14, 18, 37]
or [27] for example, and to the texts [28,31] or [38] for surveys of results related to
this conjecture, as well as for perspectives.

As written in [33], conjecture (C4) is a natural version of Furstenberg’s conjecture
about measures, but not involving invariance. If (C4) were true, it would imply
an affirmative answer to the Furstenberg conjecture (if u € P(T) is Tp- and
T,-invariant, applying (C4) to each of the measures ; := T;(n), j € Z \ {0},
yields that zi(j) = O forevery j € Z \ {0}).

Kazhdan sets and modified Kazhdan constants. It turns out that Lyons’ conjecture
is related to an important property of subsets of Z, namely that of being or not
a Kazhdan subset of 7. Kazhdan subsets QO of a second-countable topological
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group G are those for which there exists ¢ > 0 such that any strongly continuous
representation w7 of G on a complex separable Hilbert space H admitting a
vector x € H with ||x|| = 1 which s e-invarianton Q (i.e. sup, ¢ [|7(g)x—x| < &)
has a non-zero G-invariant vector. Such an ¢ is called a Kazhdan constant for Q,
and the supremum of all &’s with this property is the Kazhdan constant of Q. Groups
with Property (T), also called Kazhdan groups, are those which admit a compact
Kazhdan set. See the book [7] for more on Property (T) and its numerous important
applications.

As suggested in [7, Sec. 7.12], it is of interest to study Kazhdan sets in groups
which do not have Property (T), such as locally compact abelian groups, Heisenberg
groups, etc. See [4] and also [17] for a study of such problems. In the case of the
group Z, the definition above is equivalent to the following one:

Definition 1.1. (Kazhdan sets and constants) A subset Q C Z is said to be a Kazhdan
set if there exists ¢ > 0 such that any unitary operator U acting on a complex separable
Hilbert space H satisfies the following property: if there exists a vector x € H with
x| = 1suchthatsup,cq |[U"x—x| < &, then there exists a non-zero vector y € H
such that Uy = y (i.e. 1 is an eigenvalue of U). We will say in this case that (Q, ¢)
is a Kazhdan pair. We define the Kazhdan constant of Q as

Kaz(Q) = inf inf sup ||[U%x — x|,
U lIxl=14e0

where the first infimum is taken over all unitary operators U on H without fixed
vectors.

It follows from [7, p. 30] that 0 < Kaz(Q) < /2 forevery Q C Z.

Several characterizations of Kazhdan subsets of 7Z were obtained in [4] as
consequences of results applying to a much wider class of groups; self-contained
proofs of these characterizations of Kazhdan subsets of Z, involving only classical
tools from harmonic analysis, were obtained in the paper [5]. One of the
characterizations of generating Kazhdan sets obtained in [4, Th.6.1] (see also [5,
Th.4.12]) runs as follows. Recall that Q is said to be generating in the group Z if
the smallest subgroup containing Q is Z itself.

Theorem 1.2 ([4]). Let Q be a generating subset of Z. Then Q is a Kazhdan subset
of 7. if and only if there exists &' € (0, /2] such that (Q, ') is a modified Kazhdan
pair, that is any unitary operator V acting on a complex separable Hilbert space H
satisfies the following property: if there exists a vector x € H with ||x|| = 1 such
that sup,cg |V"x — x|| < &, then V has at least one eigenvalue.

We define now the modified Kazhdan constant of Q as

Kaz(Q) = inf inf sup ||[V7x — x|,
V lxl=14e0
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where the first infimum is taken this time over unitary operators V on H without
eigenvalues (that is, with continuous spectra). Therefore

0 < Kaz(Q) < Kaz(Q) < v2

and for every Q C Z, we have Kaz(Q) = 0 if and only if IF(EQ(Q) = 0 if and only
if O is a non-Kazhdan set. The property of being or not a Kazhdan set can also be
expressed in terms of Fourier coefficients of probability measures; see Section 5 for
a discussion.

The characterization of Kazhdan subsets of Z obtained by the authors in [4] (see
also [5]) implies that the generating subsets Q of Z which satisfy the property stated
in (C4) (namely that there exists for every u € #.(T) an infinite sequence (nx )k>1
of elements of Q such that fi(ng) — 0 as k — +o00) are exactly the Kazhdan subsets
of Z with modified Kazhdan constant KaZ(Q) = /2. Since +/2 is the modified
Kazhdan constant of Z seen as a subset of itself, +/2 is the maximal modified
Kazhdan constant, and thus (C4) can be reformulated as: every generating non-
lacunary semigroup S of integers is a Kazhdan subset of Z with maximal modified
Kazhdan constant /2. The relationship between Furstenberg x 2 -x 3 conjecture and
modified Kazhdan constants can be also seen directly from Proposition 5.4 below.

2. Main results

The first main result of this paper is the following:
Theorem 2.1. Let py, ..., p, be positive distinct integers and set

E={p" .  pFriky>0,... k >0}

There exists a continuous probability measure . on I such that

. e k] k
inf ok s 0.
klz(),...,krzolu(pl Py )|
Equivalently, -
Kaz(E) < v/2.

It should be noted that, as conjecture (C4) does not involve invariant measures, we
do not assume in Theorem 2.1 that the integers p; are multiplicatively independent.
Notice also that the statement of Theorem 2.1 is well known in the lacunary
case: if r = 1 it suffices to consider the classical Riesz product associated to the
sequence ( pk )k>0- Inthe non-lacunary case, Theorem 2.1 disproves Conjecture (C4),
as well as the related conjectures (C5) and (C6) of [33] (which are both stronger
than (C4)). It applies in particular to the Furstenberg set F = {2K3K" . k k' > 0}
and shows the existence of a measure p € P (T) such that

nf 2k3k > 0.
kb>o“( )
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In view of this result, one may naturally wonder for which values of § € (0, 1) there
exists a measure @ € $.(T) such that

inf f1(2%3K) > 8,
k!k,zou( ) >

or, equivalently, whether the Furstenberg set F is a Kazhdan set in Z, and if yes, with
which (modified) Kazhdan constant. In this direction, we prove the following result:

Theorem 2.2. Let F = {2%3X" : k k' > 0}. Then Kaz(F) < 1. More precisely,
there exists for every § € (0,1/2) a continuous probability measure | on T with
nonnegative Fourier coefficients such that

inf [i(2%3K) > 8.
k’k,zou( )

Rigidity sequences. Our strategy for proving Theorem 2.1 is to construct measures
u € P.(T) whose Fourier coefficients tend to 1 along a substantial part of the
set {pf‘ . pf’ ; k1 > 0,...,k, > 0}. In other words, we show that certain large
subsets of this set form are, when taken in a strictly increasing order, rigidity sequences
in the sense of [8] or [19]. Recall that a dynamical system (X, 8,m; T') on a Borel
probability space is called rigid if there exists a strictly increasing sequence of integers
(nk)k>1 such that [|Uz* f — f|| = 0 as k — +oo for every f € L*(X, B,m),
where Ur denotes as usual the Koopman operator f — f o T associated to 7" on
L?(X, B, m). Equivalently, m(T " A A A) — 0as k — +oo for every 4 € B.
We say in this case that the system is rigid with respect to the sequence (ng)g>1,
or that (ng)x>1 is a rigidity sequence for (X, 8,m; T). The case where the system
(X, 8,m; T) is weakly mixing is particularly interesting, and is the object of the
works [8] and [19]. A strictly increasing sequence (ny)x>; of integers is called a
rigidity sequence if there exists a weakly mixing system which is rigid with respect
to (g )k=1-

Using Gaussian dynamical systems, one can show that (ng)x>; is a rigidity
sequence if and only if there exists a measure u € £.(T) such that ji(ng) — 1
as k — +oo. The study of rigidity sequences was initiated in [8] and [19]. Further
works on this topic include the papers [1-3, 21, 22, 25], and [24] among others.
The paper [22] by Fayad and Thouvenot is especially relevant here: the authors re-
obtain a result of Adams [3], showing that whenever (ny )~ is a rigidity sequence
for an ergodic rotation on the circle, it is a rigidity sequence for a weakly mixing
system. The proof of this result in [3] relies on an involved construction of a suitable
weakly mixing system by cutting and stacking, while the authors of [22] proceed
by a direct construction of suitable continuous probability measures: they show that
if " — 1 for some A = 2" e T with 6 € R \ Q, there exists it € £.(T) such
that ii(ng) — 1.
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The most important tool for proving Theorems 2.1 and 2.2 is the following
theorem, which generalizes the result of Fayad and Thouvenot and provides some
new examples of non-Kazhdan subsets of Z:

Theorem 2.3. Let (ny)i>o0 be a strictly increasing sequence of integers. Suppose
that the set
C={LeT ;A" - lask — +o0}

is dense in T. Then there exists for every ¢ > 0 a measure p € P.(T) such that
p(ng) — 1 as k — +00 and supgsq |fi(ng) — 1| < e. In particular, {ny ; k > 0}
is a non-Kazhdan subset of 7..

Notice that C, like every subgroup of the circle group, is dense in T as soon as it
is infinite. We deduce from Theorem 2.3 the following two-dimensional statement,
which is asymmetric and involves a uniformity assumption.

Theorem 2.4. Let (my)r>0 and (ng/)i>o be two strictly increasing sequences of
integers. Let also : N — N be such that (k) — +oc as k — +oo, and set

Dy = {(k,k") e N?; 0 <k’ < yr(k)}.
Suppose that the set
Cfp ={A e T ;A™" — lask — oo, (k,k') € Dy}

is dense in 'T. There exists for every ¢ > 0 a measure w € P.(T) such that
i(mgng) — 1 as k — +oo with (k, k') € Dy and

sup |i(mgng) — 1] < e,
k>0, 0<k’<y (k)

In particular, {myny: ; k >0, 0 <k’ <y (k)} is a non-Kazhdan subset of 7.

Given a doubly indexed sequence (zg x’)k k’>0 Of complex numbers, saying
that zx - converges to z € C as k — 4oo with (k, k") € Dy means that there
exists for every y > 0 an integer kg such that |zy 5 — z| < y for every (k,k") € N?
withk > kg and 0 < k' < (k).

Remark also that the assumption of Theorem 2.4 is in particular satisfied if the
set

C'={AeT ;A" — |ask — +oo uniformly in £’}

is dense in T.

Theorem 2.3 allows us to retrieve essentially all known examples of rigidity
sequences (notable exceptions being the examples of [21] and [24]). We state
separately as Corollaries 2.5 and 2.6 the parts of Theorems 2.3 and 2.4 dealing
with rigidity sequences:
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Corollary 2.5. Let (ny)x>o be a strictly increasing sequence of integers. Suppose
that the set
C={AeT; ;A" > lask - +oo}

is dense in T. Then (ng)k>1 is a rigidity sequence.

Corollary 2.6. Let (my)k>o and (ng:)p>o be two strictly increasing sequences of
integers. Let also y: N — N be such that Y (k) — +o00 ask — +00, and suppose
that the set

C,:., ={LeT A" — lask — +oo, (k,k') € Dy}

is dense in T'. Then there exists a continuous probability measure i on T such that
(mgng) — 1 as k — +oo with (k, k") € Dy,.

The proof of Theorem 2.3 builds on some ideas from [22]. While being an
immediate consequence of Theorem 2.3, Corollary 2.5 admits a direct proof which
is very much in the spirit of that of the main result of [22]. As Corollary 2.5 is of
independent interest in the study of rigidity sequences, we will briefly sketch this
direct proof in Section 4 of the paper.

Theorem 2.1 is obtained by first observing that the set

k r .
{pll.A.p”.c ,p] 20,‘--,pr20}

can be split into r sets to which Theorem 2.4 (or Corollary 2.6) applies, and then
considering a convex combination of the continuous measures obtained in this way.

Organization of the paper. The paper is structured as follows. We give in Section 3
the proof of Theorems 2.3 and 2.4, and sketch in Section 4 a direct proof of
Corollaries 2.5 and 2.6, essentially following the arguments of Fayad and Thouvenot
in [22]. In Section 5, we recall a characterization of generating Kazhdan subsets
of Z from [4], and detail the links between several natural constants involved in this
characterization. We explain in particular why the generating subsets of Z which
satisfy the property stated in (C4) are exactly the Kazhdan subsets of Z with modified
Kazhdan constant /2. Section 6 is devoted to applications: we prove Theorems 2.1
and 2.2, and show how to retrieve many examples of rigidity sequences, using
Corollaries 2.5 and 2.6. We also provide an application of Theorem 2.2 to the study
of the size of the exceptional set of values 6 € R for which the sequence (740)x>0
is not almost uniformly distributed modulo 1 with respect to a (finite) complex Borel
measure v € M(T), where (ng)r>o denotes the Furstenberg sequence. Namely,
we show that this exceptional set is uncountable, thus providing a new example
of a sublacunary sequence with uncountable exceptional set for (almost) uniform
distribution.
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3. Proof of Theorems 2.3 and 2.4

Given two integers a < b, we will when the context is clear denote by [a, b] the set
of integers k such thata < k < b.

Proof of Theorem 2.3. Fix ¢ € (0,1/2). The general strategy of the proof is the
following: we construct a sequence (A;);>; of pairwise distinct elements of C, as
well as a strictly increasing sequence of integers (N,) >0 and, for every p > 0,

a sequence (ai(‘” ))151-52:: of positive weights with ZIZZI af‘” ) = 1, such that the
probability measures

2.0
wp =y a8,
=1

satisfy certain properties stated below. At step p, we determine the elements A;

for 2271 < i < 27 as well as the integer N, and the weights al(p), L <i=<2F in

such a way that A; = 1 and a&o) = 1, so that ug = 8413, No = 0, and

(1) forevery p > 1,every j € [0, p — 1] andevery k € [N}, Nj11],
L =11y <3601 - e
T

(2) forevery p > l,everyq € [0, p—1],1 € [1,2P79), r € [1, 29],
|Ai2a4r — Ar| < 1g,

where 7y = %inflskjszq |A; —Aj|foreveryg > 1,and ny = 1;

(3) forevery p > 1 and every k > N,
f A" — 1| dpp(X) < e(1 —e)Pt;
T

(4) forevery p > 1,every g € [1, p] and every r € [1,29],

> up(fAi}) < (1—e) .

{i€[1,27];i=r mod 29}

Remark that property (2) implies that the sequence (A4;);>1 satisfies:

(5) forevery g > 0,every ! > 0, and every r € [1,29],

|A12‘1+r - Arl <Ng>
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and that property (4) applied to ¢ = p yields that:
(6) forevery p > 1 andeveryi € [1,27],

np({Ai}) = (1 —g)”.

Suppose that the sequences (A;)i>1, (Np)p=>0 and (a,(’J ))15i52p, p > 0, have
been constructed so as to satisfy properties (1) to (4) above, and let  be a w*-limit
point of the sequence (i) p>o in P(T). Property (1) clearly implies that

sup [[L(ng) — 1| < 3e.
k>0

Claim 3.1. We have [i(ng) — 1 ask — +oo.
Proof. Foreveryk >0, denote by jx > 0the unique integer j suchthatk € [N;, Nj41).

For every p > ji, we have by (1)

f A" — 1| dpp(A) < 3e(l—e)* sothat f AT — 1] dp(d) < 3e(1 —e)’k.
T T

Since jp — +ooask — -i—oo,f A —1|du (L) — 0, ie. fm(ng) — 1. ]
T

Claim 3.2. The probability measure p is continuous.

Proof. Fix ¢ > 1, and consider for every r € [1,29] the two arcs I', and A, of T
defined by

3
I, ={AeT;[A—A]<n,} and A,:{Ae’ﬂ‘; |)L_;L,|<§nq},

The 29 arcs A, are pairwise disjoint. Indeed, for every r,r’ € [1,29] with r # r/,
every A € A, and every A’ € A, we have by the definition of 1, that

A=A = A — A =30 = 4ng —3ng =ng > 0.

So A, and A, do not intersect.
Let us next estimate the quantity u,(I';) for every r € [1,29] and every p > g.
We have
pp) = ) pph).

{ie[1,27];A;€l7}

Every i € [1,27] can be written as i = [29 + s for some / > 0 and s € [1,29].
By (5), A; belongs to I';. Since the arcs A+, r’ € [1,29], are pairwise disjoint, it
follows that

p(Ay) = pup(ly) = > mp({Ai}) < (1—e)

{i€[1,2”];i=r mod 29}
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by (4). Also,
24

mp(UJTr) = 1.
r=1
Since the arcs I, are closed while the arcs A, are open, taking the limit as p goes to
infinity yields that (A,) < (1 —¢)? forevery r € [1,29] and

2d

,LL(U r,) = 1.
r=1
If A € T is such that w({A}) > 0, there exists an r € [1,29] suchthat A € [, C A,.

So u({A}) < u(A,) < (1 — ¢)?, a contradiction if ¢ is sufficiently large. It follows
that the measure p is continuous. L]

By Claims 3.1 and 3.2, it suffices to construct (A; ); =0, (Np) p=0 and (al(p))ls,-szp,
p > 0, satisfying properties (1) to (4) in order to prove Theorem 2.3. Recall that
for p =0,wesetA; =1, ago) = 1and Ny = 0, so that jug = ;13-

For p = 1, we choose A, € C distinct from A; with |[A, — A{| < 1 and set
p1 = (1 —e)dgy + edga,y. We have, for every k > 0, that

[T A" — 1| duq (L) = g|A5% — 1] < 2¢ < 3e.

Hence property (1) is satisfied whatever the choice of Ny. Since np = 1 and
|[A2 — A1] < 1, property (2) is satisfied. We now have to choose N; in such a way
that property (3) is satisfied. Since A, belongs to C, we have

/;TM”" —1]dui(A) = e]Ay* —1] =0 ask — +oo,
so we can choose N so large that
[ A" — 1|dpi (L) < &(1 —e)> forevery k > Nj.
T

Moreover, (t1({1}) = 1 — e and u2({A2}) = ¢ < 1 — &, so (4), which we only need
to check for ¢ = p = 1, is true. This terminates the construction for p = 1.
Suppose now that the construction has been carried out until step p, i.e. that the
quantities A;, i € [1,27], (ai(l))1<i<21, and N;, [ € [0, p], have been constructed
satisfying properties (1) to (4). o
We construct by induction on s € [1,27] elements A»r 45 of C, measures p, s €
P (T) of the form

2P 45 2P +g
Mps = Z bi(p’s) 8¢,y with bl-(p’s) >0 and Z bl.(p’s) =1,

i=1 i=1
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and integers N, s in such a way that the elements A;, i € [1, 271 are all distinct,
Np < Np1 <--- < Npor,and the following five properties are satisfied:

(a) forevery j € [0, p — 1] and every k € [N}, Nj41],
fT IA"E —1|dups(h) < 3e(l — )
(b) forevery k > N,,
[]r A" —1]dpps(A) < 3e(l —e)?;
(c) forevery k > Np s,
fT A" — 1] dpp,s(A) < 3e(1 —e)P+?;

@ pps({Ai}) = pp({ds}) forevery i € (s,27] and

Ups(§Ai}) + mps({Aar4i}) = wp({Ai}) foreveryi €[1,s];

) upsAi}) < (1 —g)Ptforeveryi €[1,s]U[27 + 1,27 + s].

Let us start with the construction of A,»4+;. By density of C, one can choose
Aop 41 distinct from all the elements A;, i € [1,27], with |A,r4; — Aq| arbitrarily
small. We define 1,1 as

Mp1 = KUp Sl MP({I})E(S{AQP_F]} - 5{/\1})
2P

= pup (1) (1= &) 8y + > wup(iD Sy + up (1) €81y, -

i=2

In other words, we split the point mass dy; ,; appearing in the expression of p ), into
(1 —&)da,y + €0, p ., ,}- We have for every k > 0

fT A% — 1) dppa(A) < fT A — 1 dppR) + pp (1)) A% — A%| (3.7)
< [ A — 1) dap(R) + (1 — )P e |AT, | — A"|
T

since i, ({1}) < (1 —¢)? by (6). If |A2» 41 — A1 is sufficiently small, we have by (1)
that

A" — 1) dpp1(A) < 3e(1 —g)’
T D,
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forevery j € [0, p — 1] and every k € [N}, N;41] (the set of pairs of integers (j, k)
with j € [0,p — 1] and k € [N;, Nj4] is finite). So (a) holds true. Also, (3.7)
and (3) imply that for every k > N,

j A" —1|dpp1(A) <e(1—e)?t + 26 (1 —e)? <3e(l —g)?
T

so that (b) holds true. Since all the elements A;, i € [1,2?7 + 1], belong to C, there
exists Np 1 > N, such that

f A — 1| dppa(A) < 3e(1—e)P*? forevery k = Np,1.
T

Property (d) is clear from the expression of i, 1, and property (e) is satisfied since

wpa({13) = pnp({13) (1 —8) < (1 — g)PH!
and

pp1(rzes1}) = up({1P e <e(1—e)? < (1 —g)PH!

by (6). Properties (a) to (e) are thus satisfied for s = 1.
Suppose now that A2y, t2r4s, and Nop g have been constructed for s < s.
Let Agpys € C \ {A1,...,A2p45—1} be very close to Ay, and set

MKps = Mps—1 + KUps—1 ({As}h) e (5{/12p_|_s} - S{AS})- (3.3)

This time, the point mass §y,,} appearing in jip is split as (1 — )83y + &8¢, -
Since, by (6),

[E |A"E —1| dpp,s(A) < .[T |A*% —1|dpps—1(A)+(1—8)P e |AZ’,§+S—A§”‘|, (3.9
for every k > 0, the induction assumption implies that (a) holds true provided
|A2p 45 — Ag| is sufficiently small. As to (b), we have to consider separately the cases

Np <k <Nps—1andk > Np o 1. If |Aap s — Ag| is sufficiently small, we have
by (3.9) and (b) for s — 1 that

f A" —1|dpp,s(A) < 3e(1 —e)P forevery N, <k < Nps—1.
T
By property (c) at step s — 1 and (3.9),
f A" —1|dpps(A) <e(l —&)?T2 +2: (1 —8)” <3e(1 —¢)?
T

forevery k > Nj s—1. Hence (b) is satisfied at step s. Property (c) is satisfied if N, s
is chosen sufficiently large since all the elements A;, i € [1,2” + s], belong to C.
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Property (d) follows from (3.8) and property (d) atsteps—1. Indeed, i1 5 s({A; }) =

Hps—1({Ai}) for every i & 15,27 + s}. Also, fps—1({Ai}) = pp({As}) for every
i €[s,2P],sothat iy s({A;}) = up({A;}) forevery i € (s, 2P]. Observe next that

Hp,s ({Az}) + Up,s ({/\2”—{—1' }) == :U’P,S—l({/li }) + ﬂp,s—l({/’LZp-l-i}) = f"‘p({li })

forevery i € [1,s — 1]. Lastly,

Mps({Ash) + ps({A2r4s}) = pps—1({As}) = up({As)).

So property (d) is true at step s.
As to property (e), we have (4, s({A;}) = pps—1({A;}) forevery i & {s,2?7 +s}.
So pps({Ai}) < (1 — )Pt forevery i € [1,5) U[27 + 1,27 +5). Also

wps({As}) = pps—1({As}) (1 — &) = pp({AsH) (1 — ) < (1 — )P
by (6), while

:U“p,s({)tﬂ’—{-s}) = va,s—l({)ts}) e<(l- E)P_H,

again by (6). So (e) holds true at step s. This terminates the construction of the
measures ip .

Letus now set it p4+1 = p2r and Ny = Np 2. It remains to check that with
these choices of A;, i € [1,2711], pp+1 and N1, properties (1) to (4) are satisfied.

By (a), property (1) is satisfied for every j € [0, p — 1]. The case where
j = p follows from (b). So (1) is true. Property (3) follows immediately from (c).
Property (4) is a consequence of (d) and (e). Indeed, suppose first that g € [1, p].
Then

> tp+1({Ai})

{i€[1,27+1];i=r mod 29}

_ Z (Lp+1(§Ai D) + pp+1({Aar4i}))

{i€[1,27];i=r mod 29}

= > pp(fAi}) < (1 — &)

{i€[1,2?];i=r mod 29}

by (d) above and (4) at step p. If ¢ = p + 1, (4) follows immediately from (e). So it
only remains to check (2).

Fix g € [0,p], [ € [1,2P*179) and r € [1,29]. Consider first the case where
g = p. In this case [ = 1, and the quantities under consideration have the form
|A2p 4, — Ar|, with r € [1,27]. One can ensure in the construction that

|A2p4r — Ar| < mp

for every r € [1,27] and then (2) holds true for ¢ = p.
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Suppose then that ¢ € [0, p — 1], and write [ as | = I’ + £2P74 with ¢ € {0, 1}
and [’ € [1,2779). Then

129 +r =129 +r + 627,
Sets = 1’29 4+ r. Then
1 <s< (2P 97-1)29 429 =27,
i.e. s € [1,27]. We have
[Ar2ar — Ar| < |Astear — Ag| + [Ap2a gy — Arl.

If ¢ = 0, the first term is zero; if ¢ = 1, it is equal to |Azr 45 — Ag|, which can be
assumed to be as small as we wish in the construction. As to the second term, it
is less than 7, by property (2) at step p, since !’ € [1,2779) and r € [1,29] with
g € [0, p — 1]. We can thus ensure that

|A12‘1+r - Arl < Tq

for every g € [0, p], [ € [1,2P7179), and r € [1,29]. So property (2) is satisfied at
step p + 1, and this concludes the proof of Theorem 2.3. ]

Theorem 2.4 is now a formal consequence of Theorem 2.3.
Proof of Theorem 2.4. Recall that Dy, = {(k,k’) € N?; 0 <k’ < (k)} and
C{h ={L e T ;A" " — lask — +oo, (k,k') € Dy }.

Order the set {myny ; (k,k") € Dy} as a strictly increasing sequence (p;);>o of
integers. Since there exists for every integer k; > 0 an integer /; > 0 such that

{pr:l >} S imgnp s (k.k") € Dy, k > ky},

every element A € C&, has the property that A?? — 1 as [ — +o00. By Theorem 2.3
applied to the sequence (p;);>1. there exists for every ¢ > 0 a measure u € P.(T)
such that fi(p;) — 1as ! — +o0 and sup;-q |it(p;) — 1| < e. Then

sup [a(mgngs) — 1] < &,
k>0, 0<k’<vyr(k)

Using this time the fact that there exists for every integer /; > 0 an integer k, > 0
such that
{mengs 5 (k, k") € Dy, k > ka} € {p; ;1> la},

we deduce that fi(mgng) — 1 as k — +oo with (k,k") € Dy. Theorem 2.4 is
proved. L
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4. A direct proof of Corollaries 2.5 and 2.6

We sketch in this section a direct proof of Corollary 2.5 (Corollary 2.6 is a formal
consequence of it), following almost step by step the construction given in [22] and
bypassing the additional technical difficulties of the proof of Theorem 2.3.

Proof. Using the notation of the proof of Theorem 2.3, we construct a sequence (A;);>
of pairwise distinct elements of C, as well as a strictly increasing sequence of integers
(Np) p>0, such that the measures

2P

p =273 833 p=0

i=1
satisfy:
(1") forevery p > 1,every j € [0,p — 1] and every k € [Nj, Nj11],

[ |A™ — 1| du,(A) <27UD;
T

(2") forevery p > l,everyq € [0,p — 1], € [1,2P779),r € [1,29],

|)Ll2‘l’+r _lrl <Tg:
where g = % infi<i<j<oa |Ai — Aj| forevery g > 1,and no = 1;
(3") forevery p > 1 and every k > N,

f A" — 1| dup(d) <27+,
T

Again, property (2') implies that:
(4") forevery g > 0, every [ > 0, and every r € [1,29],

|Ai2a+r — Ar| < 1g.

Then an argument similar to the one given in the proof of Theorem 2.3 shows
that any w*-limit point p of (i) p>0 Will be a continuous measure which satisfies
iwng) — lask — +oo.

Forp = 0,weset Ay = 1, Ng = 0, and po = dg13. For p = 1, we choose
Az € C\ {Ar} with [A; —Aq| < 1l and set pu; = %(8{1} + 6a,})- We have

1
[T A" —1du () = 51/1;" —1]<1<2 forevery k > 0.

Hence property (1') is satisfied whatever the choice of N;. Since |[A; — 41| < 1, (2)
is true. If N; is chosen sufficiently large, p satisfies (3').

Suppose now that the construction has been carried out until step p. We can then
construct by induction on s € [1, 27] measures 1, ¢ which satisfy:
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(@) every j € [0, p— 1] and every k € [N;, Nj4+1],

[E A" —1|dpps(A) <2707,
(b') forevery k > N,

= 1y <2707
(c') forevery k > N g,

fT A" —1|dpps(A) < 27@PF2),

We define 11,1 as

Ppt = p+ 2P0 (8, 1y — ),

where Azp 41 € C \ {A1,...,A2p} is such that |A2r 41 — Aq| is very small. Then for
every k > (),

[ = i) = [ 11y @) + 27 A -2 @

It follows that (a’) holds true for 4, 1, provided that |A,» 41 —A1 | is sufficiently small.
Also, we have by (4.1) and (3’) that for every k > N,

f A% —1|dpp1 () < 2—(p+1) | =P L 9~ (p-1)
T

which is (b'). If N, 1 is sufficiently large, (¢) is true.
Supposing now that s > 2 and that the construction has been carried out for
every s’ < s, we choose Aprqs € C \ {A1,...,A2r45-1} very close to Ay, and set

2—(P+1)(

Mps = Mps—1+ Birspss} — Ot0s3)-

Since, for every k > 0,

fT A — 1| dpp (M) < /T | — 1] dpp -1 (M) +27 @YD IE _amk| (4.2)

the induction assumption implies that (a’) holds true provided |Aypi45 — Ag| is
sufficiently small. As to (b"), we consider separately the cases N, < k < Np

and k > N, 1. If [A2p s — Ag| is sufficiently small,

f A" — 1] dpps(A) <27P7D forevery Np <k < Npso1.
T
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By property (c’) at step s — 1 and (4.2),
f A" — 1| dup (M) < 27@F2 4 27P < 2= (P7D)
T

foreveryk > N, ;1. Hence (b') is satisfied at step s. Property (c’) is satisfied if N, ¢

is chosen sufficiently large. This terminates the construction of the measures (i p ;.
We then set fLp41 = pp2r and Npp1 = Npop and check as in the proof of

Theorem 2.3 that properties (1'), (2'), and (3') are satisfied. O

Remark 4.1. Suppose that the set
C'={LeT ;A" — 1ask — +oo uniformly in k"}

is dense in T'. It is natural to wonder whether there exists a measure u € £, (1) such
that fi(mgnyg/) — 1 as k — +oo uniformly in k’. The following example shows that
it is not the case: set my = 2% and nys = k’ for every k, k' > 0. The set

C'={LeT; A" — 1ask — +o0 uniformly in &'}

contains all 2%-th roots of 1, and so is dense in T. Suppose that u € P (T)
is such that 1(2¥k’) — 1 as k — +oo uniformly in k. Then there exists an
integer ko > 1 such that |1(2¥0k")| > 1/2 for every k’ > 0. Consider the measure
v = T,ike(p). Since V(n) = fi(2%on) for every n € Z, v cannot be continuous.
Also,v({Ao}) = u({A € T ;Azko = Ao}) for every Ay € T, and so the measure u
itself cannot be continuous.

So the conclusion of Corollary 2.6 seems to be essentially optimal.

5. From Conjecture (C4) to the study of some non-Kazhdan subsets of Z

5.1. Kazhdan constants and Fourier coefficients of probability measures. We
begin this section by recalling a characterization of generating Kazhdan subsets
of Z, obtained in [4, Th.6.1] (see also [5, Th.4.12]) and presenting some facts
concerning the (modified) Kazhdan constants of such sets. We state it here in a
slightly modified way (condition (ii) is not exactly the same as in [5, Th. 4.12]), and
include a discussion concerning the links between the various constants appearing in
the equivalent conditions.

Theorem 5.1. Let Q be a generating subset of Z.. Then Q is a Kazhdan subset of 7.
if and only if one of the following equivalent assertions holds true:
(i) there exists e _€ (0, ﬂ) such that (Q,e) is a modified Kazhdan pair.
Equivalently, Kaz(Q) > ¢;
(ii) thereexists y € (0, 1) suchthat any measure pu € P (T ) withsup,c o (1 — Re ji(n))
<y has a discrete part;
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(iii) there exists § € (0, 1) such that any measure p € P (1) with infneg |i(n)| > 6
has a discrete part.

Moreover:

— (i) is satisfied for ¢ € (0, ~/2) if and only if (ii) is satisfied for y = €2 /2;

— if (ii) is satisfied for y € (0, 1), (iii) is satisfied for § = /1 — y, while if (iii) is
satisfied for § € (0, 1), (ii) is satisfied for y = 1 —§;

— hence if (i) is satisfied for & € (0, +/2), (iii) is satisfied for § = 1 —€2/2, while
if (iii) is satisfied for § € (0, 1), (i) holds true for e = /2(1 — §).

We prove briefly here the statement concerning the relations between the constants
&, ¥, and § appearing in (i), (ii), and (iii) respectively, following [4] and [5].

Proof. Suppose that (i) is satisfied for £ € (0, +/2), and let & € P(T). Consider the
unitary operator U = M of multiplication by A on L?(T, u). Let f be the function
constantly equal to 1. Then

1" f = £ = 2(1 = Re f(n)).

If sup, o (1 — de fi(n)) < €2/2, U has an eigenvalue since I@E(Q) > g, and so
has a discrete part.

Conversely, suppose that (ii) is satisfied for y € (0, 1). Let U be a unitary operator
on a separable Hilbert space H, and let x € H with ||x| = 1 be such that

sup [|U"x — x|| < /2y.
neQ
The proof of [5, Th. 4.6] shows then that there exists . € #(T) such that
2 sup (1 —Re fi(n)) = sup |[U"x — x||* < 2y.
neQ negQ
So sup,eo(l — Re ji(n)) < y. By (ii), u has a discrete part, and so U has an

eigenvalue. Hence I’(\aJZ(Q) = ol 2V
Suppose next that property (ii) is satisfied for y € (0, 1). Let © € £('T') be such

that inf,ep |fi(n)] > /T —y. Set v = p * ji. Then

inf v(n) > 1—y.
nngv(n) Y

It follows that sup, (1 —V(n)) < y, and v has a discrete part. So u itself has a
discrete part.

Lastly, suppose that (iii) is satisfied for 6 € (0,1). Let u € $(T) be a measure
satisfying sup,co (1 — Me ji(n)) < 1—4. Then

inf |@i(n)| > inf NRe fi(n) > 4,
neQ neQ

so i has a discrete part. 0
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Remark 5.2. Given a subset Q of Z, one can prove, using the spectral theorem for
unitary operators, that the following assertions are equivalent (see [5, Th. 4.6]):

(i) Q is a Kazhdan subset of 7Z, i.e. there exists ¢ € (0, +/2) such that (Q, ¢) is a
Kazhdan pair;

(i) thereexistsy € (0, 1) such thatany measure pu € & (T') with sup, ¢ o (1—Re fi(n))
< y is such that p({1}) > 0.

Moreover (i') holds true for a certain constant ¢ € (0, +/2) (i.e. Kaz(Q) > ¢) if and
only if (ii’) holds true for y = &2 /2.

It is interesting to note that these two conditions (i’) and (ii") are not equivalent
to the natural version (iii’) of (iii) (namely, that there exists § € (0, 1) such that
any measure p € P(T) with infyep |fi(n)| > § satisfies w({1}) > 0). Indeed,
(iii") is satisfied for any Dirac mass 8¢y, A € T. The proof that (ii) implies (iii) in
Theorem 5.1 above uses in a crucial way the fact that if u € #(T) is such that p * &
has a discrete part, p itself has a discrete part. But w * ;& may very well satisfy
wx 1({1}) > 0 while w({1}) = 0, and so (ii’) does not imply (iii’).

Theorem 5.1 is related to Conjecture (C4) in the following way:

Corollary 5.3. Let Q be a generating subset of Z. The following assertions are
equivalent:

() Q is a Kazhdan subset of 7. with I’Zz_l/z(Q) = /2;
(B) any measure pu € Pc(T) satisfies inf,eq |[i(n)| = 0;
(y) any measure jr € P¢(T) satisfies liminf | o0 |[£(7)| = 0.
ne@

Proof. The equivalence between («) and () follows immediately from Theorem 5.1.
So only the implication () = (y) requires a proof. Suppose that any u € P.(T)
satisfies

inf |t = 1)

1 |ia(n)]

We want to show that the conclusion can be reinforced into

liminf |(n)| = 0.
|n|—=+o0
neQ
Let p € $.(T) be a Rajchman measure with positive coefficients, that is such
that limj,|— 400 p(n) = 0 and p(n) > 0 for every n € Z. Consider the measure
v = (u * it + p)/2. It is continuous and satisfies v(n) > 0 for every n € Z. Since
inf,ep V(n) = 0 and v(n) > O foreveryn € Z,
liminf ¥(n) = 0.

|ln|—>—+o0

neQ

Hence lim inf |, 4 oo |/2(7)]|*> = 0, and the conclusion follows. ]
neQ
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So Conjecture (C4) is equivalent to the statement that any non-lacunary semigroup
of integers has modified Kazhdan constant \/i We can also estimate the Fourier
coefficients of a continuous probability measure on T which is T>- and T5-invariant
in terms of the modified Kazhdan constant ¥ > O of the Furstenberg set. Notice that
Proposition 5.4 is meaningful only if ¥ > 0.

Proposition 5.4. Let F = {2%3% : k. k' > 0} and set € = Kaz(F). Let u be a
continuous probability measure on T which is T>- and Ts-invariant. Then

(ol
— K . .
|2()] £ 1~ 5 for every j € 7\ {0}.

Proof. Set, for every j € Z \ {0}, u; = T;u. Then p; is a continuous measure
which satisfies i ; (2k3K"y = [i(j) for every k,k’ > 0. It follows that if § € (0, 1) is
such that (iii) of Theorem 5.1 is satisfied, § > |{i(j)|. Hence, by Theorem 5.1 again,

K< V20— a()D. u

Remark 5.5. Although a generating subset Q of Z is a Kazhdan set if and only
it IE&E(Q) > 0, there is no link between the Kazhdan constant and the modified
Kazhdan constant of Q. Indeed, there exist Kazhdan subsets Q of Z with maximal
modified constant I?zfz(Q) — /2 and arbitrarily small Kazhdan constant Kaz(Q).
This relies on the following observation, which can be extracted from the proof
of [5, Th.7.1] and results from Proposition 6.10 below.

Proposition 5.6. Let (ny)i>o be a strictly increasing sequence of integers with
no = 1 such that (ng0)x=o is uniformly distributed modulo 1 for every 6 € R\ D,
where D is countable subset of R. Then the set Q = {ny; k > 0} is a Kazhdan
subset of Z which satisfies Kaz(Q) = /2.

Consider, for every integer p > 2, the set §, = p N + 1. By Proposition 5.6,
O p is a Kazhdan subset of Z with IEEIZ(Q i) = V2. But the measure . = Oye2im/ py
satisfies
sup (1 —Ne ji(n)) =1 —cosx/p).

neQp

Hence Kaz(Q,) < +/2(1 —cos(27/p)), which can be arbitrarily small if p is
sufficiently large.

6. Applications

6.1. Proof of Theorem 2.1. Our first and main application of Theorem 2.4 (or Cor-
ollary 2.6) is Theorem 2.1, which solves in particular Conjecture (C4) and shows
that the invariance assumption on the measure is indeed essential in the statement of
Furstenberg’s x 2 -x 3 conjecture.
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Proof of Theorem 2.1. If r = 1, Theorem 2.1 claims the existence, for every integer
p > 2, of ameasure u € Pc(T) such that infz> |ZL(p¥)| > 0. As mentioned in
Section 2, this statement is well known: it suffices to consider the classical Riesz
product associated to the sequence ( pk)kz(). One can also show, either as in [8]
or [19], or as an application of Corollary 2.5, that ( pk k>0 is a rigidity sequence, so
that there exists . € P.(T) with fi(p*) — 1 as k — +oo.

Suppose now that r > 2, and consider, for every fixed index 1 < j < r, the set

CJ/ _ {82innpfl “n,l > 0}

of roots of all powers of p;. It is dense in T, and has the following property: there

k1 ko k
exists for every A € C; an integer /; such that A71° P2 =Pr" = 1 forevery k; > I;
and k; > 0,1 <i <r withi # j. Hence

k1 kr
sup |APV P 1| >0 askj — +oo.
k; =0
1<i<r, i#j
Consider the two sequences (my)gs>p and (ng/)x/>¢ obtained by setting my = p? ,
k > 0, and ordering the set

{pJfl... pfi_llpl;j:{' PRk >0, 1L <i<rwithi # j}

as a strictly increasing sequence (nx/)g’>¢, andlet : N — N be a strictly increasing
function such that

(5 PP 0 <k <k, 1<i<rwithi # 1)

is contained in the set {ny, ; 0 < k’ < ¢ (k)} forevery k > 0. By Corollary 2.6, there
exists a measure ;1 ; € P.(T) such that ,Zij(plf‘ pf’) — 1 as kj — +oo with
0<ki <kj;,1<i <rwithi # j. Replacing, forevery1 < j <r, by pu;*/;,
we can suppose without loss of generality that fij(n) > 0 for every n € Z.

Let now p € P.(T) be such that p(n) > 0 for every n € Z, and set

1 r
'u_r+1(;“f+p)'

Then w is a continuous probability measure on T with fi(n) > 0 for every n € Z.
Moreover, we have

1
lim inf [l(plf‘plzcz . pf’) > ol = max(kq,...,k;) — +o0. (6.1)

Indeed, if (kf”,...,kf” )i>1 is an infinite sequence of elements of N, one can
extract from it a sequence (still denoted by (k(l), e ,kfl))gzl) with the following
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property: there exists 1 < j < r such that ki(l) < k;l) forevery 1 <i <r. Then

D o) 1 kP @) 1
liminf G(p,' ...p% ) > liminf & ; L. pfr ) = .
le+mu0ﬁ Pr )_rﬁJla+wMApl ) r+1

This yields (6.1). Since fi(n) > 0 for every n > 0, it follows that

. v k r
dnt B(pY - pyr) >0,

1<i<r

and Theorem 2.1 is proved. L]

6.2. The case of the Furstenberg set. Theorem 2.1 applies to the Furstenberg set
F = {2k3%" . k k' > 0} and shows the existence of a measure y € £.(T) such that
inf 7(2k3%F) > 0
it p(2"3%)

(the fact that the measure j can be supposed to have nonnegative Fourier coefficients
can be extracted from the proof of Theorem 2.1, or deduced formally from
Theorem 2.1 by considering the measure w * ). By Corollary 5.3, this means
that Kaz(F) < /2.

As mentioned in Introduction, it is natural to look for the optimal constant § €
(0, 1) for which there exists a measure p € (1) such that

inf 023 > 3. (6.2)
k,k’>0

This is equivalent to asking whether F is a Kazhdan set in Z, and if yes, with
which (modified) Kazhdan constant. The best result which can be obtained via the
methods presented here is that there exists a measure p € P.(T) satisfying (6.2) for
every 6 € (0,1/2): this is the content of Theorem 2.2, which we now prove.

Proof of Theorem 2.2. The proof goes along the same lines as that of Theorem 2.1,
but it requires the full force of Theorem 2.4 rather than the weaker statement of
Corollary 2.6.

Fix § € (0,1/2). There exist by Theorem 2.4 two measures 1, w2 € Fe(T)
such that

|ﬁ1(2k3k/)| > /28 forevery k > Oandevery 0 < k' <k
and 122535 )| > V28 for every k' > 0 and every 0 < k < k.

The measure u = %(ul x L1 + M2 * Jl2) has nonnegative Fourier coefficients and
satisfies [1(253%") > § for every k, k' = 0.

It then follows from Theorem 5.1 that if {2k3k’ ;k,k" > 0} is a Kazhdan
subset of Z, its modified Kazhdan constant must be less than /2(1 — §) for every
6 € (0,1/2), so must be at most 1. O
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That the bound 1/2 can be further improved does not seem clear at all, and we do
not know whether there exists for every 6 € [1/2, 1) a measure u € #.(T) such that

inf (2%3%) > §.
k’k,zou( )2

Question 6.1. Is the Furstenberg set {2¥3%": k. k’ > 0} a Kazhdan set in Z?

Note that a lacunary semigroup {a” ; n > 0}, a > 2, cannot be a Kazhdan set
(see [5, Ex.5.2]). We also observe that Theorem 2.4 immediately yields:

Corollary 6.2. For any function ¥:N — N with y(k) — +o0 as k — +o00, the
sets

(k3K k>0, 0 <k’ <yk) and {2F3F k' >0,0<k <y(k)}

are non-Kazhdan sets in 7.

Along the same lines, one can also ask for which values of § € (0, 1] there exists
a measure ot € P (T) such that liminf fi(2¥3%") > § as max(k, k') — +oo. The
proof of Theorem 2.1 allows us to exhibit a measure u € #.(T) with nonnegative
Fourier coefficients (namely 4 = (1 + p2)/2) such that lim infﬁ(2k3k') > 1/2
as max(k,k’) — +oo. Again, we do not know whether the constant 1/2 can be
improved. The strongest statement which could be expected in this direction is the
existence of a measure u € P.(T) such that 1(2¥3%") — 1 as max(k, k') — +oo.
This would show that the Furstenberg sequence is a rigidity sequence for weakly
mixing dynamical systems. This natural question is raised in Remark 3.12 (b) of [8],
and we record it anew here:

Question 6.3. Is the Furstenberg sequence a rigidity sequence for weakly mixing
dynamical systems?

6.3. Examples of rigidity sequences. Corollaries 2.5 and 2.6 allow us to retrieve
directly all known examples of rigidity sequences from [1,2, 8, 19], and [22]. The
only examples of rigidity sequences not covered by our results are those of [21]
and [24]. Indeed, Fayad and Kanigowski construct in [21] examples of rigidity
sequences (ng )r>o such that {A"% ; k > 0} is dense in T for every A = e2imd ¢ T
with # € R \ Q, and there exist for every integer p > 2 infinitely many integers k
such that p does not divide nx. So such sequences never satisfy the assumption of
Corollary 2.5. Griesmer strengthens this result in [24] by showing the existence of
rigidity sequences (ng)x>o such that {ny ; k > O} is dense in Z in the Bohr topology.

We briefly list here some of the examples of rigidity sequences which can be
obtained from Corollaries 2.5 and 2.6. Our first example is that of Fayad and
Thouvenot in [22].

Example 6.4 ([22]). If the sequence (k) x>0 is such that there exists A = e?imd e,
with § € R\ Q, suchthat A"*# — 1ask — +o0o, then (ng )¢ is a rigidity sequence.
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This result of [22] follows directly from Corollary 2.5. Indeed, if A”* — 1 with
A = e?7 9 e R\ Q, then AP"* — 1 for every p € Z. Since @ is irrational, the
set {A?; p € Z}is dense in T, and Corollary 2.5 applies.

Example 6.5 ([8, 19]). If (ng)x>o is a strictly increasing sequence of integers such
that ny|ng 4, for every k > 0, then (nx )x>o is a rigidity sequence.

Indeed, under the assumption of Example 6.5, the set C = {A € T ; A"* — 1}
contains all ny-th roots of 1, k > 0, and is hence dense in T.
Corollary 2.6 shows that Example 6.5 can be improved into

Example 6.6. Let (my)x>o be a strictly increasing sequence of integers such that
my |mg4q forevery k > 0. Let y: N — N be a strictly increasing function. Order
the set {k'my ; k > 0, 1 <k’ <y (k)} as a strictly increasing sequence (1 )g>o-
Then (ng )0 is a rigidity sequence.

Indeed, the set C’ = {A € T ; AK™k — lask — +oo uniformly in k’} contains
all my-th roots of 1, and is dense in T'. So Corollary 2.6 applies.

For instance, if (7 )k is any sequence of positive integers, the sequence (7 )k >0
obtained by ordering the set {k’2¥:k > 0, 1 < k' < rg} in a strictly
increasing sequence is a rigidity sequence. This provides new examples of rigidity
sequences (1 )k=o such that "fl% — lask — +oo.

Example 6.7. Let (rx)x>0 be any sequence of positive integers with ry — +o0
as k — +oo. The sequence (n;);>¢ obtained by ordering in a strictly increasing
fashion the set {j2X; k > 0, 1 < j < ri} is a rigidity sequence, which satisfies

%—>lasl—>—|—oo.

Proof. It suffices to show that for every ¢ > 0 and every / sufficiently large there

exists [’ > [ such that % =z1+&

— Suppose first that n; = j2* for some k > 0 and some 1/¢ < j < ri. Then taking

”l':(j+l)2k,wehave%’7’:fji_1<1+8_

— Suppose next that n; = j2k for some k > 0 and some | < j < 1/¢. Fix an
integer p such that 277 < ¢. If [ is sufficiently large, we have rg_, > 27 /e. Set
j' = j2P. Since j' < 2P /e < rg_p, the integer nyy = (j’ + 1)27P appears in the
sequence (n7);>¢. Also, since ny = (j' + 1)2k=P > j2k —p; wehavel’ > I, and

ny _ (/D25 T+ Dyp S +277

- < - <14+2?7<1+4e¢
n J2x j j

— The last case we have to deal with is when n; = r; 2% forsome k > 0. Let j/ > 1
be such that j' < ri/2 < j'+ 1. Then j’ < ry4q,and if wesetny = (j/ + 1)25+1,
the integer n;, appears in the sequence (n;);>o. We have

np (A DZTT 207+ 1)

2
<l4+—<l1l+4+¢
nj rkzk ry o ry +

if k is sufficiently large, and this terminates the proof. L]
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Example 6.8 ([1]). (a) Let (dg)x>0 be a strictly increasing sequence of positive in-
tegers of density zero. There exists a strictly increasing sequence of integers (nx )k >0
which is a rigidity sequence and satisfies ny < dy for every k > 0.

(b) Let (dg)x>0 be a sequence of real numbers with dy > k for every £k > 0

and di — +o0 as k — +oo. There exists a strictly increasing sequence of
integers (ng)x>o Which is a rigidity sequence and satisfies ny < di for every k > 0.

This has been proved by Aaronson in [1, Th. 4]; a simpler construction with the
weaker conclusion that n; < d for infinitely many k& was given in [8, Prop. 3.18].
The proof given below uses Corollary 2.5 and a result of Bugeaud [16].

Proof. As the statement (a) is a simple consequence of (b), we only give the proof
of (b). Set go = 1 and gx = dx/k for every k > 1. Then (gx)r>o is a sequence
of reals with g > 1 for every k > 0 which tends to infinity (notice that for (a)
this holds since (dg)k>¢ is a sequence of density zero). Using (a particular case
of) [16, Th. 1], we obtain that there exists for every fixed irrational number 6 an
increasing sequence (ny)x>o of positive integers such that ny < kgy = di for
every k > 1 and exp(2imw0)"* — 1. It follows from Example 6.4 that (ny)x>o is a
rigidity sequence. ]

Example 6.9. Let (my )x>o be a strictly increasing sequence of positive integers with
my4+1 —my — +oo. There exists a strictly increasing sequence of integers (nx)x>o
which is a rigidity sequence and satisfies my < ny < myy forevery k > 0.

Proof. The proof is exactly the same as the preceding one, replacing the result from
[16] by [9, Obs. 1.36]. O

6.4. Exceptional sets for (almost) uniform distribution. Let (74 )>o be a strictly
increasing sequence of integers, and let v € M(T) be a (finite) complex Borel
measure on T'. We stress that v is notnecessarily a probability measure. Given 8 € R,
the sequence (ng6)k>o is said ([32], [30, p. 53]) to be almost uniformly distributed
with respect to v if there exists a strictly increasing sequence (N;);>1 of positive
integers such that for every arc / C T whose endpoints are not atoms (mass-points)
for v one has

1
lim —+#i{n < N; :exp(2i 0)el;=v(l).
Jlim S {n < Nj sexp(immg) € 1} = (D)
The analog of Weyl’s criterion states that (1x6)g>¢ is almost uniformly distributed
with respect to v if and only if there exists a strictly increasing sequence (N;)j>1 of
positive integers such that
N
lim — Z exp(m2iwng0)exists for every m € Z.

am -
J J k=1



124 C. Badea and S. Grivaux CMH

In this case, the limit is U(m). It can also be proved that (n 0)g > is almost uniformly
distributed with respect to v if and only if there exists a strictly increasing sequence
(Nj)j=1 of positive integers such that

N.

[ :

Ez_f(e%”k")ﬁfrfd# as j — +oo forevery f € €(T).
k=1

We now denote by W((ng)k>o0, v), the exceptional set of almost uniform distribution
of (ng) with respect to v. This is the set of all & € R such that (nz0)x>0 is not
almost uniformly distributed with respect to v. We will write U((ng)x>0, V) for the
exceptional set of (classical) uniform distribution of (ny) with respect to v, which
corresponds to the case where N; = j forevery j > 1.

The size of the exceptional set U((ng)x>o,v) has been studied in many works,
in particular in the case where v is the normalized Lebesgue measure on T. In this
case, we write it as U((ng)x>0). If the sequence (ng)x>o is lacunary, U((nx)x>0) is
uncountable, and even of Hausdorfl dimension 1 ([20], see also [26]). See also [36]
and [34] for a stronger result. On the other hand, it is known (see [11, 13]) that among
various natural classes of random sequences of integers, almost all sequences (nx)k>o
satisfy U((ng)k>0) = Q. These typical random sequences (1 )¢ are sublacunary,
i.e. satisfy ngyq1/nx — 1 as k — oo Nonetheless, examples of sublacunary
sequences (ng)k>0 With U((ng)x>0) uncountable were constructed in [20] (see
also [6]). Concerning the size of W((ng)x>0.v) we refer for instance to [26,35]
and [29]. See also [15] for other references.

Our results about the size of W((ng)k>¢. v) rely on the following generalization
of Proposition 5.6, which provides a link between the size of the exceptional set
W{((ni)k>0, v) and the modified Kazhdan constant of the set {ny ; k > 0}.
Proposition 6.10. Let (ny)x>o be a strictly increasing sequence of positive integers
with ng = 1, and let v € M(T) with v # 8¢y If W((ni)kso.V) is finite or
countable infinite, Q = {ny ; k > 0} is a Kazhdan subset of Z., and

Kaz(Q) = v2(1 — Re D(1)).

Proof. Fix y € (0,1 — Re v(1)), and let u be a probability measure on T such that
supgso(1 —Re fi(ng)) < y. Then

N
1 e
l—me[]r(ﬁkz_;}k )d,u,(/l)<y for every N > 1.

Suppose that the measure p is continuous. Since there exists a strictly increasing
sequence (N;);j>1 of integers such that
N
1 5 = )
— ZA k—>v() asj— +oo foreveryAd eT\C,

N.
J k=1
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where C is a finite or countable infinite subset of T, we have 1 —9Re V(1) <y, which
contradicts our initial assumption. So u has a discrete part. It then follows from
Theorem 5.1 that the modified Kazhdan constant of Q is at least \/ 2(1 — Rev(1)).

]

The following result provides an example of a nonlacunary semigroup (ng)x>o
whose associated exceptional sets W((ng)g>0, V) with respect to v are uncountable
for a large class of measures v € M(T).

Theorem 6.11. Denote by (ny)x>o the sequence obtained by ordering the
Furstenberg set F = {2535 k k' > 0} in a strictly increasing fashion. For every
measure v € M(T') such that Re V(1) < 1/2, the set W((ny)x>0, V) is uncountable.

Proof of Theorem 6.11. Fix v € M(T'), and suppose that U((ng)g>o, V) is at most

countable. Since @(F ) < 1 by Theorem 2.2, it follows from Proposition 6.10 that
V2(1 —Re V(1)) < 1, ie. that Re D(1) > 1/2. This proves Theorem 6.11. ]

Acknowledgements. We are grateful to Etienne Matheron for pointing out a simp-
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