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Kazhdan constants, continuous probability measures
with large Fourier coefficients and rigidity sequences

Catalin Badea and Sophie Grivaux*

In memory ofJean-Pierre Kahane (1926-2017)

Abstract. Exploiting a construction of rigidity sequences for weakly mixing dynamical systems
by Fayad and Thouvenot, we show that for every integers pi,..., pr there exists a continuous

probability measure /i on the unit circle T such that

inf mPkf ...pk/)\>6.
fci>0 kr>0

This results applies in particular to the Furstenberg set F {2k3k' ; k > 0, k' > 0}, and

disproves a 1988 conjecture of Lyons inspired by Furstenberg's famous x 2-x 3 conjecture.
We also estimate the modified Kazhdan constant of F and obtain general results on rigidity
sequences which allow us to retrieve essentially all known examples of such sequences.

Mathematics Subject Classification (2010). 43A25, 37A05, 37A25.

Keywords. Fourier coefficients of continuous measures, non-lacunary semigroups of integers,
Furstenberg conjecture, rigidity sequences for weakly mixing dynamical systems, Kazhdan
subsets of Z.

1. Introduction

Denote by T the unit circle T {A e C ; |A| 1}, by M(T) the set of (finite)
complex Borel measures on T and by IP(T) the set of Borel probability measures

on T. The Fourier coefficients of p e M (T are defined here as

fL(n)= f Xndji(X).
JT

A measure /i e ,P(T) is said to be continuous, or atomless, if /x({A}) 0 for

every A e T. We denote the set of continuous probability measures on T by -Pc (Ï
*This work was supported in part by the project FRONT of the French National Research Agency

(grant ANR-17-CE40-0021) and by the Labex CEMPI (ANR-1LLABX-0007-01).
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According to a theorem of Wiener and the Koopman-von Neumann lemma, /x is

continuous if and only if fi(n) tends to zero as n tends to infinity along a sequence
in N of density one. For every /x G IPÇl), we define jl by setting J1(A) p,(Ac) for

every Borel set A ç T, with Ac {À ; A G A). Then v : /x * jl has the property
thatfij«) \fi(n)\2 > Ofor every« G Z, and v belongs to ^(T) as soon as/x does.

A conjecture of Russell Lyons. Our aim in this paper is to study some non-lacunary
sets of positive integers from a Fourier analysis point of view, and to construct some

probability measures which have large Fourier coefficients on such sets. In particular,
we disprove a 1988 conjecture of Lyons [33], called there Conjecture (C4), which
reads as follows:

Lyons' Conjecture (C4). If S is a non-lacunary semigroup of integers, and if
/x G IPC (T), there exists an infinite sequence t of elements of S such that

fi(nk) 0 as k +oo.

This conjecture of Lyons is inspired by Furstenberg's famous conjecture
concerning simultaneously invariant probability measures for two commuting
automorphisms of the unit circle T, Tp: A i—» Xp and Tq\A i—> A9, when p and q

are two multiplicatively independent integers (i.e. p and q are not both powers of the

same integer). In this setting, Furstenberg's conjecture states that the only continuous

probability measure on T invariant by both Tp and Tq is the Lebesgue measure on T.
Furstenberg himself proved [23] that if S is any non-lacunary semigroup of integers
(i.e. if S is not contained in any semigroup of the form {an ; n > 0}, a > 2),

then the only infinite closed S-invariant subset of T is T itself. See [10] for an

elementary proof of this result and the references mentioned in [15, Chapter 2] for
several extensions. Since S {pkqk ; k, k1 > 0} is a non-lacunary semigroup
whenever p and q are multiplicatively independent, the only infinite closed subset

of T which is simultaneously 7p-invariant and T9-invariant is T. Starting with
the work of Lyons in [33], Furstenberg's conjecture has given rise to an impressive
amount of related questions and results, concerning in particular the dynamics of
commuting group automorphisms. We refer the reader to the papers [ 14,18,37]
or [27] for example, and to the texts [28,31] or [38] for surveys of results related to
this conjecture, as well as for perspectives.

As written in [33], conjecture (C4) is a natural version of Furstenberg's conjecture
about measures, but not involving invariance. If (C4) were true, it would imply
an affirmative answer to the Furstenberg conjecture (if /x G tPc(T is Tp- and

^-invariant, applying (C4) to each of the measures /x/ := Tj(p), je Z \ {0},
yields that fi(j) 0 for every j G Z \ {0}).

Kazhdan sets and modified Kazhdan constants. It turns out that Lyons' conjecture
is related to an important property of subsets of Z, namely that of being or not
a Kazhdan subset of Z. Kazhdan subsets Q of a second-countable topological
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group G are those for which there exists s > 0 such that any strongly continuous

representation n of G on a complex separable Hilbert space H admitting a

vectorx e H with ||x|| 1 which is «-invariant on Q (i.e. sup^g \\jz(g)x—x\\ < s)
has a non-zero G-invariant vector. Such an s is called a Kazhdan constant for Q,
and the supremum of all e's with this property is the Kazhdan constant of Q. Groups
with Property (T), also called Kazhdan groups, are those which admit a compact
Kazhdan set. See the book [7] for more on Property (T) and its numerous important
applications.

As suggested in [7, Sec. 7.12], it is of interest to study Kazhdan sets in groups
which do not have Property (T), such as locally compact abelian groups, Heisenberg

groups, etc. See [4] and also [17] for a study of such problems. In the case of the

group Z, the definition above is equivalent to the following one:

Definition 1.1. (Kazhdan sets and constants) A subset Q C Z is said to be a Kazhdan
set if there exists s > 0 such that any unitary operator U acting on a complex separable
Hilbert space H satisfies the following property: if there exists a vector x e H with
|| jc || 1 such that sup„6g \\Unx—x\\ < e, then there exists a non-zero vector y H
such that Uy y (i.e. 1 is an eigenvalue of U). We will say in this case that {Q, e)
is a Kazhdan pair. We define the Kazhdan constant of Q as

Kaz(Q) inf inf sup \\Uqx — x||,
V \\x\\ l q&Q

where the first infimum is taken over all unitary operators U on H without fixed
vectors.

It follows from [7, p. 30] that 0 < Kaz(g) < 4Ï. for every Q ç Z.
Several characterizations of Kazhdan subsets of Z were obtained in [4] as

consequences of results applying to a much wider class of groups; self-contained

proofs of these characterizations of Kazhdan subsets of Z, involving only classical
tools from harmonic analysis, were obtained in the paper [5], One of the

characterizations of generating Kazhdan sets obtained in [4, Th. 6.1] (see also [5,
Th. 4.12]) runs as follows. Recall that Q is said to be generating in the group Z if
the smallest subgroup containing Q is Z itself.

Theorem 1.2 ([4]). Let Q he a generating subset ofZ. Then Q is a Kazhdan subset

of TL ifand only if there exists e' (0, a/2] such that (Q, s') is a modified Kazhdan

pair, that is any unitary operator V acting on a complex separable Hilbert space H
satisfies the following property: if there exists a vector x H with ||x|| 1 such

that sup„e0 || Vn x — x || < e', then V has at least one eigenvalue.

We define now the modified Kazhdan constant of Q as

Kaz(<9) inf inf sup \\Vqx — x
V \\X\\ \ qeQ
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where the first infimum is taken this time over unitary operators V on H without
eigenvalues (that is, with continuous spectra). Therefore

0 < Kaz(g) < Kaz(Q) < 72

and for every Q ç Z, we have Kaz(Q) 0 if and only if Kaz(g) 0 if and only
if g is a non-Kazhdan set. The property of being or not a Kazhdan set can also be

expressed in terms of Fourier coefficients of probability measures; see Section 5 for
a discussion.

The characterization of Kazhdan subsets of Z obtained by the authors in [4] (see

also [5]) implies that the generating subsets Q of Z which satisfy the property stated

in (C4) (namely that there exists for every /z e !PC(1') an infinite sequence («jfc)ifc>i

of elements of Q such that /z(/îfc) 0 as k —* +oo) are exactly the Kazhdan subsets

of Z with modified Kazhdan constant Kaz(Q) 72. Since 72 is the modified
Kazhdan constant of Z seen as a subset of itself, 72 is the maximal modified
Kazhdan constant, and thus (C4) can be reformulated as: every generating non-

lacunary semigroup S of integers is a Kazhdan subset of Z with maximal modified
Kazhdan constant 72. The relationship between Furstenberg x 2 -x 3 conjecture and

modified Kazhdan constants can be also seen directly from Proposition 5.4 below.

2. Main results

The first main result of this paper is the following:

Theorem 2.1. Let p\,... ,pr be positive distinct integers and set

E {p\l Prr ; h >0,...,kr >0}.
There exists a continuous probability measure p, on T such that

inf |/z(pf' Pkrr)\ > o.
k\ >0,...,kr>0

Equivalently,
Kaz(F) < 72.

It should be noted that, as conjecture (C4) does not involve invariant measures, we
do not assume in Theorem 2.1 that the integers pj are multiplicatively independent.
Notice also that the statement of Theorem 2.1 is well known in the lacunary
case: if r 1 it suffices to consider the classical Riesz product associated to the

sequence (pk)k>o 1° the non-lacunary case, Theorem 2.1 disproves Conjecture (C4),
as well as the related conjectures (C5) and (C6) of [33] (which are both stronger
than (C4)). It applies in particular to the Furstenberg set F {2k3k ; k,k' > 0}
and shows the existence of a measure /z e Pc (T such that

inf pul2k3k') > 0.
k,k'>0
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In view of this result, one may naturally wonder for which values of 8 e (0,1) there
exists a measure p e IPC (I1 such that

inf p(2k3k') > 8,
k,k'>0

or, equivalently, whether the Furstenberg set F is a Kazhdan set in Z, and if yes, with
which (modified) Kazhdan constant. In this direction, we prove the following result:

Theorem 2.2. Let F {2k3k' ; k. k' > 0}. Then Kaz(E) < 1. More precisely,
there exists for every 8 G (0,1/2) a continuous probability measure p on T with
nonnegative Fourier coefficients such that

inf p(2k3k') > 8.
k,k'> 0

Rigidity sequences. Our strategy for proving Theorem 2.1 is to construct measures

p G IPC (T whose Fourier coefficients tend to 1 along a substantial part of the

set {p\1 prr ; k\ > kr >0}. In other words, we show that certain large
subsets of this set form are, when taken in a strictly increasing order, rigidity sequences
in the sense of [8] or [19]. Recall that a dynamical system (X, IB, m\ T) on a Borel
probability space is called rigid if there exists a strictly increasing sequence of integers
(nk)k>l such that ||Ujkf — f\\ -> 0 as k -> +oo for every / 6 L2(X, kB,m),
where Up denotes as usual the Koopman operator / i-> / o T associated to T on
L2(X, 3i,m). Equivalently, m(T~"k A A A) 0 as k -> +oo for every A G IB.

We say in this case that the system is rigid with respect to the sequence (iik)k>i,
or that (jik)k>i is a rigidity sequence for (X, ,B, m: T). The case where the system
(X, S,m; T) is weakly mixing is particularly interesting, and is the object of the
works [8] and [19]. A strictly increasing sequence (nk)k>l of integers is called a

rigidity sequence if there exists a weakly mixing system which is rigid with respect
to (nk)k>l-

Using Gaussian dynamical systems, one can show that («yt)fc>i is a rigidity
sequence if and only if there exists a measure p e kPc (T) such that p(nk) —1
as k —> +oo. The study of rigidity sequences was initiated in [8] and [19]. Further
works on this topic include the papers [1-3,21,22,25], and [24] among others.
The paper [22] by Fayad and Thouvenot is especially relevant here: the authors re-
obtain a result of Adams [3], showing that whenever (nk)k>i is a rigidity sequence
for an ergodic rotation on the circle, it is a rigidity sequence for a weakly mixing
system. The proof of this result in [3] relies on an involved construction of a suitable

weakly mixing system by cutting and stacking, while the authors of [22] proceed
by a direct construction of suitable continuous probability measures: they show that

if X"k -* 1 for some À e2ind G T with 9 G M \ Q, there exists p G fPc(T) such

that p{nk) 1.
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The most important tool for proving Theorems 2.1 and 2.2 is the following
theorem, which generalizes the result of Fayad and Thouvenot and provides some

new examples of non-Kazhdan subsets of Z:

Theorem 2.3. Let (nk)k>o be a strictly increasing sequence of integers. Suppose
that the set

C {X T ; X"k -> 1 as k -> +00}

is dense in T. Then there exists for every e > 0 a measure pi e IPC(T) such that
p(nk) ~^ 1 as k ^ +00 and supfc>0 \p(nk) — 11 < s. In particular, {nk ; k > 0}
is a non-Kazhdan subset ofZ.

Notice that C, like every subgroup of the circle group, is dense in T as soon as it
is infinite. We deduce from Theorem 2.3 the following two-dimensional statement,
which is asymmetric and involves a uniformity assumption.

Theorem 2.4. Let (mk)k>0 and ink')k'>0 be two strictly increasing sequences of
integers. Let also rjr: N —» N be such that x/r(k) -> +00 as k -> +00, and set

{(k, k') e N2 ; 0 < k' < f(k)}.

Suppose that the set

c; {1 e T ; Xmknk' -> 1 as k -» +00, (jfc, k') e D^}

is dense in T. There exists for every e > 0 a measure p G IPC (T such that
pt(mknk') —> 1 as k —> +00 with (k,k') £ and

sup \p{mknk') - 11 < s.
k>0, 0<k'<i/f (k)

In particular, {mkUk/ ; k > 0, 0 < k' < f (k)} is a non-Kazhdan subset of Z.

Given a doubly indexed sequence (zk,k')k,k'>o °f complex numbers, saying
that Zk,k' converges to z C as k -» +00 with (k, k') e D^, means that there

exists for every y > 0 an integer ko such that \zk,k' ~ z\ < y for every (k, k') e N2
with k > ko and 0 <k'< fr{k).

Remark also that the assumption of Theorem 2.4 is in particular satisfied if the

set

C' {A e T ;Xmk"k' -> 1 as k -> +00 uniformly in k'}

is dense in T.
Theorem 2.3 allows us to retrieve essentially all known examples of rigidity

sequences (notable exceptions being the examples of [21] and [24]). We state

separately as Corollaries 2.5 and 2.6 the parts of Theorems 2.3 and 2.4 dealing
with rigidity sequences:
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Corollary 2.5. Let (nk)k>o be a strictly increasing sequence of integers. Suppose
that the set

C {A G T ;X"k -> 1 ask +00}

is dense in T. Then (nk)k>i is a rigidity sequence.

Corollary 2.6. Let (mk)k>0 an(i (nk')k'>0 be two strictly increasing sequences of
integers. Let also x/s: N —> N be such that (k) —>• +00 ask -» +00, and suppose
that the set

C^ {A e T ; Xmk"k' 1 as k -> +00, (k, k') D^}

is dense in T. Then there exists a continuous probability measure p on 'F such that

p(mknk') 1 as k +°° with (k,k') D^.
The proof of Theorem 2.3 builds on some ideas from [22]. While being an

immediate consequence of Theorem 2.3, Corollary 2.5 admits a direct proof which
is very much in the spirit of that of the main result of [22]. As Corollary 2.5 is of
independent interest in the study of rigidity sequences, we will briefly sketch this
direct proof in Section 4 of the paper.

Theorem 2.1 is obtained by first observing that the set

{p\1 pk/ ; Pl > 0, pr > 0}

can be split into r sets to which Theorem 2.4 (or Corollary 2.6) applies, and then

considering a convex combination of the continuous measures obtained in this way.

Organization of the paper. The paper is structured as follows. We give in Section 3

the proof of Theorems 2.3 and 2.4, and sketch in Section 4 a direct proof of
Corollaries 2.5 and 2.6, essentially following the arguments of Fayad and Thouvenot
in [22]. In Section 5, we recall a characterization of generating Kazhdan subsets

of Z from [4], and detail the links between several natural constants involved in this
characterization. We explain in particular why the generating subsets of Z which
satisfy the property stated in (C4) are exactly the Kazhdan subsets of Z with modified
Kazhdan constant -Jl. Section 6 is devoted to applications: we prove Theorems 2.1

and 2.2, and show how to retrieve many examples of rigidity sequences, using
Corollaries 2.5 and 2.6. We also provide an application of Theorem 2.2 to the study
of the size of the exceptional set of values 9 e M for which the sequence (nk0)k>o
is not almost uniformly distributed modulo 1 with respect to a (finite) complex Borel

measure v e -Af(T), where (nk)k>0 denotes the Furstenberg sequence. Namely,
we show that this exceptional set is uncountable, thus providing a new example
of a sublacunary sequence with uncountable exceptional set for (almost) uniform
distribution.
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3. Proof of Theorems 2.3 and 2.4

Given two integers a < b, we will when the context is clear denote by [a, b] the set

of integers k such that a < k < b.

Proofof Theorem 2.3. Fix e G (0,1/2). The general strategy of the proof is the

following: we construct a sequence (A^),> 1 of pairwise distinct elements of C, as

well as a strictly increasing sequence of integers (Np)p>o and, for every p > 0,

a sequence {a\P^)\<i<2P of positive weights with Ylf=i aY^ '' such that the

probability measures

v-p J2aip)§^
1=1

satisfy certain properties stated below. At step p, we determine the elements A;

for 2p~l < i <2P as well as the integer Np and the weights a\p\ 1 < ; < 2P, in

such a way that Aj 1 and 1, so that p0 No 0, and

(1) for every p > 1, every j e [0, p — 1] and every k G [Nj, Nj+i],

[ |An/t — 1| dpp(X) < 3e(l — e)7 ;

JT

(2) for every p > 1, every q G [0, p — 1], / G [1, 2p~q), r G

\^-l2l+r Ar| < T]q,

where qq \ infi<j</<2« |A ,• — A j \ for every q > 1, and 770 1 ;

(3) for every p > 1 and every k > Np,

f \X"k -\\dpp(X) < e(l-e)p+1;
JT

(4) for every p > 1, every q G [1, /?] and every r G [1, 2f/],

E MU; })<(!-£)*•
{i'e[l,2''];i=r mod 2«}

Remark that property (2) implies that the sequence (A,);>i satisfies:

(5) for every q > 0, every / > 0, and every r G [1,2<?],

1^/2®+r Ar| <
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and that property (4) applied to q p yields that:

(6) for every p > 1 and every / G [1, 2P],

Suppose that the sequences (A;)j>i, (Np)p>o and (a\p))\<lS2P-, P > 0, have

been constructed so as to satisfy properties (1) to (4) above, and let /tbea v;*-limit
point of the sequence (pp)p>o in -P(T). Property (1) clearly implies that

sup Iß(nk) - 1| < 3s.
k>0

Claim 3.1. We have pink) -> 1 as k -» +oo.

Proof. For every k >0, denote by /^ > 0 the unique integer j suchthat k G [Nj, Nj+i).
For every p > j^, we have by (1)

f \X'lk — 11 dpp(X) < 3e(l — eyk so that f
JT JT

\X"k - 1| dfi(X) < 3e(l -s)jk.

Since /A —> +oo as k —> +oo, / \Xnk — 11 dp(A) —> 0, i.e. -> 1.
JT

Claim 3.2. The probability measure /x is continuous.

Proof. Fix q > 1, and consider for every r G [1. 2^ j the two arcs Vr and Ar of T
defined by

Tr {A g T ; |A — Xr\ < n]q} and Ar |a g T ; |A — Xr\ < j-

The 2q arcs Ar are pairwise disjoint. Indeed, for every r, r' G [\,2q] with r y r',
every A G Ar and every X' G Ar>, we have by the definition of rjg that

|A - A'| > \Xr - Xr>\ - 3T]q > 4rjq - 3i)q rjq > 0.

So Ar and Ar> do not intersect.

Let us next estimate the quantity fip(Tr) for every r G [1, 2q] and every p > q.
We have

f"/>(rr) f-p({A ;})•
{ie[i,2P]-,Xierr}

Every / [1,2P] can be written as / I2q + s for some / > 0 and s G [1, 2q\.

By (5), Ai belongs to F^. Since the arcs Ar>, r' G [1,29], are pairwise disjoint, it
follows that

Pp(Ar) p,p(Tr) P-p({Xi}) A (1 — s)q

{ie[l,2P];i=r mod2<?}
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by (4). Also,

^(U r') L
r=1

Since the arcs Fr are closed while the arcs Ar are open, taking the limit as p goes to

infinity yields that /x(Ar) < (1 — s)q for every r G [\,2q] and

f(Ur') l'
r= 1

If À e T is such that p({X}) > 0, there exists an r G [1,2q] such that A Tr c Ar.
So /x({A}) < M(A r) < (1 — s)q, a contradiction if q is sufficiently large. It follows
that the measure p. is continuous.

By Claims 3.1 and 3.2, it suffices to construct (A;);>o, (Np)p>0 and (a- )i<;<2^ »

p > 0, satisfying properties (1) to (4) in order to prove Theorem 2.3. Recall that

for /? 0, we set X\ 1, aj0^ 1 and N0 0, so that p0 5{i}.
For p 1, we choose A2 E C distinct from Ai with \X2 — Ai| < 1 and set

pi (1 — s)<5{i> + £<S{a2>- have, for every k > 0, that

[ \X"k -l\dp,i(X) s\Xn2k -1| <2£<3e.
JT

Hence property (1) is satisfied whatever the choice of Ny. Since r]o 1 and

\X2 — Ai| < 1, property (2) is satisfied. We now have to choose N\ in such a way
that property (3) is satisfied. Since X2 belongs to C, we have

f \Xnk — 11 dp,\(A) s\X\k — 11 —> 0 as k ^ +oo,
JT

so we can choose N\ so large that

[ \X"k — 11 dp\(A) < e( 1 — e)2 for every k > Ny.
JT

Moreover, yu-i({1}) 1 — e and p2({X2}) s < 1 — e, so (4), which we only need

to check for q p - 1, is true. This terminates the construction for p h
Suppose now that the construction has been carried out until step p, i.e. that the

quantities A;, i G [1,2^], (a^)x<i<2i, and N[, 1 G [0,p\, have been constructed

satisfying properties (1) to (4).
We construct by induction on s G [1,2P] elements A2p+s of C, measures pPiS G

P (T of the form

2p-\-s 2p+s

dp,s J2 h(ip,s)sM with hip,s) >0 and Y. h<ip's) '•
i=l i=1
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and integers NPtS in such a way that the elements Ai G [1,2p+l], are all distinct,

Np < Npj < < NP 2p and the following five properties are satisfied:

(a) for every j G [0, p — 1] and every A G [Nj,Nj+1],

[ \X"k — l\dfiptS(X) < 3e(l — e)7;
AT

(b) for every k > Np,

f \Xnk - 11 dfip<s(X) < 3e(l — s)p;
AT

(c) for every A > NPyS,

f \Xnk — 1| d/j,p,s(\) < 3e(l — e)p+2\
A T

(d) [ip,s({ki}) /^({A,}) for every i G (s, 2P] and

PpA&iY) + PpAifop+i}) Mp({A,-}) for every i G [1 ,s]\

(e) < (1 — e)^+1 for every i G [1, s] U [2P + 1,2P + .v].

Let us start with the construction of A2/>+i- By density of C, one can choose

A2/>+i distinct from all the elements A;, i G [\,2P], with |A2/>+i — A11 arbitrarily
small. We define pLp,\ as

HP,i Pp + Pp({ 1}) £ (8{\2P+i} ~ %i})
2 P

/ip({l})0 ~£)5UI} + + ^p{{\})e?>{X2P + ^}
i=2

In other words, we split the point mass ,} appearing in the expression of /ip into
(1 — £)5{^j} + £(5{a2P+1}. We have for every A > 0

f \X"k — 11 d[iPti(X) < f |A"fc — 11 dfip(X) + fip({l}) s \2^p+i — A"* | (3.7)
At AT

< / |A"fc — 11 d/Ap(X) + (1 — s)p s \X"p+1 — X"k I

At

since /ip({ 1}) < (1 — s)p by (6). If |A2/»+i — Ai | is sufficiently small, we have by (1)
that

f \\nk — 11 d/ip,i(X) < 3e(l — s)j
At
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for every j [0, p — I ] and every k e [Nj, NJ + \ J (the set of pairs of integers (/, k

with j e [0, p — 1] and k e [Nj, (V/+j] is finite). So (a) holds true. Also, (3.7)
and (3) imply that for every k>Np,

\\"k — 11 d/ipj (A) < s (1 — s)p+l + 2s (1 — s)p < Xs (1 — s)p
JT

so that (b) holds true. Since all the elements Ai e [1,2P + 1], belong to C, there

exists NPti > Np such that

f \X"k — 11 dfAPti (A) < 3e(l — e)p+2 for every k > NPti.
JT

Property (d) is clear from the expression of /ip^, and property (e) is satisfied since

/*/>,!({!}) MO» 0-e)<(i-£)p+1
and

dp,i({^2P+\}) -s)p < (1 -e)^+1

by (6). Properties (a) to (e) are thus satisfied for s 1.

Suppose now that X2P+S', l<-2'>+s', and N2p+s' have been constructed for s' < s.
Let X2p+s e C \ {Ai,..., X2p+s-\} be very close to Xs, and set

dp,s dp,s— 1 + dp,s—1 ({As}) £ (ß{X2p+s} ~ (3-8)

This time, the point mass 5{^5} appearing in [ip is split as (1 — £)5{a,} + 2/>+1}-
Since, by (6),

f \X"k— \\djip>s(X) < f I A"* -11 djLp^-i (A) + (1 —s)p £ |A"p+i -X"k \, (3.9)
JT JT

for every k > 0, the induction assumption implies that (a) holds true provided
\X2p+s — À5; I is sufficiently small. As to (b), we have to consider separately the cases

Np < k < Np>s-i and k > NP)S-1. If \X2p+s — A5| is sufficiently small, we have

by (3.9) and (b) for £ — 1 that

f \Xnk — 1| diip,s(A) < 3e(1 — s)p for every Np < k < Np>s~ 1.
JT

By property (c) at step s — 1 and (3.9),

f \Xnk - 1| dnPlS(X) < £(1 -£)^+2 + 2£(l — e)p <3fi(l -s)p
JT

for every k > Np>s-1. Hence (b) is satisfied at step s. Property (c) is satisfied if NPiS

is chosen sufficiently large since all the elements A;, i [1,2P + .v], belong to C.
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Property (d) follows from (3.8) and property (d) at step s—1. Indeed, fiPtS ({A;})
/t-/),5-t({Ai}) for every i $ {s,2p + s}. Also, pp,s-i({h}) ^({A,}) for every
i G [.s\ 2P], so that /xp^({A/}) ({A,}) for every i e (s, 2P\. Observe next that

Atp,j({Aj}) + Pp,s({X2p+i}) 1 ({Aj }) + Pp,s-l({^2P+i}) Atp({A;})

for every i G [l,s — 1]. Lastly,

ßp,s({^s}) + P>p,s(.{^2p+s}) i^p,s—1 ({Aj}) llp({\s}).

So property (d) is true at step 5.

As to property (e), we have p,PtS({\,}) nP,s-1 ({A;}) for every i {s, 2P + .v}.

So ßp,s({Xi }) < (1 — e)p+1 for every i G [1, y) U [2P + 1,2P + s). Also

ßpAiAil) Ppj-i «M) (1 - e) Ppi&s}) (1 - e) < (1 - s)p+l

by (6), while

f*p,s(&2P+s}) fip,s-t({As})e< (1 -s)p+1,

again by (6). So (e) holds true at step s. This terminates the construction of the

measures pPtS-
Let us now set np+1 plp,2p and Np+j NPj2p. It remains to check that with

these choices of A,-, i G [1, 2p+l], jip+\ and Np+i, properties (1 to (4) are satisfied.

By (a), property (1) is satisfied for every j e [0, p — 1], The case where

j p follows from (b). So (1) is true. Property (3) follows immediately from (c).

Property (4) is a consequence of (d) and (e). Indeed, suppose first that q G [1, p].
Then

{ie[l,2/>+1] ; i=r moà2"}

E {^p+liih}) + H-p+l({X2P+i}))
{/e[1,2^1 ; i=r mod 21}

E Mp({A,}) < (1 -s)q
{ie[l,2p] ; i=r mod 2"}

by (d) above and (4) at step p. If q p + 1, (4) follows immediately from (e). So it
only remains to check (2).

Fix q G [0,p\, l G [\,2p+l~q) and r e [1,29]. Consider first the case where

q p. In this case Z 1, and the quantities under consideration have the form
\X2p+r ~ Ar I, with r G [1,2P\. One can ensure in the construction that

IA2p+r ~ Ar I < qp

for every r G [1,2P] and then (2) holds true for q p.
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Suppose then that q e [0, p — 1], and write I as I I' + s2p « with s G {0, 1}

and V G [\,2p~q). Then

I2q + r l'2q +r + s2p.

Set s l'2q + r. Then

1 < s < (2p~q - 1)2« + 2« 2P,

i.e. s G [\,2P\. We have

|A/2<?+r — •M < \^s+e2P ~ Aj| + |A//2</+r - Ar|.

If s 0, the first term is zero; if s 1, it is equal to \X2r+s - A^|, which can be

assumed to be as small as we wish in the construction. As to the second term, it
is less than qq by property (2) at step p, since l' G [\,2p~q) and r G [1,2«] with

q G [0, p — 1]. We can thus ensure that

I ^121+ r ~~ A r < hq

for every q G [0, p], l G [1, 2P+Ï~q), and r G [1,2«]. So property (2) is satisfied at

step p + 1, and this concludes the proof of Theorem 2.3.

Theorem 2.4 is now a formal consequence of Theorem 2.3.

ProofofTheorem 2.4. Recall that D^ {(A, A') G N2 ; 0 < k' < f(k)} and

C; {AgT; Xmknk' .+ 1 as k +oo, (A, k') G D^}.

Order the set {m^n^ ; (k,k') e D^} as a strictly increasing sequence (/?/)/>o of
integers. Since there exists for every integer k\ > 0 an integer l\ > 0 such that

{pi',1 > h} <= {mkUk' ; (A, A') g Dijr, k > Ai},

every element A G has the property that XPl —^ 1 as / —> -|-oo. By Theorem 2.3

applied to the sequence (pi)i>i, there exists for every s > 0 a measure /x G !PC(T)
such that jl(pi) -» 1 as / -> +oo and sup/>0 |fi(pi) — 11 < s. Then

sup IJL{mknk') - 11 < e.
k>0, 0<k'<\k(k)

Using this time the fact that there exists for every integer l2 > 0 an integer A2 > 0

such that

{mknk' ; (k,k') G D^, k > k2) Ç {pt ; / > l2),

we deduce that pLimktik') -> 1 as k —> +oo with (A, A') G Df. Theorem 2.4 is

proved.
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4. A direct proof of Corollaries 2.5 and 2.6

We sketch in this section a direct proof of Corollary 2.5 (Corollary 2.6 is a formal

consequence of it), following almost step by step the construction given in [22] and

bypassing the additional technical difficulties of the proof of Theorem 2.3.

Proof. Using the notation of the proofofTheorem 2.3, we construct a sequence (A ,-)j >i
of pairwise distinct elements of C, as well as a strictly increasing sequence of integers

(Np)p>o, such that the measures

2"

Pp 2~pJ28M> P-°
i= 1

satisfy:

(1') for every p > 1, every j e [0. p — 1] and every k G [Ay, Ay+i],

[ \X"k -\\dpp(X) < 2-(;'-1);
JT

(2') for every p > 1, every q G [0, p — 1], / [1,2p~q), r G [1,29],

|A/2V +r Ar I < rjq,

where qq \ infi<i<j<2« |A, - Ay | for every q > 1, and q0 1;

(3') for every p > 1 and every k > Np,

[ I A"* - l\dnP(k) < 2~(p+l).
JT

Again, property (2') implies that:

(4') for every q > 0, every I > 0, and every r e [1, 2q\,

|A/2'?+r — Ar| < rjq.

Then an argument similar to the one given in the proof of Theorem 2.3 shows

that any u>*-limit point p of (pp)p>o will be a continuous measure which satisfies

p(n/c) -> 1 as k —>• +oo.
For p 0, we set Ai 1, 7Vo 0, and po ${i}- For p 1, we choose

A2 e C \ {Aj} with |Aa — Ai | < 1 and set p\ + 5{a2>)- We have

[ \Xn/c — 11 dpi (A) - \X"k — 11 < 1 < 2 for every k > 0.
h 2

Hence property (1') is satisfied whatever the choice of N\. Since |A2 — X\| < 1, (2')
is true. If is chosen sufficiently large, p\ satisfies (3').

Suppose now that the construction has been carried out until step p. We can then

construct by induction on s G [1, 2P] measures pp,s which satisfy:



114 C. Badea and S. Grivaux CMH

(a') every j [0. p — 1] and every k e [Nj, Nj+i],

f \knk — l\dfiPtS(X) <
A T

(b') for every k > Np,

[ \X"k — \\dpp^s(X) <
AT

(c') for every k > NPtS,

f \Xnk — \\dp,p>s{X) < 2~(p+2\
AT

We define ppp as

HP,\ Hp + 2~(*p+1^(8{i2P+1} - 5{A,}),

where X2n+\ e C \ {Ai,..., X2p} is such that \X2p+\ — A11 is very small. Then for
every k > 0,

[ I A"* - \\dppp(X) < [ \Xnk — 11 dfu,p(X) + 2~(p+v> \Xn2kp+l — X"k|. (4.1)
At AT

It follows that (a') holds true for provided that |A2/>+i — Ai | is sufficiently small.
Also, we have by (4.1 and (3') that for every k>Np,

[ \Xnk - 11 dfipA (A) < 2-(p+l) + 2-P < 2-(p-l\
At

which is (b'). If Np,\ is sufficiently large, (c') is true.

Supposing now that s > 2 and that the construction has been carried out for

every s' < s, we choose A2p+s e C \ {Ai,..., X2p+s-\} very close to Ai? and set

Hp,s Hp,s-1 + 2 (/7+1)(<5{à2/>+j} — ^{A,})-

Since, for every k > 0,

f \Xnk-\\diip,s(X)< f \Xnk-\\diip,s-l(X) + 2-(p+»\Xn2k+s-Xnsk\, (4.2)
At At

the induction assumption implies that (a') holds true provided \X2p+s - A^| is

sufficiently small. As to (b'), we consider separately the cases Np < k <
and k > NPiS-i. If \X2n+s — A^| is sufficiently small,

[ \Xnk — 11 dfip^s(A) < 2_(/>_1) for every Np < k < Np,s-i.
At
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By property (c') at step s — 1 and (4.2),

[ \X"k - 11 dfjLp^(A) < 2"(p+2) + 2~p < 2-(p~l}
J T

for every A: > NPtS-1. Hence (b') is satisfied at step .v. Property (c') is satisfied if Np^s
is chosen sufficiently large. This terminates the construction of the measures p.p,s.

We then set pp+\ ptP,ip and Np+\ Np,2p and check as in the proof of
Theorem 2.3 that properties (1'), (2'), and (3') are satisfied.

Remark 4.1. Suppose that the set

C' {A G T ; Xmknk' -» 1 as k -> +oo uniformly in k'}

is dense in T. It is natural to wonder whether there exists a measure /x G tPc (T such

that fiimiçniç') -» 1 as k —> +oo uniformly in k'. The following example shows that

it is not the case: set mk 2k and n= k' for every k, k' > 0. The set

C' {A T ; \mknk' i as k —^ +oo uniformly in k'}

contains all 2k-Û\ roots of 1, and so is dense in T. Suppose that /x e P(T)
is such that jl(2kk') —> 1 as k -> +oo uniformly in k'. Then there exists an

integer ko > 1 such that \ß(2k°k')\ > 1/2 for every k' > 0. Consider the measure
v T2kQ(fi). Since v(n) ji(2k()n) for every n G Z, v cannot be continuous.

Also, v({A0}) /x({A e T ; A2*0 A0}) for every A0 T, and so the measure [i
itself cannot be continuous.

So the conclusion of Corollary 2.6 seems to be essentially optimal.

5. From Conjecture (C4) to the study of some non-Kazhdan subsets of Z

5.1. Kazhdan constants and Fourier coefficients of probability measures. We

begin this section by recalling a characterization of generating Kazhdan subsets

of Z, obtained in [4, Th. 6.1 j (see also [5, Th. 4.12]) and presenting some facts

concerning the (modified) Kazhdan constants of such sets. We state it here in a

slightly modified way (condition (ii) is not exactly the same as in [5, Th. 4.12]), and

include a discussion concerning the links between the various constants appearing in
the equivalent conditions.

Theorem 5.1. Let Q be a generating subset ofL. Then Q is a Kazhdan subset of Z
ifand only ifone of the following equivalent assertions holds true:

(i) there exists e G (0, \/2) such that (Q, s) is a modified Kazhdan pair.
Equivalently, Kaz(<2) > e;

(ii) there exists y G (0, 1) such that any measure /xG J'(T) w/ffisupneg(l —91e fi(n))
< y has a discrete part;
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(iii) there exists S £ (0, 1) such that any measure /z e f(T) with inf,i(Eg |/z(n)| > 8

has a discrete part.
Moreover:

- (i) is satisfiedfar e £ (0, */2) ifand only if (ii) is satisfiedfor y s2 /2;
- if (ii) is satisfied far y £ (0,1), (iii) is satisfied for 8 — y, while if (iii) is

satisfiedfor 8 £ (0,1), (ii) is satisfiedfor y 1 — 8;

- hence if (i) is satisfiedfor e £ (0, VÏ), (iii) is satisfiedfar 8 yj 1 — e2/2, while

if (iii) is satisfiedfor 8 £ (0,1), (i) holds true for e y^2(l — 5).

We prove briefly here the statement concerning the relations between the constants

e, y, and 8 appearing in (i), (ii), and (iii) respectively, following [4] and [5].

Proof Suppose that (i) is satisfied for s £ (0, Vi), and let /z £ IP(T). Consider the

unitary operator U Mi of multiplication by X on L2(T, /z). Let / be the function
constantly equal to 1. Then

\\Unf — f\\2 2(1 — file p(n)).

If sup„6g(l — file fi{n)) < £2/2, U has an eigenvalue since Kaz(Q) > e, and so /z
has a discrete part.

Conversely, suppose that (ii) is satisfied for y £ (0, 1). Let U be a unitary operator
on a separable Hilbert space H, and let x £ H with ||x|| 1 be such that

sup \\Unx — x\\ < y[xY-
neQ

The proof of [5, Th. 4.6] shows then that there exists /z £ JP(1' such that

2 sup(l — ?Re fi(n)) sup \\Unx — x\\2 < 2y.
neQ neQ

So sup^ggO — < y. By (ii), /z has a discrete part, and so U has an

eigenvalue. Hence Kaz((2) > faffy.
Suppose next that property (ii) is satisfied for y £ (0, 1). Let p e T) be such

that inf„eg \p{n)\ > \/4 — y. Set v p * jl. Then

inf v(f?) > 1 — y.
neQ

It follows that sup„6 q( 1 - v(n)) < y, and v has a discrete part. So /z itself has a

discrete part.
Lastly, suppose that (iii) is satisfied for 8 £ (0,1). Let /z £ tPfiT) be a measure

satisfying sup„6g(l — Die fi(n)) <1—5. Then

inf |/z(«)| > inf file jl(n) > 8,
neQ neQ

so /z has a discrete part.
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Remark 5.2. Given a subset Q of Z, one can prove, using the spectral theorem for
unitary operators, that the following assertions are equivalent (see [5, Th. 4.6]):

(i') Q is a Kazhdan subset of Z, i.e. there exists s G (0, «Jl) such that (Q,s) is a

Kazhdan pair;

(ii') there exists)/ G (0,1) such that any measure/z G ^P(T) with sup„6g(l — die /z(«))
< y is such that /z({ 1}) > 0.

Moreover (i') holds true for a certain constant s G (0, \/2) (i.e. Kaz(<2) > s) if and

only if (ii') holds true for y s2/2.
It is interesting to note that these two conditions (i') and (ii') are not equivalent

to the natural version (iii') of (iii) (namely, that there exists S G (0,1) such that

any measure /z G 3*ÇI) with inf„eg |/z(/t)| > 8 satisfies /z({l}) > 0). Indeed,

(iii') is satisfied for any Dirac mass 5{;q, A G T. The proof that (ii) implies (iii) in
Theorem 5.1 above uses in a crucial way the fact that if /z G IP(T is such that /z * jl
has a discrete part, /z itself has a discrete part. But /z * /z may very well satisfy

/z * /z({l}) > 0 while /z({ 1}) 0, and so (ii') does not imply (iii').
Theorem 5.1 is related to Conjecture (C4) in the following way:

Corollary 5.3. Let Q be a generating subset of Z. The following assertions are
equivalent:

(a) Q is a Kazhdan subset ofZ with Kaz(Q) \/2;

(ß) any measure /z G IPC(Ï) satisfies inf„6g |/z(«)| 0;

(y) any measure ji G IPC(I satisfies lim inf|„|^+oc \ fi(n)\ 0.
neQ

Proof The equivalence between (a) and (ß) follows immediately from Theorem 5.1.

So only the implication (ß) => (y) requires a proof. Suppose that any /z G IPC(T)
satisfies

inf |/z(n)| 0.
neQ

We want to show that the conclusion can be reinforced into

lim inf \jl(n)\ 0.
j J —>- OO

neQ

Let p G IPcfL) be a Rajchman measure with positive coefficients, that is such

that lim|„|^+o0 p(n) 0 and p(n) > 0 for every ne Z. Consider the measure
v (/z * Jl + p)/2. It is continuous and satisfies v(n) > 0 for every n e Z. Since

inf«sg v{n) 0 and v(n) > 0 for every ne Z,

lim inf v(n) 0.
|n|-»+oo

neQ

Hence lim infin^+oo |/z(n)|2 0, and the conclusion follows.
neQ
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So Conjecture (C4) is equivalent to the statement that any non-lacunary semigroup
of integers has modified Kazhdan constant ~Jl. We can also estimate the Fourier
coefficients of a continuous probability measure on T which is 7V and 73-invariant
in terms of the modified Kazhdan constant k > 0 of the Furstenberg set. Notice that

Proposition 5.4 is meaningful only if /c > 0.

Proposition 5.4. Let F {2k3k' ; k,k' > 0} and set k Kaz(F). Let /x be a

continuous probability measure on T which is T2- and Tj-invariant. Then

\fiU)\ < 1 - y f°r every j z \ {°}-

Proof. Set, for every je Z \ {0}, /xy 7y/x. Then /xy is a continuous measure

which satisfies /xy (2k3k') ft{j for every k, k' > 0. It follows that if S e (0,1) is

such that (iii) of Theorem 5.1 is satisfied, S > |/x(./)|. Hence, by Theorem 5.1 again,

K < v/2(l - |/x(./')D-

Remark 5.5. Although a generating subset 0 of Z is a Kazhdan set if and only
if Kaz(<2) > 0, there is no link between the Kazhdan constant and the modified
Kazhdan constant of Q. Indeed, there exist Kazhdan subsets Q of Z with maximal
modified constant Kaz(g) \fl and arbitrarily small Kazhdan constant Kaz(<2).
This relies on the following observation, which can be extracted from the proof
of [5, Th. 7.1] and results from Proposition 6.10 below.

Proposition 5.6. Let 0 a strictly increasing sequence of integers with

«o l such that («fcö)fe>o is uniformly distributed modulo 1 for every 6 e M \ D,
where D is countable subset of M. Then the set Q {«^ ; k >0} is a Kazhdan
subset of TL which satisfies Kaz(Q \fl.

Consider, for every integer p > 2, the set Qp p N + 1. By Proposition 5.6,

Qp is a Kazhdan subset of Z with Kaz(<2/>) -s/2. But the measure pt &{enn/p}
satisfies

sup (1 - die fL(n)) 1 — cos(27r/p).
neQp

Hence Kaz(g/)) < ^2(1 — cos(27t/p)), which can be arbitrarily small if p is

sufficiently large.

6. Applications

6.1. Proof of Theorem 2.1. Our first and main application of Theorem 2.4 (or
Corollary 2.6) is Theorem 2.1, which solves in particular Conjecture (C4) and shows

that the invariance assumption on the measure is indeed essential in the statement of
Furstenberg's x 2 - x 3 conjecture.
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Proofof Theorem 2.1. If r 1, Theorem 2.1 claims the existence, for every integer

p > 2, of a measure /x G 1PC(T) such that inffc>0 \fi(pk)\ > 0. As mentioned in
Section 2, this statement is well known: it suffices to consider the classical Riesz

product associated to the sequence (pk)k>o- One can also show, either as in [8]
or [19], or as an application of Corollary 2.5, that (pk)k>o is a rigidity sequence, so

that there exists p e 1PC(T) with p(pk) -> 1 as k -» +oo.
Suppose now that r >2, and consider, for every fixed index 1 <j<r, the set

C'j {e2i7inpJl ; «,/ > 0}

of roots of all powers of pj. It is dense in T, and has the following property: there
k J A:2 kr

exists for every A G Cj an integer lj such that AO O -Pr i for every kj > lj
and ki > 0, 1 < i <r with i ^ j. Hence

sup I AO
' "'Pr' — 1 j -> 0 as kj —> +oo.

kj>o
1 <i<r, i^j

Consider the two sequences (mk)k>o and {rik')k'>o obtained by setting nik pk,
k > 0, and ordering the set

{/A1 • • - pk/-~; Pk/+X Pkr ; ki > 0, 1 < i < r with i + ,/ }

as a strictly increasing sequence (nk>)k'>o> and let V/: N —^ N be a strictly increasing
function such that

{p\l p)txX Pkj+V Pk/ -, 0 < ki < k, 1 < i < r with i r}

is contained in the set {«£' ; 0 <k'< f(k)} for every k > 0. By Corollary 2.6, there

exists a measure jij G tPc(T) such that fij(pxl - pkr) 1 as kj +oo with
0 < ki <kj, I <i < r with i j. Replacing, for every 1 < j < r, jij by \ij * pij,
we can suppose without loss of generality that fi j(n) > 0 for every n G TL.

Let now p G PC(T) be such that p(n) > 0 for every n G Z, and set

j r

^ yrr\ijl^j + p)-
7 1

Then p is a continuous probability measure on T with fi(n) > 0 for every n g Z.
Moreover, we have

liminf p(pk 1 pk2 pkr) >—-j-j as max(Aj,..., kr) -> +oo. (6.1)

Indeed, if (k[l\..., k^)i>\ is an infinite sequence of elements of Nr, one can

extract from it a sequence (still denoted by (k\l\ A^)/>i) with the following
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property: there exists 1 < j < r such that kp < kj for every 1 < i < r. Then

1- c~( k\n ka\ 1
1- / k\" kU)\ 1

liminf n(Pl pk/ > —— limiinf fij (pj p/ —— •

l->+oo V + I /->+oo r + 1

This yields (6.1). Since /2(m) > 0 for every n > 0, it follows that

inf - - - Pk/) > 0,
kj >0

1 <i <r

and Theorem 2.1 is proved.

6.2. The case of the Furstenberg set. Theorem 2.1 applies to the Furstenberg set

F {2fc3^ ; k, k' > 0} and shows the existence of a measure /i £ tPc(T) such that

inf fi(2k3k') > 0
k,k'>0

(the fact that the measure /i can be supposed to have nonnegative Fourier coefficients

can be extracted from the proof of Theorem 2.1, or deduced formally from
Theorem 2.1 by considering the measure ji * jl). By Corollary 5.3, this means
that Kaz(F) < -Jl.

As mentioned in Introduction, it is natural to look for the optimal constant S £
(0, 1) for which there exists a measure p £ kPdT) such that

inf jl(2k3k') > S. (6.2)
k,k'> 0

This is equivalent to asking whether F is a Kazhdan set in Z, and if yes, with
which (modified) Kazhdan constant. The best result which can be obtained via the

methods presented here is that there exists a measure /i £ tPc(T) satisfying (6.2) for

every S e (0,1/2): this is the content of Theorem 2.2, which we now prove.

ProofofTheorem 2.2. The proof goes along the same lines as that of Theorem 2.1,
but it requires the full force of Theorem 2.4 rather than the weaker statement of
Corollary 2.6.

Fix 8 £ (0,1/2). There exist by Theorem 2.4 two measures H \. fia £ kPc{T)
such that

)\ > VÏ8 for every k > 0 and every 0 < k' < k

and \fL2(lk3k')\ > VÏ8 for every k' > 0 and every 0 <k< k'.

The measure fi * F\ + P2 * P2) has nonnegative Fourier coefficients and

satisfies ß(2k3k') > 8 for every k, k' > 0.

It then follows from Theorem 5.1 that if {2k3k' ;k,k' > 0} is a Kazhdan
subset of Z, its modified Kazhdan constant must be less than ^2(1 — <5) for every
8 £ (0,1/2), so must be at most 1.
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That the bound 1/2 can be further improved does not seem clear at all, and we do

not know whether there exists for every 8 £ [1/2,1) a measure \x £ T) such that

inf ß(2k3k') > 8.
k,k'>0

Question 6.1. Is the Furstenberg set {2k3k' ; k, k' > 0} a Kazhdan set in Z?

Note that a lacunary semigroup {an ; n > 0}, a > 2, cannot be a Kazhdan set

(see [5, Ex. 5.2]). We also observe that Theorem 2.4 immediately yields:

Corollary 6.2. For any function xj/:N N with xfr (k —» +oo as k —> +oo, the

sets

{2k3k> ; k > 0, 0 < k' < xfr(k)} and {2k3k' ; k' > 0, 0 < k < f{k')}

are non-Kazhdan sets in Z.

Along the same lines, one can also ask for which values of 8 £ (0, 1] there exists

a measure /x e tPc(J) such that lim inf fL(2k3k > 8 as max{k,k') —> +oo. The

proof of Theorem 2.1 allows us to exhibit a measure fi £ fPc (T with nonnegative
Fourier coefficients (namely /x (/a i + /X2)/2) such that lim inf fL(2k3 > 1/2
as max(k,k') -> +oo. Again, we do not know whether the constant 1/2 can be

improved. The strongest statement which could be expected in this direction is the

existence of a measure /x G ^C(T) such that /x(2k3k 1 as max(/c, k') -> +oo.
This would show that the Furstenberg sequence is a rigidity sequence for weakly
mixing dynamical systems. This natural question is raised in Remark 3.12 (b) of [8],
and we record it anew here:

Question 6.3. Is the Furstenberg sequence a rigidity sequence for weakly mixing
dynamical systems?

6.3. Examples of rigidity sequences. Corollaries 2.5 and 2.6 allow us to retrieve

directly all known examples of rigidity sequences from [1,2,8,19], and [22], The

only examples of rigidity sequences not covered by our results are those of 121 [

and [24]. Indeed, Fayad and Kanigowski construct in [21] examples of rigidity
sequences («/t)/t>o such that {X"k ; k > 0} is dense in T for every A e2lnd e T
with 6 G M \ Q, and there exist for every integer p > 2 infinitely many integers k
such that p does not divide nic. So such sequences never satisfy the assumption of
Corollary 2.5. Griesmer strengthens this result in [24] by showing the existence of
rigidity sequences («yfc)/t>o such that {n^ ; k > 0} is dense in Z in the Bohr topology.

We briefly list here some of the examples of rigidity sequences which can be

obtained from Corollaries 2.5 and 2.6. Our first example is that of Fayad and

Thouvenot in [22].

Example 6.4 ([22]). Ifthe sequence (n^)yt>o is such that there exists À e2lne £ T,
with# £ M \Q, such that \"k 1 as k -» +oo, then («fc)fc>o is a rigidity sequence.
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This result of [22] follows directly from Corollary 2.5. Indeed, if X"k -» 1 with
A e2l7zd, 0 e R \ Q, then Xp"k —> 1 for every p G Z. Since 9 is irrational, the

set {Xp ; p e Z} is dense in T, and Corollary 2.5 applies.

Example 6.5 ([8,19]). If (rik)k>o is a strictly increasing sequence of integers such

that Hk\nk+\ for every k > 0, then (rik)k>o is a rigidity sequence.

Indeed, under the assumption of Example 6.5, the set C {A T ; X"k —* 1}
contains all n^-th roots of 1, k >0, and is hence dense in T.

Corollary 2.6 shows that Example 6.5 can be improved into

Example 6.6. Let {rrik)k>o be a strictly increasing sequence of integers such that

mk\rrik+\ for every k > 0. Let 1//: N —» N be a strictly increasing function. Order
the set {k'mk ; k > 0 1 < k' < i/r(k)} as a strictly increasing sequence (rik)k>o-
Then {rik)k>o is a rigidity sequence.

Indeed, the set C' {A 6 T ; Xk'mk -» 1 as k -»• +oo uniformly in k'} contains
all mk~th roots of 1, and is dense in T. So Corollary 2.6 applies.

For instance, if (rk)k>o is any sequence of positive integers, the sequence {nk)k> o

obtained by ordering the set {k'2k ; k > 0, 1 < k' < rk} in a strictly
increasing sequence is a rigidity sequence. This provides new examples of rigidity
sequences (Hfc)fc>o such that "*+' -> 1 as k -> +oo.

Example 6.7. Let (rk)k>o be any sequence of positive integers with rk —> +oo
as k -* Too. The sequence («/)/>o obtained by ordering in a strictly increasing
fashion the set { /' 2k ; k > 0, 1 < j < rk} is a rigidity sequence, which satisfies

-» 1 as / -> Too.

Proof. It suffices to show that for every e > 0 and every / sufficiently large there

exists I' > I such that ^ < 1 T s.

- Suppose first that ni /2k for some A > 0 and some 1/e < / < rt. Then taking

nv (j T l)2fc, we have ^ W- < \ + E.

- Suppose next that n\ j 2k for some k > 0 and some 1 < j < 1/e. Fix an

integer p such that 2~p < s. If / is sufficiently large, we have rk-p > 2p/s. Set

j/ _ j2P Since j' < 2p/s < rk-p, the integer ny {j' T \)2k~p appears in the

sequence («/)/>o- Also, since «// (/' T \)2k~p > j2k «/, we have V > I, and

nv (/' T \)2k~p (/' T 1) „ j+2~p— 'r — -2-p < < 1 T 2~p < 1 T e.
«/ j 2k j j

- The last case we have to deal with is when «/ rk2k for some k > 0. Let j' > 1

besuchthat j' < r^/2 < y'Tl. Then/' < rk+\, and if weset «// (_/' + \)2k+l,
the integer rip appears in the sequence («/)/>o- We have

np (/' T \)2k+l 2(j' T1) 2
— — -r — < 1 T — < 1 Te
«/ rk 2k rk rk

if k is sufficiently large, and this terminates the proof.
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Example 6.8 ([1]). (a) Let (dk)k>o be a strictly increasing sequence of positive
integers of density zero. There exists a strictly increasing sequence of integers («fc)fc>o

which is a rigidity sequence and satisfies < dk for every k > 0.

(b) Let (dk)k>o be a sequence of real numbers with dk > k for every k > 0

and ^ —> +oo as k -foo. There exists a strictly increasing sequence of
integers {itk)k>o which is a rigidity sequence and satisfies rik < dk for every k > 0.

This has been proved by Aaronson in [1, Th. 4]; a simpler construction with the

weaker conclusion that < dk for infinitely many k was given in [8, Prop. 3.18],
The proof given below uses Corollary 2.5 and a result of Bugeaud [16].

Proof. As the statement (a) is a simple consequence of (b), we only give the proof
of (b). Set #o 1 and gk dk/k for every k > 1. Then (gk)k>o is a sequence
of reals with gk > 1 for every k > 0 which tends to infinity (notice that for (a)
this holds since (dk)k>ois a sequence of density zero). Using (a particular case

of) [16, Th. 1], we obtain that there exists for every fixed irrational number 6 an

increasing sequence (nk)k>o °f positive integers such that < kgk dk for

every k > 1 and exp(2in0)nk —> 1. It follows from Example 6.4 that («yt)fc>o is a

rigidity sequence.

Example 6.9. Let (mk)k>o be a strictly increasing sequence of positive integers with

rrik+i — mk —> +oo. There exists a strictly increasing sequence of integers (nk)k>o
which is a rigidity sequence and satisfies mk < rik < mk+i for every k > 0.

Proof. The proof is exactly the same as the preceding one, replacing the result from

6.4. Exceptional sets for (almost) uniform distribution. Let {rik)k>o be a strictly
increasing sequence of integers, and let v 6 Mill) be a (finite) complex Borel
measure on T. We stress that vis not necessarily a probability measure. Given 6 e M,
the sequence («fc$)fc>o's sffid ([32], [30, p. 53]) to be almost uniformly distributed
with respect to v if there exists a strictly increasing sequence {Nj) j>\ of positive
integers such that for every arc / c T whose endpoints are not atoms (mass-points)
for v one has

The analog of Weyl's criterion states that (nkO)k>o is almost uniformly distributed
with respect to v if and only if there exists a strictly increasing sequence (Ay)y>i of
positive integers such that

[16] by [9, Obs. 1.36].

lim —#{« < Nj : exp(2/jrn/t0) e /} v(I).
j-*-t-oo Nj
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In this case, the limit is v(m). It can also be proved that (n/c6)/c>0 is almost uniformly
distributed with respect to v if and only if there exists a strictly increasing sequence

(Nj)j>i of positive integers such that

We now denote by H/((«/t)fc>o> y)> the exceptional set ofalmost uniform distribution
of («it) with respect to v. This is the set of all 9 G M such that o is not
almost uniformly distributed with respect to v. We will write f/((«fc)fc>o> y) for the

exceptional set of (classical) uniform distribution of (n^) with respect to v, which
corresponds to the case where Nj j for every j > 1.

The size of the exceptional set t/((«&)fc>o» y) has been studied in many works,
in particular in the case where v is the normalized Lebesgue measure on T. In this

case, we write it as U((ttk)k>o)- If the sequence (nk)k>o is lacunary, U((rik)k>o) is

uncountable, and even of Hausdorff dimension 1 ([20], see also [26]). See also [36]
and [34] for a stronger result. On the other hand, it is known (see [11,13]) that among
various natural classes of random sequences of integers, almost all sequences (n.k)k>o

satisfy f/((«fc)fc>o) Q- These typical random sequences (nk)k>o are sublacunary,
i.e. satisfy —> 1 as k -> Too Nonetheless, examples of sublacunary

sequences (nk)k>o with U((nk)k>o) uncountable were constructed in [20] (see

also [6]). Concerning the size of W/((n^)/t>0, y) we refer for instance to [26,35]
and [29], See also [15] for other references.

Our results about the size of W{{nk)k>o< y) rely on the following generalization
of Proposition 5.6, which provides a link between the size of the exceptional set

W((nk)k>o-y) and the modified Kazhdan constant of the set ; k > 0}.

Proposition 6.10. Let (rik)k>o be a strictly increasing sequence ofpositive integers
with «o 1, and let v e M('T) with v f j | y If W((nk)k>o> y) " finite or
countable infinite, Q {nk k > 0} is a Kazhdan subset ofL, and

Käz(ß) > 72(1 -3tev(l)).
Proof. Fix y e (0,1 — 9Ie y(l)), and let p. be a probability measure on T such that

suPk>o(l -9teß(nk)) < y. Then

Suppose that the measure p is continuous. Since there exists a strictly increasing

sequence (Nj)j>\ of integers such that

as j —s- +oo for every / C(T).

for every N > 1.

as j -> Too for every AeT\C,
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where C is a finite or countable infinite subset of T, we have 1 — Die v(l) < y, which
contradicts our initial assumption. So /x has a discrete part. It then follows from
Theorem 5.1 that the modified Kazhdan constant of Q is at least ^2(1 — Die v(l)).

The following result provides an example of a nonlacunary semigroup (n^)k>o
whose associated exceptional sets W((nk)k>o, v) with respect to v are uncountable
for a large class of measures v G Af(T).

Theorem 6.11. Denote by (jik)k>o the sequence obtained by ordering the

Furstenberg set F {2k3k ; k,k! > 0} in a strictly increasing fashion. For every
measure v G «M(T) such that Die v(l) < 1/2, the set W{(n k)k>t) > v) 'v uncountable.

Proofof Theorem 6.11. Fix v G M(T), and suppose that U((nk)k>o> v) is at most

countable. Since Kaz(F) < 1 by Theorem 2.2, it follows from Proposition 6.10 that

^2(1 — die v(l)) < 1, i.e. that Die v(l) > 1/2. This proves Theorem 6.11.
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