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The collapsing geometry of almost Ricci-flat 4-manifolds

John Lott*

Abstract. We consider Riemannian 4-manifolds that Gromov—Hausdorff converge to a lower
dimensional limit space, with the Ricci tensor going to zero. Among other things, we show
that if the limit space is two dimensional then under some mild assumptions, the limiting four
dimensional geometry away from the curvature blowup region is semiflat Kihler.

Mathematics Subject Classification (2010). 53C21, 53C23, 53C25.
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1. Introduction

When considering Einstein manifolds, or almost Einstein manifolds, the four
dimensional case is especially interesting. This paper is about almost Ricci-flat
4-manifolds, meaning compact 4-manifolds M that admit a sequence of Riemannian
metrics {g;}72, with lim; . || Ric(M, gi) oo - diam(M, gi)?> = 0. Special cases
come from Ricci-flat 4-manifolds. The known examples of the latter are finitely
covered by a flat torus or by a Ricci-flat Kdhler metric on a K3 manifold. There are
almost Ricci-flat 4-manifolds that do not admit Ricci-flat metrics [2].

Fixing an upper diameter bound for {(M, g;)}72,, one can divide the study of
almost Ricci-flat 4-manifolds into the noncollapsed case, where there is a definite
positive lower volume bound, and the collapsing case, where the volume goes to zero.
In the noncollapsed case, a Gromov—Hausdorft limit (as the Ricci curvature goes to
zero) is a four dimensional Ricci-flat orbifold with isolated orbifold points, as follows
from work of Anderson [1], Bando-Kasue—Nakajima [5] and Tian [32]. The orbifold
points are caused by noncompact Ricci-flat ALE manifolds (or orbifolds) that bubble
off. There is a bubble tree description of the sequence [3,4]. In [23], sufficient
topological conditions were given for a noncollapsed almost Ricci-flat 4-manifold
to admit a Ricci-flat metric. There are probably also noncollapsed almost Ricci-flat
4-manifolds that do not admit Ricci-flat metrics [6].

*Research partially supported by NSF grant DMS-1510192.
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In the collapsing case, fundamental work was done by Cheeger and Tian [11].
Allowing the manifolds to vary, let { (M;, g;)}7° ; be asequence of compact connected
orientable Riemannian 4-manifolds so that for some C € N and D < oo,

x(M;) < C forall i,

diam(M;, g;) < D forall i,

limi—>00 ” RiC(Mf9 gl)”oo = 0: and

lim; .o vOl(M;, gi) = 0.

After passing to a subsequence, we can assume that lim; (M, gi) = (X, dx) in
the Gromov—Hausdorff topology, for some compact metric space X whose Hausdorff
dimension is less than four. As we will review in Subsection 3.1, Cheeger and Tian
showed that for large 7, each (M;, g;) hasasmall “curvature blowup” region where the
curvature concentrates in an L?-sense, and a “regular” region with a priori curvature
bounds. We can assume that the regular regions converge to a subset X, C X,
whose complement in X is a finite set. In particular, if B is a connected component
of Xeg then taking the metric completion of B amounts to adding a finite number of
points.

We are interested in the four dimensional geometry of the regular regions. From
work of Cheeger, Fukaya and Gromov, culminating in [8], collapsing regions with
bounded curvature acquire continuous symmetries in the limit. (The results from [8]
were localized in [11, Section 2].) A convenient language to formalize the collapsing
limit, with its symmetries, is that of Riemannian groupoids, as described in [27,
Section 5]. A brief introduction to the use of Riemannian groupoids in collapsing
theory is in [28, Section 3]. Passing to a subsequence, we can assume that the regular
regions, approaching B, also converge in the sense of Riemannian groupoids, to a
four dimensional smooth Ricci-flat Riemannian groupoid X whose orbit space is B.

To state the main result of this paper, we recall that a (possibly incomplete)
connected Riemannian manifold is parabolic if any C2-regular function f that is
bounded above, and satisfies A f > 0, is constant. (If the manifold has boundary then
we require f to vanish on the boundary.) Some equivalent conditions for parabolicity
are given in [17, Theorem 5.1]. There is a similar definition for Riemannian orbifolds.

For example, the complement of a finite number of points in a closed Riemannian
manifold, of dimension greater than one, is parabolic [17, Corollary 5.4]. Whether
or not a two dimensional Riemannian manifold is parabolic only depends on its
underlying conformal structure.

Let +/det G denote the relative volume function of the orbits of X, a function

on B. (For example, if X comes from a free torus action then +/det G describes the
relative volumes of the torus orbits.)
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Theorem 1.1. (1) If dim(B) = 3 then B is an orbifold. If B is parabolic and
V' detG is bounded above then B is flat and the 4-dimensional geometry of X is
flat.

(2) If dim(B) = 2 then B is an orbifold-with-boundary. If B is parabolic and
v detG is bounded above then B is boundaryless with nonnegative scalar
curvature, and the 4-dimensional geometry of X is semiflat Kdhler.

(3) If dim(B) = 1 then B is a circle or an interval. The 4-dimensional geometry
of X, over the interior of B, is flat, or a Riemannian Kasner geometry, or a
Riemannian Bianchi-1I geometry.

(4) If dim(B) = O then B is a point and the 4-dimensional geometry of X is flat.
The notion of a semiflat Kdhler metric is given in [ 18, Section 3], [20, Section 3.2],

[22], and [34, Section 3.1], among other places. The Riemannian Kasner geometry

and the Riemannian Bianchi-II geometry are defined in Subsection 3.4. Appropriate

sequences of Ricci-flat K3 manifolds give examples of parts (1), (2), and (3) of

Theorem 1.1; see Examples 3.4, 3.9, and 3.14. The constructions in [2] give further

examples.

Theorem 1.1 can be viewed in two ways. On the one hand, it gives some
explanation for the geometry of the regular regions seen in the known almost Ricci-
flat examples, and indicates what other examples may exist. On the other hand, it
shows what restrictions would have to be lifted in order to find exotic examples.

In the setting of Theorem 1.1, if B is not a point then the local symmetry Lie
algebra of X must be nil> or RY, where 1 < N < 3. The nil® case can be handled
separately, so the main task in proving Theorem 1.1 is to analyze the Ricci-flat
equations on a manifold with a local RN -symmetry.

More generally, we look at Einstein manifolds of arbitrary dimension with a local
RA -symmetry. In the case of a locally free action, the Riemannian metric gives a
distribution that is transverse to the local orbits of the R -action. One interesting
feature is that when the quotient space is two dimensional, there are conserved
quantities that, under suitable topological conditions, force the distribution to be
integrable; see Corollary 2.4.

1.1. Earlier work. Einstein manifolds with symmetries have been considered in many
papers, including [7, 13,35].

In [29], Naber and Tian looked at collapsing sequences of manifolds having
bounded diameter and bounded curvature, with the Ricci tensor going to zero. (In
the four dimensional case, this corresponds to not having any curvature blowup
regions.) They showed that the Gromov—Hausdorff limit is a Ricci-flat orbifold.
Instead of Riemannian groupoids, they used a notion of N *-bundles. The argument
useda formula for A In det GG, along with the maximum principle; compare with (2.9).

In work in progress, Cheeger and Tian use the framework of [11] to study finite-
volume complete Einstein 4-manifolds with negative Einstein constant and ends that
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are asymptotic to rays. They use the collapsing structure at infinity to identify the
possible model geometries (real or complex hyperbolic cusps) and show that along
an end, a model geometry is indeed asymptotically approached.

1.2. Structure of the paper. In Section 2 we analyze Ricci-flatness for the total space
of a (twisted) principal bundle with abelian structure group. The proof of Theorem 1.1
is given in Section 3. In fact, we prove the conclusions of Theorem 1.1 when the
upper diameter bound is replaced by an upper volume bound, and the volume is
only assumed to go to zero in the local sense of (3.1). With these more general
assumptions, we have to introduce basepoints, which is why we only discuss the
bounded diameter case in this introduction.
More detailed descriptions are given at the beginnings of the sections.

Acknowledgements. 1 thank Jeff Cheeger, Hans-Joachim Hein, Claude LeBrun,
Gang Tian and Jeff Viaclovsky for helpful comments. I also thank the referee for
pointing out a mistake in an earlier version of the paper.

2. Isometric free local RY -actions

In this section we consider a (twisted) principal bundle with abelian structure group
and an adapted Riemannian metric. In Subsection 2.1 we define the relevant bundles
and metrics, and give the formula for the Ricci curvature of the total space. In
Subsection 2.2 we show how the Ricci-flat condition simplifies when the base is
parabolic and the fiberwise volume forms are relatively bounded. Subsection 2.3
gives the consequences when the fibers are one dimensional. In Subsection 2.4 we
discuss the conserved quantities that arise when the base is two dimensional, and
show what the results of Subsection 2.2 become in the two dimensional case. Finally,
Subsection 2.5 is about a one dimensional base.

The results of this section extend directly to the case when the base is an orbifold.
We use the Einstein summation convention freely.

2.1. Ricci curvature equation. Let ¥ be a Lie group, with Lie algebra g. Let
Aut(¥)s denote the automorphism group of &, with the discrete topology, and
let § x Aut(¥)s denote the semidirect product. If B is a connected smooth manifold,
let P — B be a principal § x Aut(¥)s-bundle. From the homomorphism

9 x Aut(9)s — Aut(9)s,

there is a corresponding principal bundle § on B with discrete structure group
Aut(§)s. From the action of § x Aut(¥)s on G, there is also a fiber bundle € on B
associated to P — B, with fiber §. One can think of & as an F-twisted & -principal
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bundle, in the sense that € has free local §-actions that are globally twisted by §. In
addition, there is an flat vector bundle e on B associated to §, with fiber g.

In what follows, we will be interested in the case when ¥ is an N -dimensional
connected abelian Lie group with N > 1. (An example is when § = TV, Fis a
trivial principal GL(N, Z)-bundle and € is a principal 7% -bundle on B.) Let M be
the total space of €. We write dim(B) = n and dim(M) =m = N + n.

Let g be a Riemannian metric on M with a free local isometric ¥ -action (globally
twisted by §). In adapted local coordinates, we can write

N n
g= > Gux'+A")dx" + A7)+ D gepdb®dbP.  (2.1)
1,J=1 a,f=1

Here the x!’s are linear local coordinates on the fibers of M — B, (Gyy) is the
local expression of a Euclidean inner product on e, ZZ g=18epdb®d b# is the local
expression of a metric gg on B and A7 = " ALdb® are the components of a local
e-valued 1-form describing an connection A on the twisted §-bundle M — B.

Put Flﬁ = il Afg g AL. Atagivenpointh € B, we canassume that A7 (h) = 0.
We write

Grriep = Grr,a8 —UggGli, o, (2.2)

where {I" gﬁ} are the Christoffel symbols for the metric gog on B.

From [28, Section 4.2], the Ricci tensor of g on M is given in terms of the

curvature tensor Rygy,s of B, the 2-forms F O{ﬂ and the metrics G by

ﬁg] = = %g“ﬂGn;aﬂ = %gaﬁGKLGKL,aGIJ,ﬂ (2.3)
+ %gaﬂGKLGIK,aGLJ,ﬂ + ?}ga gPGikGLFEF),

R = ;g”‘SGIKF s ;g”SGU(yF £ + igySGlmGKLGKL,,, e

RE, = RS, — —G’ Grrap + %G”GJK,aGKLGL,,ﬁ —~ %gV"”G”FI Fgs.

The scalar curvature is

__ 3
R = RE —g“‘BG”G”;aﬁ + ZgaBGIJGJK,aGKLGLI,B

1 1
= ZgaﬁGIJGIJ,aGKLGKL,ﬁ - ZgaygﬁaGUF 3 FJs. (24)

In the rest of this section we will assume that the flat vector bundle e has holonomy
in det™!(£1) € GL(N, R), so that det G is globally defined on B.
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2.2. General characterization of Ricci-flat metrics. Suppose that Ric(M, g)=Ag
for some A € R. Then the first equation in (2.3) gives

1

43’“’3 G¥LGgr oG Gryp

I
NA=—-g"G" Grrap -

1 |
£ “igaﬂGJIGIK,aGKLGLJ,ﬂ s Z|F|2’ (25)

where
|FI> = g ¢P Gy FL F. (2.6)
Now '
Vy(detG)z = 5 (det GG G s 2.7)
and

1 1
A(det G)? = (det G)? - (Eg“ﬁ G Grri0p — 587G GikaG G Ly

1
+Zg“‘BGKLGKL;aG”GU;ﬁ). 2.8)

Thus (2.5) becomes
|
AdetG = (Z|F|2 —)LN)x/detG. 2.9)

Recall the notion of a parabolic Riemannian manifold from the introduction.
Information about parabolic Riemannian manifolds is in [17, Section 5].

Proposition 2.1. If:

* B is parabolic,

e A <0, and

e det G is bounded above,

then:

(1) det G is constant,

(2) F=0,

(3) A =0, and

@) ¢ Grrp — g G* GrraGryp = 0.

Proof. From (2.9), +/detG is subharmonic. Since B is parabolic and /det G is
bounded above, it must be constant. Then the right-hand side of (2.9) vanishes,

which implies that F = 0 and A = 0. Substituting this into the first equation of (2.3),
whose left-hand side vanishes, proves the proposition. ]
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Normalizing det G to be one, the equation
g Grri0p — 8" G GrkaGrLsp =0 (2.10)

is the local expression for a harmonic map from B to the symmetric space [27,
Proposition 4.17]

det 1 (£1)/O(N) = SL(N,R)/ SO(N).

More globally, fixing a basepoint by € B, let p: 7 (B, by) — det”!(+1) be the
monodromy of the flat vector bundle e. Then (2.10) is the equation for a p-equivariant
harmonic map

G: B — det™'(£1)/ O(N) = SL(N,R)/ SO(N)
on the universal cover B.

2.3. Codimension-one base. Returning to the equations (2.3), suppose that N = 1.
The matrix (Gy) just becomes a function G.

Proposition 2.2. [f:

* B is parabolic,

e A <0, and

e G is uniformly bounded above,

then G is a constant function, F = 0, A = 0 and B is Ricci-flat.

Proof. From Proposition 2.1, G is constant, ¥ = 0 and A = 0. The third equation
in (2.3) implies that B is Ricci-flat. ]

2.4. Two dimensional base. Returning to the equations (2.3), suppose that n = 2
and (M, g) is Einstein.

Proposition 2.3. The second equation of (2.3) is equivalent to the statement that

FJ
dVOlB

~VdetG Gy

defines a flat section of e*.

Proof. Choose local isothermal coordinates on B so that g = ¢2? ((dx!)? + (dx?)?).
The nonzero Christoffel symbols, up to symmetries, are
F111 - F221 - ‘lez = 0,19,

(2.11)
r222 - Fllz = _Flzl = ax2¢’-
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The second equation of (2.3) becomes equivalent to
do(VdetG Grye 2 Fl) = 0. (2.12)

As dvolp = ez‘i’dx /\ dx?, we can express (2.12) in more invariant terms as saying

that ~/detG Gjj+—— dvol is locally constant. By assumption, dete is a trivial bundle,
0 v/detG Gy Jdml is naturally a section of ¢*. Equation (2.12) says that it is a
locally constant section. U

Corollary 2.4. If the monodromy representation
p: (B, by) — det™'(£1) C GL(N, R)

of e* does not have a trivial one-dimensional subrepresentation then F = 0.

Example 2.5. In the collapsing of a K3 manifold considered in [19], the base B
is $2? minus 24 points; see Example 3.9 below. The vector bundle ¢* has unipotent
holonomy when going around a small loop around any of the 24 punctures. However,
the invariant subspaces do not line up globally and there is no nonzero flat section
of e*. Hence F' = 0, as seen directly in [19].

Remark 2.6. In the Lorentzian setting, the expression vdetG Gj-—— dvol coincides
with the “twist constants” of general relativity, although in the relativity llterature the
relation to curvature seems to be missing, along with the topological meaning.

We note that parabolicity of a two dimensional Riemannian manifold just depends
on the underlying conformal structure.

Proposition 2.7. Suppose that dim(B) = 2 and that the hypotheses of Proposi-
tion 2.1 are satisfied. Then G*gsi(N,R)/so) is the pullback (from B to B) of a
function times g p.

Proof. Using the conclusion of Proposition 2.1, the third equation of (2.3) becomes
GGk aGX Grrp = 4Rup = 2Rgup. (2.13)

The left-hand side of (2.13) is the local expression for G * gsi.(v.r)/sov) [27, (4.16)].
The proposition follows. ]

2.5. One dimensional base. Returning to the equations (2.3), suppose thatn = 1.
We only consider the case A = 0. Automatically, F = 0. We give B a unit speed
parametrization s.

Proposition 2.8. Either G is constant or, up to a change of basis of e and an isometric
reparametrization of s, we have G(s) = s where A is a symmetric N x N matrix
satisfying Tr(A) = 2 and Tr(A?) = 4.
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Proof. From (2.9), we have ;Tzz det G = 0. Then either det G is constant or, after

an isometric reparametrization of s, we can write det G = as? for some ¢ > 0, with
s € (c1,¢2) C (0,00).
If det G is constant then the first equation of (2.3) gives the matrix equation

Gss — GGG =0 (2.14)
and hence
Tr(G 'Gg) — Tr(G1G,G™1Gy) = 0, (2.15)

while the third equation of (2.3) gives
1
Tr(G™'Gyy) — 5 Tr(G~'G,G™1Gy) = 0. (2.16)

Hence
TH(G™'GsG™'Gy) =0, or Tr((G2G,G™7)%) =0,

This implies that Gy = 0, so G is constant.
If det G = as? then the first equation of (2.3) becomes

1
Gy + -Gy — GGG, =0, (2.17)
Ay

or d5(sG1Gs) = 0. Thus G™1G, = ’—;1~ for some matrix A. By a linear change of
basis of {x}"_,, we can assume that G(1) = Id. Then G(s) = s4. As G(s) is
symmetric, the matrix A must also be symmetric. As detG = as?, we must have
a = 1 and Tr(A) = 2. The third equation in (2.3) again becomes (2.16), which now
implies that

1
Tr(A% — A) — 5 Tr(A%) = 0.

Hence Tr(A2) = 2Tr(4) = 4. O

3. Collapsing of almost Ricci-flat 4-manifolds

In this section we prove Theorem 1.1 in the setting of 4-manifolds whose Ricci
curvature goes to zero relative to the volume, and that are locally volume collapsed.
Subsection 3.1 has a review of some of the results of [11] and their consequences.
Subsections 3.2, 3.3, 3.4 and 3.5 give the proof of Theorem 1.1 when the limit space
has dimension three, two, one and zero, respectively.
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3.1. General convergence arguments. We consider four dimensional compact
connected orientable Riemannian manifolds that have Ricci curvature going to zero,
relative to the volume. This is more general than the setup of the introduction. In
order to prove properties of such manifolds by contradiction, one considers sequences
{(M;, g:i)}72, where each M; is a compact connected orientable four dimensional
manifold and 1

Jim | Ric(M;, gi) oo - vol(M;, £:)* = 0.

Example 3.1. If M is the underlying 4-manifold of a complex elliptic surface then
LeBrun showed that M admits a sequence of Riemannian metrics {g; |7, with

lim || Ric(M. g)||eo - vol(M. §1)2 = 0
I —=>00

if and only if M is relatively minimal, i.e. has no smooth rational (—1)-curves in the
fibers [24, Theorem 4].

After rescaling, we can assume that
lim || Ric(M;,gi)|lco =0 and vol(M;,gi) <V
1—>00

for all i, for some V' < oco. We first address the noncollapsing case. Suppose that for
some s, v > 0, after passing to a subsequence there are points m; € M; so that

vol(Bg(m;)) > vs*

for alli. After passing to a further subsequence, there is a pointed Gromov-Hausdorff
limit
l]—1>r20(Ml,§“ mi) = (X, an xoo)»

where X is a complete locally compact metric space whose Hausdorff dimension is
four.

If there is a uniform upper bound on the L2-norms of the curvatures of
{(M;,gi)}2, then X is a four dimensional Ricci-flat orbifold [1,5,32]. Such an
L?-curvature bound is guaranteed if there is a uniform upper bound on the Euler
characteristics of the M;’s [11, Remark 1.4]; this in turn is guaranteed if there is a
uniform upper diameter bound [10].

The subject of this paper is rather the collapsing case when

lim s~ sup vol(By(m)) =0 (3.1

1—>00 meM;

for each s > 0. To apply the results of [11], we need a uniform upper bound on the
L?-norms of the curvatures of the {(M;, g;)}?° . Again, it suffices to have a uniform
upper bound on the Euler characteristics of the M;’s.
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From (3.1), for any sequence {s;}7°, of positive numbers converging to zero,
after passing to a further subsequence of {(M;, g;)}72, we can assume that

s; vol(B; (m)) <

M,l;-n

for all m € M;. From [11, Theorem 0.1 and Remark 5.11], there is some positive
integer N so that for all large 7, there are points {p;,; };3;1 in M;, with 8; < N,
such that
f 5 | Rm |2dV01Mi < const. i L. (3.2)
Mi_Ujl=| Bpi.j (si)
Choose basepoints m; € M;. After passing to a further subsequence, we can
assume that

.lim (M,-,g?,-,m,-) = (X, dyx, xoo)
1—>00

in the pointed Gromov—Hausdorff topology, where X is a complete locally compact
metric space whose Hausdorfl' dimension is less than four. We can also assume
that the B;’s are all the same number, say 8. Then we can assume that for each
jEef{l,..., B}, either

lim p; ; = x;
i—>oopl’J J

for some x; € X, or

Him dpg, (mi, pi,j) = oo.
1—=>00

After removing repetitions, let {x; }]C-':1 C X be the limits.

From [11, Theorem 0.8 and Remark 8.22], for any compact subset K of
X —{x1,...,xc}, there is some ex > 0 so that for any ¢ € [l,00) and for
large i, on the subset of (Mj,g;) that is egx-close to K we have uniformly
bounded W?29-covering geometry; see also [25, Theorem 1.1]. Hence we can
apply techniques from bounded curvature collapse [11, Remark 2.7]. We will
use convergence of Riemannian groupoids, as in [27, Sections 5.1-5.4]. Choose
x' € X —{x1,...,xc}. (The choice of x" will be irrelevant.) Choose a sequence
m; € M; with lim; .o, m; = x'. Using an exhaustion of X — {x1,...,xc} by
precompact open sets containing x’, after passing to a subsequence, we can assume
that

B;
l‘ (M - B - S ’—'7 /) — X, f ) f ?
1_1120 i ]L_Jl 5.7 (8i), &i,m; (X, gx,x")

where (X, g, x’) is a four dimensional closed Hausdorff pointed Riemannian
groupoid whose orbit space @ is X — {x;1,...,xc}, and we can think of x’ as
an orbit. Taking the metric completion of @ amounts to adding a finite number of
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points. The unit space of X carries a structure sheaf g of nilpotent Lie algebras,
which acts on the unit space by local Killing vector fields. The local Killing vector
fields do not simultaneously vanish at any point in the unit space.

The metric convergence to (X, g&) is in the weak W29-topology, forany 1 <
g < oco. Hence the metric g on the unit space of X is Ricci-flat. As the limit is
constructed using harmonic coordinates, it follows that the metric on the unit space
is smooth. (If each M; is Ricci-flat then the convergence is C¢.

If X has trivial isotropy groups then the orbit space @ is smooth. Then for any
precompact open subset U C @ and for large i, there is a subset of the “regular”
region

B;
MI' — U BP;‘,j (S,')
J=
that is the total space of a fiber bundle over U, with infranil fibers. We are interested
in the abelian case with N -torus fibers. In this case, the underlying groupoid of the

limit X can be described in terms of the following transition maps. Let {U,} e
be a covering of @ by contractible open sets. For a, b € 4, the transition map ¢,p

is a smooth map from U, N Up to % x GL(N, R)s, where the §-subscript denotes

the discrete topology [28, (5.3)]. (Compare with the transition maps for a principal
TN -bundle, which take value in %—x, and the transition maps for a twisted principal

TN -bundle, which take value in E—x xGL(N, Z).) Thatis, ¢,p is represented by a pair
(fab» Yab), Where fap: U, N Up — RY is a smooth map and y,, € GL(N,R). Two
pairs (fap, Yab) and (f};. v,,) are equivalent if yap = v, and fup = [l + Vap
for some constant vector vy, € RY. The {@,p }a.pes have to satisfy the cocycle
condition. Up to equivalence, such structures on @ are classified by a set H (0, &)
that fits into an exact sequence of pointed sets [28, (5.7)]

GL(N,R) — H2(0;RY) — H'(0, &) — H' (O, GL(N, R);). (3.3)

Here GL(N, R) acts on H2(@;R¥Y). The set H! (@, GL(N, R);) classifies the flat
R¥ -vector bundles on O.

A Riemannian metric on the groupoid has the following description. For each
a € A, let G, be a smooth map from U, to the positive-definite symmetric (N x N)-
matrices, let A, be an RY -valued 1-form on U, and let g4 be a Riemannian metric
on U,. Then the triples {(G4, Ag, €a)}acr define a Riemannian metric on the
groupoid if for each a, b € A, on U, N Up, we have

(Gp, Ap, 8p) = ()/abGan;;s Yab(Aa + dfap), ga)-

(Compare with (2.1).)
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We claim that in the collapsing case, the flat R¥-vector bundle on ©
corresponding to {Yap }a.pe has holonomy in det™' (1) C GL(N,R). The reason
is that we are considering the case when for any precompact open set U C O and for
large i, part of the regular region of M; is the total space of a 7" -bundle over U.
Given such an i, there is a flat RY-bundle on U, whose fiber over a point in U is
the first cohomology of the torus fiber over the point. As HY (TV;Z) =~ Z, the
holonomy of this flat RY -bundle lies in det™'(+1) € GL(N,R). Passing to the
limit as i — o0, the holonomy will still lie in det ! (1) € GL(N,R). This is true
for any such U .

Thus we can apply the results of Section 2 about Ricci-flatness to X. If X has
finite isotropy groups then there is a similar statement, with @ becoming an orbifold.

Let B be a connected component of X — {x;,...,xc}. We replace X by its
subgroupoid consisting of the orbits corresponding to points in B. In the next four
subsections we prove the properties of X asserted in Theorem 1.1.

Theorem 1.1 is stated in the introduction for a sequence with bounded diameter,
Ricci curvature going to zero and volume going to zero. In this case there is a uniform
upper volume bound and (3.1) holds. Hence the discussion in this subsection applies.

3.2. Three dimensional limit space. Suppose that dim(B) = 3. Then it is a
three-dimensional Riemannian orbifold, as the groupoid X' must have finite isotropy
groups in this case.

Remark 3.2. The appearance of possible orbifold points in B has nothing to do
with the points in X that could arise as limits of the curvature blowup regions in
the (M;, g;)’s. These were already removed in forming B. There could be orbifold
points in B even if the manifolds (M;, g;) are flat.

The matrix (Grr) is just a function G on B.

Proposition 3.3. If B is parabolic and G is uniformly bounded above then G is a
constant function, FF = 0 and B is flat.

Proof. The first two statements follow from Proposition 2.1, which also says that B
is Ricci-flat. Since it is three dimensional, it is flat. ]

Example 3.4. Examples of the hypotheses of Proposition 3.3 come from the
construction of collapsing Ricci-flat metrics on K3 in [16]. There is an Z,-action
on S! by complex conjugation, and hence on T3, with eight fixed points. The
paper [16] constructs sequences of Ricci-flat metrics on K3 that converge to
X = T3/Z, in the Gromov-Hausdorff topology. The subset B is X minus the
eight fixed points and a certain number of other points, where the number can be
chosen between 0 and 16. We note that B is parabolic.

During the collapse, ALF gravitational instantons of dihedral type bubble off
from the eight fixed points.
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3.3. Two dimensional limit space. Suppose that dim(B) = 2.

3.3.1. Finite isotropy groups. Consider first the case when the groupoid X has
trivial isotropy groups. Then B is a smooth surface. For large i, the corresponding
subset of M; is the total space of a fiber bundle over B. As M; is orientable, the
fibers must be 2-tori. We identify SL(2,R)/ SO(2) with the hyperbolic plane H 2,
the latter having a fixed orientation.

Proposition 3.5. If det(G) is bounded above and B is parabolic, then:
* det(G) is constant,
e F=0,and

* with the right choice of orientation on B, the p-equivariant map G:B — H? is
holomorphic.

Proof. The first two statements follow from Proposition 2.1. From Proposition 2.7,
the map G is conformal. Then with the right choice of orientation on B, it is
holomorphic. L]

Remark 3.6. Examples where det(G ) is bounded above come from collapsing Kihler
manifolds (M;, g;) that admit holomorphic fiberings over X with the generic fiber
being a torus. Then for each i, all of the regular fibers have the same volume.

The notion of a semiflat Kdhler metric is given in [18, Section 3], [20, Section 3.2],
[22], and [34, Section 3.1], among other places. It is usually considered for torus
fibrations, but also makes sense in our context.

Corollary 3.7. Under the hypotheses of Proposition 3.5, the metric gx on the unit
space M of X is a semiflat Kdhler metric.

From (2.13), the pullback of the Ricci tensor of B, to E is %'Gv*gHz.

To be more explicit about the semiflat Kdhler metric, let t = t(z) be a
holomorphic map from an open set U in B to the upper half plane. A corresponding
map (Gyy) from U to symmetric matrices is

_ (1
G":ﬂ:)(mu) |ﬂ2)' G

The complex structure on M can be defined by local holomorphic coordinates. One
local coordinate is the pullback of a local holomorphic coordinate on B. The other
one is w = x! + tx2. The Kiihler form corresponding to g is

B — gig 4 — @w—w—wm)A@w—w_wdﬂ, (3.5)

23(t) T—T T—7
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where wp is the Kéhler form for g. If ¢ is a local Kéhler potential for w g, meaning
that wp = iddgp, then a local Kihler potential for @ is

¢ = ¢p — (w —)>. (3.6)

43(7)

Equation (2.13) becomes the statement that the Ricci form on B is

- S| 2
4%(7)2 43(7)2

Ricp = dz A dZ. (3.7)

Remark 3.8. Although the metric completion of B amounts to adding a finite number
of points, it does not follow from this that B is parabolic. For example, the domain

U={zeC:1<|z| <2}

is nonparabolic. One can construct a metric e?® g puer on U so that the metric
completion consists of adding two points.

Example 3.9. The paper [19] considers a collapsing sequence of Ricci-flat metrics
on K3, for which B is S? minus 24 points. In this case, B is parabolic. The semiflat
metric is described in [19, Example 2.2].

To briefly summarize the geometry of the collapse, as taken from [19], during
the collapse there are 24 Taub-NUT gravitational instantons that bubble off. A Taub-
NUT gravitational instanton is of ALF type, i.e. has cubic volume growth. It may
not be evident how truncated ALF instantons get attached in the collapsing limit to
the semiflat metric on a 7'2-fibration over the complement of 24 balls in S2, since
there seems to be a discrepancy in the limiting dimensions (3 vs. 2). This is the role
of the (incomplete) Ricci-flat Ooguri—Vafa metric, which provides the approximate
geometry over a ball around any of the 24 points in 2, for the collapsing K3 manifold.
The Ooguri—Vafa manifold contains an approximate (truncated and rescaled) Taub-
NUT metric. In effect, the Ooguri—Vafa manifold gives a Ricci-flat transition region
as a cobordism between the boundary 3-sphere of the truncated Taub-NUT metric,
with the Hopf S!-action, and the Nil-manifold that lives over the boundary of the
ball and has a twisted T'2-action. This transition region carries a mixed F-structure
in the sense of [9].

Now consider the case when isotropy groups are finite. Then the orbit space B is
an orbifold. The results of this subsubsection extend to the orbifold setting.

3.3.2. Infinite isotropy groups. Suppose now that some points in the unit space of X0
have isotropy group isomorphic to SO(2), and the other isotropy groups are trivial.
Then B is a surface with boundary. Consider the interior of B, i.e. the subset of B
corresponding to points in the unit space with trivial isotropy group.
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Proposition 3.10. det(G) extends continuously to be zero on 0B.

Proof. Let m be a point in the unit space of X with isotropy group SO(2). From the
slice theorem, a neighborhood of m in the unit space is equivariantly diffeomorphic
to a neighborhood of the origin in R x (R x C). Here the group action is on the
R x C factor, with translations of the R-term and rotations of the C-term. The points
inR x (R x €) with trivial isotropy are R x (R x C*). Their quotient by the group
action is R x (0, 00), from which one obtains local coordinates for the part of the
interior of B approaching a boundary point.

The metric g is smooth in the coordinates given by R x (R x C). To describe g in
terms of the setup of Subsection 2.1, we use the local parametrization of R x (R x C*)
by

', %, x x*) — (b', x!, b cos(x?), b* sin(x?)),

where h? > 0. Then for h? small, the matrix G is asymptotic to ((1, (b(z))z). In
particular,

lim det(G) = 0,

bh2—0

showing that det(G) vanishes on 0B. ]

Let X be a two dimensional Riemannian manifold with nonempty boundary. We
say that ¥ is parabolic if any C2-regular subharmonic function on X that vanishes
on 0%, and is bounded above, must be zero. (The reference [17] instead imposes
Neumann boundary conditions.)

Proposition 3.11. Suppose that det(G) is bounded above. Suppose that the isotropy
groups of points in the unit space of X are trivial or isomorphic to SO(2), with not
all of them being trivial. Then B cannot be parabolic.

Proof. By assumption, B is a smooth surface with nonempty boundary. If it is
parabolic then as in Proposition 3.5, the function det(G) is a nonzero constant. This
contradicts Proposition 3.10. Ol

Finally, suppose just that not all points in the unit space of X have a finite isotropy
group. Then B is a two dimensional orbifold-with-boundary, with a nonempty
boundary. It makes sense to talk about B being parabolic. Proposition 3.11 has the
following extension.

Proposition 3.12. Suppose that det(G) is bounded above. Suppose that not all points
in the unit space of X have a finite isotropy group. Then B cannot be parabolic.

Example 3.13. Suppose that det(G) is bounded above and B is compact. Then it
is a compact orbifold-with-boundary and hence is parabolic. From Propositions 3.5
and 3.12, and (3.7), B is a boundaryless orbifold with nonnegative scalar curvature.
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Hence the orbifold universal cover B is either isometric to R2 or has underlying
topological space S? with zero, one or two orbifold singular points. In either case,
the holomorphic map G:B — H? must be a constant map. Then (3.7) implies
that B is flat, so B = R2. In conclusion, the Riemannian groupoid X is flat.

3.4. One dimensional limit space. Suppose that dim(B) = 1. Then B is a circle
or an interval (possibly open, closed or half-closed).

The sheaf g is a sheaf of three dimensional nilpotent Lie algebras. Over the
interior of B, for large i, the corresponding subset of M; is a fiber bundle, whose
fiber is a three dimensional infranilmanifold. By [26, p. 291], after passing to a finite
cover we can assume that the fiber is a nilmanifold. (This is obvious when B is an
interval.)

Suppose first that the Lie algebra g is abelian. Then the fiber is a 3-torus. If B
is a circle then from Proposition 2.8, (G ) is locally constant and the monodromy
of e around B is orthogonal. In particular, g is flat. If B is an interval then from
Proposition 2.8, the metric on the preimage of the interior of B, in the unit space
of X, is locally isometric to

ds® 4+ (d@x')® + (dx*)? + (dx®)* (3.8)
or

ds? + P20 (dx )P 4 PPV | 2P (), {3.9)

where p1 + p2+ p3 = p? + p3 + p3 = 1. The metric (3.9) is a Riemannian version
of the Ricci-flat Kasner metric from general relativity [15, Section 9.1.1].

The other possibility for g is the three dimensional Heisenberg Lie algebra.
In the Lorentzian case, such Ricci-flat metrics are called Bianchi type II and are
discussed in [15, Section 6.3.2]. An explicit solution is the Taub vacuum metric
[15, Section 9.2.1]. In the Riemannian case, the corresponding Bianchi Il metrics
are described in [14, Section 4.1] and [31, Section 4.2]. One explicit solution is the
Gibbons—Hawking metric that appears in [21, Section 2.2].

Example 3.14. There are Ricci-flat K3 manifolds that collapse to a closed interval,
for which the regular regions approach a flat four dimensional geometry over an open
interval [12, Section 5]. During the collapse, an ALH gravitational instanton bubbles
off from each end of the interval.

There are also Ricci-flat K3 manifolds that collapse to a closed interval, with
the regular regions collapsing to two open intervals, so that over each of these
intervals, the geometries of the regular regions approach a Riemannian Bianchi-II
geometry [21]. The construction uses the fact that in the four dimensional case, the
Ricci-flat metrics constructed in [33, Theorem 4.1] have an asymptotic geometry of
Riemannian Bianchi-II type.
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We do not know if there are almost Ricci-flat metrics that collapse to an interval,
for which the regular regions approach Riemannian Kasner geometries over open
intervals.

3.5. Zero dimensional limit space. If @ is a point then the unit space of X is locally
homogeneous with a Ricci-flat metric. Hence it must be flat [30].
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