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Quasi-isometric embeddings of non-uniform lattices
(with an appendix by S. Garibaldi, D. B. McReynolds, N. Miller,
and D. Witte Morris)

David Fisher and Thang Nguyen*

Abstract. Let G and G' be simple Lie groups of equal real rank and real rank at least 2. Let
T < G and A < G' be non-uniform lattices. We prove a theorem that often implies that any
quasi-isometric embedding of T into A is at bounded distance from a homomorphism. For

example, any quasi-isometric embedding of SL(n, Z) into SL{n, Z[i]) is at bounded distance

from a homomorphism. We also include a discussion of some cases when this result is not true
for what turn out to be purely algebraic reasons.

Mathematics Subject Classification (2010). 53C24, 57S25, 22E41, 51F99.
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1. Introduction

The rigidity theorems ofMostow and Margulis are among the most celebrated results
about the intersection of discrete groups and geometry. With the rise of Gromov's

program for the geometric study of discrete groups, coarse analogues of these results

were among the most desired results [11], There are many possible translations of
these theorems to a coarse setting, and so are results and questions in this direction
(see [8] tor a good survey). We first recall two basic definitions:

Definition 1.1. Let (X, d\ and (Y.dy) be metric spaces. Given real numbers L>1
and C>0, a map f:X—>Y is called a (L, C)-quasi-isometry if
(1) zdx{xi, x2) — C < dY(f(x\), f{x2)) < Ldx(x\,x2) + C for all xi and x2

in X, and

(2) the C neighborhood of f(X) is all of Y.

If f satisfies (1) but not (2), then / is called a (L, C)-quasi-isometric embedding.

Remark 1.2. Throughout this paper, all semisimple Lie groups will have no compact
factors.

* Authors partially supported by NSF grant DMS-1308291.
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In recent joint work with Whyte, the first author has extended these rigidity results
first explored by Mostow and Margulis to the context of quasi-isometric embeddings
of higher rank symmetric spaces [9]. As uniform lattices in simple Lie groups are

quasi-isometric to the symmetric space associated to the Lie group, that paper can
be read as describing quasi-isometric embeddings of uniform lattices. In this paper
we consider the somewhat harder problem of describing quasi-isometric embeddings
of non-uniform lattices. Already for self-quasi-isometries of non-uniform lattices,
a striking new phenomenon arose, first discovered by R. Schwartz [20]. This was
extended to irreducible lattices in products of rank one groups by Farb-Schwartz
and Schwartz and finally to all higher rank lattices by Eskin [5,7,21]. An alternate

approach to some aspects of Eskin's proof by Drutu is important both to the work of
Fisher and Whyte and here [4].

Theorem 1.3. Given a non-uniform lattice V in a simple noncompact Lie group G not
locally isomorphic to SL(2, M), any selj-quasi-isometry of F is at hounded distance

from a homomorphism F' —> F where F' < F has finite index.

We find another striking new phenomenon by extending this result to certain

quasi-isometric embeddings of non-uniform lattices. This builds on work of Drutu,
Eskin and Fisher-Whyte described above [4,5,9]. Given a simple Lie group G of
higher real rank, the Cartan subgroup A of G comes with a set of distinguished
hyperplanes called Weyl chamber walls. We refer to the pattern of these walls as the

Weyl chamber pattern. We inherit from [9] an assumption on embeddings of Weyl
chamber patterns and prove the following:

Theorem 1.4. Let T, A be nonuniform lattices in higher rank simple Lie groups
G, G' of the same rank and rank at least 2. Assume:

(1) any linear embedding of the Weyl chamber pattern for G into the Weyl chamber

pattern for G' is conformai, and

(2) there is no closed subgroup G < H < G' with compact H orbit on A\G'.

Then if cp: F —> A is a Ql-embedding, then (p is at bounded distance from a

homomorphism I" —> A where F' < F has finite index.

We remark that the assumption on orbit closures is necessary. In the absence of
this condition the proof of Theorem 1.4 shows that any quasi-isometric embedding is

given by the following simple construction. If there is a compact H orbit in A\G',
this means that (possibly after replacing H with a conjugate) A' H Fl A is

cocompact. The inclusion of F into G is a quasi-isometric embedding by results

of Lubotzky-Mozes-Raghunathan and the inclusion of G < H is forced to be an

isometric embedding by the ambient assumptions [18], Since A' is quasi-isometric
to H, this gives a quasi-isometric embedding of F into A. See below for examples
and more discussion.



Vol. 95 (2020) Quasi-isometric embeddings of non-uniform lattices 39

An immediate consequence of Theorem 1.4 is the following strengthening of the

main result of Eskin in [5], This proves that higher rank non-uniform lattices are

coarsely co-Hopfian in the sense introduced by Kapovich and Lukyanenko in [15],

Corollary 1.5. Let V be a nonuniform lattice in a simple Lie group G of real rank at
least 2. Then any quasi-isometric embedding (p\V —> T is at bounded distancefrom
an isomorphism on some finite index subgroup F' < F.

We remark that a careful reading of Eskin's paper reveals that the corollary is already

proven there.

In addition we have many results concerning quasi-isometric embeddings of
distinct lattices, the simplest of which is:

Corollary 1.6. Let n > 3 and let

(p\ SL(», Z) —SL (n, Z[i])

be a quasi-isometric embedding. Then <p is at bounded distance from a homomorph-
ism

fi'.F —> SL (n, Z[/]),
where F < SL(n, Z) is offinite index.

There are a number of other results that follow once one has some idea when

given G, G'. F and A as in the theorem, there is a closed subgroup H containing F

and therefore G, such that H has a closed orbit in A\G'. A partial solution to this
problem is given in the appendix to this paper by Garibaldi, McReynolds, Miller and

Witte Morris. Examples do exist and are constructed in the appendix, and their work
also gives some restrictions, yielding results like:

Corollary 1.7. Let either m > n >2orm+n > 1 and let T be a non-uniform lattice
in SO (n, m) and A a non-uniform lattice in SO (n ,m + l) where I < n+m, then any
quasi-isometric embedding <p: F -»-A is at bounded distancefrom a homomorphism

where F' < F has finite index.

For the results in [9], it is clear that some assumption on Weyl chamber patterns
is required when considering quasi-isometric embeddings of symmetric spaces as

quasi-isometric embeddings of

SL(«, M) -»• SP(2(n — 1), R) and SL(2, M) x SL(2, M) -»• SL(3, R)

are constructed there. It is less clear that this assumption is needed in the context of
non-uniform lattices. In particular, we cannot answer:

Question 1.8. Are there any quasi-isometric embeddings of

SL(n,Z) -* SP(2(n - 1),Z)

for n > 2? Are there any quasi-isometric embeddings of

SL(2, Z) x SL(2, Z) -> SL(3, Z)?
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We believe the answer to the first question is no, but a proof requires genuinely
new ideas. Either one would need to understand all quasi-isometric embeddings of
the associate symmetric spaces or one would need to find an approach to the quasi-
isometric embeddings of lattices that did not make reference to the symmetric spaces.
Since SL(2, Z) is virtually free, the second question seems to admit a much wider

array of approaches.

Outline of proof and differences from earlier work. The main lines of the proof
are very similar to those in the papers of Eskin or Drutu, but with some substantial
additional difficulties and also some substantial simplifications of the arguments
in [4, 5]. Let X be the symmetric space associated to G and Y the symmetric
space associated to G'. We begin by showing that the embedding of lattices gives a

map sending almost every flat to a flat. In this part of the argument, our argument
resembles Drutu's more than Eskin's but simplifies the argument further particularly
by using an idea from [9]. We show that almost every flat stays at sublinear distance

from the thick part of G/ T and so has a well defined image in the asymptotic cone.

Our argument differs from Drutu's in that we do not use the Kleinbock-Margulis
logarithm law but use a more naive argument that gives a worse, but still sublinear,
bound. As in Drutu's paper, an additional argument is required to show that the set of
flats for which this is true is rich enough to capture enough incidences so that we have

a full measure family of flats with well-defined maps from the cone of X to the cone
of Y which also have chamber walls of any dimension mapping to chamber walls of
the same dimension in the image flat. These arguments occur in Subsection 3.1.

To show that the image of a flat is a single flat, we use an argument close to the

one in the paper by the first author and Whyte and in particular, use the higher rank
Mostow-Morse lemma. This lemma shows that in a flat, off a set of co-dimension 2,

any point has a neighborhood in the flat whose image is contained in a single flat and

greatly simplifies the arguments from [4,5]; see Subsection 3.2. As in the papers of
Drutu and Eskin, the most difficult step is to show that the boundary map we have

constructed extends to a continuous morphism of buildings. In our context there
is substantial additional difficulty here, since chambers do not in general map to
chambers and one has instead a map from chambers to finite collections of chambers.

Here we use the fact that the map is isometric along flats and the Tits building
structure on the boundary of X to show that this yields a well defined map from a set

of full measure in the Furstenberg boundary of X to a finite product of Furstenberg
boundaries of Y.

Following Eskin's original argument (also used by Drutu), we use negative
curvature to obtain continuity of the map on the set of chambers adjacent to a chamber

wall; see Section 4. The set of Weyl sectors that are adjacent to a fixed hyperplane
can naturally be parametrized as a hyperbolic space, and the embedding coarsely

preserves distance hence images of chambers at infinity also vary continuously. This



Vol. 95 (2020) Quasi-isometric embeddings of non-uniform lattices 41

is similar with showing the boundary map is continuous in Mostow rigidity for
hyperbolic manifolds. As in prior work, because the lattice is non-uniform, we only
get this continuity at almost every chamber wall and for almost every chamber adjacent
to the chamber wall. A short additional argument is required because our map on
chambers is multi-valued. This also makes the next step much harder compared with
the quasi-isometry case.

The next step is done in Section 5, showing the boundary map extends

continuously to a building homomorphism from boundary at infinity of X to a

sub-building of boundary at infinity of Y. This is the most novel and most difficult
part of this paper. The two buildings djX and <>t Y are not isomorphic, so we cannot

apply an existing result of Tits as Drutu did in [4, Section 5.3, A and B]. In Eskin's
approach, an additional problem arises since the Furstenberg boundary of X maps to
a very thin set (measure zero, clearly not dense) in the Furstenberg boundary of Y so

the arguments of [5, Section 5.4] do not apply. To overcome this difficulty, we work
directly with the building structure at infinity.

Motivated by Tits' [23, Section 4], we show, by induction on combinatorial
distance, that the boundary map extends continuously to an injective adjacent
preserving map on balls around a fixed chamber. This is done by first picking a good
chamber in the sense that at almost every wall in each sphere (w.r.t. combinatorial
metric) around the chamber we have the continuity obtained in previous step. We
also fix a good apartment containing that chamber. The induction argument uses

chambers adjacent to two opposite walls. This roughly means we can get an injective
continuous map on chambers adjacent to a wall if there is an opposite wall and

an injective continuous map defined on adjacent chambers of the opposite wall.
Moreover, to make sure that the map constructed by induction argument agrees almost

everywhere with our boundary map and has desired properties (injectivity, continuity,
and combinatorially well-behaved), in each step of the induction argument we also
have to show some combinatorial and continuity claims (see proof of Theorem 5.1).
As a result we get an extended injective continuous boundary map which also

preserves the combinatorial structure of djX. In other word, we get a subset of dj Y

carrying a building structure of the same type of 3r X, and is homeomorphic to djX
as buildings. After this, we can identify the image of X in Y as a subsymmetric
space in Y using the results in [17] as in [9].

The rest of the argument resembles that given in [5] (and essentially repeated
in [4]) using Ratner's theorem, but with some additional difficulties, since G ^ G'.
It is at this step that the group H arises and the question of compact G invariant
sets in G'/A intervenes. By Ratner's theorem, these compact invariant sets are

homogeneous and the question reduces to finding subgroups H in G' with G < H
and A G H a cocompact lattice. This question is analyzed in the appendix by
Garibaldi, McReynolds, Miller and Witte Morris and answers are given in many
cases, including those required to prove the specific results stated as Corollary 1.6

and Corollary 1.7.



42 D. Fisher and T. Nguyen CMH

Acknowledgements. The authors would like to thank the referee for a detailed and

careful reading of the paper.

2. Notation and terminology

We refer to [6,13,17] for knowledge about geometry of symmetric spaces, Euclidean

buildings and spherical buildings. Readers can also find basic facts about asymptotic
cone in [3, Section 1.5] or in [17]. And we refer to [9] for useful facts about root

systems and Weyl patterns. For the rest of the section, we fix some notation and

terminology.
Let X, Y be the symmetric spaces corresponding to G, G'. Let K, K' be maximal

compact subgroups in G and G'. Let

tt:G^G/K X, p:G^r\G, p:G/K^V\X, 7t:V\G^r\X
be projections.

Let A be a Cartan subgroup of G, and let S be the root system associated to G.

For a C 3, let

Aa {a G A I a (log a) 0, Va g a}.

This is a subflat in the flat A. When a 0, A0 A. When a {a} for any a e S,
we also denote Aa Aia<. For any a G S, fix a ka e K such that two flats jt(A)
and jt(kaA) intersect exactly at Jt(Aa). For convenience, we denote k0 1. A
copy of 7T(Aa) is called the Weyl hyperplane associated to a e S. By the Weyl

pattern at a point x in a flat F, we mean the pattern of Weyl hyperplanes in F passing

through x. Let IF be a chamber, we denote by IL(oc) the boundary at infinity of W.
This is again a chamber in the building dX. We use similar notations to denote the

boundary at infinity of a flat, a hyperplane, or a ray.
Let S + c 3 be the set of positive roots and let

A+ {a e A : «(loga) > 0, Va e 3+}.

Then any chamber in X will have form z(gA+) for some geG.IfAc 3, denote

DJ {a e A \ aOoga) >0, Va e A}.

Denote by Ua the unipotent subgroup of G corresponding with the set of roots A.
Let M be the subgroup of K consisting all elements that commute with all a G S.

Then the Furstenberg boundary of X can be identified with AT/M =: K. Flence

there is a natural measure on K. Also, we denote by K' the Furstenberg boundary
of Y.

For a G 3, denote by Pa the parabolic subgroup associated to the root a. We

have the Langlands decomposition Pa MaAaNa. Let Ka -- K n Ma. Ka is a
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stabilizer of a fixed face in dX. There is a natural labeling map that is invariant under
the action of Weyl group. And the set of faces in dX of the same type as the face Ka
can be identify with K/Ka. Consider a face O kKa. The star chamber of O is a

subset of K consisting of chambers that contain O as a face. Thus the star chamber

of O can be identified with kKa. This a a copy of a compact group, so there is a

natural measure on each star chamber.

We use various notions of distance in this paper. Here is the list:

• d(-, •) stands for distance in X or Y.

• ^Hau (• 10 stands for Hausdorff distance between compact subsets in X or Y.

• dg(-, •), or dg,(•, •) stands for distance between chambers in i)X or 9Y.

• dist(-, •) stands for combinatorial distance between two chambers or a face and a

chamber in dX or 3 Y.

In A or T, flats are maximal dimension isometric copies of Euclidean spaces. By
hyperplane, we mean co-dimension 1 subflat in a flat. In dX or dY, an apartment is

the boundary at infinity of a flat in X or Y. A wall is the boundary of a hyperplane.
A face is the boundary at infinity of a Weyl subsector in some hyperplane.

3. Mapping flats to flats

The (L.C) QI-embedding cp: T -» A induces a map of X into Y, that is the

composition of <p and nearest point projection onto T. We also denote the resulting

map (p.

The outline of this section is: first we show that the image under (p of any flat
in a certain family is a flat in asymptotic cones. Then, taking advantage of this

conclusion, we show that the image of a flat is sublinearly diverging from an actual

flat. Moreover, we could show then the image of a large proportion is uniformly close

to a flat. Readers may see similar arguments in [4] in a different order. The essential

difference here is that we do not need the logarithm law, but only the ergodic theorem.

3.1. Good flats. We now start with constructing a family of flats on which <p behaves

well.
Let A'o p(i) T\G, let p(d) be a number so that the volume of the

ball B(xo, d) with center x0 and radius d is 1 — p{d). Note that the ^-neighborhood
of T, denoted Nbhd^(T), is p~x (B(xo, d)). Forx,y eNbhd^T):

L ld(x, y) — C — 2L 1 d < d{q>{x),(p{y)) < Ld(x,y) + C +2Ld.

By the ergodic theorem, for a.e. g e G, for any a C E :

lim inf
r

\(Fa n B(o,r)) n Nbhdrf(Ql
IFa n B(o,r) I

> 1 -2p(d),
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where Fa n(gAa), o n(g), and | • | stands for appropriate (dimension) Lebesgue

measure in Euclidean (sub)flats. Let

r'(g,d)
c\ I(Fff n ß(o,r)) nNbhd^OI t w ^ „ w ^inf <5 > 0 : > 1 - 2p(d), Va C a, Vr > s\.

\Fa n B(o,r)\

By ergodic theorem, for any d, r'(g, d) < +oo for a.e. g e E\G. For every d, set

ß'(/M) r\G:r'(£,<0 Linien

lim^^co d)) 1 for all d.

Fix a 8 > 0, there is an increasing sequence (Rd) such that Rd > ed and

ß

li(Çl'(Rd,d))> 1 - )\2d+2'

Set

£2^ na6SU{0} £2 (Rd, d)ka.

We have that > 1 — §. If g G £2^, consider the finite union of flats

Ji(gA) U UaeH n(gkaA)).

Note that Uq,6h jt(gkaA) intersects with flat Jt(gA) in the Weyl pattern at n(g). For

every x e n{gA) U (Ua<=s7i(gkaA)), we claim that x is

(log(d(o,x) + 1) + 2p(\og(d(o,x) + l)<5?(ü,x))-close

to r. Indeed, there is d such that Rd < d(o,x) < Rd+i and x is contained in

the anulus with inner radius Rd and outer radius Rd+i in one of the flats in the

union. By the definition of £2^, the (Euclidean) volume proportion of points in the

annulus of distance bigger than (d + 1) away from T is smaller than 2p(d + 1).

Thus we can always find a point in the J-neighborhood of F that is at distance at

most 2p(d + \)Rd+i from x. We recall that Rd+i > ed+1. It follows that x is

(log(J(o, x) + 1) + 2p(\og(d(o, x) + l)c/(o,x))-close

to T as we claim. Therefore, for any x,y n(gA) U (klaesJt(gkaA)), we can

estimate:

L~ld(x, y) — C — L~l log(c/(o, x) + 1) — L~x log(d(o, y) + 1)

— 2L~lp(log(d(o,x) + \))d(o,x) — 2L~lp(\og(d(o, y) + 1 ))d(o,y)

< d((p{x),<p(y))

< Ld(x,y) + C + L\og(d{o,x) + 1) + L\og{d(o,y) + 1)

+ 2Lp(\og(d(o, x) + 1))d(o,x) + 2Lp(log(d(o, y) + 1 ))d(o,y). (3.1)
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If we set

ß(s)
l0g^ +

— + 2/r(log(.v + 1)),
s

then ß is decreasing to 0 on [0, +00). Then (3.1) can be rewritten as:

L~ld(x,y) — C — LTX ß(d(o, x))d(o, x) — L~lß(d(o, y))d(o, y)
< d(<p{x),<p(y))

< Ld(x, y) + C + Lß(d(o,x))d(o,x) + Lß{d{o, y))d{o, y). (3.2)

This seems complicated but note that there are only two linear growing terms,
L~ld(x, y) and Ld(x, y). All other terms are sublinear and will disappear when we
take asymptotic cones.

Repeat the argument in order to obtain a refined family of flats as follows. Set

IF n rs2c n B(o,r)|
r(g,S) inf [s > 0 : tt > 8, Vr > s

|F n B(o,r)\

where F n(gA),o /r(g). Note that for any 8 > 0, r(g,8) < +00 for
a.e. g e T\G. Then set

£2(Ä, «)-={ge «J :r(g, «)</?}.

There exists R(8) such that jn(Q(R(S), 8)) > |. Moreover, we can choose R(8) to
be non-increasing. Set

a« ng.1a(/î(-F.),-2î)
and 9$ : (0, 00) -> [0, 1] be a function defined by

Os(s) ~
if R(j£=ï) < s < R(^k) for k 1,2,, and 9g(s) 8 if 0 < s < R(8).

Now if g G fis then the estimate (3.2) holds for every x, y G UQ,6aU{0}7T(gkaA)
and o 7t(g). Moreover, by definition of for every z G Jt(gA) then there

is g' G Çî'g suchthatx jr(g') G 7v(gA) at most distance 9s (d(o, z))d(o, z) from z.
Thus the estimate (3.2) also holds for pairs of points in of a finite union of transverse
flats through x. This motivates the following definition.

Definition 3.1. A flat F is sub-dg -diverging w.r.t x if F n(gA) for some g G

such that x n (g).

By the ergodic theorem, for almost every g G G, for any a G 0 U S, in (sub)flat
Fa n(gAa) we have

f |{^ G Aa fl Br : gv G
lim inf — > 1 — 2o,

T —>00 I Br I
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where Br denotes the Euclidean ball in appropriate dimension, centered at origin,
radius r. Let 8 be the full measure subset consisting of such g £ G. Note that we

can take 8 to be T-invariant by defining 8 as the pre-image of a full measure subset

in r\G. Let !F be the family of flats of the form F n(gÄ) for some g 8. If a

flat F is in the family !F, then F is sub-0,$-diverging w.r.t. a large portion of points
in F, also w.r.t. a large portion of points in a finite union of certain hyperplanes.

Taking asymptotic cones. We denote by [xn] the point in a asymptotic cone
represented by the sequence (xn). For a sequence of sets (Dn), similarly we denote by [Dn\
the subset of an asymptotic cone consisting of the points [xn], where xn £ Dn for

every n. And we denote by [x], [D] when xn x, Dn D for all n.
We will show that if Fn is a sub-0^-diverging flat w.r.t. xn then the restriction

of (p on Fn induces a biLipschitz map from a flat [Fn\ C Cone(X, xn,cn,a>) into
Cone(Y, yn, cn, co), where yn <p(xn), co is an arbitrary nonprincipal ultrafilter,
and (cn) is any sequence «-converging to infinity. Indeed, if (un), (v„) are two

sequences in F such that

d(x„,u„) d(xn,vn)
hm di < +oo and lim a2 < oo

o> cn (o Cn

then

d((p(xn),(p(un)) rd(xn,un) i

C
r ß(d(xn,un))d(xn,un)

*C Lj ~r ~r L>

Cn Cn Cn Cn

We see that if lim^ > 0 then lim^ ß(d(xn,un)) 0, thus we always have
Cn

ß(d(xn,un))d(xn,un)
lim 0.
® Cn

So [<p{un)\ represents a point in ConefL. yn, cn,o>). Moreover,

d(lln, tl/j) C
^_i ß(d(xn, Unß)d(xn, un) ß(d (xn, Vn))d (xn, vn)

<

cn cn cn

d((p(un),<p{Vn))

j d(un, vn)
|

C
t ß{d(xn,u„))d(xn,un)

i f ß(d(xn, vn))d(x„, vn)
^ L-j I- JL/ H- l—* •

As above, we can see that the ru-limits of all terms, except possibly L (u">v»>f ared(un,v„)
Cn '

zero. From this induced a well-defined map [q>] on [Fn\. Moreover, this map is

L-biLipschitz.
Assume uœ [un\ is an arbitrary point in the flat [E„]. We show that, not

only is there a biLipschitz map on [Fn\ but also at any point uœ £ [Fn\, there is an
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L-biLipschitz map on finite unions of flats intersecting [Fn\ in the Weyl pattern at uw,
which agrees with [<p] on [Fn\. Abusing notation, we shall still denote the induced

map on finite union of flats by [<p].

In the case uw [xn\ we pick the sequence of finite unions of flats going
through xn as follows: let g„ £ £2,5 such that Fn n(gnA) and xn n(gn). For
each a e S U {0}, denote Fn= it(gnkaA). We still have the estimate (3.2) for
image under <p of the finite union of flats Therefore, (p induces a

L-biLipschitz map on

[UaeHU {0}Fn,a] Uo.gsu{0}[FW;O!].

Note that [FnM] intersects [Fn\ exactly in a hyperplane containing x0) u0J.

In the case dlo{xw, um) d >0, then

\\md(xn,un) +oo.
CO

Sincex„ 7t(gn) wheregn £ £2,$, by the definition of 0,$, there is vn 7t(hn) £ Fn

such that:

• Fn 7z(hnA);

• d(un,vn) < 6(d(xn,un))d(xn,un), thus [un\ [u„];
• at each vn, there is a finite union of flats Uas Fn,a, where F„>a n(hnkaA),

containing vn and intersects Fn exactly at hyperplanes going through vn.
Moreover, the estimate (3.2) works for each of the finite union of flats Fn U

(Uaes Fn,a), where vn plays the role of center o in this situation.

Note that any sequence (wn) with

d(wn,x„)
hm < +oo

°> cn

also satisfies
d(wn,vn)

hm < oo.
a cn

Therefore cp induces a well-defined biLipschitz map [<p] on [F„] UagH [Fn,a\. It is

easy to see that each [FnA\ intersects [F] in the Weyl pattern at [vn] [u,,]. Note
that different choices of (vn) result in different finite union of flats in the asymptotic
cone. However, each finite union of flats always intersect with the flat [Fn\ in the

Weyl pattern at [un].

3.2. |y>]([F„])isaflatinCone(y, y, cn, co The idea of argument here i s the same

as in Section 3.2 in [9].
There exists a finite union of co-dimension 2 hyperplanes in [F„] such that on

its complement, E, [(p\ locally maps into a flat. Since at each point in [F„], there
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are transverse flats, and a biLipschitz map defined on the finite union of flats that

agrees with [(p\ on [Fn\, we can deduce that [<p\ locally maps Weyl pattern to Weyl

pattern. Also, [<p] is biLipschitz, hence differentiable almost everywhere. At points of
differentiability in E, D[<p] is a linear map preserving Weyl pattern. By assumption,
that linear map is conformai. This implies locally [<p] is 1 -quasiconformal a.e.

So locally [<p\ is a quasi-conformal map that is 1-quasi-conformal a.e., by

Gehring's theorem, [<p\ is smooth. So [<p\ has a derivative, and the derivative is

continuous everywhere in E.
Consider zw e E. Then [<p] maps a connected neighborhood U of zœ into a flat.

Choose some coordinate for U and [<p\(U). The derivative D [<p\ i s a 1 -quasiconformal
linear map that preserves the the Weyl pattern at each point. Therefore, D[<p\ at each

point is a composition of a constant multiple of the identity and a linear Weyl
element in the Weyl group associated with the symmetric space Y. Since D[(p] is

continuous, the Weyl elements component of the derivatives are the same for all

points in U. So, up to composing with an element of the Weyl group, we can assume
that the derivative at each point is a multiple of identity. In the chosen coordinate,
D[<p\(vco) f (Vof) • Id, for all vM e U. This implies we can write

{[<P\\(Va>),--.,Vp\d{Vco))-

Then [<??]; (?fo) 0 for 1 <//./< c/. Hence, [<£>],• only depends on i.e.

MM (fop]i(Vû>,i), • • •, Md(Vio,d)).

D[<p\(v0)) f(vœ) Id would imply that

M'lOVt) ••• M'dMd) f(v<o)

for all va G U. Therefore,

f(Va> + (0,...,0)) \<p] j (tVi) /(vj
for e > 0 small such that + (0 ,e, 0) e U. This implies / is constant
in U. Hence [<p] is a fixed constant multiple of identity on the whole U.

Now, we know [<p\ locally is a composition of multiple of identity and an element
of Weyl group. [<p\ is continuous on E, and S is connected, thus on S, [ip] has to be

a fixed constant multiple of identity up to composing with a unique element of Weyl

group. This property of [<p] has to be true everywhere on the flat [/'„] too, because [<p\

is continuous on the flat and E is the complement of a co-dimension 2 set. Therefore,
M(Fa>) is a flat in Cone(T, <p(xn), cn,co).

To summarize, what we have proved is the following proposition.

Proposition 3.2. For any sequence (cn) with \\mw cn oo and any sequence offlats
Fn which is sub-Og -diverging w.r.t. xn, then [p(Fn)\ is aflat in Cone(A, cp(xn), cn,a>).
Moreover <p induces a scalar multiple of an isometry [<p] from flat [Fn\ in

Cone(A, xn,cn,co) to flat [<p(Fn)\ in Cone(T, <p(xn), cn,co).
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Remark 3.3. The proposition above implies that for a flat F e 3<, [<p{ F)] is

a flat in asymptotic cones with arbitrary rescaling sequence which have <y-limit

infinity. However, the sequence of based points are not arbitrary. Otherwise,
by [17, Proposition 7.1.1], cp(F) is uniformly close to a flat. And this cannot be

expected in the case <p is induced from a QI-embedding of a nonuniform lattice.

3.3. Associating to (p{F) a unique flat in Y.

Proposition 3.4. Let F e 3> be a flat that is sub-6$-diverging w.r.t. x e F. Then

there is a flat F' C Y such that for any sequence (cn that has lim0J cn oo, in

Cone(T, <p(x), cn, co):

win [n
Moreover, the flat F' does not depend on which point x G F that we choose. This

implies that F' is unique.

Let WaJ W,f be distinct Weyl chambers at [y] [(p(x)\ [<p]([x]) such

that the flat foo]([.F]) (Jy=i - For each Wf, there is sequence of Weyl

chambers (Wj) suchthat Wf [Wf],
For e, p > 0, we denote

Ce(y,p) {u F : (1 -e)p < d{y,u) < (1 + e)p}

and

S(:y,p) ={u e Y : d(y,u) p).

We prove a lemma estimating the divergence away from chambers.

Lemma 3.5. Let U be a subset of Y, containing y, such that in any asymptotic
cone Cone(Y,y,dn,a>), [[/] is always a flat for any rescaling sequence (dn) with
limwdn oo. Assume in Cone(Y, y, cn, œ), we have [U} Fm, where the flat
Fa) U^= |

Wf is the union of Weyl chambers with vertex at [ v]. Let W„ be

Weyl chambers with vertex at y such that Wf [Wf ], for all j 1,..., p. For

every > 0, there exists Re such thatfor to-a.e. n, andfor all p e [Re, cn | :

sup d(z,Upj=lWj) < ep.
zeS(y,p)C\U

Proof. Let

Re,n sup {p G [1 ,cn\ : sup d(z, Wj) > ep).
zGS(y,p)C\U

We need to show limÖJ Rf n < +oo for every e > 0.

If limw (T > 0 then take zn e S(y, Re n) C\U such that
Gfl

d(zn,Upj=lWj)>R^n

=> dM([zn],Up=1Wf > co.

This contradicts that [77] Fa U jf=1 W,i.
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Therefore lim<y 0. Suppose that lim^ R,n +00, inCone(Y, y,

[Wn] is also a Weyl chamber for all 7 1p. Let zn be as above, we have

da>([y],[Zn]) 1

and

d(o ([zn]> Uy=i \Wn ]) >

Since lim^, 0, 2Rn < cn for a-a.e. n. And by definition of Ren, for all
Cn '

un G U n C^e_(y,2Re,n), we have

d(un, Uj=1VF„;) <d(y,un).
Then um [u„] has properties

2 — < ö?(y®, uw) < 2 H

100 - w' - 100

d(U(0, ul=1wJ) <

The point zm is in the flat [C/]. Let z'(û e [U} on the ray y0Jz0) that has d(y0), z'(0)

@ — Too ' 2 + Too)- Obviously, z'm has to be a limit of such a sequence un above. On

the ray ymz'w, we have

d(zw,Upj=lW^) > e,

< e.j=

This contradicts the convexity of the metric on symmetric spaces. Therefore, the

lemma is proven.

Remark 3.6. Instead of working with a fixed y and U, we could also make the

assumption that yn G Un such that [Un\ is a flat in any asymptotic cone.
We could also drop the assumption that [U] is a flat in any asymptotic cones,

and only need that [U} is the limit of sequence of finite union of Weyl chambers

in Cone(Y,y,cn,co). The proof will be similar, but requires some extra technical
details. See [4, Lemma 3.3.5],

For any sequence (cn with limö) cn 00, by previous subsection, [</?]([F]) is a

flat in Cone(T, y, cn,a>). Let

M([F]) U>=xwi Uj=1[W/],

where W('}, Wj are Weyl chambers with vertex at, respectively, | v | and y. Let IT '
be the Gromov-Hausdorff limit of the WnJ, i.e. for any r > 0,

Wj n B(y, r) —> Wj n B(y, r)

in the Hausdorff metric.
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For i / j let u'n G WJ, uJn G IF',/ such that [yu'n] and [yuJn\ are two rays in
and Wj,. If the two rays coincide then they also coincide in Cone(T, y, 1, co). The

limit of rays in this cone is exactly the Gromov-Hausdorff limit. This implies Wl
and WJ have the same or more adjacency relation as the adjacency relation of WJ,

and W^. Because U^=1 (oo) is a sphere, we know that Uy=1fF;(oo) is a

Lipschitz sphere. Here, by sphere we mean an apartment at infinity. In order
to show uj=] WJ, (oo) is actually a sphere, we show that the adjacency relation

of {IF7(oc) : j is just actually same as adjacency relation of
{Wtf(oo) : j 1

Fixing some A, we let

Rn sup {p G (0, cn] : Wj n B(y, p) C NbhdA(B") V./ G {1,..., p}}.

Then we always have lim^ Rn oo because of the definition of (F-7

We claim that in Cone(T, y, u>) we have

[<p(F)]<ZUpj=l[W>] UpJ=l[W*]. (3.3)

The last equality is obvious, we only need to prove the inclusion. Let za [zn] g

[<o(F)], where zn G <p(F) fl Cçn (y, p^/Rn), where lim® 0. Then

diyu^a) rj.

By Lemma 3.5, for any e > 0, there exists Re such that &>-a.e. n

sup d(z,\JpJ=lWl) < ep,
zeS(y,p)ri(p(F)

for all p G [/?e,c„). Since co-a.e. n, we have Re < d(y, zn) < cn, we must have

d (zn, Uj iwj) < T}( 1 + Çn)\fRn-

Thus,

d(z».Vj=i[Wj]) < erf.

Since e can be arbitrarily small, za G uj=1 [FLj/]. This proves the claim, i.e. in

Cone(T, y, co), [<p(F)\ C Upj=1[WJ],
We also know that [^(V7)] is a fat- On the other hand, Uy-JJF-7] is a union

of Weyl chambers at a common vertex, by the claim, containing a flat through that
vertex. Moreover that the number of Weyl chambers in the union is exactly the number
of a Weyl chambers we have in a sphere apartment at infinity. Hence, we have an

equality rather than an inclusion, i.e. [<p(F)\ Uy_1[W7']. Applying Lemma 3.5

to Cone(T, y, ~/R^, œ), cp(F) and the family of chambers we get the following
corollary.
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Corollary 3.7. For all > 0, there exists Re, such that for co-a.e. n

sup d{z, Uy=1 H77) < ep,
zeS(y,p)C\U

for all p > Re.

Proof. Apply Lemma 3.5, for <y-a.e. n

sup d\z, Uy=1 WJ < cp,
zeS(y,p)C\U

forallpG [Re,fofof,). Since limw *J~Rn — oo, the estimate holds for all p > Re.

Corollary 3.8. For any sequence (cn) such that lim® cn oo, in ConefT, y,cn,co)

[<P(F)] U%X[W*].

Proof. By the previous corollary, for all e > 0, there exists Re such that

d[z, Uy=1 W77) <ed{y,z),

for d(y, z) > Re. This implies that for all zm [zn\ e [<p(F)\, and for all e > 0:

d(za>, Uy=1[lv]]) < a.

Thus, [<p(F)} C Upj l[Wj].
As before, Uy=1 [W>] is a set of finite union of Weyl chambers at the same vertex,

and the number of the chambers is exactly the number of Weyl chambers that a flat
can have. Moreover, [<p(F)] is a flat, containing the vertex of chambers. This implies
the union of Weyl chambers is exactly the flat, i.e. [q>(F)] Uy=1 [H77].

Proofof Proposition 3.4. We use same notations as in Lemma 3.5, Corollary 3.7,
and 3.8. As the result of Corollary 3.8, there are Weyl chambers W> in Y vertex at y
for j 1,..., p such that [^(Z7)] Uy=1 [VL7].

Since any two rays in Y are either asymptotic or diverging linearly, and for

any ray rM c [IT7] there is a ray r C WJ such that r(l> [r], we can conclude
that {VL7 (oo)}y=1 has the same adjacency relation as {[H77](oo)}^=1 ; Therefore,

Uy=1 lT7(oo) is a biLischitz sphere in Tits metric, and containing exactly the same

number of chambers as in an apartment. Hence Uy=1 WJ (oo) is an apartment in 3T.

Thus there is an apartment F'y C Y suchthat F'(oo) Uy=1 H77 (oo). It follows
easily that

IF'} K=1ir7] M/7)].

We now prove uniqueness. Let x\, xi G F such that the flat F is sub-Ö#-diverging
w.r.t. bothxi andx2- Note that Cot\&{Y,(p(x\),cn.u>) and Cone(T, tp{xf), cn, to) are
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canonically isometric by identity map on each sequence. So if in Cone( Y, (p{x\), cn, to)

we have

[#)i u;=1[tn,
then that equality will still hold true in Cone(K. cp(x2), cn, <w). Therefore the two flats

F'v(m) and FUX2) ^i^ide-
So for every flat F e !F, we can associate a unique flat F' such that if F is a

sub-6($-diverging w.r.t. x then in Cone(T, <p(x), cn,a>) we have [<p(F)\ [F'].

By the assumption on Weyl patterns, the set of Weyl hyperplanes in a flat of X
can be viewed as a subset of Weyl hyperplanes in a flat of Y (we are implicitly
identifying both flats with a Euclidean space). These two sets could be the same, but
the hyperplanes for X could be a proper subset of the hyperplanes for Y, and this

will cause the extra difficulties compared to the case when they are the same. All
arguments are written allowing this subset to be a proper subset. On the other hand,

in this case, we can also think that a flat in X has the same set of Weyl hyperplanes
as the one of Y, but some of the Weyl hyperplanes are imaginary (not actual Weyl
hyperplanes), and flats in X do not diverge along those imaginary hyperplanes.

Recall that a building is thick if there are at least three chambers incident on every
hyperplane. Viewing the building associated to X as having these extra imaginary
hyperplanes is the same as viewing the building associated to Y as a non-thick
buildings (of a different type). A concrete example to keep in mind is that the Weyl

pattern Dn isometrically embedded into Weyl pattern BCn (n > 3)). So we can

regard a (spherical) building of type Dn as a non-thick building of type BCn since
there will only be two chambers incident on some chamber walls. Therefore, we can

treat dX as a non-thick building with the Coxeter structure the one for 3 Y.
Let F be a sub-0§-diverging flat w.r.t. x e F. There are p Weyl chambers

W\ Wp vertex at x with respect to the non-thick structure such that

F Uy 1 Wj.

Let F' be the flat associated to <p(F) as in Proposition 3.4, and W1 Wp be

chambers vertex at y, projection of (fix) on F', such that

F' Upj=lWj.

By Proposition 3.2, [tp] isometrically map [F] to [F']. Hence with appropriate order,

we have that

w(Wj)\ [<p]([wj]) [in
for all / 1,..., p.
Corollary 3.9. For any e > 0, there is Re > 0 such that for every flat F that is

sub-dg-diverging w.r.t. x, for all j I p. andfor any p > If
sup d(z, WJ) < ep,

ze(p(Wj)r\S(y,p)

where F U^=] Wj, and Wj are chamber sectors with vertex xforall j \ ,p.
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Proof. Suppose that the conclusion does not hold. Then there is sequence of sub-

ö^-diverging flats (Fn) and there are R„ > 0 with lim^^oo Rn oo such that the

following hold:

• Fn Uy=1 Wj,n, where Wjt„ are chambers vertex at xn;
• (F'n) is the associated flats with (Fn) via /. Let y„ be the projection of cp(xn)

on F'n, we write F'n Uj=1 IT,/, where IT,/ are chambers vertex at yn ;

• There is zn e such that d(zn, Wf) >eRn.

The flat [Fn\ in Cone(Ar, xn, Rn,co) is mapped by a homothety [ip\ to the flat [Ff\ in
Cone(T, yn, Rn,co). Thus,

W\{[wjA) Wl
However [zn] e [(p{Wj)\ [tp]([Wf] satisfies d(o([zn\, [Wf]) > e, which is a

contradiction.

Next, we prove that (p maps a large proportion of F into a neighborhood of F'.

Proposition 3.10. There exists D(L,C, 5) such that if F £ !F is sub-9$-diverging
w.r.t. x, and F' C Y is the flat associated with the image <p(F), then d(yp{x), F') < D.

Proof. Suppose not: then there exist F„ e !F, xn e Fn such that Fn is sub-0^-

diverging w.r.t. xn and

c„ d{xn, F'n) -x oo

as n -» oo, where F„ is flat in Y associated to (p(Fn) by Proposition 3.4. Denote

y„ (p(xn). Consider [<p(Fn)] C Cone(T, yn,cn,œ). Let UJ=1 W„ be the union of
Weyl chambers vertices at yn such that

Fn (oo) uj=1 Wf (oo).

By Corollary 3.7, for any e > 0, there is Re such that

sup d(z,L)j=1Wf) < 5ep,
zeCTh(y"'p)

for all p > Re. Thus,

[HFn)]CUp=1[Wj].

But [np{Fn)\ is a flat, and by the argument before, we get the equality

[<p(Fn)] U^=1[Wj].

Thus Uy=1 [Wf] is a flat. We have

d^flWf, FIf) d(yn, Fl) cn
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for all j 1p, which implies that

<*Hau(U>=1 [Wj],[F'n\) 1.

Note that [F/] is also a flat. So we have two flats have Hausdorff distance 1 from
each other. This is a contradiction.

4. Measurable boundary map and continuity on stars

So far, we have associated to each flat F e F a flat F' in Y. We now want to consider
the correspondence at the level of Weyl chambers. Let y <p(x), consider the map

HIFco-Fco -> F'a C Cone(T, y,cn,co).

Up to rescaling a factor, [(p\\fw is an isometry preserving the Weyl chamber pattern.
So [<p\\fw maps each Weyl chamber to a finite union of chambers in F'w. There is an

obvious correspondence between Weyl chambers in Fm{oo) (respectively F/(oc))
and Weyl chambers in F(oo) (respectively F'(oo)). Therefore, (p associates each

chamber in F(oo) with a finite union of chambers in F'(oo) C dY.
Let £2 be the set of Weyl chambers at infinity of flats in F. Then LI has full

measure in K, where K is the Furstenberg boundary of X.
Let W G £2. If Fi, F2 F are two flats that contain W in their boundaries,

i.e. W C Ti(oo), IT C F2(oo), then there exist flats F[, F'2 such that

M(Hi]) [<P(Fi)} [F{],

MF*]) 1<P(F2)} [F^l

Note that the map cp\f\UF2 yields a well defined, biLipschitz map [99] on [Fi] U [F2].

[Fi] H [F2] contains a Weyl chamber sector corresponding to W. The image of
the sector under [up] is a finite union of chambers in [F[\ fl [Fj]. Therefore, the

corresponding Weyl chambers at infinity in F{(oo) and F^ioc) coincide. So we can
set a correspondence

<p{W) {W[,..., IT/).

In order to get a consistent way to map a Weyl chamber to a finite union of chambers,

we will do as follows: let W\ be an arbitrary Weyl chamber in £2. There is a chamber

tr2 6 £2 such that there exist Fi, F2 F, and IT, IT2 C Fi(oo), W\,W2 C F2(oo).
Note is an isometry up to a rescaling factor. There is a composition
of reflections in walls of [Fi](oo) U [F2](oo) that carries ITi to IT. So there is

a corresponding composition of reflections in [F[](oo) U [FjKoo) carries a finite
union of Weyl chambers corresponding to image of chamber ITi to the finite union
of chambers W[ U • • • U IT/ corresponding to image of IT. Thinking of this as a

way to label (1 /} to finite union of chambers in the image of each chamber so
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that the the labeling is invariant under the induced action of Coxeter group for dX on

building 3Y. Therefore, we can define a map ^on fl:

<p: -» K' x • • • x K'

sending each Weyl chamber to a I -tuple of Weyl chambers in a consistent way. We

will assume that ip (cpi,... ,<pi).
The rest of this section is for proving uniform continuity of ip on star chambers.

For this we need a version of Proposition 3.10 for hyperplanes.

Proposition 4.1. For a hyperplane P n(gAa), g and a 3, there is a

hyperplane P' in Y such that:

• in Cone(T, y,cn,a>): foo(P)] [P'];
• there exists d(S, L, C, X, T) such that for any z Jt(u). where u G gAa D £2,5,

we have d{(p(u). P') < d. Here d is independent with P.

Proof. Let F\ n(gA), F2 n(gkaA) Then, F\, F2 e F, F\ (T F2 P, and

there is c that

Nbhdi(Fi) n NbhdjCF2) C NbhdC(P).

Then there exist Ff F2 C Y such that

fe(Fi)] [F/] and [<p(F2)] [F^

in Cone(Y, y, cn.w). [F\] and [F2] are two flats whose intersection is exactly [P],
[•PlIlFiMF,] is a biLipschitz map. Thus [F,'] fl [Fj] is exactly a co-dimension 1

hyperplane. Also notice that d{F[, F2) < 2D since there is x P such that

d{F-,(p{x)) < D. This implies there exists a hyperplane P' c Y, and there exists
d > 0 such that

P' C NbhdD(Fi') n NbhdD(F^) c Nbhd^P').

It follows that [P'] [<p(P)]. And for z ji{u) with u e gAa n £2s then

<p(z) e Nbhdd(F[) n NbhdoCF^) C Nbhd^(P')-

We need to show that d is bounded, and does not depend on P. Suppose not,
then there exist Pn it(gnAa), F\<n n(gnA), F2,„ jt{gnkaA), and there is

dn —> oo such that

Nbhd^(P^) C NbhdDCF^) n Nbhdd(^2,»).

where gn and P'n, F[n, F'2 n are hyperplanes associated to P„, F\,n, F2>n.

Let xn n(gn). In Cone(Axn, dn,co), [Fi,„] fl [F2,„] is a co-dimension 1

hyperplane. In Cone(T, (p(xn), cn, co), the co-dimension 1 hyperplane [P^] is
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contained in the intersection [F[n D F^ J. Moreover there are z'n e Nbhd^n (P'f)
that have d(z'n. P'n) dn and d(z'n, F[n) < I). Therefore the point \z'n\ is contained

in the intersection [F[n] n [Ffn\, and this point is also distinct from \L'n] since

d([zn\, [Pf\) 1- Hence [Fljn] (~l [F2,n\ contains a strip with positive width
containing the hyperplane [Pf]. However this strip is the image of hyperplane [Pn]
under an isometry (up to a rescaling factor) \<p\. This is a contradiction.

Recall that is a full measure subset of G such that for any F e !F, there is

g e ~§ such that F n(gA).

Lemma 4.2 (Fubini's theorem). Let G be a group. H be a subgroup and E a full
measure subset of G. Then for a.e. g E, we have that gh e E for a.e. h H.

Proof See [4, Lemma 5.1.1],

By Fubini, for a.e. g e f?, then gk for a.e. k e Ka, for some a e S. This
is equivalent with saying that for almost every hyperplane of the form P Jt(gAa),
almost every flat containing P is in the family !F. Let M be an arbitrary face in the

building dX, denote by Star(M) c K all the Weyl chambers containing M. If M is a

face in P(oo) where P is the above hyperplane, then we see that Star(M) n has full
measure in Star(M). More precisely, Star(M) n contains a full measure subset

of Star(M), that full measure subset consists of chambers that are in apartments
bounding flats in F that contains the hyperplanes P. By Fubini again, almost all
faces in dX are faces with described properties of M.

For such a face M as above, let P be the hyperplane such that almost every flat
containing P is in F, and M C P(oo). Assume that P n(gAa), then the flat

n(gA) is sub-t^-diverging w.r.t. a large portion of points in P. Therefore we can

assume that# e £2g. By Proposition 4.1, there is a hyperplane 7" associated to <p( P).
For each Weyl chamber E Star(M) n Q, among cpi(E) ,<pi(E) there is (at
least) one Weyl chamber adjacent to F"(oo). Without loss of generality, assume that
is (p\(W).

Proposition 4.3. The map (p\ : Star(M) fl Q —> K' is uniformly continuous on a full
measure subset. Moreover the extension map to Star(M) is injective.

Proof. The full measure subset U of Star(M) where we are proving continuity is the
subset consisting of chambers in apartments at infinity of flats in F containing P.

We consider Vfj(oo), IL^oo) e U. We assume that W\ (oo) and W2(oo) are

chambers at infinity of W\ and W2, where W\ and IT2 are chamber sectors based at

the vertex at x. Let /*) and If be two flats in F containing the hyperplane P and

two chambers W\ and W2.

By definition of P and U, F\ and F2 are sub-0^ -diverging w.r.t. a large portion
of points in P. Let x\ £ P be such a point, and let W3. W4 be Weyl chambers at x\
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that have ^3(00) W\ (00), W^oo) ^2(00). Then for any R > 0,

dHw(Wi n B(x, R), W2 n B(x, R)) dHm(W3 n B(xuR), W4 n B(xuR)),

and we have that F\, F2 are sub-##-diverging w.r.t. x\.
Let the hyperplane P' and flats F[, F'2 be the hyperplane and flats associated

to cp(P), and (p{Fi), <p(F2). By Proposition 4.1 P' is determined up to some fixed
finite Hausdorff neighborhood, hence projection of a point on P' is also well-defined

up to a finite distance. Let y 1 be the projection of <p(x 1) to I", and let W3 C F[,
C F2 be chamber with vertex at y\ such that

<pi(JLi(oo)) W2 (00),

<P\(W2(oo)) W[ (00).

We also denote by y the projection of cp(x) on P'. Let W[, W2 be chambers with
vertex y and ilj'(oc) ILj'foc), W2(00) W^(oo). Note that y is fixed (up to a

finite distance), independent of chambers in Star(M
Consider dX with non-thick building structure induced from 3Y. By Corollary

3.9, there are non-thick chambers kj C W3,V2 C W4 vertex at x\ such that

(p(V1), (p(V2) are asymptotic to IL3, W'A respectively.
Note that the distance on the Furstenberg boundary is biLipschitz equivalent with

the visual metric at some base point. In other words, for any S0 > 0, and any R > 0,

there exist <5i, S2 > 0 such that if df?(W\(po), W2(00)) < (resp. > £2) then

dHllu(Wi n B(x, R), W2 n B(x, R)) < 80R

(resp. > 80 R), where 1L|, W2 are Weyl chambers vertex at x that have W\ (00), W2 (00) e

Star(M). Because V\, V2 are non-thick chambers, adjacent to P, there are £3, (>4 such

that if dj?(W\(o6), IL2(oo)) < S3 (resp. > ^4) then

dHau(Vi n B(xu R), F2 C 5(jci, R)) < 80R

(resp. > 80 R).

By the estimate (3.2),

dmuiviVO n B(y\, L"1 1 - ß(R))R - C), cp(V2) n B(y,, L"1 (1 - ß(R)) R - C»
< L(80R+ß(R)R) + C.

By Corollary 3.9, if L_1(l — ß(R)) — C > Re, then

dujw; n B(yi,L-\l - ß(R))R - C), W; n B(yi,L-\\ - ß(R))R - C))

< L(80R + ß(R)R) + C + (L~\ 1 - ß(R)) - C).
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Choosing R large enough, we can rewrite:

dHW(w; n B(ylt\l~xR), W; n B(yt, X-L~l /?)) < S'0R,

for some S'0 deduced from above inequality. Thus

dnm{w{ n ß(y.Wi n B(y, \l-'r)) < 8'0R.

Again, using the equivalence of d^, and the visual metric at y, there exists S'2 such

that if d^,{V[{oo), V^oo)) > 8'2, then

dHm(v; n B(y, \l~1R), K2' n B(y, > S'0R,

where V[, V2 are chambers in Y vertex at y. Therefore, we conclude that

dR,(W[(oo), 4L2'(oo)) < 8'2.

This is equivalent with saying that for any 8'2 > 0 we can find 83 > 0 such that for

any pair of chambers in the full measure subset U at dx -distance at most 83 then the

image chambers under <p\ are at d-distance S2. Hence we get the continuity of <p\

on a full measure subset of Star(M).
To prove the injectivity of the extension map we repeat above argument for the

lower bound estimate and get

dmuiWl n B(y, 2R), IT2' n B(y, 2LR)

dH,u(W; n B(yu2R), Wj n B(ylt2LR))
> L~l(80R - ß(R)R) - C - 2eR S'jR.

Arguing as before we get for an 0, there is 84 such that if

dj(,(<p(Wi(oo)),<p1(W2(oo))) < 8\

then d^{W\ (00), ^2(00)) < 84 for any VCi(oo), (42(00) e U. This implies the

injectivity of the extension map.

Corollary 4.4. <p: Star(M) n fi ->• n!=i K' is uniformly continuous on a full
measure subset.

Proof Let P be the hyperplane as above. Since d^ is biLipschitz with the visual
metric at a point, we can assume that d% is just the visual metric at a point in

hyperplane P.
By Proposition 4.3, there exists an integer i between 1 and I such that (pi : Star(M fl

Ç2 -> K' is uniformly continuous on a full measure subset U C Star(M) fl £2,
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and chamber q>i{W) is adjacent with P'{oo) for every W e Star(M) D £2. We fix
this i for the rest of the proof.

Let M"v be the opposite face to M in P(oo). Consider <p: Star(Mop) n £2 —> K'.
Because of the consistency when we define <p, we have that cpi(W°p) is opposite
with <pi(W) and is adjacent to P'(oc) for any pair of opposite chambers

(W, Wop) e (fi n Star(M)) x (Ä n Star(Mop)).

Let Uop C Sin Star(Mop) be the full measure subset upon which tpi is uniformly
continuous.

For every e > 0, there exists 8(> such that for W\, W2 e U, if d^(W\, W2) < 80,

then

dE'{<Pi(Wi),<Pi(W2)) <e,
and for W3, W\ e Uop with d^(W3, W4) < 50, then

dRr((pi(W3),cpi(W4)) < e.

Let Fi, F2 be flats containing P such that ILj c F\ (oc), 1L2 C 7*2(00). Let
W°p, W? be opposite chambers with ILi, W2 in F\ (00) and F2(oo). Because of
what we assume on dif d%(Wi, W2) < 80, then

dR(W°p, W?) < 80.

Let F[, F2 be flats in Y associated with tp{F\), <p(F2). The apartments F[(00),
F2(oo) have pairs of opposite chambers (<Pi(Wi), <p;(W/1°p)) and (<pi (W2), (p,(W2v))
which are e-close. Hence the apartments F[(00), F2(oo) are e'-dose in the Hausdorff
metric, where e' depends on e and hyperplane P'. Therefore cpj is uniformly
continuous on Star(M) (T £2 for every j. Note that all cpj are injective for all j
as well. This is because F((oo), F2(oo) share a common wall P'(oo) and <p,- is

injective.
Therefore <p is uniformly continuous on U c Star(M) fl £2, and the extension of

the map is also injective.

5. Regularity of boundary map

The goal of this section is proving two following theorems:

Theorem 5.1. There is a building monomorphism y. dX d Y that agrees with <p

a.e. on the set of chambers.

Theorem 5.2. / is continuous in the cone topology.

Corollary 5.3. /(X) is a sub-building ofdY.

Proof. This is obvious from Theorem 5.1 and Theorem 5.2.
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We start with some terminology and definitions. We know that the Coxeter group
for dX is a subgroup of the Coxeter group for dY. Therefore, from now on when we

say subCoxeter structure, we mean the structure on each apartment in 3 Y where the

Coxeter group is the one of dX.

Definition 5.4 (SubCoxeter admissible). A union of chambers/faces in dY is called a

subCoxeter admissible (or admissible for short if there is no confusion) chamber/face

if the union is contained entirely in some apartment S C dY and there is an isometry
from the modeled apartment for dX into X such that the union is exactly an image of
a chamber/face.

For example, if dY is a Bn building, and the subCoxeter structure we consider
is of type Dn, then any subCoexter admissible chamber is a union of two adjacent
chambers having a common face ofcertain type. The other example is in our situation,
when the image of a chamber in K fl £2 under <p is a subCoxeter admissible chamber.

A pair of admissible chambers/faces are said to be adjacent if their intersection
is a co-dimension 1 admissible face, and are said to be opposite if they are contained
in an apartment and opposite in that apartment.

Let L' be an admissible face. Denote by Star(L') the set of admissible chambers

containing L' as a face. There is a natural topology on Star(L'), coming from the

Hausdorff topology on 3 Y. This means, a sequence of admissible chambers (Cn in

Star(L') is said to converge if they converge in the Hausdorff topology. Therefore,
for a face L C dX and an admissible face L' C dY, it makes sense to say a map
r: Star(L) Star(L') is continuous, injective, and adjacency preserving. If M is a

face of D G Star(L), abusing notations, we use r (M) as the admissible face of x(D)
corresponding to M in the obvious way.

For D, E subsets of dX or 3Y, we denote by CHull(Z), E) the combinatorial
convex hull of D and E in dX or dY.

Definition 5.5 (Coherence). Let L,L"P be opposite faces in dX, L',L'op be

subCoxeter admissible opposite faces in dY. Two continuous adjacency preserving
maps r: Star(L) —> Star(L') and top: Star(Lop) —> Star(L"'p) are said to be coherent

if for any pair of chambers D G Star(L), E G Star(Lop) such that CHull(Z), E) is a

half apartment then CHull(r(D), xop(E)) is also a half apartment.

In order to prove Theorem 5.1, we need a few lemmas.

Lemma 5.6. Given a half sphere HA in the apartment model for a building, and

fn : HA ->-3 Y be a sequence of isometries. Let L and Lop be opposite faces in HA,
and let Ln fn(E), L'„ fn(Lop). Assume Ln converge to a face f(L), L'f
converge to a face f(Lop) (in cone topology) where f(L) and f(Lop) are opposite.
Then the restrictions of /„ on the boundary converge to an isometry from 3/7,4 to

a wall containing f(L) and f (L"p). Furthermore, if there is an interior point x
such that fn(x) converge to a point f(x), and f(x) is not opposite with any f(f
for Ç G 3HA then fn converge to an isometry f. In particular, iff(x) is an interior
point ofa chamber then fn converge to an isometry f.
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Proof. The case rank 2 is obvious since a wall consists of exactly two opposite faces.

So we only consider the case when the rank is higher than 2. Fix a based point xo,
let dXQ be the visual metric at xq. The cone topology is equivalent with the topology
induced from visual metric dXQ.

Now let z G dHA, there are two points £ G L and £ G LHp such that dj (£, £) < Jt

and z is on the geodesic connecting £ and £. Letz„ /«(z),£„ /«(£),£« /«(£)•
For any e > 0, since (£„) and (£„) are Cauchy, we have that

^Xo(£n>£m) < C dx^ifn^m) < £

for n, m large enough. Thus, for some fixed A > 0, there exists R(e) > 0 such that

d(x0Çn(R),xoÇm(R)) < A and </(x0£„(tf), x0£m(/£)) < A

for n. m large enough. Here X(fan(R) denotes the point at distance R from x0 on the
>•

ray (x0£«). Because of the convexity of distance in CAT(O) space we have that

>(u (dT(Çn,Çn)\\ >(D (dT{Hn,Kn)\\\d \xozn yR cos jyxozm[R cos [ j jj c A.

Note that r/r(£rt, £«) 0 < n constant, and R(ë) -» oo as e —>• 0. Hence,

(z„) is a Cauchy sequence, thus converge to some point, denotes /(z). We easily see

that

d{f{z), /(£)) t/(/„(z), /„(£)), J(/(z), /(£)) d(fn(z), /„(£)),

so /(z) is on the geodesic connecting /(£) and /(£). Note that convex hull of a pair
of opposite faces is a wall. Therefore, the restrictions of fn to the boundary of HA

converge to an isometry on 3HA.
Furthermore, assume x is an interior point of HA and /„ (x) converge to f(x).

Then for any £ G 3HA, by assumption we have dr(f(x), /(£)) < Jt. By
the argument in the previous paragraph fn (z) converge to f(z) for any z in the

geodesic segment connecting £ and x. And thus fn(x) converge to a point f(x) for

any x G HA. That / is an isometry follows easily.

For any sequence of half apartments having a pair of opposite faces converge to
a pair of opposite faces, we treat them as a sequence of isometries from a fixed half
apartment.

Lemma 5.7. Let L,LHp be two opposite faces in dX, L',L'op admissible faces
indY. Assume that there is an adjacency preserving map r : Star(L) —> Star(L') that
is continuous and for a.e. F G Star(L), the convex hull CHulK^F), L/op) is a half
apartment. Then far any F G Star(L), the convex hull Cllull(r(/*), L'op) is a half
apartment.
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Proof. Let (Fn) be a sequence of chambers converging to F in Star(L), and such

that CHull(r(f„). L/op) are half apartments. Those half apartments have common
boundary, that is the convex hull of L' and L'op. So we get a sequence half
apartment with common boundary, and the sequence of certain cells converging.
By Lemma 5.6 the sequence of half apartments converges to a half apartment. Hence

CHull(r(F), L,op) is a half apartment.

Lemma 5.8. Let Ln be a sequence offaces converging to a face L, and LHp is face
that is opposite with all Ln and L. Assume that we have r„: Star(L„) —> Star(L'n),
where (L'n) is a sequence of admissible faces converging to an admissible face L'.
Assume there is L'op an opposite admissible face with all L'n and L' and there

is continuous adjacency preserving map rop: Star(Lop) —> Star(L'op) such that all
pair of maps (xn, r"p) are coherent. Then there is a unique continuous adjacency
preserving map r: Star(L) —> Star(L') such that r and rop are coherent.

Proof. We show that if (D„) is a sequence of chambers converging to the chamber D
where Dn G Star(Ln) and D G Star(L) then xn(Dn) converge to an admissible
chamber adjacent to L, and we set the limit to be r(D). Let

HAn CHull(L/op, xn(Dn)).

As xn and rop are coherent, those sets are half apartments. First we have that their
boundaries converge to a wall, that is the convex hull of L' and L'op. In the half
apartment CHull(D„, Lop), let En be the chamber adjacent with Lop. Since xn

and rop are coherent,

HAn CHu11(t„(£>„),t°p(£„)).

The sequence of half apartments CHull(Dn,En) have their boundaries converge,
and interior chambers D„ converge as well. By Lemma 5.6 the sequence of half
apartments converge, in particular En also converge to some limit chamber, say E.
Clearly, CHull(Z), E) is a half apartment. Now HAn have boundaries converging to
a wall and interior chambers xop(En) converge to xop(E) due to continuity of rop.

Therefore the half apartments, and hence rn(Dn), converge as well. We set x(D) be

the limit. The coherence property of r and rop follows immediately from from the

definition of r. Continuity and uniqueness follow from coherence.

Proofof Theorem 5.1. We already know that <p can be defined on chambers of almost

every apartment, and <p sends those apartments to apartments. Let -A be the family
of apartments that bound flats in the family 3r. Then for almost every face L in dX,
the subset of Star(L) consisting of chambers E such that £ is a chamber of some

apartment in the family A, has full measure in Star(L). We say an apartment A e A
is good if for any face L <Z A, Star(L) has a full measure subset consists of chambers

that belong to an apartment in the family A. Then the family of good apartments is
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still of full measure in the set of apartments. Note that by Corollary 4.4, if L is a face

of a good apartment A £ A then (p is uniformly continuous on a full measure subset

of Star(L), and this full measure subset contains all chambers in A that have L as a

face.

Let 8 C G be of full measure such that Vg 8,7r(gvl)(oo) is a good apartment.
In the building dX, recall that there are q chambers C\ ,Cq in an apartment (Cq is

opposite with Ci). There are (q—\) subsets Ài,..., A9_i of 3 such that D J. (oo) is

the convex hull of C\ and C,. Here recall that is a union of Weyl sectors consists

of vector in A with positive value when evaluated by all roots in A;. Let £/a, be the

unipotent subgroup of G corresponding with the set of roots A, By Lemma 4.2,
there is 8' c 8 of full measure such that for all g e 8', and for each i, a.e. h U^i,
the apartment n(ghA)(oo) is good. Note that

{n(ghA) : h UA(.}

is the family of all apartments containing (convex hull of) chambers gCi and gC,.
Fix such g, let C gC\ and S 7r(gd)(oo). And let E', C' be the apartment and

admissible chamber corresponding to E and C via <p.

Set m ops o retrjyc, where rctr^c is the retraction of dX onto E centered

at C, and ops is the map sending a chamber/face to the opposite one in E. We

recall that the retraction retr^x': dX -> E is a combinatorial map that maps every
apartment containing C isometrically to E and fixes every point of C. Since every
point in dX is in an apartment containing C so retrs,c is defined on the whole dX.

Similarly, we set cô' opE/ o retrjy,c'- This is, however, not always well defined on
set of admissible chambers/faces, but we will only consider the map on whichever
admissible chambers/faces it can be defined. We also denote by a: E —> E' the

isomorphism of complexes that is restriction of ^ on E.
For every face L C E, by assumption, there is an admissible face L' c E', and a

continuous adjacency preserving map

<Pl: Star(L) -> Star(L')

that coincides a.e. with <plstar(L)nQ- 'et L'. We also have that (pi is

coherent with <Pm(l) for all faces L C S.
For general L, we prove by induction on the combinatorial distance from C the

following:

For every face M C dX of distance at most k + 1 from C, there is an admissible

face C ') Y, andfor each face L C dX ofdistance at most k from C, there is a
continuous adjacency preserving map ipc : Star(L) -»• Star(ijr{L)) with the following
properties:

(1) a(m(Mj);
(2) cpL and <p^(L) a coherent;
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(3) ifM C dX is a face in a chamber containing L such that

dist(C, M) dist(C, L) - 1 or dist(C, M) dist(C, L),

then (p\f and (pr coincide on the chamber containing both L and M ;

(4) If L is a face in a good apartment containing L, d>(L), and C then q>L agrees
with <p on a full measure subset o/Star(L). If N is a face in a good apartment
containing N, o>(M and C then if/(M) agrees with image of M under <p

restricted on that good apartment;

(5) The restriction of iff to the set offaces ofdistance k + 1 from C is continuous.

Indeed, when k 0 then L is a face of C, and cpL and if)(L) already exist. Then

(2), (3), and the first half of (4) will be immediate. Denote by E\(C) the set of
chambers that are adjacent to C by a co-dimension 1 face of C. If M is a face at

distance 1 from C, then there is D e E\{C) such that M is a face of D. Assume
that

L C n D,

then xfr(M) can be defined as <pl(M) We know (1) is true as ipi,(D) and

(Pqj(L)(a>(D)) are opposite due to the coherence of <pt and <pä(L)• For (5), let Mn
be faces at distance 1 from C that converge to a face M which is also at distance 1

from C. Let D.Dn e E \ (C) such that M and Mn is a face of D and Dn respectively,
and assume

Ln C n Dn. L C D D.

As Dn converge to I), L„ also converge to L. Hence, Ln L for large n. Hence,

<Pl„ (E>n) converge to <pl{D) due to the continuity of <pi.. Therefore if/(Mn) converge
to iff(M) as well.

Assume by induction that cpt exists with above properties up to faces L have

distance at most k — 1 from C, and if/ is defined for faces at distance up to k. Now
let L be a face of distance k. Let D be a chamber containing L which is on a

combinatorial geodesic path from C to L. Let M be a face of D that has distance k
to C. Note that D and m(D) determine an apartment, and this apartment contains the

convex hull of ä(D) and C. By assumption, a.e. apartment containing the convex
hull of aj(D) and C is good. Thus there is a sequence of good apartments containing
the convex hull of co(D) and C, converging to the apartment containing o/(D) and I).
Hence, there exists a sequence of faces Ln in that sequence of good apartments such

that Ln converge to L. Moreover for each Ln there is a continuous adjacency

preserving map

t„: Star(L„) -> Star(iff(Ln))

that agrees with <p almost everywhere on Star(L„). That r„ sends star chambers

of Ln to star chambers of iff (Ln is due property (4) of the induction assumption
of iff. Since rn agrees with ^ on a full measure set of Star(L„), by Lemma 5.7,
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xn and <Poj(N) are coherent. Because of the induction assumption (5) on continuity
on the set of faces at distance k from C, we have that i/x(Ln) converge to

f(L) is opposite with \jr(ö)(L)) because of (1). By Lemma 5.6 there is a continuous

adjacency preserving map

(pL-Star(L) Star

that is coherent with tpä(L)- With different choices of sequences of good apartments
and Ln, we still get an adjacency preserving map from star chamber of L to star

chamber of ifr(L) due to the continuity of \j/ by (4). And the map cpL is defined

uniquely due to the coherence with cpü(L)-
Let A be a face at distance k + 1 from C. Assume that A is a face of E e Star(L)

where dist(L, C) k. Define

yr(A) <pL(N).

We have to prove is well defined. The convex hull of A and C contains

only one chamber having A as a face, i.e. there is only one chamber, that is E,
containing A and such that

dist(£,C) k + 1.

Therefore, if M is a face contained in the combinatorial path from C to A and such

that dist(C, M) k then M is a face of E. To show q)L and cpM map the face A
into the same image, we show that

<Pl(E) (pM(E).

Because of the way we choose the apartment E, there is a sequence ofgood apartments
containing CI lull(co(/i C) that converge to the apartment containing E and co{E).
Pick the corresponding sequences of chambers (En) and faces (Ln) and (Mn), where

Ln, Mn are faces of En and such that

En E, Ln L, Mn -> M

and

cö{En) (ô(E), œ(Ln) cö(L), w(Mn) œ(M).

On the image we know that

Vf(Ln) -> yr(L) and if(Mn) -» x/s(M)

due to the continuity of i// on the set of faces at distance k from C. Recall that <Pl(E)
and <Pm(E) are defined as limits of XLn(En) and rM„(En) respectively, where xin
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and zm„ are coherent with <Pä(Ln), Vä(Mn) and agrees with a.e. on Star(L„),
Star(A/„). By the coherence, rLn(En) rm,,(£«)• It follows that

<Pl(E) <pm(E).

Hence the image of the face N is well-defined when we set

is(N) <pL(N)

We now verify properties (1 )—(5) of (p and xjr. Note that the coherence (2) is
immediate from the way we defined <p—

(1) Let N be a face at distance k + \ from C. Assume that N is a face of E e Star(L),
where

dist(L, C) k.

Because cpi is coherent with (pä(L)i we have that ù)'{<pl{E)) a(ä>(E)). Hence,

œ(x/r(N)) a(cü(N)).

(2) (pL and <p(j}(L) are coherent because of the way we defined (pi. This coherence

property will make (pi be uniquely defined.

(3) Let M c dX be a face in a chamber containing L such that

dist(C, M) dist(C, L) — 1 or dist(C, M) dist(C, L).

Let E be the chamber containing L and M .We treat each case separately.

Case 1: dist(C, M) dist(C, L) — 1. Because of the induction assumption (1), we
have that

(PM(E) f{L).
Consider the apartment containing E and cö(E). Since cpM and (p^(M) are coherent,
this apartment is mapped to an apartment in 3Y and <pm(E) is opposite with
<Pm(M)(E){E)). This apartment also contains xjr(L) and i/f(m(L)), as they are
admissible faces of vm(E) and (p&(M)(E>(E). Moreover, <pl and are coherent,
thus <pl(E) is the admissible chamber opposite to (pä(L){^{E)) in this image

apartment. But (p^^(c0(E)) is the same as <p®(M)(<«(•£))• Hence,

(Pl{E) (PM(E).

Case 2: dist(C,M) dist(C, L). The same argument as when we showed xfr is

well-defined, can be applied in this case to conclude that

<PL(E) <pm(E).
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(4) If M is a face at distance k + 1 from C in a good apartment A containing C
and w(M) Let L be a face at distance k on the geodesic combinatorial path from C
to M. Because of the way we defined <pi, it is obvious that <pr agrees with kp on a

full measure subset of Star(L). Let E be the chamber containing L and M. By the

observation we made when we defined good flat, the subset of Star(L) where <p is

uniformly continuous on contains E. Therefore <pi(M) agrees with image
of M by restriction of kp on the good apartment A.

(5) Let Ln be a sequence of faces at distance k + 1 from C, and converge to a face L,
also at distance k + 1 from C. From some k large enough,

cö(Ln) w(L).

Therefore, without loss of generality we assume ko(Ln) w{L) for all n. By
Lemma 5.6, the sequence of half apartments containing Ln, kk>(Ln), and C converge
to the half apartment containing L, ö>(L), and C. Therefore the sequence
of chambers En converge to the chamber E, where En and E are chambers

containing Ln and L such that

dist^n, C) dis^/f, C) k + 1.

Let (Mn) be a sequence of faces of En such that dist(M„, C) k and Mn converge
to a face M of E. Because of the convergence of the sequence of half apartments,
we can assume that kö(Mn) ö>(M), and ä>(En) cö(E). By induction, i//(Mn)
converge to i/r(M), and <pMn, <Pm are coherent with <çô>(m)• By Lemma 5.8, <Pm„

converge to (pM due to the coherence of <pM and <Pq,(m)- In particular, <pM„(En)

converge to <Pm(E). It follows that i/r(Ln) converge to xfr(L). Hence restriction of i/r

on the set of faces of distance k + 1 from C is continuous.

So we have proven the existence of i// and <p_ with the above properties. This
induces a map

dX -> BY,

defined as follows. For every point in BX, let E be a chamber containing the point
and let L be a face of E. The point maps to a point in the admissible chamber <Pl{E)
by (pt- The map / is well-defined because of the property (3). Note that / is

adjacency preserving and injective on each star chamber. Hence / is a building
monomorphism into the image Z C BY. The fact that y agrees with <p a.e. follows
from the (4) and the way we picked the apartment £.

Proofof Theorem 5.2. Since / maps each chamber in BX to an admissible chamber
in 3 Y, in order to prove y is continuous in the cone topology, we prove that the map y
is continuous with respect to the Furstenberg boundary topology. There exists m,
such that for almost every tuple of m chambers, the Furstenberg boundary can be

written as union of m open subsets consisting of opposite chambers with the ones in
the m-tuple. Thus, there is a tuple (Cj,..., Cm) of chambers such that:
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• Ci satisfies all property as chamber C we pick at the beginning of the proof of
Theorem 5.1, for all i 1, m.

• Ci and Cj are pairwise opposite for i ^ j. And apartments containing each pair
Ci, Cj are all good.

• The Furstenberg boundary can be written as union of m open sets £21,..., Qm,
where £2; is the set of opposite chambers with C,.

Therefore, we only need to prove x is continuous on each open set £2,-. Let S, be the

good apartment containing C andC,. Set m, ops o retrs( ,c, • Proceed inductively
on combinatorial distance k from chamber Q as the proof of of Theorem 5.1, that
the restriction tjr on the sphere of radius k of faces around C, is continuous.

For k — 1, this claim is true because of the continuity of cpM where M is any
face of Ci. Suppose that the claim is true up to distance k. Note that / restrict to

any apartment is an isomorphism, hence for any face L, <pt and (pät{L) are coherent.

Then we are in the same situation as in the proof of property (5) of \j/ in the proof
of Theorem 5.1. Therefore by the same argument, we conclude that the restriction
of t/r is continuous on each sphere of faces around C,. Now assume that we have

a sequence of chambers (Wn) converging to a chamber W, and they are all in £2/.

Let (Ln) be a sequence of faces of (Wn) that converge to a face L of W. For n large

enough then

®i(Ln) Cl>;(L),

thus without loss of generality, we can assume this for all n. Let En be the chamber

adjacent to C, via the face m;(L) which is in the apartment containing C, and Wn.

Because Wn converge to W, En also converge to a chamber E in the apartment
containing C, and W, so that C,; and E are adjacent via the face &>, (L). The

sequence of half apartment containing Ln), xj/((öi(L)), and x(En) <Pmi(L)(En),
have opposite faces converge to a pair of opposite faces and chambers converge
to a chamber, thus by Lemma 5.6, the sequence of half apartments converges. In

particular, /(Vk«) (pL„ (Wn) converge to a chamber. This chamber has to be

X(W) <pL{W)

due to the coherence of cpt and Therefore / is continuous on £2, It follows
that x is continuous.

6. Rigidity

From the previous section, we have that 3Y contains a sub-building /(3V) that is

isomorphic with dX. By [16, Theorem 3.1], there is a symmetric subspace isometric
to X of Y that has boundary x(dX). Therefore, G is a subgroup of G', and the map x
is given by the action of an element g G < G' on boundary.
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Proposition 6.1. There is C such that for all y e F, d((p(y),jr(gy)) < C.

Proof. By orthogonal flats, we mean a pair of flats that intersect at one point, and

moreover the intersection of their r-tubular neighborhoods is contained in a ball of
radius Xr for some fixed X (see [5, Lemma 7.2]). Let ß^ C ß#, as a subset of
a fundamental domain for T\G, consists of elements h that have two orthogonal
flats in IF passing through. To be clear, this means there exist k\,k2 e K such

that hki,hk2 £ ß,$. Then by ergodic theorem and Fubini's theorem, there is c,
depending only on the space X, such that

/r(ßg) > 1 — c<5.

Intersect with a compact subset of the fundamental domain, we get a set Qs,c C ß's
such that

F(ßs,c) > 1 - 2c5,

and diameter of ßg,c is smaller than C.
For any y e T, pick u e ß^c, then

d(n(y),n(yu)) < C

and there are flats F\. F2 e F orthogonal at n(yu). There exists F[. F'2 c Y such

that [(p{F\)\ \F[] and [<p(F2)} [F2]. Moreover, we know that g agrees with f
on good apartments. Thus,

F{(°o) gFi(°o)> F2(°°) gF2(oo),

and it follows that

F[ gFu F'2 gF2.

Therefore, F[. F2 are orthogonal at ir(gyu). But (p(n{yu)) is D-close to both flats

F[, F2 as Fi, F2 are both sub-0^-diverging w.r.t. n(yu). Flence,

d((p{yu),Tt{gyu)) < D',

where D' depends on D and X we choose. Note that yu is C-close to the lattice F,

implies d(cp(y), (p(yu)) is bounded by a universal amount too. Hence there is a

constant C such that d(cp(y), n(gy)) < C for all y T.

Proofof Theorem 1.4. Since (p: V A, and (p is uniformly close to the action of g
on T by previous proposition, we get that #r is contained in a finite neighborhood
of A.

By [19, Theorem 1.3], there is a closed subgroup H < G' containing T, such

that

7W) p'(gH),
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where p'\G' -> A\G' is the projection, and the bar stands for closure of a set

in A\G'. In other words, A#T AgH. This implies that

AtflY-i KgHg~\

and it follows that T normalizes H°. Since T is a lattice in G, by Borel density, G

normalizes H° as well. This implies that

H°nG=G or 7/°nG {l}.

On the other hand as gT is in a finite neighborhood of A, p'{gT) is compact. By
our assumption, H is discrete, and the orbit AgT TgH consists of finitely many
points. It follows that the orbit AgTg-1 AgHg~l also consists of finitely many
points. Therefore there exists T' < T of finite index such that

gr'g~l < A.

Note that the map g: y t-> gy is uniformly close to the homomorphism Ad?: y m>-

gyg_1. Hence, the quasi-isometric embedding map (p is uniformly close to a virtually
monomorphism r —> A.

Remark. Without our assumption on the non-existence of continuous group with
compact orbit, we could derive the following:

In the case H° IT G G. In this case H is a subgroup containing G and

intersects A in a uniform lattice in H. Therefore the quasi-isometric embedding
is uniformly close to a projection of a discrete subgroup to a uniform lattice in H
composed with the inclusion of that lattice into A.

In the case H° (T G {1}. The case H is discrete has been treated above when

we have the assumption. If H is continuous, then H° is an algebraic subgroup that
contains a finite index subgroup of F, hence contains G as well. This contradicts
with H° F G {!}.

A. Appendix
(by S. Garibaldi, D. B. McReynolds, N. Miller, and D. Witte Morris)

This appendix constructs examples where Condition (2) of Theorem 1.4 holds, and

also identifies a few situations in which the condition is impossible to satisfy. The
main results are Examples A.2, A.8, A.9, A. 10, and Propositions A.3, A.6.

Lemma A.l. If F/Q is an imaginary quadratic extension, then for every n > 2,

there is a central division algebra D ofdegree 2n over Q such that D splits over M

and D <g>Q F is not a division algebra.
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Proof. Let D2 be any quaternion division algebra over Q that splits over both R

and F. For example, if F we can take D2 {^j~) f°r anY positive

rational number b that is not a norm in F. Next, let Dn be any central division
algebra of degree n over Q, such that D2 <8><q Dn is a division algebra but Dn splits
over R. If n is odd, then Dn can be any central division algebra of degree n over Q.
For even n, there are local restrictions that can be arranged with some mild care. The

sought after algebra D can be taken to be D D2 <8>q Dn.

Example A.2. For n > 2, there is a noncocompact lattice in SL2n(C) such that
A D SL2«(R) is a cocompact lattice.

Proof. Let D and F be as in Lemma A.l. Since D F is a central simple
algebra over F and F is imaginary, we know that SL^D <S>q F) is a Q-form
of SL2„ (C). Also, it is isotropic because D <S>q F is not a division algebra. Moreover,
as D is a central division algebra over Q and splits over R, we know that SLi(D)
is an anisotropic Q-form of SL2„(R). By construction, SLi(Z)) is contained in

SLj <8>q F). Passing to the Z-points of these groups provides the desired lattices.

However, the following result implies that the lattice in Example A.2 cannot be

conjugate to SL„ (Z[/]).

Proposition A.3. If n > 3 and & is the ring of integers of an imaginary quadratic
extension F/Q, then there does not exist a closed subgroup G ofSL„ (C) such that G

is isogenous to SL„(R) and G D SL„(0) is a cocompact lattice in G.

Proof. Let g ç sln (C) be the Lie algebra of G. If G fl SL„ (0) is a cocompact lattice
in G, then jjq g Hsln(F) is an anisotropic Q-form of g. Consequently g<Q <8)q F
is an F-Lie subalgebra of sl„(F) and since it is of type An-\, it cannot be a proper
subalgebra. Therefore,

go F sl„(F)

and g<Q splits over F.
Since g® splits over both R and F, it is inner over both of these fields. Therefore,

it is inner over their intersection, which is Q; that is, g<Q is an inner Q-form. From
the classification of (anisotropic, inner) Q-forms of SL„, this implies

gQ sl\(D),

for some central division algebra D over Q. As gQ splits over the quadratic
extension F, we see that D must be a quaternion algebra. Consequently, n 2,

which contradicts the assumption that n > 3.
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We now turn to the task of giving some restrictions on the possible type of H,
if such an H exists. That is accomplished by Corollary A.5. G. Harder proved
the following theorem under the assumption that the group is not of type Eg, but
J. Tits [24, p. 669] pointed out that this assumption is no longer needed, because

V. Chernousov subsequently proved the Hasse principle (Harder's Satz 4.3.1) for E8.

Theorem A.4 (Harder [12, Satz 4.3.3]). If a vertex of the Tits index of a simple
Q-group is circled at every place, then it is circled in the Tits index over Q.

Corollary A.5. Assume H is an almost simple, closed, noncompact subgroup

of GL„(R), for some n. If rankp H > 2 and H f) GLn(Z) is a cocompact lattice
in H, then H is either of type An, for some n, or of type 1E%\ (over R).

Proof Since H Cl GL„(Z) is a lattice in H, the Borel Density Theorem implies
that H is (of finite index in) a Q-subgroup of GL„(R). Furthermore, since this
lattice is cocompact, we know that H is anisotropic over Q. This means that no
vertex is circled in the Tits index of the Q-group H. However, by inspection of the

list of Tits indices in 122, pp. 55-61], we see that for each type except l'2An and 1,2E^,

there is a vertex that is circled for all M-forms of rank > 2 and also all p-adic forms:

Bn : the leftmost vertex is circled.

Cn : the 2nd vertex from the left is circled.

\,2,3,62ncj vertex from the left is circled (in D4, this is the central vertex).

£V: the rightmost vertex is circled.

E%: the leftmost vertex is circled.

F4: all vertices are circled.

G2: both vertices are circled.

Furthermore, for 1,2E^, the end of the short leg is circled in every p-adic Tits index,
and is circled in every isotropic index over R except lE\Therefore, Theorem A.4

implies that H is of type An or 1E%\.

For the special case where G is isogenous to SO(n,m) and G' is isogenous to

SO(n,m + V), we now give some numerical conditions that imply hypothesis (2) of
Theorem 1.4 is satisfied.

Proposition A.6. Assume:

• G < H <G',
• A is a noncocompact lattice in G', such that AD H is cocompact in H,

• G is isogenous to SO(n,m),

• G' is isogenous to SO(n,m + £),

• H is (closed and) connected, and
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• 2<n<m<m+l.
Ifn + m >7, then I > n + m.

Proof. We proceed via contradiction and assume that I < n + m. First, we show

that H is reductive. If not, then it is contained in a proper parabolic subgroup P
of G' [2, Prop. 3.1 (ii)]. Letting P MAN be aLanglands decomposition, we know
that the M-split torus A is nontrivial. As G is contained in (a conjugate of) M and

MA c C, we see that

rankia G < rankjg G',

which contradicts the observation that

rank]R G n rank« G'.

Hence, H is reductive. In fact, since ranku G rank® G', it is clear that the center
of H must be compact. So there is no harm in assuming it is trivial, which means
that H is semisimple. Assuming, as we may, that A n H is irreducible, we know
that H is isotypic. As I < n + m, we see that H is almost simple. Since

rank® G' n > 2,

the Margulis Superrigidity Theorem implies that A is arithmetic.
As A is not cocompact, we know A is commensurable with the Z-points of G'

for some Q-structure on G'. In particular, A n H is commensurable with the

Z-points of H. Hence, Corollary A.5 implies that either He is isogenous to SLr(C)
(or SLr(C) x SLr(C)), or H is of type lE%\.

Case 1. Assume He is isogenous to SLr(C) (or SL,-(C) x SLr(C)).

Since n + m > 7, the smallest dimension of a nontrivial representation of
so(n + m, C) is n + m [10, Exer. 9 and 11 in §7.1.4, pp. 340-341], so r > n + m.
Thus,

n + m + i < 2(n + m) < 2r.

Let p be a nontrivial, irreducible subrepresentation of the representation ofsi, (C)
induced by the inclusion of H in G'. (Note that dim p < 2r.) Since r > n + m > 5,

we have (£) > Q > 2r for 1 < k < r. Therefore, the highest weight of p must be a

multiple of the highest weight of either the r-dimensional standard representation or
its dual (cf. [ 10, Exer. 8 in §7.1.4, p. 340]). This implies that p is not self-dual. On
the other hand, the representation of H in G' SO (n + m +1, C) obviously has an

invariant, nondegenerate bilinear form, and is therefore self-dual. So p cannot be the

only nontrivial, irreducible subrepresentation. This implies that n + m +1 is at least

twice the minimal dimension of a nontrivial, irreducible representation of slr(C).
This dimension is r [10, Exer. 8b in §7.1.4, p. 340], so we conclude that

n + m + I > 2r,

which contradicts the conclusion of the preceding paragraph.
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Case 2. Assume H is of type x2.

This means the Tits index of H is

75

As G ç H ç G' and rank® G n rank® G', we know that

n rank® H 2.

Also, the anisotropic kernels of G A SO(2,m) and H lE%*2 are (isogenous to)
SO(m — 2) and SO(8), respectively. As G ç H (and rank® G rank® H), we see

that

m — 2 < 8.

Furthermore, since H ç SO(n, m +- I), we have a nontrivial representation of H
on fin+m+f Now note that every Weyl-orbit of nonzero weights in the £6 lattice has

at least 27 elements (as follows from, for example, [14, Thm. 1.12(a)]), hence every
nontrivial representation of E6 has dimension at least 27. So

n+m+f>27>8 + 2(8) > 8 + 2 (m — 2) 2(2 + m) 2 (n + m),

and consequently I > n + m as desired.

Remark A.7. It can actually be shown that Case 2. of the proof of Proposition A.6
cannot occur in general, regardless of what G and G' are. Indeed, if an almost simple
Lie group of type lE%\ is properly contained in an almost simple Lie group G, then

one can show that rank® G > 3.

We now show via two examples that the assumption n+m > 7 cannot be removed

from the statement of Proposition A.6.

Example A.8. Let (n,m) be either (2,4) or (3,3), and let q 2k+m,foranyk > 1.

Then there exists:

• a subgroup G ofSO(n, q) that is isogenous to SO(n,m), and

• a noncocompact lattice A in SO(n, q),

such that An G is cocompact in G.

Proof We first note that in the case of He being isogenous to SLr(C) for some r,
the converse of Corollary A.5 is true. Namely, that H is isogenous to a group with an

anisotropic Q-form. Indeed, division algebras allow the construction of anisotropic
Qp-forms of SLr, so this is straightforward. (We also point out that more generally
the converse is true and follows from [1, Thm. B] but we only need this special case.)
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Now let G SO(n,m). Since n -+ m 6 and SOô is isogenous to SL4, the
above paragraph tells us that G has an anisotropic Q-form (G)q By the classification
of Q-forms of type £>3 (and Meyer's Theorem), we see that

(G)q SU3(ß; D, r),

where D is a quaternion division algebra over Q, r is the reversion anti-involution
on D, and B is a r-Hermitian matrix in Mat3(D).

Let (G')q SUfc+3(B © Ik\ D, r). Since (G)q is a Q-form of G SL4OR),
we know that D splits over M. Therefore SIQ(/^; D, r) is a Q-form of SO(2k),
and so (G')«q is a Q-form of SO(3,2k + 3) G'. The 2nd vertex from the end

is circled in the Tits index at every place, hence Theorem A.4 implies that (G')q is

isotropic.

Example A.9. For any even q > 6, there exists:

• a subgroup G of SO (2, q) that is isogenous to SO(2, 3),

• an almost simple subgroup H of SO (2, q that contains G, and

• a noncocompact lattice A in SO(2, q),

such that Afl H is cocompact in H.

Proof Let H be the copy of SO(2, 4) that is provided by Example A.8, and let G be

any copy of SO(2,3) in H.

We conclude by showing that the restriction I < n + m cannot be removed from
Corollary 1.7. In particular, we give a counterexample in the case when t n +m.

Example A.10. Let G SO(n,m), H G xSO(n+m), and G' SO(n,n +2m),
so there is a natural embedding of H in G'. Then there is a noncocompact lattice A
in G' such that H HA is a cocompact lattice in H.

Proof. Let:

• a{a + b\[2) a — b\[2 for a, b £ Z,

• Z { (5, a(v)) I 5 G Z[V2]"+m } ç R2G+m\

• / : ]R2("+m) -> M defined by

n m

f{x,y,z,w) V2 ^(xf-zf)~Y^(yj + wj),
i 1 y' l

for r,zel° and y,w e

A {geS02(n+w)(/) \gZ Z}.
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Since / is a quadratic form of signature (n.n + 2m), we may identify G' with
S02(rt+m)(/). Also, since /(p) e Z for all p G Z, any linear change of basis that

maps Z to Z will turn / into a quadratic form with rational coefficients, so A is an

arithmetic lattice in SO2(n+m)(f)- Moreover, as / is isotropic, A is noncocompact.
We may identify H with the subgroup of S02(n+m)(/) that stabilizes both

{x 0, y 0} and {z 0, w 0}. Then

77 0 As
m n

^ 1=1 y=l

is the usual example of a cocompact lattice in SO(n, m) x SO(n + m) that is obtained

by restriction of scalars.
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