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Quasi-isometric embeddings of non-uniform lattices
(with an appendix by S. Garibaldi, D. B. McReynolds, N. Miller,
and D. Witte Morris)

David Fisher and Thang Nguyen*

Abstract. Let G and G’ be simple Lie groups of equal real rank and real rank at least 2. Let
I' < G and A < G’ be non-uniform lattices. We prove a theorem that often implies that any
quasi-isometric embedding of I' into A is at bounded distance from a homomorphism. For
example, any quasi-isometric embedding of SL(n, Z) into SL(n, Z[i]) is at bounded distance
from a homomorphism. We also include a discussion of some cases when this result is not true
for what turn out to be purely algebraic reasons.

Mathematics Subject Classification (2010). 53C24, 57525, 22E41, 51F99.
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1. Introduction

The rigidity theorems of Mostow and Margulis are among the most celebrated results
about the intersection of discrete groups and geometry. With the rise of Gromov’s
program for the geometric study of discrete groups, coarse analogues of these results
were among the most desired results [11]. There are many possible translations of
these theorems to a coarse setting, and so are results and questions in this direction
(see [8] for a good survey). We firstrecall two basic definitions:

Definition 1.1. Let (X, dx) and (Y, dy) be metric spaces. Given real numbers L>1
and C>0,amap f: X—Y iscalleda (L, C)-quasi-isometry if
(1) 1dx(x1,x) —C < dy(f(x1). f(x2)) < Ldx(x1,x2) 4+ C for all x; and x,
in X, and

(2) the C neighborhood of f(X)isallof Y.
If f satisfies (1) but not (2), then f is called a (L, C)-quasi-isometric embedding.
Remark 1.2. Throughout this paper, all semisimple Lie groups will have no compact
factors.

* Authors partially supported by NSF grant DMS-1308291.
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In recent joint work with Whyte, the first author has extended these rigidity results
first explored by Mostow and Margulis to the context of quasi-isometric embeddings
of higher rank symmetric spaces [9]. As uniform lattices in simple Lie groups are
quasi-isometric to the symmetric space associated to the Lie group, that paper can
be read as describing quasi-isometric embeddings of uniform lattices. In this paper
we consider the somewhat harder problem of describing quasi-isometric embeddings
of non-uniform lattices. Already for self-quasi-isometries of non-uniform lattices,
a striking new phenomenon arose, first discovered by R. Schwartz [20]. This was
extended to irreducible lattices in products of rank one groups by Farb-Schwartz
and Schwartz and finally to all higher rank lattices by Eskin [5,7,21]. An alternate
approach to some aspects of Eskin’s proof by Drutu is important both to the work of
Fisher and Whyte and here [4].

Theorem 1.3. Given a non-uniform lattice I" in a simple noncompact Lie group G not
locally isomorphic to SL(2, R), any self-quasi-isometry of T is at bounded distance
from a homomorphism T'" — T" where I'' < T" has finite index.

We find another striking new phenomenon by extending this result to certain
quasi-isometric embeddings of non-uniform lattices. This builds on work of Drutu,
Eskin and Fisher—Whyte described above [4,5,9]. Given a simple Lie group G of
higher real rank, the Cartan subgroup A of G comes with a set of distinguished
hyperplanes called Weyl chamber walls. We refer to the pattern of these walls as the
Weyl chamber pattern. We inherit from [9] an assumption on embeddings of Weyl
chamber patterns and prove the following:

Theorem 1.4. Let I', A be nonuniform lattices in higher rank simple Lie groups
G, G’ of the same rank and rank at least 2. Assume:

(1) any linear embedding of the Weyl chamber pattern for G into the Weyl chamber
pattern for G’ is conformal, and

(2) there is no closed subgroup G < H < G’ with compact H orbit on A\G'.

Then if o:I' — A is a Ql-embedding, then ¢ is at bounded distance from a
homomorphism I'" — A where I'" < T has finite index.

We remark that the assumption on orbit closures is necessary. In the absence of
this condition the proof of Theorem 1.4 shows that any quasi-isometric embedding is
given by the following simple construction. If there is a compact H orbit in A\G’,
this means that (possibly after replacing H with a conjugate) A" = H N A is
cocompact. The inclusion of I" into G is a quasi-isometric embedding by results
of Lubotzky—Mozes—Raghunathan and the inclusion of G < H is forced to be an
isometric embedding by the ambient assumptions [18]. Since A’ is quasi-isometric
to H, this gives a quasi-isometric embedding of I" into A. See below for examples
and more discussion.
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An immediate consequence of Theorem 1.4 is the following strengthening of the
main result of Eskin in [5]. This proves that higher rank non-uniform lattices are
coarsely co-Hopfian in the sense introduced by Kapovich and Lukyanenko in [15].

Corollary 1.5. Let I' be a nonuniform lattice in a simple Lie group G of real rank at
least 2. Then any quasi-isometric embedding ¢: 1" — I is at bounded distance from
an isomorphism on some finite index subgroup T < T'.
We remark that a careful reading of Eskin’s paper reveals that the corollary is already
proven there.

In addition we have many results concerning quasi-isometric embeddings of
distinct lattices, the simplest of which is:

Corollary 1.6. Let n > 3 and let
¢:SL(n, Z) — SL (n, Z[i])

be a quasi-isometric embedding. Then @ is at bounded distance from a homomorph-
ism

¢:T — SL (n, Z[i]).
where I' < SL(n, 7Z) is of finite index.

There are a number of other results that follow once one has some idea when
given G, G’, " and A as in the theorem, there is a closed subgroup H containing I
and therefore G, such that H has a closed orbit in A\G’. A partial solution to this
problem is given in the appendix to this paper by Garibaldi, McReynolds, Miller and
Witte Morris. Examples do exist and are constructed in the appendix, and their work
also gives some restrictions, yielding results like:

Corollary 1.7. Let eitherm > n > 2orm-+n > 7 and let I" be a non-uniform lattice
in SO(n,m) and A a non-uniform lattice in SO(n, m + 1) where | < n+ m, then any
quasi-isometric embedding ¢: 1" — A is at bounded distance from a homomorphism
¢: T — A where I'" < T has finite index.

For the results in [9], it is clear that some assumption on Weyl chamber patterns
is required when considering quasi-isometric embeddings of symmetric spaces as
quasi-isometric embeddings of

SL(n,R) — SP(2(n — 1), R) and SL(2,R) x SL(2,R) — SL(3,R)

are constructed there. It is less clear that this assumption is needed in the context of
non-uniform lattices. In particular, we cannot answer:

Question 1.8. Are there any quasi-isometric embeddings of
SL(n,Z) — SPQ(n —1),7Z)
forn > 27 Are there any quasi-isometric embeddings of

SL(2,7Z) x SL(2,Z) — SL(3, Z))?
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We believe the answer to the first question is no, but a proof requires genuinely
new ideas. Either one would need to understand all quasi-isometric embeddings of
the associate symmetric spaces or one would need to find an approach to the quasi-
isometric embeddings of lattices that did not make reference to the symmetric spaces.
Since SL(2, Z) is virtually free, the second question seems to admit a much wider
array of approaches.

Outline of proof and differences from earlier work. The main lines of the proof
are very similar to those in the papers of Eskin or Drutu, but with some substantial
additional difficulties and also some substantial simplifications of the arguments
in [4,5]. Let X be the symmetric space associated to G and Y the symmetric
space associated to G’. We begin by showing that the embedding of lattices gives a
map sending almost every flat to a flat. In this part of the argument, our argument
resembles Drutu’s more than Eskin’s but simplifies the argument further particularly
by using an idea from [9]. We show that almost every flat stays at sublinear distance
from the thick part of G/ I" and so has a well defined image in the asymptotic cone.

Our argument differs from Drutu’s in that we do not use the Kleinbock—Margulis
logarithm law but use a more naive argument that gives a worse, but still sublinear,
bound. As in Drutu’s paper, an additional argument is required to show that the set of
flats for which this is true is rich enough to capture enough incidences so that we have
a full measure family of flats with well-defined maps from the cone of X to the cone
of ¥ which also have chamber walls of any dimension mapping to chamber walls of
the same dimension in the image flat. These arguments occur in Subsection 3.1.

To show that the image of a flat is a single flat, we use an argument close to the
one in the paper by the first author and Whyte and in particular, use the higher rank
Mostow—Morse lemma. This lemma shows that in a flat, off a set of co-dimension 2,
any point has a neighborhood in the flat whose image is contained in a single flat and
greatly simplifies the arguments from [4, 5]; see Subsection 3.2. As in the papers of
Drutu and Eskin, the most difficult step is to show that the boundary map we have
constructed extends to a continuous morphism of buildings. In our context there
is substantial additional difficulty here, since chambers do not in general map to
chambers and one has instead a map from chambers to finite collections of chambers.
Here we use the fact that the map is isometric along flats and the Tits building
structure on the boundary of X to show that this yields a well defined map from a set
of full measure in the Furstenberg boundary of X to a finite product of Furstenberg
boundaries of Y.

Following Eskin’s original argument (also used by Drutu), we use negative
curvature to obtain continuity of the map on the set of chambers adjacent to a chamber
wall; see Section 4. The set of Weyl sectors that are adjacent to a fixed hyperplane
can naturally be parametrized as a hyperbolic space, and the embedding coarsely
preserves distance hence images of chambers at infinity also vary continuously. This
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is similar with showing the boundary map is continuous in Mostow rigidity for
hyperbolic manifolds. As in prior work, because the lattice is non-uniform, we only
get this continuity at almost every chamber wall and for almost every chamber adjacent
to the chamber wall. A short additional argument is required because our map on
chambers is multi-valued. This also makes the next step much harder compared with
the quasi-isometry case.

The next step is done in Section 5, showing the boundary map extends
continuously to a building homomorphism from boundary at infinity of X to a
sub-building of boundary at infinity of Y. This is the most novel and most difficult
part of this paper. The two buildings d7 X and d7 Y are not isomorphic, so we cannot
apply an existing result of Tits as Drutu did in [4, Section 5.3, A and B]. In Eskin’s
approach, an additional problem arises since the Furstenberg boundary of X maps to
a very thin set (measure zero, clearly not dense) in the Furstenberg boundary of ¥ so
the arguments of [5, Section 5.4] do not apply. To overcome this difficulty, we work
directly with the building structure at infinity.

Motivated by Tits” [23, Section 4], we show, by induction on combinatorial
distance, that the boundary map extends continuously to an injective adjacent
preserving map on balls around a fixed chamber. This is done by first picking a good
chamber in the sense that at almost every wall in each sphere (w.r.t. combinatorial
metric) around the chamber we have the continuity obtained in previous step. We
also fix a good apartment containing that chamber. The induction argument uses
chambers adjacent to two opposite walls. This roughly means we can get an injective
continuous map on chambers adjacent to a wall if there is an opposite wall and
an injective continuous map defined on adjacent chambers of the opposite wall.
Moreover, to make sure that the map constructed by induction argument agrees almost
everywhere with our boundary map and has desired properties (injectivity, continuity,
and combinatorially well-behaved), in each step of the induction argument we also
have to show some combinatorial and continuity claims (see proof of Theorem 5.1).
As a result we get an extended injective continuous boundary map which also
preserves the combinatorial structure of d7 X . In other word, we get a subset of d7Y
carrying a building structure of the same type of d7 X, and is homeomorphic to d7 X
as buildings. After this, we can identify the image of X in Y as a subsymmetric
space in Y using the results in [17] as in [9].

The rest of the argument resembles that given in [5] (and essentially repeated
in [4]) using Ratner’s theorem, but with some additional difficulties, since G # G'.
It is at this step that the group H arises and the question of compact G invariant
sets in G'/A intervenes. By Ratner’s theorem, these compact invariant sets are
homogeneous and the question reduces to finding subgroups H in G’ with G < H
and A N H a cocompact lattice. This question is analyzed in the appendix by
Garibaldi, McReynolds, Miller and Witte Morris and answers are given in many
cases, including those required to prove the specific results stated as Corollary 1.6
and Corollary 1.7.



42 D. Fisher and T. Nguyen CMH

Acknowledgements. The authors would like to thank the referee for a detailed and
careful reading of the paper.

2. Notation and terminology

We refer to [6, 13, 17] for knowledge about geometry of symmetric spaces, Euclidean
buildings and spherical buildings. Readers can also find basic facts about asymptotic
cone in [3, Section 1.5] or in [17]. And we refer to [9] for useful facts about root
systems and Weyl patterns. For the rest of the section, we fix some notation and
terminology.

Let X, Y be the symmetric spaces corresponding to G, G'. Let K, K’ be maximal
compact subgroups in G and G’. Let

.G —>G/K=X, p:G—T\G, p:G/K—>T\X, mI\G—TI\X

be projections.
Let A be a Cartan subgroup of G, and let & be the root system associated to G.
Foro C &, let
As ={a € A|a(loga) =0,Va € o}.

This is a subflat in the flat A. Wheno = @, Ay = A. Wheno = {a} foranya € E,
we also denote A, = Aygyy. Forany o € &, fix a ky € K such that two flats 7 (A)
and 7 (kyA) intersect exactly at w(Ay). For convenience, we denote kg = 1. A
copy of m(Ay) is called the Weyl hyperplane associated to 0 € E. By the Weyl
pattern at a point x in a flat ', we mean the pattern of Weyl hyperplanes in F passing
through x. Let W be a chamber, we denote by W(co) the boundary at infinity of W'.
This is again a chamber in the building 0X. We use similar notations to denote the
boundary at infinity of a flat, a hyperplane, or a ray.

Let E4+ C & be the set of positive roots and let

Ay ={aec A:ua(loga) >0, Yo € E4}.
Then any chamber in X will have form w(gA4) for some g € G. If A C E, denote
DX ={ae A|la(loga) >0, Ya € A}.

Denote by Ua the unipotent subgroup of G corresponding with the set of roots A.
Let M be the subgroup of K consisting all elements that commute with allae € E.
Then the Furstenberg boundary of X can be identified with K/M =: K. Hence
there is a natural measure on K. Also, we denote by K’ the Furstenberg boundary
of Y.
For @ € E, denote by P, the parabolic subgroup associated to the root . We
have the Langlands decomposition P, = My Ay Ny. Let Ko, = KN My. K, is a
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stabilizer of a fixed face in dX. There is a natural labeling map that is invariant under
the action of Weyl group. And the set of faces in dX of the same type as the face K,
can be identify with K/ K. Consider a face O = kK. The star chamber of O is a
subset of K consisting of chambers that contain O as a face. Thus the star chamber
of O can be identified with kK. This a a copy of a compact group, so there is a
natural measure on each star chamber.

We use various notions of distance in this paper. Here is the list:

* d(-,-) stands for distance in X or Y.
* dya(-,-) stands for Hausdorff distance between compact subsets in X or Y.
* dg(-,), ordg(-,-) stands for distance between chambers in dX or dY .

e dist(-,-) stands for combinatorial distance between two chambers or a face and a
chamber in dX or dY.

In X or Y, flats are maximal dimension isometric copies of Euclidean spaces. By
hyperplane, we mean co-dimension 1 subflat in a flat. In dX or dY, an apartment is
the boundary at infinity of a flat in X or Y. A wall is the boundary of a hyperplane.
A face is the boundary at infinity of a Weyl subsector in some hyperplane.

3. Mapping flats to flats

The (L,C) Ql-embedding ¢:I" — A induces a map of X into Y, that is the
composition of ¢ and nearest point projection onto I"'. We also denote the resulting
map ¢.

The outline of this section is: first we show that the image under ¢ of any flat
in a certain family is a flat in asymptotic cones. Then, taking advantage of this
conclusion, we show that the image of a flat is sublinearly diverging from an actual
flat. Moreover, we could show then the image of a large proportion is uniformly close
to a flat. Readers may see similar arguments in [4] in a different order. The essential
difference here is that we do not need the logarithm law, but only the ergodic theorem.

3.1. Good flats. We now start with constructing a family of flats on which ¢ behaves
well.

Let xp = p(1) € T'\G, let p(d) be a number so that the volume of the
ball B(xg,d) with center x( and radius d is 1 — p(d). Note that the d-neighborhood
of I', denoted Nbhd, (I"), is p~!(B(xo, d)). For x, y € Nbhdy (I'):

L7'd(x,y) — C —2L7'd < d(p(x), 9(»)) < Ld(x,y) + C + 2Ld.

By the ergodic theorem, for a.e. g € G, forany o C &:

.. . |(Fs N B(o,r)) N Nbhdg (T")|
lim inf
r—00 | Fo N B(o, )|

>1-2p(d),
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where F; = n(gAy), 0 = m(g), and |-| stands for appropriate (dimension) Lebesgue
measure in Euclidean (sub)flats. Let

r'(g.d) =
|(Fs N B(o,r)) N Nbhdg (I)]

inf{s > 0:
|Fy N B(o,r)|

>1-2p(d), Yo C E, Vr > s¢.

By ergodic theorem, for any d, r'(g,d) < +oo fora.e. g € I'\G. Forevery d, set
Q(R,d)={ge\G:r'(g.d) < R}.

Then limg—o (' (R,d)) = 1 forall d.
Fix a § > 0, there is an increasing sequence (R;) such that R; > ¢? and

(2 (Ra,d)) > 1 - Epdie
Set
Q:g = r_10zeEU{®} ﬂzozl QI(Rds d)ka-

We have that () > 1 — g If g € Q’, consider the finite union of flats
m(gA)U ( Uyerm ”(gkoeA))'

Note that Uz (gky A) intersects with flat w(gA) in the Weyl pattern at 7t (g). For
every x € m(gA) U (Ugea(gkyA)), we claim that x is

(log(d(o,x) + 1) + 2p(log(d (o, x) + 1)d (0, x))-close

to I'. Indeed, there is d such that R; < d(0,x) < Rgz4, and x is contained in
the anulus with inner radius R; and outer radius Rz, 1 in one of the flats in the
union. By the definition of Q7%, the (Euclidean) volume proportion of points in the
annulus of distance bigger than (d + 1) away from I' is smaller than 2p(d + 1).
Thus we can always find a point in the d-neighborhood of I' that is at distance at
most 2p(d + 1)Rgz 41 from x. We recall that Rz > ed 1 Tt follows that x is

(log(d(o,x) + 1) 4+ 2p(log(d (o, x) + 1)d(0, x))-close

to I as we claim. Therefore, for any x,y € w(gA) U (Ugesn(gkyA)), we can
estimate:
L7 'd(x,y)— C — L™ log(d(o,x) + 1) — L™ log(d (0, y) + 1)
— 2L p(log(d (o, x) + 1))d(0,x) — 2L 7" p(log(d (o, y) + 1))d(0, y)
<d(px), 9(y))
< Ld(x,y) + C + Llog(d(o,x) + 1) + Llog(d(o,y)+ 1)
+ 2Lp(log(d(o, x) + 1))d(0,x) + 2Lp(log(d (o, y) + 1))d(o, y). (3.1)
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If we set
B(s) =
then B is decreasing to 0 on [0, +00). Then (3.1) can be rewritten as:
L7Yd(x,y) = C — L7 B(d(0, x))d(0, x) — L™" B(d(0, y))d(0, )

< d(p(x),0(»))
< Ld(x,y) + C + LB(d(0,x))d(0,x) + LB(d(0, y))d (0, ). (3.2)

log(s + 1
——g(v—) + 2p(log(s + 1)),

This seems complicated but note that there are only two linear growing terms,
L~ 'd(x,y) and Ld(x, y). All other terms are sublinear and will disappear when we
take asymptotic cones.

Repeat the argument in order to obtain a refined family of flats as follows. Set

|F NTQ, N Bo,r)]

,0) =inf s > 0
r(g,0) =inf s > F B

>4, Vr > 57,

where F = n(gA),o = m(g). Note that for any § > 0, r(g,d) < +oo for
a.e. g € '\G. Then set

Q(R.8) = {g € @ : r(g.8) < R}.

There exists R(6) such that u(2(R(5),)) > %. Moreover, we can choose R(8) to
be non-increasing. Set

25 = mzilg(R(zlf——l)’ 23——1)

and 0s: (0, 00) — [0, 1] be a function defined by

)
Os(s) = 7%

if R(327) <s < R(3¢) fork = 1,2,...,and 65(s) = §if 0 < 5 < R(5).

Now if g € Q5 then the estimate (3.2) holds for every x, y € Uyezu(z(gkaA)
and o = m(g). Moreover, by definition of g, for every z € m(gA) then there
is g’ € Qf such that x = w(g') € w(gA) at most distance 6s(d (0, z))d (0, z) from z,
Thus the estimate (3.2) also holds for pairs of points in of a finite union of transverse
flats through x. This motivates the following definition.

Definition 3.1. A flat F is sub-0s-diverging w.r.t x if F = n(gA) for some g € Q5
such that x = 7(g).

By the ergodic theorem, for almost every g € G, forany @ € @ U &, in (sub)flat
Fy = m(gAy) we have

faenin 5 {v e Aq N B, : gv € 'Q5}

r—00 |Br|

> 1-—28,
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where B, denotes the Euclidean ball in appropriate dimension, centered at origin,
radius r. Let & be the full measure subset consisting of such g € G. Note that we
can take ¥ to be I'-invariant by defining § as the pre-image of a full measure subset
in '\G. Let ¥ be the family of flats of the form F = n(gA) forsome g € §. Ifa
flat F is in the family ¥, then F is sub-6gs-diverging w.r.t. a large portion of points
in F, also w.r.t. a large portion of points in a finite union of certain hyperplanes.

Taking asymptotic cones. We denote by [x,] the point in a asymptotic cone repre-
sented by the sequence (x,). For a sequence of sets (D), similarly we denote by [ D]
the subset of an asymptotic cone consisting of the points [x,], where x, € D,, for
every n. And we denote by [x], [D] when x,, = x, D,, = D for all n.

We will show that if F}, is a sub-6s-diverging flat w.r.t. x,, then the restriction
of ¢ on F, induces a biLipschitz map from a flat [F,] C Cone(X, x,, ¢p,®) into
Cone(Y, y,, cn, @), where y, = @(x,), @ is an arbitrary nonprincipal ultrafilter,
and (c,) is any sequence w-converging to infinity. Indeed, if (u,), (v,) are two
sequences in F such that
d(Xn, vn)

=d; <400 and lim—=d; <@
193} Cii

’ d(xp, un)
m-—————-

® i
then

d(p(xn), 9Un)) - Ld(xnaun) n E_'_Lﬁ(d(xn,un))d(xn,un)
4 Cn i Cn '

We see that if lim,, d(xg—,:"") > 0 then limy, B(d (x,,uy)) = 0, thus we always have

i 2@ Cn, un))d (Xn, un)

w Cn

0.

So [@(uy,)] represents a point in Cone(Y, y,, ¢,, w). Moreover,

d(up, vy) _ C 1:8(d(xna Un))d (Xn, Up) _ gl B(d (xn,vn))d (Xn, vn)

L —— L
En Gy (o Ch
& d(e(un), p(vn))
Cn
< Qo) € PG, 1)) Oy tn) | PR, 0n))d (R, 0n)
Cn Cp Cp Cn

As above, we can see that the w-limits of all terms, except possibly LM, are
zero. From this ¢ induced a well-defined map [¢] on [F},]. Moreover, this map is
L-biLipschitz.

Assume u, = [u,] is an arbitrary point in the flat [F,]. We show that, not
only is there a biLipschitz map on [F,] but also at any point u,, € [F,], there is an
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L-biLipschitz map on finite unions of flats intersecting [ F,,] in the Weyl pattern at u,,,
which agrees with [¢] on [F,]. Abusing notation, we shall still denote the induced
map on finite union of flats by [¢].

In the case u, = [x,] we pick the sequence of finite unions of flats going
through x, as follows: let g, € Qs such that F,, = n(g,A) and x, = n(g,). For
each o € E U {}, denote F, o = m(gnkyA). We still have the estimate (3.2) for
image under ¢ of the finite union of flats Uyezu(z} Fun,o. Therefore, ¢ induces a
L-biLipschitz map on

[UaEEU{fZ}Fn,a] = UaEEU{Q}[Fn,a]-

Note that [F}, 4] intersects [ F},] exactly in a hyperplane containing x, = u,.
In the case d, (x4, Up) = d > 0, then

limd(x,,u,) = +o0.
w

Since x, = 7(g,) where g, € g, by the definition of Qg, thereis v, = n(h,) € F,

such that:

e F, =mn(h,A);

o d(up,vy) <0(d(xn,un))d(xn,uy), thus [u,] = [va];

* at each v,, there is a finite union of flats Ugeg F,, o, Where Fy, o = m(hpkyA),
containing v, and intersects F, exactly at hyperplanes going through v,.

Moreover, the estimate (3.2) works for each of the finite union of flats F, U
(Uger Frn,a), where v, plays the role of center o in this situation.

Note that any sequence (w,) with

lim d(wp, xp) o

W Cr

—+0o0

also satisfies

lim —d(w,,, Un) < 00

@ Cn
Therefore ¢ induces a well-defined biLipschitz map [¢] on [F,] Uyeg [Fro]. It is
easy to see that each [F, o] intersects [F] in the Weyl pattern at [v,] = [u,]. Note
that different choices of (v,) result in different finite union of flats in the asymptotic
cone. However, each finite union of flats always intersect with the flat [F,] in the
Weyl pattern at [u,].

3.2. [¢]([Fr])isaflatin Cone(Y, y, s, ®). Theideaof argument here is the same
as in Section 3.2 in [9].

There exists a finite union of co-dimension 2 hyperplanes in [F,] such that on
its complement, X, [¢] locally maps into a flat. Since at each point in [F,], there
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are transverse flats, and a biLipschitz map defined on the finite union of flats that
agrees with [¢] on [F,], we can deduce that [¢] locally maps Weyl pattern to Weyl
pattern. Also, [¢] is biLipschitz, hence differentiable almost everywhere. At points of
differentiability in X, D[¢] is a linear map preserving Weyl pattern. By assumption,
that linear map is conformal. This implies locally [¢] is 1-quasiconformal a.e.

So locally [¢] is a quasi-conformal map that is 1-quasi-conformal a.e., by
Gehring’s theorem, [¢] is smooth. So [p] has a derivative, and the derivative is
continuous everywhere in X.

Consider z,, € X. Then [¢] maps a connected neighborhood U of z,, into a flat.
Choose some coordinate for U and [¢](U). The derivative D [¢] is a 1-quasiconformal
linear map that preserves the the Weyl pattern at each point. Therefore, D[¢] at each
point is a composition of a constant multiple of the identity and a linear Weyl
element in the Weyl group associated with the symmetric space Y. Since D[] is
continuous, the Weyl elements component of the derivatives are the same for all
points in U. So, up to composing with an element of the Weyl group, we can assume
that the derivative at each point is a multiple of identity. In the chosen coordinate,
Dlp](vy) = f(ve) - 1d, for all v, € U. This implies we can write

[0](ve) = ([¢]1 (Ve - - -, [¢la (Ver))-
Then %m[go]j (vp) =0for1 <i # j <d. Hence, [¢]; only depends on v ;, i.e.

[0](vw) = ([¢]1 (Vo,1), - - .+ [9)a (Ver,a))-
D[p](vy) = f(ve) - Id would imply that

[0]}(Vo,1) = -+ = [0l (Ver,a) = f (Vo)

for all v,, € U. Therefore,

fo +0,....€.....0) = [¢]} (vo,1) = [(va)

for € > 0 small such that vy, + (0,...,¢,...,0) € U. This implies f is constant
in U. Hence [¢] is a fixed constant multiple of identity on the whole U.

Now, we know [¢] locally is a composition of multiple of identity and an element
of Weyl group. [¢] is continuous on X, and X is connected, thus on X, [¢] has to be
a fixed constant multiple of identity up to composing with a unique element of Weyl
group. This property of [¢] has to be true everywhere on the flat [ F,,] too, because [¢]
is continuous on the flat and ¥ is the complement of a co-dimension 2 set. Therefore,
[¢](Fy) is a flat in Cone(Y, ¢(x,), cn, @).

To summarize, what we have proved is the following proposition.

Proposition 3.2. For any sequence (cp,) with lim,, ¢, = 00 and any sequence of flats
Fy, which is sub-0g-diverging w.r.t. x,, then [p(Fy)] is a flat inCone(X, ¢(x,), ¢y, ®).
Moreover, ¢ induces a scalar multiple of an isometry [p] from flat [F,] in
Cone(X, xp,, cp, w) to flat [p(F,)] in Cone(Y, ¢(x,), cn, ).



Vol. 95 (2020) Quasi-isometric embeddings of non-uniform lattices 49

Remark 3.3. The proposition above implies that for a flat F € ¥, [p(F)] is
a flat in asymptotic cones with arbitrary rescaling sequence which have w-limit
infinity. However, the sequence of based points are not arbitrary. Otherwise,
by [17, Proposition 7.1.1], ¢(F) is uniformly close to a flat. And this cannot be
expected in the case ¢ is induced from a QI-embedding of a nonuniform lattice.

3.3. Associating to ¢(F) a unique flatin Y.
Proposition 3.4. Let F € ¥ be a flat that is sub-0s-diverging w.r.t. x € F. Then
there is a flat F' C Y such that for any sequence (cy,) that has lim, ¢, = oo, in
Cone(Y, ¢(x), ¢p, w):

[e(F)] = [F'].
Moreover, the flat F' does not depend on which point x € F that we choose. This
implies that F’ is unique.

Let W!, ..., W2 be distinct Weyl chambers at [y] = [p(x)] = [¢]([x]) such
that the flat [p]([F]) = f=1 Waf . For each Wa{, there is sequence of Weyl
chambers (W,,j ) such that Wa{ = [W,,j I

For €, p > 0, we denote

Ce(y.p)={uect : (1-€p<d(yu) <(l+e)p}

and
S(y,p) ={ueY :d(y,u) = p}.

We prove a lemma estimating the divergence away from chambers.
Lemma 3.5. Let U be a subset of Y, containing y, such that in any asymptotic
cone Cone(Y, y,d,,w), [U] is always a flat for any rescaling sequence (d,) with
limy, d, = oo. Assume in Cone(Y, y,cp, w), we have [U] = F,, where the flat
By = UJ‘[.'ZIW(,{ is the union of Weyl chambers with vertex at [y]. Let W,,j be
Weyl chambers with vertex at y such that W(g = [an |, Jorall i = 1y..s, p. For
every € > 0, there exists R, such that for w-a.e. n, and for all p € [R¢, c,]:

sup  d(z, U]’f=1an) < €p.
zeS(y,p)NU

Proof. Let
Ren = sup {p € [1,cn]: sup d(z, an) > ep}.
zeS(y,p)NU

We need to show lim,, R, , < +oo for every € > 0.
If lim,, Ren — o > 0 then take zn € S(y, Re,n) N U such that

Cn

d(za, U5_ i W;]) = €Ren
= dy ([Zn], Uf=1 Wa{) > €0.

This contradicts that [U] = F, = U}_, 78



50 D. Fisher and T. Nguyen CMH

Therefore lim,, Rc:” = 0. Suppose thatlim,, R, , = +00,inCone(Y, y, R¢ 5, ®),

[an] is also a Weyl chamber forall j =1,..., p. Let z,, be as above, we have

dw([y]’ [Zn]) =1

and |
d“’([zn]’ Uj}:][an]) = €.

Since lim,, R—fnzﬂ =0, 2R, < ¢y for w-a.e. n. And by definition of R ,, for all
up € UNC < (y,2Rc ), we have

100
d(un, Ui-J:anj) < ed(y,un).

Then u, = [uy] has properties

€ €
2 e d(yiuy) <2+ ——
Too = 400 o) <2+ 100

d(u,,,, Ulewa{') < €.

b

The point z,, is in the flat [U]. Let z,, € [U] on the ray y,z, that has d(ye, z,,)) €

(2— 155-2 + 155)- Obviously, z;, has to be a limit of such a sequence u, above. On

—r
the ray y,z,,, we have
2 .
d(zw, Uj-:lWaJ,) > &,
/ D ]
d(z,,, szlwaf) < €.
This contradicts the convexity of the metric on symmetric spaces. Therefore, the

lemma is proven. 0

Remark 3.6. Instead of working with a fixed y and U, we could also make the
assumption that y, € U, such that [U,] is a flat in any asymptotic cone.

We could also drop the assumption that [U] is a flat in any asymptotic cones,
and only need that [U] is the limit of sequence of finite union of Weyl chambers
in Cone(Y, y, ¢, w). The proof will be similar, but requires some extra technical
details. See [4, Lemma 3.3.5].

For any sequence (c,) with lim,, ¢, = oo, by previous subsection, [¢]([F]) is a
flat in Cone(Y, y, ¢, ). Let

[@]([F]) = U§=1Wa{ = Ule[an],

where Wa{ , W,;i are Weyl chambers with vertex at, respectively, [y] and y. Let Wi
be the Gromov—Hausdorff limit of the W}, i.e. for any r > 0,

an N B(y,r) — w'n B(y,r)

in the Hausdorft metric.
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Fori # j letul, € W}, uj € W, such that [yu!] and [yu;] are two rays in W}
and W, . If the two rays coincide then they also coincide in Cone(Y, y, 1, ®). The
limit of rays in this cone is exactly the Gromov—Hausdorff limit. This implies W*
and W/ have the same or more adjacency relation as the adjacency relation of W}
and Wa{. Because ulewa{ (c0) is a sphere, we know that Uj-’:IWf(oo) is a
Lipschitz sphere. Here, by sphere we mean an apartment at infinity. In order

to show Uﬁ-’:IWa{ (o0) is actually a sphere, we show that the adjacency relation
of {'Wj(oo) . J = 1,...,p} is just actually same as adjacency relation of

MElloa): § =1,0.5, 0%
Fixing some A, we let

Ry, =sup{p € (0,cn] : W,/ N B(y,p) C Nbhd (W) Vj € {1,..., p}}.

Then we always have lim,, R,, = oo because of the definition of Wi,
We claim that in Cone(Y, y, /R, @) we have

[p(F)] C U7_ [W]] = Ub_ (W], (33)

The last equality is obvious, we only need to prove the inclusion. Let z, = [z,] €
[p(F)], where z, € @(F) N C¢,(y,n+/Ry), where lim,, {, = 0. Then

d(Yw,Zw) = 1.
By Lemma 3.5, for any € > 0, there exists R, such that w-a.e. n

sup d(z,U7_, W) < ep,
z€S(y,p)Ne(F)

for all p € [Re,cy). Since w-a.e. n, we have R < d(y, z,) < ¢,, we must have

d(zn, UP_ W) < en(l + &n) v/ Ra.

Thus, _
d (2w, US_ [W]]) < en.

Since € can be arbitrarily small, z, € Ule[an]. This proves the claim, i.e. in

Cone(Y, y, /Ry, ), [p(F)] C U_ [W/].

We also know that [p(F)] is a flat. On the other hand, U7_,[W/] is a union
of Weyl chambers at a common vertex, by the claim, containing a flat through that
vertex. Moreover that the number of Weyl chambers in the union is exactly the number
of a Weyl chambers we have in a sphere apartment at infinity. Hence, we have an
equality rather than an inclusion, i.e. [p(F)] = Ule[Wj]. Applying Lemma 3.5
to Cone(Y, y, /Ry, ®), ¢(F) and the family of chambers W/, we get the following
corollary.
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Corollary 3.7. For all € > 0, there exists R¢, such that for w-a.e. n

sup  d(z, Ulewj) < €p,
zeS(y,p)NU

forall p > Re.
Proof. Apply Lemma 3.5, for w-a.e. n

sup  d(z, Ulewj) < €p,
zeS(y,p)NU

forall p € [Re, +/R,). Since lim,, +/R,, = oo, the estimate holds forallp > R,. [

Corollary 3.8. For any sequence (c,) such that lim,, ¢, = 00, in Cone(Y, y, c,, )
[p(F)] = U7, [W].
Proof. By the previous corollary, for all € > 0, there exists R, such that
d(z, Uﬁ-’lej) <ed(y,2),
for d(y,z) > Re. This implies that for all z,, = [z,] € [@(F)], and for all € > 0:
d (2o, U7_ [W7]) <e.

Thus, [p(F)] C U7_ W]
As before, Uj’:] [W ] is a set of finite union of Weyl chambers at the same vertex,
and the number of the chambers is exactly the number of Weyl chambers that a flat

can have. Moreover, [¢(F)] is a flat, containing the vertex of chambers. This implies
the union of Weyl chambers is exactly the flat, i.e. [p(F)] = Ule [(W/]. ]

Proof of Proposition 3.4. We use same notations as in Lemma 3.5, Corollary 3.7,
and 3.8. As the result of Corollary 3.8, there are Weyl chambers W/ in Y vertex at y
for j = 1,..., psuchthat [p(F)] = Uj’=1[Wj].

Since any two rays in Y are either asymptotic or diverging linearly, and for
any ray r, C [W/] there is a ray r C W/ such that r,, = [r], we can conclude
that {W/(c0)}7_, has the same adjacency relation as {{W/](c0)}7_,; Therefore,
U5-7=1 W7 (o) is a biLischitz sphere in Tits metric, and containing exactly the same
number of chambers as in an apartment. Hence Uf -1 W/ (o) is an apartment in 9Y .
Thus there is an apartment F}, C Y such that F'(c0) = Uf_, W/ (00). It follows
easily that _

[F'] = [U2_, W] = [p(F)].

We now prove uniqueness. Let x;, x; € F such that the flat F is sub-05-diverging
w.r.t. both x; and x,. Note that Cone(Y, ¢(x1), ¢y, ®) and Cone(Y, ¢(x3), ¢y, ) are
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canonically isometric by identity map on each sequence. Soifin Cone(Y, ¢(x1), cp, ®)
we have _
[p(F)] = UP_, W],
then that equality will still hold true in Cone(Y, ¢(x3), ¢,,, ). Therefore the two flats
Fy.,y and Fq’)(xz) coincide.
So for every flat F € ¥, we can associate a unique flat F’ such that if F is a

sub-05-diverging w.r.t. x then in Cone(Y, ¢(x), c,, w) we have [p(F)] = [F']. O

By the assumption on Weyl patterns, the set of Weyl hyperplanes in a flat of X
can be viewed as a subset of Weyl hyperplanes in a flat of Y (we are implicitly
identifying both flats with a Euclidean space). These two sets could be the same, but
the hyperplanes for X could be a proper subset of the hyperplanes for Y, and this
will cause the extra difficulties compared to the case when they are the same. All
arguments are written allowing this subset to be a proper subset. On the other hand,
in this case, we can also think that a flat in X has the same set of Weyl hyperplanes
as the one of Y, but some of the Weyl hyperplanes are imaginary (not actual Weyl
hyperplanes), and flats in X do not diverge along those imaginary hyperplanes.

Recall that a building is thick if there are at least three chambers incident on every
hyperplane. Viewing the building associated to X as having these extra imaginary
hyperplanes is the same as viewing the building associated to X as a non-thick
buildings (of a different type). A concrete example to keep in mind is that the Weyl
pattern D, isometrically embedded into Weyl pattern BC,, (n > 3)). So we can
regard a (spherical) building of type D, as a non-thick building of type BC, since
there will only be two chambers incident on some chamber walls. Therefore, we can
treat 0X as a non-thick building with the Coxeter structure the one for Y .

Let F be a sub-6s-diverging flat w.r.t. x € F. There are p Weyl chambers
Wi, ..., Wy, vertex at x with respect to the non-thick structure such that

F = Uﬁ-):le.
Let F’ be the flat associated to ¢(F) as in Proposition 3.4, and W ... WP be
chambers vertex at y, projection of ¢(x) on F’, such that

F' =15 Wi,

By Proposition 3.2, [¢] isometrically map [F] to [F’]. Hence with appropriate order,
we have that

(W) = [p](W;]) = W]
forall j =1,..., p.
Corollary 3.9. For any € > 0, there is Re > 0 such that for every flat F that is
sub-0s-diverging w.r.t. x, forall j = 1,..., p, and for any p > R,

sup d(z, W') < ep,
z€p(W;)NS(y,p)

where F = Ujp-:1 W;, and W; are chamber sectors with vertex x forall j =1, ..., p.
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Proof. Suppose that the conclusion does not hold. Then there is sequence of sub-
Os-diverging flats (F,) and there are R, > 0 with lim,—. R, = oo such that the
following hold:

s Fy= Uﬁ.’ —1Wijn, where W; ,, are chambers vertex at x,;

* (F,) is the associated flats with (F) via f. Let y, be the projection of ¢(x,)
on F,, we write F,, = U%_ W/, where W,/ are chambers vertex at yy;

e Thereis z, € @(W;,) N S(yn, Ry) such that d(z,, an) > eRy.

The flat [F,,] in Cone(X, x,,, R,, w) is mapped by a homothety [¢] to the flat [F,] in
Cone(Y, y,, Ry, ). Thus,

[l(W)a]) = W/]1.

However [z,] € [p(W;)] = [¢](IW]] satisfies dy([za]. [Wi/]) > €, which is a
contradiction. ]

Next, we prove that ¢ maps a large proportion of F into a neighborhood of F’.

Proposition 3.10. There exists D(L, C,§) such that if F € ¥ is sub-0s-diverging
w.r.t. x, and F' CY is the flat associated with the image ¢(F), then d(¢(x), F') < D.

Proof. Suppose not: then there exist F,, € ¥, x, € F, such that F, is sub-0s-
diverging w.r.t. x, and
cn = d(xn, F) — 00

as n — oo, where F, is flat in Y associated to ¢(F,) by Proposition 3.4. Denote

Yn = @(xn). Consider [p(F,)] C Cone(Y, yn, ca, w). Let UT_, Wy be the union of
Weyl chambers vertices at y, such that

Fr(00) = U_ W/ ().
By Corollary 3.7, for any € > 0, there is R, such that

sup d(z,Ulean) < 5ep,

eC ,
z€C e, n.p)

for all p > R. Thus, .
[p(Fa)] C US_ W],

But [¢(Fy)] is a flat, and by the argument before, we get the equality
[o(Fa)] = UP_, [W]].
Thus U7_, [W,] is a flat. We have

dHau(an, F,:) = d(yna F,;) = Cn
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forall j = 1,..., p, which implies that
dia(Uj—; W/LLIF]) = 1.

Note that [F,] is also a flat. So we have two flats have Hausdorft distance 1 from
each other. This is a contradiction. L]

4. Measurable boundary map and continuity on stars

So far, we have associated to each flat F € ¥ aflat F’in Y. We now want to consider
the correspondence at the level of Weyl chambers. Let y = ¢(x), consider the map

[¢]|F,: Fo — F,, C Cone(Y,y,cy,w).

Up to rescaling a factor, [¢]| f, is an isometry preserving the Weyl chamber pattern.
So [¢]| r,, maps each Weyl chamber to a finite union of chambers in F,,. There is an
obvious correspondence between Weyl chambers in F,,(00) (respectively F, (c0))
and Weyl chambers in F(00) (respectively F'(00)). Therefore, ¢ associates each
chamber in F(0o) with a finite union of chambers in F’(c0) C dY.

Let Q be the set of Weyl chambers at infinity of flats in . Then  has full
measure in K, where K is the Furstenberg boundary of X.

let W € Q. If F;, F, € ¥ are two flats that contain W in their boundaries,
i.e. W C Fi(00), W C F;(00), then there exist flats F|, F;; such that

[e]([F1]) = [e(F)] = [Fi].
[0]([F2]) = [e(F2)] = [F3].

Note that the map ¢|r,uF, yields a well defined, biLipschitz map [¢] on [F] U [F,].
[F1] N [F>] contains a Weyl chamber sector corresponding to W. The image of
the sector under [¢] is a finite union of chambers in [F|] N [F,]. Therefore, the
corresponding Weyl chambers at infinity in Fj(c0) and F;(c0) coincide. So we can
set a correspondence

GOV = (W[.....W])).

In order to get a consistent way to map a Weyl chamber to a finite union of chambers,
we will do as follows: let W be an arbitrary Weyl chamber in Q. There is a chamber
W> € Q such that there exist Fi, F» € ¥, and W, W, C Fy(00), Wi, Wy C F»(00).
Note [@]|(F,Ju[F>] i an isometry up to a rescaling factor. There is a composition
of reflections in walls of [F;]|(c0) U [F3](o0) that carries Wy to W. So there is
a corresponding composition of reflections in [F{](co) U [F;](c0) carries a finite
union of Weyl chambers corresponding to image of chamber W) to the finite union
of chambers W] U --- U W} corresponding to image of W. Thinking of this as a
way to label {I,...,/} to finite union of chambers in the image of each chamber so
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that the the labeling is invariant under the induced action of Coxeter group for dX on
building Y. Therefore, we can define amap ¢ on 2:

0:Q— K'x---x K

sending each Weyl chamber to a /-tuple of Weyl chambers in a consistent way. We
will assume that ¢ = (¢1,...,¢p).

The rest of this section is for proving uniform continuity of ¢ on star chambers.
For this we need a version of Proposition 3.10 for hyperplanes.

Proposition 4.1. For a hyperplane P = n(gAy), £ € 25, and o € E, there is a
hyperplane P’ in'Y such that:
» inCone(Y,y,cn,w): [p(P)] = [P’];

e there exists d(8, L, C, X, ") such that for any z = w(u). where u € gA, N s,
we have d(¢(u), P') < d. Here d is independent with P.

Proof. Let Fi = n(gA), F, = n(gkqA) Then, Fi, F, € ¥, F; N F, = P, and
there is ¢ that
Nbhd; (F;) N Nbhd, (F>) C Nbhd.(P).

Then there exist F}, F; C Y such that

[e(FD] = [Fi] and [p(F)] = [F,]

in Cone(Y, y, c,, w). [F1] and [F3] are two flats whose intersection is exactly [P].
[¢]l[F,JulF,] 18 a biLipschitz map. Thus [F]] N [F}] is exactly a co-dimension 1
hyperplane. Also notice that d(Fj, F,) < 2D since there is x € P such that
d(F/,¢(x)) < D. This implies there exists a hyperplane P’ C Y, and there exists
d > 0 such that

P’ C Nbhdp (Fy) N Nbhdp(F,) C Nbhdy(P’').
It follows that [P’] = [¢(P)]. And for z = 7 (u) withu € gA, N Qg then
@(z) € Nbhdp (F{) N Nbhdp(F,) C Nbhd,(P').

We need to show that d is bounded, and does not depend on P. Suppose not,
then there exist P, = n(gnAe), Fin = w(gnA), F2,n = n(gnkyA), and there is
d, — 0o such that

Nbhdg, (P,) C Nbhdp(Fy,) N Nbhdp (F; ),

where g, € Qg, and P, F{ ,, F, , are hyperplanes associated to Py, Fin, Fa 5.
Let x, = nw(gn). In Cone(X, xn,dn, @), [F1x] N [F2,4] is a co-dimension 1

hyperplane. In Cone(Y, ¢(xy),cn, @), the co-dimension 1 hyperplane [P,] is
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contained in the intersection [Fy , N F; ,]. Moreover there are z, € Nbhdy, (P,)
that have d(z,, P,;) = dn andd(z,, F},) < D. Therefore the point [z, ] is contained
in the intersection [F{ ] N [F; ], and this point is also distinct from [L}] since
d([z,],[P,]) = 1. Hence [Fi,] N [F2,,] contains a strip with positive width
containing the hyperplane [P,]. However this strip is the image of hyperplane [P,]
under an isometry (up to a rescaling factor) [¢]. This is a contradiction. U

Recall that § is a full measure subset of G such that for any F' € %, there is
g € §such that FF = w(gA).

Lemma 4.2 (Fubini’s theorem). Let G be a group. H be a subgroup and E a full
measure subset of G. Then for a.e. ¢ € E, we have that gh € E fora.e.h € H.

Proof. See [4, Lemma 5.1.1]. ]

By Fubini, for a.e. g € §, then gk € § for a.e. k € K,, for some o € E. This
is equivalent with saying that for almost every hyperplane of the form P = n(gA4,),
almost every flat containing P is in the family #. Let M be an arbitrary face in the
building X , denote by Star(M) C K all the Weyl chambers containing M. If M is a
face in P(0o) where P is the above hyperplane, then we see that Star(M ) NS has full
measure in Star(M). More precisely, Star(M) N € contains a full measure subset
of Star(M), that full measure subset consists of chambers that are in apartments
bounding flats in ¥ that contains the hyperplanes P. By Fubini again, almost all
faces in 0X are faces with described properties of M.

For such a face M as above, let P be the hyperplane such that almost every flat
containing P is in ¥, and M C P(00). Assume that P = w(gA,), then the flat
m(gA) is sub-Os-diverging w.r.t. a large portion of points in P. Therefore we can
assume that g € Q5. By Proposition 4.1, there is a hyperplane P’ associated to ¢(P).
For each Weyl chamber E € Star(M) N ©, among ¢; (E), ..., ¢;(E) there is (at
least) one Weyl chamber adjacent to P’(co). Without loss of generality, assume that
is g1 (W).

Proposition 4.3. The map ¢1: Star(M) N Q — K’ is uniformly continuous on a full
measure subset. Moreover the extension map to Star(M) is injective.

Proof. The full measure subset U of Star(M ) where we are proving continuity is the
subset consisting of chambers in apartments at infinity of flats in ¥ containing P.

We consider Wy (o0), Wa(oo) € U. We assume that Wj(co) and W, (00) are
chambers at infinity of W, and W,, where W; and W), are chamber sectors based at
the vertex at x. Let F; and F> be two flats in ¥ containing the hyperplane P and
two chambers W; and W,.

By definition of P and U, F; and F, are sub-0s-diverging w.r.t. a large portion
of points in P. Let x; € P be such a point, and let W3, W4 be Weyl chambers at x;
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that have W3(c0) = Wi (00), Wi(oo) = W, (00). Then for any R > 0,
dHau(Wl N B(xa R)a W2 n B(xs R)) = dHaU(W3 N B(xlv R)’ W4 N B(XI, R)),

and we have that F;, F, are sub-0s-diverging w.r.t. xi.

Let the hyperplane P’ and flats F;, F, be the hyperplane and flats associated
to ¢(P), and ¢(F1), ¢(F>). By Proposition 4.1 P’ is determined up to some fixed
finite Hausdorff neighborhood, hence projection of a point on P’ is also well-defined
up to a finite distance. Let y; be the projection of ¢(x1) to P’, and let W; C F],
W, C F, be chamber with vertex at y; such that

@1 (W1(00)) = W3(00),
@1 (W (00)) = Wy (c0).

We also denote by y the projection of ¢(x) on P’. Let W[, W, be chambers with
vertex y and W] (o0) = Wj(00), W,(00) = W, (00). Note that y is fixed (up to a
finite distance), independent of chambers in Star(M ).

Consider X with non-thick building structure induced from dY. By Coroll-
ary 3.9, there are non-thick chambers Vi C W3, V, C Wy vertex at x; such that
o(V1), p(V,) are asymptotic to W;, W, respectively.

Note that the distance on the Furstenberg boundary is biLipschitz equivalent with
the visual metric at some base point. In other words, for any §; > 0, and any R > 0,
there exist 81, 82 > 0 such that if d g(W;(c0), Wa(o0)) < &1 (resp. > 62) then

dHau(Wl m B(xa R)v W2 m B(xa R)) < 80R

(resp. > 8¢ R), where Wy, W, are Weyl chambers vertex at x thathave W} (oo), W, (o0) €
Star(M ). Because V1, V, are non-thick chambers, adjacent to P, there are 83, 84 such
that if d g (W1 (00), W2(00)) < 83 (resp. > d4) then

duau(V1 N B(x1, R), V2 N B(x1, R)) < §oR

(resp. > 8o R).
By the estimate (3.2),

duan(P(V1) N B(y1, L1 = B(R)YR—C), ¢(V2) N B(y1, L' (1- B(R)R—C))

By Corollary 3.9, if L™!(1 — B(R)) — C > R, then

dnan (W3 0 B(y1, L7H(1 = B(R)R = C), Wy N B(y1. L™ (1= B(R))R — C))
< L(8oR 4+ B(R)R) + C + (L7 (1 = B(R)) = C).
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Choosing R large enough, we can rewrite:
/ l —1 / l —1 /
dHau W:,,ﬂB y1,2L R ,W4ﬂB y1,2L R <80R,
for some §;, deduced from above inequality. Thus
/ 1 -1 / 1 —1 /
dua| W) N B y,EL R),W,NB y,EL R)) < d,R.

Again, using the equivalence of d g, and the visual metric at y, there exists &5 such
that if d g, (V1 (00), V5 (00)) > 65, then

1 1
dHau(Vll N B(y, EL_IR), VZI N B(y, EL_IR)) > 86R,
where V7, V, are chambers in ¥ vertex at y. Therefore, we conclude that
d i/ (W (00). W4(00)) < .

This is equivalent with saying that for any §, > 0 we can find 83 > 0 such that for
any pair of chambers in the full measure subset U at d g-distance at most 83 then the
image chambers under ¢; are at d g,-distance 65. Hence we get the continuity of ¢;
on a full measure subset of Star(M).

To prove the injectivity of the extension map we repeat above argument for the
lower bound estimate and get

dya(W] 0 B(y,2R), Wy N B(y,2LR)
= dua(W; N B(y1,2R), W, N B(y1,2LR))
> L7 (8oR — B(R)R) — C —2¢R = 8 R.

Arguing as before we get for an 87 > 0, there is 84 such that if
1

dg/(9(W1(00)), 91(Wa(0))) < &

then dg(Wi(o0), Wa(o0)) < 84 for any Wi(oo), Wa(oo) € U. This implies the
injectivity of the extension map. ]

Corollary 4.4. 3:Star(M) N Q@ — [['_, K’ is uniformly continuous on a full
measure subset.

Proof. Let P be the hyperplane as above. Since dg is biLipschitz with the visual
metric at a point, we can assume that dg is just the visual metric at a point in
hyperplane P.

By Proposition 4.3, there exists an integer i between 1 and / such that ¢; : Star(M )N
Q — K'is uniformly continuous on a full measure subset U C Star(M) N Q,
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and chamber @; (W) is adjacent with P’(oco) for every W € Star(M) N Q. We fix
this i for the rest of the proof.

Let M °P be the opposite face to M in P(oco). Consider @:Star(M®?) N Q — K'.
Because of the consistency when we define ¢, we have that ¢; (W) is opposite
with ¢; (W) and is adjacent to P’(o00) for any pair of opposite chambers

(W, W) € (€ N Star(M)) x ( N Star(M°P)).

Let U C Q N Star(M°P) be the full measure subset upon which g; is uniformly
continuous.
For every € > 0, there exists 8o such that for Wy, W, € U, if dg(Wy, Wa) < by,
then
d (@i (Wh),0: (W2)) <€,

and for W3, Wy € U°P with dg(W3, Wy) < 8y, then

dg(9i(W3),0:(Wy)) < e.

Let Fy, F> be flats containing P such that Wi C Fj(o0), Wo C F(00). Let
W, W, be opposite chambers with Wy, W, in F;(00) and F,(oco). Because of
what we assume on dg, if d g(Wq, W2) < §y, then

dg(WP, WyP) < &.

Let F|, F, be flats in ¥ associated with ¢(F), ¢(F>). The apartments F;(c0),
F;(00) have pairs of opposite chambers (¢; (W1), i (W;")) and (p; (W), ¢i (W,"))
which are e-close. Hence the apartments F(c0), F;(00) are €'-close in the Hausdorff
metric, where ¢’ depends on e and hyperplane P’. Therefore ¢; is uniformly
continuous on Star(M) N Q for every j. Note that all @; are injective for all j
as well. This is because Fj(c0), F;(o0) share a common wall P’(c0) and ¢; is
injective.

Therefore @ is uniformly continuous on U C Star(M) N Q, and the extension of
the map is also injective. ]

5. Regularity of boundary map

The goal of this section is proving two following theorems:

Theorem 5.1. There is a building monomorphism y:0X — 9Y that agrees with ¢
a.e. on the set of chambers.

Theorem 5.2. y is continuous in the cone topology.
Corollary 5.3. y(X) is a sub-building of 0Y .

Proof. This is obvious from Theorem 5.1 and Theorem 5.2. L]



Vol. 95 (2020) Quasi-isometric embeddings of non-uniform lattices 61

We start with some terminology and definitions. We know that the Coxeter group
for 0X is a subgroup of the Coxeter group for dY . Therefore, from now on when we
say subCoxeter structure, we mean the structure on each apartment in 0¥ where the
Coxeter group is the one of 0X.

Definition 5.4 (SubCoxeter admissible). A union of chambers/faces in dY is called a
subCoxeter admissible (or admissible for short if there is no confusion) chamber/face
if the union is contained entirely in some apartment ¥ C dY and there is an isometry
from the modeled apartment for dX into ¥ such that the union is exactly an image of
a chamber/face.

For example, if dY is a B, building, and the subCoxeter structure we consider
is of type D, then any subCoexter admissible chamber is a union of two adjacent
chambers having a common face of certain type. The other example is in our situation,
when the image of a chamber in K N Q under @ is a subCoxeter admissible chamber.

A pair of admissible chambers/faces are said to be adjacent if their intersection
is a co-dimension 1 admissible face, and are said to be opposite if they are contained
in an apartment and opposite in that apartment.

Let L' be an admissible face. Denote by Star(L") the set of admissible chambers
containing L’ as a face. There is a natural topology on Star(L’), coming from the
Hausdorff topology on dY . This means, a sequence of admissible chambers (C},) in
Star(L') is said to converge if they converge in the Hausdorff topology. Therefore,
for a face L C 0X and an admissible face L' C 0Y, it makes sense to say a map
7: Star(L) — Star(L’) is continuous, injective, and adjacency preserving. If M is a
face of D € Star(L), abusing notations, we use 7(M) as the admissible face of (D)
corresponding to M in the obvious way.

For D, E subsets of dX or dY, we denote by CHull(D, E) the combinatorial
convex hull of D and E in dX or dY.

Definition 5.5 (Coherence). Let L, L°P be opposite faces in dX, L', L’°P be
subCoxeter admissible opposite faces in Y. Two continuous adjacency preserving
maps t: Star(L) — Star(L’) and t°P: Star(L°) — Star(L’°P) are said to be coherent
if for any pair of chambers D € Star(L), E € Star(L°P) such that CHull(D, E) is a
half apartment then CHull(z (D), t® (£E)) is also a half apartment.

In order to prove Theorem 5.1, we need a few lemmas.

Lemma 5.6. Given a half sphere H A in the apartment model for a building, and
fn: HA — 0Y be a sequence of isometries. Let L and L°P be opposite faces in H A,
and let L, = fy(L), LY = fn(L°P). Assume L, converge to a face f(L), L)}
converge to a face f(L°P) (in cone topology) where f(L) and f(L°P) are opposite.
Then the restrictions of f, on the boundary converge to an isometry from dH A to
a wall containing f(L) and f(L°P). Furthermore, if there is an interior point x
such that f,(x) converge to a point f(x), and f(x) is not opposite with any ()
for ¢ € dHA then f, converge to anisometry f. In particular, if f(x) is an interior
point of a chamber then f, converge to an isometry f.
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Proof. The case rank 2 is obvious since a wall consists of exactly two opposite faces.
So we only consider the case when the rank is higher than 2. Fix a based point xy,
let dy,, be the visual metric at xo. The cone topology is equivalent with the topology
induced from visual metric dy,,.

Now let z € dH A, there are two points § € L and{ € L suchthatd7(§,¢) < n
and z is on the geodesic connecting £ and . Letz, = 1,(2),& = f1(§). 8, = fu(0).
For any € > 0, since ({,) and (&) are Cauchy, we have that

dx()@n,é'm) < €, dx()(%-nafé;'m) <€

for n, m large enough. Thus, for some fixed A > 0, there exists R(¢) > 0 such that

d(x0&n(R), xo§m(R)) <A and  d(x0ln(R), xolm(R)) < A

—>
for n, m large enough. Here x((,(R) denotes the point at distance R from xq on the
—_—
ray (x¢,). Because of the convexity of distance in CAT(0) space we have that

o e (2652) s () <

Note that dr(&,,¢,) = dr(£,{) < m constant, and R(e) — oo as € — 0. Hence,
(zn) is a Cauchy sequence, thus converge to some point, denotes f(z). We easily see
that

d(f(z), [(§) = d(fu(2). n(§)). d(f(2). f(D)) = d(fn(2). Jn(D)).

so f(z) is on the geodesic connecting f(&) and f(¢). Note that convex hull of a pair
of opposite faces is a wall. Therefore, the restrictions of f, to the boundary of HA
converge to an isometry on dH A.

Furthermore, assume x is an interior point of HA and f,(x) converge to f(x).
Then for any { € dHA, by assumption we have dr(f(x), f({)) < m. By
the argument in the previous paragraph f,(z) converge to f(z) for any z in the
geodesic segment connecting ¢ and x. And thus f,(x) converge to a point f(x) for
any x € HA. That f is an isometry follows easily. ]

For any sequence of half apartments having a pair of opposite faces converge to
a pair of opposite faces, we treat them as a sequence of isometries from a fixed half
apartment.

Lemma 5.7. Let L, L°P be two opposite faces in 0X, L', L' admissible faces
in dY . Assume that there is an adjacency preserving map t: Star(L) — Star(L’) that
is continuous and for a.e. F € Star(L), the convex hull CHull(z(F), L'°?) is a half
apartment. Then for any F € Star(L), the convex hull CHull(t(F), L'°P) is a half
apartment.
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Proof. Let (F,) be a sequence of chambers converging to F in Star(L), and such
that CHull(z (F,,), L'°P) are half apartments. Those half apartments have common
boundary, that is the convex hull of L’ and L’°P. So we get a sequence half
apartment with common boundary, and the sequence of certain cells converging.
By Lemma 5.6 the sequence of half apartments converges to a half apartment. Hence
CHull(z (F), L'°P) is a half apartment. d

Lemma 5.8. Let L, be a sequence of faces converging to a face L, and LP is face
that is opposite with all L, and L. Assume that we have t,: Star(L,) — Star(L}),
where (L)) is a sequence of admissible faces converging to an admissible face L'.
Assume there is L'°P an opposite admissible face with all L, and L' and there
is continuous adjacency preserving map t°P: Star(L°P) — Star(L’°P) such that all
pair of maps (t,, TP) are coherent. Then there is a unique continuous adjacency
preserving map t: Star(L) — Star(L") such that © and t°P are coherent.

Proof. We show that if (D) is a sequence of chambers converging to the chamber D
where D, € Star(L,) and D € Star(L) then 7,(D,) converge to an admissible
chamber adjacent to L, and we set the limit to be (D). Let

HA, = CHull(L', 7,(Dp)).

As 1, and t°P are coherent, those sets are half apartments. First we have that their
boundaries converge to a wall, that is the convex hull of L" and L’°P. In the half
apartment CHull(D,, L), let E, be the chamber adjacent with L°P. Since 1,
and 7 are coherent,

HA, = CHull(t,(Dy), T (Ey)).

The sequence of half apartments CHull(D,, E,) have their boundaries converge,
and interior chambers D, converge as well. By Lemma 5.6 the sequence of half
apartments converge, in particular £, also converge to some limit chamber, say E.
Clearly, CHull(D, F) is a half apartment. Now H A, have boundaries converging to
a wall and interior chambers t°P(E,) converge to t°P(E) due to continuity of 7°P.
Therefore the half apartments, and hence t,, (D)), converge as well. We set t(D) be
the limit. The coherence property of 7 and t°P follows immediately from from the
definition of . Continuity and uniqueness follow from coherence. [

Proof of Theorem 5.1. We already know that ¢ can be defined on chambers of almost
every apartment, and ¢ sends those apartments to apartments. Let 4 be the family
of apartments that bound flats in the family 5. Then for almost every face L in 0X,
the subset of Star(L) consisting of chambers E such that £ is a chamber of some
apartment in the family +, has full measure in Star(L). We say an apartment A € A
is good if for any face L. C A, Star(L) has a full measure subset consists of chambers
that belong to an apartment in the family ». Then the family of good apartments is
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still of full measure in the set of apartments. Note that by Corollary 4.4, if L is a face
of a good apartment A € »4 then @ is uniformly continuous on a full measure subset
of Star(L), and this full measure subset contains all chambers in A that have L as a
face.

Let & C G be of full measure such that Vg € &, 7 (gA)(00) is a good apartment.
In the building d.X, recall that there are g chambers Cy, . . ., C, in an apartment (C; is
opposite with Cy). There are (g — 1) subsets Ay, ..., A;—; of E such that D+ (00) is

the convex hull of C; and C;. Here recall that DJr is a union of Weyl sectors cons1sts
of vector in A with positive value when evaluated by all roots in A;. Let Uy, be the
unipotent subgroup of G corresponding with the set of roots A;. By Lemma 4.2,
there is & C & of full measure such that for all ¢ € &, and for each i, a.e. h € Ua,,
the apartment 71 (ghA)(oco) is good. Note that

{m(ghA):h €Uy}

is the family of all apartments containing (convex hull of) chambers gC; and gC;.
Fix such g,let C = gC; and ¥ = 7w (gA)(c0). And let 3, C’ be the apartment and
admissible chamber corresponding to X and C via ¢.

Set @ = opy, oretry ¢, wWhere retry ¢ is the retraction of dX onto X centered
at C, and opy, is the map sending a chamber/face to the opposite one in X. We
recall that the retraction retrg ¢: 90X — X is a combinatorial map that maps every
apartment containing C isometrically to ¥ and fixes every point of C. Since every
point in dX is in an apartment containing C so retry ¢ is defined on the whole 0X .
Similarly, we set @' = opy, oretrsy ¢. This is, however, not always well defined on
set of admissible chambers/faces, but we will only consider the map on whichever
admissible chambers/faces it can be defined. We also denote by a: X — X’ the
isomorphism of complexes that is restriction of ¢ on X.

For every face L C X, by assumption, there is an admissible face L’ C ¥/, and a
continuous adjacency preserving map

@r: Star(L) — Star(L’)

that coincides a.e. with @lg,1)ng- We let Y(L) = L’. We also have that ¢, is
coherent with ¢z, for all faces L C X.

For general L, we prove by induction on the combinatorial distance from C the
following:

For every face M C 90X of distance at most k + 1 from C, there is an admissible
face (M) C dY, and for each face L. C dX of distance at most k from C, there is a
continuous adjacency preserving map ¢r: Star(L) — Star(y (L)) with the following
properties:

(1) &'(y(M)) = a(w(M));

(2) @ and @z(1) are coherent;
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(3) if M C 0X is a face in a chamber containing L such that
dist(C, M) = dist(C,L) — 1 or dist(C, M) = dist(C, L),

then gy and @y, coincide on the chamber containing both L and M ;

(4) If L is a face in a good apartment containing L, (L), and C then @, agrees
with ¢ on a full measure subset of Star(L). If N is a face in a good apartment
containing N, w(M), and C then (M) agrees with image of M under ¢
restricted on that good apartment;

(5) The restriction of W to the set of faces of distance k + 1 from C is continuous.

Indeed, when & = 0 then L is a face of C, and ¢y, and (L) already exist. Then
(2), (3), and the first half of (4) will be immediate. Denote by E{(C) the set of
chambers that are adjacent to C by a co-dimension 1 face of C. If M is a face at
distance 1 from C, then there is D € E;(C) such that M is a face of D. Assume
that

L =CnD,

then y(M) can be defined as ¢ (M). We know (1) is true as ¢ (D) and
¢ar)(@(D)) are opposite due to the coherence of ¢r and ¢zz). For (5), let M,
be faces at distance 1 from C that converge to a face M which is also at distance 1
from C. Let D, D, € E1(C) suchthat M and M,, is a face of D and D, respectively,
and assume

L,=CnD,, L=CnD.

As D, converge to D, L, also converge to L. Hence, L, = L for large n. Hence,
oL, (Dy) converge to ¢, (D) due to the continuity of ¢;,. Therefore ¥ (M, ) converge
to ¥ (M) as well.

Assume by induction that @7 exists with above properties up to faces L have
distance at most k — 1 from C, and ¢ is defined for faces at distance up to k. Now
let L be a face of distance k. Let D be a chamber containing L which is on a
combinatorial geodesic path from C to L. Let M be a face of D that has distance k
to C. Note that D and @ (D) determine an apartment, and this apartment contains the
convex hull of (D) and C. By assumption, a.e. apartment containing the convex
hull of w(D) and C is good. Thus there is a sequence of good apartments containing
the convex hull of @ (D) and C, converging to the apartment containing @(D) and D.
Hence, there exists a sequence of faces L, in that sequence of good apartments such
that L, converge to L. Moreover for each L, there is a continuous adjacency
preserving map

T, Star(L,,) — Star(y(Ly))

that agrees with ¢ almost everywhere on Star(L,). That 7, sends star chambers
of L, to star chambers of ¥ (L,) is due property (4) of the induction assumption
of ¥. Since 1, agrees with ¢ on a full measure set of Star(L,), by Lemma 5.7,
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7, and @g(y) are coherent. Because of the induction assumption (5) on continuity
on the set of faces at distance k from C, we have that y (L, ) converge to ¥(L).
¥ (L) is opposite with ¥ (w(L)) because of (1). By Lemma 5.6 there is a continuous
adjacency preserving map

@r.: Star(L) — Star(y (L))

that is coherent with ¢z(zy. With different choices of sequences of good apartments
and L,, we still get an adjacency preserving map from star chamber of L to star
chamber of (L) due to the continuity of ¥ by (4). And the map ¢, is defined
uniquely due to the coherence with @g(y).

Let N be a face at distance k + 1 from C. Assume that N is a face of £ € Star(L)
where dist(L, C) = k. Define

Y(N) = @L(N).

We have to prove ¥ (N) is well defined. The convex hull of N and C contains
only one chamber having N as a face, i.e. there is only one chamber, that is £,
containing N and such that

dist(E,C) =k + 1.

Therefore, if M is a face contained in the combinatorial path from C to N and such
that dist(C, M) = k then M is a face of E. To show ¢, and ¢p; map the face N
into the same image, we show that

¢L(E) = om(E).

Because of the way we choose the apartment 32, there is a sequence of good apartments
containing CHull(@(E), C) that converge to the apartment containing E and @ (E).
Pick the corresponding sequences of chambers (£,) and faces (L) and (M,,), where
L, , M, are faces of E, and such that

E,—~>FE, L,—>L, M,—> M

and
w(Ep) = &(E), o(Lp)=w(L), oM,)=awM).

On the image we know that
Y(Ln) = ¥(L) and (M) — ¢(M)

due to the continuity of ¥ on the set of faces at distance k& from C. Recall that ¢z, (E)
and @p (E) are defined as limits of Tz, (£,) and 7, (E,) respectively, where 1z,
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and 7y, are coherent with ¢z(r,). $z(m,) and agrees with ¢ a.e. on Star(Ly),
Star(M,,). By the coherence, 17, (E,) = ta, (En). It follows that

¢L(E) = oM (E).

Hence the image of the face N is well-defined when we set

V(N) = @L(N) = op(N).

We now verify properties (1)-(5) of ¢ and . Note that the coherence (2) is
immediate from the way we defined ¢_.

(1) Let N be aface atdistance k 4+ 1 from C. Assume that N is aface of £ € Star(L),
where

dist(L, C) = k.

Because ¢y, is coherent with ¢z (7, we have that @' (¢ (E)) = a(@(E)). Hence,

@' (Y(N)) = a(&(N)).

(2) ¢ and @g(1) are coherent because of the way we defined ¢, . This coherence
property will make ¢y, be uniquely defined.

(3) Let M C 0X be a face in a chamber containing L such that
dist(C, M) = dist(C, L)—1 or dist(C, M) = dist(C, L).

Let E be the chamber containing L and M .We treat each case separately.

Case I: dist(C, M) = dist(C, L) — 1. Because of the induction assumption (1), we
have that

om (L) = ¥ (L).

Consider the apartment containing £ and w(E). Since ¢@pr and @z (ar) are coherent,
this apartment is mapped to an apartment in dY and ¢@u (E) is opposite with
Yo (@(E)). This apartment also contains (L) and v (@(L)), as they are
admissible faces of @as (E) and @z () (@(E). Moreover, ¢, and ¢z (1) are coherent,
thus ¢z (E) is the admissible chamber opposite to ¢zr)(w(E)) in this image
apartment. But ¢z () (@(E)) is the same as ¢z (ar)(@(E)). Hence,

eL(E) = pm(E).

Case 2: dist(C,M) = dist(C, L). The same argument as when we showed v is
well-defined, can be applied in this case to conclude that

¢L(E) = om (E).
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(4) If M is a face at distance k + 1 from C in a good apartment A containing C
and w(M) . Let L be a face at distance k& on the geodesic combinatorial path from C
to M. Because of the way we defined ¢y, it is obvious that ¢; agrees with ¢ on a
full measure subset of Star(L). Let E be the chamber containing L and M. By the
observation we made when we defined good flat, the subset of Star(L) where ¢ is
uniformly continuous on contains E. Therefore (M) = ¢ (M) agrees with image
of M by restriction of ¢ on the good apartment A.

(5) Let L, be asequence of faces at distance k 4+ 1 from C, and converge to a face L,
also at distance k + 1 from C. From some k large enough,

&(Ly) = &(L).

Therefore, without loss of generality we assume w(L,) = w(L) for all n. By
Lemma 5.6, the sequence of half apartments containing L, ®(L,), and C converge
to the half apartment containing L, @(L), and C. Therefore the sequence
of chambers E, converge to the chamber E, where E, and £ are chambers
containing L, and L such that

dist(E,,C) = dist(E,C) = k + 1.

Let (M) be a sequence of faces of E, such that dist(M,,, C) = k and M,, converge
to a face M of E. Because of the convergence of the sequence of half apartments,
we can assume that w(M,) = (M), and w(E,) = o(FE). By induction, ¥ (M,)
converge to (M), and ¢p,, ¢um are coherent with ¢z (ary. By Lemma 5.8, ¢,
converge to @pr due to the coherence of @y and @z(ar). In particular, gy, (Ey)
converge to @z (E). It follows that ¥ (L, ) converge to ¥ (L). Hence restriction of
on the set of faces of distance k + 1 from C is continuous.

So we have proven the existence of ¥ and ¢_ with the above properties. This
induces a map
x:0X — aY,

defined as follows. For every point in dX, let £ be a chamber containing the point
and let L be a face of £. The point maps to a point in the admissible chamber ¢ (E)
by ¢r. The map y is well-defined because of the property (3). Note that y is
adjacency preserving and injective on each star chamber. Hence y is a building
monomorphism into the image Z C dY. The fact that y agrees with ¢ a.e. follows
from the (4) and the way we picked the apartment X. L]

Proof of Theorem 5.2. Since y maps each chamber in X to an admissible chamber
in Y, in order to prove y is continuous in the cone topology, we prove that the map y
is continuous with respect to the Furstenberg boundary topology. There exists m,
such that for almost every tuple of m chambers, the Furstenberg boundary can be
written as union of m open subsets consisting of opposite chambers with the ones in
the m-tuple. Thus, there is a tuple (Cy, ..., Cy) of chambers such that:
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* (; satisfies all property as chamber C we pick at the beginning of the proof of
Theorem 5.1, foralli = 1,...,m.

* C; and C; are pairwise opposite for i # j. And apartments containing each pair
Ci, C;j are all good.

* The Furstenberg boundary can be written as union of m open sets 21, ..., 2y,
where 2; is the set of opposite chambers with C;.

Therefore, we only need to prove y is continuous on each open set €2;. Let X; be the
good apartment containing C and C;. Set w; = opy, oretry; ¢, . Proceed inductively
on combinatorial distance & from chamber C; as the proof of of Theorem 5.1, that
the restriction ¥ on the sphere of radius k of faces around C; is continuous.

For k = 1, this claim is true because of the continuity of ¢y where M is any
face of C;. Suppose that the claim is true up to distance k. Note that y restrict to
any apartment is an isomorphism, hence for any face L, ¢r and ¢g, (1) are coherent.
Then we are in the same situation as in the proof of property (5) of ¥ in the proof
of Theorem 5.1. Therefore by the same argument, we conclude that the restriction
of ¥ is continuous on each sphere of faces around C;. Now assume that we have
a sequence of chambers (W},) converging to a chamber W, and they are all in ;.
Let (L,) be a sequence of faces of (W,) that converge to a face L of W. For n large
enough then

;i (Ln) = wi (L),

thus without loss of generality, we can assume this for all n. Let E,, be the chamber
adjacent to C; via the face w; (L) which is in the apartment containing C; and W,,.
Because W, converge to W, E, also converge to a chamber E in the apartment
containing C; and W, so that C; and E are adjacent via the face w;(L). The
sequence of half apartment containing ¥ (L), ¥ (@; (L)), and x(En) = ¢, (1)(En)-
have opposite faces converge to a pair of opposite faces and chambers converge
to a chamber, thus by Lemma 5.6, the sequence of half apartments converges. In
particular, y(W,) = ¢, (Wy) converge to a chamber. This chamber has to be

XW) = oL (W)

due to the coherence of ¢z, and ¢, (1.). Therefore y is continuous on £2;. It follows
that y is continuous. ]

6. Rigidity

From the previous section, we have that dY contains a sub-building y(9X) that is
isomorphic with dX. By [16, Theorem 3.1], there is a symmetric subspace isometric
to X of Y that has boundary y(0X). Therefore, G is a subgroup of G, and the map y
is given by the action of an element g € G < G’ on boundary.
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Proposition 6.1. There is C such that forall y € T, d(p(y),w(gy)) < C.

Proof. By orthogonal flats, we mean a pair of flats that intersect at one point, and
moreover the intersection of their r-tubular neighborhoods is contained in a ball of
radius Ar for some fixed A (see [5, Lemma 7.2]). Let Qf C s, as a subset of
a fundamental domain for I"\ G, consists of elements /4 that have two orthogonal
flats in F passing through. To be clear, this means there exist k;,k, € K such
that hk,,hk, € Q5. Then by ergodic theorem and Fubini’s theorem, there is c,
depending only on the space X, such that

n(25) > 1—¢é.

Intersect with a compact subset of the fundamental domain, we get a set Q25 ¢ C Q’S
such that
w(Qs,c) > 1-2¢8,

and diameter of 25 ¢ is smaller than C.
For any y € I', pick u € Q5 ¢, then

d(z(y),m(yu)) <C

and there are flats Fy, F, € ¥ orthogonal at 7 (yu). There exists Fy, F, C Y such
that [p(F1)] = [F{] and [¢(F>)] = [F;]. Moreover, we know that g agrees with ¢
on good apartments. Thus,

Fi(00) = gF1(00), F3(00) = gF2(0),

and it follows that
Fl’ = Fé = gFs,

Therefore, F|, F, are orthogonal at w(gyu). But ¢(m(yu)) is D-close to both flats
F{, F, as Fy, I are both sub-8s-diverging w.r.t. 7(yu). Hence,

d(g(yu), m(gyu)) < D',

where D’ depends on D and A we choose. Note that yu is C-close to the lattice T,
implies d(¢(y), ¢(yu)) is bounded by a universal amount too. Hence there is a
constant C such that d(¢(y), n(gy)) < C forall y € T". |

Proof of Theorem 1.4. Since ¢: " — A, and ¢ is uniformly close to the action of g
on I' by previous proposition, we get that gI" is contained in a finite neighborhood
of A.

By [19, Theorem 1.3], there is a closed subgroup H < G’ containing I', such
that

p'(gl) = p'(gH),
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where p’:G’ — A\G’ is the projection, and the bar stands for closure of a set
in A\G’. In other words, Agl" = AgH . This implies that

Aglg=' = AgHg™',

and it follows that I" normalizes H®. Since I is a lattice in G, by Borel density, G
normalizes H ° as well. This implies that

H°NG =G or H'°NG = {1}.

On the other hand as gI" is in a finite neighborhood of A, p’(gI") is compact. By
our assumption, H is discrete, and the orbit Agl" = I'g H consists of finitely many
points. It follows that the orbit Agl'g™! = AgHg™! also consists of finitely many
points. Therefore there exists [V < I of finite index such that

glMg ™ < A.

Note that the map g:y + gy is uniformly close to the homomorphism Ad,:y
gvg~!. Hence, the quasi-isometric embedding map ¢ is uniformly close to a virtually
monomorphism I' — A. L

Remark. Without our assumption on the non-existence of continuous group with
compact orbit, we could derive the following:

In the case H® N G = G. In this case H is a subgroup containing G and
intersects A in a uniform lattice in H. Therefore the quasi-isometric embedding
is uniformly close to a projection of a discrete subgroup to a uniform lattice in H
composed with the inclusion of that lattice into A.

In the case H? NG = {1}. The case H is discrete has been treated above when
we have the assumption. If H is continuous, then H? is an algebraic subgroup that
contains a finite index subgroup of I', hence contains G as well. This contradicts
with HONG = {1}.

A. Appendix
(by S. Garibaldi, D. B. McReynolds, N. Miller, and D. Witte Morris)

This appendix constructs examples where Condition (2) of Theorem 1.4 holds, and
also identifies a few situations in which the condition is impossible to satisfy. The
main results are Examples A.2, A.8, A.9, A.10, and Propositions A.3, A.6.

Lemma A.l. If F/Q is an imaginary quadratic extension, then for every n > 2,
there is a central division algebra D of degree 2n over QQ such that D splits over R
and D ®q F is not a division algebra.
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Proof. Let D, be any quaternion division algebra over QQ that splits over both R
and F. For example, if F = Q[./a], we can take D, = (Q«Tb) for any positive

rational number b that is not a norm in F. Next, let D, be any central division
algebra of degree n over QQ, such that D, ®qg D, is a division algebra but D,, splits
over R. If n is odd, then D, can be any central division algebra of degree n over Q.
For even n, there are local restrictions that can be arranged with some mild care. The
sought after algebra D can be taken to be D = D, ®qg D,,. L

Example A.2. For n > 2, there is a noncocompact lattice in SL,,(C) such that
A N SLy, (R) is a cocompact lattice.

Proof. Let D and F be as in Lemma A.1. Since D ®g F is a central simple
algebra over F and F is imaginary, we know that SL;(D ®q F) is a Q-form
of SL,, (C). Also, itis isotropic because D ®q F is notadivision algebra. Moreover,
as D is a central division algebra over Q and splits over R, we know that SL (D)
is an anisotropic Q-form of SL,,(R). By construction, SL; (D) is contained in
SL1(D ®q F). Passing to the Z-points of these groups provides the desired lattices.

m

However, the following result implies that the lattice in Example A.2 cannot be
conjugate to SL, (Z[i]).

Proposition A.3. Ifn > 3 and O is the ring of integers of an imaginary quadratic
extension F [Q, then there does not exist a closed subgroup G of SL,, (C) such that G
is isogenous to SL,(R) and G N SL,(O) is a cocompact lattice in G.

Proof. Letg C sl,(C) be the Lie algebraof G. If G NSL,(O) is acocompact lattice
in G, then ggp = g N sl, (F) is an anisotropic Q-form of g. Consequently gg ®q F
is an F-Lie subalgebra of s[,(F) and since it is of type A,—_, it cannot be a proper
subalgebra. Therefore,

gQ ®q F = sl,(F)

and gg splits over F'.

Since gg splits over both R and F, itis inner over both of these fields. Therefore,
it is inner over their intersection, which is Q; that is, gg is an inner Q-form. From
the classification of (anisotropic, inner) QQ-forms of SL,,, this implies

go = sli(D),

for some central division algebra D over Q. As gg splits over the quadratic
extension F, we see that D must be a quaternion algebra. Consequently, n = 2,
which contradicts the assumption that n > 3. O
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We now turn to the task of giving some restrictions on the possible type of H,
if such an H exists. That is accomplished by Corollary A.5. G. Harder proved
the following theorem under the assumption that the group is not of type Eg, but
J. Tits [24, p. 669] pointed out that this assumption is no longer needed, because
V. Chernousov subsequently proved the Hasse principle (Harder’s Satz 4.3.1) for Eg.

Theorem A.4 (Harder [12, Satz 4.3.3]). If a vertex of the Tits index of a simple
Q-group is circled at every place, then it is circled in the Tits index over Q.

Corollary A.5. Assume H is an almost simple, closed, noncompact subgroup
of GL,(R), for some n. Ifrankgr H > 2 and H N GL,(Z) is a cocompact lattice
in H, then H is either of type Ap, for some n, or of type 'EZ%, (over R).

Proof. Since H N GL,(7Z) is a lattice in H, the Borel Density Theorem implies
that H is (of finite index in) a Q-subgroup of GL,(R). Furthermore, since this
lattice is cocompact, we know that H is anisotropic over Q). This means that no
vertex is circled in the Tits index of the QQ-group /. However, by inspection of the
list of Tits indices in [22, pp. 55-61], we see that for each type except 1:24,, and !2Ej,
there is a vertex that is circled for all R-forms of rank > 2 and also all p-adic forms:

B, : the leftmost vertex is circled.
C,: the 2nd vertex from the left is circled.
1,2,3.6 D,,: the 2nd vertex from the left is circled (in Dy, this is the central vertex).
E5: the rightmost vertex is circled.
Eg: the leftmost vertex is circled.
F4: all vertices are circled.
G, both vertices are circled.

Furthermore, for 1>, the end of the short leg is circled in every p-adic Tits index,
and is circled in every isotropic index over R except 'EZ%. Therefore, Theorem A.4
implies that H is of type A, or 'EZ%. O

For the special case where G is isogenous to SO(n,m) and G’ is isogenous to
SO(n,m + £), we now give some numerical conditions that imply hypothesis (2) of
Theorem 1.4 is satisfied.

Proposition A.6. Assume:
G<H<G,

* A is a noncocompact lattice in G', such that A N H is cocompact in H,
e G is isogenous to SO(n, m),

o G’ is isogenous to SO(n, m + {),

H is (closed and) connected, and
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e 2<n<m<m+L.

Ifn+m=>7,thent >n+ m.

Proof. We proceed via contradiction and assume that £ < n + m. First, we show
that H is reductive. If not, then it is contained in a proper parabolic subgroup P
of G’ [2, Prop. 3.1(ii)]. Letting P = M AN be a Langlands decomposition, we know
that the R-split torus A4 is nontrivial. As G is contained in (a conjugate of) M and
MA C G’, we see that

rankgr G < rankg G’,

which contradicts the observation that
rankg G = n = rankg G'.

Hence, H is reductive. In fact, since rankg G = rankg G’, it is clear that the center
of H must be compact. So there is no harm in assuming it is trivial, which means
that H is semisimple. Assuming, as we may, that A N H is irreducible, we know
that H is isotypic. As £ < n + m, we see that /{ is almost simple. Since

rankg G' =n > 2,

the Margulis Superrigidity Theorem implies that A is arithmetic.

As A is not cocompact, we know A is commensurable with the Z-points of G’
for some Q-structure on G’. In particular, A N H is commensurable with the
Z-points of H. Hence, Corollary A.5 implies that either Hc is isogenous to SL, (C)
(or SL,(C) x SL,(C)), or H is of type 'EZ%,.

Case 1. Assume Hc is isogenous to SL,(C) (or SL,(C) x SL,(C)).

Since n + m > 7, the smallest dimension of a nontrivial representation of
so(n +m,C)isn + m [10, Exer.9 and 11 in §7.1.4, pp. 340-341],sor > n + m.
Thus,

n+m+£L<2n+m)<2r.

Let p be a nontrivial, irreducible subrepresentation of the representation of sl (C)
induced by the inclusion of H in G’. (Note that dimp < 2r.) Sincer > n +m > 5,
we have (;) > (3) > 2r for 1 < k < r. Therefore, the highest weight of p must be a
multiple of the highest weight of either the r-dimensional standard representation or
its dual (cf. [10, Exer. 8 in §7.1.4, p. 340]). This implies that p is not self-dual. On
the other hand, the representation of H in G’ = SO(n + m + £, C) obviously has an
invariant, nondegenerate bilinear form, and is therefore self-dual. So p cannot be the
only nontrivial, irreducible subrepresentation. This implies that n + m + £ is at least
twice the minimal dimension of a nontrivial, irreducible representation of sl, (C).

This dimension is r [10, Exer. 8b in §7.1.4, p. 340], so we conclude that
n+m+4£€>2r,

which contradicts the conclusion of the preceding paragraph.
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Case 2. Assume H is of type 'E g’sz.

This means the Tits index of H is

ol

As G € H € G’ andrankg G = n = rankg G’, we know that
n =rankgr H = 2.

Also, the anisotropic kernels of G = SO(2,m) and H = 'EZ% are (isogenous to)
SO(m — 2) and SO(8), respectively. As G C H (and rankg G = rankg H ), we see
that

m—2 <8.

Furthermore, since H € SO(n,m + {), we have a nontrivial representation of H
on R**t"+¢ Now note that every Weyl-orbit of nonzero weights in the Eg lattice has
at least 27 elements (as follows from, for example, [14, Thm. 1.12(a)]), hence every
nontrivial representation of Eg has dimension at least 27. So

n+m+€>27>8+208)>8+2(m—2) =22+ m)=2(n-+m),
and consequently £ > n + m as desired. U]

Remark A.7. It can actually be shown that Case 2. of the proof of Proposition A.6
cannot occur in general, regardless of what G and G’ are. Indeed, if an almost simple
Lie group of type 'E 2,82 is properly contained in an almost simple Lie group G, then
one can show that rankg G > 3.

We now show via two examples that the assumption n +m > 7 cannot be removed
from the statement of Proposition A.6.

Example A8. Let (n, m) be either (2,4) or (3,3), and letq = 2k +m, foranyk > 1.
Then there exists:

e a subgroup G of SO(n, q) that is isogenous to SO(n,m), and

* a noncocompact lattice A in SO(n, q),

such that A N G is cocompact in G.

Proof. We first note that in the case of H¢ being isogenous to SL,(C) for some r,
the converse of Corollary A.5 is true. Namely, that H is isogenous to a group with an
anisotropic Q-form. Indeed, division algebras allow the construction of anisotropic

Qp-forms of SL,, so this is straightforward. (We also point out that more generally
the converse is true and follows from [1, Thm. B] but we only need this special case.)
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Now let G = SO(n,m). Since n +m = 6 and SOg is isogenous to SL4, the
above paragraph tells us that G has an anisotropic Q-form (G)g. By the classification
of Q-forms of type D3 (and Meyer’s Theorem), we see that

(G)g = SUs(B; D, 1),

where D is a quaternion division algebra over (Q, t is the reversion anti-involution
on D, and B is a t-Hermitian matrix in Mats (D).

Let (G')g = SUg43(B & Iy; D, 7). Since (G)g is a Q-form of G = SL4(R),
we know that D splits over R. Therefore SUg (Ig; D, t) is a Q-form of SO(2k),
and so (G')g is a Q-form of SO(3,2k + 3) = G’. The 2nd vertex from the end
is circled in the Tits index at every place, hence Theorem A.4 implies that (G')q is
isotropic. Ll
Example A.9. For any even q > 6, there exists:

o asubgroup G of SO(2, q) that is isogenous to SO(2, 3),

* an almost simple subgroup H of SO(2, q) that contains G, and
* a noncocompact lattice A in SO(2, g),

such that A N H is cocompact in H.

Proof. Let H be the copy of SO(2, 4) that is provided by Example A.8, and let G be
any copy of SO(2,3) in H. O

We conclude by showing that the restriction £ < n + m cannot be removed from

Corollary 1.7. In particular, we give a counterexample in the case when £ = n + m.
Example A.10. Let G = SO(n,m), H = G xSO(n+m), and G' = SO(n,n +2m),
so there is a natural embedding of H in G'. Then there is a noncocompact lattice A
in G' such that H N A is a cocompact lattice in H.

Proof. Let:

* o(a —I—b«/i) —a—b2fora,b e,

* Z={(@,00@) |7 €Z[V2]**"} R,

o f:R2*+m) 5 R defined by

n

FEV.Z,0) = V2 (67 -2 = > 0% +wd),
J=1

i=1
for X,z € R" and y, w € R™,
* A={g€80zpu+m)(f) | 8Z = Z}.



Vol. 95 (2020) Quasi-isometric embeddings of non-uniform lattices 77

Since f is a quadratic form of signature (n,n + 2m), we may identify G’ with
SO2(n4+m)(f). Also, since f(p) € Z for all p € Z, any linear change of basis that
maps Z to Z will turn f into a quadratic form with rational coefficients, so A is an
arithmetic lattice in SOy, 4.,)(f). Moreover, as f is isotropic, A is noncocompact.

We may identify H with the subgroup of SO, (,4m)(f) that stabilizes both
{x=0,y=0}and {Z = 0,w = 0}. Then

m n
HNA = SOpim (ﬁzxf = Zy};Z[ﬁ])
=il

i=1

is the usual example of a cocompact lattice in SO(n, m) x SO(n + m) that is obtained
by restriction of scalars. ]
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