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Smooth zero-entropy diffeomorphisms
with ergodic derivative extension

Philipp Kunde

Abstract. On any smooth compact and connected manifold of dimension 2 admitting a smooth
non-trivial circle action we construct C00 -diffeomorphisms of topological entropy zero whose
differential is ergodic with respect to a smooth measure in the projectivization of the tangent
bundle. The proof is based on a version of the "approximation-by-conjugation"-method.
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Introduction

Let M be a smooth compact and connected manifold of dimension m > 2 with a

non-trivial circle action S {St}teR, St+1 St, preserving a smooth volume /x.

In their influential paper [1], D. V. Anosov and A. Katok introduced the so-called

"approximation-by-conjugation"-method which enables the construction of smooth

diffeomorphisms with specific ergodic properties (e.g. weakly mixing ones in [1,
Section 5]) and spectral properties ([10]) or non-standard smooth realizations of
measure-preserving systems (e.g. [1, Section 6], [2], [6]). These diffeomorphisms
are constructed as limits of conjugates

fn — Hn ° Sa„+l ° Hn

where

®b+1 ^n T — - £ Q, Hn Hn—\ o hn,
k n ' ' Qn

and hn is a measure-preserving diffeomorphism satisfying

S_l o hn hn o S j_.
In In

In each step the conjugation map hn and the parameter kn are chosen such that the

diffeomorphism fn imitates the desired property with a certain precision. Then
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the parameter ln is chosen large enough to guarantee closeness of /„ to fn-\
in the C°°-topology and so the convergence of the sequence (fn)nen to a limit
diffeomorphism is provided. It is even possible to keep this limit diffeomorphism
within any given C°°-neighbourhood of the initial element Sax or, by applying a

fixed diffeomorphism g first, of g o Sat o g~x. So the construction can be carried

out in a neighbourhood of any diffeomorphism conjugate to an element of the action.

Thus,
c°°

A(M) {h oSt oh'1 : t e S1, h e Diff°°(M,/x)}

is a natural space for the produced diffeomorphisms. Moreover, we will consider the

restricted space

c°°
Aa(M) {hoSao h~1 : h e Diff00(AT, /x)}

for œ G S1. See also the very interesting survey article [4] for more details and other
results of this method.

As mentioned above Anosov and Katok proved that the set of weakly mixing
diffeomorphisms is generic (i.e. it is a dense Gg-set) in A{M) in the

topology. In extension of it R. Gunesch and A. Katok constructed weakly mixing
diffeomorphisms preserving a measurable Riemannian metric in [7]. Actually, it
follows from the respective proofs that both results are true in Aa(M) for a G,5-set

ofa G S1. However, both proofs do not give a full description of the set of a G S1 for
which the particular result holds in Aa(M). Such an investigation is started in [5]:
B.Fayad and M.Saprykina showed that if cr G S1 is Liouville, the set of weakly
mixing diffeomorphisms is generic in the C°°(Af)-topology in Aa(M) in case of
dimension 2. Generalising these results Gunesch and the author proved in [8] that

if a G M is Liouville, the set of volume-preserving diffeomorphisms, that are weakly
mixing and preserve a measurable Riemannian metric, is dense in the C°°-topology
in Aa(M). Recently, it has been proven that for every p > 0 and m > 2 there
exists a weakly mixing real-analytic diffeomorphism / G Diff"(Tm, /x) preserving
a measurable Riemannian metric [11],

Such diffeomorphisms preserving an absolutely continuous probability measure
and a measurable Riemannian metric are called IM-diffeomorphisms. In [7, Section

3] IM-diffeomorphisms and IM-group actions are discussed comprehensively.
In particular, the existence of a measurable invariant metric for a diffeomorphism is

equivalent to the existence of an invariant measure for the projectivized derivative
extension which is absolutely continuous in the fibers. Hence, it is a natural question
to study the ergodic properties of the projectivized derivative extension with respect
to such a measure. Actually, the constructions in [7] as well as [8] are as non-ergodic
as possible: Their projectivized derivative extensions are isomorphic to the direct

product of the diffeomorphism in the base with the trivial action in the fibers so that
each ergodic component intersects almost every fiber in a single point. In this paper
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we realise the other extreme possibility by constructing IM-diffeomorphisms whose

differential is ergodic with respect to such a smooth measure in the projectivization
of the tangent bundle:

Theorem 1. Let M be a smooth compact and connected manifold ofdimension 2 with
a non-trivial circle action S {St}te^, St+\ St, preserving a smooth volume ji.
Then there exists a volume-preserving diffeomorphism in A(M), whose projectivized
derivative extension is ergodic with respect to a measure in the projectivization of
the tangent bundle which is absolutely continuous in the fibers.

This construction provides the only known examples of volume-preserving
diffeomorphisms whose differential is ergodic with respect to a smooth measure
in the projectivization of the tangent bundle.

By the same approach as in [8] it is possible to obtain a weakly mixing
diffeomorphism and to generalise this result to dimension m > 2. In order to
alleviate notations and focus on the new parts of the construction we present a proof
in case of dimension 2. It will be subject of future research to study further ergodic
properties (e.g. weak mixing) of the projectivized derivative extension with respect
to such a measure and to obtain real-analytic counterparts of these results.

1. Preliminaries

1.1. Definitions and notations. We refer to [8, Section 2.1] for useful definitions
and notations. Additionally, we want to introduce the invariant measure for the

projectivized derivative extension: Let /: M ->• M be a smooth diffeomorphism.
On the tangent bundle TM we consider the derivative extension (/, df). Let p e M.
We can naturally identify the tangent space TpM with M2. Next, we consider its

projective space PR2 that is diffeomorphic to the circle and introduce the notation

[a,b] C PR2 which describes the allowed values for the spherical coordinate
<p M./ïïZ. This yields the projectivized tangent bundle which will be denoted

by P TM. In particular, we will use the notation c x [a, h] c FTM with c C M for
the set in P TM with base points iëc and spherical coordinates cp e [a, b\. On the

projectivized tangent bundle we consider the projectivized derivative extension of a

diffeomorphism /: M -> M. By misuse of notation we will denote it by (f df)
again.

Following the lines of [3, Chapter 5.1] we consider the cotangent bundle T* M
and the projection maps

itp.TM M

as well as

jT2:TM* -> M.

Then we define the canonical 1-form co on TM* by co\z njr, where a>\x

denotes the 1-form co evaluated at r e TM*. Additionally we define the canonical
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2-form fi on TM* by fi dco, which is symplectic. In the next step, let M
be a Riemannian manifold and V: M -> M be a function. Then we examine the

Lagrangian L.TM -» M given by

where |£| is computed with respect to the Riemannian metric. To this Lagrangian we
associate a bundle map FL: TM -» TM* defined by

for p e M, f, tj e TPM. Hereby, we define 0 FL*fi and v FL*a>.

In [3, Chapter 5.1] the differential form v A 0 on the unit tangent bundle SM
is considered. It is proven that it is the local product, up to a constant multiple, of
the Riemannian volume on M with the Lebesgue 1 -form on the unit tangent spheres

of M with respect to the Riemannian metric. In particular, for any v A 0-integrable
function g on SM we have "integrations over the fibers"

where Vol is the volume form induced by the Riemannian metric and pp is the

standard Borel measure on the tangent sphere Sp M with respect to the Riemannian
metric.

By the same approach we can deduce the same formula for the constructed

invariant measurable Riemannian metric co00 and for any integrable function
on PTM. The corresponding measure will be denoted by /x. Moreover, we point
out that in our constructions the measure induced by the measurable Riemannian

metric a>oo coincides with the measure /x on M. Since &>00 is /-invariant, we
conclude that Ji is (/, d/)-invariant.

1.2. First steps of the proof. By the same arguments as in [8, Section 2.2]
constructions on M S1 x [0, 1] equipped with Lebesgue measure /x and standard

circle action Jl {Ra}aes1 comprising of diffeomorphisms Ra(Q,r) (8 +a,r)
can be transferred to a general 2-dimensional compact connected smooth manifold
with a non-trivial circle action S {St}teR, St+1 St.

1.3. Outline of the proof. The constructions are based on the "approximation-by-
conjugation"-method developed by D. V. Anosov and A. Katok in [1], As indicated
in the introduction, the desired diffeomorphism / with ergodic projectivized
derivative extension is constructed as the limit of volume-preserving smooth

diffeomorphisms fn defined by

L(Ç) ^-v°n10,

FLmri) ^(L(£ + trj))\t=0

.fn Hn o Ra„+X o H~X.
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Here, the rational numbers an+i £ S1 and the conjugation maps Hn e Diff°°(M, /x)

are constructed inductively:

where the conjugation map hn e Diff°°(M, /x) has to satisfy hn o Ran Ran o hn

and knJn £ N are parameters that have to be chosen appropriately. In particular,
we will show convergence of the sequence (fn)neN in A(M) by choosing the

parameter /„ sufficiently large in Section 3.

In our construction hn in o </>„ with two step-by-step defined smooth measure-

preserving diffeomorphisms. As in [8] cj)n maps a strip of almost full vertical length
to a set of small diameter on the one hand in order to get ergodicity of the map
itself. On the other hand, cj)n acts as an isometry on large parts of the manifold. In

comparison to [8], an additional map in is introduced in order to obtain ergodicity
of the projectivized derivative extension. This map in acts as a composition of a

translation and rotation on large parts of the domain where the angle of rotation is

different from section to section.

Additionally, we will use a sequence of partial partitions which converges
to the decomposition into points. On the partition elements of £„ the conjugation

map hn will act as an isometry and this will enable us to construct an /-invariant
measurable Riemannian metric in Sections 4 and 5 by the same approach as in [8],

Finally, we will prove the ergodicity of the projectivized derivative extension. This

proof bases upon estimates of Birkhoff sums for Lipschitz continuous observables

p:FTM -+ ®L For this purpose, we introduce so-called "trapping regions" and

"target sets" covering almost the whole space P TM. Except for initial values in a

set of very small measure the vast majority of iterates of the orbit under Ran+l is

captured by the trapping regions. Under (A„, d/z„) these iterates are mapped into the

target sets almost uniformly distributed (see Lemma 7.3). At this juncture, we require
the map in to act as a rotation by a different angle on different trapping regions. Since
the diameter of these target sets is sufficiently small, we can approximate the value

of the observable by the value of its integral on the particular target set. Hereby, we
obtain the desired estimate on the Birkoff sum in Lemma 7.5.

2. Construction of the conjugation map

We fix an arbitrary countable set S {p\, p2, .} of Lipschitz continuous functions

Pi'. FTM —> E, that is dense in C(PTM;R). Since C(PTM;M) is separable and

Lipschitz continuous functions are dense in C(FTM\ E), this is possible. For any

Lipschitz continuous function ponPTM we denote its Lipschitz constant by ||p||Up
and HpIIo maxxePTM\p(x)\.

an +1 —
Pn +1

<7/1 + 1

a„ + -— and Hn h\ o • o hn,
kn ' <n <7«
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We present step n in our inductive process of construction. We assume that we
have already defined the rational numbers a\,...,an G S1 and the conjugation map

Hn—\ hi o o hn-\ G Diff°°(M, /x).

First of all, we put

_ Pn+1 _
1

<Xn+1 — — 0in +
<7« + l kn In Qn

and choose the parameter kn G N large enough such that the following conditions

are fulfilled:

kn> n2 max ||p;-||Lip, (A)
i l,...,n

kn > 30 n2 max ||p,||0. (B)
i l,...,n

For every subset c C PFM of diameter diam(c) < ^ we have:

diam((//„_i,d//„_i)(c)) < —z —-—. (C)
«2-maxI 1,...,„ ||Pï IILip

Moreover the sequence of parameters (kn)nem should satisfy

oo

y k i kn
j=n+1 J

2.1. The conjugation map (j)„. In [8, Section 3.3] we constructed the smooth area-

preserving diffeomorphism <j>x,e,ß,s2 on x [0, 1] satisfying the subsequent

properties:

Proposition 2.1. Let e, e2 £ (0, |) and A, /x G N. Then there is a smooth area-

preserving j-periodic diffeomorphism (px,e,n,£2'- x IP> 1] ^ S1 x [0,1] such that

1. Let t2 Z, [2e/x] <t2<p,— \2ept] - 1, \u2\ < e2, and u\ G (2s, |) he of the

form ~ with t\ G Z. Then we have

~ U 1
1 — M- /ri/i l-«n rt2 + u2 t2 + i -u2i\

4>Te,n,s2{ [y, J x —, - J j
"?2 + m2 t2 \ — U2

/X
'

/X

hi —u2

/xA
' A /xA

2. <px,e,u,s2 acts as an tsometry on each cuboid

\t\ + 2s2 t\ + 1 — 2£2"i r?2 + 2s2 t2 + 1 — 2e2

rl ^2 + 1 — M2 1 t2+W2jr j ' T T~ X
LA lia A /xA J

> j Vt2 + 2s2 t2 + 1 - 2£2 j
U j'L/x-A' /x • A JL /x

'
/x

wfiere q G Z, f2e/x j < fi < /x — [2s/x] — 1 ,/or x 1,2.
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The first property will enable us to prove in Lemma 7.2 that (pn maps sets of almost

full length in the r-coordinate to sets of small diameter. By the second property (pn

acts as an isometry on each partition element In e Çn (see the proof of Lemma 5.2).
In the construction of the map one uses a map C\ causing a stretch by A

in the first coordinate and a so-called "quasi-rotation" <p£ constructed with the aid of
"Moser's trick," which is the rotation by n/2 about the point (|, |) on [2e, 1 — 2s]2

and coincides with the identity outside of [s, 1 — e]2. With these maps one also

defines a family of "inner rotations of type A" VW2 in order to get the second

property stated above: A map of the form Cf1 o <pe o C\ would cause an expansion
by A in one coordinate and by A-1 in another, so far away from being an isometry.
The "inner rotations of type A" cause that C\ and C r1 act on the same coordinate

on the elements /„ G

ProofofProposition 2.1. As announced we will use the "quasi-rotations" introduced
in [5] and [8, Lemma 3.7]:

Fact. For every e e (0, ~ there exists a smooth area-preserving dijfeomorphism <pe

on R2 which is the rotation hy n/2 about the point (~, ~) on [2e, 1 — 2s]2 and
coincides with the identity outside of[e, 1 — e]2.

Furthermore, for A e N we define the maps

Cx(xi,x2) (A -xi,x2) and Dx{x\,x2) (A -xu A -x2).

Moreover, let /x N. We construct a diffeomorphism in the following way:

• Under the map I)ß any cube of the form

~l\ l\ + 1 "I rl2 l2 + 1 "

-/X
'

/x J L/X
'

/x -

with U e N is mapped onto [l\Ji + 1] x [l2, l2 + 1].

• On [0, l]2 we will use the diffeomorphism 1p"1 from the above mentioned

fact. Since this is the identity outside of [e2, 1 — s2]2, we can extend it to a

diffeomorphism <pf/ on M2 using the instruction

%2 + h,X2 + h) h) + Ve2 (xi>x2)<

where /, G Z and x, e [0,1].

• Now we define the smooth measure-preserving diffeomorphism

Vw2 D'n 0 Vs2 0 Dti-

This is a smooth map because f is the identity in a neighbourhood of the

boundary by construction.
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Using these maps we build the following smooth area-preserving diffeomorphism:

<Px,E,ß,ef[o. X [0, 1] -> [o, -] x [0, 1], 4>X,e,ß,82 q-1 O yM;£2 o (pe o cx.

Afterwards, <f>x,E,a,e2's extended to a diffeomorphism on S1 x [0, 1 ] by the description

<Px. £»/q£2 \(Xl +1'*2) (l'°)

kn'Qn X [0, 1]

This map satisfies the properties stated in Proposition 2.1.

Using these maps we define the diffeomorphism (pn on [0,

<Pn <Pk
-a -i- k2 •kn In, 2k2 >kn>

2-k%-qn

Since (pn coincides with the identity in a neighbourhood of the boundary of its

domain, we can extend <pn to a diffeomorphism on S1 x [0,1] using the description

Pn ° R, 1

kn -Qn
R l

kn'Qn
1 (pn-

2.2. The conjugation map i„. In this subsection we define the so-called "inner
rotations of type B" in which will allow us to prove ergodicity of the projectivized
derivative extension. In particular, we will exploit the different rotation angles on the

particular sections in the proof of a "trapping property" in Lemma 7.3. This trapping

property will be crucial in the estimates on Birkhoff sums in Lemma 7.5.

Proposition 2.2. Let an k% qn, cn k% and en A-. There is a smooth
kn

measure-preserving diffeomorphism

in: S1 x [0, 1] -» S1 x [0,1]

such that:

1. Each square of the form

—
1 + M x \L 7' + 11

tin tln - -&n tln

with i, j G Z is mapped onto itself by in and in coincides with the identity on a

Is--neighbourhood of its boundary.

2. On every square

i Si + £n i s + 1

—I- -f—

tin Cn ' Cln tln Cn ' an

i_ S2 + fn J_ S2+\~Sn-
a,j cn an an cn an

C
i + 1

] x [0, 1],
-&n (In

where .Vi ,s2 £ Z, 1 < Si, s2 < cn — 2, in is a composition of a translation and a

rotation by ßt, where ßi in case ofs i mod kn.
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3. in o Rj_ Rj_ o in.
Qn Qn

For the construction we need the subsequent lemma:

Lemma 2.3. Let c e N, c > 3, s (0, ant/ ß e [0, n\. Then there is a smooth

measure-preserving diffeomorphism

fc,e,ß-[0, I]2 "> [0,1]2

satisfying thefollowing properties:

' tyc,e,ß coincides with the identity on [0. I]2 \ [e, 1 — s]2.

• On every square

j + e j + 1 - e k s k 1 — s~

with 1 < j, k < c — 2 the map fc,e,ß /v equal to a composition of a translation
and a rotation by arc ß around a new center.

s

1

1

|
j

J

/ 7/ 7/ V >

V V-' x-/ V/ >/ ">/ >/ >^vVV->/^/N>/
/ /

y y y >/

Figure 1. The action of \j/c,s,ß on [0,1]~

Proof. There is a rearrangement of these squares

rj + e j + 1 — en rk + e k + \ — s

rotated by ß in [2s, 1 — 2s]2. Corresponding to this, each center '70'5, k+ß5
of such a square is translated by {aj^.bjf). We will need these translations later.

Moreover, we will use a smooth diffeomorphism t/t2:®2 -> M2, which coincides
with the identity on M 2 \ [e, 1 — e]2 and with a dilation by | in each coordinate about
the center on each of the translated and rotated squares.
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Now, let \j/\ : R2 -» R2 be a smooth diffeomorphism satisfying

CMH

(x, y) on R2 \ [e, 1 — e]2

Mx,y) + i(* - ^).^ + & ~

on each j^^r2-, J + '. j x k+Sj k +1 —§
c ' c

Additionally, we choose a smooth diffeomorphism ri that is the identity on
R2 \ [e, 1 — s]2 and a rotation by ß on each disc

l(x — j +0.5x2)+(y
k + 0.5\2)2<—1-

> - ./stv-lV5Öc

Furthermore, let r2 be a smooth diffeomorphism with the following properties

on R2 \ [e, 1 — s]2,

(x,y)
\x,y)
(x + a j>k, y +bjtk)

oneach{(x-^)2 + (y-^)2<-^}.
We define xß := xjrf1 o r2 o r, o xf/x. Then the diffeomorphism xj/ coincides with the

identity on R2 \ [e, 1 — e]2 and with a composition of a rotation by ß and a translation

on every square

\ j + s ./ + 1 — e 1 fk + e k + 1 — £--M
with 1 < j, k < c — 2. In particular, xfr is measure-preserving on the union of these

sets. Hence, we can construct the desired measure-preserving diffeomorphism xj/c e ß
with the aid of Moser's trick similarly to [8, Lemma 3.4].

ProofofProposition 2.2. Using the dilation

I"!2
Da-.

i y0, - [0, If, Da (xi, X2) — ((I • X\, CI • x2)
L a J

for a 6 Z we define the map

112
fa,c,e,ß• 1^0» J ~~[0, J > ^ßa,c,s,ß — k)a o xj/c^£ ß o Da.

Since it coincides with the identity in a neighbourhood of the boundary, we can
extend it to a smooth diffeomorphism on S1 x [0, 1] equivariantly by the description

/ ^1 ^2 \ /^1 ^2\
fa,c,s,ß\X 1 + — ,X2 + — (—,—) + ^a,c,s,ß(x i,X2)

V a a / \ a a /
forüi,a2 Z.
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°" tit' Ä"] X [()- ^ we define:
Kn'4n Kn qn

S • JX

ßi —— in case of s i mod kn
kn

as well as

ln ^kUn,kl,±r,ßi-
Kn

Since each map coincides with the identity in a neighbourhood of the boundary, we

can piece them together in order to get a smooth diffeomorphism on S1 x [0,1],

2.3. The conjugation map hn. With the aid of the previous constructions we define
the conjugation map hn in o <pn. By the observations in the previous subsections

we have h„ o R _j_ Rj_ o hn.
In In

3. Convergence of the sequence fn)neN in Diff°°(M, p)

In the following we show that the sequence of constructed measure-preserving smooth

diffeomorphisms fn Hn o Ra„+1 ° H~l converges. For this purpose, the next

result, that can be found in [6, Lemma 4] is very useful.

Lemma 3.1. Let k G No and h be a C°°-diffeomorphism on M. Then we get for
every a, ß G M:

dk(h o Ra oh"1,h o Rß o h"1) < Ck |||Ä|||^+| • \a - ß\,

where the constant Ck depends solely on k. In particular Co 1.

Under some conditions on the proximity of an and an+\ we can prove

convergence:

Lemma 3.2. There exists a sequence an ^ of rational numbers such that our
sequence ofconstructed diffeomorphisms fn converges in the Diff°° (M)-topology to

a diffeomorphism f A(M). Additionally, we havefor every p e {pi,..., pn \ C S

sup |P((/"\dfm)(x)) - p((fnm,dfnm)(x))\ < 4r
xePTM n

for every natural number m < qn+1 and n 6 N.

Proof First of all, we recall the relations

&n+1 txn — - and hn o Ran — Ran ° hn-
Ln 'In ' dn
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Hereby we observe for any me N

IT "n o Kn + l
o H~l Hn-\ o hn o Rn o Rm_ o h~l o //"Jj

kn-ln-Qn

Hn — l o O o 1 o /î"1 O //"Jj
k-n'ln-Qn

Since the construction of the conjugation map hn does not involve we can obtain

sup d(ifHm,df?)(x), (fnm_v d/^jXx)) < -i-
xePTM z " Kn

for every natural number m < qn as well as

|a„+i — aJ < —rr (3.1)
0n C k -a -111/7 lll"+1

by choosing l„ eN large enough.
We can apply Lemma 3.1 for every k,n e N:

dkifn, fn—1 4(//n ° o H~\ Hn o Äa„ o ff"1)

<Q-|||/7„|||^J-K+i-««I-

By assumption (3.1) it follows for every k < n:

dkifn, fn-1) < dn{fn, /„_i)

< C„ • |||//„|||"t} —ry < (3.2)
2"-cn-^-||l^lll"tî 2"

In the next step we show that for arbitrary k e N (/„)„<en is a Cauchy sequence
in Difffc(M), i.e. lim„>m^oo dkifn, fm) 0- For this purpose, we calculate:

n oo

lim dkifn, fm) — lim V dkifi, f-1) V dkif,f-i). (3.3)
n^-oo n—>oo z—' z—'

i=m+l i =m+1

We consider the limit process m -> oo, i.e. we can assume k < m and obtain from

equations (3.2) and (3.3):

OO
j

lim dkifn, frn)< lim V — 0.
m—>oo m—>00 < ' 2}

i=m+1

Since Difffc(M) is complete, the sequence (/„)«eN converges consequently in

Difffc(M) for every & N. Thus, the sequence converges in Diff°°(Af) by definition.
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Moreover, we estimate for every m < qn+i

sup d((/„m, d/„m)(x), (/m,d/m)(x))

oo

< £ sup t/((/f,d/;'")(x),(.^_1,d/f_1)(x))
j=n+lxeFxeFTM

By requirement (A) on the number kn we obtain for every p {plt..., pn} C S

4. Criterion for the existence of a / -invariant measurable Riemannian metric

Let co0 denote the standard Riemannian metric on M S1 x [0, 1], By the same

approach as in [7, Section 4.8] we prove the subsequent criterion for the existence of
a /-invariant measurable Riemannian metric:

Proposition 4.1 (Criterion for the existence of a /-invariant measurable Riemannian

metric). Let (fn)ncN be a sequence ofpartial partitions whose elements cover a set

of measure at least 1 — ^ for every n e N. Suppose that for every n e N the

conjugation map hn acts as an isometry on every element of the partition Çn. Then

the limit diffeomorphism f lim^oo fn of the sequence fn Hn o RUn+l o Hfl
admits an invariant measurable Riemannian metric.

V 1

Proof. The assumption implies that for every In e hf is an isometry
as well. In the following we construct the /-invariant measurable Riemannian
metric. For it we put con := Each con is a smooth Riemannian metric
because it is the pullback of a smooth metric via a C°°(M)-diffeomorphism. Since

RZ fn u>o the metric mn is /„-invariant:

sup \p((fm.dfm)(x)) - p((fnm,d.C)(x))\ <
xeP TM

for every number m < q„+i and n e N.

/>„ (Hn o Ran+l o H~1)*mo
{H-lYRln+lH:{H-'Tœo

0 (H-'Yco0

With the following lemmas we show that the limit cuoo := lim^oo u>n exists /x-almost
everywhere and is the desired /-invariant Riemannian metric.
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Lemma 4.2. The sequence (a>n)neN converges /i-a.e. to a limit (oœ

Proof. For every N G N we have for every k > 0:

N+k (t>o (hN+k o o hN+x o Hn a>o

(H^nhf,l+ko-oh-N\1rco0.

Since the elements of the partition (n cover M except a set of measure at
most ~2 ar,d \h,,(/,,) 's an isometry for every /„ G "Çn, (o^+k coincides with

(on {Hf^)*(OQ on a set of measure at least 1 — X^=;v+i As this measure

approaches 1 for N oo, the sequence (m„)neN converges on a set of full
measure.

Lemma 4.3. The limit Woo is a measurable Riemannian metric.

Proof. The limit (Ooo is a measurable map because it is the pointwise limit of the
smooth metrics con, which in particular are measurable. By the same reasoning <Woo|p

is symmetric for //-almost every p G M. Furthermore, cty» is positive definite
because <on is positive definite for every n G N and <oœ coincides with o>n

on T\M <S> T\M minus a set of measure at most X^=jv+i Since this is true
for every N G N, (Om is positive definite on a set of full measure.

Lemma 4.4. 0 is f -invariant, i.e. f *(»00 (Ooo p-a.e.

Proof. By Lemma 4.2 the sequence (con)ne^ converges in the C°°-topology
pointwise almost everywhere. Hence, we obtain using EgorofFs theorem: For

every 5 > 0 there is a set Q CM such that piM \ Cg) <8 and the convergence
ojn -» Woo is uniform on Cg.

The function / was constructed as the limit of the sequence (fn)nen in the

C°°-topology. Thus, fn := f~l o f —^ id in the C°°-topology. Since M is compact,
this convergence is uniform too.

Furthermore, the smoothness of / implies

f*u>oo f* lim (On lim f*wn.
«—>00 «—»00

Therewith, we compute on Cg :

f*(0oo lim ((.fnfn)*otn) lim (ffff (On) lim ffcon Woo,
«-»oo «-»oo «—»00

where we used the uniform convergence on Cg in the last step. As this holds on every
set Cg with 8 > 0, it also holds on the set Us>o Q- This is a set of full measure and

therefore the claim follows.

Hence, the desired /-invariant measurable Riemannian metric a>00 is constructed
and thus Proposition 4.1 is proven.
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5. Proof of existence of the / -invariant measurable Riemannian metric

In order to apply our criterion 4.1 for the existence of a /-invariant measurable
Riemannian metric we define a partial partition Çn and check that the conjugation
map hn acts as an isometry on it.

5.1. Partial partition £„. The partial partition £„ will be defined in such a way that

it covers large parts of M S1 x [0,1] and hn acts as an isometry on it. For this

purpose, the partition elements will be of the form

t\ + £« ty + 1 — sn "I vt2 + en t2 + 1 — sn ij~ rl + £« h + i — £« ~| r»2 + £n

L Cn ' Un Cn ' Un L Cn ' ü-n

(with the parameters an, cn and sn in the construction of the conjugation map in)
positioned in the domain, where </>„ acts as an isometry. To be precise the partial
partition consists of all multidimensional intervals of the following form:

IuQ,lii,U2,U3,U4;Vy,V2,V3,V4

Uq Uy U2 U3 U4 1

_k„-qn k*-qn k$ qn k^-qn kf> qn k\ü • q„
'

Wo Ml U2 W3 U4 + 1 1

X

kn q,i k% -qn k%- q„ k% qn k* q„ k q„

vi v2 V3
+

V4
+

1

kl k„ qn k%-qn k* qn k qn'

Vl V2 v3 v4 + 1 1

kn k5n-qn k*-qn k*-qn kxf qn \
where u0 e Z and uy, u2, M4, tq, V4 G {1,..., k%—2} and W3, v3 G {0,1,..., kn — 1}
and v2 {knqn,knqn + 1 ,...,k%qn - knqn - 1}.

Remark 5.1. For every n e N the partial partition consists of disjoint sets, covers
2Lv8 - 1 16
k2> _ 1

k2Kn K-n

the decomposition into points

a set of measure at least (1 — A)8 > 1 — and the sequence ((VdneN converges to

5.2. Application of the criterion. The following Lemma shows that the conjugation

map hn in o (pn constructed in Section 2 is an isometry with respect to cw0 on the

elements of the partial partition Çn.

Lemma 5.2. Let fn Çn. Then hn is an isometry with respect to ojq.

Proof. The proof is similar to the proof of [8, Lemma 7.1]. Let In :=
Iu0,m ,u2,u3,u4;vy,v2,v3,v4 ^ Çn be a partition element. By Proposition 2.1 and our
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choice of parameters this element /„ is positioned in such a way that <pn acts as an

isometry on it. In fact, <pn In is equal to

Mo + 1 ft 1 m2
+

M3
+

M 4
+

1

knqn k* -qn kl- qn k% qn k* qn k qn
'

U 0 + 1 fi + 1

knQn
+

m2
+

u 3
+

M4 -|- 1 1

Ml

k%-qn k5n-qn k%-qn k* qn kln° qn _

«2,^3.^4 1

+ + +M kn'<ln k%-qn k*-qn k qn
'

V4 + 1Ml t^2
+

U3
+

1

kn kn ' Qn kn ' In k* qn kf qn

I.UQ,k% —V\—l,U2,U3,U4;U\,V2,V3,V4'

On this set in k} -- - ßt 's eclua'to the composition of a translation and the
kn

respective rotations by the second statement in Proposition 2.2.

Remark 5.3. As observed in Lemma 5.2 the map hn in o<pn acts as the composition
of the respective rotations and translations on every /„ G Ç„. In the following
Gn := U/„6f ki will be called the "good domain" of hn. Its corresponding parts
on the 6-axis are called the "good horizontal length" of hn and are denoted by Gnj,.
Analogously, its corresponding parts on the r-axis are called the "good vertical

length" and are denoted by Gn<v. By the same arguments as in Remark 5.1 observe

that for an interval [77-^—, r^l on the 6-axis the length

is part of the "good horizontal length". Similarly, the length

Is part of the "good vertical length" on the r-axis.

Since the elements of the partial partition £„ cover a set of M of measure at least
1 — if (see Remark 5.1), we are able to apply the criterion in Proposition 4.1 and

kn
conclude the existence of a measurable /-invariant Riemannian metric.



Vol. 95 (2020) Ergodic derivative extension 17

6. Criterion for ergodicity of the derivative extension

A continuous transformation f: X -> X on a compact metric space X preserving a

Borel probability measure v is ergodic with respect to v if

for every <p G C(2( ; R) [ 12]. Since C X ; R) is a separable metric space and Lipschitz
continuous functions are dense in C(X; R), we can choose a countable set

of Lipschitz continuous functions that is dense in C(Ar;R). With the aid of the

following lemma one can prove ergodicity in the general setup of the approximation-
by-conjugation-method.

Lemma 6.1. Consider a compact metric space (X, d), a Borel probability measure v

on X and a countable dense set

ofcontinuous functions. Let (qn)neN be an increasing sequence ofnatural numbers
and (/«)nsN be a sequence ofcontinuous transformations, which converges uniformly
to a map f. Moreover, let (en)neN a decreasing sequence of numbers converging
to 0 and (3)n)neN a sequence ofsubsets ofX with l; A \ 3Dn) < oo. Suppose
that for each k 1,,n
d{qn+l)(<Pk0fn,<Pk°f max max Wk(fn(.x))-<Pk(fl(x))\ < en (6.1)

xeM i=0,...,qn+i~l

Then f is ergodic with respect to v.

Since every continuous function on the compact metric space is uniformly
continuous, we can fulfill requirement (6.1) if / and /„ are sufficiently close to
each other.

Proof. By our assumption (6.1) we get:

lim — V f q> dv for v-almost every x G X
N^f-OO N I Yi=0 JA

H {(pk: X -» M I k g N}

S {(pk: X -> R I k G N} ç C(X\M)

and
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for k 1 n. Hence,

J
Qn +1-1

qn+1 7=0
X] <Pk(fJ(x)) ~ J <Pk dv < 2e„

for every x e £)„ by assumption (6.2). By the Borel-Cantelli lemma

oo oo

V

n=l fc=n

Thus we get

N-l
lim — V (p(f'(x)) f <p do for v-almost every x e X

N^oo N ^ ' Jx

for every cp e S. By an approximation argument this equality holds true for every (p e

C(Jf;R).

Hereby, we deduce the following criterion for the ergodicity of the projectivized
derivative extension.

Proposition 6.2 (Criterion for ergodicity of the projectivized derivative extension).
We consider a sequence ofdiffemorphisms (./«)« sn constructed as above converging
to f lirrifj^oo fn in the C°°-topology and its projectivized derivative extension

(fdf) onfTM with invariant measure jl. Let

S {(pk:FTM -> M | k e N} ç C(PTM;M)

be a countable dense set of continuous functions, (en)neN be a decreasing sequence
of numbers converging to 0 and (3b,j)ne%i be a sequence of subsets ofPTM with

OO

y ji(FTM \ <£)„) < oo.
n 1

Suppose that for each k I,... ,n

max max d/„')(*)) - d/')(x))| < en (6.3)
xePTM i=0,...,qn + i-\ 1 1

and

Un + \ ~ t

< sn for every x JD„. (6.4)
1

q"+1 7=0

IT" p

y <Pk {(fn ' df„J)(x))~ J <pk d/x

77ren the projectivized derivative extension (/, d/) is ergodic with respect to p.

Proof. This Proposition is Lemma 6.1 stated in the setting of our constructions.
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7. Proof of ergodicity of the derivative extension

19

In order to apply our criterion for ergodicity of the projectivized derivative extension
in Proposition 6.2, we have to estimate the Birkhoff sums

1
Qn +

qn+\
<Pk((fn .d/z/K*))

7=0

for an increasing set of x PTM. For this purpose, we introduce the following
"target sets" and "trapping regions."

7.1. Collection of targets sets. The collection Un of "target sets" consists of all
sets

t\ t\ + 1

kn ' kn • Cjn -

X
?2 ti + 1

k-n kn
X

h h + 1 '

-kn kn

in P TM for t\ e Z, t2 e {1,..., kn — 2} and t3 G {0,1,..., kn — 1}. We denote the

union of target sets by Un and note

jx(PTM\ Un) < —.
k-n

(7.1)

Remark 7.1. By condition (C) we have

diam((//„_i,d//„_i)(A)) <

for every A Un

1

n2 • max,||p/||Lip

7.2. Collection of trapping regions. In the next step, we introduce the family Tn

of trapping regions

Tu0,Ul,U2,U3,U4;Vl,V2,V3,V4;j

— Iu0,Ui U2,U3,U4',V\ ,V2,V$,V4

'L / + M
_kn k„

Uq U1 Ui W3 Ud 1

+ 7^~ + 7^^ + 7^^ + 717^" +
k„-q„ kl-qn k^-qn k%-qn k* qn k\ü • qn

'

Uf) Xl\ U2 2^3 MA -f- 1 1

kn -qn k2- q„ k5n qn k% qn k% qn k}t° qn

VA +

Vi_ V2 V3 V4 1_

M kn'<ln k% q„ k*-qn k\° qn
'

v2 V3 V4 + 1

k2 k* -qn k%- qn k* qn k\° qn

L J + 1

n kn J
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in PTM, where

Mo g Z, mi, U2, U4, vi, V4 g {1,.. ,,k„ — 2}, U3, i»3 g {0,1,..., k„ — 1},

and n2 G {knqn,knqn + 1,... ,k*qn - knqn — 1}.

We note that the M-factor IUo,ui,u2,u3,u4;vi,v2,v3,v4 belongs to the "good domain"
of the conjugation map hn for any TUo,UuU2yU3,U4;VuV2tV3>V4-j e Tn. Hence, we can

describe the mapping behaviour of the projectivized derivative extension (hn,dhn)
on the "trapping regions" explicitly.

Lemma 7.2. For any TUo,UuU2,U3>U4;vl,V2tV:itV4-j e Tn we have

(hn, &h„){TUQ U j ,u2,u3,u4;v\ ,V2>v3,V4lj) C ^«o,L^-J,0'+«3) mod kn '

In particular, a strip U^,^,„3,1,4 kuQ,uuu2,u3,u4-,v\,v2,v3,v4 of almost full vertical

length is mapped to a set of small diameter under hn.

Proof. In the proof of Lemma 5.2 we computed the mapping behaviour of <j)n

on IU0,UUU2,U3,U4;VUV2,V3,V4- In addition to this we note that dp<pn id for base

points p G Iuo,ui,u2,u3,u4;vi,v2,v3' Altogether we get

(<pn, dfn)(TU0,U] ,U2,U3,U4;V\ ,V2>V3,V4;f) rk'uo,kn—V\—l,U2,U3,U4;Ul,V2,V3,V4'J '

By the second statement in Proposition 2.2 in is a composition of a translation and

a rotation by on IUo,k2_Vl_hU2,U3^.UuV2,V3^. Moreover, the first statement

of Proposition 2.2 yields that the image of IUo,k2-Vl-hU2,U3,U4;uuV2tV3,n under in

stays contained in

Mo + 1 Uj + 1 U2 ^
W3 Mo + 1 1>1 + 1

^
U2 ^ U3 + 1

knqn k^ • c/n k% qn knqn k^-qn k^-qn k^-qn

Mi V2 V3 Ml v2 V3
+ + TIT^—> t4 + 7^—+

k-l k5n-qn k% • qn' k% k$-qn k6n q„

Hence, we conclude for hn in o <pn :

(hn,dhn)(TUOyUl>u2,u3,u4;vi,V2,V3W4;j) C ^u0,[|ij,0'+M3) mod ^

With the aid of this understanding of the mapping behaviour under (hn, dhn) we

can prove the following "trapping property."

Lemma 7.3. Let (6, r,v) e PTM with r G Gn,v and Atut2,t3 g TLn be arbitrary.
Then at least (l — A) • ?^+l and at most many of the iterates

V kl> kfq„ kf,-qn J J

{hn ° Kn+v^h" 0 Kn + l))(d>r> u)>

0 < i < qn+1, lie in At^t2j3.
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r ^ +
V2

+
V3

+
V4

+
kn k*-qn k% qn k* qn k qn

vi +
V2

+
"3

+
U 4 + 1 1

and

v e

kn kn 'In kn ' Qn kn ' Qn kh° ' Qn

j .7+1

where j e Z, 0 < j < kn. We choose u e {0,... ,kn — 1} such that j + u

tj mod k„. By Lemma 7.2 only the trapping regions 7)1)U, ,V2,V3,V4;J with
t2kn < u\ < (t2 + 1 )kn (for all allowed values u2,u4 e {l,...,k% — 2}) are

mapped into Af,;t2;?3 under (hn,dhn). Since the orbit {6 + i• un+i}i=o,...,qn+l-i is

equidistributed on S1, there are at least

(-i) l

and at most

kn ' Qn

Qn + l

ik%'Qn

' Qn + l

many points of the orbit {^„„+1 (^> r)}i=o,...,9„+i-i contained in a set of the form

Iti,ui,u2,u,u4;vuv2,v3,v4- Hence, there are at least

kn.(k2n-l)2-\(\-—

and at most

1

kn • (kn — 2)

kn'Qn

Qn + l
lk%'Qn-

Qn + l

many iterates (/?„ o Ä«n+1,d(ÄJI o R'an+1))(0,r,v), 0 < i < qn+1, in Atut2,t3-

Remark 7.4. For any point x (6, r) M with r e Gn^v there are at most A-Qn+i
Kn

many iterates (x), 0 < i < qn+i, that are not contained in the "good domain"
of hn, i. e. in one one of the trapping regions, by Remark 5.3.

7.3. Estimates on Birkoff sums. Using the notation from Section 6 we introduce
the sets

Dn S1 x Gn,v x [0,1)

in PTM. By Remark 5.3 we have JZ(£)n) > 1 — A- With the aid of the previous
&n

"trapping properties" we obtain the following estimate on Birkhoff sums for points
in Dn and observables in our chosen family S of Lipschitz continuous functions.



22 P. Kunde CMH

Lemma 7.5. Let z (9, r, v) G S)n and p G {p\,..., pn) C S. 77îctî w have

1n+\~

dn + 1

9n + l 1

„

XI P((/«'d/«)"/(Z)) - / PdM
1 + 1

y=Q dPTM
<

Proof. Since p G {pi,..., pn} C S is aLipschitz continuous function on PTM, we
have

|p((//„_i,d//„_i)(zi)) - p((//„-i,d//„_i)(z2))|

— HP II up •diam((//„_1,d//„_i)(Ari><2!,3)) < —

for any zj,z2 Atlit2it3 e W„ by Remark 7.1. Averaging over all z2 G Afl>/2;/3

yields

pdHn-udH^Hzt))
1

/r((//„_l,d//„_i)(Ari;,2i,3)) J(Hn-i,dHn-\)(Aty ,t2,t3)
L pd/i <-y. (7.2)

Let x G S)n be arbitrary. In the subsequent estimate we denote the set of iterates

j G {0,1,...,qn+i ~ 1} such that (hn o Rin+i,d(h„ o RJan+l))(x) is contained

in A e Un by 1

1n +1-1

7=0

J
" '« I ' /»

E p((Hn-l°hn°RJan+l,d(Hn-iohn0RJan+l))(x))- pdjl
1+1 J

Qn+ I-'
J] p((Hn-i ohno RJan+l, d(Hn-i ohno R]an+l)){x))

E p d/î - / p dM" 7(7r„_1;dH„_,)(A) J{Hn-ud7/„_,

<?ra+1
y=0

AeU„ i)(PTM\U„)

-I E (r"- E p((//"-1 o/!» ° /?a„+,'d(//n-l o/î" ° Äi,+1))(*))
1 x7«+l ; r.AE%Ln 7e^A

/ PdP<)

r.2 ' <7n + l
2/4(PTM \ Un) HPIIO + ^ IIPIIO,

<?n + l
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where the last summand follows from Remark 7.4. In order to estimate the first
summand we exploit Lemma 7.3 and equation (7.2) to get

— 22 p((Hn-i°hn o ,d(Hn-t ohn o RJ ))(x))
I+l ' .— TQn+i .j
<

i / i r _ l \
kl'ln vit((//„-i,di/„_i)(Ari>,2>,3)) J(Hn_udHn-i)(Atl,t2,t3) ^ n2)

on the one hand, and

—— 22 p((Hn-i°K o RJ ,d(Hn-i ohn o Ri ))(x))
qn+1 jtlA

>(2zML.( 1 f pdß-—\

on the other hand. These both estimates yield

— 22 1 0 h" 0 Rk I 1 ' d(^»-l ° ° ))(*))
#«+1

7 er A

-/ pd/z
,dür„_i)(A)

10 f 1 1

<T~ \ P d/x + j"kn dff^XA) «X • »

We also recall Jï(¥TM \ Un < ^ from equation (7.1). Altogether we conclude

4/1+ 1_1j 4n+l 1
a

— XZ p{^Hn—i °hno RJ, d(Hn-i ohno R^ ))(*)) - /
?» + ;. 0 j pdfi

10 14 9 2

<^"llpllo+^+^"llpllo+^"llpllo<^'
using requirement (B) on the number kn in the last step. With x (Hn, dHn)~l (z)
we obtain the statement of the lemma.

7.4. Application of the criterion. In order to check the requirements of Proposition

6.2 we consider the family S {pi, p2,...} of Lipschitz continuous functions

Pi'.TTM -> M chosen at the beginning and the sets

<£>„ S1 x Gn>v x [0,1) C PTM.
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Since pt(£)n) > 1 - p we have

oo

]JP/Z(PTM \ £>„) < oo.
n=1

In our successive construction the requirement (6.3) is fulfilled by Lemma 3.2 and

condition (6.4) is satisfied by Lemma 7.5. Hence, we can apply Proposition 6.2 and

obtain the ergodicity of the projectivized derivative extension (/, d/) with respect
to the invariant measure /L

Acknowledgements. The author would like to thank the referee for very interesting
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and helped to improve the presentation of the paper greatly.
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