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Smooth zero-entropy diffeomorphisms
with ergodic derivative extension

Philipp Kunde

Abstract. On any smooth compact and connected manifold of dimension 2 admitting a smooth
non-trivial circle action we construct C *°-diffeomorphisms of topological entropy zero whose
differential is ergodic with respect to a smooth measure in the projectivization of the tangent
bundle. The proof is based on a version of the “approximation-by-conjugation”-method.

Mathematics Subject Classification (2010). 37C40; 37A05, 57R50, 53C99.

Keywords. Smooth ergodic theory, approximation-by-conjugation method, almost isometries,
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Introduction

Let M be a smooth compact and connected manifold of dimension m > 2 with a
non-trivial circle action § = {S;};er, Si+1 = S, preserving a smooth volume .
In their influential paper [1], D. V. Anosov and A.Katok introduced the so-called
“approximation-by-conjugation”-method which enables the construction of smooth
diffeomorphisms with specific ergodic properties (e.g. weakly mixing ones in [1,
Section 5]) and spectral properties ([10]) or non-standard smooth realizations of
measure-preserving systems (e.g. [1, Section 6], [2], [6]). These diffeomorphisms
are constructed as limits of conjugates

o H 1,

fn =H,o San_H n
where

|
Opt1 =0p + ———— € Q: B, = Hp g Ohn,
kn-ln-qn

and £, is a measure-preserving diffeomorphism satisfying
SL (¢] hn — hn @] SL 5
dn qn

In each step the conjugation map 4, and the parameter &, are chosen such that the
diffeomorphism f, imitates the desired property with a certain precision. Then
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the parameter /,, is chosen large enough to guarantee closeness of f, to f,—1
in the C*°-topology and so the convergence of the sequence (f,)nen to a limit
diffeomorphism is provided. It is even possible to keep this limit diffeomorphism
within any given C*°-neighbourhood of the initial element Sy, or, by applying a
fixed diffeomorphism g first, of g o Sy, o ¢~ 1. So the construction can be carried
out in a neighbourhood of any diffeomorphism conjugate to an element of the action.
Thus,

reds
L &

AM) =1{hoS;oh™! :t €S, h € Diff™®(M, p)}

is a natural space for the produced diffeomorphisms. Moreover, we will consider the
restricted space

(o0

Ag(M) = {ho Sy oh~!: h e Diff®(M,u)}

for @ € S!. See also the very interesting survey article [4] for more details and other
results of this method.

As mentioned above Anosov and Katok proved that the set of weakly mixing
diffeomorphisms is generic (i.e. it is a dense Gg-set) in A(M) in the C*(M)-
topology. In extension of it R. Gunesch and A. Katok constructed weakly mixing
diffeomorphisms preserving a measurable Riemannian metric in [7]. Actually, it
follows from the respective proofs that both results are true in Ay (M) for a Gs-set
ofa € S'. However, both proofs do not give a full description of the set of & € S! for
which the particular result holds in 4y (M). Such an investigation is started in [5]:
B.Fayad and M. Saprykina showed that if « € S! is Liouville, the set of weakly
mixing diffeomorphisms is generic in the C°° (M )-topology in A, (M) in case of
dimension 2. Generalising these results Gunesch and the author proved in [8] that
if « € R is Liouville, the set of volume-preserving diffeomorphisms, that are weakly
mixing and preserve a measurable Riemannian metric, is dense in the C*-topology
in AyL(M). Recently, it has been proven that for every p > 0 and m > 2 there
exists a weakly mixing real-analytic diffeomorphism f € Diﬂ“fj (T™, ) preserving
a measurable Riemannian metric [11].

Such diffeomorphisms preserving an absolutely continuous probability measure
and a measurable Riemannian metric are called IM-diffeomorphisms. In [7, Sec-
tion 3] IM-diffeomorphisms and IM-group actions are discussed comprehensively.
In particular, the existence of a measurable invariant metric for a diffeomorphism is
equivalent to the existence of an invariant measure for the projectivized derivative
extension which is absolutely continuous in the fibers. Hence, it is a natural question
to study the ergodic properties of the projectivized derivative extension with respect
to such a measure. Actually, the constructions in [7] as well as [8] are as non-ergodic
as possible: Their projectivized derivative extensions are isomorphic to the direct
product of the diffeomorphism in the base with the trivial action in the fibers so that
each ergodic component intersects almost every fiber in a single point. In this paper
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we realise the other extreme possibility by constructing IM-diffeomorphisms whose
differential is ergodic with respect to such a smooth measure in the projectivization
of the tangent bundle:

Theorem 1. Let M be a smooth compact and connected manifold of dimension 2 with
a non-trivial circle action 8 = {S;}ter, St+1 = St, preserving a smooth volume 1.
Then there exists a volume-preserving diffeomorphism in A(M ), whose projectivized
derivative extension is ergodic with respect to a measure in the projectivization of
the tangent bundle which is absolutely continuous in the fibers.

This construction provides the only known examples of volume-preserving
diffeomorphisms whose differential is ergodic with respect to a smooth measure
in the projectivization of the tangent bundle.

By the same approach as in [8] it is possible to obtain a weakly mixing
diffeomorphism and to generalise this result to dimension m > 2. In order to
alleviate notations and focus on the new parts of the construction we present a proof
in case of dimension 2. It will be subject of future research to study further ergodic
properties (e.g. weak mixing) of the projectivized derivative extension with respect
to such a measure and to obtain real-analytic counterparts of these results.

1. Preliminaries

1.1. Definitions and notations. We refer to [8, Section 2.1] for useful definitions
and notations. Additionally, we want to introduce the invariant measure for the
projectivized derivative extension: Let f: M — M be a smooth diffeomorphism.
On the tangent bundle TM we consider the derivative extension ( f,df). Let p € M.
We can naturally identify the tangent space T, M with R?. Next, we consider its
projective space PR? that is diffeomorphic to the circle and introduce the notation
[a,b] C PR? which describes the allowed values for the spherical coordinate
¢ € R/wZ. This yields the projectivized tangent bundle which will be denoted
by PT'M. In particular, we will use the notation ¢ x [a,b] C PTM with ¢ C M for
the set in IPTM with base points x € ¢ and spherical coordinates ¢ € [a, b]. On the
projectivized tangent bundle we consider the projectivized derivative extension of a
diffeomorphism f: M — M. By misuse of notation we will denote it by ( f, df)
again.

Following the lines of [3, Chapter 5.1] we consider the cotangent bundle 7* M
and the projection maps

n:TM — M
as well as
Ty TM* - M.
Then we define the canonical 1-form w on TM™* by Wy = n;‘ 7, where w|,

denotes the 1-form w evaluated at 1 € TM™. Additionally we define the canonical
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2-form 2 on TM* by Q = dw, which is symplectic. In the next step, let M
be a Riemannian manifold and V: M — R be a function. Then we examine the
Lagrangian L: TM — R given by

L) =Sl vome),

where |&| is computed with respect to the Riemannian metric. To this Lagrangian we
associate a bundle map FL:TM — TM?* defined by

FLE() = o (LE + )=

for pe M, &, ne T,M. Hereby, we define ® = FL*Q andv = FL*w.

In [3, Chapter 5.1] the differential form v A ® on the unit tangent bundle SM
is considered. It is proven that it is the local product, up to a constant multiple, of
the Riemannian volume on M with the Lebesgue 1-form on the unit tangent spheres
of M with respect to the Riemannian metric. In particular, for any v A ©-integrable
function g on SM we have “integrations over the fibers”

] gwx@zc-]dvm(p)f T
SM M Sy M

where Vol is the volume form induced by the Riemannian metric and ju, is the
standard Borel measure on the tangent sphere S, M with respect to the Riemannian
metric.

By the same approach we can deduce the same formula for the constructed
invariant measurable Riemannian metric ws and for any integrable function
on PTM. The corresponding measure will be denoted by . Moreover, we point
out that in our constructions the measure induced by the measurable Riemannian
metric wo, coincides with the measure i on M. Since w is f-invariant, we
conclude that iz is ( f, df)-invariant.

1.2. First steps of the proof. By the same arguments as in [8, Section 2.2] con-
structions on M = S! x [0, 1] equipped with Lebesgue measure y and standard
circle action R = { Ry }4es1 comprising of diffeomorphisms Ry (0,r) = (0 + o, 1)
can be transferred to a general 2-dimensional compact connected smooth manifold
with a non-trivial circle action § = {S; }ter, St+1 = S¢.

1.3. Outline of the proof. The constructions are based on the “approximation-by-
conjugation”-method developed by D. V. Anosov and A. Katok in [1]. As indicated
in the introduction, the desired diffeomorphism f with ergodic projectivized
derivative extension is constructed as the limit of volume-preserving smooth
diffeomorphisms f, defined by

Jn=HypoRa,  oH "

Op41 n
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Here, the rational numbers o, +1 € S! and the conjugation maps H,, € Diff>(M, 1)
are constructed inductively:

1
Opt+1 = Lok =a,+——— and H, =hyo---0h,,

dn+1 kn 'ln *Yn

where the conjugation map h, € Dift° (M, ) has to satisfy h, o Ry, = Ry, © hy
and k,,l, € N are parameters that have to be chosen appropriately. In particular,
we will show convergence of the sequence (f,)nen in A(M) by choosing the
parameter /,, sufficiently large in Section 3.

In our construction /i, = i, o ¢, with two step-by-step defined smooth measure-
preserving diffeomorphisms. As in [8] ¢, maps a strip of almost full vertical length
to a set of small diameter on the one hand in order to get ergodicity of the map
itself. On the other hand, ¢, acts as an isometry on large parts of the manifold. In
comparison to [8], an additional map i, is introduced in order to obtain ergodicity
of the projectivized derivative extension. This map i, acts as a composition of a
translation and rotation on large parts of the domain where the angle of rotation is
different from section to section.

Additionally, we will use a sequence of partial partitions ¢,, which converges
to the decomposition into points. On the partition elements of ¢, the conjugation
map h, will act as an isometry and this will enable us to construct an f -invariant
measurable Riemannian metric in Sections 4 and 5 by the same approach as in [8].

Finally, we will prove the ergodicity of the projectivized derivative extension. This
proof bases upon estimates of Birkhoff sums for Lipschitz continuous observables
p:PTM — R. For this purpose, we introduce so-called “trapping regions” and
“target sets” covering almost the whole space PTM . Except for initial values in a
set of very small measure the vast majority of iterates of the orbit under Ry, | is
captured by the trapping regions. Under (4, dh,) these iterates are mapped into the
target sets almost uniformly distributed (see Lemma 7.3). At this juncture, we require
the map i, to act as a rotation by a different angle on different trapping regions. Since
the diameter of these target sets is sufficiently small, we can approximate the value
of the observable by the value of its integral on the particular target set. Hereby, we
obtain the desired estimate on the Birkoff sum in Lemma 7.5.

2. Construction of the conjugation map

We fix an arbitrary countable set £ = {py, p2, . . .} of Lipschitz continuous functions
pi:PTM — R, that is dense in C(PTM;R). Since C(PTM;R) is separable and
Lipschitz continuous functions are dense in C(P7'M ; R), this is possible. For any
Lipschitz continuous function p on PTM we denote its Lipschitz constant by ||p]| 4,

and || pllo = maxxeprm|p(x)|.
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We present step n in our inductive process of construction. We assume that we
have already defined the rational numbers ay, ..., a, € S! and the conjugation map

H, 1 =hyo---0h,_1 € Diff(M, n).

First of all, we put
1
Upt1 = Pn+1 S T —
dn+1 kn-ln-qn
and choose the parameter k, € N large enough such that the following conditions

are fulfilled:

kn > 0% max oill. @)

greny

kn >3()-n2-._rr11ax lloillo - (B)

For every subset ¢ C PTM of diameter diam(c) < % we have:

1

diam((Hn—l9dHn“1)(c))< 2 :
n? - max;i=1,...,.n [|pi llLip

©)

Moreover the sequence of parameters (k,),en should satisfy

2.1. The conjugation map ¢,. In[8, Section 3.3] we constructed the smooth area-

preserving diffeomorphism ¢; ¢, on S' x [0,1] satisfying the subsequent

properties:

Proposition 2.1. Let g,&, € (0, %) and A, 4 € N. Then there is a smooth area-

preserving 1-periodic diffeomorphism @y 4 ;. o, S' x [0,1] = ST x [0, 1] such that

1. Letty € Z, [2eu] < tp < pu— [2ep] — 1, |uz| < &3, and u; € (2e, %) be of the
form % with t; € Z. Then we have

b

H 28
[1 th+1—u; 1 Ir +Up

qzk,s,u,sz([%’ 1 —Aul] y [12 +uy th +1 —uz])

A A A WA

] x [ug,1 —uq].

2. Py.e e, ACts as an isometry on each cuboid

[t1+282 t1+1—282]x[t2+282 12+1—282]
peA T A wo 1 ’
where t; € 7, [2ep] <ti < u— [2en] — 1 fori =1,2.



Vol. 95 (2020) Ergodic derivative extension 7

The first property will enable us to prove in Lemma 7.2 that ¢, maps sets of almost
full length in the r-coordinate to sets of small diameter. By the second property ¢,
acts as an isometry on each partition element I, € ¢ (see the proof of Lemma 5.2).
In the construction of the map q;l,e,u,ez one uses a map C; causing a stretch by A
in the first coordinate and a so-called “quasi-rotation” ¢, constructed with the aid of
“Moser’s trick,” which is the rotation by /2 about the point (%, %) on [2g, 1 —2¢]?
and coincides with the identity outside of [e,1 — £]?>. With these maps one also
defines a family of “inner rotations of type A” v, ¢, in order to get the second
property stated above: A map of the form C- o ¢, o C; would cause an expansion
by A in one coordinate and by A~! in another, so far away from being an isometry.
The “inner rotations of type A” cause that C; and C; ! act on the same coordinate

on the elements in € &p.

Proof of Proposition 2.1. As announced we will use the “quasi-rotations” introduced
in [5] and [8, Lemma 3.7]:

Fact. Forevery e € (0, %) there exists a smooth area-preserving diffeomorphism @,
on R? which is the rotation by /2 about the point (3,3) on [2e,1 — 2¢]* and
coincides with the identity outside of [e, 1 — g].

Furthermore, for A € N we define the maps
Ca(x1,x2) = (A-x1,x2) and  Dj(xy,x2) = (A-x1,4 - x2).

Moreover, let 4 € N. We construct a diffeomorphism v/, , in the following way:

* Under the map D, any cube of the form

[ ol e el

[T T

with /; € N is mapped onto [/, [} + 1] x [l2, 12 + 1].

e On [0,1]> we will use the diffeomorphism gp;; from the above mentioned
fact. Since this is the identity outside of [g,,1 — &3]?, we can extend it to a
diffeomorphism @' on R? using the instruction

O (1 + 11, x0 4+ 1) = (1. k) + ¢, (x1, x2),
where [; € Z and x; € [0, 1].
* Now we define the smooth measure-preserving diffeomorphism
Ve, = D;l o@l oD,.

This is a smooth map because ¥, ., is the identity in a neighbourhood of the
boundary by construction.
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Using these maps we build the following smooth area-preserving diffeomorphism:

_ 1 1 _ -
Brospe: [o, ﬂ % [0,1] — [o, ﬂ X [0.1], Grepes = Ci ' 0Wpue, s 0 C.

Afterwards, ¢, 1.6.0.6- 18 €xtended to a diffeomorphism on S1x[0, 1] by the description

$l,£,u,82 (xl =+ %7 Xz) = (31:’ O) ) ¢_’A,s,u,sz(xl , X2).

This map satisfies the properties stated in Proposition 2.1. 0

Using these maps we define the diffeomorphism ¢, on [0, ﬁ] x [0, 1]

bn =@ o 1 k2 1
n'dn, 2k,% sKn, 2‘k,%-qn

Since ¢, coincides with the identity in a neighbourhood of the boundary of its
domain, we can extend ¢, to a diffeomorphism on S! x [0, 1] using the description

¢nOR L :R 1 O¢n.

kn-an kn-dn

2.2. The conjugation map i,,. In this subsection we define the so-called “inner ro-
tations of type B” i, which will allow us to prove ergodicity of the projectivized
derivative extension. In particular, we will exploit the different rotation angles on the
particular sections in the proof of a “trapping property” in Lemma 7.3. This trapping

property will be crucial in the estimates on Birkhoff sums in Lemma 7.5.
Proposition 2.2, Let a, = k,? “qn, Cn = k,% and g, = kLz There is a smooth

n

measure-preserving diffeomorphism
in: ST x[0,1] = S' x [0, 1]

such that:
1. Each square of the form

[L,iJr]}X[L j+1]

9
an an an an

with i, j € 7 is mapped onto itself by i,, and i, coincides with the identity on a
o2 -neighbourhood of its boundary.

2. On every square

9

I S1+é&, 1 s1+1—¢ ] Sy + € [ s+ 1—¢
[_+1 n +1 H]XI:J—}-Z n.]_|_2 n]

e Cn <@a O &5 ~ U Wy O~y g -
i Q41
c[—, ]x[O,l],
aAn dp

where 51,82 € 7, 1 < 51,82 < ¢ — 2, i is a composition of a translation and a
rotation by i, where f; = % in case of s = i mod ky,.
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3. inoR1 =R oiy.

an an
For the construction we need the subsequent lemma:
Lemma 2.3. Letc € N, ¢ > 3, ¢ € (0, %] and B € [0, w]. Then there is a smooth
measure-preserving diffeomorphism

Veep:[0.117 = [0.1
satisfying the following properties:
* Ve.ep coincides with the identity on [0, 1]% \ [e, 1 — €]

* On every square

|:j—+—83_]'—I—I—B:IX[k—I—S’k—!—l—S:I

c c C C

with 1 < j,k < ¢ — 2 the map Y., p is equal to a composition of a translation
and a rotation by arc B around a new center.

M

Figure 1. The action of ¥ ¢ g on [0, 1]2.

Proof. There is a rearrangement of these squares

[_j+8 j—i—l—e]x[k—i—e k—l—l—e]
c ¢ e c

rotated by B in [2e,1 — 2¢]?>. Corresponding to this, each center (#, —’Et—oé)
of such a square is translated by (a;«.b;x). We will need these translations later.
Moreover, we will use a smooth diffeomorphism v,: R2 — RZ, which coincides
with the identity on R? \ [, 1 — £]? and with a dilation by 1 in each coordinate about

the center on each of the translated and rotated squares.
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Now, let ¥1: R? — R? be a smooth diffeomorphism satisfying

(x,y) onR?\ [¢, 1 — ¢]?,

Y1 (x,y) = (& + %(X . j+0.5), k+0.5 + %(y o k+0_5))

c c c c

11§ iricg] ,[ked keiog)

on each [ 5 5 5 >

Additionally, we choose a smooth diffeomorphism 7; that is the identity on
R? \ [, 1 — ¢]? and a rotation by B on each disc

’ . k + 0.
(222 +6-207) = &)

Furthermore, let 7, be a smooth diffeomorphism with the following properties

(x,y) onR?\ [¢, 1 —¢]?,

(x,y) = {(x+ak.y+bji)
4+0.52 k+0.5\2 1
on each {(x — 2=2)" 4 (y — £22)" < \/ﬁc}'
We define ¢ = 2 16 1, 0 71 0 Y. Then the diffeomorphism ¥ coincides with the
identity on R?\ [, 1 — &]? and with a composition of a rotation by f and a translation
on every square

[j+8,j—l—1—8}x[k+s’k—|—l—s]

(& C € c

with 1 < j,k < ¢ — 2. In particular, ¥ is measure-preserving on the union of these
sets. Hence, we can construct the desired measure-preserving diffeomorphism ¥ , g
with the aid of Moser’s trick similarly to [8, Lemma 3.4]. (]

Proof of Proposition 2.2. Using the dilation
192 5
Dy [(), —] — [0,1]%, Dg(x1,x2) = (a-x1,a-x3)
a

for a € 7Z we define the map

172 172 =
wa,C,E,ﬁ: [0, ;:l —> [O, E:l 5 wa,c,s,ﬂ = Da 1 o] 1/fc,s,ﬂ o Da.

Since it coincides with the identity in a neighbourhood of the boundary, we can
extend it to a smooth diffeomorphism on S! x [0, 1] equivariantly by the description

as ay dz

ay
Vaeos (314 “oxa 4 2) = (“192) 1 Yy i1,
a a a d

fora;,a, € Z.
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On [t 22 x [0, 1] we define:

s :
Bi = . incase of s =i mod ky
n

as well as
iy = W6 21 g
n wkn-qn;knsgaﬂl

Since each map coincides with the identity in a neighbourhood of the boundary, we
can piece them together in order to get a smooth diffeomorphism on S! x [0,1]. [

2.3. The conjugation map %,. With the aid of the previous constructions we define
the conjugation map h, = i, o ¢,. By the observations in the previous subsections

wehave h, oR1 = R ohy,.
qn qn

3. Convergence of the sequence (fy)nen in Diff™ (M, u)

In the following we show that the sequence of constructed measure-preserving smooth
diffeomorphisms f,, = Hy o Ry, ., o H, ! converges. For this purpose, the next
result, that can be found in [6, Lemma 4] is very useful.

Lemma 3.1. Let k € Ny and h be a C*-diffeomorphism on M. Then we get for
everyo, B € R:

dg(ho Ryoh™ hoRgoh™) < Ce-[[|A|I[FF] - | — B,

where the constant Cy depends solely on k. In particular Cy = 1.

Under some conditions on the proximity of «, and «,4+; we can prove
convergence:

Lemma 3.2. There exists a sequence o, = fl’—: of rational numbers such that our
sequence of constructed diffeomorphisms f, converges in the Diff® (M )-topology to
a diffeomorphism f € A(M). Additionally, we have for every p € {p1,...,pp} C B

1
sup [p((f™, df™)(x)) = p((£". dfHOD] < 5

xePTM

for every natural number m < qp41 andn € N.

Proof. First of all, we recall the relations

an+1 _an - and hn o Ran - R(x” o hn.

knlp-qn
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Hereby we observe for any m € N

m m ==, m m —1 —1
Iy = HHORa,hLl o H =~ = Hn_lohnoRanoR . ©oh, oH, ",
kn-ln-an
= n_loR;"nohnoRm . ohtoH .
kn-ln-an

Since the construction of the conjugation map /i, does not involve /,, we can obtain

1
sup  d((f;, A7) ), (ft . dft (X)) < o
xePTM “Kn

for every natural number m < g, as well as

1
Gpag — | < (3.1
n " T2 Cy kg ||| Hall ]

by choosing [, € N large enough.
We can apply Lemma 3.1 for every k,n € N:

dk(fns fn—l) = dk(Hn 0 Run+] o} Hn_l, H, o Ran o Hn_l)

k+1
< Ck - “lHnmkil “|@n+1 — anl.

By assumption (3.1) it follows for every k < n:

dk(fn’ fn—l) = dn(fna fn—l)

1
< Cu - I Hallln 41

. € —, (3.2)
FEL oGy gy || ERIETT 2

In the next step we show that for arbitrary k € N (f,)sen is a Cauchy sequence
in Diff* (M), i.e. limy, ;m—s00 dk(fn, fm) = 0. For this purpose, we calculate:

T di (fan f) < lim D di(fis fir) = ) de(fi fim). (33)

i=m+1 i=m+1

We consider the limit process m — 00, i.e. we can assume kK < m and obtain from
equations (3.2) and (3.3):
21
A AU f) < Jim 3 5 <o
i=m+1

Since Diff*(M) is complete, the sequence (fy)neN converges consequently in
Diff* (M) for every k € N. Thus, the sequence converges in Diff> (M) by definition.
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Moreover, we estimate for every m < g4

sup d ((f", df") ), (f™,df™)(x))

xePTM
o0
< > sup d(( M) (LS ) ()
]=n+1 xePTM
(0. 0]
1 1
< —.
< 2 5% =
Jj=n+1
By requirement (A) on the number k,, we obtain for every p € {p1,...,pn} C &
1
sup [p((S™, df™)(x)) — p((f,". d S (X)) < —
xePTM n
for every number m < q,4+; and n € N. L]

4. Criterion for the existence of a f -invariant measurable Riemannian metric

Let wp denote the standard Riemannian metric on M = S! x [0, 1]. By the same
approach as in [7, Section 4.8] we prove the subsequent criterion for the existence of
a f-invariant measurable Riemannian metric:

Proposition 4.1 (Criterion for the existence of a f -invariant measurable Riemannian
metric). Let ({,)nen be a sequence of partial partitions whose elements cover a set
of measure at least 1 — nLZ for every n € N. Suppose that for every n € N the
conjugation map hy, acts as an isometry on every element of the partition ¢,,. Then
the limit diffeomorphism [ = 1im,_so0 fu of the sequence fy = Hpo Ry, o H, !
admits an invariant measurable Riemannian metric.

Proof. The assumption implies that for every I, € &, h;1|hn (i, 1S an isometry
as well. In the following we construct the f-invariant measurable Riemannian
metric. For it we put w, = (H, ')*wp. Each w, is a smooth Riemannian metric
because it is the pullback of a smooth metric via a C*°(M)-diffeomorphism. Since
R;n L0 = @ the metric w, is f,-invariant:

Ja'wn = (Hy 0 Ro, .y 0 Hy')*(Hy ') wo
= (171,;1)*1'3;"+l HX(H*wo
= (H; )Ry, w0 = (H, ") wy = wy.
With the following lemmas we show that the limit Wy, := lim, o0 @, eXists p-almost
everywhere and is the desired f-invariant Riemannian metric.
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Lemma 4.2. The sequence (wn)neN converges ji-a.e. to a limit wy

Proof. Forevery N € N we have for every k > 0:

on+k = (Hy L) o0 = (AL ooyl o Hy')*wo
= (H,;U*(h;&rk FR— hﬁil)*a)o.

Since the elements of the partition {, cover M except a set of measure at

most n% and h;llh"(f") is an isometry for every I, € {,, wn 4, coincides with

wn = (Hy')*®o on a set of measure at least 1 — > 7 v, n% As this measure

approaches 1 for N — oo, the sequence (w,)nen converges on a set of full
measure. ]

Lemma 4.3. The limit ws is a measurable Riemannian metric.

Proof. The limit ws, is a measurable map because it is the pointwise limit of the
smooth metrics w,, which in particular are measurable. By the same reasoning we| p
is symmetric for p-almost every p € M. Furthermore, ws is positive definite
because w, is positive definite for every n € N and wy coincides with wp
on T'M ® T' M minus a set of measure at most ZZOZNH n% Since this is true
forevery N € N, wy is positive definite on a set of full measure. ]

Lemma 4.4. w is f-invariant, i.e. [*weo = W p-a.e.

Proof. By Lemma 4.2 the sequence (w,)sen converges in the C%-topology
pointwise almost everywhere. Hence, we obtain using Egoroff’s theorem: For
every § > 0 there is a set Cs € M such that u(M \ Cs) < § and the convergence
Wy —> Weo is uniform on Cy.

The function f was constructed as the limit of the sequence (f)nen in the
C®-topology. Thus, f, := f,"!o f — idin the C*-topology. Since M is compact,
this convergence is uniform too.

Furthermore, the smoothness of f implies
[fweo = f* lim w, = lim f*w,.
R—>00 n—00
Therewith, we compute on Cj:
oo = lim ((fufa) wn) = lim (/" ffon) = lim ffon = wo,
: n—oo 7 n=sog: LN n—oo M

where we used the uniform convergence on Cj in the last step. As this holds on every
set Cs with § > 0, it also holds on the set | J5. o Cs. This is a set of full measure and
therefore the claim follows. Ul

Hence, the desired f-invariant measurable Riemannian metric wo is constructed
and thus Proposition 4.1 is proven. L]
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5. Proof of existence of the f -invariant measurable Riemannian metric

In order to apply our criterion 4.1 for the existence of a f-invariant measurable
Riemannian metric we define a partial partition ¢, and check that the conjugation
map /1, acts as an isometry on it.

5.1. Partial partition {,. The partial partition ¢, will be defined in such a way that
it covers large parts of M = S! x [0, 1] and A, acts as an isometry on it. For this
purpose, the partition elements will be of the form

[tl—l—s,, f1+1—8n]x[f2+6n rz—l—l—sn]

b 9
Cp *dp Cp Ay Cpdp Cp*dp

(with the parameters a,, ¢, and &, in the construction of the conjugation map i)
positioned in the domain, where ¢, acts as an isometry. To be precise the partial
partition ¢, consists of all multidimensional intervals of the following form:

IMO SULL,U2,U3,U45V1,V2,U3,04

_|:u0+u1+u2+u3+u4+1
kn-qn ki-qn kyj-qn  kS-qn  KkS-qn k)0 -gn’
knu-oqn " kﬁu-lqn " kﬁu-zqn " kSu-3qn - Z;ﬁ Jrqj N k,%"l' ‘In:l
) [Z_:? " k,?v-2qn N kSU'3qn " kSU-4qn " ké"l- dn’
Gt En Tt +q1 B k,y’l- n ]

where ug € Z and Uy, U, U4, V1, V4 € {1,...,k3—2}andu3,v3 €{0,1,...,k,—1}
andv2 S {knqn,knqn + 1,...,k3q” _knqn - 1}.

Remark 5.1. For every n € N the partial partition , consists of disjoint sets, covers
a set of measure at least (1 — k%)s >1-— 5 and the sequence (¢, )p,eN converges to

n )
the decomposition into points.

5.2. Application of the criterion. The following Lemma shows that the conjugation
map A, = i, o ¢, constructed in Section 2 is an isometry with respect to wq on the
elements of the partial partition ,.

Lemma5.2. Let I,, € {,. Then h,| i, is an isometry with respect to wy.

Proof. The proof is similar to the proof of [8, Lemma 7.1]. Let Ivn =
Tug g upusugivgva,v3,04 € Cn b a partition element. By Proposition 2.1 and our
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choice of parameters this element f,, is positioned in such a way that ¢, acts as an
isometry on it. In fact, ¢, (1) is equal to

ug+1 vy +1 Us Uz Uy 1

[ann —kg"i’n+k3'€n+kg'%+k,§'0n+k,§°“?n
up+1 vy +1 Us U3 ug + 1 |
kndn  K3-Gn  Kidn  KS-gn ' K§-qn KD }

st [ul 4 %) % V3 n V4 4 1
k;% k,? *dn kB *4n kﬁ *dn k%() 'Qn’

n

2t +

ui V2 U3 N vg + 1 1

= 2 :
u()akn_vl _lsu22u35u4;u1’v2yv3’v4

On this set i, = wka gnk2, L 5, B 18 equal to the composition of a translation and the

respective rotations by the second statement in Proposition 2.2. L]

Remark 5.3. As observed in Lemma 5.2 the map A, = i, o¢, acts asthe composition
of the respective rotations and translations on every I, € Cn. In the following
G, = U Toet, in will be called the “good domain” of 4,. Its corresponding parts
on the #-axis are called the “good horizontal length” of 4,, and are denoted by G, 5
Analogously, its corresponding parts on the r-axis are called the “good vertical
length” and are denoted by G, ,. By the same arguments as in Remark 5.1 observe

that for an interval [k i kl 4;11 ] on the f-axis the length

254 1 8 1
(I—E) .knqn z(l_k_%)'knq'},1

is part of the “good horizontal length”. Similarly, the length

is part of the “good vertical length” on the r-axis.

Since the elements of the partial partition {, cover a set of M of measure at least
k2 (see Remark 5.1), we are able to apply the criterion in Proposition 4.1 and

conclude the existence of a measurable f-invariant Riemannian metric.



Vol. 95 (2020) Ergodic derivative extension 17
6. Criterion for ergodicity of the derivative extension

A continuous transformation f: X — X on a compact metric space X preserving a
Borel probability measure v is ergodic with respect to v if

N-1
1 :
N“f}p I iEZO o(f'(x)) = /X(p dv for v-almost every x € X

forevery ¢ € C(X;R)[12]. Since C(X;R) is a separable metric space and Lipschitz
continuous functions are dense in C(X; R), we can choose a countable set

E={pm:X >R|keN)}

of Lipschitz continuous functions that is dense in C(X;R). With the aid of the
following lemma one can prove ergodicity in the general setup of the approximation-
by-conjugation-method.

Lemma 6.1. Consider a compact metric space (X, d), a Borel probability measure v
on X and a countable dense set

g ={p: X >R |k eN}C CX;R)

of continuous functions. Let (qn)neN be an increasing sequence of natural numbers
and ( fy)neN be a sequence of continuous transformations, which converges uniformly
to a map f. Moreover, let (¢,)neN a decreasing sequence of numbers converging
to 0 and (Dn)neN a sequence of subsets of X withy .- v(X \ Dy) < co. Suppose
that for eachk = 1,...,n

A9 (ggo forpro f) = max _ max [gr(fi D=k (S (D] < en 6.1)

l=0,...,qn+]—
and
1 dn+1-1 .
> (S (x)— [ Pk dv‘ <gp, foreveryx € Dy,  (6.2)
dnt1 5T,

Then f is ergodic with respect to v.

Since every continuous function on the compact metric space is uniformly
continuous, we can fulfill requirement (6.1) if / and f, are sufficiently close to
each other.

Proof. By our assumption (6.1) we get:

1 gnt+1—1 gni+1—1

) 1 .
Y o f - D ko f)
j=0 1 j=o

< By
0

dn+1 4n
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fork = 1,...,n. Hence,
1 dn+1—1 .
| = > ar/on- [ a] <2,
4n+1 =0

for every x € D, by assumption (6.2). By the Borel-Cantelli lemma

v(ﬁ GX\JDk)=O.

n=1k=n
Thus we get
N-1
lim —1— Z o(f1(x)) = f @ dv for v-almost every x € X
N—oo N i—0 g

forevery ¢ € E. By an approximation argument this equality holds true forevery ¢ €
C(X;R). ]

Hereby, we deduce the following criterion for the ergodicity of the projectivized
derivative extension.

Proposition 6.2 (Criterion for ergodicity of the projectivized derivative extension).
We consider a sequence of diffemorphisms ( f,,)neN constructed as above converging
to [ = limy_oo fn in the C®-topology and its projectivized derivative extension
(f,df) on PTM with invariant measure Q. Let

g = {pe:PTM — R | k € N} C C(PTM;R)

be a countable dense set of continuous functions, (&€,)neN be a decreasing sequence
of numbers converging to 0 and (Dy)neN be a sequence of subsets of PTM with

Y a@PTM\ Dy) < 0.

n=1

Suppose that for eachk = 1,....,n
max max oe((fy, dD)) —e((/Ld/ D) <en (63)

x€PTM i=0,....qn 41—

and
1 gn+1—1 . .
Y AL~ [t <en forevryxe D, 64)
n+1 E
j=0

Then the projectivized derivative extension ( f,d f) is ergodic with respect to [.

Proof. This Proposition is Lemma 6.1 stated in the setting of our constructions. [
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7. Proof of ergodicity of the derivative extension

In order to apply our criterion for ergodicity of the projectivized derivative extension
in Proposition 6.2, we have to estimate the Birkhoff sums

1 dn+1—1 ) .
ok (S, df])(x))
dn+1 ]Z:(:) g

for an increasing set of x € P7TM. For this purpose, we introduce the following
“target sets” and “‘trapping regions.”

7.1. Collection of targets sets. The collection U, of “target sets” consists of all
sets

A _[ th tl+]]x[l2 t2+1i|xl:t3 l3—|—1]

TR kn"]n’kn'% kn' kn kn Kn

inPTM forty € Z,t, € {1,...,k,—2}and t; € {0,1,...,k, — 1}. We denote the
union of target sets by U, and note

R(PTM \ Uy,) < ki (7.1)

n

Remark 7.1. By condition (C) we have
1

n? -max;=1,. | pi ”Lip

diam((Hp—1,dHp-1)(A)) <
for every A € U,

7.2. Collection of trapping regions. In the next step, we introduce the family 7,
of trapping regions

Tuo,ul U2, U3, ULV ,V2,03,V45)

j J+ 1)
— . x|L,
uQ,U,U2,U3,Uq,V1,02,U3,04 l:kn kn
Ug Ui Us Us Uy 1
— o + + + + ,
[k,,.qn K3 qn  K3-qn | KkS-qn | KkB-gn @ ki0.g,
Uuo 231 75) U3 ug + 1 1 ]

+ + + =
Knodn Kk2vdn kivgn KSvQn Kk3+gn &10+g

|:U1+U2+U3+U4+1
k2 " k3-qn  kS-qn  kB-qn  k10-gn

V1 (V) V3 Vg + 1 1 :| |: ] ] + 1)
== T + .y — M=y 7
ki kp-qn  kS-qn  ki-an k0 qn kn kn
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in PTM , where

Ug € Z, Ui, Uz, U4, V1,04 € {1,...,k§—2}, usz, vz €{0,1, ..., k, — 1},

and vy € {knqn,kngn + 1, ...,kﬁqn — kngn — 1}.

We note that the M -factor Iy u, uyus.u401,vs,03,04 DElONES to the “good domain™
of the conjugation map h, for any To,,u, us,u3,u4:01,00,03,04;5 € Tn- Hence, we can
describe the mapping behaviour of the projectivized derivative extension (4, dh,)
on the “trapping regions” explicitly.

Lemma 7.2. For any Ty uy usus,u4:01,02,03,04;) € In We have
hrn,dh,)(T, : S A ; ;
( n» hn)( uO,ul’uZauS’uﬁlav],v21v3’v431) C u(),I_Z—iliJ,(]—i—ug) mod kn

In particular, a Strip (U, 4, vs.04 Tuou122.u3,u4301,2,03,0, OF almost full vertical
length is mapped to a set of small diameter under £,,.

Proof. In the proof of Lemma 5.2 we computed the mapping behaviour of ¢,
ON Ly 0y ,un,u3,u4:01,02,03,04- 1N addition to this we note that d,¢, = id for base
points p € Ly uq,uzus,uq01,02,05- Altogether we get

(B ) (T 1 15 u3,u8501 02,03,0457) = Tu(),k%—vl—l,uz,u:s,m;u1,v2,v3,v4;j'

By the second statement in Proposition 2.2 i, is a composition of a translation and

a rotation by ",zn” on / Moreover, the first statement

2 i §
u(),kn—l)l “1,”2,1{3,”4,“ 1,V2,V3,04

of Proposition 2.2 yields that the image of Iuo,k,%—vt—l Sy T W 2 T Tl under i,

stays contained in *

|:U()—|-1 v + 1 Uy n U3 ug + 1 v + 1 Uy u::,—l—]:l
knqn k;% *dn k,fz’ “dn k,? “dn , kngn k,? “4n k,f “4n k,? "dn

X[u1+ vy n V3 u1+ Uy L v3:|
k% k}?'qn k6’@'n’k;% kg'CIn k,?'qn -

n

Hence, we conclude for iy, = i, o ¢y:
(hn, dhn)(Tu(),ul,ug,ug,ua,;v; ,vz,v3,v4;j) - AWO;L%J:U"'WS) mod K ]
With the aid of this understanding of the mapping behaviour under (4, dh,) we

can prove the following “trapping property.”

Lemma 7.3. Let (0,r,v) € PTM withr € G, and Ay, 1,1, € U, be arbitrary.

3 o
Then at least (1 — %) - 22EL and at most 22\ many of the iterates
kﬂ k;lq'n kn"]n

(hn o R d(hy o RLHH))(B, r,v),

Opt1°

0§ < Gpprs 1 Dy g 80
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Proof. Let
U1 [%) U3 U4 1
|:k;% ki - qn k;? “qn  kE-qn  k10-qn

U1 + U2 n V3 n vg + 1 1 ]
k;% kﬁ *dn kp? “Yn kﬁ “qn k qn

joJ+]
ve[kn, - )

where j € 7,0 < j < k,. We choose u € {0,...,k, — 1} such that j + u =
t3 mod k,,. By Lemma 7.2 only the trapping regions Ty, u, us.u,uq;v1,v2,03,04;; With
bk, < uy < (to + 1k, (for all allowed values u,,us € {1,...,k,% — 2}) are
mapped into Ay, 1, s, under (hy, dh,). Since the orbit {6 + i - &y 41}i=0,.... g, —1 I8
equidistributed on S!, there are at least

(- 3) st ol

L dn+1 J

ki% *dn

many points of the orbit {RO£ L (0.7)}i=o.....gn+1—1 contained in a set of the form
Tty oy unu,ugsv1,00,03,04 - HENce, there are at least

- @2 -22 | (1- ) ot
n h

o227 | |
n

NO,r,v),0 <i <guy1,in Ay gy 1, O

and

and at most

and at most

many iterates (i, o R, Y (™ o Ry, o

Remark 7.4. For any pointx = (6,r) € M withr € G, , there are at most é “Gn+1

many iterates Rf,n " (x),0 <i < gp+1, that are not contained in the “good domain”
of h,,i.e. in one one of the trapping regions, by Remark 5.3.

7.3. Estimates on Birkoff sums. Using the notation from Section 6 we introduce
the sets
Dpn =S x Gpp x [0, 1)
P TM. By Remark 5.3 we have £(D,) > 1 — 5. With the aid of the previous

trappmg properties” we obtain the following estlmate on Birkhoff sums for points
in O,, and observables in our chosen family E of Lipschitz continuous functions.
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Lemma 7.5. Letz = (0,r,v) € D, and p € {p1,...,pn} C E. Then we have

dn+1—1

! J _ T i
> otV @) - [ pdi| <.

In+1 T,

Proof. Since p € {p1,...,pn} C E is a Lipschitz continuous function on PTM , we

have

|p((Hn—1,dHp—1)(z1)) — p((Hp—1,dHp—1)(22))|
|
= ”p”Lip 'diam((Hn—l,dHﬂ—l)(Atl,tz,tj,)) < n_z

for any z1,z2 € As 1,03 € Up by Remark 7.1. Averaging over all zo € Ay 4, 4,

yields

p((Hy—1,dH,—1)(z1))
1

1
— = pdu| < —. (7.2)
p((Hp—1, dHp—1)(A¢) 1,15)) /(Hn—lsdHn—l)(Atl.tz,Q) n

2

Let x € D, be arbitrary. In the subsequent estimate we denote the set of iterates
j €{0.1,...,gny1 — 1} such that (h, o R, . ,,d(h, o R}, ))(x) is contained

in A € U, by Ia:
dn+1—1

1 ; ; _
Y p(Her 0 b o R, Aot by o R, ) [ 907

j=0
1 dn+1—1 _ _
= ZO p((Hy—y0hyo R d(Hy_yohyo R}  ))(x))
J:

-y i | p
- (Hn~ladHnél)(A) (anl,danl)(]PTM\Un)

Z ‘ Z ( 1 Z p((Hn—l ohyo R,{;n+l ,d(Hy—10hy o0 R({HH))(X))

o)
(Hn—ladHn—l)(A)

_ k_g%‘%ﬂ
+20(PTM \ Up) - llpllo + =——1lplo.
dn+1
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where the last summand follows from Remark 7.4. In order to estimate the first
summand we exploit Lemma 7.3 and equation (7.2) to get

Z P((Hn—l o hy o R({;H_Hvd(Hn—l ohy o Ré,ﬂ_l))(x))

dn+1 jela

1 1 1
< . (_ pdu + —)
k,:; *qn /{'L((Hn—hdHn—l)(Atl,tz,tg)) (Hp—1,dHp—1)(At) .15.13) n?
on the one hand, and

1

dn+1

Z p((Hn_l o hn e] Rén+1,d(Hn—1 o hn © R(an_*_]))(x))
JEIA

3% 3
(1 - k_,%) ( 1 di 1
= = P M——)
k; *dn .Uv((Hn—l’dHn—l)(At] ,tz,ts)) (Hp—1,dHn—1)(Ar; 15.13) n?

on the other hand. These both estimates yield

1 . .
-~ > p((Hp—yohyo RS . d(Hy—y0hyoR]  ))(x))
n+ jela
— f pdﬁ‘
(anlsdanl)(A)
_ 1o i 1 1
— . p IL —i
kn  J(Hy—1,aH,—1)(A) ki -qn n?

We also recall w(PTM \ U,) < é from equation (7.1). Altogether we conclude

dnt+1—1
1 Z _ | .
dn+1 ;=g p((Hn_l © hn 0 Rén+1 ,d(Hp—1 0 hp o Rgtn+1))(x)) - f P d/‘L;
J:

<2 lollo+ o5 + = -llollo + 5 - lllo < =
Ten Pllo 2 Pllo k2 Pllo 2’
using requirement (B) on the number k,, in the last step. With x = (H,,dH,)~!(z)
we obtain the statement of the lemma. L]

7.4. Application of the criterion. In order to check the requirements of Proposi-
tion 6.2 we consider the family E = {pj, p2, ...} of Lipschitz continuous functions
pi:PTM — R chosen at the beginning and the sets

Dn =S'xGpy x[0,1) C PTM.
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Since u(Dy) > 1 — é we have

D B(PTM \ D,) < oco.

n=1

In our successive construction the requirement (6.3) is fulfilled by Lemma 3.2 and
condition (6.4) is satisfied by Lemma 7.5. Hence, we can apply Proposition 6.2 and
obtain the ergodicity of the projectivized derivative extension (f,d f) with respect
to the invariant measure (.

Acknowledgements. The author would like to thank the referee for very interesting
remarks and comments. In particular, these simplified the criterion for ergodicity
and helped to improve the presentation of the paper greatly.
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