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Lengths of closed geodesies on random surfaces of large genus

Maryam Mirzakhani and Bram Petri

Abstract. We prove Poisson approximation results for the bottom part of the length spectrum
of a random closed hyperbolic surface of large genus. Here, a random hyperbolic surface is a

surface picked at random using the Weil-Petersson volume form on the corresponding moduli

space. As an application of our result, we compute the large genus limit of the expected systole.

Mathematics Subject Classification (2010). 57M50, 32G15.
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1. Introduction

In this paper, we study the distribution of short closed geodesies on random hyperbolic
surfaces. Our definition of a random surface is as follows. First of all, we consider
for every g >2 the moduli space Mg of closed hyperbolic surfaces of genus g. The

corresponding Teichmüller space Tg comes with a symplectic form a>g, called the

Weil-Petersson symplectic from. The associated volume form descends to Mg and

is of finite total volume. This means that we obtain a probability measure Pg- on Mg
by defining

r -, volwp(^4),u\VOl\yp (Mg)

for every measurable set A ç Mg, where volWp(-4) denotes the Weil-Petersson
volume of A. Our main goal is now to combine methods from probability theory and

Weil-Petersson geometry to estimate probabilities of the form

Pg [A e Mg has k closed geodesies of length < L\.

In particular, we will compute the large genus limits of these probabilities.
For example, we determine which proportion of the Weil-Petersson volume is

asymptotically taken up by the e-thin part of moduli space.

New results. Before we state our results, we need to set up some notation. Given
X e Mg and an interval [a,b\ C M+, let Ng^a,b] PO denote the number of primitive
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closed geodesies on X with lengths in the given interval. Note that in our setup

Ng,[a,b]- Mg ~y ^

may be interpreted as a random variable.

In Section 4 we prove:

Theorem 4.1. Let [a\,b\\, \a2, b2\ [ag, bjf\ C M+ be disjoint intervals. Then,

as g —»• oo, the vector of random variables

{Ng,[aufci], • • • ^g,[ak,bk]): Mg -> Nfc

convergesjointly in distribution to a vector of independent Poisson distributed random
variables with means X[ai h,\> where

fh' e' + e~< - 2
hatM J Yt dL

for i 1,.... k.

Recall that a random variable Z:Û N ona probability space £2 is said to be

Poisson distributed with mean X e (0, oo) if P[Z k] Xke~x/k \ for all k e N.
This means that Theorem 4.1 allows for the explicit computation of large genus limits
of the probabilities we are after. For example, we have

lim Pe[sys(X) < e] 1 — e A[0'el ~ 1 — e
E ^

g^oo

e2

as s -» 0.

As an application of Theorem 4.1, we study the distribution of the systole —
the length of the shortest closed geodesic — of a random surface. Recall that the

expected value of a random variable Z : Mg —> M is given by

fu Z(X)dX
E*[Z] 'fM,dX '

where the integrals are with respect to the Weil-Petersson volume form. We show

(Section 5):

Theorem 5.1. Given X e Mg, let sys(A) denote its systole. We have:

n OO
-Xulim E„[sys] [ e-*».*] dR 1.61498

g^oo J0
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Notes and references. The number of closed geodesies up to a given length on a

hyperbolic surface has been investigated by many authors. A classical result due to

Delsarte, Huber, and Selberg states that for any closed hyperbolic surface X we have

Ngt[0tL[{X)~eL/L

as L —» oo, see for instance [6] for details. More recently, the number of simple
closed geodesies of length < L was shown to be asymptotic to cx • L6g~6 [17],
where cx is a constant depending only on X. Similar results are known to hold for
the number of curves up to a given length in a fixed mapping class group orbit [8,20],

The study of the Weil-Petersson geometry of moduli spaces of surfaces of large

genus also has along history. Estimates on Weil-Petersson volumes of moduli spaces
of surfaces of large genus were derived by Penner [22], Grushevsky [12], Schumacher

and Trappani [26], and Mirzkhani and Zograf [21]. The large genus behavior of the

Weil-Petersson diameter has been exhibited by Cavendish and Parlier [7], the growth
of the number of balls needed to cover the thick part of moduli space by Fletcher,

Kahn, and Markovic [9] and the injectivity radius by Wu [30].
Closed geodesies on random surfaces have been studied in [13,18,19]. In [18],

it was for example proven that for every fixed genus g, IP [A e Mg has sys(A) < e]

decays like e2 as s —> 0, independently of the genus. In [19], the large genus limits
of the expected values E^fA^qo.L]] were computed and it was also already shown

that the expected systole is bounded independently of the genus (see Section 2.6 and

Appendix A for more details). In [13], Guth, Parlier, and Young proved that random
surfaces do not admit pants decompositions of total length less than roughly g7^6.

This contrasts Theorem 5.1 above, which guarantees that the probability that the

surface has short curves does not tend to zero. These short curves will however

generically not form a pants decomposition.

Idea of the proof. The proof of Theorem 4.1 relies on a combination of the method

of moments for Poisson approximation and results on Weil-Petersson volumes of
large genus surfaces. Our final goal in proving Theorem 4.1 is to control the factorial
moments of the functions Ngt[a^y. Mg -»• N. These are expressions of the form

^[Ng,[a,b](Ng,[a,b] ~ 1 )(Ng,[a,b\ ~ 2) • • • (Ng,[a,b] ~k + 1)],

for k e N. Indeed, it is the content of the method of moments that once these

moments are shown to converge to the moments of a Poisson distributed random

variable, Theorem 4.1 follows.
To control these moments, our first step is to use the integration techniques

developed in [15]. These allow us to express the joint factorial moments in terms
of Weil-Petersson volumes of moduli spaces of hyperbolic surfaces with boundary
components. These are defined as follows. Given L (Lj, Ln) e R+, we
let Mg>n (L) be the moduli space of hyperbolic surfaces of genus g with n boundary
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components of lengths L\,...,Ln respectively. The corresponding Teichmüller

space Tg,n(L) also carries a symplectic form cog,n, called the Weil-Petersson

symplectic form [11,28], that descends to Mg,n(L). It turns out that the Weil-
Petersson volume Vg<n(L) of Mg^n(L) is a polynomial in L\, L2 of degree

3g + n — 3 [15]. Moreover, the coefficients of these polynomials can be computed
in terms of integrals of the form

where t/r, e H2(Mg,n, Q) is the first Chern class of the ;th tautological line bundle

on Mg,n for all 1 < i < n [16] (see Section 2.4). Using bounds on Weil-Petersson
volumes and integrals of these Chern classes from [18,21], we can single out the

main contributions to the joint factorial moments and prove the convergence we are
after. Finally, Theorem 5.1 follows from Theorem 4.1 together with a dominated

convergence argument.

Remark. In [5], Brooks and Makover defined a more combinatorial model for
random hyperbolic surfaces based on Belyï surfaces. The idea of this model is to glue
an even number of ideal hyperbolic triangles together along their sides without shear

and then conformally compactify the resulting surface. As such, this model gives
rise to closed hyperbolic surfaces and it follows from a theorem due to Belyï [3] that
the resulting set of surfaces is dense in Mg for every g > 2.

If we denote the number of triangles by 2N, then the expected genus of these

surfaces is asymptotic to N/2 (see [5,10]). It thus seems natural to compare the

geometry of these random surfaces to that of the random surfaces studied in this
article of the corresponding genus. It turns out that many of the known results are

very similar, even though no a priori reason for this is known.

The number of short curves is also known to be asymptotically Poisson distributed
in the model introduced by Brooks and Makover [23,24], Moreover, the expected
systole also converges to a constant (as N —> oo) [23]. On the other hand, both the

means of the corresponding Poisson distribution and the limit of the expected systole
are slightly different.

Finally, it follows from Brooks and Makover's results [5] that their random surfaces
have the property that

as N oo, where b 2 cosh
1

(3/2). In other words, the probability measure
from Brooks and Makover's model asymptotically concentrates in the ft-thick part of
moduli space. Instead, Theorem 4.1 immediately implies that in our setting

P n [sys > b] —> 1

lim P » [sys > b] lim Pg[Ng roW 0] e~x^ 0.339043.
g-+oo g-±oo
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2. Background

In this section we present some background material and set up notation. For more
details, we refer the reader to [6,15,29].

2.1. Teichmüller and moduli spaces. In what follows, will denote a surface

of genus g and n boundary components. We will write Y,g S?>0.

Given g,n G N and L {L\,..., L„) G R+, we define the Teichmuüller space

Tg,n(L) (or T(E^„, L)) to be the space

!X a complete hyperbolic surface with totally geodesic I

(X, f) ; boundary components, whose lengths are given by L, V / ~
/ : -^la diffeomorphism

Here, the equivalence relation is given by:

isisotopictoanisometry. When L, 0 then the corresponding boundary component
is assumed to be a cusp. We set Tg^n Tg,n(0 0), Tg Tgto and

for all L(l) G R"1 L(k) R"U
The mapping class group MCG(S^in) of isotopy classes of orientation preserving

diffeomorphisms that setwise fix the boundary acts on TgM(L) and the quotient

Mg,n(L) Tg,n(L)/ MCG(S^,„)

(X, /) ~ (X\ /') if and only if /' o f~l:X -> X'
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is the moduli space ofRiemann surfaces homeomorphic to Eg,«. We will again write
Mgt„ Mg,n(0,..., 0), Mg Mg,o and

for all L(1) e Rn+\..., L{k) e R"+k.

Goldman [11] showed that the space 7"g,„(L) carries a MCG(Eg,„)-invariant
symplectic form u>g,„, called the Weil-Petersson symplectic form. When the lengths

Li 0 for all 1 < i < n, then cog,n is a symplectic form coming from a Kähler
metric on Mg,« (see 114] for details).

2.2. Length functions and Fenchel-Nielsen coordinates. Classical hyperbolic
geometry (see for instance [6, Theorem 1.6.6.]) implies that in the free homotopy
class of a (non null- or boundary-homotopic) simple closed curve on a hyperbolic
surface there exists a unique simple closed geodesic which minimizes length over the

homotopy class. As such, every free homotopy class a of non-trivial simple closed

curves on Eg,« defines a function la: Tg,„(L) —> R+ that assigns to X the length
of the unique geodesic on X freely homotopic to a.

Let SP {oij }f£^n~3 be a pants decomposition — a set of simple closed curves
so that Eg,« \ LI,«; is a disjoint union of three-holed spheres (pairs of pants) —
of Eg,«. Given a point X 3"g,„(L), SP is homotopic to a unique set of simple
closed geodesies on X. This allows us to assign two real numbers to each curve a,
in SP: the length la; (X) of the corresponding geodesic and the twist r«; (A) of the

gluing at that geodesic. For any pants decomposition SP the map

is a global coordinate system for 7"g,„(L), called Fenchel-Nielsen coordinates (see

for instance |6, Chapter 6]). In [27], Wolpert proved that o>g,n has a particularly nice
form in these coordinates:

Theorem 2.1 ([27]). The Weil-Petersson symplectic form on Tgn(L) is given hy

2.3. Integrating geometric functions on First of all, let us write Fg,«(L)
for the Weil-Petersson volume of Mg,n(L). That is

Tg,„(L) ^ (M+ x R)

given by
X (eai(X),ra;(X))*8Jn-3

3g+n—3

We will write Fg,« Fg,«(0,..., 0) and Vg Kg,0.
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Given a function F: -> M and a k-tuple of curves F (yi Yk) on
we define

Fr:Mg M

by

Fr(X)= J2 F{tx(al),...,lx{ak)).
(arl>...,0!it)eMCG(SÄ)-r

r
LetV(T) c denote a regular neighborhood of T. If£g\yV(r) [J

i l
and x e then we write

r
Vg(X, x) J-J Fg(.,n/ (xi \,..., Xi^n.

i=i

where the are so that when the boundary of consists of the curves

'ytl,... yt } then {x,vV }s {xtî }y. Note that every a, appears twice.

The integral of Fr over Mg can now be computed as follows:

Theorem 2.2 ([ 15J). Given T (yi, yyt) a k-tuple of simple closed curves
on £g and F: —»• M, we have

I Fr(X)dX Cr • / F{x)Vg>n{T, x)x\ • • Xk dx\ A • • • A dxk,
Jmk

where Cr is a constant depending on V only. If Sg \ T is connected, then Cr 2~k.

2.4. Connection with intersection numbers. It turns out that Weil-Petersson
volumes of moduli spaces of surfaces with boundary components can be related to
intersection numbers on MgM. These numbers are defined using the so-called

tautological line bundles Zj £n on Mgtn. The fiber of the bundle £!,• at
X e Xig n is the cotangent space at the /'th marked point on X.

Now let ij/i — ci (£i) e H2(Mg,r,,Q>) denote the first Chern class of
the /th tautological line bundle. Given d (d\,...,dn) £ N", we will write
\d\ — d\ + • • • + dn. If \d\ < 3g + n — 3, we write

Y\(2di + \y.2W

[V/, • • • > *d„]g,n := l—
_

Vx fdn"o/f
n di jMs-n

1=0

where do 3g — 3 + n — \d\. See [1] for more details.
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The volumes of moduli spaces of surfaces with boundary can now be expressed
as follows:

Theorem 2.3 ([16]). Let g, n G N and x\,..., xn M+. Then

^ x^^n
Vg,n(2x\,..., 2xn) J2 [rdl,...,Tdn]g,n (2d!+\)\'" (2dn + \)\-

a GN",
\d\<3g+n—3

2.5. Bounds on volumes and intersection numbers. In order to estimate moments
in Section 4, we will need bounds on both Weil-Petersson volumes and intersection
numbers. Various estimates on both are known and we refer the reader to [21] and

the references therein for these. We will state only those bounds that we need.

The bound on intersection numbers we will need, which can be found on [18,

p. 286], is the following:

Lemma 2.4 ([18]). Given n <E N, there exists a constant co > 0 independent of g
and d such that:

o < 1 - 5 Co\d\
2

Vg,n

far all and d N".
The following is part of Theorem 1.4 in [21]:

Theorem 2.5 ([21 ]). For any faced n > 0:

Vg—l,n+2
J

3 In 11 / 1 \- + ohS Ve2/Vg,n Tt2 g

as g —>• oo.

The asymptotic behavior of Vgt„ as g -»• oo is known up to a multiplicative
constant:

Theorem 2.6 ([21]). There exists a universal constant a e (0, oo) such that far any
given k > 1, n > 0,

(2tf — 3 + n)\(4jt2)2g~3+n 41} 4k) ^Vg,n « — (1 + + ••• + —r + O
^fg V g gk U))

as g —> oo. Each term c„^ in the asymptotic expansion is a polynomial in n of
degree 2i with coefficients in Q[7r-2,7r2] that are effectively computable.

Finally, we have [18, Equation 3.7] :

Lemma 2.7. Let g. n N and X\,..., xn M+. Then

Vg,n(2xi,..., 2xn) < e • Vg ij,
n

where x ff x/.
i=i
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2.6. Random surfaces. Because Vg is finite for every g, we can turn Mg into a

probability space. Indeed, given a measurable subset A C Mg, define

m, r i
1 fr„M — /gL J

Vg JA (3g - 3)!

and given a random variable (i.e. a measurable function) F: Mg —» M and B c R,
we define

®g[F] -J- f F(X) dX and e B] Eg[X{FeB}\,
yg jmk

where the integral on the left hand side is shorthand for integration with respect

to (V3g_3+„)j »
an(l might not be finite, and X{FeB}'- <M.g R is defined by

1 if F(X)eB,
0 otherwise.

In order to compute the expected systole later on, we need the following bound,
due to Mirzakhani [19]:

Theorem 2.8 ([19]). There exist universal constants A, B > 0 so that for any
sequence {cg}g ofpostive numbers with cg < A log(g) we have:

P4, [The systole of S has length > cg] < B cg e~Cg.

Because it is not available elsewhere in the literature, we sketch a proof of this
result in Appendix A.

2.7. The method of moments. The main probabilistic tool we use is the method

of moments. More precisely, we will study the asymptotics of the joint factorial
moments of finite collections of sequences of random variables.

Let us first set up some notation. Given a probability space (£2, S, P), a random
variable X : —> N and n <E 14, we define the random variable

(X)n :=X(X-l) — (X-n + l).

If its expectation E[(V)„] exists, it is called the nth factorial moment of A.
Furthermore, recall that an N-valued random variable X is said to be Poisson

distributed with mean À e [0, oo) if
Xke~x

p[x k\ for all k e N.
k\

The nth factorial moment of such a variable is equal to A" for all n e N. It turns out
that this determines the law of the variable: an N-valued random variable is Poisson

X{FeB}(X)
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distributed with mean A G (0, oo) if and only if its nth factorial moment is equal to X"

for all n G N.
We are now able to state the theorem we need, which can for instance be found in

[4, Theorem 21].

Theorem 2.9 (The method of moments). Let {(£2;, P;)};6n be a sequence of
probability spaces. Furthermore, let k G N, let Xij,..., Xkj : £2; -» N be random
variables and suppose there exist Ai,..., A k G (0, oo) such that

lim E[(Xiti)ni(X2,i)n2 ••{Xk,i)„k] X"'X"2 Xnkk
l->OO

for all «1,...,nk G N, then

k Amje-xJ
lim P[*!,,• XkJ =mk\=Y[ — —

i —>oo 11 m j
7 1 1

for all mi,... ,mk G N. In other words, the vector (X\j,..., Xkj): £2 —>

converges jointly in distribution to a vector of independent Poisson variables with

means given by A i Xk.

Given random variables Xij,..., Xky. £2; — N for all i G N and random
variables X\, Xk:Q' —> N, we will use the shorthand notation

Xu,...,Xkj^Xi,...,Xk
(for joint convergence in distribution) to indicate that:

lim P[Af1;i mi,.. .,Xk>i mk] P[Afi mi,...,Xk mk\
i —>oo

for all mi mk G N.

3. Estimates on Weil-Petersson volumes

Before we get to the proofof the main theorems, we will need to derive some estimates

on Weil-Petersson volumes. All of these are mild generalizations of estimates that

were already known.
We will need a comparison between the volume of a moduli space of surfaces

with boundary components and that of a moduli space of surfaces with cusps. In the

case of two boundary components, this can be found in [19]. For completeness, we
include a proof sketch. The strategy is the same as in [19].

Proposition 3.1. Let g, n e N and xi,..., xn G E+ then

Vg,n(2xi 2xn) A sinh(*;)/, n( W xi=fi~ry
as g —> oo.
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Proofsketch. From Theorem 2.3 and Lemma 2.4 we obtain

n y^-di y (1y\ r n .P'h

Err xi Vggn^x) <
cp ,,2rT xi

1 1(2^ + 1)! Vp 2n
~ g ^ (2di + 1

rfeN", i 1 8' d eN", 1 1
v /

l<fi<3g+rt—3 |<3g+n—3

In the first term on the left hand side we recognize the beginning of the Taylor
n

expansion of fl sl" (x>>. The expression on the right hand side is of the order
i

X1
1 1

J! sinh(x,)).

Finally, we need a version of [18, Lemma 3.3] with more variables:
q

Lemma 3.2. Let q, K e N and n\,... ,nq G N \ {0} such that ni =2 K, then:
i 1

^22 X ••• X Vgq,nq — of q8-l

{«>
S

as g —y oo, where the sum is over all multisets {gi}f=1 C N such that

i
Y.gi g + q — K—\ and 2gi — 3 + «, >0
i l

for all i 1... .q.

Proof. This lemma is a direct application of Theorem 2.6. In fact, Lemma 3.3

from 118] is used in the proof of this theorem.
Theorem 2.6 tells us that there exists some a > 0 independent of all gi and g, q

and K such that

j
Vi? ft (2gi ~ 3 + ni)\(4n2)2gi~3+n'

TT ^2 VS\,ni X ••• x VgQtnq < aq ^2 q
8 f {giI (2g — 3)\(4jr2)2g~3 fl max(Vi?ül}

i=l
Stirling's approximation states that n\ can be uniformly bounded from above and

below by constant multiples of ~Jn (|)" for all » e N \ {0} (see [25]). Using this
and working out the sums in the exponents of 4n2 and e (the latter coming out of
Stirling's approximation) we obtain that there exists a constant h > 0 such that:

ft (2gi — 3 + m)28i~3+n'
1

yE- b"+K E- (2,,_3)»-3— °bV
{gi} {gi}

where the exponent K comes from comparing the factors *J2gi — 3 + «,• in the

numerator of each term to the factors ygï in the denominators.
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4. The length spectrum

The main goal of this section is to apply Theorem 2.9 to the bottom part of the length
spectrum of a random surface, chosen with respect to the Weil-Petersson metric.

Concretely, given 0 < a < b e R, we define random variables Ngy[a,b]'- Mg —> N
by

Ng,[aM(X) \{y e ; ix(y) e [a,b]}\

for all X Mg, where P{X) denotes the set of primitive closed geodesies on X
and £x(y) denotes the length of such a geodesic with respect to the metric on X.

Dehne the function A[vp [0, oo) x [0, oo) [0, oo) by

fbi r' + C'-2jl'M It
forall a,b G [0, oo). Furthermore, given a i < h\ < a2 < b2 < • • • < ak < e E+
let

OWii "iakM)--n-+nk
denote a vector of independent Poisson distributed random variables with means

h[ahbj]- Here is any probability space that is rich enough to carry such a variable.
We will prove the following:

Theorem 4.1. Let a \ < b\ < U2 < bj < • • • < £ R+. Then

{Ng,[a\,bi\* >Ng,[ak,bk\) * (^[û|,èi]

as g —> oo.

To prove this theorem, we will apply the method of moments (Theorem 2.9). In
other words, we need to estimate the joint factorial moments ofthe variables Ngt[ajti,.].

We will prove Theorem 4.1 in two steps. The crucial observation (which underlies

many applications of the method of moments) is that given r\,..., N, the

random variable

AnOrj ' (Ng,lak,bk])rk: Mg —> N

counts the number of (ordered) lists of length k where the (th item is the number of
ordered r,-tuples of curves with length in [al, />,] on a surface in Mg. We will write:

{Ng,[a\,b\])n {Ng,[ak,bk])rk Yg,rl,...,rk + Yg,nt...<rk>

where Yg>r, counts the lists of tuples of simple curves that are also all pairwise
disjoint and Y'g>r| ^ counts the lists out of which some of the curves intersect either
themselves or each other. The proof now proceeds by showing that the expected value

of Y is asymptotic to the joint factorial moment of independent Poisson variables
and that the expected value of Y' tends to 0.
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We begin with Y :

Proposition 4.2. We have

Ar- / n h2ner'bi/2\
^g[Yg,n,...,rk\ n^,A] + »=i

1

as g -» oo.

Proof. Define K := ri ant'

k

A := H[\-ai-hi\ri C
i l

Using Theorem 2.2 we obtain

"&[Yg,rU-,rk\ TT XAr f Xa(x) Vg (F, x)X\ XK dx\ A • • • A d.XK.
8 [r] Jr+

This sum runs of all MCG(S^)-orbits [T] of (ordered) lists of ordered lists T

(Ti,..., Tfc), where T,- (y,,i,..., y(>( is an ordered list of disjoint simple closed

curves and T, n V j — 0 when i f j.
We start by singling out one special term in this sum, namely the term that

corresponds to non-separating T. If g is large enough so that allows for rt
non-separating simple closed geodesies, then there is exactly one MCG(Sg) orbit of
such lists. Let us call this orbit [T0]- Note that T,g \ T0 Yig-x,2K and M(T0) 0.

We claim that asymptotically E[Yg;ri is dominated by the term corresponding
to [To]. Indeed, by Proposition 3.1 we have

fA i; tMl( vl) dx i; K.l,: | /\ 4S'nh^'/2)2 dXi + O | ,0, j \

Repeated application of Theorem 2.5 tells us that

hz«£ i+o(i)
v,

1 >

as g —> oo.
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Hence all that remains is to show that the terms corresponding to the other orbits
are negligible as g —> oo. We will order these orbits [T] by how many connected

components S \ T has. Let us call this number g(T). The integral we need to
estimate is:

K+1

Lg(r, x)X\ Xk dx 1 A • • A dxK-
K+1

7sep := E E Cr
q=2 [r]s.t. JA

q(T)=q

q
Suppose that Eg \ T |_ An Euler characteristic computation tells us that

1=1

Jk

2g-2+2q-2K Y,2gi.
i 1

»1

Let us write A, Il [ah,bjk]- Then Lemma 2.7 tells us that
k=1

f A f 1 ni \ n'

/ Vgi,ni (xji - • • • • Xjn; A xJkdxJk < / exp - J] A ^
X k=1 Ai k=1 k 1

"i
< Vgi,ni fl exp(è,/2).

fc=l

So we obtain

/r ^:+i
/sep<Qn^/2E E

1 1 9=2 {(^,

where the inner sum runs over all sequences {(£,, i such that

q

E gi g + q — K — \ and Eni 2K>

i 1 i 1

and the factor (2K)\\ accounts for the number of ways the surfaces can be

glued into a surface Eg. Finally, recall that Ad! (A^ — 1)(A' — 3) • • • 3 • 1. We now
apply Lemma 3.2 to finish the proof.

For Y', we will use the following results by Basmajian:

Theorem 4.3 ([2, Theorem 1.2]). Let y be a closed geodesic on a hyperbolic
surface X. Suppose that y has m > 1 self-intersections. Then the length l(y)
of y satisfies

(W>\log(f).
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Lemma 4.4 ([2, Lemma 2.2J). Let I and J be geodesic segments on a hyperbolic
surface that intersect in their endpoints. Assume that the intersection at at least

one of the endpoints is transversal. Moreover, assume I is contained in a closed

geodesies of length L. Then the lengths 1(1) and t(J) of these segments satisfy

In [2], the lemma above, which is an application of the Margulis lemma, is in fact
stated only for non-simple geodesies. But Basmajian's proof applies to the case of
simple geodesies as well.

Using this, we obtain:

Proposition 4.5. We have

as g —>- oo. Here, the implied constant depends both on h \,hf, and onr\ r

Proof. The idea of the proof is that if a surface contains a set of curves T

{yl, Yk) with self-intersections (either between multiple curves or in a single
curve) of total length L, then it contains a multicurve of simple curves of length < 2L
(the boundary of a regular neighborhood of the given curves) that separates off
a subsurface (the regular neighborhood). We need to prove that this multicurve
contains at least one non-trivial component and, in order to apply the arguments from
Proposition 4.2, we need to have a bound on the complexity of the surface.

First, let us prove that the Euler characteristic of this subsurface is bounded in
terms of b\,..., bk and r\,..., To do this, we will first use Theorem 4.3 and

Lemma 4.4 to show that the total number of intersections in our set of curves is

bounded.

It follows from Theorem 4.3 that the total number of self-intersections is bounded

in terms of b\,... ,bk- So, all that we need is a bound on the number intersections
between distinct curves. This can be done in a very similar way to the proof of
Theorem 4.3, using Lemma 4.4. Suppose y\ and y2 are closed geodesies of length
L \ and L2 respectively and suppose that L\ < L2. Set

Then, by dividing y\ into segments J\ Jp with disjoint interiors so that all the

intersections between y\ and y2 lie in the interiors of the segments J,, t(J, A(L2)
for i 1,..., p — 1 and f(Jp) < A(L2), we obtain

1(1) + t(J) > 2log(coth(L/4)).

A(L) log(coth(L/4)).

p

\yi n y2\ ny2\
i 1
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In order to control |7, fl 72!, we divide 72 up into segments I\,..., Imi, so that the

endpoints of /1 are the first and second intersection of 72 whh ./, and the endpoints
of 12 are the second and third and so on. So, in particular m, 17, H 721. If >2,
then because I(/,) < A(L2) we get that

1(1j) > A(L2)

from Lemma 4.4 and hence

\Ji n 721 mt < max{L2/A(L2), 1} < L2/A(L2) + 1.

This means that

Putting everything together, the total number of self intersections in our set of curves
is at most

A simple Euler characteristic computation shows that the signature (g',n') can
hence be bounded by

2g' + n'-2 < C — 1.

In particular, for g large enough, the set of curves T will not be filling and this means
that the claim we made in the beginning of the proof (the fact that our set of curves T

gives rise to a separating multicurve) is indeed true.
Moreover, a closed hyperbolic surface of genus g contains at most (g — 1) • eL+6

closed geodesies with length < L that are not iterates of closed geodesies of length
< 2 arcsin 1 (see [6, Lemma 6.6.4]). So, by doubling, we get that a surface with
boundary of signature (g',n') can contain at most (4g' + 2n' — 4) • eL+6 closed

geodesies of length < L that are not iterates ofclosed geodesies of length < 2 arcsin 1.

Moreover, it follows from the collar lemma (see [6, Theorem 4.1.6]) that the total
number of geodesies of length < 2 arcsin 1 can be bounded in terms of (g',n').
Combining these two bounds, we obtain a bound D D((b\,..., b^), (ri,..., r^))
on the total number of configurations of geodesies that a single separating multicurve
can account for.

All in all, this means that the proof reduces to the same argument we used to
bound /sep in the previous proposition. The only difference is that we lose the control
over the dependence on length. The reason for this is that the dependence /sep on the

number of components of the separating multicurve is not explicit, and through our
constant D, the length influences this number of components.

Proofof Theorem 4.1. The theorem follows from the combination of Propositions 4.2,
4.5, and Theorem 2.9.
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5. The systole

Let us write sys: Mg —> M+ for the function that assigns the length of the systole to
a surface. In 118] it was shown that there exists a genus independent constant C > 0

so that for all g G N

— s2 < P^[sys(9f) < s] < C s2,

for all s small enough. Let us compare this with Theorem 4.1. This tells us that:

2

lim P„[sys(V) < s] 1 - e~x^ ~ 1 -e^lA ~ —
ir^-oo 4

as s —>• 0.

For the expected systole we obtain the following:

Theorem 5.1. We have:

pOO

lim EJsys] / e~^RUlR 1.61498....
g^oo J0

Proof. For x M+ we have

Pg[sys <x] l- P^A^o,*] 0],

Note that Pg [sys 5 x] 1 fbrx > 21og(4g —2) (see for instance [6, Lemma 5.2.1]).
We will first prove that P^ [sys < x] is absolutely continuous as a function ofxe E+.

In view of the above, we only need to worry about the interval [0,21og(4g — 2)].
So, given 0 < x\ < y\ < X2 < yi < • • • < *k < yk < 2 log(4g — 2) such that
k

5Z yi ~ xi < <5, we have
1 1

k k

I Pi'[sys < v&] — P^[sys < J^P^syse [xk,yk]}
i=1 i l

k

v.,,,,,)<*><"•,
i 1

vg J Mg

where N°
y ^ counts only simple curves with length in [x,, y(] (so we use that the

systole on a closed surface is always simple). If we use Theorem 2.2, we obtain

L Y L dx££ v*(r-
i 1

Vg JM* « 1 [y] g Jxi

where the inner sum runs over (the finite number of) mapping class group orbits [y]
of simple curves. Theorem 2.3 now tells us that every term in the sum on the left
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hand side is given by the same polynomial of degree 6g — 2 in the jcy,-. Because

polynomials are Lipschitz on intervals and all sums are finite, we obtain

k

^2 I(sys < Jk] ~ Pg [sys < X/c|] <Cg8
i=i

for some constant Cg > 0 depending only on g, which implies that Pg [sys < x] is

indeed absolutely continuous.
The upshot of this is that we can associate a density function pg\ M+ —> M+ to

the systole, given by

Pg(x) Fg[^g,[0,Jr] 0]

for a.e. x e M+. Hence

r°° d
[sys] =~ Jo xJx 0] dx

/»OO

[-X Pg [Ngt[0,x] 0]]°° + / P* [Ngt[o,x] 0] dx
Jo

0\dx.IJo

Here we have used the fact that, when g is fixed, the systole is uniformly bounded
from above to show that

;c1oxP^[^.[0,H 0] 0.

In order to prove our statement, we need to show that

/»OO n OO

J 0\dx J ^limoPg[A(g([o>x] 0\dx.

To do this, we will apply the dominated convergence theorem. So we need to find a

uniform integrable upper bound on 0].
First of all, P^fA^o,*] 0] 0 for x > 21og(4g — 2). So, it follows from

Theorem 2.8 that

B • x e~x if x < A log(g),
B A log(g) • e~AX"&(s) if a log(g) < x < 2 Iog(4# — 2),

0 otherwise.

F^[^,[0,x] — 0] <

The right hand side can be bounded above by e~A x for some A' > 0 and for
all x 6 R+. This is an integrable function; as such the dominated convergence
theorem applies and this finishes the proof of the theorem.
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A. Random surfaces with large systoles

In this appendix we sketch a proof of the following result due to Mirzakhani.

Theorem 2.8 ([19]). There exist universal constants A, B > 0 so that for any
sequence {cg}g ofpositive numbers with cg < A log(g) we have:

Proofsketch. Our phrasing is more in line with that in this paper, but the proof uses

the same ideas as those of Mirzakhani. We will denote by N*, Me N the

number of closed geodesic with length in [x, y,] that are both simple and intersect
at most once with any other geodesic with length in [x,, y,]. Because the systole of
a closed hyperbolic surface is always simple and a pair of systoles intersects at most

once, we have

P^[The systole of S has length > cg] [N* j 0].

The second moment method tells us that

To get a bound on E,,,[(yV*j0 c ^2], we can argue like in Propositions 4.2 and 4.5.

However, since we are now only considering curves that pairwise intersect at most

once. The surface that is filled by two such intersecting curves is a one holed torus.
So, by replacing the constant C in Proposition 4.5 by 1, we obtain that

Pg [The systole of S has length > cg] < B cge Cg.

Using that (N*[0 Cg])2 - (N*,1(KCk])2 + N*[0 Cg], we obtain that

<
E* + E, [A£[0iCJ - Eg [A* [0<cg]]2

Es [(/vi",[0,cff])2]+Es [*;M]

and

Filling this in and using our assumption on cg gives that

Pg [The systole of S has length > cg] < Cj
^•[o,cÄ] + ^2
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for some constant C\, C2 > 0. The fact that

1

A[o,*l
X

as x —> 00, now implies the result.
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