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Lengths of closed geodesics on random surfaces of large genus

Maryam Mirzakhani and Bram Petri

Abstract. We prove Poisson approximation results for the bottom part of the length spectrum
of a random closed hyperbolic surface of large genus. Here, a random hyperbolic surface is a
surface picked at random using the Weil-Petersson volume form on the corresponding moduli
space. As an application of our result, we compute the large genus limit of the expected systole.

Mathematics Subject Classification (2010). 57M50, 32G15.

Keywords. Random hyperbolic surfaces, Weil-Petersson volumes.

1. Introduction

In this paper, we study the distribution of short closed geodesics on random hyperbolic
surfaces. Our definition of a random surface is as follows. First of all, we consider
for every g > 2 the moduli space M, of closed hyperbolic surfaces of genus g. The
corresponding Teichmiiller space 7, comes with a symplectic form w,, called the
Weil-Petersson symplectic from. The associated volume form descends to M, and
is of finite total volume. This means that we obtain a probability measure P, on M,
by defining
VOIWP(A)
volwp (M)
for every measurable set A € Mg, where volwp(A) denotes the Weil-Petersson

volume of A. Our main goal is now to combine methods from probability theory and
Weil-Petersson geometry to estimate probabilities of the form

Pg[A] =

P,[X € Mg has k closed geodesics of length < L].

In particular, we will compute the large genus limits of these probabilities.
For example, we determine which proportion of the Weil-Petersson volume is
asymptotically taken up by the e-thin part of moduli space.

New results. Before we state our results, we need to set up some notation. Given
X € Mg and aninterval [a, b] C Ry, let Ny [4.5](X) denote the number of primitive
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closed geodesics on X with lengths in the given interval. Note that in our setup
Ng,[a,b]: Mg — N

may be interpreted as a random variable.
In Section 4 we prove:

Theorem 4.1. Let [ay, b1], [a2. b>], . ... [ar, br] C Ry be disjoint intervals. Then,
as g — 0o, the vector of random variables

) k
(Ng,[al,bl]’ see Ng,[ak,bk])' Mg — N

converges jointly in distribution to a vector of independent Poisson distributed random
variables with means Ag; p.1, where

b; _t —t

et +e ™t -2
Al b1 = —dt.
[azabl] -/‘; 21.

fori =1,..., k.

Recall that a random variable Z: €2 — N on a probability space €2 is said to be
Poisson distributed with mean A € (0, 00) if P[Z = k] = A¥e™*/k!forall k € N,
This means that Theorem 4.1 allows for the explicit computation of large genus limits
of the probabilities we are after. For example, we have

2

lim Pgsys(X) <] =1—e ol ~ [ — o4 L
g—>00 4

ase — 0.
As an application of Theorem 4.1, we study the distribution of the systole —

the length of the shortest closed geodesic — of a random surface. Recall that the
expected value of a random variable Z: M, — R is given by
| M, 2 (X)dX

i w, 4X

where the integrals are with respect to the Weil-Petersson volume form. We show
(Section 5):

Eg[z] =

Theorem S.1. Given X € Mg, let sys(X) denote its systole. We have:

o

lim E,[sys] = f e MORI dR = 1.61498 . ...
g0 0
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Notes and references. The number of closed geodesics up to a given length on a
hyperbolic surface has been investigated by many authors. A classical result due to
Delsarte, Huber, and Selberg states that for any closed hyperbolic surface X we have

Ngjo.r1(X) ~e"/L

as L. — oo, see for instance [6] for details. More recently, the number of simple
closed geodesics of length < L was shown to be asymptotic to cx - L9876 [17],
where cy is a constant depending only on X. Similar results are known to hold for
the number of curves up to a given length in a fixed mapping class group orbit [8, 20].

The study of the Weil-Petersson geometry of moduli spaces of surfaces of large
genus also has a long history. Estimates on Weil-Petersson volumes of moduli spaces
of surfaces of large genus were derived by Penner [22], Grushevsky [12], Schumacher
and Trappani [26], and Mirzkhani and Zograf [21]. The large genus behavior of the
Weil-Petersson diameter has been exhibited by Cavendish and Parlier [7], the growth
of the number of balls needed to cover the thick part of moduli space by Fletcher,
Kahn, and Markovic [9] and the injectivity radius by Wu [30].

Closed geodesics on random surfaces have been studied in [13, 18, 19]. In [18],
it was for example proven that for every fixed genus g, P[X € M, has sys(X) < ¢]
decays like g2 as ¢ — 0, independently of the genus. In [19], the large genus limits
of the expected values E [N, [0,2]] were computed and it was also already shown
that the expected systole is bounded independently of the genus (see Section 2.6 and
Appendix A for more details). In [13], Guth, Parlier, and Young proved that random
surfaces do not admit pants decompositions of total length less than roughly g7/e.
This contrasts Theorem 5.1 above, which guarantees that the probability that the
surface has short curves does not tend to zero. These short curves will however
generically not form a pants decomposition.

Idea of the proof. The proof of Theorem 4.1 relies on a combination of the method
of moments for Poisson approximation and results on Weil-Petersson volumes of
large genus surfaces. Our final goal in proving Theorem 4.1 is to control the factorial
moments of the functions Ng 4 5 Mg — N. These are expressions of the form

E[Ng [a.51(Ng.fa.p] — D(Ng [ab] —2) - (Ng a5 — k + 1)],

for k € N. Indeed, it is the content of the method of moments that once these
moments are shown to converge to the moments of a Poisson distributed random
variable, Theorem 4.1 follows.

To control these moments, our first step is to use the integration techniques
developed in [15]. These allow us to express the joint factorial moments in terms
of Weil-Petersson volumes of moduli spaces of hyperbolic surfaces with boundary
components. These are defined as follows. Given L = (L;,...,L,) € R, we
let Mg (L) be the moduli space of hyperbolic surfaces of genus g with n boundary
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components of lengths L,..., L, respectively. The corresponding Teichmiiller
space T g ,(L) also carries a symplectic form wg ,, called the Weil-Petersson

symplectic form [11, 28], that descends to Mg ,(L). It turns out that the Weil-
Petersson volume Vg ,(L) of Mg (L) is a polynomial in L3,..., L2 of degree
3g + n — 3 [15]. Moreover, the coefficients of these polynomials can be computed
in terms of integrals of the form

d; 3g+n—3-%"_, d;
]_ Y Y wen ! "
fMg,n

where ¥; € H?(M ,, Q) is the first Chern class of the i tautological line bundle
on Mg, forall 1 <i < n[16] (see Section 2.4). Using bounds on Weil-Petersson
volumes and integrals of these Chern classes from [18,21], we can single out the
main contributions to the joint factorial moments and prove the convergence we are
after. Finally, Theorem 5.1 follows from Theorem 4.1 together with a dominated
convergence argument.

Remark. In [5], Brooks and Makover defined a more combinatorial model for ran-
dom hyperbolic surfaces based on Belyi surfaces. The idea of this model is to glue
an even number of ideal hyperbolic triangles together along their sides without shear
and then conformally compactify the resulting surface. As such, this model gives
rise to closed hyperbolic surfaces and it follows from a theorem due to Belyi |3] that
the resulting set of surfaces is dense in M, for every g > 2.

If we denote the number of triangles by 2N, then the expected genus of these
surfaces is asymptotic to N/2 (see [5, 10]). It thus seems natural to compare the
geometry of these random surfaces to that of the random surfaces studied in this
article of the corresponding genus. It turns out that many of the known results are
very similar, even though no a priori reason for this is known.

The number of short curves is also known to be asymptotically Poisson distributed
in the model introduced by Brooks and Makover [23,24]. Moreover, the expected
systole also converges to a constant (as N — o0) [23]. On the other hand, both the
means of the corresponding Poisson distribution and the limit of the expected systole
are slightly different.

Finally, it follows from Brooks and Makover’s results [5] that their random surfaces
have the property that

P [sys > b] — 1

as N — oo, where b = 2 -cosh™'(3/2). In other words, the probability measure
from Brooks and Makover’s model asymptotically concentrates in the A-thick part of
moduli space. Instead, Theorem 4.1 immediately implies that in our setting

lim Pglsys > b] = lim Pg[Ng [op = 0] = e 041 = 0.339043. ...
g—>00 g—>00
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2. Background

In this section we present some background material and set up notation. For more
details, we refer the reader to [6, 15,29].

2.1. Teichmiiller and moduli spaces. In what follows, X, , will denote a surface
of genus g and n boundary components. We will write 3, = X, o.

Giveng,n e Nand L = (L,,...,L,) € R4, we define the Teichmuiiller space
T g.n(L) (or T(Xg n, L)) to be the space

X a complete hyperbolic surface with totally geodesic
T gn(L) = (X, f) ; boundary components, whose lengths are given by L, 3 / ~ .
f:12g n — X adiffeomorphism

Here, the equivalence relation is given by:
(X, f) ~ (X', f)ifandonlyif f o f71: X — X’

is isotopic to an isometry. When L; = 0 then the corresponding boundary component
is assumed to be a cusp. Weset T g n = T 4n(0,...,0), T4 = T g0 and

(

forall L(1) € RY', ..., L(k) € RE~.
The mapping class group MCG(3, ) of isotopy classes of orientation preserving
diffeomorphisms that setwise fix the boundary acts on 74 , (L) and the quotient

k

k
| Zevms. L. ... L(k)) = TT7 o (LG,

i=1 =1

Mg,n(L) = Tg,n(L)/MCG(Zg,n)
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is the moduli space of Riemann surfaces homeomorphic to X, ,,. We will again write
Mgn = Mg n(0,...,0), Mg = Mgz ¢ and

k k
M( [ = ) L(k)) = [ [ Me, i (LG)).
i=1 i=1
forall L(1) € ]R'_L‘ ..., L(k) € R':L".

Goldman [11] showed that the space T ¢ (L) carries a MCG(Z, ,)-invariant
symplectic form w, ,, called the Weil-Petersson symplectic form. When the lengths
L; =0forall 1 <i < n, then wg, is a symplectic form coming from a Kéhler
metric on M, , (see [14] for details).

2.2. Length functions and Fenchel-Nielsen coordinates. Classical hyperbolic
geometry (see for instance [6, Theorem 1.6.6.]) implies that in the free homotopy
class of a (non null- or boundary-homotopic) simple closed curve on a hyperbolic
surface there exists a unique simple closed geodesic which minimizes length over the
homotopy class. As such, every free homotopy class « of non-trivial simple closed
curves on Xg , defines a function £4: 7 4 , (L) — R4 that assigns to X the length
of the unique geodesic on X freely homotopic to «.

Let P = {«; }fi T"_3 be a pants decomposition — a set of simple closed curves
so that Xg , ~ U;q; is a disjoint union of three-holed spheres (pairs of pants) —
of ¥¢ ». Given a point X € T4 ,(L), & is homotopic to a unique set of simple
closed geodesics on X. This allows us to assign two real numbers to each curve «;
in &: the length £, (X) of the corresponding geodesic and the twist 74, (X) of the
gluing at that geodesic. For any pants decomposition & the map

Ten(L) > (Ry x R)”

given by

X > (b (X), 1 (X))7E7"
is a global coordinate system for 7 ¢ , (L), called Fenchel-Nielsen coordinates (see
for instance [6, Chapter 6]). In [27], Wolpert proved that w, , has a particularly nice

form in these coordinates:
Theorem 2.1 ([27]). The Weil—Petersson symplectic form on T g ,(L) is given by

3g+n—3
B = 3. by Adny

i=1

2.3. Integrating geometric functions on M, ,. First of all, let us write Vg ,, (L)
for the Weil—Petersson volume of Mg ,(L). That is
/\Bg +n—3wg,n

Ven(L) = ] .
o Mg (L) 3¢ +n—3)!
We Will WI'itC Vg,n — Vg,n (0, see s 0) al'ld Vg - Vg’().
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Given a function F': IR{’:L — R and a k-tuple of curves I' = (y1,..., k) on Xy
we define
FU:M, > R
by
FT(x) = > Flx(ay), ... Lx(ag)).

(@1,-..,0x )EMCG(X )T

,
Let N(I') C Xz denote a regular neighborhood of I'. If £, \ N(I") = || Zg, »;
=1
and x € R’i then we write

Vg(F,X) = 1—[ Vgi’n[- (-xi,la L »xi,n,-)’

i=1

where the x;; are so that when the boundary of X, ,. consists of the curves
Vese - Vin, } then {x; s }s = {x;, }5. Note that every x; appears twice.

The integral of FT over M, can now be computed as follows:

Theorem 2.2 ([15]). Given I' = (y1,...,Yx) a k-tuple of simple closed curves
on Xg and F:R’f,_ — R, we have

[ FF(X)dX :Cr-fk F(x)Ven(I,x)x1 X dxy A Adxy,
Mz’s’

R

where Cr is a constant depending on I" only. If X¢ \ I is connected, then Cr = 7k

2.4. Connection with intersection numbers. It turns out that Weil-Petersson vol-
umes of moduli spaces of surfaces with boundary components can be related to
intersection numbers on M, ,. These numbers are defined using the so-called
tautological line bundles £¢,...,ZL, on ﬂg,n. The fiber of the bundle £; at
X € J\Yg,n is the cotangent space at the i " marked point on X .

Now let ¥; = c1(£;) € Hz(Mg,,,,Q) denote the first Chern class of
the i" tautological line bundle. Given d = (di,...,d,) € N", we will write
ld| =di +---+d,. If |d| <3¢ + n— 3, we write

n
[1@2d; + 1)1214]

. i=1 d dn . .d
[tdl""’Idll]gan T o 1 n”w ()’

n
1 d! M.
i=0

where dy = 3g — 3 + n — |d|. See [1] for more details.



876 M. Mirzakhani and B. Petri CMH

The volumes of moduli spaces of surfaces with boundary can now be expressed
as follows:

Theorem 2.3 ([16]). Let g,n € N and x1,...,x, € Ry. Then

>

Vgn(le,..-,z.Xn): [Td]a"'itd ]g’l e ‘

> nis» | |

P Qi+ 1) @2dy+ D)
ld|<3g +n—3

2.5. Bounds on volumes and intersection numbers. In order to estimate moments
in Section 4, we will need bounds on both Weil-Petersson volumes and intersection
numbers. Various estimates on both are known and we refer the reader to [21] and
the references therein for these. We will state only those bounds that we need.

The bound on intersection numbers we will need, which can be found on [18,
p. 286], is the following:

Lemma 2.4 ([18]). Given n € N, there exists a constant cy > 0 independent of g
and d such that:

0<1

 [zays - Tanlen < Co|d|2
Vg,n g
forallg € N and d € N,
The following is part of Theorem 1.4 in [21]:
Theorem 2.5 ([21]). For any fixed n > 0:

Ve— 3—2n 1 1
Yg—lnt2 2” ﬂ+0(_2)
Veun T 4 g
as g — oQ.
The asymptotic behavior of Vy , as g — oo is known up to a multiplicative
constant:

Theorem 2.6 ([21]). There exists a universal constant o € (0, 00) such that for any
givenk > 1,n >0,

20 —3 4+ pn)! 47[2 2¢g—3+n C(l) C(k)
(2 )!(477) (l_|_n . nk+0(k—+1))
V& g g g
as g — oo. Each term c,gi) in the asymptotic expansion is a polynomial in n of
degree 2i with coefficients in Q[n 2, w2 that are effectively computable.

Ven =«

Finally, we have [18, Equation 3.7]:
Lemma 2.7. Let g.n € N and x1,...,x, € RT. Then

Vg’n(le, .« o ,2Xn) S ex ° Vg,na

n
where x = ) _ x;.
=1
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2.6. Random surfaces. Because V; is finite for every g, we can turn M, into a
probability space. Indeed, given a measurable subset A C M, define

1 A& 3y
P,[A] = — _
1] ngA@g—S)!

and given a random variable (i.e. a measurable function) F': My — R and B C R,
we define

1
Eg[F] = 7[M F(X) dX and [P)g[F e B] — Eg[X{FEB}]a

g

where the integral on the left hand side is shorthand for integration with respect

- A3g73+nw

Gr=3 D’ and might not be finite, and y(rep): My — R is defined by

1 if F(X) € B,

=
X{FEB}( ) {0 otherwise.

In order to compute the expected systole later on, we need the following bound,
due to Mirzakhani [19]:

Theorem 2.8 ([19]). There exist universal constants A, B > 0 so that for any
sequence {Cg } ¢ Of postive numbers with cg < A log(g) we have:

IP ¢ [The systole of S has length > cg] < Bcge °%.
Because it is not available elsewhere in the literature, we sketch a proof of this
result in Appendix A.

2.7. The method of moments. The main probabilistic tool we use is the method
of moments. More precisely, we will study the asymptotics of the joint factorial
moments of finite collections of sequences of random variables.

Let us first set up some notation. Given a probability space (€2, X, P), a random
variable X: Q — N and n € N, we define the random variable

(X)p = X(X — 1) (X —n+ 1).

If its expectation E[(X),] exists, it is called the n™ factorial moment of X .
Furthermore, recall that an N-valued random variable X is said to be Poisson
distributed with mean A € [0, co) if
k _—A
e
forall k € N.

PIX = k] =

The n'™ factorial moment of such a variable is equal to A" for all n € N. It turns out
that this determines the law of the variable: an N-valued random variable is Poisson
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distributed with mean A € (0, co) if and only if its n™ factorial moment is equal to A"
forall n € N.

We are now able to state the theorem we need, which can for instance be found in
[4, Theorem 21].
Theorem 2.9 (The method of moments). Let {(Q2;, X;,P;)}ien be a sequence of
probability spaces. Furthermore, letk € N, let X1, ..., Xk ;:Q; — N be random

variables and suppose there exist Ay, ..., Ax € (0,00) such that

il_i)rgoE[(Xl,i)nl (X2,i)ns - (Xi,dng ] = ATPASZ - ALK
forallny,... , ng € N, then

k /"Lmj e—)Lj
lim P[Xy; =my..... Xe; =m] = [ =
i—00 . mj!
ji=1

for all my,...,mg € N. In other words, the vector (X1,i,...,Xki):Q — N

converges jointly in distribution to a vector of independent Poisson variables with
means given by A1, ..., Ag.

Given random variables Xy ;,..., X ;:2; — N for all i € N and random
variables X1, ..., Xi: Q' — N, we will use the shorthand notation

d
Xigsooos X — X1, Xk

(for joint convergence in distribution) to indicate that:

lim P[X1; =my,..., Xgi =mg] = P[X1 =my, ..., X = my]

1—>00

forall mq,...,m; € N.

3. Estimates on Weil-Petersson volumes

Before we get to the proof of the main theorems, we will need to derive some estimates
on Weil-Petersson volumes. All of these are mild generalizations of estimates that
were already known.

We will need a comparison between the volume of a moduli space of surfaces
with boundary components and that of a moduli space of surfaces with cusps. In the
case of two boundary components, this can be found in [19]. For completeness, we
include a proof sketch. The strategy is the same as in [19].

Proposition 3.1. Ler g,n € N and x1,...,x, € R4 then
n
Ven(2x1,...,2 T sinh(x; X
g,n(xl Xn):l_[ (z) 1+0 il;ll i
Ve i X
- 8

as g — o0.
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Proof sketch. From Theorem 2.3 and Lemma 2.4 we obtain

Veon(2Xx)  co ) x 24
> l_[ = 5= )  W]llsr—
P (2d IO Vea S % - R Gy
|d|<3g+n—3 |d|<3g+n—3

In the first term on the left hand side we recognize the beginning of the Taylor
expansion of ]_[ M.
i=1 .

( ﬂ sinh(x;) ) O

i=1

The expression on the right hand side is of the order

Finally, we need a version of [18, Lemma 3.3] with more variables:

q
Lemma 3.2. Letq, K € Nandny, ... ,ng € N\ {0} such that ) n; = 2K, then:

i=1
Vg
18i}

as g — oo, where the sum is over all multisets {gi}?:l C N such that
q
Zgi =g+q—K—-1 and 2¢g; —3+n; >0
i=1
foralli =1,...q.

Proof. This lemma is a direct application of Theorem 2.6. In fact, Lemma 3.3
from [ 18] is used in the proof of this theorem.

Theorem 2.6 tells us that there exists some ¢ > 0 independent of all g; and g, g
and K such that

q
Vg 1 2gi — 3 4 n;)!(4n2)28i —3+ni

_2: 02: k=1
Vgl,n[ ng,nq Sa

q
Ve {gi} {ei} (2g —3)!1(4n2)?8~3 [] max{. /gi, 1}

i=1

Stirling’s approximation states that n! can be uniformly bounded from above and
below by constant multiples of /n (%)n forall n € N \ {0} (see [25]). Using this
and working out the sums in the exponents of 472 and e (the latter coming out of
Stirling’s approximation) we obtain that there exists a constant » > 0 such that:

q
[1Qg: —3 + n;)e—+m ]
g+K i=1 =
_—ZVgl"l o gq"t/ —b Z (2g_3)2g—3 _O(gq_l)’

g {gi}

where the exponent K comes from comparing the factors +/2g; —3 + n; in the
numerator of each term to the factors ,/¢; in the denominators. L]
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4. The length spectrum

The main goal of this section is to apply Theorem 2.9 to the bottom part of the length
spectrum of a random surface, chosen with respect to the Weil-Petersson metric.
Concretely, given0 < a < b € R, we define random variables Ny 4 5]: Mg — N
by
Ng lap)(X) = {y € P(X); £x(y) € [a, b]}]

for all X € Mg, where J?(X) denotes the set of primitive closed geodesics on X
and £ x (y) denotes the length of such a geodesic with respect to the metric on X.
Define the function A[. 5: [0, 00) x [0, 00) — [0, 00) by

bi t —t
et et =2
M bi] = f —_— L,
laib1] " 2t
foralla, b € [0, 00). Furthermore, givena; < by <a; < by <---<ap < by € Ry
let

(N[dg,bﬂa s N[ak,bk]): Q— Nk

denote a vector of independent Poisson distributed random variables with means
Alq;,b;1- Here € is any probability space that is rich enough to carry such a variable.
We will prove the following:

Theorem 4.1. Leta; < by <ap <by <--- <ap < b € Ry. Then

d
(Ng,[al,bd’ = =% Ng,[ak,bk]) — (N[al,bﬂ’ s N[ak,bk])

as g — oc.

To prove this theorem, we will apply the method of moments (Theorem 2.9). In
other words, we need to estimate the joint factorial moments of the variables Ng (4, 5,

We will prove Theorem 4.1 in two steps. The crucial observation (which underlies
many applications of the method of moments) is that given ry,...,ry € N, the
random variable

gslay1,01 r]. s s rk: =&
(Ng.lar.b11),, * (Ng.fax.bi1),, Mg — N

counts the number of (ordered) lists of length k where the i™ jtem is the number of
ordered r;-tuples of curves with length in [4;, b;] on a surface in M. We will write:

(Ng,[al,b|]),1 (Ng,[ak,bk])rk = Yg,rl,...,rk =+ Yg,,rl ..... ri?

where Yy ... r. counts the lists of tuples of simple curves that are also all pairwise
disjoint and Ygf’, \,...,r, counts the lists out of which some of the curves intersect either
themselves or each other. The proof now proceeds by showing that the expected value
of Y is asymptotic to the joint factorial moment of independent Poisson variables

and that the expected value of Y’ tends to 0.
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We begin with Y:
Proposition 4.2. We have
b eivi
1

k
]Eg[Yg,rl,...,rk] = Hlf;l,b,] + O i=1

i=1

g

as g — oo.

Proof. Define K := Zle r; and
k
A= [[lai. i) c RE
i=1

Using Theorem 2.2 we obtain

1
EWgr1rd = 3= 2 Cr [ XaGOVe(Tox)xisoxicdn Avee A
& ] R

This sum runs of all MCG(X,)-orbits [I'] of (ordered) lists of ordered lists I' =
(I't, ..., I'x), where I'; = (¥i,1.- ... Vir;) is an ordered list of disjoint simple closed
curvesand I N I['; = @ wheni # j.

We start by singling out one special term in this sum, namely the term that
corresponds to non-separating I". If g is large enough so that X, allows for ). r;
non-separating simple closed geodesics, then there is exactly one MCG(X ;) orbit of
such lists. Let us call this orbit [I'g]. Note that X, \ 'y = X¢_g 2k and M (') = 0.
We claim that asymptotically E[Y ,, ., ]is dominated by the term corresponding
to [["g]. Indeed, by Proposition 3.1 we have

K g
4sinh(x; /2)? p2Ti
f V, xoxl@%-d% = Vo xax [ /\ﬁi—l/)dxi Lol 1%
A 4i=1 i
g

ri 7
— Vg—K.2K nllaf,bi]+0 i=1
i=1 g

Repeated application of Theorem 2.5 tells us that

Vg—Tf:zK:HO(l)

as g — oo.
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Hence all that remains is to show that the terms corresponding to the other orbits
are negligible as g — oo. We will order these orbits [I'] by how many connected
components ¥ \ I' has. Let us call this number ¢(I"). The integral we need to
estimate is:

K+1

fop= % 3 cpf Ve (I, x)x1 -+ xg dxy A+ A dxk.

q=2 [I']s.t
q(I)=gq

q
Suppose that Xz \ I' = [ | g, n,. An Euler characteristic computation tells us that
i=1

q
2¢-2+2q—-2K =) 2g;.
i=1

nj
Let us write A; = [] [a,,bj,]. Then Lemma 2.7 tells us that

k=1
1 n; n;
ngi,ni (Xjisees X)) /\ XjpdXj < Vegim fexp (5 ijk) /\ X jy dx jy
A k=1 : k=1 k=1
nj
< Vo | | b7 exp(bi/2).
k=1
So we obtain
K+1
Iep < Ci ]—[b2 BN N QR Ve %205 % Vigangs
i=1 9=2 {(gi.ni)}

where the inner sum runs over all sequences {(g;, ni)}?zl such that

q
Zg,-:g+q—K—1 and Zni:ﬂ(,
i=1 i=1

and the factor (2K)!! accounts for the number of ways the surfaces X, ,. can be
glued into a surface X,. Finally, recall that K!! = (K —1)(K —3)---3-1. We now
apply Lemma 3.2 to finish the proof. L]

For Y’, we will use the following results by Basmajian:

Theorem 4.3 (|2, Theorem 1.2]). Let y be a closed geodesic on a hyperbolic
surface X. Suppose that y has m > 1 self-intersections. Then the length £(y)

of y satisfies
1 m
Uy) = S 1og(5).
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Lemma 4.4 (|2, Lemma 2.2]). Let I and J be geodesic segments on a hyperbolic
surface that intersect in their endpoints. Assume that the intersection at at least
one of the endpoints is transversal. Moreover, assume I is contained in a closed
geodesics of length L. Then the lengths £(1) and £(J ) of these segments satisfy

£() + £(J) = 2log(coth(L/4)).

In [2], the lemma above, which is an application of the Margulis lemma, is in fact
stated only for non-simple geodesics. But Basmajian’s proof applies to the case of
simple geodesics as well.

Using this, we obtain:

Proposition 4.5. We have

EelYe, . m]= 0(;)

as g — o0o. Here, the implied constant depends bothon b, ... by andonry,. .., rg.

Proof. The idea of the proof is that if a surface contains a set of curves I' =
{V1,..., Yk} with self-intersections (either between multiple curves or in a single
curve) of total length L, then it contains a multicurve of simple curves of length < 2L
(the boundary of a regular neighborhood of the given curves) that separates off
a subsurface (the regular neighborhood). We need to prove that this multicurve
contains at least one non-trivial component and, in order to apply the arguments from
Proposition 4.2, we need to have a bound on the complexity of the surface.

First, let us prove that the Euler characteristic of this subsurface is bounded in
terms of hy,...,.bg and rq,...,rr. To do this, we will first use Theorem 4.3 and
Lemma 4.4 to show that the total number of intersections in our set of curves is
bounded.

It follows from Theorem 4.3 that the total number of self-intersections is bounded
in terms of by, ..., by. So, all that we need is a bound on the number intersections
between distinct curves. This can be done in a very similar way to the proof of
Theorem 4.3, using Lemma 4.4. Suppose y; and y; are closed geodesics of length
Ly and L, respectively and suppose that L| < L,. Set

A(L) = log(coth(L /4)).

Then, by dividing y; into segments Jy, ..., J, with disjoint interiors so that all the
intersections between y1 and y; lie in the interiors of the segments J;, £(J;) = A(L>)
fori =1,...,p—1and £(Jp) < A(L>), we obtain

p
i Nyl =) i Nyal.

i=1
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In order to control |J; N y5|, we divide y, up into segments /1,.. ., I, , so that the
endpoints of /; are the first and second intersection of y, with J; and the endpoints
of I, are the second and third and so on. So, in particular m; = |J; N ya|. Ifm; > 2,
then because £(J;) < A(L,) we get that

(1) = A(L>)
from Lemma 4.4 and hence
|J,' n )/2| =m; < maX{Lg/A(Lg), l} < L2/A(L2) + 1.

This means that

Ayl < (22 1 La 1
v y2|_(A(L2)+ )'(A(Lz)+ )

Putting everything together, the total number of self intersections in our set of curves

is at most
k k
A b b
2 r: 2b; ZI=1 ti k 11. k 1) =cC
22 e ( S AVTCO R VIO

i=1

A simple Euler characteristic computation shows that the signature (g’, n’) can
hence be bounded by
28" +n'—2<C—1.

In particular, for g large enough, the set of curves I" will not be filling and this means
that the claim we made in the beginning of the proof (the fact that our set of curves I'
gives rise to a separating multicurve) is indeed true.

Moreover, a closed hyperbolic surface of genus g contains at most (g — 1) - eZ+6
closed geodesics with length < L that are not iterates of closed geodesics of length
< 2arcsin 1 (see [6, Lemma 6.6.4]). So, by doubling, we get that a surface with
boundary of signature (g’,n’) can contain at most (4g’ + 2n’ — 4) - e closed
geodesics of length < L that are not iterates of closed geodesics of length < 2 arcsin 1.
Moreover, it follows from the collar lemma (see [6, Theorem 4.1.6]) that the total
number of geodesics of length < 2arcsin1 can be bounded in terms of (g’,n').
Combining these two bounds, we obtain a bound D = D((by,...,bg),(r1,....1%))
on the total number of configurations of geodesics that a single separating multicurve
can account for.

All in all, this means that the proof reduces to the same argument we used to
bound /., in the previous proposition. The only difference is that we lose the control
over the dependence on length. The reason for this is that the dependence /., on the
number of components of the separating multicurve is not explicit, and through our
constant D, the length influences this number of components. ]

Proof of Theorem 4. 1. The theorem follows from the combination of Propositions 4.2,
4.5, and Theorem 2.9. ]
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5. The systole

Let us write sys: My — R for the function that assigns the length of the systole to
a surface. In [ 18] it was shown that there exists a genus independent constant C > 0
so that forall g € N

1
C g2 < Pglsys(X) <& < C -&?,

for all £ small enough. Let us compare this with Theorem 4.1. This tells us that:

82

lim Pglsys(X) <e]=1-— e~ MoEl o | — A LS
g0 1
ase — 0.

For the expected systole we obtain the following:
Theorem 5.1. We have:

o
lim Eg[sys] :f e AOR JR — 1.61498 . . ..
g—>00 0

Proof. For x € R we have
Pglsys <x] =1—Pg[Ng 0.x] = 0.

Note that P ¢ [sys < x] = 1 for x > 2log(4g —2) (see for instance [6, Lemma 5.2.1]).
We will first prove that IP ¢ [sys < x] is absolutely continuous as a function of xe R ;.
In view of the above, we only need to worry about the interval [0, 2log(4g — 2)].

So, given 0 < x1 < y; < x2 < Y3 <+ < xp < yr < 2log(4g — 2) such that
k

3 yi —x;i <6, we have

i=1

k k
D IPglsys < yi] — Pglsys < xill = Y Pglsys € [xx, yl]

i=1 i=1

k
1 (o]
= Z V_g fMg Ng,[Xi,yf](X)dX’

i=1

where N; Lx;.y;] SOUNLS only simple curves with length in [x;, y;] (so we use that the
s 171

systole on a closed surface is always simple). If we use Theorem 2.2, we obtain

Yi

k k
1 1
—_— N° X)dX = . Vo(y,t) t dt,

i=1 i=1 [y] Xi

where the inner sum runs over (the finite number of) mapping class group orbits [y]
of simple curves. Theorem 2.3 now tells us that every term in the sum on the left
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hand side is given by the same polynomial of degree 6g — 2 in the x;, y;. Because
polynomials are Lipschitz on intervals and all sums are finite, we obtain

k
D I Pglsys < yi] — Pglsys < xl] < Ce8

i=1

for some constant C, > 0 depending only on g, which implies that P, [sys < x] is
indeed absolutely continuous.

The upshot of this is that we can associate a density function pg: R — R4 to
the systole, given by

d
Pe(x) = == Py[Ng o1 = O

for a.e. x € Rt. Hence

o0

d

Eg[sys] = —/ xd— P¢[Ng [0,x] = 0] dx
0 X

00
= [—)C ]Pg[Ng,[O,x] = O]]go + f ]P’g [Ng,[O,x] = 0] dx
0

o0
= f ]Pg[Ng,[O,x] = O] dx.
0

Here we have used the fact ‘that, when g is fixed, the systole is uniformly bounded
from above to show that

lim x Pg[Ng [0.x] = 0] =0.

X—>00

In order to prove our statement, we need to show that

o0 oo
gli)moo/(; Pg[Ngj0x] =0ldx = j(; gli)l‘go Pg¢[Ng [0,x] = 0] dx.
To do this, we will apply the dominated convergence theorem. So we need to find a
uniform integrable upper bound on IP g [N [9.x] = O].

First of all, Pg[Ng [0,x] = 0] = 0 for x > 2log(4g — 2). So, it follows from
Theorem 2.8 that

B-x-e™* if x < Alog(g),
Pg[Ng.jox] = 0] < {B-Alog(g)-e 4@ if Alog(g) < x <2log(4g — 2),
0 otherwise.

The right hand side can be bounded above by e=4™* for some A’ > 0 and for
all x € R4. This is an integrable function; as such the dominated convergence
theorem applies and this finishes the proof of the theorem. ]
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A. Random surfaces with large systoles

In this appendix we sketch a proof of the following result due to Mirzakhani.

Theorem 2.8 ([19]). There exist universal constants A, B > 0 so that for any
sequence {cg }¢ Of positive numbers with c, < A log(g) we have:

Cg.

P, [The systole of S has length > cg] < Bcge™

Proof sketch. Our phrasing is more in line with that in this paper, but the proof uses
the same ideas as those of Mirzakhani. We will denote by N7\ - My — N the
number of closed geodesic with length in [x;, y;] that are both simple and intersect
at most once with any other geodesic with length in [x;, y;]. Because the systole of
a closed hyperbolic surface is always simple and a pair of systoles intersects at most
once, we have

P, [The systole of S has length > ¢,] = Pg[N;,[o,cg] = fi]
The second moment method tells us that
Eg [( ;,[o,cg])z] —Eg [ng’rk,[o,cg]]2
Eg [(Ng 0.0,0)"] |

; 2 i
Using that (N;,[o,cg]) = (N;,[o,cg])z + N;,[o,cg]’ we obtain that

Pg[Ng 0,1 = 01 =

]Eg [(N;,[O,Cg])z] + ]Eg [N;,[O,cg]] o Eg [jvg*,[ﬂ,r:‘;‘r]]2

Eg [(N]0.c0)2] + Ee [Ny 0,c.1]

8,[0,c¢]
To get a bound on Eg [(N; 0.c ])2], we can argue like in Propositions 4.2 and 4.5.
However, since we are now onfy considering curves that pairwise intersect at most
once. The surface that is filled by two such intersecting curves is a one holed torus.
So, by replacing the constant C in Proposition 4.5 by 1, we obtain that

PglNg 0.c, =01 <

k

¢ te2Ce
B [(N fo.ct)a] = Ao + O il;ll ¢

(gl’
and
£ 2
¥ - l—[ C ec.l.’
]:Eg [ g,[O,Cg]] _ A'[()5'("1’-"] + 0 if‘—
8
Filling this in and using our assumption on ¢, gives that
1

P, [The systole of S has length > ¢c,] < C; ————
¢ ¢ )L[O’CH] + C2
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for some constant C;, C, > 0. The fact that

ex

Alo,x] ™~ ~

as x — oo, now implies the result. L]
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