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Rigidity of Busemann convex Finsler metrics

Sergei Ivanov and Alexander Lytchak

Abstract. We prove that a Finsler metric is nonpositively curved in the sense of Busemann if
and only if it is affinely equivalent to a Riemannian metric of nonpositive sectional curvature.
In other terms, such Finsler metrics are precisely Berwald metrics of nonpositive flag curvature.
In particular in dimension 2 every such metric is Riemannian or locally isometric to that of a
normed plane. In the course of the proof we obtain new characterizations of Berwald metrics in
terms of the so-called linear parallel transport.
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1. Introduction

The notion of nonpositive curvature in Riemannian geometry has two famous
generalizations to metric geometry due to Alexandrov and Busemann, respectively.
Alexandrov’s generalization is nowadays known as locally CAT(0) spaces. We refer
to [1,4] and the bibliography therein for a vast literature on the subject. Busemann
nonpositively curved spaces, also known as locally convex spaces, are a larger class
of metric spaces defined as follows (see e.g. [16]):

Definition 1.1. A geodesic metric space (X, d) is Busemann convex if for every pair
of constant-speed geodesics y12:[a,b] — X the function t +— d(y1(2), y2(t)) is
convex on [a, b].

A metric space (X,d) is nonpositively curved in the sense of Busemann
(Busemann NPC for short) if every point in X has a Busemann convex neighborhood.

In more geometric terms, a geodesic metric space (X, d) is Busemann convex if
and only if for every geodesic triangle Aabc in X, the distance between the midpoints
of its sides [ab] and [ac] is no greater than %d(h, c).

Contrary to Alexandrov’s definition of nonpositive curvature, Busemann’s one
is satisfied by all normed vector spaces with strictly convex norms. Thus it can
be sensibly applied to Finsler metrics. In fact, Finsler metrics are one of the main
motivations in Busemann’s work |5] where the definition is introduced. It is natural
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to ask how this class of Finsler metrics can be characterized in differential geometric
terms. For discussions of this question, see [5, 8, §13], the introduction in [10, 11]
and Problem 35 in Z. Shen’s problem list [19].

In this paper we settle this question. It turns out that the Busemann NPC condition
for (smooth and strictly convex) Finsler metrics has surprising rigidity implications
and very few metrics satisfy it.

For Riemannian manifolds the Busemann NPC condition is equivalent to non-
positive sectional curvature. Hence one can construct an open set of Riemannian
examples by perturbing any negatively curved metric. Indeed, if a perturbed metric
tensor is sufficiently C2-close to the original one, then it is also negatively curved and
hence Busemann NPC. One might expect that in the Finsler case a similar property
holds and that one can construct many examples of Busemann NPC Finsler metrics
by varying negatively curved Riemannian ones. These expectations turn out to be
wrong as our main theorem shows:

Theorem 1. A Finsler manifold (M, F) is Busemann NPC if and only if there exists
a nonpositively curved Riemannian metric g on M whose Levi-Civita connection
preserves the Finsler norm F.

The Finsler norm F in Theorem 1 is not assumed to be reversible. Strictly
speaking, non-reversible Finsler manifolds are not metric spaces since the distance
lacks symmetry. Nevertheless Definition 1.1 applies just as well,.cf. [11, Section 5].

In the language of Finsler geometry our result reads as follows:

Theorem 2. A Finsler manifold (M, F) is Busemann NPC if and only if it is a
Berwald manifold of nonpositive flag curvature.

The definitions of Berwald metrics and flag curvature are given in Section 2.
Theorem 2 is essentially a reformulation of Theorem 1, their equivalence easily
follows from Szabd’s metrization theorem [20]. The “if”” direction of Theorem 2 is
proved by Kristdly, Varga and Kozma [11], see also [9]. Results of [9] also imply that
if (M, F) is Berwald and Busemann NPC, then it has nonpositive flag curvature.

We now discuss some implications of Theorems 1 and 2 and well-known features
of Berwald metrics. First, Theorem 1 implies that in a connected Busemann NPC
Finsler manifold all tangent spaces are isometric as normed vector spaces. This is
already a strong restriction on a Finsler metric.

Furthermore, if (M, F') and g are as in Theorem 1 then the Finsler norm at every
point is invariant under the holonomy group of (M, g). Hence, if the holonomy group
acts transitively on the unit sphere then the Finsler structure must be Riemannian. In
dimension 2 the local holonomy group is either transitive or trivial, thus we have the
following (cf. [6, Corollary 4.3.5]):

Corollary 1.2. If a 2-dimensional connected Finsler manifold is Busemann NPC,
then it is Riemannian or locally isometric to a normed plane.
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In general, recall that the Riemannian holonomy group is transitive unless the
metric locally splits as a product or is locally symmetric [3]. This leads to a
classification of Busemann NPC Finsler metrics exactly as that of Berwald metrics
(see [20] or [6, Theorem 4.3.4]) with additional requirements that the symmetric
spaces involved are of non-compact type and the Riemannian factors are nonpositively
curved.

A Finsler norm F is preserved by the Levi-Civita parallel transport of a
Riemannian metric g if and only if F' and g are affinely equivalent, that is if they
have the same geodesics up to affine reparametrizations (see e.g. |6, Theorem 4.1.3]).
Thus we have the following short reformulation of Theorem 1:

Corollary 1.3. A Finsler metric is Busemann NPC if and only if it is affinely equivalent
to a nonpositively curved Riemannian metric.

We mention that Finsler manifolds affinely equivalent to nonpositively curved
Riemannian symmetric spaces have recently turned up and played a prominent role
in a series of papers of B. Leeb, M. Kapovich, and J. Porti, see [7] and references
therein.

Characterizations of Berwald spaces. Due to known results mentioned above, in
order to prove Theorem 1 it would suffice to show that every Busemann NPC Finsler
space is Berwald. However, we prove the “only if” part of Theorem 1 directly,
bypassing Szabo’s metrization theorem. The proof requires very little background
from Finsler geometry, summarized in Section 2.

The proof consists of two steps. In the first step, contained in Section 3, we
observe that in a Busemann NPC Finsler space the linear parallel transport along any
geodesic preserves the Finsler norm. This follows from analysis of Jacobi fields near
points where they vanish.

The above mentioned linear parallel transport is defined in Section 2. Note that
this notion is different from the more commonly used “canonical parallel transport”,
which is usually non-linear. See e.g. [6, Chapter 4] where the two parallel transports
are considered together. The non-linear parallel transport is not used in this paper
beyond the comparison remarks in this introduction.

In the second step, contained in Proposition 4.2 (see Section 4), we prove the
following general fact about Finsler metrics: [f the linear parallel transport of a
Finsler manifold (M, F) preserves F, then F is Berwald. In the proof (see also
Proposition 4.1) we construct a Riemannian metric affinely equivalent to F. This
Riemannian metric is then used in the proof of Theorem 1 in Section 5.

Remark. We suggest the reader to compare Proposition 4.2 with well-known facts
about the canonical (non-linear) parallel transport: It always preserves the Finsler
norm, and it is linear if and only if the metric is Berwald. Proposition 4.2 “mirrors”
the last mentioned characterization with the linear parallel transport, which is by
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definition linear but does not, in general, preserve the norm. Note that for Berwald
metrics the two parallel transports coincide, see [6, §4.3].

As a by-product, we obtain another characterization of Berwald spaces in terms of
the linear holonomy group naturally defined via the linear parallel transport. Namely
in Proposition 4.3 we prove the following: The closure of the linear holonomy group
of a Finsler metric is compact if and only if the metric is Berwald.

We mention that similar questions for the non-linear holonomy group (defined
via the non-linear parallel transport) were recently studied in [15].

Beyond smoothness. We work only with smooth Finsler structures and the smooth-
ness is essential in our proofs. It would be interesting to extend some of the results
to non-smooth Finsler structures and more general metric spaces. In particular
Corollary 1.3 suggests the following questions.

Question 1. Given a Busemann convex metric space, is there a CAT(0) space closely
and naturally related to it?

Question 2. Let (X, d) be a geodesic space affinely equivalent to a Busemann convex
space (X, dy). Is it true that (X, d) must be Busemann convex as well?

In the slightly more general class of spaces with convex bicombings the first
question turns out to be of interest in relation with the theory of Gromov hyperbolic
groups, see [12]. Some examples showing that one cannot expect affine equivalence,
as in Corollary 1.3, are discussed in Section 6.

Metric spaces affinely equivalent to Riemannian manifolds are characterized
in [13] in a way similar to Szabd’s metrization theorem. In fact, every such space is a
limit of smooth Finsler metrics affinely equivalent to the same Riemannian one, see
Theorem 1.4 and Lemma 4.1 in [13]. This and Corollary 1.3 imply an affirmative
answer to the second question above if (X, dy) is a smooth Finsler manifold.

Acknowledgements. The authors thank David Bao, Martin Kell, Alexandru Kristaly,
Hans-Bert Rademacher, Jozsef Szilasi for helpful comments. Special thanks are due
to Urs Lang for a discussion which led to the examples in Section 6. The first author
was supported in part by the RFBR grant 17-01-00128-a and by the Presidium of the
Russian Academy of Sciences grant PRAS-18-01. The second author was supported
in part by the DFG grants SFB TRR 191 and SPP 2026.

2. Preliminaries

In this section we recall some basics in Finsler geometry and prove some auxiliary
facts. We follow the presentation in [17], where most concepts are developed from
Riemannian point of view. We refer to [6] and [2] for more exhaustive exposition
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of Finsler geometry. We include proofs of some standard facts to keep the paper
accessible to readers not familiar with Finsler geometry.

Let (M, F) be a Finsler manifold, with the usual smoothness and strict convexity
assumptions on the Finsler norm F: TM — R . These assumptions ensure that F
determines a smooth geodesic flow on TM \ {0}. As mentioned in the introduction
we do not assume that F is reversible. We denote by dr the (non-symmetric) distance
function induced by F on M.

By a geodesic we always mean an affine geodesic, i.e., a constant-speed one.
Constant paths are not regarded as geodesics. Since all our considerations are local,
we may always assume that the manifold M is narrowed down to a small open region
where all geodesics are embedded.

For a nonzero v € TM, we denote by y, the unique geodesic with initial data
1»(0) = v. Note that y, () depends smoothly on v and ¢.

A Jacobi field along a geodesic y is a variation field of a smooth family of
geodesics. We denote by g F () the set of all Jacobi fields along .

We make use of several notions from Finsler geometry. They all can be defined
by means of osculating Riemannian metrics, see below.

2.1. Osculating Riemannian metrics. Forevery p € M andv € T, M \ {0} there
is a unique positive definite quadratic form g, on 7, M such that g, and F 2|T,, M
agree to second order at v. If V' is a non-vanishing vector field on an open set
U C M, the family {gy(p)} pev of quadratic forms defines a Riemannian metric gy
on U. If y is an embedded geodesic and V' extends the velocity field of y to a
neighborhood of y, we call gy an osculating Riemannian metric for y and denote it
by g¥. Note that g¥ is uniquely determined at every point on y but the extension to
a neighborhood is not unique.

We need the following property (see Lemma 4.4 and Proposition 5.1 in [17] or
Chapter 8 in [18]):
Lemma 2.1. Let y be an embedded geodesic of (M, F) and g = gV an osculating
Riemannian metric for y. Then y is a geodesic of g with the same space of Jacobi
fields: g5 (y) = 3% ().

We comment that Lemma 2.1 is essentially a consequence of the fact that
respective equations from calculus of variations involve only first and second
derivatives of a Lagrangian with respect to the velocity variable.

2.2. Linear parallel transport and Jacobi operator. An osculating Riemannian
metric g? for a geodesic y defines the following structures, which are in fact
independent on the choice of g¥ (see [17] or Lemma 2.3 below):

 The covariant derivative of a vector field W along y, denoted by D, W':

VY
DyW(t) = — W) 2.1

where V7 is the Levi-Civita connection of g7.
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¢ The linear parallel transport along y associated to this connection. It is a family
of non-degenerate linear maps between tangent spaces T, ) M .

» The Jacobi operator RY, which is a family of linear operators on the tangent spaces
T, )M satistying the Jacobi equation

Dy Dy, J(t) = —R (J(1)) 2.2)

for all Jacobi fields J along y. Namely RY(w) = Rgv(w,y(?))y(t) for all
w € T, yM, where R, is the Riemannian curvature tensor of g¥.

Our notation has y rather than y in indices (cf. [17]) since we are only interested in
vector fields along geodesics.
The following simple computation is used several times in the paper.

Lemma 2.2. Let y = y, be a geodesic of (M, F) and w € T\, oyM. Define a Jacobi

field J along y by
d
J(@) = — t), 23
(?) o S=O)’v+sw( ) (2.3)
and let W be a D, -parallel vector field along y (with respect to any osculating
Riemannian metric) with W(0) = w. Then

Jt)=1t-Wt)+ 0@?, t—0. (2.4)

Proof. Fix an osculating Riemannian metric g¥ for (2.1) and (2.2). For brevity, in
this proof we use notation X’ for the covariant derivative D, X of a vector field X
along y. From (2.3) we have J(0) = 0,

VY d

JO0)y=—| —

© dt lt=0ds

and J”(0) = —RY(0) = 0. The vector field X(¢) := t - W(t) has the same value
and the same first and second covariant derivatives at t = 0, namely X(0) = 0,
X'(0) = W(0) = w and X"(0) = 2W'(0) = 0 since W is D, -parallel. Therefore
J@)—X(t) = O(t>) ast — 0. O

4
s=0dt

d
SZOVersw (t) = s

Yotsw(t) = w,
t=0

Lemma 2.3. Let g1, g2 be two Riemannian metrics on M. Suppose that a path y
is a geodesic for both g1 and g, and the two metrics induce the same Jacobi fields
along y, i.e. 81 (y) = $22(y). Then gy and g, induce the same covariant derivative
and the same Jacobi operator along y.

In particular, for a Finsler manifold (M, F) and an F-geodesic y, the
operators D, and R” are independent of the choice of the osculating metric gV

Proof. We apply the computation from Lemma 2.2 to the Riemannian metrics g;.
The formula (2.4) determines the first order jet of W(¢) att = 0 in terms of the Jacobi
field J. Hence the space § = %/ (y) determines (independently of the metric) the
set of vector fields W along y such that D, W(0) = 0. Indeed, a vector field satisfies
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D, W(0) = 0 if and only if there exists J € ¢ such that (2.4) holds. Similarly,
for every tp € R the set of vector fields W along y satistying D, W(ty) = 0 is
determined by .

Thus the set of parallel fields along y is determined by ¢ and hence it is the same
set for g1 and g>. The parallel fields determine the covariant derivative D,. The
Jacobi equation (2.2), ¢ and D, together determine the Jacobi operator RY. This
proves the first statement of the lemma. The second one follows by Lemma 2.1. []

With Lemma 2.3 at hand, one can define the covariant derivative D, and the
Jacobi operator R” along a Finsler geodesic y as those of any osculating Riemannian
metric associated to y. Note that with these definitions the first part of Lemma 2.3
applies to Finsler metrics as well. In particular, affinely equivalent Finsler metrics
induce the same covariant derivatives and the same Jacobi operators.

Following [6], we use the term linear parallel transport for the parallel transport
operator induced by D, and refer to D, -parallel vectors fields as linearly parallel
vector fields along y.

2.3. Flag curvature. The flag curvature K (v, o) of a Finsler manifold (M, F) isa
function of a point p € M, aplane (i.e., two-dimensional linear subspace)o C T, M,
and a direction v € ¢ \ {0} in that plane. It can be defined as the sectional curvature
K, (o) of an osculating Riemannian metric g = g7 for the geodesic y = y,. From
the Riemannian Jacobi equation one sees that

g(RY (w), w)

Kp(v.0) = Ky(0) = 55 -5
g

(2.5)

for any vector w € o such that v and w are linearly independent, where
2 2
|UAujlg :g(v,v)g(w,w)—g(v,w) .

The formula (2.5) and Lemma 2.3 imply that the definition does not depend on the
choice of the osculating metric g. If the metric F is Riemannian, then K¢ (v, o)
equals its sectional curvature at ¢, in particular it does not depend on v.

Consider the Jacobi operator R at p = y(0). By symmetries of the Riemannian
curvature tensor, this operator on 7, M is symmetric with respect to the inner product
induced by g = g?. Hence it has only real eigenvalues. By (2.5), the flag curvature
of (M, F) is nonpositive if and only if these eigenvalues are all nonpositive for
every p and y. Since Jacobi operators of affinely equivalent metrics coincide, this
implies the following:

Lemma 2.4. Let Fy and F, be affinely equivalent Finsler metrics and the flag
curvature of Fy is nonpositive. Then the flag curvature of I is nonpositive as well.
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2.4. Berwald metrics. Berwald metrics are a special class of Finsler metrics that
can be defined in many equivalent ways, see [2, Ch. 10] and [6, Ch. 4]. A definition
convenient for our purposes is the following. A Finsler manifold (M, F) is Berwald
if and only if there exists a symmetric affine connection on M such that the geodesics
of F are also geodesics of this connection.

By Szab¢’s metrization theorem [20], this affine connection can be realized as the
Levi-Civita connection of a Riemannian metric. Thus a Finsler metric is Berwald if
and only if it is affinely equivalent to a Riemannian metric.

Finally, we need the fact that if the Levi-Civita connection of a Riemannian
metric g preserves a Finsler norm F, then F and g are affinely equivalent (and
hence F is Berwald). See e.g. [6, Lemma 4.1.5] for a proof. Alternatively, one can
verify directly that in this case the Euler—Lagrange equation for Finsler geodesics is
satisfied by Riemannian geodesics. This is easy to see in the Riemannian exponential
coordinates at the point in question.

3. An implication of Busemann convexity

The aim of this section is the following:

Lemma 3.1. Let (M, F) be a Busemann NPC Finsler manifold and y: (a,b) —- M
a geodesic. Then the linear parallel transport along y preserves F, i.e., for every
linearly parallel vector field W along y the functiont — F(W(t)) is constant.

Proof. The statement is local, thus we may assume that y is contained in a Busemann
convex open subset of M.

First observe that for every Jacobi field J along y, its norm F(J(¢)) is a convex
function of z. Indeed, let {y,} be a geodesic variation of y whose variation field is J .
By Busemann convexity, for every s the function f(t) = dr(y(t), ys(t)) is convex.
Hence so is the limit function limg_,¢ @ = F(J(@)).

Now let W ## 0 be a linearly parallel vector field along y. Note that F(W(t)) is
a smooth function of . Assuming that O € (a, b), Lemma 2.3 implies that there is a
Jacobi field J along y such that

J)=t-Wit)+0@>, t—0.
For this Jacobi field J and ¢ > 0 we have
F(J@)=F(t- W) +0¢H) =t-FW@e)+ 0>, t—0.. (3.1

In particular F(J(t)) =t - F(W(0)) + o(t) ast — 0. Since F(J(t)) is a convex
function, it follows that F(J(¢)) = t - F(W(0)) for all + > 0. This and (3.1) imply
that

F(W()) = F(W(0)) — O(t?), t— 04,

hence F(W(t));_, = 0.
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Similarly, for the Jacobi field —J and t < 0 we have
F(=J@) =—t-FW@®) + 0@, t—>0_,
and therefore F(—J(t)) = —t - F(W(0)) for all + < 0. These relations imply that
F(W(@t)) > FIW(©0)—0@?), t—0_,

hence F(W(t));_, < 0. Thus F(W(t)),_, = 0.
Shifting the parameter of y we deduce that the derivative of F(W(t)) vanishes
everywhere on (a, b). Therefore F(W(t)) is constant. ]

4. Linear parallel transport and Berwaldness

In this section we prove three characterizations of Berwald metrics in terms of the
linear parallel transport. The proof of Theorems 1 and 2 in the next section uses
Proposition 4.2, which in its turn refers to Proposition 4.1.

Proposition 4.1. Let (M, F) be a Finsler manifold. Let g be a smooth Riemannian
metric on M such that the linear parallel transport (determined by F) along any
F-geodesic preserves g. Then g is affinely equivalent to F, in particular F is
Berwald.

Proof. Let V denote the Levi-Civita connection induced by g. For p € M and
veT,M\ {0} define k(v) € T,M by

V
K(v) = E t:O))v(t)’

where y, is, as usual, the F'-geodesic with y,(0) = v. Thatis, k¥ (v) is the Riemannian
second derivative of y,. Note that «(v) depends smoothly on v. We need to show
that every geodesic of the Finsler manifold (M, F) is a geodesic in (M, g). Thus, it
suffices to prove that ¥ (v) = 0 for all p and v.

Let W be a linearly parallel vector field along y,, and w = W(0). We claim that

d ‘ \Y%

s S:OK(U +sw) =2- m z=ow(t) : (4.1)
To prove this, we use the Riemannian exponential coordinates with respect to g at p to
identify a small neighborhood U of p with an open subset of R” = T, M. By means
of coordinates we also identify vector fields along y, with R”-valued functions of ¢.
Recall that the Levi-Civita connection coefficients in exponential coordinates vanish
at the origin. Hence in these coordinates we have

2

) = 73|,

N (4.2)
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and
W) = 2 ‘ W(t)
dtlt=0 ~ dtli=0 ’
Differentiating (4.2) yields
3 2
E— LY e 1) = — J f N
ds szoK(v ) dsdt2 (s,t):(0,0)yv+sw( ) dt2 =0 @)

where J is the Jacobi field along y, defined by (2.3), see Lemma 2.2. By the relation
J(t) =t - W(t) + O(t?) from Lemma 2.2, the right-hand side can be rewritten as

2

d2
a2 li=’® = 22—

This finishes the proof of (4.1).

Now we forget about coordinates and introduce some shortcut notation. We
write (-, ) instead of g(-,-) and denote by X’(¢) the Levi-Civita derivative (induced
by g) of a vector field X(7) along a path.

Since g is preserved by the linear parallel transport, for any linearly parallel vector
fields X and Y along y,, the inner product (X (z), Y(¢)) is constant, hence

d v
(W) =2 ELZOW(t) =2-—| _ W

t’t=0

0= %(X(t), Y(1)) = (X', Y)+ (X,Y'). (4.3)

Note that y,, is linearly parallel along y,,. For X = Y = y, and¢ = Otheidentity (4.3)
boils down to

(k(v),v) = 0. 4.4)

Fix w € T, M and let W be the linearly parallel vector field along y, with W(0) = w.
We replace v by v 4+ sw in (4.4) and differentiate with respect to s using (4.1):

d
0=

= | _, K@+ sw), v+ sw) = 2 W(0),0) + (k(v), w).

On the other hand, plugging X = W and Y = y, into (4.3) we see that
0 = (W'(0),v) + (w,k(v)).

The last two equations together imply that (k(v), w) = 0. Since w was arbitrary
in T, M, we conclude that «(v) = 0. This finishes the proof of the proposition. []

We now deduce the main ingredient of the proofs of Theorems 1 and 2.

Proposition 4.2. Let (M, F) be a Finsler manifold. Suppose that the linear parallel
transport along any geodesic preserves the Finsler norm F. Then there exists a
Riemannian metric on M affinely equivalent to F. In particular F is Berwald.
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Proof. Consider a smooth Riemannian metric g on M whose value g, at every
p € M is canonically determined by the norm F, := F|r, 5, where “canonically”
means that any linear isometry between normed spaces (T, M, F}) and (T, M, F;)
takes g, to g4. See [14] for a possible construction of such g.

Since the linear parallel transports are linear and preserve F, they also preserve g.
The claim now follows from Proposition 4.1. L]

Our next result generalizes Proposition 4.2. In order to state it we need the notion
of linear holonomy group, defined as follows. Let (M, F') be a Finsler manifold. For
a piecewise geodesic path y:[a,h] — M denote by P, the linear parallel transport
along y. Recall that P, is a linear isomorphism from T,y M to T, (5 M . Fix a point
p € M and let GL(T, M) denote the group of linear self-isomorphisms of 7, M.
The linear holonomy group LH ,(M, F) is the subgroup of GL(T, M) generated by
maps of the form P, 1o P, where y; and y, are piecewise geodesic paths starting
at p and having a common end point. (The definition is so cumbersome because
linear parallel transports in opposite directions are in general not inverse to each
other.)

Proposition 4.3. Let (M, F) be a connected Finsler manifold and p € M. Then the
closure of the linear holonomy group LH,(M, F) in GL(T, M) is compact if and
only if F is Berwald.

Proof. Let H = LH,(M, F). If F is Berwald then by Szab’s metrization theorem
the linear parallel transport is the Levi-Civita parallel transport of some Riemannian
metric. Thus H preserves an inner product on 7, M and is therefore contained in the
corresponding orthogonal group, which is compact.

On the other hand, if the closure of H is compact then there exists an H -invariant
inner product g, on T,M. For every x € M, pick a piecewise geodesic y
connecting p to x and define an inner product ¢, on Ty M as the push-forward
of g, by the linear parallel transport P,. Since g, is H-invariant, the resulting
Riemannian metric ¢ = {gx}xem is well-defined and it is preserved by the linear
parallel transport along any F-geodesic. It is easy to see that g is smooth. By
Proposition 4.1 it follows that ' is a Berwald metric. ]

5. Proof of the theorems

We can now collect the harvest and prove Theorems 1 and 2.

The “if” part of Theorem 2 follows from the main result of [11]. To prove the
“if”” part of Theorem 1, let g be a Riemannian metric on M of nonpositive sectional
curvature whose Levi-Civita connection preserves the Finsler norm F. Then F is
Berwald and affinely equivalent to g (see Section 2.4). Now Lemma 2.4 implies
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that F has nonpositive flag curvature. Hence, by the “if”” part of Theorem 2, (M, F)
is Busemann NPC.

Now we prove the “only if” implications of the theorems. Let (M, F) be a
Busemann NPC Finsler manifold. Then by Lemma 3.1 the linear parallel transport
preserves F. Therefore, by Proposition 4.2 the Finsler metric F' is Berwald and
affinely equivalent to a Riemannian metric g.

It remains to prove that g has nonpositive sectional curvature and F has
nonpositive flag curvature. This can be seen from results of [9] but for reader’s
convenience we give a short proof here.

First let us show that F has nonpositive flag curvature. Suppose the contrary.
Then, as explained in Section 2.3, for some geodesic y the Jacobi operator R? has
a positive eigenvalue at p = y(0). Let w € T, M be a nonzero vector such that
RY (w) = Aw, A > 0. Consider the Jacobi field J along y with the initial conditions
J(0) = w and Dy J(0) = 0. Let J(t) € T, M be the image of J(¢) in T, M under
the linear parallel transport along y,. Then J'(0) = D, J(0) =0 and

J"(0) = D, D, J(0) = —RY(J(0)) = —Aw.

Since the linear parallel transport preserves F, we have F(J(t)) = F(J(¢)) for all t.
Therefore B
F(J@);—g = F(J())]_g = —A-F(w) <0,

contrary to the fact that F'(J(t)) is a convex function (see the proof of Lemma 3.1).
This contradiction shows that /' has nonpositive flag curvature and finishes the proof
of Theorem 2.

Now Lemma 2.4 and the affine equivalence of F and g imply that g has nonpositive
sectional curvature. This finishes the proof of Theorem 1.

6. Non-smooth examples

In this section we describe two simple examples of Busemann convex spaces not
affinely equivalent to any CAT(0) space. Both examples are constructed from a
plane V' with a strictly convex non-Euclidean norm.

The first example X arises from V by attaching a ray at the origin.

The second example X, is the double branched cover of V' with branching locus
the origin 0 € V. We give X, the naturally induced length metric. Note that X, is
biLipschitz to the Euclidean plane.

It is not difficult to see that X; and X, are Busemann convex. Assume now that
there exists a space Z and an affine bijection F: X; — Z fori = lori = 2, hence F
sends constant speed geodesics to constant speed geodesics.

Every ray in V starting at the origin can be continued in X to an infinite geodesic
by the attached ray in X. Thus, in the case of X, any ray in V is stretched by the
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same factor as the attached ray. Hence all rays in V' through the origin are stretched
by the same factor. The metric on the punctured plane Zy = F(V \ {0}) is affinely
equivalent to the flat Riemannian manifold R? \ {0}. Due to [13, Theorem 1.5], the
metric on Zy must come from a constant norm on V. In particular, parallel rays
in V' must be stretched by F by equal factors. We conclude that F must stretch all
distances by the same factor. Thus, F is a dilation and Z cannot be CAT(0).

Every pair of rays y; > in X, starting at the origin can be continued to infinite
geodesics by the same ray y3. Therefore, also in case of X5, the map F' must stretch
all rays through the origin by the same factor. Using [13, Theorem 1.5] as above, this
again implies that F is just a dilation and Z cannot be CAT(0).

However, in both cases there is a natural CAT(0) metric on the spaces X1, X»
which arises in the same way as X » from the Euclidean plane V|, instead of V. These
CAT(0) metrics have the same unparametrized geodesics as the original metrics and
are affinely equivalent to the original metric outside the branching locus.
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