
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 94 (2019)

Heft: 4

Artikel: Characterization of generic projective space bundles and algebraicity of
foliations

Autor: Araujo, Carolina / Druel, Stéphane

DOI: https://doi.org/10.5169/seals-847032

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-847032
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 94 (2019), 833-853
DOI 10.4171/CMH/475

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Characterization of generic projective space bundles
and algebraicity of foliations

Carolina Araujo and Stéphane Druel

Abstract. In this paper we consider various notions of positivity for distributions on complex
projective manifolds. We start by analyzing distributions having big slope with respect to curve
classes, obtaining characterizations of generic projective space bundles in terms of movable

curve classes. We then apply this result to investigate algebraicity of leaves of foliations,
providing a lower bound for the algebraic rank of a foliation in terms of invariants measuring
positivity. We classify foliations attaining this bound, and describe those whose algebraic rank

slightly exceeds this bound.

Mathematics Subject Classification (2010). I4M22, 14J40, 37F75.

Keywords. Holomorphic foliations, rationally connected varieties.

1. Introduction

The existence of sufficiently positive subsheaves of the tangent bundle of a complex
projective manifold X imposes strong restrictions on A. In particular, several special
varieties can be characterized by positivity properties of their tangent bundle. Early
results in this direction include Kobayashi and Ochiai's characterizations of projective
spaces and hyperquadrics [23J and Mori's characterization of projective spaces [26J.

There are many ways of measuring positivity of a torsion free sheaf. One way is

to consider slopes with respect to movable curve classes a £ Mov(A). We refer to
Section 2.3 for the notion of slope and its properties. When a is an ample class, we
have the following characterization of projective spaces due to Höring.

Theorem 1.1. Let X be an n -dimensional complex normal projective variety, X an

ample line bundle on X, and IF c Tx a distribution. Set a := [<£""'] Mov(A).
Ifp,a(JF <g> X*) > 0, then

• (X X) (P", Opn 1 [22, Theorem 1.1], and

• !F — Tpn [5, Theorem 1.3],

Projective space bundles provide counter-examples to the statement of Theorem

1.1 if we replace the ample class a [Xn~l] with more general movable curve
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classes. More precisely, let y be a complex projective manifold, and 8 an ample
vector bundle of rank r + \ ^ 2 on Y. Consider the projcctivization X Py(6?), with
tautological line bundle 0^(1) and natural morphism jt: X —> Y. Let a e Mov(2f)
be the class of a line contained in a fiber of n. Then

Fce{Tx/Y ® &x(— 0) - > 0.

So there is an open neighborhood U C Mov(3f) of a such that ßtß{Tx/Y ® ®x(— 1))
> 0 for every ß e U. The following characterization of generic Pr-bundles shows

that these are all the new examples that arise when the ample class a [Xn~l]
is replaced with an arbitrary movable class a G Mov(3f) in Theorem 1.1. By a

generic V -bundle we mean an almost proper dominant map X —> Y to a normal

projective variety Y with general fibers isomorphic to PC See Section 2.3 for the

notion of /iax.
Theorem 1.2. Let X be a normal Q-factorial complex projective variety, and X
an ample line bundle on X. ljji'K(Tx <8> X*) > 0 for some movable curve class

a e Mov(A then X is a generic Pr-bundle for some positive integer r.

Theorem 1.2 follows from the more refined statement in Theorem 3.1.

Corollary 1.3. Let X be a normal Q-factorial complex projective variety, and

suppose that X is not a generic Pr-bundle for any positive integer r. Let X be

an ample line bundle on X. Then, for any positive integer m and any torsion-free
quotient (8> X)®rn Q. ofpositive rank, det(Q) is pseudo-effective.

Next we apply these results to investigate algebraicity of leaves of holomorphic
foliations on complex projective manifolds.

A central problem in the theory of holomorphic foliations is to find conditions
that guarantee the existence of algebraic leaves. Algebraic leaves of holomorphic
foliations correspond to algebraic solutions of complex differential equations. It
has been noted that positivity of foliations on complex projective varieties tend to

improve algebraicity of leaves ([l^t, 6,7,10-12,14,15,25]). In order to measure

algebraicity of leaves, we introduce the algebraic rank. The algebraic rank ra(!F) of a

holomorphic foliation !F on a complex algebraic variety X is the maximum dimension
of an algebraic subvariety through a general point of X that is tangent to !F. These
maximal algebraic subvarieties tangent to F are the leaves of a subfoliation !Fa ç !F,
the algebraic part of !F (see Definition 2.4).

In a series of papers, we have addressed Fano foliations ([1^1]). These are

holomorphic foliations !F on complex projective varieties with ample anti-canonical
class —Kjr. For a Fano foliation IF on a complex projective manifold X, a rough
measure of positivity is the index i(F), which is the largest integer dividing — Kjr
in Pic(3f). Our works on Fano foliations with high index indicated that the larger is

the index, the larger is the algebraic rank of the Fano foliation. Now we investigate this
relation between positivity and algebraicity of leaves for a wider class of foliations
than Fano foliations.
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We first introduce a new Invariant measuring positivity for foliations with big anti-
canonical class.

Definition 1.4. Let X be a complex projective manifold, and F a holomorphic
foliation on X with big anti-canonical class — Kp. The generalised index of F is

defined as follows (see Lemma 4.1):

1(F) := max [t e M | — K$r t A + E, where A is an ample divisor
and £ is a pseudo-effective M-divisor}.

We provide a lower bound for the algebraic rank in terms of the generalised index,
and classify foliations attaining this bound. We refer to Definition 2.4 for the notions
of pull-back and purely transcendental foliations.

Theorem 1.5. Let X bean n-dimensional complexprojective manifold, and F f Lx
a foliation on X with big anti-canonical class. Then the algebraic rank and the

generalised index off satisfy

ra(F)^7(F).
Moreover, equality holds ifand only if X P" and F is the linear pull-back of a

purely transcendentalfoliation on f>n~r FF) with zero canonical class.

The following are immediate consequences of Theorem 1.5.

Corollary 1.6. Let X be an n-dimensional complex projective manifold, and F c Tx
a Fano foliation of index i(F) on X. Then the algebraic rank of F satisfies the

following inequality:
ra(F) ^ i(F).

Moreover, equality holds if and only ifX P" and F is the linear pull-hack of a

purely transcendentalfoliation on fn~r with zero canonical class.

Corollary 1.7. Let X be an n-dimensional complex projective manifold, L an ample
divisor on X, and F c Tx a foliation of rank r on X. Suppose that K'p — rL is

pseudo-effective. Then (X, &x(L)) (Pn, 0p«(l)), and F is induced by a linear
projection off"1.

Finally, we address foliations F whose algebraic rank and generalised index

satisfy ra(F) ^ t(F) + 1.

Theorem 1.8. Let X be a complex projective manifold, and F c Tx afoliation on X
with big anti-canonical class. Suppose that the algebraic rank and the generalised
index of F satisfy ra(F) F- î(F + 1. Then the closure of a general leaf of Fa is

rationally connected.

The following is an immediate consequence of Theorem 1.8.

Corollary 1.9. Let X be a complexprojective manifold, and F f Tx a Fanofoliation
ofindexi(F)onX. Suppose that the algebraic rank ofF satisfies ra (F) i(F)+1.
Then the closure ofa general leafof Fa is rationally connected.
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We remark that codimension 1 Fano foliations 3~ of index n — 3 on «-dimensional

projective manifolds were classified in [4], When A ^ P", then either F is

algebraically integrable or ra(F) t(F + 1.

Notation and conventions. We always work over the field C of complex numbers.

Varieties are always assumed to be irreducible. We denote by Ans the nonsingular
locus of a variety X. When X is a normal variety, and F is a quasi-coherent sheaf

of generic rank r on X, we denote by Tx the sheaf (£2^.)*, and by det(.f) the

sheaf (ArS'Y*. If 8 is a vector bundle on a variety X, we denote by IPV(S) the

Grothendieck projectivization Proj^ (S*£).
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and Institut Fourier. We would like to thank both institutions for their support and
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2. Foliations

2.1. Basic notions. Let A be a normal variety.

Definition 2.1. A distribution on A is a coherent saturated subsheaf F Cl Tx- By
saturated we mean that the quotient Tx/F is torsion-free.

The rank r of F is the generic rank of F. The codimension of F is defined as

q := dim A — r.
The normal sheaf of IF is the sheaf Mjr := (Tx/IF)**.
The canonical class K-jr of IF is any Weil divisor on A such that Ox(—K$-)

det(.F). We say that F is Q-Gorenstein if Kjr is a Q-Cartier divisor.

Definition 2.2. A foliation on A is a distribution F G Tx that is closed under the

Lie bracket.

Let A° c Ans be the maximal open subset such that F\xm is a subbundle of Tx„,
By Lrobenius' theorem, through any point of A° there is a maximal connected and

immersed holomorphic submanifold L c A° such that Tl F\l. We say that
such L is a leaf of F. A leaf is called algebraic if it is open in its Zariski closure.

2.3. To a codimension q distribution f on a normal variety A, one naturally
associates a unique (up to scaling) twisted g-form toy G H°(A, Q9X ® det(Wy-)).
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This form does not vanish in codimension 1, and completely determines the

distribution F. (See for instance [3, Paragraph 3.5] for details.)

Definition 2.4 (The algebraic and transcendental parts of a foliation [2, Definition 2]).
Let F be a foliation of rank r on a normal variety X. There exist a normal variety Y.

unique up to birational equivalence, a dominant rational map with connected fibers

<p: X —> Y, and a foliation 13 on Y such that the following conditions hold (see [24,
Section 2.3]).

(1) ^ is purely transcendental, i.e. there is no positive-dimensional algebraic
subvariety through a general point of Y that is tangent to #.

(2) F is the pull-back of 13 via cp. This means the following. Let X° c X and

Y° c f be smooth open subsets such that <p restricts to a smooth morphism
<p°: X° —> Y°. Then F\x° (d(p°)~l(ß\y°). In this case we write F ip~xH.

The foliation Fa on X induced by cp is called the algebraic part of IF, and its
rank is the algebraic rank of F, which we denote by ra. When r" r, we say
that F is algebraically integrable. The foliation S C l'y is called the transcendental

part of F.
Next we relate the canonical class of a foliation with those of its algebraic and

transcendental parts. For that we introduce some notation.

Definition 2.5. Let tt: X -» Y be a dominant morphism of normal varieties.
Let D be a Weil Q-divisor on Y. If tt : A' -> Y is equidimensional, we define the

pull-back Jt*D of D to be the unique Q-divisor on X whose restriction to it~l (Tns)

is (it\n-i(yns))*£V-1(yns)- This agrees with the usual pull-back if D is Q-Cartier.
We define the ramification divisor R(it) of it as follows. Let Y° C Y be a dense

open subset such that codim(T \ Y°) £ 2 and it restricts to an equidimensional
morphism jt°: X° 7r_1 (T°) —>• Y°. Set

where D° runs through all prime divisors on Y°. Then R(it) is the Zariski closure
of R(it°) in V.

Assume that either Ky is Q-Cartier, or that n is equidimensional. We define the

relative canonical divisor of X over Y as Ky/y '= Kx ~ it* Ky.
2.6 (The canonical class of a pull-back foliation). Let n: X -> Y be a dominant
morphism with connected fibers between normal varieties, 13 a foliation on Y, and

F 7r_lf? c Tx its pull-back via it, as in Definition 2.4 (2). Assume that it is

equidimensional. Let be the (possibly empty) set of prime divisors on Y

contained in the set of critical values of it and invariant by ß. A straightforward
computation shows that

R(it°) {(it°)*D° - ((7r°)*D°)red),
D°

(2.1)
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In particular, if F is induced by n, then (2.1) reads

Kp Kx/y - R(n). (2.2)

Remark 2.7. Let <p: X —> Y be a dominant rational map with connected fibers
between normal varieties, and F a foliation on X. Suppose that the general fiber
of (p is tangent to F. This means that, for a general point x on a general fiber F of <p,

the linear subspace !FX C TxX determined by the inclusion F (Z Ty contains TxF.
Then, by [1, Lemma 6.7], there is a foliation 13 on Y such that !F (p~l1/. We
remark that this is not true in general if F is just a distribution.

2.8 (Restricting foliations to subvarieties). Let X be a smooth variety, and F a

codimension q foliation on X. Let Z be a smooth subvariety with dimZ ^ q.
Suppose that Z is generically transverse to F. This means that the associated
twisted «/-form (ojr e H°(X, tlqx <g) det(Wy-)) restricts to a nonzero twisted g-form
on Z, and so F induces a foliation Fz of codimension q on Z. Then there
is an effective divisor B on Z such that Fz corresponds to a twisted g-form in

//°(Z, Llqz (g) det(J\f^)\z(—B)) non vanishing in codimension 1. A straightforward
computation shows that

When Z is a general hyperplane section, we show that B 0.

Lemma 2.9. Let X C PN be a smooth projective variety, and F a foliation of
codimension q ^ dim A — 2 on X. Let H C PN be a general hyperplane. Then F
induces a foliation Fxn H ofcodimension q on X IT H with

Proof Let H c Pw be a general hyperplane, and set Z := X fl H. Notice that Z
is smooth and that Z is generically transverse to F. Let B be the effective divisor
on Z introduced in 2.8. If B\ is a prime divisor on Z, then B\ C Supp(ß) if and

only if F is tangent to // at a general point of B\.
Let X° c X be the open subset where F is a subbundle of Tx, and consider the

incidence subset

KFZ + KX\Z K$?\z + Kz — B.

Kpxnn + H)\XnH-

1° {(*, H)e X° X (PN)* I X H and Fx C TXH}.

An easy dimension count gives that

dim 7° dim X + N — (dim X — q) — 1 dim X + N — ?>.

It follows that if H is general, then B 0.
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2.2. Algebraically integrable foliations. Throughout this subsection, we let X be

a normal projective variety, and F a Q-Gorenstein algebraically integrable foliation
on X.

Definition 2.10 ([2, Definition 3.11 ]). Let i: F —> X be the normalization of the

closure of a general leaf of F. There is a canonically defined effective Q-divisor A p
on F such that Kp + Ap ~q i* Kp. The pair (F, Ap) is called & general log leaf
of F.

In the setup of Definition 2.10, we often write L\p for the pull-back i*L of a

Cartier divisor L on A.

2.11 (The family of log leaves of F [2, Lemma 3.9 and Remark 3.12]). There
is a unique proper subvariety Y' of the Chow variety of X whose general point
parametrizes the closure of a general leaf of F (viewed as a reduced and irreducible
cycle in X). Let Y be the normalization of Y', and Z —> Y' x X the normalization
of the universal cycle, with induced morphisms:

Z —^ X

(2.3)

Y.

Then v: Z —X is birational and, for a general point y G Y, v{n~l(y)) c X is the
closure of a leaf of F. We refer to the diagram (2.3) as the family of leaves of F.

Let Fz be the foliation on Z induced by F (orzr). By (2.2), Kpz KZ/y ~ R(n).
Moreover, there is a canonically defined effective Weil Q-divisor A on Z such that

Kpz + A Kz/y — R(it) + A v*Kp. (2.4)

Note that A is v-exceptional since v*Kpz Kp.
Let y 6 Y be a general point, set Zy := Ti~l(y) and Ay := A\Zy. Then

(Zy, Ay) coincides with the general log leaf (F, Ap) from Definition 2.10.

We will need the following observation.

Lemma 2.12. Let X be a smooth projective variety, and F an algebraically integrable
foliation on X. In the setup ofParagraph 2.11 above, we have

Supp(Aj,) Exc(v) PI Zy.

In particular, the singular locus ofZy is contained in Supp( A v

Proof. Since A is v-exceptional and Supp(Aj,) Supp(A) D Zy, we must have

Supp(Aj) C Exc(v) (T Zy.
To prove that Exc(v) fl Zy C Supp(Av), we first reduce to the case when F

has rank 1. Suppose that F has rank r ^ 2, and consider an embedding X C P^.
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Let L C PN be a general linear subspace of codimension r — 1. By Lemma 2.9,

F induces a foliation by curves Fxdl on X D L with

KFxcl (KF + (r ~l)H)\xnL • (2-5)

where H is a hyperplane in PN. Notice that the closure of a general leaf of Fxdl
is v(Zy) n L for a general point y Y. Moreover, the general log leaf of FxnL
is (Zy n v~l(L), Ay n v_1(L)). This follows from the definition of general log
leaf, (2.5), and the usual adjunction formula. Let E be an irreducible component
of Exc(v) meeting Zy. Since the restriction of v to E fl Zy is finite, we have

dimu(£) ^ r — 1. In particular, v(E) fl L 0. Moreover, Exc(v) fl Zy C

Supp(Aj,) if and only if Exc(v) fl Zy fl u_1(L) C Supp(Aj,) n v~l(L). Since

Exc(v) (~1 v~l{L) Exc(viv-i(L)), we may assume that J7 has rank 1.

When F has rank 1, 3? is a line bundle on A by fl, Remark 2.3] and [20,

Proposition 1.9]. If E is an irreducible component of Exc(u) that dominates Y,
then v(E) is contained in the singular locus of F. Apply [13, Lemme 1.2] (see
also [1, Lemma 5.6]) to conclude that E D Zy c Supp(Aj,), completing the proof
of the lemma.

Corollary 2.13. Let X be a smooth projective variety, and F f Tx an algebraically
integrable foliation on X, with general log leaf F. A Suppose that either
p(X 1, or IF is a Fano foliation. Then Af / 0.

Proof Let the notation be as in Paragraph 2.11, and suppose that A p 0. It follows
from Lemma 2.12 that no irreducible component of Exc(v) dominates Y. Hence, f
is induced by a rational map X —> Y that restricts to a smooth proper morphism on
a dense open subset of A. This is impossible if p(X) 1. Moreover, F is smooth,
and in particular log canonical. On the other hand, an algebraically integrable
Fano foliation whose general log leaf is log canonical has the special property that
there is a common point in the closure of a general leaf (see [1, Proposition 5.3]
and [3, Proposition 3.13]). We conclude that Af 0.

We end this subsection with a consequence of [21, Lemma 2.14] (see also

[10,11,15] for related results). Recall that a Weil Q-divisor I) on a normal projective
variety X is said to be pseudo-effective if, for any ample divisor L on X and

any rational number e > 0, there exists an effective Weil Q-divisor E such that
D + sL E.

Lemma 2.14. Let X be a normal projective variety, L an ample divisor on X, and F
a Q-Gorenstein algebraically integrablefoliation on X. Let F be the normalization of
the closure ofa general leafofF, and let vp'- F —F be a resolution ofsingularities.

If Kp + VpL\p is pseudo-effective, then so is Kp + L.
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Proof. Consider the family of leaves of !F as in Paragraph 2.11 :

Z—!U- V

*
Y.

By [15, Lemma 4.2], there exists a finite surjective morphism ßi'.Yi —> Y

with Y\ normal and connected satisfying the following property. If Z\ denotes
the normalization of the product Y\ xy Z, then the induced morphism xfi \Z\ -> Y\

has reduced fibers over codimension one points in Y\. Letu^Zi —> Z be the natural

morphism. Let fi2'. Y2 —x Y\ be a resolution of singularities, and Z2 a resolution of
singularities of the product Y2 xy, Zj, with natural morphism v2.Z2 —>• Z\. We
have a commutative diagram:

Let Fi ^ P be a general fiber of xfr\, and set Li := (v o vi)*L. Let F2 be the fiber
of t/t2: Z2 —x Y2 mapping to F\, and set L2 := v2L\.

By Paragraph 2.11, there is a canonically defined v-exceptional effective Q-Weil
divisor A on Z such that

Kz/y — R(f) + A ~q v*Kjr. (2.6)

where R(f) denotes the ramification divisor of 1//. Moreover, a straightforward
computation shows that

V*(KZ/y - R(f)) Kzi/Y\ (2.7)

Suppose that Kp + v*FL\F is pseudo-effective. We may assume without loss of
generality that the restriction of r>2: Z2 > Z\ to F2 factors through F -»• F s Fi.
This implies that Kp2 + F2\f2 's pseudo-effective as well. By [21, Lemma 2.14],
Kz2Iy2 + ^2 is also pseudo-effective. This implies that (v o v\ o v2)*(KZ2/y-, + L2)
is too. Set Zj := Z\ \ v2(Exc(v2)) and Yx := Li \ fi2(Exc(/i.2))- Since i/r, is

equidimensional, we have f\(Z°x) C Y°.
Notice that codim Ti\E° ^ 2, codim Z\\Z°X >. 2, and that v2 (respectively, \if)

induces an isomorphism

t>2'(Zi \ Z°) ^ Z, \ Z°

(respectively,
1 (Li \ E°) Y\ \ T°). It follows that

(V2)*{KZ2/y2 + L2) KZi/Y, + Ei.
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From (2.6) and (2.7), we conclude that

(v o m o v2)*(Kz2/y2 + L2) deg(vi)(A> + L)

is pseudo-effective, completing the proof of the lemma.

2.3. Foliations defined by stability conditions. Let X be a normal projective
variety, and 3* C Tx a foliation on X. Harder-Narasimhan filtrations of 37 allow one
to construct subfoliations of d7 that inherit some of the positivity properties of 'J7

(see for instance LI, Section 7]). However, the classical notion of slope-stability with
respect to an ample line bundle is not flexible enough to be applied in many situations
in birational geometry. The papers L9] and 117] extend a number of known results

from the classical case to the setting where stability conditions are given by movable

curve classes.

Definition 2.15. A curve class a G Ni (2C)r is movable if D a ^ 0 for all effective
Cartier divisors fl on A". The set of movable classes is a closed convex cone

Mov(9() C Ni(A)m, called the movable cone of X. If X is smooth, then Mov(A')
is the closure of the convex cone in Ni (A")r generated by classes of curves whose

deformations cover a dense subset of X by [8],

2.16 (The Harder-Narasimhan filtration with respect to a movable curve class).
Let X be a normal, Q-factorial, projective variety, a e N| (Afo a movable curve
class, and S7 a torsion-free sheaf of positive rank on X.

The slope of J7 with respect to a is the real number

_ det(^) -a
'la( ~ rank(F)

'

The sheaf 37 is a-semistable if, for any subsheaf 8 f 0 of 77, one has

pa(8) ^ Paif).
The maximal and minimal slopes of J7 with respect to a are defined by

/xax(5r) := sup {pa(8) I 0 ^ ê ç T is a coherent subsheaf},

:= inf [pa{Q.) I Ö 0 is a torsion-free quotient of

By [17, Corollary 2.26], there exists a unique filtration of 37 by saturated

subsheaves

0 50cf1c...c^ f7,

with a-semistable quotients Q, such that pa((3.\) > pa(0.2) > >
pa (Q-k )• This filtration is called the Harder-Narasimhan filtration of 37.

Using the basic properties of slopes and the Harder-Narasimhan filtration, one

can check that, for 1 ^ i ^ k,

vT&Ù da(&i) /CWSi-O- (2-8)
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The sheaf .F\ is called the maximal destabilizing subsheaf of 3>.

Suppose that p,'AX(!F) > 0, and set s := max{l ^ i ^ k \ pta{Q.i) > 0} ^ 1.

The positive part of IF with respect to a is the sheaf 7Tff+ := '.Fs.

The following is a useful criterion for a subsheaf of a foliation to be a foliation.
We include a proof for the reader's convenience.

Lemma 2.17 ([10, Lemma 4.10]). Let X be a normal, Q-factorial, projective variety
and IF G Tx a foliation on X. Let S C 'F be a saturated subsheaf and suppose
that, for some movable curve class a e Ni (X)jr,

2/C"(£) > /CW*)-
Then id is also a foliation on X.

Proof. Note that 8 is saturated in Tx- Integrability of 8 is equivalent to the vanishing
of the map a28 —»• IF f§ induced by the Lie bracket. This vanishing follows from
the inequality

ACin(A2£/Tors) > /CW#).
So it is enough to prove that

/xn(A2£/Tors) £ 2ptfn(8). (2.9)

Observe (A2^/Tors)** A 2 -9 ** i s a d i rec t su m m and o f -9 ® -9 * *. Therefore,
we have

/Cn(A2^/Tors) nr((A28)**)
Z pC\(8 ® S)**)

2ptfn{8) (by [17, Theorem 4.2]),

proving (2.9).

Corollary 2.18. In the setup ofParagraph 2.16, suppose that IF G Tx is a foliation
on X with //4lax F ^ 0. Then Tj G Tx is also a foliation on X whenever

Hoc(&i) ^ 0.

We end this subsection with a remarkable result of Campana and Päun concerning
algebraic integrability of foliations.

Theorem 2.19. Let X be a normal Q-factorial projective variety, a e N; (V)r a
movable curve class, and IF G Tx a foliation on X. Suppose that ji"f"(T) > 0.

Then IF is algebraically integrable, and the closure of a general leaf is rationally
connected.

In particular, if'T is purely transcendental, then Ky is pseudo-effective.
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Proof. Let v: X —> X be a resolution of singularities. By [17, Proposition 2.7

and Remark 2.8], we have pm(F) pfffa(v~lf), where v*a G Mov(Z) is the

numerical pull-back of a. The claim now follows from [10, Theorem 4.7] applied
tov~lf.

The following is an immediate consequence of Corollary 2.18 and Theorem 2.19.

Corollary 2.20. In the setup ofParagraph 2.16, suppose that If C Tx is a foliation
on X with /xx(jP") > 0. Then, for \ f if s, f C Tx is an algebraically
integrable foliation, and the closure ofa general leaf is rationally connected.

3. Characterization of generic projective space bundles

Theorem 3.1. Let X be a normal Q-factorial projective variety, and X an ample
line bundle on X. Suppose that /rx( fx <8> X*) > 0 far some movable curve class

a G Mov(X), and let T\ be the maximal destabilizing subsheafofTx with respect
to a.

(1 Then T\ is induced by a generic Pr' -bundle structure n\ : X —> Yi on X, and X
restricts to 0pn (1 on a generalfiber ofn\. Moreover, ((/x/T\ (g> X*) f
0.

(2) Iff is afoliation on X and pta(f X*) > 0, then T\ ç f, and equality holds

ifand only iff is algebraically integrable.

Proof. Step 1. Suppose first that f is an algebraically integrable foliation of rank r,
and p-ai-T <8> X*) > 0 for some movable curve class a e Mov(A'). We show that f
is induced by a generic -bundle structure jt: X —> Y on X and that X restricts

to 0pr (1) on a general fiber of jr.
Let F be the normalization of the closure of a general leaf of f, and let vp : F —> F

be a resolution of singularities. Let L be a divisor on X such that Ox(L) s X.
If ^+dim Fis pseudo-effective, then sois ATy+dim F-L by Lemma 2.14.

This is absurd since —rpLa(f <g) X*) (Kp + dim F • L) a < 0 by assumption,
proving that Kp + dim F v*FL\p is not pseudo-effective. Apply [22, Lemma 2.5]
to conclude that (F, X\p) (Pr, (9p>- (1)). Consider the family of leaves of F as in
Paragraph 2.11:

Y

Y.

By [2, Proposition 4.10], we have

(Z,v*X) (Pr (£?), 0pr(g}(l)),

where 8 := fi*v*X.
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Suppose that the exceptional set Exc(v) dominates Y under t//. Consider a

resolution of singularities /x: Y —> Y, and set Z Pp(/x*f?) Y Xy Z with
natural morphisms xj/:Z ^ Y and v:Z —X. The exceptional set Exc(v) also

dominates Y under xjf. Note that Exc(v) has pure codimension one since X is

Q-factorial. Let E be an irreducible component ofExc(v) dominating Y. Then

G^i-Ê) ^ Opf{lx*S)(-k) <8> f*â
for some positive integer k, and some line bundle J on Y. In particular,
h°(Y, Sk 11*8 0 â*) ^ 1. Let f be a divisor on Z such that

&z(£) GpP(fi*e)0)-

Notice that 0ppOi*S)O) is the pull-back of Cp, (g)(1) v*X under the natural

morphism Pp(/x*6?) -» Py (S) s Z, and hence it is semi-ample. From Lemma 3.2

below, we conclude that +r? EsE) is effective for some positive integer m0
and every sufficiently large integer s. This in turn implies that

v*(K2 J y + + s E) Kg? + vL

is pseudo-effective. Thus pa{T <8> X*) ^ 0, yielding a contradiction. This proves
that the map n: X —> Y induced by \jr is almost proper, and so !F is induced by a

generic Pr-bundle structure on X.

Step 2. We prove statement (1

Let 0 % Ç T\ c •• • c Tjt Tx be the Harder-Narasimhan filtration of Tx
with respect to ot, and set Ö,- T/T-i. By Corollary 2.20, T\ is an algebraically
integrable foliation on X. Moreover, pta(T\ 0 X*) > 0. From Step 1 applied to 7),
we conclude that T\ is induced by a generic Pr' -bundle structure n\: X —> Y\ on X
and X restricts to (1) on a general fiber of n\.

Suppose that

fiTHTx/T) 0 X*) Iia(®2 0 X*) > 0.

By Corollary 2.20, T2 is an algebraically integrable foliation on X. By Step 1, T2

is induced by a generic Pr2-bundle structure on X. This is impossible since Prz
cannot admit a generic Pr| -bundle structure with r\ < r2. Thus /xa(ö2 ® X*) $ 0,

proving (1).

Step 3. Suppose that T is a foliation on X, and p.a(T 0 X*) > 0 for some movable

curve class a G Mov(Z). Let Ti C T be the maximal destabilizing subsheaf of T
with respect to a. By Corollary 2.20, is an algebraically integrable foliation
on X. Moreover, we have p,a(Ti 0 X*) > 0. By Step 1, T\ is induced by generic
P-5'-bundle structure on X. Let T\ c Tx be as in Step 2. By 117, Corollary 2.17],

c T\ since

/Cn(^i ®£*) ®X*) >0 and p,x((Tx/T) 0 X*) $ 0

by Step 2. Hence, we must have — T\.
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If 3> is algebraically integrable, then from Step 1, we conclude that !F\ =31 3r.

Recall that a vector bundle 8 on a normal projective variety Y is said to be semi-

ample if the line bundle 0pr (g)(m) on Py (8) is generated by its global sections for
some positive integer m.

Lemma 3.2. Let Y be a normal projective variety, M a line bundle on Y, and 8 a

semi-ample vector bundle on Y. Suppose that h°{Y, Sk8 8 M) ^ 1 for some integer
k Js 1. Then there exists an integer mo ^ 1 such that

h°(Y, Smo(^-Dg 0 det(6?)®m° <8 M®m"s) £ 1

far every sufficiently large integer s.

Proof. Let 8 be a semi-ample vector bundle on Y. By [16, Corollary 1 J, the vector
bundle 8* (8> det(g) is semi-ample. Let mo be a positive integer such that the line
bundle Ozimo) on Z := Py (8* 8 det(S)) is generated by its global sections. Set

V := N°(Y,Sm°(8* <g>det(g))) s H°(Z, 0z(mo)),

and consider the exact sequence

0 —> X 8 &z(m) —> K <8) (9z(m) -> 0z(mo + m) -> 0.

Pick a point y on Y, and denote by Zy the fiber over y of the natural morphism
Z —> Y. Let mi be a positive integer such that hl{Zy, X\zy 8 Gzv(m)) 0

for m ^ m i. Then the map

V 8 H°(Zy, 0Zy(m)) -> H°{Zy,GZy{mo + m»

is surjective for every m >- m\, and thus the morphism

V <8) Sm(g* <8 det(g)) -> sm,,+m(g* 8 det(S))

is generically surjective. This yields, for every m ^ mi, an injective map of sheaves

s/n0+m(g) ^ y* 0 sm(8) 8 det(g)®m,). (3.1)

Let M be a line bundle on Y, and k a positive integer such that h°(Y, Sk8 8 M) ^ 1.

Let ,v be an integer such that m := m0(sk — 1) ^ my The mo.v-th power of a

nonzero global section of Sk 8 8 M is a nonzero global section of sm°sk 8 ®M®m°s.
Then (3.1) yields

1 ^h°(Y,Sm»sk8 ®M®m»s)

^ dim V • h°(Y, Smo('*-»g ® det(g)®m° 8 M®m°s),

completing the proof of the lemma.
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ProofofCorollary 1.3. Suppose that there is a positive integer m, an ample line
bundle X, a torsion-free quotient (Lfx <g> X)®m —» Q ol' positive rank, and a

movable class a e Mov(A) such that /xa(Q) < 0. Then /zn((£2^ <g> X)®m) < 0.

This implies that /rax((7A <8> X*)®m) > 0. Thus, by [17, Theorem 4.2] (see

also [9, Proposition 6.1]), /zax(7A <8> X*) > 0. Theorem 3.1 then implies that X is

a generic Pr-bundle for some positive integer r.

4. Bounding the algebraic rank

We start this section by justifying the definition of generalised index in Definition 1.4.

Lemma 4.1. Let X be a complex projective manifold, and D a big divisor on X. Set

Î(D) := sup \t G \R \ D tA + F. where A is an ample divisor
and E is a pseudo-effective R-divisor}.

Then there exists an ample divisor A() and a pseudo-effective M.-divisor E0 on X
such that D î(D)Ao + E$.

Proof. Set to l-^p- < oo. Pick a real number t ü to, an ample divisor At and a

pseudo-effective M-divisor Et on X such that D tAt + Et. Then 3-D — At
(4- — \)At + j^Ei is pseudo-effective. In order to prove the lemma, it is enough to
show that there are finitely many classes of integral effective divisors B on X such

that j^D — B is pseudo-effective. Let Ci Cm be movable curves on X such

that [Cj] [Cm] is a basis of Ni(V)jr. If B is an effective divisor on X such that

j^D — B is pseudo-effective, then we have 0 V B Cj C 4-D • C,. These inequalities

define a compact set A C N1 (V)r. Since the set of classes of effective divisors
is discrete in N1^)®, the compact set A contains at most finitely many of these

classes.

Next we show that the algebraic rank of a foliation is bounded from below by its

generalised index, and classify foliations attaining this bound (Theorem 1.5). We fix
the notation to be used in what follows.

Notation 4.2. Let IF ç Tx be a foliation with big anti-canonical class and generalised
index Î. Denote by 3~" the algebraic part of 3~, and by r" its algebraic rank. By
Lemma 4.1, there is an ample divisor L and a pseudo-effective E-divisor E such that

—K$- =ÎL + E. Set X \= &x(E), and «o [Xn~l] Mov(X). For any movable

curve class a e Mov(JV), we denote by the positive part of 37 with respect to a,
as defined in Paragraph 2.16, and by ra rank(77a' its rank.
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Proofof Theorem 1.5. We follow Notation 4.2, and assume that F / Tx.
For any movable curve class a e Mov(A) such that pa( 'F„ 0 X*) -< 0, we have

îpa(X) ^ det(5r) • a

^ det(F+) • a (since pa(F/F+) < 0)

îî ra/ia (X) (since fia(F+ 0 X*) F 0)

< rapa(X) (since Fj~ C Fa by Theorem 2.19).

By Theorem 1.1, we have Pa^F^ 0 X*) ^ 0 for the ample class a0, and (4.1) gives
that ^ ra.

Suppose from now on that? r". Then (4.1) shows that, for any movable curve
class a Mov(A) such that pa(F+ 0 X*) ^ 0 (in particular for a ao). we
have Fa F+, and pa(Fa 0 X*) 0. Moreover E a0 0, and thus E 0

and — Kp ÎL.
Next we show that pa(Fa 0 X*) 0 for every a e Mov(X). Suppose

that this is not the case. Since the ample class oc0 lies in the interior of
Mov(A) and pa()(Fa 0 X*) 0, there must exist a class a G Mov(X) such that

Pa(Fa 0 X*) > 0. By Theorem 3.1, there is a dense open subset X° C X and

a IP''0-bundle structure n°:X° —> Y° such that F"X<J Tx°/Y°, and X restricts
to 0pra (1) on any fiber of jv°. By Remark 2.7, there is a foliation ß on Y° such that

F\x° (n°)~lß. By shrinking Y° if necessary, we may assume that ß is locally
free, and F/ Tx°/y° <p*ß Therefore, for a general fiber F of jt°, we have

(9pra (Î) det(5r)|f det(7x°/y°)|F Opra (ra + 1),

contradicting our assumption that? ra. We conclude that pa(Fa 0 X*) 0 for

every a Mov(A).
This implies that —Kpa ra L, and hence Fa is an algebraically integrable Fano

foliation. Let (F. Ayr) be a general log leaf of Fa, so that —(Kp + Ap) ra L\p.
By Corollary 2.13, A p 0, and thus Kp +raL\p —Àp is not pseudo-effective.

By [22, Lemma 2.5],

(F,X,0p(Ap)) 3É (Pr", 0pr" (1), 0pra (1)).

In particular, (F. Ap) is log canonical. By [1, Proposition 5.3], there is a common
point x in the closure of a general leaf of Fa. This implies that X is covered by
rational curves passing through x having degree 1 with respect to X. It follows
that A is a Fano manifold with Picard number p(X) 1, and hence — Kpa raL
implies that —Kpa ~ raL. By [5, Theorem 1.1], X ^ P" and Fa is induced by a

linear projection jr:Pn —> P""'". By Remark 2.7, there is a foliation ß on fn~r"
such that F n~lß. By (2.1) and (2.2), outside the center of the linear projection
7r: P" —> P"_ra, we have n* K# ~ Kp — Kpa ~ 0, and thus K*g ~ 0.
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Finally, we describe foliations F whose algebraic rank slightly exceeds the

generalised index, namely Î(F) < ra(F) ^ ?(3r) + 1- We start by addressing
foliations F with Kp 0 and algebraic rank ra 1.

Lemma 4.3. Let X be a complex projective manifold with Picard number p(X) 1,

and let IF be a foliation on X. Suppose that Kp 0 and that F has algebraic
rank 1. Then the closure of a general leaf of the algebraic part of F is a rational
curve.

Proof There exist a normal projective variety Y, a dominant rational map n:X —> Y

of relative dimension 1, and a purely transcendental foliation ^ on Y such that

F n~l13. Denote by if the foliation induced by it, i.e. the algebraic part of F.
After replacing Y with a birationally equivalent variety, we may assume that Y

is the family of leaves of C. Let X° c I be an open subset with complement
of codimension at least 2 such that n restricts to an equidimensional morphism

X° Y. By (2.1) and (2.2) applied to n\x°, there is an effective divisor R

on X such that, on 4°, we have

-K-e n*K-g + R.

By Theorem 2.19, Kp is pseudo-effective, and hence so is —K-p. If K-e f 0, then

the lemma follows from Theorem 2.19. Suppose from now on that K-e 0, and

let (F, A F be a general log leaf of if, so that Kp + Ap =0. By Corollary 2.13,

Af / 0. Thus deg(Kp <0, and hence F ^ IP1.

Proofof Theorem l.H. We follow Notation 4.2, and assume that? < r" ^ + 1. We

will show that the closure of a general leaf of Fa is rationally connected.

Step 1. Let a £ Mov(V) be a movable curve class. If pLa(F^ <g> X*) < 0, then (4.1)
gives that ra — 1 ^ < ra ^ ra. Hence, F£ Fa. By Theorem 2.19, the closure
of a general leaf of Fa is rationally connected. If pa(Fj~ <g> X*j 0, then (4.1)
gives that

ra - 1 ^?^ ra <, ra,

and hence F* has codimension at most 1 in Fa. If Fj~ Fa, then, as before,
the closure of a general leaf of Fa is rationally connected. Suppose that Fj~ has

codimension 1 in Fa. Then? ra — 1. Let ß £ Mov(V) be another movable curve
class. If Fß (f Fj~, then Fj + Fß F" and Theorem 2.19 applied to both a
and ß gives that the closure of a general leaf of Fa is rationally connected.

Therefore, from now on we may assume the following.
Additional assumption. For any a £ Mov(A), pa(F+ <g> X*) ^ 0. If a G Mov(A)
is such that p,a(F+ (g) X*) 0, then Fj~ has codimension 1 in Fa, and F^ C F+
for any ß £ Mov(A).

By Theorem 1.1, we have pa()(F* <g> X*) $ 0 for the ample class a0- The
additional assumption and (4.1 for a a0 give that ra() ra — 1 E 0

and —Kp ÎL.



850 C. Araujo and S. Druel CMH

Step 2. Suppose that jia (Z7£ ® Z*) 0 for every a in a nonempty open subset U
of Mov(X). From the additional assumption, it follows that 77ff+ 37^ and

ptaiß'ao ® &*) 0 for every a e U. Thus

~KFao 'a,, L.

By Theorem 1.5, X P", and Z7^ is induced by a linear projection
7r: P" —> P"_r«o. Since X P", we must have

— Kjr ~ÎL ' K3Tao.

By Remark 2.7, there is a foliation ^ on P"_rao such that J7 and ~ 0.

Moreover, since Z7* has codimension 1 in Jra, -9 has algebraic rank 1. By
Lemma 4.3, the closure of a general leaf of the algebraic part of ^ is a rational

curve, and thus the closure of a general leaf of !Fa is rationally connected.

Step 3. By Step 2, we may assume that ^{Z7^ <g> Z*) > 0 for some a e Mov(3f).
By Theorem 3.1, Z7* is induced by a generic P'"-bundle structure na: X —> Ya

on X, and Z restricts to Opra I on general hbers of na. If necessary, we can

replace a by the class of a line on a fiber of na. As in (4.1), we have

(ra - 1) det(30 - ce

^ detjJ7/" • a

— (ra + 1)'

and thus ra ^ ra — 2. Moreover, by Corollary 1.7, — Kv+ — raL is not pseudo-
a

effective. Thus, there exists a nonempty open subset V of Mov(A') such that, for

every ß e V, ptßiZ7^ <g> Z*) < 0. The additional assumption implies in particular
that 37ß ^ Z7£ for every ß e V.

By Step 2, we may assume that ptß{Z7ß ® Z*) > 0 for some ß e V. As before,

Zß is induced by a generic P^-bundle structure nß : X —> Yß on X, Z restricts

to 0prf, (1) on general fibers of jtß, and rß P ra — 2. Notice that 77ö+ n Z7^ 0

and Z7^ + 37^ c 3~a. If 37^ + 37^ 3ra, then we conclude as before that the

closure of a general leaf of 37" is rationally connected. So we may assume that
Z7* + Z7^ c Z7". This can only happen if (ra, rß, ra) (1,1,3).

Let Ha and Hß be the dominating unsplit families of rational curves on X whose

general members correspond to lines on fibers of na and jtß, respectively. Denote by
7T°: X° —> T° the (Ha, Hß)-rationally connected quotient of X (see for instance [1,
6.4J for this notion). By [5, Lemma 2.21, we may assume that codim X \ X° ^ 2,

T° is smooth, and jt° has irreducible and reduced fibers. Applying [19, Corollaires
14.4.4 et 15.2.3], we see that it° is flat. This in turn implies that its fibers are

Cohen-Macaulay since both X and T° are smooth. By [1, Lemma 6.9], there is an
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inclusion Tx°/t° C ^j^o. If Tx°/t° &\x°» then the closure of a general leaf
of (F0 is rationally connected. So we may assume that dim T° dim X° — 2. By
Remark 2.7, there is a foliation ~§° on T° such that !F\Xo 7r°_1^°. By (2.1), we
have

—Kx°/T° —Kjr\x° 4~ ti°

Since codim X \ X° ^ 2, a general complete intersection curve in X is contained
in X \ X°. Let C -> T° be the normalization of a complete curve passing through a

general point, denote by Xc the fiber product C xp° X°, and by ne'- Xc -> C the

natural morphism. By [18, Corollaire 5.12.4], Xc satisfies Serre's condition S2- On
the other hand, Xc is smooth in codimension 1 since the fibers of nc are reduced. It
follows that Xc is a normal variety by Serre's criterion for normality. We have

-KXc/c \xc + Jtc*K#°\C-

If K$o C J 0, then —KXc/c is ample, contradicting [5, Theorem 3.1]. Hence,

K#° C < 0, and [1, Proposition 7.5] implies that the closure of a general leaf of IF
is rationally connected.

Question 4.4. Is there a foliation F withî(.'F) g N andî(.'F) < ra(3r) < î(3~) -f 1?

From the proof of Theorem 1.8, we see that in this case we must have 'J7'1 for
every a e Mov(T) such that jia (37ah <g> '£* $ 0.
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