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Middle dimensional symplectic rigidity
and its effect on Hamiltonian PDEs

Jaime Bustillo

Abstract. In the first part of the article we study Hamiltonian diffeomorphisms of R%” which are
generated by sub-quadratic Hamiltonians and prove a middle dimensional rigidity result for the
image of coisotropic cylinders. The tools that we use are Viterbo’s symplectic capacities and a
series of inequalities coming from their relation with symplectic reduction. In the second part we
consider the nonlinear string equation and treat it as an infinite-dimensional Hamiltonian system.
In this context we are able to apply Kuksin’s approximation by finite dimensional Hamiltonian
flows and prove a PDE version of the rigidity result for coisotropic cylinders. As a particular
example, this result can be applied to the sine-Gordon equation.

Mathematics Subject Classification (2010). 37J10, 37K25, 53D20.

Keywords. Symplectic geometry, generating functions, symplectic capacities, Hamiltonian
PDE:s.

1. Introduction

Consider C"” = R?” with coordinates given by (¢, p1.....qn. pn) and let © =
> _; dqi Adp; be the standard symplectic form. Gromov’s non-squeezing theorem [7]
states that symplectic diffeomorphisms of (C”, w) cannot send balls of radius r into
symplectic cylinders of radius R unless r < R. For example if ¢ is a symplectic
diffeomorphism, B2" is the ball of radius r in C" and B12e C C is the two dimensional
disc of radius R then

¢(BX") C Bx xC" ' implies r < R.

The original proof relied on the technique of pseudo-holomorphic curves which was
later used to prove a wide range of results in symplectic geometry. Shortly after,
several authors [5, 10, 22] gave independent proofs of Gromov’s theorem using the
concept of symplectic capacities. A symplectic capacity is a function

c: P(C") — [0, +oq]

that verifies the following properties:
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(1) (monotonicity) If U € V then ¢(U) < ¢(V).
(2) (conformality) c(AU) = A%¢c(U) for all A € R.

(3) (symplectic invariance) If ¢: C"* — C” is a symplectic diffeomorphism then
c(pU)) = c(U).
(4) (non-triviality + normalization) ¢ (B?") = & = ¢(Bf x C*™1),

Together, the existence of a function with these properties implies Gromov’s theorem.
In this article we are going to work with Viterbo’s capacities in order to prove a rigidity
result for a particular type of Hamiltonian diffeomorphisms. More precisely we are
interested in the middle dimensional symplectic rigidity problem.

One of the first questions regarding this problem appeared in [9] where Hofer asked
about the generalization of capacities to middle dimensions. He asked if there exists
a k-intermediate symplectic capacity c* satisfying monotonicity, k-conformality,
symplectic invariance, and

K (B* x C"*) < +oo but cK(BF2xCxC"*) = +o0?

In [8] Guth gave a partial answer to this question. He studied embeddings of polydisks
an proved that k-capacities that verify the the following continuity property:

lim c*(B* x BY™%) < +oo but lim ¢*(B*72 x BY%+2) = 1 o0?
R—o0 R—o00

do not exist. The question of less regular capacities was recently answered in the
negative by Pelayo and Vii Ngoc in [16] using in part the ideas in [8]. In their article
they proved that if » > 2 then 312 x C"~! can be symplectically embedded into the
product B%" 2 x C for R = +/2#~1 + 272 — 2 In particular, by monotonicity and
homogeneity, the value of the capacity on the left has to be greater than or equal to a
constant times the value on the right.

Another point of view for the middle dimensional problem comes from a reformu-
lation of Gromov’s non-squeezing theorem. In dimension 2 symplectomorphims are
the same as area preserving maps so in [6] Eliashberg and Gromov pointed out that
(using a theorem of Moser about the existence of area preserving diffeomorphisms)
Gromov’s theorem is equivalent to

area(l'[lq!)(BrZ")) > r?  for every symplectomorphism ¢.

Denote by [1; the projection on the first 2k coordinates. A possible generalization
of this statement to higher dimensions is

Vol(Ixp(B>")) > Vol(ITx B2") = Vol(B?¥) for every symplectomorphism ¢.

This problem was studied by Abbondandolo and Matveyev in [2]. In their article they
proved that the volume with respect to w”* of TI kP (B?™) can be made arbitrarily
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small using symplectomorphisms. This ruled out the existence of middle dimensional
volume symplectic rigidity for the ball. Nevertheless they proved that the rigidity
exists in the linear case and, shortly after, several local results appeared: In[17]Rigolli
proved that there is local middle dimensional volume rigidity if one restricts the
class of symplectomorphisms to analytic ones, and in [4] Abbondandolo, Bramham,
Hryniewicz and Salomdo proved that the same kind of local rigidity appears for
smooth symplectomorphisms in the case k = 2.

We would like to point out another possible middle dimensional generalization
of the squeezing problem. In dimension 2 the value of any symplectic capacity on
topological discs coincides with the area, so one may also rewrite Gromov’s theorem
as

c(l'llgb(B,Z”)) > r?  for every symplectomorphism ¢,

where ¢ is a symplectic capacity. One can then ask if this inequality is true with TT;
replaced by Tlg, and more generally look at subsets Z different from B>" and
replace r? with the capacity of T1;Z. We prove that this type of inequality is
true for Z = X x R** C Ck x C"* provided that we restrict the class of
symplectomorphisms. The maps the we consider are Hamiltonian diffeomorphisms
v = WH generated by sub-quadratic Hamiltonians H, that is, by functions H that
verify

|VH(z)]

|z]

lim

ol = 0 uniformly in ¢.
z|—=>+oo

More precisely, if we denote by ¢ and y the two symplectic capacities defined by
Viterbo in [22], we have the following theorem:

Theorem 1.1 (Coisotropic camel theorem). Let X C C k be a compact set. Consider
X xR"* cCkxC"* and let y = v be a Hamiltonian diffeomorphism of C"
generated by a sub-quadratic Hamiltonian H. Then

c(X) < y(Me( (X x R"%) nC* x iR"7*)).

Using the monotonicity of the capacity y we get as an immediate consequence
that
c(X) < y(Mey (X x R"™9)).

For example if we take X = Ber we get the inequality
y(Mey (B* x R"7%)) > nr?.

We want to point out that the subset on the right hand side of the inequality in
Theorem 1.1 is the symplectic reduction of y (X xIR" %) by the transverse coisotropic
subspace C* x i R”~*. More precisely, recall that by definition a coistropic subspace
W < C" verifies W® C W where W stands for symplectic orthogonal. One
can then consider the space W/ W® which is symplectic by construction. Denote
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by nw: W — W/W® the quotient map. The symplectic reduction of a subset
Z C C" by W is defined as Redy (Z) = aw (Z NW). If we set W = Ck x jR?**
then the inequality in Theorem 1.1 can be rewritten as:

c(X) < y(Redw (¥ (X x R"7%))).

Note that this reduction is the projection of a bounded set so in particular Theorem 1.1
is not trivial for compactly supported Hamiltonians (see Figure 1).

Figure 1. This figure represents the image of the coisotropic cylinder X x R" K bya compactly
supported Hamiltonian diffeomorphism /. The transverse plane represents the complementary
coisotropic subspace W = C¥ x iR" ™% Theorem 1.1 gives information about the capacity of
the projection of the intersection with W'.

Remark 1.2. Theorem 1.1 is related to the classical camel theorem which states that
there is no symplectic isotopy ¥ with support in (C* \ (C"~! x R)) U B2", such
that ¥y = Id and yr; sends a ball of radius r > € contained in one component of
C™\ (C"1 x R) to the other. In [22] Viterbo proved that if v, sends a ball from one
connected component of C” \ (C”~! xR) to the other then for V = U,em’ 1 Y (B2")
and W = C"! x R we have

y(RedW(V)) > 12

As an intuition of what these capacities are, if K is a convex smooth body
then ¢(K) coincides with the minimal area of a closed caracteristic on dK. On
the other hand y is defined using Viterbo’s distance on Ham®(C"); the energy of a
diffeomorphism is then defined to be the distance to the identity and y (U ) measures
the minimal energy that one needs to displace U from itself. Both capacities are
always related by the inequality ¢(X) < y(X) which is recovered by Theorem 1.1
when ¢ = Id.

For general sets the construction of Viterbo’s capacities (cf. [22]) starts by defining
for the time-1 map ¢ = 1,blH of the flow of a compactly supported Hamiltonian H,
two values: c¢(1,v¥) and c¢(u,¥). These values correspond to the action value of
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certain 1-periodic orbits of the flow obtained by variational methods. The bi-invariant
metric on Ham® (C") is then defined as d(y,1d) = y(¢¥) = c(u, ) — (1, ). All
these quantities are invariant by symplectic conjugation so they can be used to define
symplectic invariants on open bounded sets as:

c(U) = sup {c(u, ¥), ¥ € Ham®(U)},
y(U) = inf {y(y), ¥ € Ham®(C"), y(U) N U = @}.

If V is an open (not necessarily bounded) subset of C” then ¢(V) (resp. y(V)) is
defined as the supremum of the values of ¢(U) (resp. y(U)) for all open bounded U
contained in V. If X is an arbitrary subset of C” then its capacity c(X) (resp. y (X)) is
defined as the infimum of all the values ¢ (V') (resp. y(V')) for all open V containing X .

Ifk > 0onecan prove that ¢ (C*¥xR”* %) = 0 = y(Ck xR" ) for the coisotropic
subspace C2¢ x R"~% C Ck x C"* (see Appendix A). By monotonicity the same is
true for coisotropic cylinders X x R”~% < Ck x C"~* so the existence of Viterbo’s
capacities all alone does not provide rigidity information for the image of these sets
by general symplectic diffeomorphisms.

The proof of Theorem 1.1 is achieved by a series of inequalities between Viterbo’s
capacities of sets and the symplectic reduction of these sets. The advantage of
using Viterbo’s capacities is that they are constructed using generating functions and
symplectic reduction can be seen as an explicit operation on generating functions
which can be then studied in detail. We first prove the theorem for compactly
supported Hamiltonian diffeomorphisms and then reduce the general case to the
compactly supported one.

There is an unpublished proof of this theorem by Buhovski and Opshtein for the
case X = (S1(r))* aproduct of circles of radius r and Redy (¢ (X xR %)) C Z(R)
a symplectic cylinder of radius R which relies on the theory of pseudoholomorphic
curves.

Remark 1.3. Theorem 1.1 is not true for general symplectomorphisms and its
limits are well understood. An example of a symplectomorphism ¢ which is not
generated by a sub-quadratic Hamiltonian and which does not verify the weaker
middle dimensional inequality

c(X) < y(Mrp(X x R*K)),

is the symplectomorphism ¢(z1,...,2z,) = (Zk+15---+2n,21,---,Zk). Indeed for
this map ¢ we have
P(X xR"™*) = R"* x x

and either the k-projection is contained in Z = R¥ if k < n/2orin Z = R" % x
C* =27 otherwise. In both cases y(Z) = 0 by Appendix A, so if for example X is
a closed ball, then the statement is not verified. In this example ¢ is generated by a
quadratic Hamiltonian. Moreover, we prove in Proposition 2.9 that if |V H;(z)| <
A + B|z| then its flow 1//zH verifies the statement of Theorem 1.1 at least for small
times.
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One may use the rigidity result of Theorem 1.1 to define a non-trivial invariant.
Consider the following quantity:

yEU) = inf {y(Txp(U)) | ¢ € G},

where G is a subgroup of the group of symplectic diffeomorphisms. For G =
Sympl(C"*) we know by Remark 1.3 that yé‘; is zero on coisotropic cylinders
of dimension k. On the other hand, if the elements of G are Hamiltonian
diffeomorphisms generated by sub-quadratic functions then Theorem 1.1 implies
that yé is bounded from below on coisotropic cylinders of dimension k by the
capacity ¢ of the base. As an example of G one can take the subgroup of Hamiltonian
diffeomorphisms (pIH , where H, go,H and (ga,H )~ ! are Lipschitz on the space variable
over compact time intervals (see Appendix B). For this subgroup Theorem 1.1 gives

c(X) < y&E(X x R"™%) < y(X).

Hamiltonian PDEs. The second part of this article deals with middle dimensional
symplectic rigidity in infinite dimensional Hilbert spaces.

Let E be a real Hilbert space and let w be a non-degenerate 2-form. Here we
will understand non-degenerate in the sense that the map § € E — w(£,-) € E* is
an isomorphism. In contrast with the finite dimensional case, little is known about
the rigidity properties of symplectomorphisms in this context. The most general
attempt to prove a non-squeezing theorem has been [3] where the result is proved
only for convex images of the ball. The first result pointing in the direction of the
infinite dimensional equivalent of Gromov’s theorem dates back to [11]. Kuksin gave
a proof of the theorem for a particular type of symplectomorphism that appear in
the context of Hamiltonian PDEs. He did this by approximating the flows by finite
dimensional maps and then applying Gromov’s theorem. Since then there has been
a great number of articles proving the same result for different Hamiltonian PDEs
via finite dimensional approximation. We refer the reader to [13] for an excellent
summary of the prior work.

The goal of the second part of this article is to extend Theorem 1.1 to the infinite
dimensional case. We restrict ourselves to semilinear PDEs of the type described
in [11]. Let (-,-) be the scalar product of E, {go;.—L} be a Hilbert basis, J: £ — E

be the complex structure defined by J (pj-E = $q0j-: and J = —J. The symplectic

structure that we consider is w(-,-) = (J-,-) and the Hamiltonian functions are of
the form

H;(u) = %(Au,u) + hy(u),

where A is a (possibly unbounded) linear operator and 4, is a smooth function. The
Hamiltonian vector field is

Xy ) = JAu + JVhs(u).
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Remark that the domain of definition of the vector field is the same as the domain
of A which is usually only defined on a dense subspace of E. If ¢’/4 is bounded, then
solutions can be defined via Duhamel’s formula and if V4 is €! and locally Lipschitz,
then the local flow is a well defined symplectomorphism [12]. Under compactness
assumptions on the nonlinearity, flow-maps can be approximated on bounded sets by
finite dimensional symplectomorphisms. Specific examples of this type of equations
are (see [11] for more details): Nonlinear string equation in T,

U= uUxx + p(t,x,u),

where p is a smooth function which has at most polynomial growth at infinity.
Quadratic nonlinear wave equation in T2,

i = Au~+a(t, x)u + b(t, x)u?.
Nonlinear membrane equation on T2,
i = —A%u+ p(t, x,u).

Schrodinger equation with a convolution nonlinearity in T",
9 _
i = —Au+ V(xX)u + [EG(U, U,t,x)} xE U=ux§,

where £ if a fixed real function and G is a real-valued smooth function.

For concreteness we will study the nonlinear string equation with bounded Vi,
but the main result will still be true for the previous equations provided that the
nonlinear part VA, is sub-quadratic.

Consider the periodic nonlinear string equation

U=uUxx — f(t,x,u), u=ul(t,x),

where x € T = R/2x7Z and f is a smooth function which is bounded and has at
most a polynomial growth in u, as well as its u- and 7-derivatives:

3 b

Ju? dib-
with My = 0. Here Cy and My ’s are non-negative constants. The hypothesis on M
is the one that will allow us latter to apply Theorem 1.1 to the finite dimensional
approximations. This hypothesis is verified by f (¢, x,u) = sinu which gives the
sine-Gordon equation. Let us describe the Hamiltonian structure of this equation.

We denote by B the operator B = (—92/3x2 4+ 1)'/2 and remark that we may write
the equation in the form

f(t,x.u)| < Ce(1 + lu)Mk, fora +b =k, and forall k > 0,

u=—PBv,

b=(B—B Yu+ B f(t,x,u).
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Define E = E4+ s E_.=H > (TYx H 3 ('T) the product of Hilbert spaces where the
scalar product of H ) (T) is given by

2n
(U1, uz) = %/ﬂ Buy(x)ua(x)dx.

Here J(u,v) = (—v,u), the operator is A = (B — B™!) x B and Vh,(u,v) =
(B~ f(t, x,u), 0) which has bounded norm over compact time intervals since My =0
by hypothesis.

Let {(pj‘ | j € Z} be the Hilbert basis of £ on which B is diagonal given by
the Fourier basis and denote by {¢; := —J gaj-r | j € Z} the associated Hilbert basis
of E_. Moreover denote Ey (resp. £ i and E*) the Hilbert subspace generated by
{oF | 1j] <k} (resp. {@F | 171 = k+1}and {7 | 1j] = k+1})and Tz E — By
(resp. l‘["f,, and T1%) the corresponding projection. We use the finite dimensional
approximation together with Theorem 1.1 to prove the following result:

Theorem 1.4. Denote by ®': E — E the flow of the nonlinear string equation
satisfying the previous hypothesis. For every k € N, every compact subset X of Ej
and everyt € R we have

c(X) < y(Tx @' (X x EX)).

As an example of what type of information we get from this theorem, consider
the subspace E, which consists on constant functions. In this case Theorem 1.4
gives us information on the global behavior of solutions with constant initial velocity
provided that the projection on Eg of the initial conditions is contained in a compact
set X, for example in the closed ball of radius r. On the other hand, if we interchange
the roles of E _’i and EX we get information about solutions whose initial position is
given by a constant function. In particular we see that the energy of these solutions
cannot be globally transfered to higher frequencies since the projection on £ cannot
be contained in a ball B% with R < r.

Theorem 1.4 may also be seen as an existence result. We consider again the case
k = 0. By reordering the Hilbert basis we may project onto the symplectic plane of
frequency / of our choice. Suppose that X is a ball of radius R in Vect{(p;r N -~ RZ,
we will ask if the projection is contained in a ball of radius r in Vect{(p;r, <pl_}. Let
U(t) = (u(t),v(t)) e E = H2 x H?2 be a solution of the nonlinear string equation,
that is, such that

u=—Bv and i = uyy— f(t,x,u).

Use the symplectic Hilbert basis {goji | j € Z} to write

U@t) =Y ujOef +v0e; =D @) —vj)))e].
fJ J
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We will denote by U (1) the complex number u j (¢)—iv; (¢). Moreover denote by E°
the Hilbert subspace of E generated by {¢7" | |j| > 0}. If 0 < r < R Theorem 1.4

gives ®'(Bgr x E) Z B, x E® so we get:

Corollary 1.5. Forany!l > 1, any R > r > 0 and any ty € R there exists a (mild)
solution U(t) = (u(t), v(t)) of the nonlinear string equation in H 3 x H? such that

v;j(0) =0 forj # [ and |U;(0)] < R, but |U(to)| > r.

2. The coisotropic camel: Viterbo’s approach

We provide here a proof of the Theorem 1.1 which depends on Viterbo’s spectral
invariants, hence on generating functions instead of holomorphic curves. We start
by proving the result for compactly supported Hamiltonian diffeomorphisms.

2.1. Generating functions and spectral invariants.

The classical setting. To a compactly supported Hamiltonian diffeomorphism
of R?" one associates a Lagrangian submanifold Ly, C 7*S?" in the following way.

Denote by R2” x R?" the vector space R?" x R?" endowed with the symplectic form
(—w) ® w. The graph

C(¥) := {(x, ¥(x)); x € R?"} C R2" x R>"
is a Lagrangian submanifold Hamiltonian isotopic to the diagonal
A = {(x,x); x € R*™"} C R?" x R?".
Identifying R2” x R2” and T*R2" via the symplectic isomorphism

q+q p+p
2 ' 9

J:(fiaﬁ,q,p)H( ,p—ﬁﬁ—q),

and noting that I'(y) and A coincide at infinity, we can produce a compact version
of the Lagrangian submanifold I'(y) C R2" x R?", which is a Lagrangian sphere
Ly C T*S?". This Lagrangian submanifold Ly is Hamiltonian isotopic to the
0-section and coincides with it on a neighbourhood of the north pole, so it has a
generating function quadratic at infinity (called gfgi in the following) by [14, 18, 19].
This is afunction S: 2" xRY — R which coincides with a non-degenerate quadratic
form Q:RY — R at infinity:

3C >0 suchthat S(x,£) = Q(§) Vx e S*" |§] > C,
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and such that
v 08
bl ag

with 0 being a regular value of (x,§) — %—‘g(x, £). A direct consequence of the
definition is that X g := {(x, ) | %—‘g(x, ¢) = 0} is a submanifold and that the map
is: g — T*S?" givenby (x, £) — (x, %%(x, £)) is animmersion. When S is a gfgi
that generates an embedded submanifold we moreover ask that i g is a diffeomorphism
between X g and L, so every S has a unique critical point associated to (N, 0) given
by iEI(N, 0). Denote by E* := {S < A}, i:(E} E~®) — (E1® E~%),

T*l
H*(ET®,E~®) ~ H*(§?") (T is the Thom isomorphism). One can select

spectral values c(a, S) fora € H*(S?") by:

L= {(x B—S) (x,£) € $2" x R

_ * o2n
- (x,s)_o}crs .

c(a,S) :=inf{A | i} (Ta) # 0}.

The gfgi associated to ¥ is unique up to certain explicit operations [20, 22| so
there is a natural normalization (requiring that S (i_STl(N, 0)) = 0) that ensures
that the value c¢(w, S) does not depend on the gfgi , so we denote it henceforth
c(a,¥). It is a symplectic invariant in the sense that if & € Symp(R2") then
c(a,® oy o d!) = ¢(a, ). Taking for a generators 1 and p of H%(S?") and
H?"(S2") respectively, we therefore get two spectral invariants ¢ (1, ¥) and ¢ (i, ¥)
of Hamiltonian diffeomorphisms, and a spectral norm y(y) := c(u, ¢¥) — c(1, ¥).
These invariants can be used in turn to define symplectic invariants of subsets of R?".
First if U is an open and bounded set:

c(U) = sup {c(u,¥), ¥ € Ham®(U)}, (2.1)
y(U) = inf {y(y), ¥ € Ham“(R*"), y(U) N U = 8}. (2.2)

If V is an open (not necessarily bounded) subset of R2" we define ¢(V) (resp. y(V))
as the supremum of the values of ¢ (U) (resp. y(U)) for all open bounded U contained
in V. If X is an arbitrary domain of R2” then we define its capacity ¢ (X ) (resp. y(X))
to be the infimum of all the values ¢(V') (resp. y(V')) for all open V containing X .

Symplectic reduction [22, §5]. Let us first state a general result for the spectral
invariants of the reduction of some Lagrangian submanifolds. The first claim is
Proposition 5.1 in [22]. We include a proof for the sake of completeness.

Proposition 2.1. Let N and B be two connected compact oriented manifolds, S a
gfqi for a Lagrangian submanifold in T*(N x B), b a pointin B and S, :== S(-, b, -).
Leta € H*(N) and up € H*(B) the orientation class of B. Then,

cla®1,S) <c(a,Sp) <clx®ug,S).
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Moreover, ifl’(v(x,b,é) = K(x,§) forall (x,h,£) € N x BxR¥,
cla®1, E) =c(a,K)=ca ® up, K).

Proof. Let as before E* := {S < A}, and E,'} ;= {Sp < A}. Consider the commut-
ative diagram

H*(N x B) — s H*(E®, E~°) 2 H*(E*, E~)

l |

H*(N)— BB, B, — 5 H*(E}, E;™)

where the map H*(N x B) — H*(N) is induced by the injection N — N x {h} —
N x B, and coincides with the composition of the projection on H*(N) @ H°(B)
and the obvious identification H*(N) ® H®(B) — H*(N). Since the diagram is
commutative, iy T(«) # 0 implies iy T(¢ ® 1) # 0,50 c(@ ® 1,5) < c(a, Sp).
To get the second inequality, we need to introduce spectral invariants defined via
homology. The Thom isomorphism is now T': Hy(S2") = H.(E1t%, E~>), and

c(A,S) =inf {A | TA € Im (iz4)}.

The homological and cohomological invariants are related by the equality ¢(«, S) =
—c(PD(«), —S) [22, Proposition 2.7]. In the homology setting, the commutative
diagram becomes

Ho(N x B) —L5 Hy(E®, E=%) <2 H, (E* E=°)
Ho(N) — Hu(ER, E;®) +2— H,(E}, E;™)

As before, if A € Hx(N) verifies T(A) € Im(ij,), then T(A ® [p]) € Im (ix4),
soc(A®[h],S) <c(A,Sp) forall A € Hi(N) (and all S). Thus,
c(a, Sp) = —c(PD(a), =Sp) < —c(PD(r) ® [p], —S) = —c(PD(a ® pp),—S)
and
—c(PD(¢ ® ug),—S) =c(la ® ugp,S)
so we get
c(a,Sp) < c(a ® g, S).

Finally, if K (x,b,£) = K(x,&) forall (x,b,£) € N x B x RN then E* = E} x B
s0if(@®p) = (ifa)®P. Thisgivesc(@®1,K) = c(@®up, K) = c(a, K). O
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Remark 2.2. To understand the context of the previous statement, notice that when
a Lagrangian submanifold L € T*N x T*B has a gfgi S, and has transverse
intersection with a fiber T*N x T,* B for some b € B, the function Sy, is a gfgi for
the reduction L of L N T*N x T,* B (which is an immersed Lagrangian of 7*N).

Following [22, §5], we work on R?™ x T*Tk ~ R2™ x R¥ x T* endowed
with coordinates (z, p,gq). Let m:R?>™ x R¥ x R¥ — R?™ x R*¥ x T* be the
projection and consider a Hamiltonian diffeomorphism ¥ € Ham®(R?™ x T*Tk)
with coordinates (-, ¥, ¥, ) generated by H,. Itis easy to see that H, o generates
a lift ¢ € Ham(R2" x R¥ x R¥) such that

%Z(Zv pvzi+ 1) = %Z(Zv pvzi) = WZ(Zv pv(’])v (Wlth (Z’ pvq) = N(Z’ p:a))*
%1)(27 P’a‘l‘ 1) = 1fp(z’ P,ﬁ) = I/fp(zv p’q)9
Ya(z.p.g +1) = v5(z, p.q) + 1.

Again, the graph of ¥ is a Lagrangian submanifold I'({/) C R2™ x R2k x R2" x R2k
that under J becomes a Lagrangian submanifold of 7*R2™ x T*R2* whose points
are denoted by I';(z, p,q) equal to

p+¥p(z.p.q) §+V5(zp.9) - ~
,,2 ; q2 o — a(z,pﬁ),xlfp(z,zﬂ,q)—p)-

(4G.y=z p.9)).
Now 1}5(2, p.qg+1)= 1,7};;(2, P.q) + 1 implies that I'; descends to an embedding
Ty:R>™ x R¥ x T* — T*R2™ x T*R¥ x T*T*, given by

p+vp q+ vy
2 sq_llqu 2 ’WP_p)

This embedding f‘,p is Hamiltonian isotopic to the zero-section, and coincides with
the zero-section at infinity. As in the classical situation, I'(v) := Im Iy, can be
compactified to a Lagrangian submanifold

Ty ) = (4w,

L © TH(S™ % 8% x T®),

which is Hamiltonian isotopic to the zero-section, and coincides with the zero-section
on aneighbourhood of { N }x S¥ xT* and of $2™ x{ N }xT¥*. After normalization (by
S(ig"(N, N,0,0)) = 0), the gfgi of Ly provides spectral invariants c(¢ ® S ® y, V)
fora € H*(S?™), B € H*(S*) and y € H*(T*). Asin (2.1), these invariants can
be used to define c(e ® B ® y, X), for subsets X C R2™ x T*T*.

Proposition 2.3. If X is a compact subset of R?™ then

c(X)<e(p@u®l, X x {0} xTk),
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Proof. Let U be a bounded neighbourhood of X, ¢ € Ham“(U). By compactness
of X and by definition of the spectral capacities c, it is enough to find, for any
neighbourhood V of 0 in R¥, a W € Ham®(U x 'V x T¥) such that ¢(u, ¢p) <
c(pR®u®1,W).

Let H:R x R*" — R be a generator of ¢, and y € CX(V) with y(0) = 1
and 3—5(0) = 0. The Hamiltonian yH of R?” x R¥ x T* generates a compactly
supported Hamiltonian diffeomorphism that we will note W = (Y;, ¥, ¥,). Itis
easy to see that

V(z, p,q) = (Y:(z, p), p.qg + C(z, p))
with C(z. p) = [, (p)H(t.z)dt, and that C(z,0) = 0 and yz(z.0) = ¢(z).
The embedding
g R2E x RE % T* = 7'R2® x P*R* x 7T

is thus given by

- |
ly(z, p.q) = (d(z,¥:(z, p)), p, —C(z,p), 9 + =C(z, p), 0).
2

By definition, when we compactify Im Ty we get Ly which, by the previous
expression, is easily seen to be transverse to T*S?™ x Ty S* x T*T*. Now

Fw(z,0,9) = (4(z,9(2)),0,0,4,0),

s0 LyNT*S2M x Ty S* x T*Tk = L, x{(0,0)} x O« and the reduction is L, x O«
which is also Hamiltonian isotopic to the zero-section. Therefore, by Remark 2.2,
if S is a gfgi for Ly, Sy is a gfqi for L, x Opx. On the other hand, if K is a gfgi
for L, then E(z,q, §) = K(z,£) is also a gfgi for L, x Opx. Moreover, both Sy
and K have 0 as the critical value associated to {N} x {q}, so by uniqueness of gfyi
c(u®l, K) = c(pn ®1,8g). By Proposition 2.1,

cuK)y=cn®l.K)=c(u®1.5) <c(ueuel,s),
which precisely means that c(i, @) < c(u @ L ® 1, V). (]

The next proposition is a modified version of [22, Proposition 5.2]. Since the
proof there is a bit elliptical, (it refers to the proofs of several other propositions of
the same paper) we give more indications in Section 2.3 below.

Proposition 2.4. Consider a compact set Z C R*™ x R* x T*, a point w € T
and the reduction Zy, = (Z N {q = w})/R¥. Then

cuuRLZ) <y(Zy).
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2.2. Non-squeezing and symplectic reduction. Together, Propositions 2.3 and 2.4
provide the non-squeezing statement we are looking for. Recall that if Z < C”
and W is a coisotropic subspace of C" then the symplectic reduction of Z is defined
by Redw (Z) = nw (Z N W) where my: W — W/ W is the natural projection.

Theorem 2.5. Let X C C™ be a compact subset, consider X xR"™™ C C"xC*™™
and denote by W .= C™ x iR"™™. For every compactly supported Hamiltonian
diffeomorphism ¥ of C* we have

¢(X) < y(Red (y(X x R"™™))).
Proof. Since ¥ has compact support, we can view it as a symplectomorphism of
C™ x T*T"™ ~ R2™ x R"™™ x T"™™,

In this setting X x R”™™ is seen as X x {0} x T"™™ and ¥ (X x {0} x T"™™),
coincides with Redw (¥, (X x R”7)). Now applying Proposition 2.3, invariance,
Proposition 2.4 and monotonicity we get the chain of inequalities:

c(X)<c(p@u®1, X x {0} xT"™™)
=c(u@u® L yY(X x {0} xT"™))
<y (¥ (X x {0} x T"™)g) = y(Redw (¥ (X x R"™™))). s

Corollary 2.6 (Lagrangian camel theorem). Let L:=S!(r)" xR"*™™ CC™xC"™™
be a standard Lagrangian tube. Assume that there is a compactly supported Hamilton-
ian diffeomorphism  of C" such that (L) N (C™ x iR"™™) C Z(R) x iR"™™,
where Z(R) is a symplectic cylinder of capacity R. Thenr < R.

Proof. Theorem 2.5 gives ¢(S1(r)™) < y(Z(R)) = nR? and ¢(S'(r)™) = nr?
by [21, Remark 1.5]. L]

2.3. Proof of Proposition2.4. Let Z C R2"xR¥*xT* and Z,, :=(ZN{g =w})/R*.
We need to show that c(u @ u ® 1,Z) < y(Zy). Let V C R?™ be an arbitrary
neighbourhood of Z,,, and

U := (R x R*¥ x T*\ {w}) U (V x R¥ x T%).
Obviously, Z C U and U,, = V, so by monotonicity of ¢, it is enough to prove that
c(u®u®1,U) <y(Uy).

Notice moreover that any Hamiltonian diffeomorphism of R that displaces V = Uy,
also displaces its filling U, := R2™\F>°, where F3° is the unbounded
connected component of R2\U,,. Thus y(Uy) = y(Uy), so we may as well
assume that R?™\U,, is connected and unbounded, which we do henceforth.
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Let ¥ e Ham®(U) and ¢ € Ham®(C™) be such that ¢(U,,) N U,, = @. We need to
prove that

c(n@uely) <yl).

We know that the Lagrangian submanifold L, in T*52™ is isotopic to the zero
section by a Hamiltonian diffeomorphism & and has a gfgi K: S?™ x R4 — R.
This diffeomorphism @ induces a Hamiltonian diffeomorphism ® := & xId on
T*S2M x T*Sk that verifies ®(0) = Ly x 0 and E(x,y, n) := K(x,n) (defined
on $2 x S* x R¥) is a gfgi for this submanifold. Now for a gfgi S of Ly we have

cuAuLY)=cu®@®puel,s)
Se(@u, Sw) <c(p®u, Sy — K)—c(1®1,—K).

The first inequality above follows from Proposition 2.1, while the second one is the
triangle inequality for spectral invariants [22, Proposition 3.3] (because (1© ® p) U
(1®1) = pu ® w). The following lemmas ensure that

(U@, Sw—K)=c(p®up —K).
so (applying Proposition 2.1):

cpul,Yv)<c(p®p,—K)—c(1®1,—K)
=c(u,—K)—c(1,-K) = y(@™"),

and y(¢~!) = y(¢) which gives the desired inequality.

Consider a Hamiltonian path v’ from the identity to ¥ in Ham®(U) and a
Hamiltonian path W of T*S2™ x T*Sk x T*T* such that W*(0) = L. This
path gives rise to a family of gfgi S*, continuous in ¢, that generate L., for all # and
that coincide with a fixed quadratic form Q outside a compact set independent of ¢
[14,18,19]. The first lemma ensures that we can further assume S, normalized.

Lemma 2.7. G' = S —c(u® | ® v, S") is a continuous family of normalized
generating functions for L. Moreover there exists a family of fiber preserving
diffeomorphisms @; such that G* o @, is a continuous family of normalized gfqi
Jor L.

Proof. To start with, we know that both functions S% (p.q.§) = S*(N, p,q. £) and
Sh(z.q.8) = §'(z, N, q. &) generate the zero sections so they have just one critical
value. Moreover S* (i§,1 (N, N,q,0)) is a common critical value so they are both the
same. Using Proposition 2.1 we get

c(1®y.Sy) <c(u®1®y.S) <c(up®y Sy,

soc(u®1®y, S =5 (i§,1 (N, N, q,0)) determines continuously the critical value
at infinity.
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For the second part, define ¢; := ¢(u ® 1 ® ¥, S") and recall that S* equals Q
outside a compact set. Let y: RY — [0, 1] be a compactly supported function with
x = 1 in a neighbourhood of 0, and

VOE©)
IVe®I>

seen as an autonomous vector field (¢ is not the parameter of integration). This vector
field X, is well-defined and complete because Q is non-degenerate, so ¢, := (D}(,
is well-defined. Moreover, if £ lies far away in RV, Py, (§) remains on the set
{1—y =1 forallr € [0,1], s0 Q o ®% (§) = Q(§) + rcs. As a consequence,
(Q — ¢¢) oy = Q outside a compact set, so G; o ¢ 1= Gs(z, p,q, $:(§)) is a gfgi
for L. Since moreover G, is normalized, so is G; o ¢,. Finally, the family ¢, is
obviously continuous in the ¢ variable. U

Xe (€)= - xENer ="

Lemma 2.8.Let S? be a continuous family of normalized gfgi for the Lagrangian L .
Then c(n ® ., Sk, — K ) is a critical value of —Kandasa consequence

c(u®p,Sy—K)=c(p®p,—K).
Proof. Recall that points in L, are of the form

p+¢ ,q+W
> — Yy

Tye (. poq) = (4G D), Vb= P).

plus other points on the zero section that come from compactifying. Moreover, the
functions S!, formally generate the sets of points

+ t
. WP — 1#;) for points (z, p, q) that verify it Yq

(4G.v9. = w,
plus other points in the zero section. This set is denoted henceforth L,. Recall that
the notation S¥, — K stands for the function (z, p,&,n) — S‘(z;p, w,&)— K(z,n).
It is enough to prove that all critical points (z, p, §, ) of St — K are such that (z, n)
is a critical point of —K, while (z, p, £) is a critical point of S, with critical value 0.
Letting x := (z, p), such a critical point verifies

A ast oK

= — and —¥ =2 _y,
ax  ox 0 TE T oy

so it is associated to an intersection point of L!, and Ly x 0 in the fiber of (z, p).
This intersection point therefore verifies:

4oyt
q—¥,;=0 and 9+ Y

—w (0g =yl =w)
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or will be on the zero section coming from critical points of S at infinity. We
claim that such a point of intersection must lie on J(Uy, x Uy)¢ x T*Sk. Indeed,
if d(Uy x Uy) x T*SK N (L, x 0) # 0, then @~1(J(Uy, x Uy)) N0 # @. But

LI (Uy xUy)) = (¢~ (Uy) x Uy,) does not intersect the zero section because ¢
dlsplaces Uy. This in turn implies that the intersection point is on the zero section:
if a point of L, is in d(Uy x Uy)¢ x T*S¥, (z,¢1) € (Uy x Uyp) 50z ¢ Uy
or Y7 ¢ Uy. In both cases, ¥'(z, p,w) = (z, p, w) because ¢ = y; = w, and ¥’
has support in U, which intersects {g = w} along U, x R¥. Thus, the point
Fw:(z, p,w) is on the zero section, (z, p, w, &) is indeed a critical point of S; and
as a consequence (z,n) is a critical point of —K. In addition (z, p,w) is in U€
because z ¢ Uy, .

Now we prove that all the points in U ¢ have critical value 0. Since Supp ¢, € U
and U°¢ is connected, there is an open connected set W that contains U ¢ and that does
not intersect Supp ¥, (for all t). Then Oy C L; soif j: W < L, is the inclusion
on the zero section, [ := Ig Lo j: W — X is an embedding into the set of critical
points. The open set W is connected so S’ o f is constant and all the points in W
have the same critical value. The fact that S* is normalized now implies that this
value is zero.

Finally, Sard’s theorem ensures that the set of critical values of — K has measure
zero, so it is totally disconnected. By continuity of the invariants, ¢(u ® w1, Sy, t _K )
is therefore constant, so c(t ® i, — —K) = cu®u, Sy — K). O

2.4. Proof of the sub-quadratic case. We proceed with the proof of Theorem 1.1.
We reduce the sub-quadratic case to the compactly supported case and then use
Theorem 2.5 to conclude. Note that H is sub-quadratic if and only if for every € > 0
there is an A. > O such that |VH;(z)| < A¢ + €|z|. The following proposition
implies that for sub-quadratic H the map ¥/ verifies the coisotropic non-squeezing
property for every ¢ € R.

Proposition 2.9. Let H; be a Hamiltonian of C" suchthat |V H;(z)| < A + B|z|. Let
X C C* be a compact subset and consider the coisotropic subspace W = Ck x jR" k.
Then the flow Yy of H verifies

c(X) < y(Redw (¥, (X x R"7¥)))

In2
forevery |t| < S5

Proof. By considering the Hamiltonian %H% we may suppose B = 1. Using
Gronwall’s lemma we get the inequalities

[Ws(2)| <e’(|z| + A)— A and  [Yhs(2) —z| = (¢’ — 1)(|z] + A).
Suppose that z € C” verifies for a fixed r € R
z€ X xR"™™ and ,(z) € C" xiR"™™,
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We call such a z a camel point and ¥[o ;) (z) a camel trajectory. Denote 7'}’ the natural
projection on R"~™ of coordinates (¢m+1, - - -, gn). Using the fact X is contained in
a ball of a certain radius r and that 7", (z) = 0 we find

2l <7+ 7@ =r + [ 7E W (z) — 2)| <7+ (" = D)(|z] + A).

In particular we see that if ¢’ < 2, so if # < In2, the camel points verify

21 = 2—et
Using the inequalities at the beginning of the proof we see that the set of camel
trajectories is contained in a ball of radius C = C(¢, A, r) centered at the origin. The
idea now is to build from y; a compactly supported Hamiltonian diffeomorphism ¢,
that coincides with y/; on B(0, R) for some R > C and whose camel trajectories are
also contained in this ball for |¢| < ty for some #y > 0. Then the camel trajectories
of both flows coincide so we can apply Theorem 2.5 for ¢, to get the desired result.
Let y: R — R be a smooth function with values on [0, 1] that equals 1 over the
interval [0, R], vanishes over [2R, +oo[ and such that |¥’| < 2/R. Note that on the
support of ¥’ we have |z| < 2R so

4

2
"zD] = = <= —.
XDl < =

Define G;(z) = x(|z|) H;(z) (the value of R will be chosen later). It is a compactly
supported function that generates a Hamiltonian diffeomorphism ¢;. Since we may

suppose that H(0) = O for all s we have |H(z)| < A|z| + % We have

Z

IVGs(2)| = ){'(IZI)lz| Hy(z) + x([z))V Hs(2)

<44+ 2)|z| + A+ |z] <54 4 3|z|

and the bound does not depend on R. In particular, by the same arguments as above,
if |t] < '"Tz then the camel trajectories of ¢, are bounded by a constant independent
of R. Choose R big enough to contain the camel trajectories of ¥, and ¢, and the
proposition follows. O

The time bound in Proposition 2.9 is not optimal and one may get a better one
modifying the bound for | y’|, but this bound cannot be extended much more since
the statement fails for bigger ¢ (see Remark 1.3).

3. Hamiltonian PDEs

Let E be a real Hilbert space. A (strong) symplectic form on a real Hilbert space is
a continuous 2-form w: E x E — R which is non-degenerate in the sense that the
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associated linear mapping
Q:E — E* defined by £ — w(g,")

is an isomorphism. Let H:E — R be a smooth Hamiltonian function. In the
same way as in the finite dimensional case one can define the vector field X g (u) =
Q~'(dH(u)) and consider the ODE

i = Xu).

The situation encountered in examples is however a little bit different. In most cases
the Hamiltonian H is not defined on the whole space E but only on a dense Hilbert
subspace Dy (E) € E. This raises the question of what a solution is and how to
construct it.

3.1. Semilinear Hamiltonian equations. Denote by (-, -) the scalar product of E.
Consider an anti-self-adjoint isomorphism J: E — E and supply E with the strong
symplectic structure

(1)(',') - (Jv)
Denote J = (J)~! which is also a skew adjoint isomorphism of E. Take a possibly
unbounded linear operator A with dense domain such that JA4 generates a C° group
of (symplectic) transformations

e |t e Ry with ||| g < MM

and consider the Hamiltonian function
1
Hy(u) = E(AU,M) + hye(u),

where h: E x R — R is smooth. The corresponding Hamiltonian equation has the
form
u=Xpgu)=JAu + JVh;(u).

In this case the domain of definition of the Hamiltonian vector field is the same as
the domain D(A) of A which is a dense subspace of E. This implies that classical
solutions can only be defined on D(A). More precisely by a classical solution
we mean a function u: [0, T[— E continuous on [0, T'[, continuously differentiable
on [0, T'[, with u(t) € D(A) for 0 < t < T and such that the equation is satisfied
on [0, T[. Nevertheless the boundedness of the exponential allows us to define
solutions in the whole space £ via Duhamel’s formula:

Definition 3.1. A continuous curve u(t) € €([0, T]; E) is a (mild) solution of the
Hamiltonian equation in £ with initial condition u(0) = ug iffor0 <t < T,

t
u(t) = e uy + f e UTIA TV R (u(s)) ds.

0
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One can easily verify that if u(z) is a classical solution, then it is also a mild
solution. For semilinear equations we know (see for example [15]) thatif V£ is locally
Lipschitz continuous, then for each initial condition there exists a unique solution
which is defined until blow-up time. If moreover V# is continuously differentiable
then the solutions with uy € D(A) are classical solutions of the initial value problem.
Locally we get a smooth flow map ®;: O € E — E defined on an open set @. If
every solution satisfies an a priory estimate

[u(lle = gt u(0)) < oo,

where g is a continuous function on R x FE, then all flow maps ®;: £ — E are well
defined and smooth. This is the case for example if || VA, (u)|| g < C. Remark that the
choice of the linear map A is arbitrary. Indeed if JA generates a continuous group of
transformations and B is a bounded linear operator then J(A + B) is an infinitesimal
generator of a group e’/+8) on E satisfying ||e*/ A+ B || g < MeNTMIBIE Ope
can then consider the linear part J(A + B) and set J Vh; — JB as the nonlinear part.
This indeterminacy is only apparent: classical solutions verify Duhamel’s formula
for JA and J(A + B) so both flow maps coincide over the dense subspace D(A)
which by continuity implies that the two flows are equal.

3.2. Nonlinear string equation. Consider the periodic nonlinear string equation
U=1uxx— f(t,x,u), u=ul(,x),

where x € T = R/2xZ and f is a smooth function which is bounded and has at
most a polynomial growth in u, as well as its u- and 7-derivatives:

R
dua 9rb
with My = 0. Here Cy and M}’s are non-negative constants. We now describe the

Hamiltonian structure of this equation. Denote by B the operator B = (—3%/9x2 + 1)!/2
and remark that we may write the equation in the form

f(t, x,u)| < Cr(1 + [u|)M*, fora+b =k,andforall k >0,

u = —Bv,

0= (B—B YHu+ B7Lf(t, x,u).

Define £ = H %('IF) x H %('IF) as the product of Hilbert spaces where the scalar
product of H 2 (T) is given by

2w
(U, uz) = %.[0 Buy(x)uz(x)dx.

If we define the function

| 2m u
hy(u,v) = _Efo F(t,x,u(x))dx, F :,[0 [/ du,
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we get

Vhi(u,v) = (B_lf(t, X, u(x)),O).

The gradient verifies |Vh;|g < Co. The polynomial growth condition on f
guarantees that there exists a 0 < @ < 1/2 such that VA has a €' extension to
H %‘9('11“) X Hé_g("ﬂ“). Moreover this implies that V4 is locally Lipschitz in E over
compact time intervals (see [11] for details). A special case where such properties
are verified is f (¢, x,u) = sinu which corresponds to the sine-Gordon equation. In
this case |Vh:||g < 1. Now putting A = (B — B~!) x B and defining J: E — E
by J(u,v) = (—v,u) we can write the nonlinear string equation as the semilinear
PDE:
(u,v) = JA(,v) + JVhi(u,v).

Consider the symplectic Hilbert basis {¢" | j € Z}, where

_ 1
09;_ (]2+ ) — (i (x).0), ¢; :ﬁ(o —j(x)),

with
) V2 sin jx, j >0,
(%) =

43 \/fcoij, § =4

In this basis we have (B x B)gojj.E =j2+ ]goji so if we denote A ; = ViZ+ 1we
get that

1
A@j:(kj—r)go;r and  Ap; =Ajp;.
j

Now remark that JA has eigenvalues {+i , /)L% — 1 = +ij}. If we calculate /4 we

get that its action on each symplectic plane (pf]R{ P (p;]R is given by the matrix

. 241 L
COS 1] —Jer sintj

J 3 § i ’
sin ¢ cost
which gets closer and closer to a rotation as j goes to infinity. In particular we get a
bounded group of symplectic linear maps. We conclude that for all # € R the time ¢
map of the flow of the nonlinear string equation ®;: £ — E is defined on the whole
space E.

3.3. Finite dimensional approximation. In this subsection we will follow [11] for
the particular case of the nonlinear string equation. We include the proofs for complete-
ness. Recall that the Hilbert basis of E is {(pjE | j € Z} and denote E, the vector
space generated by {(pjE | |j| < n}. Itis a real vector space isomorphic to R?"*2,

Let E” be the Hilbert space with basis {cpji | |j| > n}sothat E = E, & E" and
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write u = (u,,u") for an element u € E. The fact that J and A preserve E,, for all n
will allow us to define the finite dimensional approximations just by projecting the
vector field. Let I'1,,: £ — E, be the natural projection and consider the Hamiltonian
function

1
H, (u) = E(Au,u) + hy(u), where hy(u) := h: (I, (u)).
The Hamiltonian equation now becomes
u=Xpg,(u)=JAu + JVh,(u),

where Vh,(u) = I, (Vh,(I1,(u))). Since Vh, continues to be locally Lipschitz
and bounded, Xy, generates a global flow ®. This flow can be decomposed as
®! = ¢4 o VI with VI(u) = (¢! (un),u™). Here ¢! is a finite dimensional
Hamiltonian flow on E, generated by the time dependent function h,, o /4. We
remark that this function has a bounded gradient so ¢! verifies Theorem 1.1 for
every t € R. The key point of the approximation is the following lemma which is a
slight modification of a lemma in [11, Appendix 2]:

Lemma 3.2. Denote Fg = H 50 (T) x H 50 (T) and let K be a compact subset
of Fg. Let g: R x Fg — E be a continuous map and fixaT > 0. Then

Sup Ig: (u) — g:(Tnu)|| E
(t,u)e[-T,TI1xK
converges to zero as n goes to infinity. Moreover, for every R > 0 there exists a
decreasing function eg: N — R such that eg(n) — 0 as n — oo and

IVh () = Vhn W E < €r(n)

foreveryu € B(O,R) and |t| < T.

Proof. By contradiction suppose that there is a sequence {(s,,z,)} C [-T,T] x K
such that || g, (zn) — &s,(Ilpzy)||lE = § > O for every n € N. By compactness
we may suppose that there is a converging subsequence (s, ,zn,) — (s,z). This
sequence will also verify I1,, z,, — z. We have

“gsnk (an)_gsnk (nnkznk)”E = ”gsnk (an)_gs(z)||E+”gs(z)_gsnk (nnkznk)“E

and the quantity of the rhs converges to zero as ny goes to infinity by continuity
of g. In particular, for ng big enough we get || gs,,, (Zn;) — &s,, (Hny Zn )| E < 6,2
contradiction.

For the second claim recall that VA, has an extension to Fy for 8 small enough
(see [11]). Denote by Vi, the extension and leti: £ — Fy be the compact inclusion
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so that VA, (u) = Vh, (i (u)). Recall that Vh, (w) = 1, Vi, (T1,(u)). We have

VA (u) — Vhy(w)| £
< [[Vhi () = Iy VA (W) | g + [TTn VA (1) — TTn VA (TTpu) || £
< Vhe(i () = T, Vh (i @) & + (VA (i () = Vi (Tyi ()| .
Forevery R > O the sets U|I|ST VE, (i(Be(0,R)))andi(BE (0, R))) are precompact

in E = Fj and Fy respectively, so we may take the sup in Bg (0, R) and |f| < T and
apply the first part of the lemma to conclude. ]

Now we have all the tools we need for the finite dimensional approximation.

Proposition 3.3 ([11]). Fixat € R. For each R > 0 and € > O there exists an N
such that ifn > N then

Vi) = Vi)le < e

forallu € B(0, R).

tJA

Proof. Duhamel’s formula and the fact that ¢’/ is a bounded operator give

Vi) — Vilg < C [0 IVhy(9° (1)) — Vhn(®5 )| £ds
<C [0 |V Ay (©F () — Vg (@5, ()| £ls
e fo |V kg (05, 4)) — Vo (05, 0)) | 5.

If u € BE(0, R) and s € [0,1] then ||VA|| g bounded implies that for all n € N the
element @9 () wont leave a ball of radius R’(R, ¢). We can now use Lemma 3.2 and
the fact that V/ is locally Lipschitz to get

Vi) - Vi@ s < € [0 1V° @) = Vi)l gds + Cre(n).

By Gronwall’s lemma we conclude that
1V ) = Va)le < e(m)C),

where C(¢) depends continuously on ¢. The function € (n) is decreasing and converges
to zero so there exists an N € N such thatif n > N then e(n)C(¢) < € which gives
the result. L]
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3.4. Coisotropic camel. We now move towards the proof of Theorem 1.4. Recall
that to state Theorem 1.1 we had to divide the simplectic phase space into two
Lagrangian subspaces that determine the coisotropic subspaces that we work with.

In the infinite dimensional case we have £ = £, @ E_ = H > x H %, where
E4 (resp. E_) is generated by {(p;.r | j € Z} (resp. {gaj_ | j € Z}). Moreover
denote Ej (resp. E _"F and EX) the Hilbert subspace generated by {(,oji | 1] < k}
(resp. {(pj" | 1jl =k +1}and {¢; | |j| = k +1}) and Ig: E — Ej (resp. l'I{CF
and TTX) the corresponding projection. First, let’s state the infinite dimensional
version of Theorem 1.1.

Proposition 3.4. Fixa k > 1 and let X be a compact set contained in Ey. Define
C={uckE|MiueXand M u = 0}.
Then for every t € R we have
c(X) < y(Me(V/(C) n{TE = 0}).

This is not a statement about the actual flow of the nonlinear string equation.
Nevertheless using the fact that e’/4 restricts to a symplectic isomorphism on each E,,
we get Theorem 1.4:

Proof of Theorem 1.4. We always have the inclusion [T (V*(C) N {H’_‘F =) =
[T V! (C), so by Proposition 3.4 and monotonicity of the symplectic capacity y we
have

c(X) < y(Me(V/(C) N{NTE = 0)) < y(ITxV*(C)).

The linear operator e//4 restricts to a symplectic isomorphism on each E,, which

commutes with [1; and the capacity y is invariant under symplectic transformations
SO

y(MeVH(O)) = (e M4V (C)) = y(IT @ (C)).
which gives the desired result. ]
The proof of Proposition 3.4 relies on the finite dimensional result and it is the

finite dimensional approximation of the flow that allows us to go from finite to infinite
dimensions. For these reasons we start with the following lemma:

Lemma 3.5. (1) Fixak > 1 and let X be a compact set contained in Ey. Then for
everyt € Randn > k we have ¢(X) < y(Ix (V}(C) N {H’f,_ = 0})).

(2) The set Upy{u € C | l'[i Viu = 0} C E is bounded by a constant R(t).

(3) The set{u € C | l'[’j_V’u = 0} is compact and so is V' (C) N {H’j_ =}
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Proof. Recall that Viu = (¢} (un).u") where ¢ is a finite dimensional flow
generated by a sub-quadratic Hamiltonian function so it verifies Theorem 1.1. An
easy computation shows that V! verifies the statement if and only if ¢} verifies
Theorem 1.1 on E,.

For the second claim let u € E and decompose its norm as

lull < [ Teul + [T w| + | T1%u|].

If u € C then by definition I1;u belongs to X which is compact contained in a ball
of a certain radius r and [T¥u = 0, so |lu] < r + || Hﬁull. It is then enough to show
that H’f,_Vn’u = 0 implies || l'l’_iu” < ¢(t). Duhamel’s formula and the fact that

sup VA ()] < sup  [[Va(u)]
(t,u)el0,f]xE (t,u)el0,t]xE

is bounded imply that || V,!u — u|| < ¢(¢), where ¢(¢) does not depend on n. We get
that
I el = T8 Vi — T u|) < [Viu—u| <)

and the result follows with R(¢) = r + ¢(¢).
For the third claim we start by using the same argument as before to prove that
fueC| H’j_V’u = 0} is bounded. Now let {z,} C E be a sequence such that

Mizp € X, Mz, =0, and NXV'z, =0 forallneN.

We claim that {z,} has a convergent subsequence. First remark that, by the
decomposition of Vy in Ey @ EV, for every u € E and N € N we have
N¥Viu = MYu. Moreover, by definition of z,, if N > k then Tz, = 0
and 1Y V'z, = 0. For N > k we have

1Y 20| = 1Y 20| = DY Vi zal

= 0¥ Viz, — Y Viz,|| < ||[Vizn — Vizall.

Now {z,}, is a bounded sequence so we can apply Proposition 3.3 and for every
€ > 0 there exists a No(¢) € N such that if N > Ny then ||V{z, — V'z,|| < €. By
the previous inequalities this implies that for N > Ny we have | [TV z,|| < €. On
the other hand, {z, }, bounded implies that it has a weakly converging subsequence
(still denoted by {z,} for simplicity) that converges when projected onto any finite
dimensional subspace Ex. We conclude that for any § > 0, with ¢ = §/3 and
N > Ny(e),if p,q € N are big enough we have

I2p — zqll < IMnzp — Mwzgll + 1TV 2]l + TV 24|l < 6,

which implies that z,, is a Cauchy sequence. Ll
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Proof of Proposition 3.4. Let V. be the open € neighbourhood of TTg(V!(C) N
{l'I’Ifr = 0}). We will show that for each € > 0 there exists an n € N such that

I (V;H(C) N{TTX = 0}) C V..

Once this is proven, Lemma 3.5 part 1 and monotonicity of the capacity y imply
that c(X) < y(Ve) for every € > 0 s0 c(X) < lime—g y(Ve). We then use that
M (V(C)n {l'I’_‘F = 0}) is compact by Lemma 3.5 part 3 to conclude that

lim y(Ve) = y (M (V! (€) N {TTA = 0})),

which is the desired result.

The proof is by contradiction. Suppose that there exist an ¢y > 0 and a sequence
{z,} C E such that foralln € N

Mgz, € X, ¥z, =0, TEViz, =0 and d([1xV!z,, Vo) > eo.

We claim that {z,, } has a convergent subsequence. We use the same argument as in
Lemma 3.5 part 3. For N > k we have

Iz, || = |0 2, || = Y Vg 2z,

= 0¥ VEz, — Y Viz,|| < |Vizy — Vizal.

By Lemma 3.5 part 2 we know that z, is a bounded sequence so we can apply
Proposition 3.3 and for every § > O there exists a No(8) € N such thatifn, N > N,
then ||V zn— V) zn || < 8. By the previous inequalities this implies thatforn, N > Ny
we have |TTV z,|| < §. On the other hand, {z, } bounded implies that it has a weakly
converging subsequence (still denoted by {z,} for simplicity) that converges when
projected onto any finite dimensional subspace E 5. We conclude that for any § > 0,
withe = 6/3 and N > Ny(e), if p,g > Ny are big enough we have

Izp = zgll < ITlnzp — Mnzgl + MY zp || + TV 24| < 6,

which implies that z, is a Cauchy sequence. Denote z its limit in £. The set X is
closed so Tz € X and IT¥ is continuous so Xz = 0. This means that z is an
element of C. Moreover remark that

IWViz = Vizull < IV'z = Vizull + IV 2y — V2l

so by continuity of V* and again Proposition 3.3 we get that V! z, converges to V'z
in E. Using the hypothesis I"I{‘|r Vz, = O0wefind that l'I’_‘F V?z = 0 which allows us to
conclude that Iy V' z belongs to V. This contradicts the fact that d (I V! z,, Vo) >
€o > 0 for all n € N achieving the proof of the theorem. 0
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A. Some calculations of symplectic capacities

By definition we know that for every symplectic capacity ¢ we have
el B2} = r® = (B2 X CF ).

The reader interested in the proof of this equality for the two different symplectic
capacities ¢ and y that were defined in [22] may look, for example, at [1]. We are
interested in the value of Viterbo’s capacities on coisotropic spaces C¥ x R"~% C
Ck xC" % with n # k. Recall that ¢ and y are first defined on open bounded sets U,
then if V' is open and unbounded subsets then c(V') is defined as the supremum
of the values of ¢(U) for all open bounded U contained in V' and finally if X is an
arbitrary domain of C” then ¢(X) is the infimum of all the values ¢(V) for all open V
containing X.

Proposition A.1. Consider the coisotropic subspace C* x R" % < C* x C"* with
0 <k < n. We have

c(Ck x R" %) = 0 = y(C* x R* %),

Proof. First remark that for every A # 0 we have A - (C¥ x R?" %) = Ck x R* %
so by homogeneity of symplectic capacities we deduce that any capacity is either 0
or 400 on coisotropic subspaces. Since we have the inequality ¢(C* x R" %) <
y(Ck x R*~kY it is enough to prove that y(C* x R* %) < +4o0. By definition

y((Ck x R" ) = inf{y(V) | V is open and C¥ x R"* ¢ V3,

so it is enough to find an open set V containing C¥ x R”~* with finite y value. Recall
moreover that for a bounded open set we have

y(U) = inf{y(¥), ¥ € Ham*(C"), y(U)NU = @}.

In order to find the open set with finite displacement energy we will use [22,
Proposition 4.14] which states the following: for a €2 compactly supported
Hamiltonian H: [0, 1] x C" — R that generates a flow y; we have y(y1) < || H ||¢o0.

Find a smooth function f:R — R with values on 0, I[ and f’(s) > O for
every s € R. Define the open set

V ={(q1, P1,---.qn, pn) € C" such that |p,| < f'(qn)}.
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By hypothesis k < n so CK x R”™% € V. We claim that (V) < +oo. For this
we will consider the bounded Hamiltonian H (g, p) = —2 f(¢») which generates the
flow

Ve (q, p) = (@1, P1s--+Gn> Pn +121(qn))-
If (g, p) € V then

| pn + z.fl(qn” 2 2.f’(Qn) — |pnl > f’(CIn)’

which implies that 1 (V) NV = @. Let U be an open bounded set contained in V,
we have 1 (U) N U = @. Find a compactly supported smooth function y: C" — R
with values on [0, 1] and constant equal to 1 on a neighbourhood of (U, (9 11 ¥+ (U).
Then y H verifies || yH ||eo < || H |0 and by construction its flow still displaces the
open set U. We conclude by [22, Proposition 4.14] that y(U) < || H ||eo. Since the
bound does not depend on U this implies that y (V') < || H ||e0 which finally gives

y(C*¥ xR"™*) < | H|lgo < +00

concluding the proof. O

B. A Hamiltonian subgroup of the group of symplectic diffeomorphisms

In this section we exhibit a subgroup of Sympl(C”) which is strictly bigger than the
group of compactly supported Hamiltonian diffeomorphisms and whose elements
are generated by sub-quadratic functions.

Proposition B.1. Denote Ham(C") the set of Hamiltonian diffeomorphisms o
such that Hy, qo,H and (gotH ~! are all Lipschitz in space over compact time intervals.
Then Ham"“(C") is a subgroup of Sympl(C"). Moreover Ham""(C") is strictly
bigger than the group of compactly supported Hamiltonian diffeomorphisms.

Remark B.2. The superscript “dL” on Ham®“(C") stands for double Lipschitz
condition.

Proof. First recall the following formulas:
g ogl =g and (g7 ) =9,
where
H#K(t,z) = H(t,z) + K@, (o) Y(2)), H(t.z) = —H(t,pF (2)).

The identity is clearly in Ham“"“(C") and it is an easy exercise to use these formulas
to prove that Ham""(C") has a group structure. For the second statement, consider
a Lipschitz autonomous Hamiltonian H with Lipschitz gradient and use Gronwall’s
lemma to prove that cp,H (and therefore (gotH 1 = gofﬂ) is Lipschitz. ]
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