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Middle dimensional symplectic rigidity
and its effect on Hamiltonian PDEs

Jaime Bustillo

Abstract. In the first part of the article we study Hamiltonian diffeomorphisms of R2" which are

generated by sub-quadratic Hamiltonians and prove a middle dimensional rigidity result for the

image of coisotropic cylinders. The tools that we use are Viterbo's symplectic capacities and a

series of inequalities coming from their relation with symplectic reduction. In the second part we
consider the nonlinear string equation and treat it as an infinite-dimensional Hamiltonian system.
In this context we are able to apply Kuksin's approximation by finite dimensional Hamiltonian
flows and prove a PDE version of the rigidity result for coisotropic cylinders. As a particular
example, this result can be applied to the sine-Gordon equation.

Mathematics Subject Classification (2010). 37J10, 37K25. 53D20.

Keywords. Symplectic geometry, generating functions, symplectic capacities, Hamiltonian
PDEs.

1. Introduction

Consider C" R2" with coordinates given by (q\,p\ qn~Pn) and let a>

dqi Adpi be the standard symplectic form. Gromov's non-squeezing theorem |7|
states that symplectic diffeomorphisms of (Cn,a>) cannot send balls of radius r into
symplectic cylinders of radius R unless r < R. For example if <p is a symplectic
diffeomorphism, ß2" is the ball of radius r in C" and ß^ Ç C is the two dimensional
disc of radius R then

</>(ß2") ç ß2 x C""1 implies r < R.

The original proof relied on the technique of pseudo-holomorphic curves which was
later used to prove a wide range of results in symplectic geometry. Shortly after,
several authors [5,10,22] gave independent proofs of Gromov's theorem using the

concept of symplectic capacities. A symplectic capacity is a function

c:P(Cn) -* [0, +oo]

that verifies the following properties:
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(1) (monotonicity) If U ç V then c{U) < c(V).

(2) (conformality) c{\U) A2c(U) for all A 6 E.

(3) (symplectic invariance) If (p: C -> Cn is a symplectic diffeomorphism then

c(0(t/)) c(U).

(4) (non-triviality + normalization) c(B2n) n c(B2 x C"_1).

Together, the existence of a function with these properties implies Gromov's theorem.
In this article we are going to work with Viterbo's capacities in order to prove a rigidity
result for a particular type of Hamiltonian diffeomorphisms. More precisely we are
interested in the middle dimensional symplectic rigidity problem.

One of the first questions regarding this problem appeared in [9] where Hofer asked

about the generalization of capacities to middle dimensions. He asked if there exists

a A-intermediate symplectic capacity ck satisfying monotonicity, A-conformality,
symplectic invariance, and

ck(B2k x Cn~k) <+oo but ck(B2k~2 x C x C"~k) +oo?

In [8] Guth gave a partial answer to this question. He studied embeddings of polydisks
an proved that A-capacities that verify the the following continuity property:

lim ck(B2k x B2R~2k) < +oo but lim ck(B2k~2 x B2j?~2k+2) +oo?
R-*oo R—oo

do not exist. The question of less regular capacities was recently answered in the

negative by Pelayo and Vü Ngoc in [16] using in part the ideas in [8]. In their article
they proved that if n > 2 then B2 x C"-1 can be symplectically embedded into the

product B2j£~2 x C for R V2"-1 + 2n~2 — 2. In particular, by monotonicity and

homogeneity, the value of the capacity on the left has to be greater than or equal to a

constant times the value on the right.
Another point of view for the middle dimensional problem comes from a reformulation

of Gromov's non-squeezing theorem. In dimension 2 symplectomorphims are
the same as area preserving maps so in [6] Eliashberg and Gromov pointed out that

(using a theorem of Moser about the existence of area preserving diffeomorphisms)
Gromov's theorem is equivalent to

are.a(Yli(p(B2n)) > nr2 for every symplectomorphism (p.

Denote by the projection on the first 2k coordinates. A possible generalization
of this statement to higher dimensions is

Vo\(J\k4>{B2n)) > Vol(nyt B2n) Vol(B2k) for every symplectomorphism (p.

This problem was studied by Abbondandolo and Matveyev in [2], In their article they
proved that the volume with respect to coAk of nk<p(B2n) can be made arbitrarily
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small using symplectomorphisms. This ruled out the existence of middle dimensional
volume symplectic rigidity for the ball. Nevertheless they proved that the rigidity
exists in the linear case and, shortly after, several local results appeared: In [ 17] Rigolli
proved that there is local middle dimensional volume rigidity if one restricts the

class of symplectomorphisms to analytic ones, and in [4] Abbondandolo, Bramham,

Hryniewicz and Salomäo proved that the same kind of local rigidity appears for
smooth symplectomorphisms in the case k 2.

We would like to point out another possible middle dimensional generalization
of the squeezing problem. In dimension 2 the value of any symplectic capacity on

topological discs coincides with the area, so one may also rewrite Gromov's theorem

as

> nr2 for every symplectomorphism <p,

where c is a symplectic capacity. One can then ask if this inequality is true with n i

replaced by 11^, and more generally look at subsets Z different from B2n and

replace nr2 with the capacity of UkZ. We prove that this type of inequality is

true for Z X x Rn~k c Cfc x Cn~k provided that we restrict the class of
symplectomorphisms. The maps the we consider are Hamiltonian diffeomorphisms
xjr x/sgenerated by sub-quadratic Hamiltonians //, that is, by functions H that

verify
\VHt(z)\

lim — 0 uniformly in t.
|z|—>+oo |z|

More precisely, if we denote by c and y the two symplectic capacities defined by
Viterbo in 122], we have the following theorem:

Theorem 1.1 (Coisotropic camel theorem). Let X C Ck be a compact set. Consider
X x c Ck x Cn~k and let xf xjr^ be a Hamiltonian diffeomorphism of C"
generated by a sub-quadratic Hamiltonian H. Then

c(X) < y(nk(x/f(X x Rn~k) nf'x iR"-*)).

Using the monotonicity of the capacity y we get as an immediate consequence
that

c(X) < y(nkxfr(X xRn~k)).

For example if we take X B2k we get the inequality

y(nkx/7(B2k x Rn~k)) > rir2.

We want to point out that the subset on the right hand side of the inequality in
Theorem 1.1 is the symplectic reduction off X xR"" k by the transverse coisotropic
subspace x /Rn~k. More precisely, recall that by definition a coistropic subspace
W ç C" verifies W0> ç W where Ww stands for symplectic orthogonal. One

can then consider the space W/Ww which is symplectic by construction. Denote
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by jtw W -> W/W" the quotient map. The symplectic reduction of a subset

Z ç C" by W is defined as Red^(Z) nw(Z n W). If we set W Ck x /R""fc
then the inequality in Theorem 1.1 can be rewritten as:

c(X) < y(Redw(f(X x R"-*))).

Note that this reduction is the projection of a bounded set so in particular Theorem 1.1

is not trivial for compactly supported Hamiltonians (see Figure 1).

Figure 1. This figure represents the image of the coisotropic cylinder X x W,"~k by a compactly
supported Hamiltonian diffeomorphism \jr. The transverse plane represents the complementary
coisotropic subspace W Ck x iR"~k. Theorem 1.1 gives information about the capacity of
the projection of the intersection with W.

Remark 1.2. Theorem 1.1 is related to the classical camel theorem which states that
there is no symplectic isotopy \jrt with support in (C" \ (Cn_1 x M)) U B2n, such

that i//0 Id and \(j\ sends a ball of radius r > e contained in one component of
C \ (Cn_1 x R) to the other. In [22] Viterbo proved that if tj/t sends a ball from one
connected component of C"\(C'!_1 x R) to the other then for V lJ?e[o i]
and W C"-1 x R we have

y(Redvp(F)) > nr2.

As an intuition of what these capacities are, if AT is a convex smooth body
then c(K) coincides with the minimal area of a closed caracteristic on <)K. On

the other hand y is defined using Viterbo's distance on IIam' (C" ); the energy of a

diffeomorphism is then defined to be the distance to the identity and y(U) measures
the minimal energy that one needs to displace U from itself. Both capacities are

always related by the inequality c(X) < y(X) which is recovered by Theorem 1.1

when x/r Id.
For general sets the construction ofViterbo's capacities (cf. [22]) starts by defining

for the time-1 map i// \J/{! of the flow of a compactly supported Hamiltonian Ht
two values: c(l, xfr) and c(/x, \j/). These values correspond to the action value of
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certain 1 -periodic orbits of the flow obtained by variational methods. The bi-invariant
metric on Hamc(C") is then defined as c/(i/o Id) y(\Jr) \j/) — c( 1, if/). All
these quantities are invariant by symplectic conjugation so they can be used to define

symplectic invariants on open bounded sets as:

c(U) sup {c(ß, t/r), xfr e Hamc(t/)}.

y(U) inf {y(V^), V e Ham6'(C"), n U 0}.

If V is an open (not necessarily bounded) subset of C" then c{V) (resp. y(V)) is

defined as the supremum of the values of c(U) (resp. y(U)) for all open bounded U
contained in V. IfX is an arbitrary subset ofC then its capacity c(X) (resp. y(Z)) is

defined as the infimum of all the values c{V) (resp. y(V)) for all open V containing X.
\fk > Oonecanprovethatc(CfcxM"_i) 0 y(CfcxR"~fc)forthecoisotropic

subspace C2k x Rn~k c Ck x Cn~k (see Appendix A). By monotonicity the same is

true for coisotropic cylinders X x çC'x Cn~k so the existence of Viterbo's
capacities all alone does not provide rigidity information for the image of these sets

by general symplectic diffeomorphisms.
The proofof Theorem 1.1 is achieved by a series of inequalities between Viterbo's

capacities of sets and the symplectic reduction of these sets. The advantage of
using Viterbo's capacities is that they are constructed using generating functions and

symplectic reduction can be seen as an explicit operation on generating functions
which can be then studied in detail. We first prove the theorem for compactly
supported Hamiltonian diffeomorphisms and then reduce the general case to the

compactly supported one.
There is an unpublished proof of this theorem by Buhovski and Opshtein for the

case A (5'1(r))A: a product ofcircles of radius r andRedjy(i/f(ZxR"~fc)) c Z(R)
a symplectic cylinder of radius R which relies on the theory of pseudoholomorphic
curves.

Remark 1.3. Theorem 1.1 is not true for general symplectomorphisms and its

limits are well understood. An example of a symplectomorphism cp which is not

generated by a sub-quadratic Hamiltonian and which does not verify the weaker
middle dimensional inequality

c(X) < y(Tlk<p(X xl"4)),
is the symplectomorphism <p(zi,... ,z„) (zfc+i- ...,zn,zi,... ,Zk). Indeed for
this map <p we have

<p(X x Rn~k) Rn~k x X

and either the k-projection is contained in Z if k < n/2 or in Z Rn~k x
CAk^2n otherwise. In both cases y(Z) 0 by Appendix A, so if for example X is

a closed ball, then the statement is not verified. In this example <p is generated by a

quadratic Hamiltonian. Moreover, we prove in Proposition 2.9 that if |V//((z)| <
A + B\z\ then its flow if)j' verifies the statement of Theorem 1.1 at least for small
times.
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One may use the rigidity result of Theorem 1.1 to define a non-trivial invariant.
Consider the following quantity:

ykG(U) inf {y(Tlk<l,(U)) I06G},
where G is a subgroup of the group of symplectic diffeomorphisms. For G

Sympl(C") we know by Remark 1.3 that ya is zero on coisotropic cylinders
of dimension k. On the other hand, if the elements of G are Hamiltonian
diffeomorphisms generated by sub-quadratic functions then Theorem 1.1 implies
that Yq is bounded from below on coisotropic cylinders of dimension k by the

capacity c of the base. As an example of G one can take the subgroup of Hamiltonian
diffeomorphisms <pf*, where H, cpf1 and (<p[r)~r are Lipschitz on the space variable

over compact time intervals (see Appendix B). For this subgroup Theorem 1.1 gives

c(X) < y£(X xRn~k) < y(X).

Hamiltonian PDEs. The second part of this article deals with middle dimensional

symplectic rigidity in infinite dimensional Hilbert spaces.
Let E be a real Hilbert space and let co be a non-degenerate 2-form. Here we

will understand non-degenerate in the sense that the map £ e E -> m(£, •) e E* is

an isomorphism. In contrast with the finite dimensional case, little is known about
the rigidity properties of symplectomorphisms in this context. The most general

attempt to prove a non-squeezing theorem has been [3] where the result is proved

only for convex images of the ball. The first result pointing in the direction of the

infinite dimensional equivalent of Gromov's theorem dates back to [ 11 ]. Kuksin gave
a proof of the theorem for a particular type of symplectomorphism that appear in
the context of Hamiltonian PDEs. He did this by approximating the flows by finite
dimensional maps and then applying Gromov's theorem. Since then there has been

a great number of articles proving the same result for different Hamiltonian PDEs

via finite dimensional approximation. We refer the reader to [13] for an excellent

summary of the prior work.
The goal of the second part of this article is to extend Theorem 1.1 to the infinite

dimensional case. We restrict ourselves to semilinear PDEs of the type described

in [11], Let (•, •) be the scalar product of E, {(pf} be a Hilbert basis, J .E -> E
be the complex structure defined by Jcp^ — T(pJ and J —J. The symplectic

structure that we consider is co(-, •) (./•, •} and the Hamiltonian functions are of
the form

Ht(u) 2^m' u^

where A is a (possibly unbounded) linear operator and ht is a smooth function. The
Hamiltonian vector field is

Xh (u) JAu + JVht(u).
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Remark that the domain of definition of the vector field is the same as the domain
of A which is usually only defined on a dense subspace of E. If e'JA is bounded, then

solutions can be defined via Duhamel 's formula and if Vh is G1 and locally Lipschitz,
then the local flow is a well defined symplectomorphism [12|. Under compactness
assumptions on the nonlinearity, flow-maps can be approximated on bounded sets by
finite dimensional symplectomorphisms. Specific examples of this type of equations
are (see [11] for more details): Nonlinear string equation in T,

ü uxx + p(t,x,u),

where p is a smooth function which has at most polynomial growth at infinity.
Quadratic nonlinear wave equation in T2,

m Au + a(t, x)u + b(t, x)u2.

Nonlinear membrane equation on T2,

ü —A2u + p(t,x,u).

Schrödinger equation with a convolution nonlinearity in T",
3 - i—iù=—Au + V(x)u + ~^=rG{U, U, t,x) * U=u*

where £ if a fixed real function and G is a real-valued smooth function.
For concreteness we will study the nonlinear string equation with bounded V/z,

but the main result will still be true for the previous equations provided that the

nonlinear part Vht is sub-quadratic.
Consider the periodic nonlinear string equation

M uxx — f(t,x,u), u=u(t,x),
where x T M/2jtZ and f is a smooth function which is bounded and has at

most a polynomial growth in u, as well as its u- and r-derivatives:

da db
j-f(t,x,u) < Q;(l + \u\)Mk, for a + h k, and for all k > 0,

dua dtb '

with Mq 0. Here and s are non-negative constants. The hypothesis on M0
is the one that will allow us latter to apply Theorem 1.1 to the finite dimensional

approximations. This hypothesis is verified by f(t,x,u) sinu which gives the

sine-Gordon equation. Let us describe the Hamiltonian structure of this equation.
We denote by B the operator B (—32/3x2 + 1 )1 / 2 and remark that we may write
the equation in the form

ù —Bv,

v (B — B~l)u + B~l f{t,x,u).
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Define E E+ x£_ H i (T x H 2 (T the product of Hilbert spaces where the

scalar product of //3 (T) is given by

1 f2n
(mi,m2) — / Bu\{x)u2(x) dx.

2n Jo

Here J(u,v) (—v,u), the operator is A (B — ß-1) x B and Vht(u,v)
(B"1 f(t, x,u), 0) which has bounded norm over compact time intervals since M0 =0
by hypothesis.

Let {cpj~ I j e Z} be the Hilbert basis of E+ on which B is diagonal given by

the Fourier basis and denote by {tpj := —Jtpt | j e Z} the associated Hilbert basis

of E-. Moreover denote Ek (resp. Eky and Et) the Hilbert subspace generated by

{ff I \j I < k} (resp. {tp+ I \j I > k + 1} and {(pj \ \j \ > k + 1}) and Uk\E Ek

(resp. Uk+ and n^) the corresponding projection. We use the finite dimensional

approximation together with Theorem 1.1 to prove the following result:

Theorem 1.4. Denote by <P':E -> E the flow of the nonlinear string equation
satisfying the previous hypothesis. For every k e N, every compact subset X of Ek
and every t R we have

c(X)<y(nk<t>'(X xEk+)).

As an example of what type of information we get from this theorem, consider
the subspace E0 which consists on constant functions. In this case Theorem 1.4

gives us information on the global behavior of solutions with constant initial velocity
provided that the projection on Eo of the initial conditions is contained in a compact
set X, for example in the closed ball of radius r. On the other hand, if we interchange
the roles of E+ and Et we get information about solutions whose initial position is

given by a constant function. In particular we see that the energy of these solutions

cannot be globally transfered to higher frequencies since the projection on Eq cannot
be contained in a ball B\ with R < r.

Theorem 1.4 may also be seen as an existence result. We consider again the case

k 0. By reordering the Hilbert basis we may project onto the symplectic plane of
frequency/of our choice. Suppose thatA' is a ball of radius R in Vect{<^+, cpf} ~ M2,

we will ask if the projection is contained in a ball of radius r in Vect{^+, cpf}. Let

U(t) (u(t),v(tj) e E H 2 x H 2 be a solution of the nonlinear string equation,
that is, such that

ù — Bv and ü uxx — f(t,x,u).
Use the symplectic Hilbert basis {tpJ1 | j Z} to write

U(t) Y2uj(t)(p+ + Vj(t)(pj Y^(uj(t) - Vj(t)J)<pf.
j j
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We will denote by Uj (t) the complex number Uj(t)—ivj{t). Moreover denote by E°
the Hilbert subspace of E generated by {(pf \ \ j \ > 0}. If 0 < r < R Theorem 1.4

gives <Ï>'(Br x Br x E° so we get:

Corollary 1.5. For any / > 1, any R > r > 0 and any to R there exists a (mild)
solution U(t) (u(t), v(t)) of the nonlinear string equation in Hz x H 2 such that

uy(0) 0 for j I and |C/(0)| < R, hut |(//(?o)| > r.

2. The coisotropic camel: Viterbo's approach

We provide here a proof of the Theorem 1.1 which depends on Viterbo's spectral
invariants, hence on generating functions instead of holomorphic curves. We start

by proving the result for compactly supported Hamiltonian diffeomorphisms.

2.1. Generating functions and spectral invariants.

The classical setting. To a compactly supported Hamiltonian diffeomorphism 1//

of R2n one associates a Lagrangian submanifold Ly, c T*S2n in the following way.

Denote by R2" x R2" the vector space R2" x R2" endowed with the symplectic form

(-co) © to. The graph

T(^) := {(x, f{x))\ x R2"} c R2" x R2"

is a Lagrangian submanifold Hamiltonian isotopic to the diagonal

A := {(x,x); x R2"} c R2" x R2".

Identifying R2" x R2" and T*R2" via the symplectic isomorphism

t / •> (d +d P + P - - \d\(q, p,q,p) i->
2 P- P'd ~q),

and noting that T(^) and A coincide at infinity, we can produce a compact version
of the Lagrangian submanifold r(x/s) c R2" x R2", which is a Lagrangian sphere

Lty C T*S2n. This Lagrangian submanifold L^ is Hamiltonian isotopic to the

0-section and coincides with it on a neighbourhood of the north pole, so it has a

generating function quadratic at infinity (called gfqi in the following) by (14,18,19].
This is a function S: S2nxRN -> R which coincides with a non-degenerate quadratic
form Q:RN -* R at infinity:

3C > 0 such that S(x, Ç) ß(f) Vx 6 S2n,\Ç\ > C,
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and such that

L*= Kx' S)'(x,?) e s2n x =°lc T*s2n-

with 0 being a regular value of (x,£) (-> ||(x,£). A direct consequence of the

definition is that S5 := {(x, f) | ||(x, f) 0} is a submanifold and that the map

is'-^s T*S2n given by (x, £) i-> (x, ||(x, £)) is an immersion. When S" is a #/</(

that generates an embedded submanifold we moreover ask that is is a diffeomorphism
between S5 and so every S has a unique critical point associated to (N, 0) given
by igl(N,0). Denote by Ex := {5 < A}, ix: (Ex, E~°°) (£+0°, £-°°),

H*(E+°°, E~°°) ~ H*(S2n) (T is the Thorn isomorphism). One can select

spectral values c(a, S) for a G H*(S2n) by:

c(a, S) := inf {A | i^(Ta) ^ 0|.

The gfqi associated to 1// is unique up to certain explicit operations [20, 22] so

there is a natural normalization (requiring that 0)) 0) that ensures
that the value c(a, S) does not depend on the xfc/i so we denote it henceforth

c(a, x/r). It is a symplectic invariant in the sense that if O e Symp(M2") then

c(a, 4> o xfr o <J>-1) c(a, ty). Taking for a generators 1 and /i of H°(S2n) and

H2" (S2n) respectively, we therefore get two spectral invariants c( l, 1// and c(/r, if/

of Hamiltonian diffeomorphisms, and a spectral norm y(i/0 := c(/i, \jj) — c{ 1, \fr).
These invariants can be used in turn to define symplectic invariants of subsets of R2".
First if U is an open and bounded set:

c(U) sup {c(/a, x/r), \j/ Hamc((7)}, (2.1)

y(U) inf {y(V^), V Hamc(M2"), DU 0}. (2.2)

If V is an open (not necessarily bounded) subset of M2" we define c(V) (resp. y (F))
as the supremum of the values of c(U) (resp. y(U)) for all open bounded U contained
in V. If X is an arbitrary domain of M2" then we define its capacity c(X) (resp. y(X))
to be the infimum of all the values c{V) (resp. y{V)) for all open V containing X.

Symplectic reduction [22, §5]. Let us first state a general result for the spectral
invariants of the reduction of some Lagrangian submanifolds. The first claim is

Proposition 5.1 in [22], We include a proof for the sake of completeness.

Proposition 2.1. Let N and B be two connected compact oriented manifolds, S a

gfqifor a Lagrangian submanifold in T*(N x B), b a point in B and Sb '= S(- ,b, •).

Let a H*(N) and p n e H*(B) the orientation class of B. Then,

c(a <g> 1, S) < c{a, Sb) < c(a 0 /r,ß, S).
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Moreover, if K(x,b,%) K(x,f) for all (x,b,Ç) e N x B x Mw,

c(a <g) 1, K) — c(a, K) c{a ® hb, A').

Proof Let as before Ex := {S ^ A}, and := {Sb ^ A}. Consider the commutative

diagram

i *

H*(N x ß) —^ H*(E°°, E~°°) —^ H*(EX, £_0°)

"" Ï *

//*(V) ^ //*(£°°, ß^00) —*-» //*(££, C^°°)

where the map H*(N H*(N) is induced by the injection /V -» V x {/?} —

N x B, and coincides with the composition of the projection on H*(N) <S> H°(B)
and the obvious identification H*(N) ® H°(B) —> H*(N). Since the diagram is

commutative, i^T(a) 0 implies i^T(a <g> 1) ^ 0, so c(a <g> 1,5) < c(a,Sb).
To get the second inequality, we need to introduce spectral invariants defined via

homology. The Thorn isomorphism is now T: H*(S2n) -» H*(E+°°, E~°°), and

c{A, S) inf {A I TA elm (»*,)}.

The homological and cohomological invariants are related by the equality c(a, S)
—c(PD(a), — S) [22, Proposition 2.7]. In the homology setting, the commutative

diagram becomes

H*(N x B) —^ E~°°) H*(EX, E~°°)

H*{N) ^ HAE, E~°°) H*(EX, Ef°°)

As before, if A e H*(N) verifies T(A) e Im(i^+), then T(A <g> [/>]) e Im (ix*),
so c{A <S> [b\, S) ^ c(A, Sb) for all A e H*(N) (and all S). Thus,

c(a, Sb) —c(PD(a), -Sb) ^ -c(PD(a) ® [b\, -S) -c(PD(a ® hb), -S)
and

—c(PD(a <g> hb), —S) c(a ® hb, S)

so we get
c(a, Sb) < c(a <g> hb. S).

Finally, if K(x, b, f) K(x, f) for all (x,b,Ç) e N x B x then Ex Ex x B

so i£(a®ß) (i£a)®ß. This gives c(a ® 1, K) c(a® Hb, K) c(a, ^).
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Remark 2.2. To understand the context of the previous statement, notice that when

a Lagrangian submanifold L C T* N x T* B has a gfqi S, and has transverse
intersection with a fiber T*N x Tf* B for some b e B, the function Sf, is a gfqi for
the reduction L/, of L fl T*N x Tf B (which is an immersed Lagrangian of T* N).

Following [22, §5], we work on M2m x T*Tk ~ M2m x x endowed

with coordinates (z,p,q). Let jt:R2m x M1 x I1 R2m x Rk x be the

projection and consider a Hamiltonian diffeomorphism f e Harnc(M2m x T* Tk)
with coordinates (f/z, x/rp, x//q) generated by Iit. It is easy to see that H, on generates
a lift xf/ e Harn(M2m xl'x such that

xjrz(z,p,q + 1) fz(z,p,q) x/tz(z, p, q), (with (z,p,q) n(z,p,q)),
\jr„{z,p,q + 1) xjrp(z,p,q) fp(z,p,q),
fq(z,P,q + I) fq(z,p,q) + 1-

Again, the graph of xfr is a Lagrangian submanifold T(xfr) C M2m x xR2fflxl2fc
that under S becomes a Lagrangian submanifold of T*R2m x T*R2k whose points
are denoted by F^(z, p,q) equal to

it t ss p + fP{z,p,q) q + fq(z, p,q) _ ~ \
[â (z, fz(z, p. q)), ,q-fq(z, p, q), fp(z, p, q)-pJ.

Now xj/q(z, p,q + 1) xjfq(z, p,q) + 1 implies that T^ descends to an embedding

r^:R2m xRk xTk ^ T*R2m x T*Rk x T*Tk, given by

P / / P + tp q + fq \rf(z,p,q) [â(z,fz), ,q-fq, ,fp-p).
This embedding T^ is Hamiltonian isotopic to the zero-section, and coincides with
the zero-section at infinity. As in the classical situation, T(r/r) := Im I ,/, can be

compactified to a Lagrangian submanifold

Lty C T*(S2m x Sk x T*),

which is Hamiltonian isotopic to the zero-section, and coincides with the zero-section

on a neighbourhood of {/V} x S xT ^ and of <S 2m x {/V} x T After normal ization (by
S (ig1 (N, A, 0,0)) 0), the gfqi of provides spectral invariants c(a 0 ß 0 y, f)
fora e H* (S2m), ß e H*(Sk) and y e H*(Tk). As in (2.1), these invariants can
be used to define c(a 0 ß 0 y, X), for subsets X C M2m x T*Tk.

Proposition 2.3. If X is a compact subset of R2m then

c(X) < c(p, 0 pi 0 1, X x {0} x Tfc).
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Proof. Let K be a bounded neighbourhood of X, f e Hamc(K). By compactness
of X and by definition of the spectral capacities c, it is enough to find, for any
neighbourhood V of 0 in R*y a *1> G Hamc(K x V x Tfc) such that f (/x, 0) $
c(n <g> n ® 1> XI/)-

Let H: R x R2m -» R be a generator of f, and / e Cf°(V) with /(0) 1

and 0(0) 0. The Hamiltonian /// of R2m x Rfc x Tk generates a compactly
supported Hamiltonian diffeomorphism that we will note T (i//z. x//p, xj/q). It is

easy to see that

W(z,p,q) (fz(z,p),p,q + C(z,p))

with C(z,p) Jq 0(p)H(t,z) dt, and that C(z,0) 0 and xfrz(z, 0) xp(z).
The embedding

r^:R2m xI^xT^ T*R2m x T*Rfc x T*Tk

is thus given by

f,ifz.p.q) (â(z,fz(z,p)), p. —C(z, p), q + ^C(z,p), o).

By definition, when we compactify Im Tf we get Lq, which, by the previous
expression, is easily seen to be transverse to T*S2m x T0S x T*Tk. Now

f<p(z, 0, q) (J(z,<p(z)), 0,0, q,0),

so Lq, r\T*S2m x T0Sk x T*Tk Lv x{(0, 0)}x0T£ and the reduction is Lv x0Ta.
which is also Hamiltonian isotopic to the zero-section. Therefore, by Remark 2.2,

if 5 is a gfqi for Lq,, So is a gfqi for Lv x 0T,t. On the other hand, if K is a gfqi
for L<p then K(z, q, Ç) K(z.f) is also a gfqi for Lv x 0ta- Moreover, both So

and K have 0 as the critical value associated to {N} x {q}, so by uniqueness of gfqi
c(p (g) 1, K) c(p, (g) 1, So). By Proposition 2.1,

c(p, K) c(/x <g) 1, K) c(p, <g) 1, S0) < c(p (g> /r (g) 1, S),

which precisely means that c(/x, <p) < c(/r 0 /x (g) 1, 4>).

The next proposition is a modified version of [22, Proposition 5.2], Since the

proof there is a bit elliptical, (it refers to the proofs of several other propositions of
the same paper) we give more indications in Section 2.3 below.

Proposition 2.4. Consider a compact set Z c R2m x Rk x l'k, a point w e '\ïk

and the reduction Zw := (Z n {q w\)/Rk. Then

c(p <g> p. <g) 1, Z) < y(Zw).
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2.2. Non-squeezing and symplectic reduction. Together, Propositions 2.3 and 2.4

provide the non-squeezing statement we are looking for. Recall that if Z ç C"
and W is a coisotropic subspace of C" then the symplectic reduction of Z is defined

by Redjy(Z) nw(Z n W) where n\y'- W -> W/WM is the natural projection.

Theorem 2.5. Let X ç Cm be a compact subset, consider X xl"_m c CmxC"""m
and denote by W := Cm x /R"~m. For every compactly supported Hamiltonian
diffeomorphism <// ofC n we have

c(X) < y(Red^(y(Z xR""m))).

Proof. Since xfr has compact support, we can view it as a symplectomorphism of

Cm x ~ R2m x R""m x Tn~m.

In this setting X x R"_m is seen as X x {0} x fn~m and xj/(X x {0} x Tn_m)0
coincides with Red^p (A" x R"_m)). Now applying Proposition 2.3, invariance,
Proposition 2.4 and monotonicity we get the chain of inequalities:

c(X) < c(p <g> F <8> 1, X x {0} x T""m)
c(/z <g> p, <g> \,fr(X x {0} x T"~m))

< y(f(X x {0} x T"-m)o) y(Redw,(^(Z x R""m))).

Corollary 2.6 (Lagrangian camel theorem). Let L := S1 (r)m xR"_m c Cm xC"-'"
be a standard Lagrangian tube. Assume that there is a compactly supported Hamiltonian

diffeomorphism f ofC" such that f(L) IT (Cm x iR"-m) c Z(R) x iWl~m,
where Z{R) is a symplectic cylinder ofcapacity R. Then r < R.

Proof. Theorem 2.5 gives c(Sl{r)m) ^ y(Z(R)) nR2 and c(51(r)m) nr2
by [21, Remark 1.5].

2.3. Proofof Proposition 2.4. Let Z cR^xR^xT4 andZu, := (Zn{q w})/Rk.
We need to show that c(/z ® /z ® 1, Z) ^ y(Zw). Let V C R2m be an arbitrary
neighbourhood of Zw, and

U := (R2m xMk xTk\ {w}) U (V x Rk x Tk).

Obviously, Z c U and Uw V, so by monotonicity of c, it is enough to prove that

c(p <g> p. ® 1, U) ^ y(Uw).

Notice moreover that any Hamiltonian diffeomorphism of R2m that displaces V Uw

also displaces its filling Uw := RZm\Fff, where Fff is the unbounded
connected component of R2m\Uw. Thus y(Uw) y(Uw), so we may as well
assume that R2m\Uw is connected and unbounded, which we do henceforth.
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Let x[r eHamc((7) and ip 6 Hame(Cm) be such that (p(Uw) n Uw 0. We need to

prove that

c(/x ® /x <g> 1, V) 5 y((ß).

We know that the Lagrangian submanifold Lv in T*S2m is isotopic to the zero
section by a Hamiltonian diffeomorphism <E> and has a gfqi K: S2m x -> R.
This diffeomorphism ff> induces a Hamiltonian diffeomorphism <t> := ff> x Id on
j*S2m x T*sk that verifies <I>(0) Lv x 0 and K(x,y, rf) := K(x, rj) (defined
on S2m x S x R") is a ^i//' tor this submanifold. Now for a gfqi S of L^ we have

c(/x ® /u. ® 1, V0 c(/x ® n <g> 1,5)

$ c(/x <g> /x, 5„;) $ c(/x ® p., Sw — K) — c( 1 ® 1, — ^).

The first inequality above follows from Proposition 2.1, while the second one is the

triangle inequality tor spectral invariants [22, Proposition 3.3] (because (/x ® /x) U

(1 ® 1) /x ® /x). The following lemmas ensure that

c(/x <g> /x, Sw — K) c(/x <g> /x, —K),

so (applying Proposition 2.1):

c(ilx ® /x <g> 1, V) ^ c(/x ® /x, — AQ — c(l ® 1, —K)

c(/x, -AT) - c(l, -AT) y(</>_1),

and y(</>-1) y(</>) which gives the desired inequality.
Consider a Hamiltonian path f/' from the identity to f in Hamc(£/) and a

Hamiltonian path vfo 0f T*Slm x T*Sk x T*Tk such that ffff(0) Lr. This
path gives rise to a family of gfqi S', continuous in t, that generate L^t for all t and

that coincide with a fixed quadratic form Q outside a compact set independent of t
[14,18,191. The first lemma ensures that we can further assume S, normalized.

Lemma 2.7. G' := S' — c{/i ® 1 ® y, S') is a continuous family of normalized
generating functions for L^i. Moreover there exists a family of fiber preserving
dijfeomorphisms (pt such that G' o cp, is a continuous family of normalized gfqi
for Ltt.
Proof To start with, we know that both functions Sflp, q, £) S1 (N, p, q, £) and

S'N(z,q,Ç) S' (z, N,q,Ç) generate the zero sections so they have just one critical
value. Moreover S' (if,1 (N, N, q, 0)) is a common critical value so they are both the

same. Using Proposition 2.1 we get

c( 1 <g> y, Sjy) < c(/x <g> 1 <g> y, 5') < c(/x <g> y, 5^),

so c(/x® 1 ® y, 5') S'(if,l(N, N, q, 0)) determines continuously the critical value
at infinity.
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For the second part, define ct := c(fi 0 1 0 y, Sr) and recall that S' equals Q
outside a compact set. Let y: IR^ —> [0,1] be a compactly supported function with
X 1 in a neighbourhood of 0, and

y /i.\ n ,b„ vg(f)
X,(Ç) := (1 -y(f))cf-

IIVÖ0IP

seen as an autonomous vector field (t is not the parameter of integration). This vector
field Xt is well-defined and complete because Q is non-degenerate, so :=
is well-defined. Moreover, if f lies far away in R^, <1>^ (f) remains on the set

{1 — x '} f°r all r 6 [0. 1], so Q o ô(f) + rct. As a consequence,
(Ô ~ ct) ° 4>t Q outside a compact set, so Gt o <pt := Gt(z, p, q, </>f(f)) is a gfqi
for Lyjft. Since moreover Gt is normalized, so is Gt o <f>t. Finally, the family <j>t is

obviously continuous in the t variable.

Lemma 2.8.Let S' be a continuousfamily ofnormalized gfqifor the Lagrangian L^t.
Then c(fi 0 p., S*w — K) is a critical value of—K and as a consequence

c(/z 0 pi, Sw — K) c(/z 0 fi, —K).

Proof Recall that points in L^t are of the form

I\t(z,p,q) (d(z, fl),
P +^P ,q- fq,

q +^q - p),

plus other points on the zero section that come from compactifying. Moreover, the

functions S'w formally generate the sets of points

,ts P + K ,t\ c / R + Vq
\S{z,yz),—-—-,q — yq) for points (z, p, q) that verity—-—- w,

plus other points in the zero section. This set is denoted henceforth L'w. Recall that
the notation S'w — K stands for the function (z, p, f, q) h-> S'(z, p, w, f) — K(z, rj).
It is enough to prove that all critical points (z, p, f, q) of S'w — K are such that (z, q)
is a critical point of—K, while (z, p, f is a critical point of S'w with critical value 0.

Letting x := (z, p), such a critical point verifies

dS' dK 8S' 3K n~ K7 an ~df ~ ~ '

so it is associated to an intersection point of L'w and L# x 0 in the fiber of (z, p).
This intersection point therefore verifies:

q + yF
q — \j/q 0 and —-—- w (so q \j/q w),
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or will be on the zero section coming from critical points of S' at infinity. We

claim that such a point of intersection must lie on â(Uw x Uw)c x T*Sk. Indeed,

if d(Uw x Uw) x T*Sk n (Ly x 0) + 0, then <î>~l(J(Uw x Uw)) OO/0. But
O-1 (d(Uw x Uw d((p~i (Uw x Uw does not intersect the zero section because^)

displaces Uw. This in turn implies that the intersection point is on the zero section:

if a point of L'w is in â(Uw x Uw)c x T*Sk, (z,x/r'z) e {Uw x Uw)c so z f Uw

or xj/'z f Uw. In both cases, fl'fz, p, w) (z, p, w) because q xfr1 w, and xf'
has support in U, which intersects {q w} along Uw xls. Thus, the point

I>(z, p, w) is on the zero section, (z, /?, u;, is indeed a critical point of St and

as a consequence (z, q) is a critical point of ~K. In addition (z, p, u;) is in t/c
because z £ Uw.

Now we prove that all the points in Uc have critical value 0. Since Supp \j/t U
and Uc is connected, there is an open connected set W that contains Uc and that does

not intersect Supp (for all t). Then ()\y C Lt so if j : W Lt is the inclusion
on the zero section, / := i "/ o j : W —> Y,St is an embedding into the set of critical
points. The open set W is connected so S' o f is constant and all the points in W
have the same critical value. The fact that S' is normalized now implies that this
value is zero.

Finally, Sard's theorem ensures that the set of critical values of —K has measure

zero, so it is totally disconnected. By continuity of the invariants, c(p, <8> p, S'w — K)
is therefore constant, so c(p <g> p,, —K) c(/r <g> /r, 5^ — K).

2.4. Proof of the sub-quadratic case. We proceed with the proof of Theorem 1.1.

We reduce the sub-quadratic case to the compactly supported case and then use

Theorem 2.5 to conclude. Note that H is sub-quadratic if and only if for every e > 0

there is an Ae > 0 such that |V//t(z)| < Ae + e\z\. The following proposition
implies that for sub-quadratic H the map xj/tH verifies the coisotropic non-squeezing
property for every t e M.

Proposition 2.9. Let Ht be a Hamiltonian of<Cn such thai j V//, (z) j < A + B\z\. Let
X cCk be a compact subset and consider the coisotropic .subspace W =Ck xiM>n~k.

Then the flow xfrt of H verifies

c(X) < y(Redw(fit(X xR"~k)))

for every |f| <

Proof By considering the Hamiltonian jgHj- we may suppose B 1. Using
Gronwall's lemma we get the inequalities

\fls(z)\ < e"(\z\ + A) - A and \fls(z) - z\ < {es -\){\z\ + A).

Suppose that zeC" verifies for a fixed (el
z V X Rn~m and flt(z) e Cm x iRn~m.



820 J. Bustillo CMH

We call such a z a camel point and i/fo,/] (2) a camel trajectory. Denote the natural

projection on Rn~m of coordinates (qm+1 > ,Qn)- Using the fact X is contained in
a ball of a certain radius r and that jiT/rt(z) 0 we find

|z| <r + k+(z) I r + |tt+(^(z) -z)| <r + (e' - l)(|z| + A).

In particular we see that if e' < 2, so if t < In 2, the camel points verify

r + A
-I < ~ 7-2 - e'

Using the inequalities at the beginning of the proof we see that the set of camel

trajectories is contained in a ball of radius C C(t, A, r) centered at the origin. The
idea now is to build from x//t a compactly supported Hamiltonian diffeomorphism <pt

that coincides with \j/t on 5(0, 5) for some R > C and whose camel trajectories are
also contained in this ball for |/| < t0 for some t0 > 0. Then the camel trajectories
of both flows coincide so we can apply Theorem 2.5 for <pt to get the desired result.

Let E —>• E be a smooth function with values on [0,1] that equals 1 over the

interval [0, R], vanishes over [25, +oo[ and such that |/'| < 2/5. Note that on the

support of x' we have |z| < 25 so

|/(|Z|)I £ \ < 7^7-

5 |z|

Define Gt(z) x(|z|)//?(z) (the value of 5 will be chosen later). It is a compactly
supported function that generates a Hamiltonian diffeomorphism <pt. Since we may

suppose that Hs{0) 0 for all s we have |//^(z)| < A\z\ + We have

|VGs(z)| /(|z|)^jHs(z) + x(\z\)VHs(z)
\A

<4A + 2\z\ + A + \z\ <5^ + 3|z|

and the bound does not depend on 5. In particular, by the same arguments as above,

if \t I < ~ then the camel trajectories of cpt are bounded by a constant independent
of 5. Choose 5 big enough to contain the camel trajectories of \frt and (pt and the

proposition follows.

The time bound in Proposition 2.9 is not optimal and one may get a better one

modifying the bound for |/'|, but this bound cannot be extended much more since
the statement fails for bigger t (see Remark 1.3).

3. Hamiltonian PDEs

Let E be a real Hilbert space. A (strong) symplectic form on a real Hilbert space is

a continuous 2-form co: E x E -» E which is non-degenerate in the sense that the
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associated linear mapping

£2: E —> E* defined by £ i-> <w(£, •)

is an isomorphism. Let H.E —> M be a smooth Hamiltonian function. In the

same way as in the finite dimensional case one can define the vector field Xh(u)
£2_1 (dH(u)) and consider the ODE

û Xh{u).

The situation encountered in examples is however a little bit different. In most cases
the Hamiltonian H is not defined on the whole space E but only on a dense Hilbert
subspace Dß(E) ç E. This raises the question of what a solution is and how to
construct it.

3.1. Semilinear Hamiltonian equations. Denote by (•, •} the scalar product of E.
Consider an anti-self-adjoint isomorphism J\ E -» E and supply E with the strong
symplectic structure

(/.,•).
Denote J (T)-1 which is also a skew adjoint isomorphism of E. Take a possibly
unbounded linear operator A with dense domain such that JA generates a C° group
of (symplectic) transformations

{etJA I t 6 M} with ^etJA\\e < M/1'1

and consider the Hamiltonian function

H,(u) -{Au, u) + ht(u),

where h: E x M -> E is smooth. The corresponding Hamiltonian equation has the

form
ii Xfj(u) JAu + JVht(u).

In this case the domain of definition of the Hamiltonian vector field is the same as

the domain D(A) of A which is a dense subspace of E. This implies that classical
solutions can only be defined on D{A). More precisely by a classical solution
we mean a function u\ [0, T[—> E continuous on [0, T[, continuously differentiable
on ]0, T[, with u{t) e D(A) for 0 < t < T and such that the equation is satisfied

on [0,T[. Nevertheless the boundedness of the exponential allows us to define
solutions in the whole space E via Duhamel's formula:

Definition 3.1. A continuous curve u{t) L([0. 7']; E) is a (mild) solution of the

Hamiltonian equation in E with initial condition w(0) uo if for 0 < t < T,

u(t) etJAu0 + f e{t~s)JAjyhs(u(s))ds.
J0
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One can easily verify that if u(t) is a classical solution, then it is also a mild
solution. For semilinear equations we know (see for example [ 15]) that if VA is locally
Lipschitz continuous, then for each initial condition there exists a unique solution
which is defined until blow-up time. If moreover V/? is continuously differentiable
then the solutions with u0 e D(A) are classical solutions of the initial value problem.
Locally we get a smooth flow map 0? ç E -> E defined on an open set Ö. If
every solution satisfies an a priory estimate

where g is a continuous function onlxf, then all flow maps : E -» E are well
defined and smooth. This is the case for example if \\Vht(u)\\E < C. Remark that the
choice of the linear map A is arbitrary. Indeed if JA generates a continuous group of
transformations and B is a bounded linear operator then J (A + B) is an infinitesimal
generator of a group etJ^A+B"> on E satisfying \\etJ^A+B^\\ e < MeN+M^B^'K One

can then consider the linear part J{A + B) and set JVht — JB as the nonlinear part.
This indeterminacy is only apparent: classical solutions verify Duhamel's formula
for JA and J {A + B) so both flow maps coincide over the dense subspace D(A)
which by continuity implies that the two flows are equal.

3.2. Nonlinear string equation. Consider the periodic nonlinear string equation

where x e T R/2nZ and / is a smooth function which is bounded and has at

most a polynomial growth in u, as well as its u- and t-derivatives:

with M0 0. Here Cf and 's are non-negative constants. We now describe the

Hamiltonian structure of this equation. Denote by B the operator B (—32/3x2 + I )1 ^
and remark that we may write the equation in the form

I|m(0IU < g(t,u(0)) < oo,

Ü uxx- f(t,x,u), u u(t,x).

il —Bv,

v (B — B~l)u + B~l fit, x, u).

Define E //2(T) x //2(T) as the product of Hilbert spaces where the scalar

product of H 2 (T) is given by

If we define the function
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we get
Vht(u, v) (B~l f(t, x, u(x)), 0).

The gradient verifies ||V/?,||£ < C0. The polynomial growth condition on /
guarantees that there exists a 0 < 9 < 1/2 such that V// has a G1 extension to

H 2^e(T) x //2~e(T). Moreover this implies that V/i is locally Lipschitz in E over

compact time intervals (see [11] for details). A special case where such properties
are verified is /(t, x, u) sin m which corresponds to the sine-Gordon equation. In
this case ||V/i,||£ < 1. Now putting A (B — B~l) x B and defining J: E -> E
by J(u, v) (—v,u) we can write the nonlinear string equation as the semilinear
PDE:

(ù, v) JA(u, v) + JVht(u, v).

Consider the symplectic Hilbert basis {cpj1 \ j Z}, where

<pt
1

v(<Pj(x),0), <pj
'

r(0, —(pj(x)),J
U +i)* (,/2 +1)4

with
V2sin jx, j > 0,

Vj(x) f, n/ V2cos jx, j < 0.

In this basis we have B x B)(p^ yjj 2 + l<p^ so if we denote Ay yjj2 + 1 we

get that

A(p+ (Xj - and A(Pj

Now remark that JA has eigenvalues {±; Jx2 —T ±ij}. If we calculate etJA we

I(it tfn in irvmlûotî/» nlnnû sr\
I TCP /T\ //\ HP i r> rtinan K» i tKr» nti-i 1/get that its action on each symplectic plane cpjE © (pj E is given by the matrix

x/t^+T
cos tj — — sin tj

sin tj cos tjy/j2+1

which gets closer and closer to a rotation as j goes to infinity. In particular we get a

bounded group of symplectic linear maps. We conclude that for all t e M the time t

map of the flow of the nonlinear string equation E —> E is defined on the whole

space E.

3.3. Finite dimensional approximation. In this subsection we will follow [11] for
the particular case of the nonlinear string equation. We include the proofs for completeness.

Recall that the Hilbert basis of E is {<\ j G Z} and denote En the vector

space generated by {<pf \ \j \ < n}. It is a real vector space isomorphic to M2n+2.

Let En be the Hilbert space with basis {(p^ | |/| > n} so that E En © En and
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write u (un, un) for an element u G E. The fact that J and A preserve En for all n

will allow us to define the finite dimensional approximations just by projecting the

vector field. Let n„: E —»• En be the natural projection and consider the Hamiltonian
function

Hn(u) -{Au, u) + hn(u), where hn(u) := ht(Y\n(u)).

The Hamiltonian equation now becomes

ù Xh„(u) JAu + JVhn(u),

where Vhn{u) n„(V/z,(n„(w))). Since V/z„ continues to be locally Lipschitz
and bounded, Xh„ generates a global flow <t>jr This flow can be decomposed as

Ojj etJA o Vwith V„{u) ((p'n{un),un). Here is a finite dimensional
Hamiltonian flow on En generated by the time dependent function h„ o etJA. We
remark that this function has a bounded gradient so <p'n verifies Theorem 1.1 for

every t G K. The key point of the approximation is the following lemma which is a

slight modification of a lemma in [11, Appendix 2]:

Lemma 3.2. Denote Fq //2_e(T) x //2-ö(T) and let K be a compact subset

of Fq. Let Pi x Fq E be a continuous map and fix aT > 0. Then

sup \\gt(u) - gt(nnu)\\E
(t,u)e[-T,T]xK

converges to zero as n goes to infinity. Moreover, for every R > 0 there exists a

decreasing function r: N -> M such that f /?(«) —>• 0 as n —> oo and

\\Vht(u) - Vhn(u)\\E < R{n)

for every u G B{0, R) and \t \ < T.

Proof. By contradiction suppose that there is a sequence {(sn,zn)} C [— T, T] x K
such that ||gsn(zn) — Ksn(n«)||/? > 8 > 0 for every n G N. By compactness
we may suppose that there is a converging subsequence {s„k, z„k) -> (,v, z). This

sequence will also verify Wnkznk —> z. We have

II Ssnk (znk )-gs„k (nnjt z„k Il E < Ilgs„k (znk )~gs (z) Il E + ||gj 0i)~gs„k Znk II E

and the quantity of the rhs converges to zero as ng goes to infinity by continuity
of g• In particular, for nk big enough we get \\gSnk (z„k) - gs„k (nnkznk)\\E < 8, a

contradiction.
For the second claim recall that Vht has an extension to Fq for 6 small enough

(see [11]). Denote by Vht the extension and let i: E Fq be the compact inclusion
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so that Vht(u) Vht(i(u)). Recall that Vhn(u) Y\nV/ht(Y\n(u)). We have

\\Vht(u) - S/hn(u)\\E

< \\Vht(u) - nnS7ht(u)\\g + IInnVht(u) - nnWht(Unu)\\E

< \\Vht(i(u)) - nnVht(i(u))\\E + || V/;f (i(u)) - Vht{nni(u))\\E.

For every R > 0 the sets U|z|<:r V/zr(/(Z?£-(0, R)))and/(ß£(0, R))) are precompact
in E F0 and Fg respectively, so we may take the sup in Bg{0, R) and |f| < T and

apply the first part of the lemma to conclude.

Now we have all the tools we need for the finite dimensional approximation.

Proposition 3.3 ([11]). Fix aï el. For each R > 0 and r > 0 there exists an N
such that ifn > N then

II V(u) — Vln (u)\\E <

for all u e B(0, R).

Proof Duhamel's formula and the fact that etJA is a bounded operator give

WV(u) - VZ(u)\\E < C f'\\Vhs(<ï>s(u))-Vhn(ci>sn(u))\\Eds
Jo

—
C f \\Vhs{&(u))-Vhs(&n(u))\\Eds

Jo

+ c f ||v/ao>»-VM<E>>»M*.
Jo

If u G Bg(0, R) and s G [0, t] then || V/? || £ bounded implies that for all n G N the
element 4V (u) wont leave a ball of radius R'(R,t). We can now use Lemma 3.2 and

the fact that V/z is locally Lipschitz to get

||F»-K>)||E<C f \\Vs(u)~ Vf(u)\\Eds + Ct(n).
Jo

By Gronwall's lemma we conclude that

||K»-K>)|U <(n)C(t),

where C(t) depends continuously on t. The function e(«) is decreasing and converges
to zero so there exists an N G N such that if n > N then e(n)C{t) < e which gives
the result.
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3.4. Coisotropic camel. We now move towards the proof of Theorem 1.4. Recall
that to state Theorem 1.1 we had to divide the simplectic phase space into two
Lagrangian subspaces that determine the coisotropic subspaces that we work with.

In the infinite dimensional case we have E E+ 0£L //2x//2, where

E+ (resp. £_) is generated by \<pA \ j e Z} (resp. {cpj \ j e Z}). Moreover

denote Ek (resp. Ek+ and Ek) the Hilbert subspace generated by [<pf I I./I < k)
(resp. {q>j~ I \j I > k + 1} and {<;pj \ \j \ > k + 1}) and n^: E ->• E^ (resp. Y[k+

and n*) the corresponding projection. First, let's state the infinite dimensional
version of Theorem 1.1.

Proposition 3.4. Fix a k > 1 and let X be a compact set contained in E^. Define

C {u & E I rUn e X and n^w 0}.

Then for every l M we have

c(X)<y{nk(V(C)n{nk+=o})).

This is not a statement about the actual flow of the nonlinear string equation.
Nevertheless using the fact that etJA restricts to a symplectic isomorphism on each En

we get Theorem 1.4:

Proofof Theorem 1.4. We always have the inclusion n^(F'(C) (T {n^_ 0}) ç
n kV' (C), so by Proposition 3.4 and monotonicity of the symplectic capacity y we
have

c(X) < y{nk{v'(C) n {n+ o})) < y(nkv\c)).
The linear operator etJA restricts to a symplectic isomorphism on each En which
commutes with 11^ and the capacity y is invariant under symplectic transformations

so

Y(nkV'(C)) y(e~tJA WketJA V1 (C)) y(nfc^(C)),

which gives the desired result.

The proof of Proposition 3.4 relies on the finite dimensional result and it is the

finite dimensional approximation of the flow that allows us to go from finite to infinite
dimensions. For these reasons we start with the following lemma:

Lemma 3.5. (1) Fixak > 1 and let X be a compact set contained in E^. Then for
every (el and n > k we have c(X) < y(U^(V^(C) H {FI^_ 0})).

(2) The set Un{u C \ Flk+ u 0} ç E is bounded by a constant R(t).

(3) The set {u C \ Y\k+V'u 0} is compact and so is V (C H {n^_ 0}.
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Proof. Recall that F„'w {(p'n(un), u") where is a finite dimensional flow
generated by a sub-quadratic Hamiltonian function so it verifies Theorem 1.1. An

easy computation shows that verifies the statement if and only if cp'n verifies
Theorem 1.1 on En.

For the second claim let u e E and decompose its norm as

l|u|| < ||n*u|| + ||n*u|| + ||n*m||.

If u C then by definition fl^w belongs to X which is compact contained in a ball
of a certain radius r and n* w 0, so ||w|| < r + || n+u||. It is then enough to show

that Uk+V^u 0 implies || n*j_u|| < c(t). Duhamel's formula and the fact that

sup ||VA„(u)|| < sup ||Vä(m)||
(/,w)s[0,?]x£ (f,u)6[0,(]x£

is bounded imply that || V^u — u|| < c(t), where c(t) does not depend on n. We get
that

lin+u|| \\nk+v^u - nk+u\\ < \\v^u-u\\ <c(t)
and the result follows with R(t) r + c(t).

For the third claim we start by using the same argument as before to prove that

{u e C I Y\k+ V'u 0} is bounded. Now let {zn} c E be a sequence such that

n kzn e X. U'Lzn 0, and Y\k+V' zn 0 for all n G N.

We claim that {zn} has a convergent subsequence. First remark that, by the

decomposition of Vn in En © EN, for every u e E and Ne N we have
FIN V'Nu nNu. Moreover, by definition of zn, if V > k then II= 0

and V'zn 0. For N > k we have

II11%,|| - ||n%|| Wn^v^znW

Il n IV^Zn - U^V'ZnW < II V'NZn - v'zn\\.

Now {zn}n is a bounded sequence so we can apply Proposition 3.3 and for every
> 0 there exists a No(e) N such that if N > N0 then || V'Nzn — Vzn || < e. By

the previous inequalities this implies that for N > N0 we have || fl^z^H < e. On
the other hand, {zn}n bounded implies that it has a weakly converging subsequence

(still denoted by {zn} for simplicity) that converges when projected onto any finite
dimensional subspace En- We conclude that for any 8 > 0, with e 8/3 and

N > N0(e), if p.q e N are big enough we have

IIzp zq|| < ||nNzp - nNzq\\ + nn^zpii + ||n%|| < 8,

which implies that zn is a Cauchy sequence.
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ProofofProposition 3.4. Let Ve be the open e neighbourhood of V\k{V' (C) fl
{n^_ 0}). We will show that for each e > 0 there exists an/ieN such that

IW„'(C) n {n* o}) Ç %.

Once this is proven, Lemma 3.5 part 1 and monotonicity of the capacity y imply
that c(X) < yCVf) for every e > 0 so c(X) < ]im_>0 y(%)- We then use that

njfc(L'(C) n {n^_ 0}) is compact by Lemma 3.5 part 3 to conclude that

iimy(Ve) y(nk(v'(C) n{n* o})),

which is the desired result.
The proof is by contradiction. Suppose that there exist an e0 > 0 and a sequence

{z„} c E such that for all n e N

Ukzn e X, nk_zn 0, n* U„'z„ 0 and d(Uk U„'z„, V0) > e0.

We claim that {z„} has a convergent subsequence. We use the same argument as in
Lemma 3.5 part 3. For N > k we have

lin^zj ||n^z„ || ||n^^z„||
\\u1v'Nzn - n^L„'z„|| < || V'Nzn - V^zn ||.

By Lemma 3.5 part 2 we know that z„ is a bounded sequence so we can apply
Proposition 3.3 and for every 8 > 0 there exists a N0(8) e N such that if n, N > N0
then || VfjZn — F„'z„ || < 8. By the previous inequalities this implies that for«, A' > N0

we have || TlNzn || < 8. On the other hand, {zn} bounded implies that it has a weakly
converging subsequence (still denoted by {z„} for simplicity) that converges when

projected onto any finite dimensional subspace En. We conclude that for any 8 > 0,
with e 8/3 and N > No(e), if p. q > N0 are big enough we have

II zP-zq\\ < Il n aizp - riivzçii + iin^zpii + lin^zgii < s,

which implies that z„ is a Cauchy sequence. Denote z its limit in E. The set X is

closed so TlfcZ X and is continuous so Uk_z 0. This means that z is an

element of C. Moreover remark that

\\V'z- V^ZnW < II VZ — V Zn II + II V'zn - V„zn ||,

so by continuity of V' and again Proposition 3.3 we get that V^zn converges to L'z
inE. Using the hypothesis n^_Ln'z„ 0 we find that 11 +U'z 0 which allows us to
conclude that V1 z belongs to V0. This contradicts the fact that d(J\k L„'z„, V0) >
e0 > 0 for all « 6 N achieving the proof of the theorem.
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A. Some calculations of symplectic capacities

By definition we know that for every symplectic capacity c we have

c(B2n) rir2 c(B2 x CB_1).

The reader interested in the proof of this equality for the two different symplectic
capacities c and y that were defined in [22] may look, for example, at [1], We are

interested in the value of Viterbo's capacities on coisotropic spaces Ck x R"_i ç
Ck x Cn~k with n ^ k. Recall that c and y are first defined on open bounded sets U,
then if V is open and unbounded subsets then c{V) is defined as the supremum
of the values of c(U) for all open bounded U contained in V and finally if X is an

arbitrary domain of C" then c(X) is the infimum of all the values c(V) for all open V

containing X.

Proposition A.1. Consider the coisotropic subspace Ck x Rn_* c Ck x Cn~k with
0 < k < n. We have

c(Ck x Rn~k) 0= y(Ck x Rn~k).

Proof. First remark that for every A ^ Owe have A • (Ck x Wl~k Ck x R"_Ä:

so by homogeneity of symplectic capacities we deduce that any capacity is either 0

or +oo on coisotropic subspaces. Since we have the inequality c(Ck x R""*) <
y(C* x R"~fc) it is enough to prove that y(Ck x R"_Ä:) < +oo. By definition

y(Ck x R"-*) inf{y(K) | V is open and Ck x R"~k ç V},

so it is enough to find an open set V containing Ck x R"~k with finite y value. Recall

moreover that for a bounded open set we have

y(U) inf{y(i/f), xfr e Hamc(C'!), \/r(U) H U =0}.

In order to find the open set with finite displacement energy we will use [22,

Proposition 4.14] which states the following: for a C2 compactly supported
Hamiltonian H : [0, l]xC" ->• R that generates a flow i/q we have y (\j/\) < || H ||^o.

Find a smooth function /:R —> R with values on ]0, 1[ and f'{s) > 0 for
every ,v £ R. Define the open set

V {(qi,pi,... p„) G C" such that \pn\ < f'(qn)}-
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By hypothesis k < n so Ck x M" k c V. We claim that y(V) < +00. For this

we will consider the bounded Hamiltonian H(q, p) —2/(qn) which generates the

flow

ft(q-P) (qi,Pi,--,qn,Pn +t2f\qn)).
If (q, p) V then

IPn + 2f'(qn)\ > 2f'(qn) - \pn\ > f'(qn),

which implies that \f\ (V) fl V 0. Let U be an open bounded set contained in V,
we have 1J/\ {U n(/ 0. Find a compactly supported smooth function y: C" —> M

with values on [0, 1] and constant equal to 1 on a neighbourhood of Ure[o 1] 'A* (^
Then y// verifies ||y//||go < ||//||ço and by construction its flow still displaces the

open set U. We conclude by [22, Proposition 4.14] that y(U) < ||//||eo. Since the

bound does not depend on U this implies that y(V) < \\H ||eo which finally gives

y(Ck xl"^) < \\H\\^0 < +00

concluding the proof.

B. A Hamiltonian subgroup of the group of symplectic diffeomorphisms

In this section we exhibit a subgroup of Sympl(C) which is strictly bigger than the

group of compactly supported Hamiltonian diffeomorphisms and whose elements

are generated by sub-quadratic functions.

Proposition B.l. Denote HamdL(C") the set of Hamiltonian diffeomorphisms <ptH

such that Ht, <ptH and (<pt)~l are all Lipschitz in space over compact time intervals.
Then Ham'IL(C") is a subgroup of SymplfC"). Moreover Hamdl'(C") is strictly
bigger than the group ofcompactly supported Hamiltonian diffeomorphisms.

Remark B.2. The superscript "dL" on HamdL(C") stands for double Lipschitz
condition.

Proof. First recall the following formulas:

<PtH 0 <p,K <ptH#K and c^)-' <P?,

where

H#K(t,z) H(t, z) + Kit, ((p")~x{z)), H (t, z) -H {t, <p" (z)).

The identity is clearly in HamdL(C") and it is an easy exercise to use these formulas
to prove that HamdL(C") has a group structure. For the second statement, consider
a Lipschitz autonomous Hamiltonian H with Lipschitz gradient and use Gronwall's
lemma to prove that (p'/ (and therefore (<p['

1

<pnt is Lipschitz.
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