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Spectral and Hodge theory of
"Witt" incomplete cusp edge spaces

Jesse Gell-Redman and Jan Swoboda

Abstract. Incomplete cusp edges model the behavior of the Weil-Petersson metric on the

compactified Riemann moduli space near the interior of a divisor. Assuming such a space is

Witt, we construct a fundamental solution to the heat equation, and using a precise description
of its asymptotic behavior at the singular set, we prove that the Hodge-Laplacian on differential
forms is essentially self-adjoint, with discrete spectrum satisfying Weyl asymptotics. We go
on to prove bounds on the growth of L2-harmonic forms at the singular set and to prove a

Hodge theorem, namely that the space of L2-harmonic forms is naturally isomorphic to the

middle-perversity intersection cohomology. Moreover, we develop an asymptotic expansion for
the heat trace near t 0.
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1. Introduction

On a compact manifold M with boundary dM which is the total space of a fiber
bundle

Z dM ——> Y, (1.1)

with Z, Y closed manifolds, an incomplete cusp edge metric gice is, roughly speaking,
a smooth Riemannian metric on the interior of M which near the boundary takes the

form
tfice dx2 + X2kgZ + Tl*gY + g, k > 1, (1.2)

where g y is a metric on the base Y, gz is positive definite restricted to the fibers,

x is the distance to the boundary (to first order), and g is a higher order term.
Thus near the boundary (M, #ice) is a bundle of geometric horns over a smooth
Riemannian manifold Y. When k 3, such metrics model the singular behavior of
the Weil-Petersson metric on the moduli space of Riemann surfaces, as we discuss
below.

In this paper, we study the Hodge-Laplacian

A:=Ag=d8 + 8d (1.3)

acting on differential forms. Our first result shows that under conditions which contain
the main examples of interest, one need not impose "ideal boundary conditions" at 3M
in order to obtain a self-adjoint operator.

Theorem 1.1. Let (M, gjCe) be an incomplete cusp edge manifold that is "Witt,"
meaning that either dim Z / is odd or

Hf/2(Z) {0}. (1.4)

Assumefurthermore that g giœ satisfies (2.7)-(2.8) below and that the parameter k

in (4.1 satisfies

k> 3. (1.5)

Then the Hodge-Laplacian Ate acting on differentialforms is essentially self-adjoint
and has discrete spectrum.

Thus, by the spectral theorem [36], there exists an orthonormal basis of L2(£lp (A/))
of eigenforms Agiccaj,p — X2 po/.up. We also prove that the distribution of
eigenvalues satisfies "Weyl asymptotics," concretely, for fixed degree p

#{/ I X2
p < X2} cn Vol (M.gic(.)Xn + o(X") as A -> oo. (1.6)

See §4.2 for the proofs of Theorem 1.1 and of the asymptotic formula in 1.6).

Having established these fundamental properties of the Hodge-Laplacian on such

spaces, we turn to the next natural topic: Hodge Theory. Here the object of study is

"Hodge cohomology," or the space of L2 harmonic forms,

MPL2(M,gKC) {a e L2(QP(M), gice) \ da 0 Sa}, (1.7)
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and one phrasing of the Hodge theory problem is to find a parametrization for

M*L2{M,gice) in terms of a topological invariant. As described in f 18], in analogous
settings the relevant topological space for Hodge theoretic statements is not the

manifold M, but the stratified space X obtained by collapsing the fibration at the

boundary over the base,

X := M/{p ~ q I p, q 3M and n(p) n(q)}. (1.8)

In §4.3 we will prove the following.

Theorem 1.2. For a cusp edge space (M, £ice) whose link Z satisfies the Witt
condition (1.4), there is a natural isomorphism

je*L2{M,gice)~IHn{X), (1.9)

where IH^ is the middle perversity intersection cohomology of X. Furthermore,
differential forms y -77 *2 M, giCe) admit asymptotic expansions at the boundary
of M.

Moreover, if Z ~ S7, the sphere ofdimension /, then X is homeomorphic to a

dijferentiable manifold and the isomorphism 1.9) becomes

M*L2(M,gKC) ~ fl*R(X), (1.10)

where the latter is the de Rham cohomology of X.

We recall the relevant facts about intersection cohomology, originally defined

by Goresky and MacPherson in |13, 14], in §4.3 below. The equivalence in (1.9)
will follow using the arguments from Hunsicker and Rochon's recent work [20] on
iterated fibered cusp edge metrics (which are complete, non-compact Riemannian
manifolds). To elaborate on the asymptotic expansion for L2-harmonic forms y, we
will show in Lemma 4.5 below that in fact

^2(M,gice) {a 6 L2(filp(M), gice) I A**»« 0},

(that the former is included into the latter is obvious), and we show that elements in
the L2 kernel of Afficc have expansions at dM analogous to Taylor expansions but
with non-integer powers, a statement which can be be interpreted as a sort of elliptic
regularity at the boundary of M.

One application of these results, and to putative further work we describe below,
is to the analysis on the Riemann moduli spaces MYy of Riemann surfaces of genus

y > 0 with i > 0 marked points. These spaces carry a natural L2 metric, the Weil-
Petersson metric gwp, which near the interior of a divisor is an incomplete cusp edge
metric with k 3. In general divisors may intersect with normal crossings, but in at

least two cases only one divisor is present.
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Theorem 1.3. Let M\,\ also known as the moduli space ofelliptic curves and Mo,4
he the spaces of respectively, once punctured Riemann surfaces of genus 1 and 4

times punctured Riemann surfaces ofgenus zero, modulo conformai diffeomorphism.
Then the Hodge-Laplacian 7s8wp on differential forms is essentially self-adjoint
on L2 with core domain Cf°orb (see Theorem 3.7) with discrete spectrum and Wey!

asymptotics, and if M\,\ and Mo,4 denote the Deligne-Mumford compactifications
(see e.g. 117,38]). Then the de Rham cohomology spaces Hjr(M\,i) are naturally
isomorphic to df*2(,Mi,i, gwp)> and the same holds for Mo,.4.

We discuss the proof at the end of §4.3, though this is really a direct application
of our results together with the recent work on the structure of the Weil-Petersson
metric near a divisor in [271 and [32].

This article is partly motivated by Ji, Mazzeo, Müller, and Vasy's work [21] on
the spectral theory of the (scalar) Laplace-Beltrami operator on the Riemann moduli

spaces Mg, for which it was shown by methods different from ours that it is essentially
self-adjoint and its eigenvalues satisfy a Weyl asymptotic formula. Here they analyze
incomplete cusp edge spaces with normal crossings, and find in particular that the

value k 3 in (1.5) is critical; indeed for values k < 3 one does not expect self-
adjointness. It would be interesting (though more complex) to find a parametrization
of the space of closed extensions of incomplete cusp edge Laplacians with k < 3,

which is expected to be infinite dimensional, e.g. by [3].
In contrast with [21], since our eventual goal is Hodge and index theory on moduli

space, our main technical contribution is the construction and detailed description of
the heat kernel H exp(—t Agicc). Indeed, our approach to establishing Theorem 1.1

(which justifies the use of the word "the" in the previous sentence) and Theorem 1.2,

is to develop in Theorem 3.7 below a precise understanding of the behavior of a

fundamental solution to the heat equation, which we only conclude is the heat kernel
after using it to prove Theorem 1.1 ; we establish asymptotic expressions for it at the

singular set, uniformly down to time t 0, obtaining in particular in Corollary 4.4,

an asymptotic formula for its trace (which has potential applications to index theory,
since our method for analyzing Agice may be used for other natural elliptic differential

operators on these spaces as well) and fine mapping properties of Agicc which allow
us to analyze its kernel, i.e. harmonic forms. This is all described in detail in §4.

Essential self-adjointness of a differential operator P is typically a statement
about the decay of L2 sections u for which Pu E L2. (Here the derivative is taken

in the distributional sense.) The set of such sections is denoted

£>max := £>max(Agta:) {u E L2 \ Pu E L2}. (1.11)

This is the largest subset of L2 which is a closed subspace in the graph norm
||w||r \\u\\L2 + \\Pu\\L2. On the other hand, the smallest such closed extension
from the domain Cc°°(A/) is the closure, i.e. the minimal domain

£>min := <£>rain(AgiC0) {u E L2 \ 3uk E Cc°°(M) with lim \\uk - u||r ()}
fc—>oo

(1.12)
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The essential self-adjointness statement in Theorem 1.1 says that the smallest closed

extension is equal to the largest, i.e. that

£>max £W (1.13)

and therefore there is exactly one closed extension. On the other hand, 0nax is dual

to ,0mm with respect to L2 and thus if (1.13) holds then P with core domain Cf°(M)
has exactly one closed extension, which we denote by <0 0ni„ 0nax and P. ,0)
is a self-adjoint, unbounded operator on L2. Equation (1.13) is a statement about

decay in the sense that to prove it we will show that a differential form a e 43max

decays fast enough near 9M that it can be approximated in the graph norm by

compactly supported smooth forms. This we do using the heat kernel.
Recall that the heat kernel H is a section of the form bundle FI:End(A) —>

M° x M ° x [0, oo), where M° is the interior of M and End(A) is the vector
bundle whose fiber over (p,q,t) is End(A*(A/); A*(M)), smooth on the interior
M° x M° x [0, oo)(, which solves

(dt + Agicc)H 0 and PIt —> Id, strongly as t j, 0. (1-14)

For a compactly supported smooth differential form a, the differential form

ß(a>,t):= / PI(w, w, t)a(w) dVolglce(û;)
JM

solves the heat equation (dt + A8,cc)ß — 0 with initial data ß\t=o «• One

consequence of our precise description of H in Theorem 3.7 below will be the

following.

Theorem 1.4. On a Witt incomplete cusp edge space M, ^ice) with metric satisfying
the assumptions in (2.7)-(2.8) helow together with (1.5), there exists a fundamental
solution to the heat equation IIt H(w,w,t) in the sense of (1.14) such that

for t > 0

Ht\ L2(M; f2*(A/)) —> 0mn, (1.15)

and such that Ht and dt Ht are hounded, self-adjoint operators on L2.

Theorem 1.4 implies the essential self-adjointness statement; indeed the

fundamental solution Ht directly gives a sequence (indeed a path) of sections on <0min

which approaches a given form in Dmax. Namely,

a e 0« Hta —> a in £)min as t | 0. (1-16)

As we see now, the proof of this is straightforward functional analysis given the

conclusions of Theorem 1.4.

Proofofessential self-adjointness using Theorem 1.4. The proof has nothing to do

with the fine structure of incomplete cusp edge spaces, it depends only on the soft
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properties of the fundamental solution H in Theorem 1.4. To emphasize this,
let (M, g) be any Riemannian manifold and P a differential operator of order 2 acting
on sections of a vector bundle E with hermitian metric G, such that P is symmetric
on L2(M\ E). For t > 0, let Ht be a smooth section of End(£) -> M x M, which
depends smoothly on t and satisfies

(9, + P)Ht 0, lim Ht Id, and H,:L2(M; E) —> £>min, (1.17)

where the above limit holds in the strong topology on L2, and furthermore such that

Ht and dtHt are self-adjoint on L2.
Let u G £>mm(P), he. u G L2, Pu G L2. We will show that u G 5)min(^) as

well, and thus 4Dmin <2)max Indeed, we will show that

Htu —> u in £)max. i.e. that Htu —> u and PHtu —Pu in L2. (1.18)

This suffices to prove that u G <£)min since Htu G £)mi„ by assumption and Dmin is

a closed subspace of £>max in the graph norm. To prove (1.18), we note first that

Htu -* u in L2 trivially since Ht —> Id in the strong topology on L2. Also note that
since u G <Dmax, Pu G L2, so HtPu -> Pu in L2 also. Of course, this is not what

we want; we want PHtu -» Pu, but in fact we claim that

U e S)max =>- PHtu HtPu, (1.19)

which will establish (1.13).
It remains to prove (1.19). Note that foru G 4)max and v e L2, then (H, Pu, v)Li

{Pu, Htv)Li by self-adjointnessof Ht on L2, while (Pu, Htv)L2 (u, PHtv)L2.
Indeed, the adjoint domain of <£)min is <SDmax, so for any / G Dmin, g G <î),nax,

(Pf, g)L 2 (/, Pg) L2. But, then since PHt —dtHt we see that

(Ht Pu,v)L2 —(u,dt Htv)L2.

But dt Ht is self-adjoint on L2 so

(u,dtHtv)L2 (dtHtu,v)L2 ~(PHtu,v)L2,

and thus (HtPu,v)L2 (PHtu, v)L2 for all u e ^)max,n G L2, i.e. (1.19) holds.

The central vehicle for the construction of the heat kernel is the construction of
a manifold with corners Mh2eat via iterated radial blowup of the natural domain of
the heat kernel, namely the space M x M x [0, oo)f; thus the interiors of these two

spaces are diffeomorphic, and the blowup process furnishes a "blowdown" map

ß- MLt —> M x M x [0, oo)f, (1.20)
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which encodes deeper information about the relationship between the various

boundary hypersurfaces (codimension one boundary faces) of M2eat and those of
M X M x [0, oo)t- The upshot is that the heat kernel H, which lives a priori on
the latter space, pulls back via ß to be "nice" (precisely to be polyhomogeneous, see

Appendix A) on AT 2ea|. In fact, in §3 we will construct a parametrix K for the heat

equation directly on ATh2eat. To obtain the actual heat kernel H we use a Neumann
series argument to iterate away the error.

The latter process builds on what is now a substantial body of work on analysis
(in particular the structure of heat kernels) on singular and non-compact Riemannian

spaces, going back at least to the work of Cheeger on manifolds with conical

singularities [8-10], Our approach here is more closely related to Melrose's

geometric microlocal analysis on asymptotically cylindrical manifolds [30] (a non-

compact example) and Mooers' paper [33] on manifolds with conical singularities
(an incomplete, singular example). The general procedure, which one sees in both
the parabolic and elliptic settings, is to express the relevant differential operator as

an element in the universal enveloping algebra of a Lie algebra of vector fields, and

to "resolve" this Lie algebra via radial blowup of the underlying space.
It is useful to compare our work with Mazzeo-Vertman [28], in which the authors

study analytic torsion on incomplete edge spaces, which are the k 1 case of
incomplete cusp edges, as their work also involves a heat kernel construction using
blowup analysis, which is slightly simpler in their context as the resolved double

space has one less blowup (and thus the triple space is simpler). Still, the basic

outline of the proof is analogous in both cases; a parametrix for the heat kernel
is constructed and this parametrix is modified by a Neumann series argument to
construct a fundamental solution to the heat equation.

One phenomenon revealed by our results is that the space of self-adjoint extensions
of the Hodge-Laplacian can be much smaller for incomplete cusp edge spaces than it
is for related incomplete edge spaces. For example, a Witt space (this is a topological
condition and has nothing to do with the value of k) that is incomplete edge may
have infinitely many self-adjoint extensions if the family of induced operators on the

fibers have small non-zero eigenvalues [3]. One expects that the zero mode in the

fiber (the space of fiber harmonic forms) makes a similar contribution in both the

cusp and cone cases, in particular that an incomplete cusp edge space which is not
Witt will have an infinite dimensional space of closed extensions on which "Cheeger
ideal boundary conditions" must be imposed to make the operator self-adjoint, as is

the case in [3],
A second closely related work is Grieser-Hunsicker [16], which uses also

quasihomogeneous radial blowups, in this case to construct a Green's function
for elliptic operators on a certain class of complete Riemannian manifolds (called
"(^-manifolds") which require similar analysis. There are many other related works in
a similar vein including, just to name a few, Albin-Rochon [4], Brüning-Seeley [7],
Gil-Krainer-Mendoza [12], Lesch [23], Schultze [351, and Grieser's notes on
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parametrix constructions for heat kernels [15]. For analysis of moduli space, to
give just a sample recent work, we refer the reader to the papers of Liu-Sun-Yao, for
example [24,25].

2. Incomplete cusp edge differential geometry

We begin be recalling the differential topology of the underlying singular space X,
which we take to be a smoothly stratified space in the sense of [2, Sec. 2.1, Def. 1]

with only a single singular stratum Y. This means in particular, as described in
loc. cit., that X \ Y is dense in X, that there is a tubular neighborhood Y c 7'

and a retraction ny'-T —> Y which is a locally trivial fibration with fibre the

cone C(Z) := [0,1) x Z/{0} x Z with Z a closed manifold, and that we are

given a "radial function" p: T —[0, oo) which is proper and such that p~l (0) Y.
Moreover, Y is given a fixed atlas of charts Uy {(</>, K)} where (p is atrivialization
n~\U) — U x C(Z), the transition functions of which preserve the rays of each

conic fibre as well as the radial variable p. As explained in [2, Sect. 2], there is

a resolution <p: M —^ X, obtained essentially by opening up the tips of the cone
fibers, such that ip~l(Y) 3M and such that the radial function p lifts to a smooth

boundary defining function of M which we call, henceforth, x. The boundary 3M
then becomes the total space of a smooth fibration with base Y and typical fibre Z.
A choice of boundary defining function x, meaning a function x e Cco(M) with
{x 0} dM and dx non-vanishing on 3A/, fixes (after possibly scaling x by a

constant) a tubular neighborhood of 3M

and U forms a locally trivial fibration over cpfidM) Y with typical fiber Cj(Z). A
focal trivialization near a point p e Y then takes the form

with V a neighborhood of p in Y, for local coordinates y on the base and z on Z,
then

(x, y, z) form a coordinate chart on M in a neighborhood of </>_1 (p). (2.3)

K~3Mx [0,\)x, (2.1)

V x C(Z), (2.2)

Let

/ := dim Z, b:=A\mY. (2.4)

We will consider differential forms and vector fields which are of approximately
unit size with respect to Riemannian metrics of the type in (4.1). These are the

incomplete cusp edge forms, which are sections of the incomplete cusp edge form
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bundle, lceA*(M), whose smooth sections are generated locally over the base by the

forms

dx, dyi (i 1,..., b dim T), xkdza (a 1 ,...,/ dim Z). (2.5)

Correspondingly, we will use the space of vector fields which are locally C°°(M)
linear combinations of the vector fields

dx, dyr x~kdZa. (2.6)

These vector fields are local sections of a bundle lceTM which is dual to iœT* M
lce A1 (M). We denote sections of ,œTM by Vice.

We consider metrics g on M which are positive-definite sections ofSym°'2(lcer* M).
This means that they are smooth linear combinations of the symmetric products
of dx,dyi and x dza which are positive-definite up to and including over the

boundary x 0. We will assume slightly more structure at x 0 than merely
assuming g is positive definite; to discuss this structure we first build some examples.

Specifically, we consider those metrics arising from submersion metrics on dM.
Concretely, consider a metric n*h + k, where h is a Riemannian metric on Y and

k e Sym°'2(9M), has the property that its restriction to any fiber is positive definite.
Then the metrics n*h + x2kk form a family of metrics on dM and thus we obtain a

metric go dx2 + it*h + x2kk on U. The metric go is an exact incomplete cusp
edge metric. Note that in coordinates (x, y, z) such a metric takes the form

/\ 0 0 \ / dx \
go (dx dyl xkdza) J 0 (%) xk(kia) J | dyJ J (2.7)

\0 xk(kai) kaß \xkdzßJ

In general we consider a metric g of the form

g - go O(xk,g0), (2.8)

where #0 is an exact incomplete cusp edge metric and 0(xk, go) refers to a ()(xk)
norm bound with respect to the exact incomplete cusp edge metric go as in (2.7),
and furthermore we assume that the ü(xk, go) term is polyhomogeneous conormal,
a regularity assumption defined precisely in Appendix A, which roughly speaking
means that the coefficients have an asymptotic expansion at x 0 analogous to a

Taylor expansion but with non-integer powers and with precise derivative bounds

on the error terms. Metrics satisfying these assumptions are what we refer to
henceforth as incomplete cusp edge metrics. (Note that the assumptions on g are

stronger than merely assuming that g Sym°'2(1CÉT* M), as the latter space contains

e.g. x(xkdz <8>sym dx), which does not obey the error bound.

Remark 2.1. As is shown in [27] (see the introduction for further discussion) with
previous results for example in [38,39], the Weil-Petersson metric on moduli space
takes the form (2.8) near the interior of a divisor and satisfies the polyhomogeneity
assumption.
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To understand the form the Hodge-de Rham operator takes on U, we use the

decomposition for the exterior derivative from [5, Prop. 10.1], elaborated in [6,

Prop. 3.4] to show that there is a flat connection on the bundle of fiber harmonic
forms. Note that the choice of a submersion metric n*h + k on 3M induces a

connection on the bundle TdM, i.e. a choice of horizontal space 7//3M on which
the map tt* restricts to an isomorphicm of the fibres to TT. (Indeed this is just
the space perpendicular to the vertical tangent bundle T(dM/Y).) Correspondingly
there is a decomposition of the form bundle

Ad{dM) A

p+g=d

where Ap'q(dM) APT *H M <g> AqT*(dM/Y), and where T *H M n*T* Y

and T*(dM/Y) is its orthocomplement. Thus differential forms on 3M can be

written as linear combinations

n*a Aß, a e £2P(T), ß e QqT*(dM/Y), (2.9)

and, for y e Y, identifying AT*(dM/ Y) over 7r_1(y) with A(jr_1(T)) via the

inclusion r. 7r-1 (y) —> 3M, we can define a fiber exterior derivative

ddM/Y(n*u A ß) n*a AdaM/Yß (2.10)

(where on the right-hand side d^M/Y is the differential on the fibre).
There is a decomposition of the exterior derivative, which we denote using the

convenient notation from [3, Sect. 1]

dm d-m + dd'M + d;jM

where d^ dm/Y while d^ is the operator (denoted by 8y in [5, Prop. 10.1])
defined using a connection 9W/Y V on the vertical tangent space T(dM/Y) — in

particular we can fix a submersion metric gdM and define our vertical connection

using its vertical projections and Levi-Civita connection. Here ^ is defined
in terms of the curvature of the fibration. Their crucial properties in this context are
that d.jMd.]^ r/gjjjr/gjvJ and that (having chosen a connection on the fibration)
they behave nicely with respect to the decomposition of differential forms

Ylr (dM) © QP'H'dM),
p+q=r

where Ylp,q is the C°°(3M) linear span of homogeneous forms a <S> ß where cr is a

horizontal form of degree p and ß is a vertical form of degree q\ specifically

d^: Ylp'q{dM) —> Ç2p+j'q+k(dM).
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We now discuss vertical harmonic forms. Let (r/gM/r)* denote the adjoint
of ddM/y with respect to our fixed submersion metric, and write

Ö3M/F dm/Y + (ddM/y)*-

Over the base Y we have the bundle of vertical harmonic forms / Y) —» Y

whose fibers are kerdgm/y- A fiber harmonic form can be thought of as a linear
combination of forms as in (2.9) where ß satisfies VtdM/yß 0, in particular the

smooth sections of X *(dM/ Y) are naturally isomorphic to a subspace of the sections

of £2*(9M), and we denote by n0 the L2-orthogonal projection onto the closure of
the subspace generated by these forms. Thus, incidentally, X*{dM/Y) inherits a

flat connection from the operator YV0d^Yl0.
Shifting the focus back to our collar neighborhood XL of dM, we can, by thinking

of the [0, l)x factor in [0, l)x x dM as lying in the base of the induced fibration with
typical fibre Z (and base [0, 1 )x x Y repeat the above argument and obtain a bundle

of vertical harmonic forms over [0, l)x x Y, sections of which, again, my be thought
of as linear combinations of forms as in (2.9), but now with a £2*([0, l)x x T).
For us it is most convenient to work with fiber harmonic forms living over our tubular

neighborhood V. which are also ofhounded length with respect to our ice-metric g.
Thus we take X to be the direct sum of the spaces

/
M Q}Xq, where := jt*Œ([0,\)x x Y) a xkqX$m/y. (2.11)

<7=0

Denote the projection onto the space of fiber harmonic forms by

n^:x*°L2(iceA*) — xs°X, (2.12)

where is the L2-orthogonal projection onto the closure of the subspace of
£2*e(t() := C°°(XL; iceA*) given by viewing sections of X as lying over XL. Then a

form ji e Q*ce(XL) can be written locally as a linear combination of forms

H adx A n*a <g> xkpß + h A n*a' <S> xkpß',

a,he C°°([0, l)x x Y), a.a' e f2*(T), ß,ß' 6 Ap(dM/Y),

and

adx A n*a <g> xkpn0ß + h A n*a' (g) xkpTl0ß',

with II o as above. Since

n0ß 0 By, Asm/yY ß-

solving term by term for a form /x expanded in x near dM shows that for/i e xs"Q*cc( U),
p e N,

Tljip. 0A*{xSf)+p) By xs"+pQ*cc(XL), such that A^m/yY P--

(2.13)
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We now compute the Hodge-de Rham operator for an exact ice-metric go- There

are decompositions of cIm and the dual 8m on K corresponding to that of d;)M,
obtained by the orthogonal decomposing of the ice-tangent bundle

iceT THdM x x~kT(dM/Y) x T[0, 1]*.

Writing differential forms a i{dx)dx A a -\ dx A i(dx)a, we then have

j I _ (x"kddM/z + 8y +xkR 0 \
a]U \ dx+kx-1 N -(x-kddM/z + 8Y+xkR))' {ZAV

and taking adjoints with respect to go and writing S^m/z '= {ddM/z)*>

(x~k8dM/Y + (d^)*+xkR* -3x-kx-\f- N) \
lU

V 0 -(x-k8dM/Y + (d^r + xkR*))'
(2-15)

To state the main result we will need regarding the structure of the Hodge-de Rham

operator, we first point out that the operators d and 8 are both elements in the algebra
of differential operators Diff*e(A7; lceA* A7) generated by the ice-vector fields Vice

and the smooth (or more generally polyhomogeneous) endomorphisms of lceA*A7.
In fact, for any X e Vice, the operator e Diflj'ce(A7: lceA*M); indeed, one can
check that Vx <= I)iffi1ce(T7; ICC7'A7 using the the Koszul formula, from which the

claim follows.

Proposition 2.2. Let g be an incomplete cusp edge metric as above, in particular
satisfying (2.8)for some exact ice-metric go- The Hodge-de Rham operator S d+8
decomposes as

5 50 + P + E, P G x^Diffj^, E G xk~l End(iceA*M), (2.16)

where So d + 8g0 is the Hodge-de Rham operatorfor go, so

fx-%M/y + SÜ + xkS -dx - kx~\f - N) \
0

V 8x+kx-' N -(x-k%m/Y + 5^ + xkS)J '

where S'^ dlf^ + (d^)* and S R + R*. Here Q;)m/y depends on the

base Y parametrically, and acting on vertical differential forms is equal to the

Hodge-de Rham operatorfor the Riemannian manifold k\y.

We remark further on the space xfcDiffice(M ;lce A * M) of operators among which
the error P in the proposition lies. Such operators are in particular b-differential

operators on ice-forms with polyhomogeneous coefficients

P GDiffJiphg(M;iceA*M). (2.17)
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This is the space of differential operators generated by Vb]Phg, the polyhomogeneous
vector fields tangent to the boundary dM. Concretely, it satisfies

P axdx + b'dyi + cadza + d (2.18)

for polyhomogeneous, bounded endomorphisms a,b',ca, d, and where repeated
indices are summed over. This follows from x Vice C Vb- In general, an element

Q e Diffphg(M; iceA*M) also satisfies

Q(xky) 0(xk) (2.19)

for y e C°°(M;'œA* M), and is given locally by polyhomogeneous linear
combinations of x3x, dy, 3Z, i.e.

ô ^{xdxydaydl
i+\a\+\ß\<m

where aiM_ß is a polyhomogeneous bounded endomorphism of KeA* M.

ProofofProposition 2.2. We will write the Hodge-de Rham operators d + 3 in terms
of the Levi-Cevita connection and exterior multiplication e (defined as the operator
which takes a differential form co to the endomorphism p a>Ap. By 15, Prop. 3.53]
we can write d+ 8 TrclgogV where cl e—t fore exterior multiplication on A*,
l its dual with respect to g, and 8 V is the Levi-Cevita connection on differential forms.
We choose an orthonormal frame for the exact metric g0 in the standard way, i.e. let go
be induced by a submersion metric gdM on 3M and let {/"} U {e'} be an orthonormal
frame of T*(dM) where the fa are horizontal and the e' vertical differential forms.
Then {dx, fa,xkel} is an orthonormal basis for g0 and by Gram-Schmidt there is

an orthonormal basis of the form

{œ° dx + Ooi (xk), coa fa + Ooi (xk), rf xkel + Ooi (xfc)},
v ÙÂicc ' ÄÄice iÄicc '

where Q]iœ(xk) a polyhomogeneous differential 1-form ß with \\ß\\g 0(xk).
Correspondingly the dual vector fields satisfy a>o — 3x,coa — fa, rji — e,- e xkViœ.
Moreover, for X Vice, the tensor 8VX ~ 8l>is 0(xk~i) as an endomorphism
of'ceA*M, while cl^ — clSo 0(xk), so

h f
d+8 clg&gVt: + J] clgi^yv^ + x-kJ2dM)8vm

a=\ i=l
b f

clg0(dx)gVdK + J] clg0(fa)gyfa + x~k £ clg0(ei)8Vej + xfcDiff'ce

a= 1 i — 1
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b f
clg0(dXy°Vdx + clg0{.ns"Vfa + x-kj^clgi)(e'rvei

a=l i=l
+ 0Encl(lceA*)(x^

1 + Xk Diff^,
(2.20)

which is what we wanted.

The Hodge Laplacian A 52 d8 + 8d can now be decomposed along the

same lines. Proposition 2.2 together with the anti-commutation of 5gm/y and 5//
gives:

Proposition 2.3. Locally over the hase, A can be decomposed as follows

A A0 + x~kP +x~1Ê, (2.21)

where Ao (5q, i.e.

A0 Id2X2 ^ - d2 —~x~^x k^dM/Y + ^

-2'k N(1 — k(f — N))x —2kx d^M/z
^ —2kx~k~18sM/Y k(f — N)(l — k N)x"

where AH (O^)2, AdM/Y 5gM/y, and

P SdM/yP + P^dM/r

with P as in Proposition 2.2 and E G Diff^ phg(M).

3. The heat kernel

In this section we construct a manifold with corners M2eat as in (1.20) together with
a fundamental solution to the heat equation which is a polyhomogeneous conormal
distribution on M2eat with prescribed leading order terms in its asymptotic expansions
at the various faces (see Theorem 3.7). To do so, after the construction of Mh2eat,

we perform a parametrix construction and then use this parametrix to obtain the
fundamental solution itself via a Neumann series.

3.1. Heat double space. The space Mh2eat is obtained by performing three consecutive

quasihomogeneous radial blowups of M x M x [0, oo),. Here Mh2eat is a manifold
with corners which is a resolution of M x M x [0, oo)< in the sense that there is a

map ß as in (1.20) with the property that ß*C°°(M x M x [0, oo)f) c C°°(Mh2eat)
is a proper subset — exactly which "additional" smooth functions appear on M2eat
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is the main content of the construction, as we discuss now in detail. To describe the

construction we follow the development in 116] closely.
A quasihomogeneous blowup of a manifold with corners (mwc) X is a mwc

[V; Yjq-horn constructed from: (1) a boundary p-submanifold Y C X, and (2) an

extension of Y of order a in X. We define these objects in detail now.
Recall that as X is a mwc, near every point p e X there is a neighborhood V

which is diffeomorphic to a an open subset of x Rn~k, and thus there exist
coordinates functions (X\ Xk, yq,..., yn-k) with x,- > 0 for all i 1,..., k
with independent differentials on V. A p-submanifold Y is an embedded mwc Y C X
such that for each p e Y there exist such local coordinates on an open set V 9 p
such that

Y n V {x' (xi,... ,xr) 0,/ (yi,... ,ym) 0},

wherQr<k,m<n—k, (3.1)

so y" (xr+i,..., Xk, ym+i, • • Yn-k) are local coordinates on Y. Given a

boundary p-submanifold Y (i.e. a p-submanifold T which is a subset of a boundary
hypersurface (bhs) of X), we need in addition an extension of Y to a an interior
p-submanifold Y with Y fl dX Y. Given such Y, locally we can take a coordinate

neighborhood V with coordinates z (x', y', y") as above such that,

fnV {i' 0 /i and Y n V {/ 0}.

To add flexibility to the choice of the extension, we define an extension of Y or order
a e N to be an equivalence class of p-submanifolds Y with 3X fl Y Y which agree
to order a at Y, in the sense that for Y, Y' two such extension and coordinates chosen

as above for Y, then f ' n V {/ G(x',y")} satisfies Dx>yG 0(\x'\a).
Given such data, i.e. an mwc X, a boundary p-submanifold Y C X and Y an

interior extension to order a of T, one can define the quasihomogeneous blowup

ß: [X, T]q_hom — X (3.2)

as follows. On each coordinate chart in V in the previous paragraph, with coordinates

z (x', y', y") we define the quasihomogeneous cylindrical decomposition (see [16,

eq. 12],

R := (Xfa + --- + x2ra + y2l+--- + y2m)"2\

S+ := {(m,v) g M; x Rm : R(co,v)} 1,

so that, in an open rectangle V x V" c V where V {(x', y') : \x'\, |y'| < c},
V" {y" : \y"\ < c}, we have the map

ß\ioc- [V; Y n V]q.hom S+ X [0, )r X V" -9 V

((co,v),R,y")^(R(o,Rav,y").
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The open mwc's can be patches together to invariantly define the total space of a the

resolution in (3.2).
From this construction it is clear that the function R in (3.3) is smooth on

[V;f fl V]q_h(im. The locus {R 0} is a boundary hypersurface of the (open) mwc
[V; T ft V]q_hom- Picking a covering of Y by a finite collection of such coordinate
charts, Vt,i e /, each with its corresponding function and choosing a partition
of unity subordinate to "V,-, the function p 's then a boundary defining
function for an introduced boundary hypersurface. More precisely, define, for a

mwc X,
Ml(X) M(X) {H c M : H abhsof X}.

Then

M([X,Y]q.hom) M(X)UffY, ffK:={p 0}, (3.4)

where each H e M(X) lifts to a bhs by taking the closure of the pullback of lift,cl\ 3//)). (Alternatively one can take M(X) to be the set of open bhs, and

then write {p 0}° instead.) Here p is a boundary defining function for ffy, in

particular p is smooth on [X, T]q_hom whereas it is not smooth as a function on X.
Moreover the ratios of functions vanishing at Y are now smooth on certain open
subsets of [V, V fl Y]q_hom> for example, notation as in the previous paragraph, /x"
(defined is smooth away from the closure of the lift of xj 0 via ßy. When a 1

this is just a homogeneous radial blow up.
For a detailed definition of such spaces we refer to Melrose's work [31, Chapter 51

which contains a more general construction which does not assume that one has in

particular a fixed extension for the manifold N away from the boundary, (whereas
here we fix once and for all a boundary defining function x: as in (2.1), which will
give all the desired extensions below). See also [16,22],

We will need a slight extension of the concept of quasihomogeneous blowup,
which are sufficient for the elliptic equations studied in [ 16], to include the presence
of the time variable t. There will be an additional defining function s for the

boundary p-submanifolds Y will blow up at a different homogeneity than that of
the other defining functions; that is, with x',y',y" coordinates as in (3.1), we will
have x' (s, X\ xr), and we will want to blow up so that s/xfa is smooth for
i — 1,,r. Luckily, in all cases below, the function .v can be defined on a full
tubular neighborhood of Y C V in such a way that for some (open) mwc V we have

V M+ xV. This gives a special bhs Hs := {x 0} in the open mwc xV'. We

then blow up quasihomogeneously but with s being "parabolic" with respect to the y
variables, namely we will have a boundary defining function, first defined locally on
coordinate charts in & C V, by

R (s + xfa + + x2ra + yl + + y2m)x'2\ (3.5)

and, parallel to the simpler quasihomogeneous case above, defining

Sq := {(a, co, v) e x Em : R(a,co, u)} 1,
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the (locally defined) resolutions

[0, e)z x 5+ —> R+ x Ö, (R, (a, a>, v)) h» (oR2a, Reo, Rav, y")

patch together to form a global resolution which we continue to call [X, K]q_hom- We

continue to refer to these as quasihomogeneous blow ups.
We now construct the heat double space /Wh2ca| via three blow ups. We first

define the blow ups iteratively, so that A/h2eat is at least defined, and then circle
back to discuss each blow up in detail, defining explicit coordinate charts near each

introduced boundary hypersurface which will be used in subsequent computations.
We begin by considering M x M x [0, oo),. Consider the subset

S0 := dM xfib dM x {0} C M x M x [0, oo)t (3.6)

where the fiber diagonal dM xfib xdM is the inverse image of diag Y via n x 7r: 3M x
3M —> Y xY. Blowing up homogeneously to form [M x M x [0, oo),; So] gives a

manifold with corners with new bhs ft). We let p0 be a bdf of ft) and write pt for bdfof
the lift of {t 0} to the blow up. We may also define the fiber diagonal of the tubular
neighborhood of the boundary K x K x {0} C M x M x [0, oo)t using the fibration
U dM x [0, l)x —> Y x [0, 1)*, so that U xfib U dM xfib x3M x [0, \)x and

consider the proper tranforms of this set, and intersect it with ft), i.e. define

Sx := ft) ncl(3M xbb x3M x (0, l)x x (0}f).

This we blow up quasihomogeneously so that pt plays the role of the slow bdf t in (3.5)
to form [[M x M x [0, oo);; <S0]; Silq-hom Finally we blow up, homogeneously, the

lift of the diagonal at t =0, that is the proper transform of diag(Af) x{t 0}; setting
J82 := cl(diag(A/°) x (0}?) with the closure in [[M x M x [0, oo)t: So]', ^Bi]q-hom

we have

Mh2eat [[[M x M X [0, oc)f ; So]; Si]q_hom; S2]. (3.7)

We now discuss this space in more detail at each step, including explicit coordinate
functions.

1. The blow up of So, the fiber diagonal in the corner. This is the subset of
3M x dM x {0} C M x M x [0, oo)( consisting of points (p,q,0) with n(p) n(q)
where n is the projection of the fibration 3M onto its base. If local coordinates

(x, y, z) are chosen as in (2.3) and identical focal coordinates (x, y, z) are fixed on
the second copy of M in the product M x M x [0, oo)(, then in this local coordinate
chart S0 is given by {x x t y — y 0}. We can define the intermediate
blow up space

Mh2eat,i '= [M X M X [0,oo)(;So], (3.8)

with t ~ x2 ~ x2 ~ |_y — y|2 at the introduced bhs. To be precise, Mh2at j is the

parabolic blowup in time of the set S0 as defined in [30, Chapter 7], In particular there
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is a blowdown map ß\\ Mh2eat j —> M2 x [0, oo)t, and polar coordinates on Mh2eat j
near ßj"1 (So) (once coordinates y, z are chosen on 3M) are given by

p (t + x2 +x2 + \y - y I2)1/2

t (3.9)
\p2 p p p J

(fa, fa, fa, fa), along with y, z, z.

The set {p 0} is a boundary hypersurface on Afh2eat, introduced by the blowup; we
call it fFi ; we will see that only the projection of the heat kernel onto the zero mode

in Z is relevant at the face ffj. Letting s x/x, the interior of ft) is the total space of
a fiber bundle over Y x (0, oo)i? which is the fiber product 3M xfib 3M xfib TY x M?'

where t' is a rescaled time variable (see (3.11) below). Indeed, the map from 11) to
the base Y is simply ß\ |rt|

2. Blow up of Si. The preceding blow up does not resolve the term ^Agm/y in

t(3f + A) (see (2.22)). To accomplish this, we blowup the subset of ffj defined in
polar coordinates by

£i:={p 0,fa=fa=0,fa=fa}, (3.10)

i.e. by p 0, f (0,1 / V2,1 />/2,0), quasihomogeneously so that near the new
face, ff, the function t/x2k is smooth, and furthermore so that 132 is non-degenerate,
the latter condition being satisfied if (x — x)/ is smooth up to the interior of ff.
Near S\ we can use projective coordinates

x, s x/x, rj - „ ^, t' t/x2, (3.11)
a:

along with y,z,z. The quasihomogeneous blow up of ,S| creates another
intermediate space Mh2eat 2. This space has t' ~ \rj\2 ~ (,v - 1 )2 ~ x2^k~l\ and we
have polar coordinates near ff given by

-p {(t/x2) + x2(k~l) + (.V - l)2 + (Iy - y\/x)2)l,2(k-l),

*:= f)al0"8with

(3.12)

Let
ß2 M2eau2 —> M x M x [0, oo), (3.13)

denote the blowdown map. Then, similar to the setup at flj, if we define rr

(x — x)/x, the interior of ff is a bundle over Y x whose fiber over p Y is

isomorphic to TpY x Z2 x JR^ for T the rescaled time variable below.
See Remark 3.4 below for further discussion of the need for the two distinct blown

up faces ff and ff i.
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3. Blow up of the time equals zero diagonal, ,S2 cl(jÖ2(diag(M°) x {t 0})).
Note that S2 intersects the face ff at </> 1,0,0,0), so near the intersection, defining
the functions

_ .ç—1 x — x _ y — y ~ t' t
x' " r] ^ir' T

x2(fc-D F*' (3'14)

we have the projective coordinates

x,y,a,rj,T,z,z. (3.15)

The full heat space is A/2eat is the parabolic blow up of ,S2 in A72ca| 2, and has has

T ~ a2 ~ (z — z)2 at the introduced bhs. The face tf introduced by the final blowup
satisfies

tf° ~ 'ceTM, (3.16)

where lceTM is the incomplete cusp edge tangent bundle defined in (2.6). Concretely,
in coordinates (x, y, z) if we set

X —X V; — V ' za —za J1
% Ça -^—^Zk, t (3.17)

Vf Vf Vf x

then (x,y,z,Ç,r],Ç, r) (or (x,y,z,Ç,rj,Ç, r)) form local coordinates near the

intersection of tf with ff and away from t 0, and the association £ n* dx, r/, m>- 93,j

Ça I—> x~kdZa induces the map.

In summary, we have constructed a manifold with corners A/h2at, depicted in

Figure 1, with a blowdown map ß as in (1.20), such that Mh2eat has six total faces,
three of them being the lifts of the standard faces

If := cl(^_1({x 0}°)), rf := cl(/J_1({x 0}°))

tb := c\(ß-l({t 0}°)),

and then the three faces ff], ff, and tf constructed (in that order) by radial blowup as

odescribed above. Denoting the set of the six boundary hypersurfaces by M {M?
{If, rf, tb, ffj, ff, tf}, and given • e 4f(A/2eat), below we will let p. denote a boundary
defining function for •, so p. e C°°(^h2eat) satisfies that {p. 0} • and dp,
is non-vanishing on • and p. > 0. We can take pa p as in (3.12). Note also

that x vanishes at If, ffj, and ff, and although it is not a boundary defining function
of any of these three boundary hypersurfaces, for any choice of boundary defining
functions pu, pa,, an pa, it holds that / := x/papa,Pa is a smooth, positive function
on A7,2a|. It follows, for example by setting pa / • pa that one can choose these

three boundary defining functions so that

PaPaPa, — x. PrfPaPa, x. (3.19)
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The same argument applies to p, which vanishes on ffi and ff, i.e. we can take

PttiPff p. he. ptr p/p.

In Theorem 3.7 we will show that the heat kernel lifts to be polyhomogeneous

Figure 1. The heat double space (upper left) and the various intermediate blowups together with
their blow down maps.

3.2. Model operators. The blown up space M2eat is useful in the construction of a

parametrix for the heat equation in part because the operator 3, + A (more specifically
t (3/ + A)) behaves nicely at the three introduced boundary hypersurfaces ff, ffi, and tf ;

in particular, the first steps in the parametrix construction involve finding the right
asymptotic behavior for the heat kernel so that the heat equation 1.14) is satisfied at
least to leading order at ff, fl j, and tf.

Thus, we consider the operator A acting on the left spacial factor of M x M x
[0, oo)t, and the pullback ß*(t(dt + A)) to Mh2eat, and show that this restricts to an
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operator at tf. To be precise, fix a point p e M and consider the fiber iip n~l (p)
where

jr:tf —» diagM M

is the projection onto the diagonal (or more concretely it is /f|tf). In the interior
of tf, i.e. away from the intersection with ff, this is standard [30], so we concern
ourselves only with an open neighborhood of the intersection of tf with ff. Indeed,

working locally over the base in both spacial factors, consider a subset of tf of the

form {(x, y, z, £, rj, £, r) : (x, y,z) &}. Now note

y/tdx 3f, Vtdy dv, 3ç + 0(r), (3.20)

and

tdt -(xdr-R), (3.21)

where R Çdç + r) dv + £3ç is the radial vector field on the fiber. Letting

icl, JiR- M x M x [0, oo)t —> M

denote the projections onto the left and right M factors, and End —> M x M the

endomorphism bundle, whose fiber at (/?, q) e M° x M° is End(A*; A*), for t > 0,

the heat kernel restricted to the interior will be a smooth section of this bundle. To

study the heat kernel at the boundary we use the incomplete cusp edge forms and the

corresponding endomorphism bundle End('ceA*) back to M x M x [0, oo)t and then

to Mh2eat via the blowdown ß. As usual, restricting to the spacial diagonal gives the

"little endomorphism" bundle

End(iceA*)|diag(M) ~ end(iceA*),

where end(lceA*) —> M is the endomorphism bundle of the exterior algebra of M.
The restriction to the time face, ß* End|ti, is isomorphic to the pullback of end(A*)
to the tangent bundle of M via the projection map.

Writing w (x,y,z), w (x, y, z), sections of ß* End near the fiber of tf
over p can be written

a y^ aijdwi (g> dwj, (3.22)

i,J

where /, J run over all multi-indices and 3wj is dual to dwj, and here ajj
au{w,w,t). We claim that, writing sections of ß* End near tf as sections of
ß* End|tf - A*(M) <8) A(M),

t(d, + A) (i (r3T - R) + ct(A)) (8) Id +0(r), (3.23)
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where o (A) is a constant coefficient differential operator in the coordinates S

(£, rj, £) depending on the metric g at p (x, y, z), namely

rr(A) (dE + *gl(p)^E*g(P))2, (3.24)

acting on differential forms on the vector space lceA* (M) with metric g(p). Indeed,
let w be geodesic normal coordinates. In the interior of tf away from ff we have

coordinates S (w — w)/^/t, w, s/t. Then

t(dt + A)a (t(dt + A) ^ajjdwi^ ®dwj
I,J

and moreover

*dw[ <S> dwj (*dwi) (g> dwj
±dwjc (g) dwj + 0(w — w)

±(dw/c + \ftdaic) <g) dwj + O(Vta)
(+g(p)dwi) ® dwj + 0(t). (3.25)

Similarly, letting the exterior derivative act on the left gives

d(adwi (g) dwj) {dEiadwi A wj) 0 dwj.

To motivate our construction of the heat kernel further, in a neighborhood of tf
let y be a section of End with the property that y | diagM Id on the form bundles,
and consider the section of ß* End on A7h2ea( of the form

K(P'q' 0 (2n\y/ie~G(P'q)/2tY' (3"26)

such that G(p,q) satisfies that ß*(G(p,q)/t)\tf ||S||^ that is, that G(p,q)/t
restricts to the metric function on tf. Such a form y and function G can be constructed
but we neither prove nor use this; we merely use it as motivation. It is straightforward
to check that for any smooth compactly supported form a

lim / K(p,q,t)a(q)dVo\q (Any"'2 f e_|s||lo'>/4a(/>)VW)lrfsl
JM JM

a{p), (3.27)

and in fact the convergence takes place in L2. (In fact, such an endomorphism y can
be constructed easily by taking the identity map on lceA* over M, pulling this back

via ß to ß* End|ti and extending off smoothly in a neighborhood. On each exterior
algebra A*M, the identity can be expressed in terms of a basis tq with dual basis e*
as 53/ ei ® e*i In 'à neighborhood of tf (T ff we can take the basis et to be dx, dyq,
xkdza, i.e. we can take the e,- to be a basis of forms for lceA* all the way down

to x 0.)
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Working in the coordinates (3.17), since t~n/2 r~nx~nk, the Taylor expansion
of the heat kernel at tf should take the form

oo

iw^r-T"" Tibil (3.28)
(4jz)n/2xkn t—1 1
v ' y=0

where the bj bj (x, y, z, £, t], £) are sections of ß* End, which we again write in

a neighborhood of tf n ff as sections of End(lceA*) pulled back to the fibers of tf.
Writing each bj as a finite sum of terms of the form

a®g~lß, (3.29)

where a and ß are sections of lceA* and g_1 indicates taking the dual vector field,
we see that by (3.23) we have,

((^-i* + or(A))®Id)ôo (Q-^ + (A0S A°s))®Id)6°- (3'30)

The only solution to this equation which gives the identity operator at t 0 is

bo g~||s||2/4 x Id. (3.31)

The procedure of solving for the remaining bj is standard [30, Chapter 7]; letting
the Laplacian act on this expansion we show that on each term Uj it acts fiberwise
like a constant coefficient, second order elliptic differential operator plus the radial
vector field plus a constant corresponding to the order of the term in the expansion.
We have the following

Lemma 3.1. There exist sections bj o/d4>phg(End|tf) satisfying

bj e_"c'"2/'4è7'(x, y, z, £, rj, £),

where bj is a polynomial in £, rj, Ç and a polyhomogeneous section of End over tf,
such that for any distribution H' in <Aphg(End) with asymptotic expansion near tf
given by (3.28) we have

t(dt + A )H' 0( r°°),

i.e. t(dt + A)H' vanishes to infinite order at the blown up t 0 diagonal, and,

moreover, the asymptotic sum of the bj exists and yields such an H'.
The existence of a distribution H' as in Lemma 3.1 is only a first step in

constructing a parametrix for the heat kernel. We will discuss the rest of the process
in §3.3.

A useful double check of the order of blowup of the heat kernel at ff is the

following. Near ff n tf we have

8(x - x)8(z - z)8(y - y) 8^TXk)8(rjrxk)8(fr) ^n^n_f)k 8(Ç)8(tj)8(Ç)-
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Since Id lim^o H dVol^ ~ lim^o Hxkf dxdydz, we confirm that H should
have order —nk at ft". In fact, we can deduce more; considering xkn H |ff, on the

interior of ff we can use coordinates in (3.15), we get that

8(x — x)8(y — y)8(z — z) x~^"~^k8(o)8(rf)8(z — z), (3.32)

which means that, on the face ff, we expect that the restriction xnk H |f[ will be given
by 8(a)8(rj)8(z —z) at least as the time variable T t/xk goes to zero, as that is

the region in which the action of H is definitively approximated by the identity. On
the other hand, x commutes with the heat operator dt + A. As we will see in (3.35),
t(dt + A) restricts to an operator on ff and defines a fiber-wise heat type operator
on ff, so we expect to have

f(9, + A)|ff(x"fe//)|ff 0. (3.33)

This, together with (3.32), implies that an ansatz for the heat kernel should include
that on each fiber of ff, xnk II |ir is the fundamental solution to the induced heat

equation on the fiber, more precisely, it is the solution which equals <5ff=o<%=o Idz
at time equals zero. The induced heat equations are translation invariant in a and rj,

thus induced by convolution operators, and the heat kernels we speak of are the

convolution kernels in a and rj.

As for the blowup at ff|, as we will see below, the operator acts as a modified heat

operator in dx and Y on the bundle of fiber harmonic forms, so in the coordinates
in (3.11) we will have

8(x - x)8(y - y)8(z -z)= ~^+bS(s ~ l)8(z ~ z)8(h)- (3-34)

In this case, t(dt + A) only admits a restriction to ff j on the fiber-harmonic forms 3t,
on which 8(z — z) becomes projections Y\z,y onto the kernel of ^um/y Thus we

expect that xl+b+kf H |ft-, on fiber harmonic forms is given by the convolution kernel
for the heat kernel in q, times the dilation invariant kernel for the heat kernel in ,v

with limit <5i=i at time 0.

We now compute the asymptotic behavior of / (<), + A) at the faces ff and flj.
First we will work at ff.

Proposition 3.2 (The model problem on ff). The operator

Na(t(dt + Ag)) t(3t + A*)|ff

acts fiberwise on ff, and is expressed in the coordinates in (3.15) by

s.m + a»)) f (% + ("« + V ^ +
(3.35)

on the fiber above y G Y. Here Av is the constant coefficient Hodge-Laplacian
on the tangent space TyY with translation invariant metric h(y), and A qm/y is the

Hodge-Laplacian on (Z,ky).
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The situation is more delicate at ff). As we will see in §3.3, near ft), it will
suffice to consider t(dt + A) restricted to fiber harmonic forms. Thus let y G xs Jf
(see (2.11)) and so by assumption S^m/yY- ddM/YY 0- From (2.21) it follows that
for such fiber harmonic forms,

Ay A0y + x~k^3M/Y Py + 0(xs_1), (3.36)

where A0 acts on forms decomposed as in (2.14), as

Ä __a2_^a_cA AN(1-*(/-N))jc"2 —2kx~k~ldgM/z \
0 * x i/ +

\v -2kx-k-l8dM/Y *(/-N)(l-kK)x~2)-

The term x~kfigm/y P acts on polyhomogeneous forms as operators of order x~k,
and thus in the heat operator t(dt + A) there are term behaving like tx~k (on fiber
harmonic forms) but t /x~~k is not a boundedfunction at ff i On the other hand, if we

project back to the fiber harmonic forms we kill these terms; concretely, with
the fiber harmonic projector in (2.12), we have

n^Aff^ A0 +x~1E' (3.37)

where E' G Diff^phg (see (2.17)), and thus does not decrease the order of vanishing
of polyhomogeneous distributions. Defining

0 A B
Pa,b:=~82s--ds + -. (3.38)

s sz

and

œ(N) := kf j0(N) := k N(1 —k(f—N)), y(N) k(f -N)(l-k N), (3.39)

we have the following.

Proposition 3.3 (ffeat operator on fiber harmonic forms at ff) Restricted to thefiber
harmonic farms M as defined through (2.11),

Nfft (t(d, + A*)) := nxt(dt + A)nÄ|ff| (3.40)

restricts to the face ff i in the coordinates (3.11) as

NSl(t(d, + A8)) t'(dc + + A" °
a (3-41)

V V a(N),y(N) T Ajj J J

Remark 3.4. Analysis of the fiber harmonic forms is necessary in particular because

the structure of the operator A8 is such that, off of the fiber harmonic forms, the

leading order term is x~2k AgM/Y, while restricted to the fiber harmonic forms
the leading order term drops in order. Indeed, if it weren't for the presence of the
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term x~k P in (2.21), which presents complications in the analysis, on fiber harmonic
forms would be given by to leading order by A0. Indeed, the need for the two
different regimes represented by the boundary hypersurfaces ff and ft) is exactly
this change in asymptotic order of the operator on and off the fiber harmonic forms.

Correspondingly, we will see below in the proof of Lemma 3.5 that the operator
t(dt + A) restricted to ff has a fundamental solution which vanishes at ff] to infinite
order off the fiber harmonic farms.

The heat equation for the regular singular ODEs in (3.38) has been studied in
detail. To such an operator there corresponds a pair of indicial roots given by the
order of vanishing of homogeneous solutions, specifically Pa,b (s*) 0 if and only if

„ -04 - 1) ± J (A - l)2+45I — — (3.42)
2

The numbers i give important information about the operator Pa,b, in particular
they give the order of vanishing of the Green's function at s 0. The operators that

will arise in our work are those in the matrices in (3.41). We define the indicial set

A y (-(« - 1) ± yV - l)2 + 4ß -(a - \) ± y/(ot - \)2 + 4y\

N=1

/ (3.43)

U { - - 0/2 ± \k(N - f/2) + 1/2|,
N=1

— (kf — l)/2 ± |/r(N — f/2) — 1/2|}.

Letting

v2 ß + (^-') > ° (3 44)

where v > 0, from [36, Vol. 2, Eqn. 8.60] there is a fundamental solution Ha ,b(s,s, t)

(9, + Pa,b)Ha,b(s,^J) 0 and H —» Id as t —> 0 on L2(sAds). (3.45)

Indeed, one has the explicit formula

HaM^O (sS)-M-»/2le-fr2+^)/4»/w(g) (346)

where Iv is the modified Bessel function of order v of the first kind [1, Chap. 9].
As discussed below (3.34), at the face ff, we expect the heat kernel to be of order

~-i -b-kf '['pms we expect to have

0 t(3, + A )H ~l+\+kf(t$, + A )){xl+b+kf H). (3.47)

and since W^t(dt + A)n^ defines a differential operator on section of JC ® M*
restricted to ft), we include in our ansatz for the fundamental solution (1.14), and
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indeed prove in Theorem 3.7 below, that there is a fundamental solution H satisfying
that x1 +h+k-f fl has a smooth restriction to fl), and writing

:= (xl+b+kfH)|ffl, we have Nffl(t(dt + A))Vff,(H) 0. (3.48)

Furthermore, again as discussed below (3.34), it is sensible to include in the

ansatz for H that /Vu, H is the fundamental solution for the model operator
1 + A)), meaning specifically that N^fH) is a section of the restriction

of the sub-bundle End(Jf to ffi and is given using the fundamental solutions to
the model heat equations Ha,b from (3.45)-(3.46). Specifically, we will have as an

ansatz that /Vu, (H) /cffl, where

:= (W U')
„ u0) WW". (3-49)

where a, ß, y are as in (3.39), and in particular continue to be operators depending
on thefiberform degree N. The distribution /VfIl (H is polyhomogeneous on ffi, and

the leading order behavior at s 0 satisfies that for 0 < c < t' < C < oo, for some
smooth a(t'), b(t'),

Ha,ß(s,\,t') ~ s-(kf-i)/2a(t')sv(a>ß\ Ha,y(s, 1,0 ~ s-(kf-l)l2b(t')sv(a'v)
(3.50)

k(f/2 — N) — 1 /2 if N < //2,
ifc(N-//2) + l/2 if N > //2,
k( f/2 — N) + 1/2 if N < //2,
£(N — f/2) — 1/2 if N > //2,

(3.51)

and thus by (3.50) on ff i in the region 0<c<F<C <oo,

l-kfi if N < //2,
Kffi 0(sv), where ïï(N) {—(cN+ 1 ifN //2, (3.52)

[—k(f — N) if N > //2.
In words, each Paj has two indicial roots, the order of Ha.ß for fixed 's J >0 is the

larger of these two, and p is the smaller of the leading orders of ß and //„ y.
The behavior of the heat kernel at ft) also shows what to expect at the left face,

the lift of x 0. There we should just have the projection onto the fiber harmonic
forms times the leading order behavior of the Haj-i and IIa,y, acting appropriately
on ,ceA*, times the lifted heat kernel of the base Y. Indeed, we expect

n*//n*~K:=("°w,/w(*.z.O 0 )//y, (3.53)
V ^ "a(N),y(N)t)J
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where Hy is the heat kernel on (Y, h) lifted to the tubular neighborhood U in (2.1)
via the projection and k acts on sections of the bundle of fiber harmonic forms M
with its grading by fiber form degree N (see §2). In fact, with v v(N) the fiber
degree dependent weight in (3.52), this k defines a section near the corner 3M x 3M
of the endomorphism bundle of the vertical harmonic forms:

K\u*u e XÏ(N)C°°(W X u- ©iCo^N ® (^N)*) (3-54)

where M and M, respectively, the pullbacks of the fiber harmonic form bundle

(defined on a neighborhood U of the boundary) via the left and right projections of
KxU onto K. This is all cooked up so that

xl+b+kfK\Sl =Kffl, (3.55)

indeed, extracting matrix components from the definition of k, using a s kf, and

writing x/x s,t/x2 t' gives

~i +b+kf Ha{H)j(N)(x, x, t)Hy

~i+h+kf ^xx)-(kf-D/2l_e^x2+^4tIv J_edist(v,j)2/4i(1 + 0{f t/2))

(f + o«'"»

=s-<t/-'>/2Te-('2+1"4''/, (^) ^«"|2)S/4,'( i +

which implies (3.55). Below, we mean by k a form which restricts toWxU to be

as above and extends to all of M x M polyhomogeneously with the same index set

as k. (This is easily arranged, and the index set of k is well defined since KxW
intersects all bhs's of M x M.)

As discussed below (3.33), on the face ff, we expect that the heat kernel will have

leading asymptotic x~nk, so we expect and prove that

Nn(H) := (xnkH)|ff 3, + A))Na(H) 0. (3.56)

Again, we will set Nff(H) equal to a fundamental solution to the heat equation,
namely, using the decomposition in (3.41), we expect to have Nff(H) kh where

Kff,y (© r), z, z', T) := ld2x2(^f)-(b+l)/2e~{a2+M^)/4T Hz,y, (3.57)

where Hz,y Hz,y(z, z', T) is the heat kernel for Asm/y-

3.3. Parametrix construction and the asymptotic behavior of the heat kernel.
We now construct, and describe in detail the asymptotic behavior of, a parametrix
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for the heat kernel. Then, using a Neumann series argument and composition
properties for operators which are formally similar to our parametrix (established
in Appendix B), we upgrade this to a description of the heat kernel itself.

To begin our discussion of the parametrix construction for the heat kernel, let us

briefly recall the notion of an index set, which by definition is a £?(•) {(y, p)\ c
C x N associated with each face • G {If, rf, tb, ffj, ff, tf} such that:

(i) each half-plane Re y < C contains only finitely many y;

(ii) for each y, there is a number P(y) G N0 such that (y, p) e &(•) for every
0 < p < P{y) and (y, p) £ S(•) if p > P(y);

(iii) if (y, p) G &(•), then (y + j, p) G £(•) for all j G N.

We recall the full definition of polyhomogeneity in Appendix A, but roughly speaking,
we call a differential form a polyhomogeneous with indexfamily

8 {(•) I • G {If, rf, tb, ff,, ff, tf}}

if it has an expansion at each boundary hypersurface • with exponents determined

by the corresponding index set S (•) and coefficient functions which are themselves

polyhomogeneous (with exponents determined by 8). For example, smooth functions

on A/h2eat are polyhomogeneous with indicial set satisfying 8 (•) Z x {()} for all •,
and if a polyhomogeneous function vanishes to infinite order at a particular boundary
hypersurface •, then it is polyhomogeneous with an index set 8 satisfying 8(•) 0.
We define

infS(*) inf{Rey | (y, p) e 8(•)}.
Our first step is to establish the existence of a polyhomogeneous distribution whose

behavior at the various boundary hypersurfaces matches the behavior we expect from
the heat kernel.

Lemma 3.5. There exists a distribution K\ e A>p|lg AT)2a| ; /i*(End)), polyhomogeneous

with respect to an index set 8 satisfying the following properties:

(1) Ki satisfies (3.28) for the indicated bj. In particular,

8 (tf) N — dim(M), 8 (tb) 0.

and thinking of K\{t) as an operator on differential forms on M for each t,

K\(t)a, —> a in L2 as t —» 0. (3.58)

(2) At the faces ff and ft), we have inf 8 (ff) > —1 — b — kf and inf 8 (ff) > —kn;
more precisely

{xl+b+kfKf> |ff|=Kffl, (xknKx)\ïï Ktf, (3.59)

with Kft, and the model heat kernels defined in (3.49) and (3.57).
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(3) In the neighborhood of the corner defined by U x U (for our fixed tubular
neighborhood U ofdM in an open neighborhood of If and rf,

K\ k, (3.60)

where k is as in (3.53).

Moreover for the behavior at the codimension 2 face If D rf, the leading order
behavior is the product of that at If and rf, i.e. K\ — ()({[>»p,t)~k^2+x In
particular.

kfinf 8(If) >——+ 1. (3.61)

Furthermore, K can be taken fiber harmonic in a neighborhood of ffj.

Proof. Proving the existence of a polyhomogeneous distribution with prescribed
leading order behavior at the boundary hypersurfaces of a manifold with corners
boils down to showing that certain matching conditions hold at the intersections of
the bhs's. For example, for smooth functions on a manifold with corners, a set of
functions f\ : Hi —> M admits an extension to a smooth function u (i.e. w |//( /,
if and only if f] \ h, n n, fj\n,nril for all i,j with Hi n Hj f 0. For the

convenience of the reader we include the general matching condition in Lemma A. 1

below, and we verify these now.
Such a K' will exist by Lemma A.l in Appendix A provided the hypotheses

are satisfied, meaning that the following matching conditions hold. We must find a

set {p.} of boundary defining functions for the boundary hypersurfaces, • If, rf,
tf, tb, ff, ffi of Mh2eat such that

1

(An)"!2n " \n 2 J,n
jeN (3.62)

xknKïïl xl+b+kf Kff on ff n ff,,

and that /Ch and the bj vanish to infinite order at tb. Indeed, in the notation
of Lemma A.l we have K\ (ptfl/x)l+b+k^Kff, and K2 — (ptf/x)kniCff, and the

matching conditions in terms of K\ and k2 in Lemma A.l are exactly (3.62). We

use boundary defining functions ptf p. pf| p/p for the faces ff and ff, defined

in (3.12) and (3.9). Finally, we use r in (3.17) as ptf ; though it is not valid at tb n tf,
all the distributions in question will vanish to infinite order there and there will be no
conditions to check.

The first matching condition in (3.62) follows easily since the coefficients of the

expansion of Ar,, are determined by the same differential equation which determines
the bj, and the coefficients in both expansions are uniquely determined by their being
equal to polynomials times Gaussians on the fibers of tf (T ff.
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Finally we check that the second condition in (3.62) holds. First we consider

ATfj, Ktfuy(s, 1, r),t') above the point y e Y (i.e. restricted to ffiy). In the polar
coordinates in (3.12) and using the boundary defining functions above (3.19), we
have

M2 + 1. M2. (3.63)
Pit Pff Pit-

Using [1, Eqn. 9.7.11, we have that the modified Bessel function satisfies

Iv(z) (e~z/V2nz)(l + 0(l/z)),

and thus

-kf
(3'64)

(Ançtp >'

On the other hand, above each base point y e Y, rj',z,z',T) can be written
using separation of variables with respect to the spectrum of AdM/Y- Indeed,
since Hz,y has discrete spectrum, it is standard that Hz,y{z,z,t) n0 + E,
where n0 is projection onto the kernel of AgM/y and Ii?! < e~^°' as t —>• oc, A0

being the smallest non-zero eigenvalue of Aqm/y Thus

(27rf)-(è+1)/2e"(ff2+l'7'lU)/2no + E', (3.65)

where E' is exponentially decaying. Now we have

fr 1 —2(k—1) —2k / T —(Ar—1) —k T —(Ar — 1) —k sr\T 4>tPiï{ Pif ^7=0/ Prn, Pif • fxPff, Pif • (3.66)

and thus

-kf
J+b+kf, „ „ \—kn,, _ Pif (l^?+l^vll)/44>t /t zn\
Pff, (PmPH|) ^ " (4rr^)(^D/2 ' }

so the matching condition at ff 0 If] holds.

On the other hand, xx+b+k-^k\S] — /cffl by (3.55). Since we have not yet
prescribed K' near If and rf, we may set K' equal to k in an open neighborhoods of
If fl ft) and rf fl fij and the compatibility condition will be satisfied there.

Next we correct this distribution K\ by adding terms to it, so that the resulting
distribution K satisfies appropriate decay estimates for the error (dt + A)K. Our
distribution K will have the same asymptotic properties at the boundary hypersurfaces
enumerated in Lemma 3.5 as K\ does, except that (3) must be modified to include

error terms of order
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Proposition 3.6. There exists a polyhomogeneous section K G ._Ap|lg M2cm ; ß * (End)
satisfying properties 1 and (2) ofthe distribution K \ in Lemma 3.5, and satisfying (3)
with the exception of (3.60), instead satisfying

K tc{\ + O(pfo) (3.68)

in a neighborhood of If,nn such that the "error" Q := t(dt + A)K is polyhomogen-
eous with index set 8' satisfying

inf g'(ffi)) > -1 - b-kf + 1, infg'(ff) >-kn + 1,

g'(if) e'(tf) s'(tb) 0.
(3'69)

Proof. Taking a distribution K\ provided by Lemma 3.5, we study t (0, + A A'i.
Automatically we have that t(dt + A)K\ vanishes to infinite order at tf and tb, as

follows from Lemma 3.1. Furthermore, t(dt + A)K\ vanishes to order —kn + 1 atff
by (3.35) and the fact that the leading order term kk there solves the model problem.

At ff| things are again more delicate. Recall that K\ 0{pfx~b~k^) at ffi,
where pff, is the boundary defining function for ffi in, e.g. ptf, p/p with p as

in (3.9) and p as in (3.12). Since K\ is fiber harmonic near fly, by (2.12) and (3.36)
we have

AA"i AoAj +x 2k
Aqm/y K\ + x k^>dM/Y PK\ + x XEK\

AoAi+X ki5dM/YPKi+X XEK\+X k^>QM/yPK'

Furthermore, by (3.37) we have that 13^1(3, + A)FIjf K\ is order —1 —b — kf + 1

since its leading order term solves the model problem.
We assert the existence of a polyhomogeneous distribution A of order — 1 — b —

kf + k such that t (dt + A)(K\ — A) itself vanishes to order — 1 —b — kf + 1 at fly.
Indeed, since the leading order term in t(dt + A) is tx~2k Aqm/y, and since by (2.13)
we can find B such that

AdM/Y B 9am/y PK' + ftdM/Y PKi. (3.70)

where B is polyhomogeneous with asymptotic expansion determined by the

expansion of the right hand side, in particular B 0(p^x We take A — xk B

and thus obtain, with P as in (2.21),

t(dt + A)(Ä"i -xkB) t{dt + A0)(A-! - xk B) + tx~l É(KX - xk B)

— tx~k Pxk B + tO{p~l~b~kf+2k)

t(3t + Â0)(K, -xkB) + tO(p-^b-kf)
+tx-io(^-b-tf)+to(P-syb-k')
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Since the expansion of B at ff has the same order as K\, the distribution

K2 Ki -xkB

has all of the desired properties of A' in the statement of the proposition except that

(8t + A)K2 is not rapidly decreasing at If. Note that, since p\^h+kkK\ 0(sv
where v is the (fiber degree dependent) order of k computed in (3.52). We claim
that B also satisfies B O(p^). Indeed, B is determined by solving (3.70), i.e. by
inverting an elliptic differential operator on the space orthogonal to its cokernel; by
the basic elliptic regularity estimate, for any m G M there is a C such that

k-dM/BU 5/ =4 || M II H m (dM /B) < C ||/ || Hm-l (dM/B)-

Thus if / is a parametrized family satisfying / 0Hm-\ (pjj) then u — Oh"> (pjf)>
and the same goes for ß, and since m can be taken arbitrarily large the claim follows
by Sobolev embedding.

To deal with the expansion at If we argue along similar lines, but there we iterate
the argument to get a parametrix K with (3f + A) A' vanishing to infinite order at If.
(We work in the interior of If though the arguments at the intersection of If and ff]
are the same in the projective coordinates

s' x/x, rj' (y — y)/x, x' t/x2

together with z,x,y,z.) Recall that K\ k near If and thus K2 =x — xkB nearffi.
Again with P as in (2.21), we have

(3, + A)K2 x~k Pk + xk~2 Ëk - x~k Am/Y B - x~k P xk B + 0(x"+k)

x~kQgm/yPk — x~k Aqm/y B + 0(xv+k~2), (3.71)

where v is the leading order power of k computed in (3.52). As in the argument
at ffi, since the RHS of (3.71) manifestly gives that n^((3, + A)K2) 0(xv+k~2),
by (2.13) there is distribution zf0 such that

XV Asm/y Aq 5gM/y Pk - Agm/Y B + 0(xV+k).

Here the factor xv in front makes it so that A0 is 0(\). Thus

(3f + A)(K2 - x"+kA0) 0(x"+k~2) - x~k Px"+kA0 0(x").

We will now solve away iteratively to decrease the order of the error. For this

we assume for the moment that we are given, for some q > v + e, any distribution
Ai xqA\ + 0(xq+e) with A\ smooth and non-vanishing up to the boundary as

an ice-form. First, we find a distribution B\ so that

xqA2 := (dt + A){xq+2kBi) — A\
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is fiber harmonic. We can do this by solving

(/ - FI3t)Ai AdM/YBi + 0(xk)

as in (2.13), where 11^ is the projection onto the fiber harmonic forms, since then

(dt + A)xq+7kBl xqAm/YBx + 0(xq+k).

We then construct a term C\ with (dt + A)xq+2C\ rj A2, as follows. Decomposing
A2 Ai, + A\dx with i(dx)A\ 0, write

C\ {(-(q +2)2-(a-l)(q + 2)+ß)1A^,(-(q+2)2-(ol-l)(q + 2) + y)-1A22),

then

o" Pa,y)Xq+2Cl =X^2'
(The numbers we divided by above are non-zero, since the indicial roots of Pa,ß
and Pa,y are bounded above by ïï — e, as explained below (3.52).) For this C\ we
have

xqA2 - (3t + A)xq+2CX xqA2 - A0xq+2Ci + x~kP'xq+2Cl + 0(xq+2)

0(xq+s) + x~kP'xq+2Cl + 0(xq+2+k~2),

where q + 8 can be taken to be the order of the subsequent term in the expansion of A2
where A0 is in (3.36) and P is as in (2.21), and thus by (2.13) we see that the left
hand side lies in the image of Asm/y to order xk. We can thus find a distribution D\
such that

xq A2 - (dt + A)(xq+2Ci - xq+2+kDi)

0(xq+l) - xq+2~k Am/YDx +xkP'xq+2Cx

0(xq+l),

which gives

(31 + A)(xq(x2kB\ -x2Cx +x2+kDx)) xqAx + 0(xq+s). (3.72)

It is straightforward to check that the added terms do not increase the order of blowup
at flj. Thus we can kill off the leading order term of xq A, and in fact can kill off
all terms iteratively by this process. (If there are log terms present the argument is

analogous and left to the reader.)
From the previous two paragraphs, it follows that we can find a distribution K'

such that K := K2 — K' satisfies the requirements of the lemma, specifically such

that t(dt + A) A', in addition to having the same leading order asymptotics at tf and

ff and ffi that t(dt + A)K2 has, also vanishes to infinite order at If. Indeed, since

we can solve away terms to obtain errors of succesivly decreasing order, taking the

Borel sum [31] of these distributions gives K'.
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Finally we establish our main structure theorem for the heat kernel.

Theorem 3.7. There exists a section H e -Apht,( 4/,^,: ß* End) satisfying all of the

properties of the distributions K from Proposition 3.6, and which is a fundamental
solution to the heat equation, meaning that in the interior of M^,at, (fit + A)// 0.

while the operator H, defined initially on forms a e Cfi° M : Q*(M)) by

Hta(w) / H(w, w, t)a(w) dVol^ (3.73)
JM

extends to a bounded map of Lz(k2* (M), d Volg and for such a //,« —* a as

t —> 0 in L2.

We will prove the theorem now modulo arguments in Appendix B.

Proof Consider the parametrix K whose existence is established in Proposition 3.6.

This K satisfies all but one of the properties of the H in the theorem, namely
('dt + A)K is not equal to zero. (Indeed, the statement about convergence to the

identity in (3.73) follows from the behavior of K at tf described in (3.28).
We now invert error Q t(dt + A)K from Proposition 3.6 via a Neumann series.

To be precise, it will be convenient to think of distributional kernels A(p, p', t on
M X M x M+ acting on Cc°°(M° x (0, oo)) by operating as convolution kernels in
the time variable, so for fi e Cc°°(M° x (0, oo)) by

{A * fi){p,t) := f f A(p, p',t — s)</)(p', s) ds dVolp'. (3.74)
JM Jo

Then

(3, +A)K I+t~1Q, (3.75)

and the right hand side can be inverted via a Neumann series, i.e.

(Id+f_1ô)(/ + Q') Id,

where Q' ')7 (?_1 Q)J and l QV t~x Q * • * t~l Q, /-times. We

then show that
H := K(I + Q')

satisfies all of the properties claimed in the theorem, but now it is automatic that
(dt + A)H 0; what it will remain to show is that K(I + Q') continues to satisfy
the properties of K from Proposition 3.6.

We use Proposition B.5 below to analyze the summands {t~x Qf. Note
that t~l is a polyhomogeneous distribution on Mh2eat; indeed t AbPtjPii,pf\ka
with a e C°°(Mh2eat) with a > c > 0. Thus t 1Q is polyhomogeneous with index
set 8" given by shifting the index set 8' of Q from Proposition 3.6 by appropriate
integers, namely

inf 8" (Vi I > -2 -h- kfi inf g"(ff) > -k n - 2k + 1,

g"(lf) g"(tf) g"(tb) 0.
(3'76)
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Proposition B.5 then implies that (t 1

Q )' is polyhomogeneous with index set 8(j '

satisfying, for any e > 0,

inf g0)(ffi)) > ./( 1 - e) - 3 - b - k/, inf g0)(ff) > -kn-2k + 1, (3.77)

in addition to 6^(If) £(/)(tf') 6'7)(tb) 0. There for the (t"1 Q)' admit a

Borelsum, i.e. asum Q' with the property that the difference
of a partial sum up to j N with Q' is polyhomogeneous and vanishes at each face

to the order of {t~l Q)i at each bhs. Moreover, as discussed in [5,30|, this series

is convergent in C°°, indeed the uniform bounds in [5, Theorem 2.23] hold in this

setting, and the infinite order of vanishing of / Q at If is preserved in the sum,
i.e. Q' vanishes also to infinite order there. The form of the distributional kernel

H K(I + Q') is analyzed as in [28]. There it is shown that polyhomogeneous
with the index set 8 satisfying the properties of Theorem 3.7.

4. Spectral and Hodge theoretic properties of the Hodge-Laplacian

In this section we deduce the main theorems from the introduction. We begin with a

detailed analysis of the polyhomogeneous forms in the maximal domain.

4.1. Polyhomogeneous forms in £>max and <£)mjn. Recall the definition of S)mdK

and from the introduction, and the space eAphg(lccA*) of polyhomogeneous
ice-forms (below denoted simply by <APhg) discussed in Appendix A. We also recall
that the incomplete cusp edge manifold (M, gice) is assumed to satisfy the Witt
condition (1.4) and that the metric gk:e takes the form

gice dx2 + x2kgz + + 8,

where the exponent k > 3.

We determine conditions which assure that a given polyhomogeneous differential
form y <Aphg is contained in the maximal domain ^Dmax of A8. This will be used

to show, with an additional assumption on the index set of a phg form, that

y e Anax n Aphg => y e £)min n <Aphg. (4.1)

Let y 6 ,Aphg be contained in the maximal domain, i.e. we assume that y e L2
and A8y e L2. Let y xsy where y y0(y,z) + &(xe). Here notation such

as G (xe) indicates that the differential form y is locally a combination of basis forms

dyiAxkNdzA and dx A xkNdyi A xkNdzA,

where I and A are multi-indices on the base and fiber, respectively, with coefficient
functions which are bounded by cxe pointwise in norm when jc \ 0, and y0 is a
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form on M whose coefficient functions are independent of x. Let us determine the

possible range of values s. From (2.7)—(2.8) it follows that in a neighborhood of the

boundary, the volume form of the cusp edge metric g is

dVolg xkf pdx A dy A dz,

where p a(y,z) + 0(xk) and a is a non-vanishing positive function. It follows
that

xsy e L2(M,g) «=* s > ~(kf + 1). (4.2)

We begin by analyzing the indicial roots of A^, specifically we find the order
of vanishing of fiber harmonic homogeneous forms in the kernel of Ag. By
Proposition 2.3, the leading order part of Ag restricted to fiber harmonic forms is

Pot(N),ß(N) 0 \
V 0 ^ar(N),y(N) /

n^A0nm ~:=

with Pa(N),p(N)> P(*(n),k(n) the operators, depending on fiber degree, defined
in (3.38)—(3.39) We note that

fa(/-N),P(/-N) Pa(N),y(H) (N 0, /). (4.3)

Using (3.43), a straightforward calculation shows that Pa(N),ß(N)xS 0 if

/
V), —kN, 1 -kN}.s e U 0 -k{f-N)-k{f

N=1

It in addition satisfies condition (4.2) if
' —k N and

| 1 — k N and

I —k(f — N) and

k
1 — k(f — N) and

N <£(/ + £),
N < \{f + I),
N>è(/-i),
N>è(/-D-

(4.4)

Proposition 4.1. Suppose the differentialform y (y1, y2) (xs 1 y1, xS2 y2) e =Aphg

and that y y^ (y, z) + 0(x£) is contained in the maximal domain <£)max- (Thus the

leading order term is assumed not to have a logarithm, as is a priori allowed for phg-
distrihutions.) Then each sj is an indicial root of Pa(N),ß(N) for some 0 < Ny </
or sj > 4(—kf + 3). In either case, sj > 4 (—kf + 3).

Proof. Recall from Proposition 2.3 the decomposition A Ao + x~k P + x~1 E
and write

J_ A A -Il", k U.gM/z
A _ (P<x(H),ß(H) 0 \ / Aqm/y + Ah -2kx xddM/z

0
V 0 Pa(N),y(N)) \-^kx~k~l83M/Y zhr^dM/Y + AH

(4.5)
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In view of the symmetry (4.3) it suffices to consider the image of the the component
y\ xsi y

I un(jer The discussion naturally falls into several cases.

(1) The form y^ is not fiber harmonic. Then the lowest nonvanishing term in (4.5)
is x~2k+Sl AgM/yfo, which is contained in L2 if and only if

(2) The form yis fiber harmonic. We then consider the following subcases.

(2.a) Ay is an indicial root of Pa(Ni),£(N|) ar|d hence equals the number in (4.4).

(2-b) si is not an indicial root of />a(N,),(ö(Ni)> i-ß- ^<*(n1),/3(n1)(*'Si y1) / 0. We
claim that at least one of the following two statements holds true:

- The polyhomogeneous expansion of y1 contains a term yi of order 0(x where
8 — 2k < — 2 and yj is not fibre harmonic.

- The lowest nonvanishing term in the first component of A8y is of order x,V| ~2.

If this claim holds true we conclude that the lowest nonvanishing term in the first
component of A8 y is of order at most Xs' ~2. To prove the claim, assume that the

first statement is false. Then the second one must hold true as is clear from the form
of the Laplacian A0 in (4.5). To be specific, collecting the terms of order xSl~2 in
the first component of A0y we obtain

^(NO^tNitC^'y1) + X~2kAdM/YTl + X~k~ldm/YT2

+ X~k&dM/Y fx3 + X~k PQ^M/YT4 (4-6)

for suitable differential forms r1,..., r4 of orders

t1 0(xSl+2k~2), r2 0(xSl+k~l), and xj 0(xSl+k~2) (j 3,4).

By Hodge theory, the term 9gM/yt4 vanishes, since otherwise a nonvanishing term
x~2k Aam/yt4 would occur, which is of order strictly less than .sy — 2, contradicting
our initial assumption. Considering the remaining three terms in (4.6) it follows from
Hodge theory and the assumption that y(J is fibre harmonic that the sum

is orthogonal, over each fibre, to /*<*(>(, y1)- Hence we conclude that the

nonzero term /^(Nit^CNi)^1 y1) cannot cancel with the sum (4.7). It follows that
the second statement is true, whence the claim.

The asserted statement follows by inspection of each of the above cases. In case 1

it follows from

x: 2kAsM/Yr1+x k 1d^M/yt2 + x fc9fr3 (4.7)
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using that k > 3. In case (2.b) the lowest nonvanishing term in A8 y is of order at

most .vi — 2. Since y e Dmax it follows from (4.2) that

si - 2 > + 1) <=>• si > + 3).

In case (2.a), the form y(j is fibre harmonic and therefore by the Witt condition N f y.
We continue by discussing each of the four possible cases in (4.4) separately. Suppose
first that .vi —k N and N < |(/ + £). If / is even this implies that the integer
N < ^ — 1 (here we use the Witt condition) and consequently

f iW kL +
3

2 2'

since k > 3. If / is odd then N < ^ ~ and

f \\ k£ 3

2 2'

where the last inequality follows again from the assumption k > 3. Similarly, in the

case .si —k(f — N) and N > ^(/ — |) it follows that if f is even that N > ^ + 1

(using the Witt condition). This implies the estimate

V 2 ~ 2 2

using that k > 3. If / is odd then we conclude that N > y + 3 and hence

f 1\ kf 3
.vi > —kl f — : > —; 1—,V-7 2 2/ ~ 2 2

using again that/: > 3. The conclusion in the remaining two cases where .sq 1— kN
or.sq 1 — k(f — N) follows analogously.

Lemma 4.2. Assume k > 3. Then 77min n -Aphg <£>max H <APhg.

Proof. It suffices to prove the inclusion <£>max IT -Ap|1g ç £)niin n -Apllg. For e > 0 we
define the logarithmic cutoff function Xe [0, oo) —» [0, 1] by

Xe(x) :=

For e2 < x < s it satisfies

0, X < £2,

_log(W^) e2<JC<
log(e)

1, X > £.

';w "i and <4"8)
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Let y oDmax fl =Aphg and set y£ XeY- Then

AgyE XeAgy - - (dxXe)(3xy) ~ ~(^xXs)Y
x

+ A1 (dxXe)(dZj y) + Bl (dxXe)(dyi y), (4.9)

where A> ()(xk) and B' 0(x2k) are bounded functions with that order of
decay in x. We show that

||Agy£ - &gy\\L2(M,g) 0 ase^O, (4.10)

hence establishing that y e 5)min- It is clear that

llfoA^y — A^y||L2(Mg) 0 as e -» 0,

and thus it suffices to consider the next three terms in (4.9) and to show that

I f \\Y\2xkfdx+ I \\dxy\2xkf dx
log (e) Je2 X4 log (e) Je2 X2

1,2 f2 /£ I

/ —A\Y\2xkfdx (4.11)
JE2 x4

+
log (s)

converges to 0 as e —> 0. Let y xsy for some y 0(1). A short calculation
shows that each integrand in (4.11) is of order x~x+& for some S > 0 and hence

converges to 0 as s -> 0 if
kf 3

.v >——+ (4.12)
2 2

In the borderline case s — — + | we still get convergence since then the first
integral in (4.11) becomes

1 fe 1 1 1

2/ \ I ~dx r~27-(log(s)-log(e2)) =— ^0 ase^O,
log2(e) Je2 X log (e) log(e)

and analogously for the second and third integral. Hence

kf 3
s > b — =b y e <Omin

for any y xsy e T)rnax n =APhg. On the other hand, Proposition 4.1 shows that

kf 3
y xsy e <£>max D <Aphg .v > —— + -,

and hence the claim follows.
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4.2. Spectral theory.

Proofof Theorem 1.4. Let H e A^hs(M2c.dl: ß* End) be as in 3.7; we will show that
such H has the properties stated in Theorem 1.4.

First note that, as we show in a moment, H maps into £)min and hence the

following three properties hold:

• (9, + Ag)H 0,

• lim^o Ht Id,

• H(L2) C £)$-, where is the Friedrichs domain.

From [28, p. 21], these three properties characterize the Friedrichs heat kernel of A.
Hence Ht is automatically symmetric.

Since Ht and dt Ht are formally self-adjoint (i.e. symmetric), to show that they
are self-adjoint it suffices to show that they are compact operators. But indeed they

are, as follows from [34, Thm. VI.23-24] together with

Ht,dtHt e L2(End;M x M),

where, given a smooth section A of End, then A e L2(End; M x M) if

J \\A(p,q)\\lnddVo\M(p) ä\/o\M(q) < oo.

For t > 0, Ht is given by an L2 integral kernel, so is a compact operator; indeed,

by (3.68), the index set F of Ht e Aphg(M x M) restricted to t > 0 constant is

IF (If) S (If) and ^(rf) &(rf), for 8 the index family of H. From (3.61), these

satisfy the lower bound

kfinf IF (If), inf F (rf) >—~~ + 1 (4.13)

(meaning Ht is a bounded endomorphism) and

dVolM(f) dVolM(<7) — xkfxkf dx dx dy dy dz dz, (4.14)

so the kernel of Ht is square integrable.

It remains to establish (1.4), i.e. that Ht(a) e <£)min for every a e L2. In

fact, H,(a) is a polyhomogeneous distribution with index set 8(If). This is

straightforward: writing the expansion of Ht at x 0 up to some order N we
have

H, ^ x5 logP(x)as,p(y,z, w) + EN.

\s\<N

where w (x, y, z), and the coefficients as,p are polyhomogeneous endomorphisms
on the manifold with boundary 3M x M and is a polyhomogeneous
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endomorphism on M x M with En o(xN). Thus

Ht(oc) / V] xMog^xOa^z, y,w)a(w) + ENa(w)) dVo\g(w).
Jm\s,PW10

7

9t.s<JV

(4.15)
For example by [26, Proposition 3.20], since the x~N En are given by a

polyhomogeneous integral kernel, they define bounded maps of L2, and the

conormality estimates (see (A.3)-(A.4)) follow by differentiating x~NEn- The

integrals coming from the partial expansion terms are finite and give the expansion
coefficients of Ht(ct). This shows that Ht{a) G ,Aphg, and moreover that the leading
order term has no logarithmic factor. Thus, In view of Lemma 4.2 it suffices to

prove Ht(a) G <ömax in order to conclude that Ht(a) G Dmin. But indeed, inf 8 (If)
satisfies the lower bound (4.13), hence it follows that the lowest order term in the

polyhomogeneous expansion (4.15) is of order at least — + 1 which by (4.2) is

sufficient to conclude Ht(a) e L2. Because Ht is a fundamental solution of the

heat equation, it follows that A8 Ht (a) —dt Ht (at) which by the same argument is

contained in L2 since dt Ht has the same index set as Ht for t > 0.

It now follows that the fundamental solution Ht from Theorem 3.7 is in fact the

heat kernel in the following sense.

Proposition 4.3. The heat kernel exp(—tAg) defined by applying the spectral
theorem to the self-adjoint operator (Ag, £)) has Schwartz kernel equal to the

fundamental solution Ht in Theorem 3.7, meaning

(e~tAf~ a)(w) I Ht(w,w,t)a(w) dVo\g(w).
J M

Using this we may finish the proof of Theorem 1.1.

Proofof Theorem 1.1. As discussed below the statement of Theorem 1.4, Theorem

1.4 itself establishes essential self-adjointness of Ag. It remains to prove that
the spectrum is discrete, but this follows immediately from the spectral theorem and

the fact that Ht is a compact operator (hence has discrete spectrum.)
Moreover, the Weyl asymptotic formula in (1.6) follows from the standard heat

kernel argument in [36, §8.3] together with the heat trace asymptotics in Corollary 4.4.

Corollary 4.4 (Heat trace asymptotics). For each t > 0, thefundamental solution Ht
in Theorem 3.7 is trace class and satisfies that F(t) := Tr If is a polyhomogenous
conormal distribution on K+ satisfying

f dim Z

F(t) rn'2 Vol (M, g) + J2 "jt~n/2+i/2) + c0r{b+1)/2+1/2k
7 1

+ o(t~(b+1)/2+l/2k+£). (4.16)
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The proof of Corollary 4.4, which uses Theorem 3.7 and Melrose's pushforward
theorem, is deferred to Section A.2 below.

4.3. Harmonic forms and Hodge theory. We begin our discussion of Hodge theory

by pointing out that elements y e L2 satisfying A8 y 0, admit asymptotic
expansions at the boundary of M. Indeed, for such forms y, by the spectral theorem
and the fact that Ht is the heat kernel (Corollary 4.3), we see that

y Hty I Ht(w,wj)y(w)<ïVo\g(w).
JM

(4.17)

By the proof of Theorem 1.4, specifically (4.15), we have the following.

Lemma 4.5. Assume that y G ker(Ag:L2 —> L2). Then y is polyhomogeneous
conormal and y 0(1), i.e. is hounded in norm.

Lemma 4.5 allows us to conclude that the L2 kernel of A^ is equal to the Hodge
cohomology in (1.7).

Lemma 4.6. Notation as above, ML2(M,g) ker(Ag:L2 —> L2).

Proof. If y e dtLï{M, g) then y is in the maximal domains of both d and 8, and so

for smooth compactly supported ß,

(A8y, ß)L2 := (y. A8ß)L2 {y, d8ß)L2 + (y, Sdß)L2 =0 + 0 0,

so y G ker(A^ : L2 —» L2). On the other hand, if y G ker(Ag: L2 —L2), then

by Lemma 4.5 we can integrate by parts to obtain

0 {Asy,y)L2 ||<7y||22 + ||Sy||^2,

soy G M*L2(M,g).

We can now follow the arguments in [ 18,20] to prove Theorem 1.2 above. Before

we begin we recall some facts about intersection cohomology, a cohomology theory
that applies to stratified spaces. We do not attempt to make a full explanation of it
here, but mention only that there is in fact a family of intersection cohomology groups
for our stratified space X defined in 1.8) (obtained by collapsing the boundary of 3M
over the base Y) depending on a function p: N —> N called the "perversity," which is

non-decreasing and whose values matter only on the codimensions of the strata of X.
Here we have only one singular stratum, Y C X, the image of the boundary 3M via
the projection onto X, and its codimension is / + 1, where dim Z /. The "upper
middle degree" perversity m is a special example of a perversity, which satisfies

- /* — 1 )/2 if / is odd,
m(/ + 0 J / (4-18)

/ / /2—1 if j is even.
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The "lower middle perversity" m differs from in only when / is even, in which case

m(/ + 1) //2. As we will rely on the spectral sequence arguments from [18,20]
during the proof, we will only need to study the intersection cohomology locally,
specifically on a basis of open sets of X. Concretely, from [18|, for canonical

neighborhoods U V x C\(Z) as in (2.2) with contractible V, we have

IHP{U)

From the Witt condition (1.4), we see that

HP(Z) if/7 < / - 1 - p(/ + 1),

{0} if p > / - 1 -p(/ + 1).

IHP-(U) IHpm(U)
\ HP{Z) lf P < ^/2'

(4.19)m ({0} if p > f/2,

regardless of the parity of /.
Proofof Theorem 1.2. Although Theorem 1.2 describes a relationship between the

Hodge cohomology and the intersection cohomology, to prove it we go through the
standard route and use the intermediary of L2-cohomology. Thus consider the chain

complex

> L2d£lp~l (M, g) — L2Vp(M,g) — L2np+1(M,g) ••• (4.20)

where L2jQp(M, g) is the maximal domain of the exterior derivative d, specifically

L2dSlp(M,g) {a G L2Qp(M,g) : da e L2£2P+1(M, g)}.

Then the L2-cohomology is the quotient

-, {a e L2ttp(M,g) : da 0}
L HP(M, g) ^

{dr] : r] LdSlp l(M,g)}

As explained in [20, p. 6], it suffices to show that

L2Hp(M,g) ~/#£(*; R), (4.21)

for then the L2-cohomology is finite dimensional, which implies that the range of d
(and thus its adjoint 8) is closed. From [18, §2.1] it then follows using the Kodaira

decomposition theorem that Jf^2(M, g) is isomorphic to L2Hp(M,g) and thus

by (4.21) Theorem 1.2 holds.
Thus it suffices to prove (4.21), and for this we also follow the arguments in [20,

pp. 5-6], where it is explained that it suffices to show that for canonical neighborhoods
U V x C\ (Z) as in (2.2) with contractible V, the local chain complex

> L2Qp-\U,g) -> L2np(U,g) —» L2n»+\U,g) —>•••, (4.22)
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satisfies

L2Hp(U,g)~IHp-(U). (4.23)

Here L2 HP(U, g) is defined as above with U replacing M. The intersection

cohomology groups for m are computed in (4.19), and thus we need only to analyze
the groups on the left. To see (4.23) we use the Künneth formula of Zucker, [40,
Corollary 2.34], whose assumptions are satisfied here by the fact that the exterior
derivative on Z is closed on its maximal domain. Thus, in the notation of [20, p. 5],
we have

l

WHl((0, 1), dx2, k(p — i - f/2)) ® Hp~i(Z\WL), (4.24)
(=0

where WHl ((0, 1), dx2, a) is the cohomology of the complex

0 —> {xaL2Qa((0, 1), dx2)) xaL2Q1((0,1 ),dx2) —» 0, (4.25)

where the space on the left is the maximal domain of d on xaL2Q°((0, l),<ix2).
Again from [20] (via [18]),

WH\(0,\),dx2,a) 0 if a f 1/2,

H7/°((0, \),dx2,a) M if a < 1/2, and

{0} if a > 1/2.

When i 1, k(p — i — f/2) f 1/2 since k > 1, so the / 1 terms do not
contribute. When i 0, we have k(p — i — f/2) k(p — f/2) which satisfies

k(p — f/2) < 1/2 if p < f/2 and k(p — f/2) > 1/2 if p > f/2.
Using the Witt condition then gives

„ \hp(Z) if p < f/2,L HP{U, g) <
v ; ' " (4.26)

({0} if p > f/2,

matching (4.19) and completing the proof.

We now discuss the proof of Theorem 1.3. As the spaces in the theorem are

incomplete cusp edge spaces in a neighborhood of the divisor by 132], our results
would apply to these spaces, if not for the fact that moduli spaces such as these have

interior orbifold points. This is not a problem, since, as in [21] we may lift to a finite
cover with no such points. One can then work on the space C/fmh(M\t\) of functions
which near each orbifold point are smooth when lifted to a focal finite cover resolving
the singularity. Constructing a heat kernel on the lift and averaging over the group
action then gives a fundamental solution to the heat kernel downstairs which has all
the desired properties. We leave the details of this simple extension to the reader.
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A. Manifolds with corners

In this section we recall some of the facts about distributions on manifolds with
corners (mwc's) used in this paper. This material is due largely to Melrose, and the
reader is referred to his book [30] for more details. See also [19].

The objects considered here, for example the ice-metrics, have polyhomogeneous
regularity, which we define now. The sheaf of polyhomogeneous conormal (or
polyhomogeneous, or simply phg) functions Aphg(X) is defined as follows. First,
an index set 8 on a manifold with corners X is an association to each boundary
hypersurface H of A a set

8(H) c C x N satisfying that the subset

{(z, p) G 8(H) : Re z < c} is finite for all c G M.

Given an index set 8, for a boundary face F n?_, Hi for boundary hypersurfaces Hi,
define the subset 8(F) c Cp x by (z, p) (z\,..., zg, p\,.., Ps) £ 8(F)
if and only if (z,, pt) G 8 (Hi). We define the Frechet space Aphg(A) as follows. We

write u G A^hg(X) if and only if for each boundary face F F\i=lHi, writing p,
for a boundary defining function of //,, u satisfies

u ~ a^pPZ logP P (A-2)
(z,p)eG(F)

where

~[pzP, log'' P ]~[ k,g"< pi,
i 1 i 1

and the symbol ~ means that

En u- az,PPz log" p. (A.3)
(z,p)eß(F)
Re z; <N Vi

Here En is a smooth function on the interior of X which is Odpl^), where

IPI (Pi+••• + p|)1/2•

Moreover, En is conormal, meaning that if Vf, Vf,(X) denotes the set of smooth

vector fields on X that are tangent to all boundary hypersurfaces, then

\p\~Nyk E c L°°. (A.4)

Note that if a phg function u vanishes to infinite order at H, then u is

polyhomogeneous with index set 8 satisfying 8(H) 0.
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Lemma A.l. Let X denote a mwc, -MAX) {//, },ej its boundary hypersurfaces,
andfor each i â, let pi denote a boundary defining function of Hi. Given a smooth

vector bundle E —> X, ifk, are polyhomogeneous sections on Hi, then provided

pCi Kj\HiCHj pCj tCi\HiCHj (A.5)

there exists a polyhomogeneous conormal distribution K on X satisfying

pTK\h, =Kt. (A.6)

Assume moreover that at a particular boundary hypersurface which we take to

be Hi, that we are given an index set F\ C C x N and polyhomogeneous sections

bj\p Aphg(E\Hi\ Hi). Then given functions Ki on Hi, i 1, there exists a
distribution K satisfying (A.6) for i 1 and such that

K~ J2 P\]°ëP(pi)bs,p (A.l)
s.peF,

provided (A.5) holds for i, j f 1 andfurthermore for i f 1

K' ~ P? P\(°ZP(P\)bs,p\Hr (A.8)
s,peF\

Remark A.2. 1 Note the converse; if K p.
c' p.Cj a for some positive function a

near //, n Hj then setting p^' K\h, — t<i for I i. j, we have pcl Ki pcf Kj
on Hi n Hj.
(2) The matching condition (A.5) implies further matching conditions on multifold
intersections, e.g. it implies that

Pi pCj ki pi'pÏ'kj pct'pC/Ki on Hi n Hj n Ht.

(3) The second matching condition (A.8) merely says that the desired data on a

bhs Hi has the same asymptotic expansion at H\ as the the desired distribution
restricted to //,.

Proof. Denote the number of boundary hypersurfaces of A by m \M\. There
is a number 5 and boundary defining functions pi such that the set {p,- < 5} is

diffeomorphic as mwc's to Hi x [0, <)') Without loss of generality we take <5=1.
Following the remark, for a collection of bhs' H[p, the distribution

Ki\...ip — I~~[ Pc'^Kik\pil=-=Pip=o
i ^i/ç

is well-defined independently of the choice of {1,,m}.
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Let x(x) be a cutoff function with x 1 for x < 1/3 and x 0 for x > 2e/3.
For the distribution K we may take

m

K=Yt(-\y~l Y Kh-b( n X(pj)p]CJ)-
p=1 1 <ii<-<ip<m

For example if m 2 then

K X(P\)PlCXK\ + X(P2)P2C2K2 - X(P\)X(P2)PxCl P2C2K\2-

Note that each term in the sum defining K defines a polyhomogeneous conormal
distribution on all of X, as the distribution is defined on a neighborhood of

n ••• fl Hip off which the product Fly e{i, } X(Pj) vanishes.

Letting A,-, be the term corresponding term in the definition of K, note that if
i ^ {ii,..., ip} then p\' Ah ...ip p-' Ah...i...ip |P/=0. Fixing i, multiplying by pc> K
and restricting to p, 0 gives

Pi'K\Pi=o
m—\

Ki + P? Y Ah-ip
P 1 <i\<—<ip<m

«i,

which establishes (A.6).
We now prove the final statement of the lemma. Let x be the cutoff function

defined above. First, we claim that under the stated assumptions there exists a

distribution K' supported in {pi < 1} satisfying both (A.7) (with K replaced by K')
and that

PÏ K'\Hi x(pi)>Ci (A.9)

for each i / 1. To see this, take any distribution K" supported in {p\ < 1}

satisfying (A.7), and note that u,- := p;c' K"\Hj — x(Pi)Ki — ^KP?0)- By the support
condition, the distribution A'' K"—X(Pi)ai is defined globally, has the same

asymptotic expansion at H\ as K", and satisfies (A.9). This K' will play the role

of/(pi)p"C|/ri from the previous paragraph. Concretely, for 1 < i\ <••• <ip <m,
let ah...ip (Flje{ii,...,ippCjJ K')\Hhr\-nHip- Then we may take

m

K t^y~l y Kh-ip( n xipj)p~jcj)
P= 1 l<i\<-<ip<m j

m

+ K'+ ^(-IK-1 Y ah—ip n X(p/)p]CJ)-
p=1 \<i\<-<ip<m je{ii,...,ip}

E i'l—ip+1 Jlp,=0
1 </1 <-•<//>+! <m

)lr
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Again, for example if m 2 then

K K' + x(P2)p2C2i<2 ~ (PC2 K')\H2P~C2X(P2)-

The given expression for K can be directly checked to satisfy (A.6) and (A.7).

A.l. Melrose's pushforward theorem. Given a map ß: X —> Y between manifolds

with corners, if M(•) with • X, Y denotes the space of boundary
hypersurfaces, then ß is a b-map if it is smooth and if for each H M(Y) with pn
a boundary defining function for H then

a* n e(H[,H) e(H'2,H) e(H'N,H)
P PH # fi eM(X)Pff^ PH\ ' ' ' PH'y '

where a e C°°(X) is non-vanishing and N is the number of boundary hypersurfaces
of Y and the e(H', H) are non-negative integers. This means foremost that pu pulls
back to a smooth function, and the numbers e(H', H simply keep track of the order
of vanishing of ß*ph at each face of X. The function

e:M(X) x M(Y) — N0 (A. 10)

is the exponent matrix of ß, and e(H', H) > 0 means H' maps into H via ß.
If a b-map has a few additional properties then it pushes forward polyhomogeneous

distributions (more accurately, densities) to polyhomogeneous distributions and their
index sets change in a way dictated by the exponent matrix. Note that it follows from
the definition of a b-map that every boundary face F of X (meaning an intersection
of boundary hypersurfaces), can be associated to a face ß(F) of Y defined to be

the unique face with ß(x) 6 ß(F)° for every x 6 F°. A b-map ß: X —Y is

a b-fibration if:

• ß does not increase the codimension of faces, i.e. for each boundary face F of X,
the associated face ß(F) in Y satisfies that codim)/7) < codim(yß(/7)).

• Restricted to the interior of any face F°, ß: F° —> (ß( F))° is a fibration of open
manifolds in the standard sense.

According to a theorem of Melrose [29] which we state below, a b-fibration
pushes forward phg densities to phg densities in a manner we describe now. First,
on a manifold with corners we choose a non-vanishing b-density /x, meaning a

section of \A\n (bT* X), the density bundle of the b-cotangent bundle. The b-tangent
bundle bTX is the bundle whose smooth sections are Vf,, the vector fields tangent
to the boundary. The bundle bT*X is the dual bundle of bTX, and near a face

F F\si=1Hi where p, are bdf's and y are coordinates on F then, the sections

of bT*X take the form

V Pi
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It follows that near any intersection F C\jejHj of boundary hypersurfaces for
J c â where â indexes M(X) (i.e. any face of X) that a non-vanishing b-density
takes the form

dyüjej dPj
F (A. 11)

riye/ Pi

for some smooth non-vanishing function a on X. A polyhomogeneous b-density
u e "Aphg(A) (g) \A\n(bT*X) can be written as fpt for a phg function / and the

index set of u is by definition the index set of /.
Theorem A.3 (Melrose [29]). Let u e <Aphg(A) ® ] A \"(hT* X) be a polyhomogeneous

b-density on X with index set 8, let f : X —» Y be a b-fibration with

exponent matrix e, and define the pushforward fou to be the distribution on smooth

functions v e Cmp(Y) acting by (fou, v)y (u, f*v)x- Then providedfor each

H M(X) we have

then fou G Xf'(Y) <g> |At"(''7'* K) where

e(H,H') 0 V//' G M(Y) 8(H) > 0, (A.12)

Phgv

with the (extended) union taken over H' with e(H', H) > 0.

The extended union, defined in [30], contains the standard union and possibly
more log terms.

A.2. Heat trace asymptotics. We now use Theorem A.3 to prove the heat trace formula

in Corollary 4.4 above. The heat trace is equal to

Tr(e"tA) / Ht(w,w)dVolg o*((i*//,) dVol), (A.13)
JM

where i: M x [0, oo) —> M x M x [0, oo) is the diagonal inclusion and rr: M x
[0, oo) —> [0, oo) is the projection onto the right factor. The natural space here on
which to consider Ht is Mh2eat, and thus to evaluate this pushforward we must see how

a and i act on the natural blown up spaces. The following may be easily verified.

(1) The closure
(Mh2eat)A := cl(i(M° x (0, oo)))

is a manifold with corners with 4 boundary hypersurfaces, sf, fi\d fod,\Ld, equal to
the intersection of cl(t(M° x (0, oo))) with rf D If, fl), ff, and tf, respectively

(2) The map a extends form the interior M°x(0, oo) to a b-fibration

^ «ea,)A [0, OO)

/JM
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with exponent matrix

e<7 (sf) 2, ea(iïd) 2k,e0(iïd) 2.

To apply the pushforward theorem, we note that the volume density

P dVol„ —y t

dt kf+i \dxdydzdt\
xt

is equal on (Mh2eat)A to

li= a (psfpffijpü<j)kf+liio,

where p0 is a non-vanishing b-density on (A/h2eat)A. Thus (i* H)p is phg on (tVfh2eat)A

with index family 8d satisfying

inf 8d (sf) 3, inf 8d (ff,d -b,
inf 8d (ff*) k(f — n) + 1, 8d(tfd) {-«,-« + 1,...}.

Note that Tre~tAdl a*((t*Ht)pC). The integrability condition (A.12) must be

checked only for sf and thus holds by Theorem 3.7, and we apply the pushforward
theorem to obtain that Tre_fA is polyhomogeneous with index set

{(t,/2, Pl): (XuPi) e U m/Vk), P2Y Pi) e 8d{ffrf)}

Ü{^3/2,p3):(^p3)e8d(tfd)}.

In particular,

/
F(t) +Cot-0>+V/2+m2k) + 0(r(ft+i)/2+t/(2*)+e)j

7=o

for some e > 0. As discussed in [28, Section 3.3], the heat kernel in fact lies in an

even calculus and thus the terms for odd / in this sum are equal to 0, giving the trace
formula (4.16). The fact that the leading order term is the volume is standard.

B. Triple space

We will now analyze composition properties for "Volterra" type convolution operators
as described in (3.74). To do so, following [16,30], we construct a "triple space,"
which we denote by Mh3eat, which is designed specifically to accommodate the process
of composing operators which have the structure of the error terms in (3.75). The

structure of our triple space is analogous to that constructed by Grieser and Hunsicker
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in [16], with slightly different homogeneities and with the added complication that
there are time variables involved.

Note that, given Ai, i 1,2, we want is to make sense of the integral

IfJmJo

t'
Ax(w, w', t')A2(w', w,t — t') dVolg(w')dt'. (B. 1

M Jo

Define the wedge
W :={t-t' > 0} c K+ x M+, (B.2)

and define the left, center, and right projections

jil: M x M x M x W —> M x M x [0, oo)t,

(w, w', w, t, t') i—» (w, w', t'),

(B.3)
ne'- M x M x M x W —> M x M x[0, oo)t,

(w, w', w, t, t') i—> (w, w, t),

jtr: M x M x M x W —> M x M x [0, oo)t,

(w, w', W, t, t') I—> (w', w, t — t').

Then, formally, the integral in (B.l) says that the integral kernel of A \ A2 (as an

operator acting by convolution in time) is

(A1A2)(w,w,t) (nc)*{Ji*LAl)(n*RA2), (B.4)

where (7rc)* denotes the pushforward, i.e. the integral along the fibers of nc (which,
by the way we have set up the problem, requires the choice of a metric on the fibers
which we come to shortly.) Analysis of (B.4) becomes tractable if the space M 3 xW
is blown up so that the pushforward theorem described in §A. 1 applies.

Note that M 3 x W is a manifold with corners with 5 boundary hypersurfaces

L {x 0}, C {x' 0}, R {x 0},

tbj {t' 0}, tbj {t — t' 0}.

It is easy to check that, in the language ofAppendix A, the maps 7r. with* e {L,C, R}
are b-maps from M3 x W to M2 x [0, oo)r and the exponent matrices are also easy
to compute,

1 • L, •' If,
(1 • L, •' If,

1 • C, •' rf,

[ 0 otherwise.

1 • R, •' rf,
0 otherwise,

(B.5)
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1 • C, •' If,
1 • R, •' rf,

=**(•>•)={, (B.6)
'1 • tb2, • tb,

^0 otherwise.

We blowup M 3 x W to form a space ß: Mh3eat —> M 3 x W in a sequence of steps
as follows.

First, consider the three pullbacks of the submanifbld

So {x x, y — y, t 0} C M2 x [0, oo)j-

defined in (3.6)

nll(B0), TTC^SO), O). (B.7)

These three sets intersect pair-wise in the triple intersection:

7Tz;1(So)n7rc1(So) Ttç1 (So) fi n^1 (S0) 7r^1(So)njr^1(S0) S, (B.8)

where
S {x x' x= t t' y-y' y' — y 0}. (B.9)

We blowup the set S, with appropriate homogeneities, specifically letting

AAL.o [M3 x W ; ^]q.hom, (B.10)

with f ~ x2 ~ (jc')2 ~x2 ~ ly-y'l2 ~ |/-y|2, and let Mh3eat;0 —> M3 x W

denote the blowdown map. Call the introduced boundary hypersurface ffin. Near

to ffin, we have polar coordinates

pn (t + x2 + (x'f + x2 + \y - y'12 + \y' - y\2f'\

^ («-ID
Pn Pn Pn Pn Pn

: </>£, 0"/_y), along with /, z, z', z.

The asymmetry of the y, y', y in the coordinates is spurious in the sense that if one
defines <t>y-y (y — 50/Pn, then any two of the <t>y_y/, can be used in (pn by

redefining pn using e.g. |y — y'\2 and |y — y\2 (and then using <pcß_vf,(pr},_~)- Eitherry-y ' y —y

set of coordinates is defined in a collar neighborhood of fly n.

We then blowup the closures of the lifts

S. :=cl((7r.o^0r1(S0)\ffin),

i.e. the rest of the lifts of the So via the three projections, where • £ {L, C, R}.
These are disjoint subsets and we blow them up in any order, setting

^heat,l [^heat,0' U*=L,C,Ä^*]q-homi (B.12)
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with the appropriate homogeneities, e.g. for^L we have t' ~ x2 ~ (x')2 ~ |j—y'|2.
Again, we have a blowdown map

—> M x M x M x W. (B. 13)

The new faces we call ff* with • e {L, C, R}. Coordinates at fff can be determined

as follows. Note that 81 is given in the coordinates (B.l 1) by — (px <px,

4>y-y! 0, and that in a neighborhood of 81 away from ff'in, <jf>(9 ~ t'. Thus, to
match homogeneities with the blowups of the double space, we want to blow this up
so that the following give polar coordinates near the intersection of fff and ff]n:

pl — {Pc + (0n)* + (^n)x' + \(<pn)y-y'\2)2\l/2

iL _ I P?' Px fix' Py-y' \
9 V(PL)2' PL' PL' PL /

(B.14)

=: (Pp>Px'Px''Py-y')< along with y', z, z', z, pn,pÇ, Py-y' P?-t'

with functions as in (B.l 1). It is also possible to use simpler projective coordinates,

as we will see below. Coordinates near fff can be derived similarly by switching </>f

with p?_t, and (px with The situation at fff is slightly different since, writing
r/)(n (j>ct) + the pullback of faß on Mh2eatl via tic vanishes at fa 0 pß_t,,
and thus 8c is codimension 1 higher than 8, for • L, R.

Here we blowup so that the following give coordinates

Pc {fa + (fa)2x + (fa)2~ + |^_?|2)1/2,

/jHxC P? Pß-t' Px H Py-y \
W ' \(pc)2' (pc)2' pC' Pc pc

- {pß ,pf_t,.pfap~ ,0jLy), along with y',z,z' ,z, p^, fa,, Py'-y-
(B.15)

Lemma B.l. With terminology as in Appendix A.l, the maps tc, extend from the

interior to h-maps

heat,l ' Jheat,l

far • G {L,C, R] with exponent matrices e„% satisfying

«5. (ffI, ffI 1, e%. (fff, ff 8.y, e^c (fff, If) 1, cÄC (fff, rf) 1,

e%R (fff, If) 1, e%L (fff, rf) 1, e%R (fff, tb) > 0, e„L (fff, tb) > 0,

(B.l 7)
where S.y 1 if • •' and zero otherwise. When • G {L, C, R, tbj. tb^}, i.e. when

it is the pullback ofa boundary hypersurface ofMxMxMxW via the blowdown

map, then the exponent matrix satisfies (B.5) with fi replacing it.
Moreover, fie is a b-fibration in the sense ofAppendix A. 1.

n.\ AL3 » ^hfat.i (B.l6)
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Remark B.2. The significance of the inequalities in (B.17) involving tb is that all the

distributions under consideration vanish to infinite order at tb, and thus the pullbacks
/-i

of these distributions via ttr will vanish to infinite order at ffj and the same for ir/,.

Proof. We verify the lemma for for îtc and leave the other nearly identical
calculations to the reader. That nc extends to a b-map follows easily by writing
the pulling back the coordinates in (3.9) and writing them in terms of those in (B.l 1).

In particular, note that the pullback

XcP PnPC< (B.l 8)

so the exponent matrix claim holds. The rest of the definitions of b-fibration are easy
to check.

Remark B.3. The extended map tcr is not a b-fibration as it maps the interior of tff
to the interior of the face tb n If due to the fact that t 0 on W implies that t' 0

also, thus the map increases the codimension of a face. The same holds for tïr,
i.e. 7Ïfl(fff c tb n rf.

Next we must blowup the lifts of Si in (3.10). Since by (B. 17), ic, only maps ff*
to ffi if • any of the pair-wise intersections is again equal to the triple
intersection

8' îr£l (.531 n jr^fSi) IT jr^'fSi) îrLl(tBi) Pi

Indeed, each is a subset of ff", and in the polar coordinates defined on the interior
of ff", using the definition of Si in (3.10)

S' {p 4>P_t> 0. $ cf>f 4>g, $_y, <pry>_~ 0}, (B. 19)

with no restrictions on y', z. z'. z. We form a space [Mh3eat ; $']q-h0m with appropriate
homogeneities. To understand this space, note first that near 8' we can use projective
coordinates on flj", concretely we can take for example x to be a boundary defining
function of ff] (T and coordinates x, t'/x2, (t — t')/x2, x/x, x'/x, (y — y')/x,
(y' — yj fx to replace the polar coordinates in (B.l 1). Then the homogeneities are
determined by those in the ff blowdown of the double space, and one has coordinates

=fr': ^_+ +(^)2+(^)2)"^°
f := <t>x-x-<t>x'-x, <t>y-y, 4>y'-y)

/x t' t — t' x — x x' — x y — y y' — y \
~x2f*-x) ' xiï~l) W*

along with y. z,z',z.
(B.20)
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One can also take coordinates in which x, x', x are permuted, and the same with y,
y', y-

We let fFn denote the introduced boundary hypersurface.
The lifts of the n, ] (,S | minus their intersections now have disjoint closures.

For example, we have

nZ\£i) n ffjn \ffn {&, $x-x, <Py-y> 0},

while

^(^l) 0 ff,0 \ffn {^ 4>X-X <Py-y 0},

where 4>t (fit' + 4>t-t' and <fix-x (fix-x' + 4>x'-x and for jfR we have

4rt-t' 0, 4'y' 0; since \(f>\ 1, these sets are disjoint. Furthermore, the

pullbacks satisfy that

^(SOntff =8.y,
for •, •' (z {R, C, L}, and each intersection is straightforward to write down, e.g. with
coordinates as in (B.15),

np\Si) n fff {pc 4>?> 4>?-t> tâ - 4 0,4>y-y 0}.

We will blowup first the fl ff" and then the 7T"1 (iSi) Fl ff* with for •
{L,C,R}-

In the interior of ff* with • e {L, R\ the blowups of the pullbacks of ,S| are

particularly easy to understand as there we can just pullback the projective coordinates

in (3.14) and use these together with the other unaffected coordinates to obtain

projective coordinates e.g. near o ßö1 (dBi) D fff valid near the interior of the

introduced boundary hypersurface.

s — \ x — x' y — y' t'
A" ' a (^)FT V T (B"21)

together with w, t on the introduced boundary hypersurface. In the interior of fff,
one needs only to remember that the vanishing of the pullback of the 4>t coordinate

implies the vanishing of both 4>t' and 4>t-t'- One can use x as a boundary defining
function and then two projective time coordinates T' t'/x2k and T (l — l')/x2k.
In the interior of fff but away from ffn, we want the same homogeneities, but

now the pullback of x' in the interior of ffn is proportional to fP and in the

interior of the introduced blowup we will have coordinates as in (B.21) with all
the functions replaced by their 4> counterparts, e.g. x' replaced by 4>x' and

replaced by py-y'/4>x'
We focus at the intersection ffin nflj*, first with • C. Near Sc, we can

simplify things slightly by using projective coordinates, derived from (B.15) by
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noting that <p~ is non-zero at ff)n n flj * n 8c and can thus be used as a boundary
defining function. Specifically, take

~ n A' t y — yx <pç, x -, T =—, yXX2 X

together with the other (non-polar) coordinates in (B.15). Blowing up to introduce a

face ffn'c, have

s> (J- + p2n(k~l) + (X - l)2 + |3/|2)1/(2(fc-l))>

ift (T/P2^k~l\ pn/33, (X — V/!Pk~x),

but it follows that 8\ n ffiC intersects ffn'c at 4* (0,1,0,0) and thus pr can be

used as a boundary defining function. Again working near 8c we can take pn as a

boundary defining function for ffn'c and use projective coordinates pn T/p^
(X — 1 j/Pn"1 » y/Pri~l- Using these we blow up 8\ fl ff|C with

r - + (0n)2(,-i) + (*-D2 + j»üy/^))~
P^"1} " Pn_1 Pkn~l}

'j x -1 y \
~

V(^pn)2^1)' 7' (JPpn)^_1
'

(<PPn)^_1 '
i t x x — x y — y t)-Vx2(^Ppn)2(fc 1} S3pn x(^Ppn)fc 1 x(Ppn)k~

and this is the final blowup of 8c- The blowups for 8r,8r are similar and left to
the reader.

Proposition B.4 (Incomplete cusp edge heat triple space). The above construction
yields a space and blowdown map

ß: Mh3eat —> M x M x M x W, (B.22)

such that the maps n. from (B.16) extend to b-maps it.: A/h3eat —> A7h2al 2 with

exponent matrix satisfying (B.5), (B.17) (with n and n replaced by it), and

ex. (ffn, ff) 1, es. (ffn"', ff es. (ff', ff) 8.y,
esjffn'*,ff,) cS/,(ffn-L,ff|) ejfc (ffn'Ä, flj) eÄC(ffaL,ftj) 1,

<?SL(ff*,rf) e^R (ffL, If) ejic (ffÄ, rf) esc(ffL,lf) 1,

e%L(ffn'C, tb), e^L(ffc,tb), e^R(ffn'c, tb), (ffC, tb) > 1.

(B.23)

Moreover; apartfrom components ofe„, (ffn'C, •') and e^, ffc, •') with • {L, R

all other components are zero.

Again, tic is a b-fibration.



758 J. Gell-Redman and J. Swoboda CMH

Proof. Again, we focus on nc To check that nc extends to a fi-map, we pull back

the polar coordinates p,<p,y,z,z, from (3.12) defined at ff in Mh2eat2. First, we

compute

KcP *c ((0/*2) + x2(k~l) + (s - l)2 + (Iy - y\/x)2)1/2(k~l))

(T + x2{k~x) + (X - l)2 + |3/|2)1/2(fc-D

Ppn,

and then note that

t XX — x y — y \
û2^2^ iy p'xp^k ^' xffk -

x — x y — y
^x2(lP pn)2(-k ^ IPpn x{Ppr\Yk ^ x(fPpr\)(k

This establishes both claims for nc- The R, L case are left to the reader.

Proposition B.5. Fori 1,2Jet Ai e A^g(M2fial2) with the index sets 8i satisfying

£;(ffi) > -3-b-kf e,(ff) > -kn-2k. 6)(If) g,(tb) 0, and g,(rf)

satisfying (3.68). Then

A3 := JJ A\{w, w', tr)A2(w', w, t — t') dVoln,/ dt'

lies in A^(M2cdl2) where for any e > 0,

infg3(ffi) > inf Si(fft) + inf S2(ffi) + 3 + h + kf -e,
inf g3(ff) > inf gi(ff) + inf g2(ff) + kn + 2k-e.

(B.24)

Remark B.6. The constants k n + 2k and 3 + h + kf in (B.24) should be interpreted,
for instance in the case of ff, as saying that the (Volterra type) composition of two

operators given by Schwartz kernels as in the theorem has Schwartz kernel whose

leading order asymptotic behavior at ff increases relative to the rate —kn —2k, in

particular if both the composed operators grow like —kn — 2k then so does the

composition. These are, incidentally, the exact rates of blowup of the heat kernel

times t~l at the faces ff and ffi, and furthermore the fact that the errors t~l Q in (3.75)
vanish one order faster than t~l H means, as described above, that taking powers
makes them vanish at increasing rates at both ff and flfi.
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Proof. We write A3 as the pushforward of a b-density and then apply the Pushforward
theorem from Section A. 1. First we define a non-vanishing b-density p.0 on M x
M xM x W as follows. We let v be a non-vanishing b-density on M satisfying
v a Idxdydz I for a smooth nonvanishing function a near the boundary, and consider

/To v v' v
dt'dt

t'(t - t')

where v', v are equal to v in the primed and tilded coordinates, respectively. Since
/3'heat'the blowdown map ß from (B.22) is a b-map, ß*p-o is a b-density on Mh3eat, and one

checks that

ß*p0 GlSo, (B.25)

for a non-vanishing b-density /Z() on A/h3eat and G e C°°(Mh3at) satisfying that for
some non-vanishing smooth function G',

G G'(pïï[ L pff| C R )b pf^n (PffL PttC PÏÏR )kb+k~x

„(n n fk+l)b+k-\ 2kb+2(k-\)
\Pftn'LPsn-c Psn-R' PffO

Then we can write the desired pushforward as a pushforward of a b-density,
specifically

A3 (v v \^-\) — (:nc)*(ft*LAXTi*RA2 ((t'/t)(t - t'))F{w')p,0)
^ t / (D.zo)

{nc)*(nlAxd*RA2 ß*((t'/t)(t - t')F(w')fi0))

where F is the function defined by dVolA, Fv and in particular

F a xkf+\

where a is a non-vanishing polyhomogeneous function on M, and v,v are the

pullbacks of the density v above to the left and right spacial factors of M x M x R+.
To find the asymptotics of A3 itself we must compute the asymptotics of the densities

on the left hand side of (B.26); Letting ß2 again denote the blowdown map

Mh2eat,2 > M X M X [0. Où)

in (3.13), we check that

dt \
t

ß*([n'L)*v (n'R)*v—^ tfhpf+k V2,

where p,2 is a non-vanishing b-density on Mh2eat 2. Thus from (B.26), if the distribution

(ncMniAin%A2-ß*((t'/t)(t-t')F(w')^0))
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is polyhomogeneous with index set S'3 then A3 is phg with index set S3 satisfying

s3(ffi) S£(ffi)-&, e3(ff) S'3(ff)-(kh + k-\), (B.27)

and S3(*) S'3(») otherwise.

Thus the index family of jf£ A iJT^A2-ß* ((?'/t)(t—t')F(w')) must be determined.
To determine jr£ A i, we see that, at a bhs H of A/h3eat, the index set of jtJ A \ is simply
the index set of A\ at the bhs FF of A/h2eat

2 at which H is incident. Thus from our
work above we see that jt^A i has index set Si satisfying

S,(L) S! (If) 0,
ë, (C) ëi (ff,Ä) S,(ffR) Si(rf),

Siftb',) Si(ffic) Si(ffn-C) Si(ffc) S, (tb) 0,

^(ff.H) St(mL) Si(tfn'R) Si(ffi),
(ffn) ëi(ffn'L) Si(ffL) Si(ff),

S,(R) z,

the last line coming from the fact that ït*LA\ is independent of jc, in particular is

smooth up to R. The index set S2 of n^A2 has the same expression in terms
of S2 but with all 'R's switched with 'L's, all lf's with rf's, and all l's with 2's

(except of course for the 1 in the subscript of ft)). For example, (c.f. the second line
above) S2(C), (ffi^), S2(ffL) are all equal to S2(lf), which is assumed to be 0.
If we define the operation Si © 82 on index sets to denote the index set whose
elements are sums of elements of the two index sets, It follows that rfjMi F*RA2 is

polyhomogeneous with index set F satisfying

{^(C), !F (L), 5-(ff,L), ^(ffL), F(tb;), ^(tb'2), ^(ff,c), ^(ffn'c), ^(ffc)} 0,

^(ffin) Si(ff,)©S2(ffi), ^(ffn) Si(ff)©g2(ff), 3> (R) S2(rf),

F(ff,*) Si(rf) © S2(ffi), 3~(\\R) Si(rf) © S2(ff),

^(ffn-*) Si (ff,) © S2(ff), £-(ffn'L) Si(ff) © S2(ff,).
(B.28)

We now compute the asymptotics of the term

ß*(((t'/t)(t-t'))F(w')vo) ß*(((t'/t)(t-t'))F(w'))GJio

with G in (B.25). First, write

ß*m-t'))F(w')) 7r2(t)7f*(t)7f*(F),

where F is thought of as a function of the left factor of M x M x [0, oo). Recalling
p, p from (3.9) and (3.12), respectively, and letting a denote a polyhomogeneous
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function which is smooth and non-vanishing up to boundary hypersurfaces • for
which !F(•) f 0 (and whose value will change from line to line), we compute

~?/) v, ,f\ ^l(p2p2k)^*R(P2P2k)-dtf+ix
ß a MOW?)

Pili n Pff, L PffnR )2 (Pffn Pff,n•« Pff«
— ^

(Pffin Pff, c PffO.Ä Ptt-n.z, )2 (pffn pffi n.cpffc)2k

x (Pff,n Pff, « Pffn-z-)2(Pffn Pff, n-* Pff« )2

X (Pc Pff, L pffL Pff, n Pff] Rpïïn,L Pff-npffn.« pff )^/+1

a (Ptf(Pff,n''-Pff' (Pff,nPff|«) (PffnPff,n'«Pff'«)2^

X (PC Pff, « Pff« Pff, n Pff, /< PffD.r Pff-n pffn.r pttR )kf+l
a (Pff,nPff|«)2(PffnPffO-«PffO.«Pff«)2A:

X (Pff, « Pff, n Pffn PffO.Ä PffO.Z. PffÄ )kf+1

Putting this all together, we see that n^Ain^A2 ß*(((t'/t)(t — t'))F(w')p,o) is

polyhomogeneous with index set !F

F(ff,n) gi(ff,) 0 g2(ff,) + (3 + kf + 26),

,F(ffn) g,(ff) 0 g2(ff) + (1 + 2k+ kf + 2kh),

•F(R) - g2(rf)

F(ff| ^) gj (rf) 0 g2(ff, + (3 + kf + b), (B.29)

F(ffÄ) g!(rf) © g2(ff) + (1 + 2k+kf + kb)

F(ffn'R) gi(ffi) 0 g2(ff) + (1 + 2k + kf + (k + 1)6),

^(ffn>L) g,(ff) 0 g2(ff,) + (1 + 2k + kf + (k + 1)6),

and F(*) 0 for all other values of •.
Now we apply Theorem A.3 to analyze

(nc)*(nlAlJixA2 ((t'/t)(t - t'))F(w')p0)

from (B.26). To check that the conditions of the theorem hold, we first recall that jtc
is a b-fibration. Also, note that

eSc(C, H') ejic(tb|, H') eWc(tb'2, H') 0

for all H' e M(M2eal 2), and so we must check the integrability condition there, but

by below (B.29) we have

F(C) F(tb;) W (tb'2) 0,
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so the integrability condition holds. Thus A3(tï'l)*v (ji'r)*v is phg on Mh2eat 2 with
index set 83 satisfying

g£(lf) F(L) Ü ^(ff,L) Ü F(ffL) 0,
8'3(rf) (F(R) U F(flj*) U F(ffR),

g^(ffj) F(fijn) U F(ff]n) U F(ffn'L) Ü (F(ffn>*), (B.30)

g^(ff) ^(ffn) U ^(ffn'c) U F(ffc) ^(ffn),
83 (tb) 0.

where we used from below (B.29) that various bhs's have infinite order vanishing.
From this we see that the bounds in Proposition B.5 hold, in particular that for

any e > 0,

inf g;(ffi) > inf g^flj) + inf g2(flj) + 3 + kf + 2b-e,
8'3(ff) infg^ff) + infg2(ff) + l+k + kn-,

and thus by (B.27) the actual index set 83 of A3 satisfies (B.24), and the proof is

complete.
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