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Spectral and Hodge theory of
“Witt” incomplete cusp edge spaces

Jesse Gell-Redman and Jan Swoboda

Abstract. Incomplete cusp edges model the behavior of the Weil-Petersson metric on the
compactified Riemann moduli space near the interior of a divisor. Assuming such a space is
Witt, we construct a fundamental solution to the heat equation, and using a precise description
of its asymptotic behavior at the singular set, we prove that the Hodge—Laplacian on differential
forms is essentially self-adjoint, with discrete spectrum satisfying Weyl asymptotics. We go
on to prove bounds on the growth of L2-harmonic forms at the singular set and to prove a
Hodge theorem, namely that the space of L2?-harmonic forms is naturally isomorphic to the
middle-perversity intersection cohomology. Moreover, we develop an asymptotic expansion for
the heat trace near t = 0.
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1. Introduction

On a compact manifold M with boundary dM which is the total space of a fiber
bundle .
Z M —Y, (1.1)

with Z, Y closed manifolds, an incomplete cusp edge metric gi.e is, roughly speaking,
a smooth Riemannian metric on the interior of M which near the boundary takes the
form

Gice =dx?>+xFg, +ntgy +8, k>1, (1.2)
where gy is a metric on the base Y, gz is positive definite restricted to the fibers,
x is the distance to the boundary (to first order), and g is a higher order term.
Thus near the boundary (M, gic.) is a bundle of geometric horns over a smooth
Riemannian manifold Y. When k = 3, such metrics model the singular behavior of
the Weil-Petersson metric on the moduli space of Riemann surfaces, as we discuss
below.

In this paper, we study the Hodge—Laplacian

A= A8c = d§ + 6d (1.3)

acting on differential forms. Our first result shows that under conditions which contain
the main examples of interest, one need not impose “ideal boundary conditions” at IM
in order to obtain a self-adjoint operator. )

Theorem 1.1. Let (M, gice) be an incomplete cusp edge manifold that is “Witt,”
meaning that either dim Z = f is odd or

H/2(Z) = {o}. (1.4)

Assume furthermore that g = gice satisfies (2.7)—(2.8) below and that the parameter k
in (4.1) satisfies
k > 3. (1.5)
Then the Hodge—Laplacian A% acting on differential forms is essentially self-adjoint
and has discrete spectrum.
Thus, by the spectral theorem [36], there exists an orthonormal basis of L2(Q7 (M))

of eigenforms Afieq; , = A? p%j,p- We also prove that the distribution of
eigenvalues satisfies “Weyl asymptotics,” concretely, for fixed degree p

#j | lip < A%} = ¢, Vol(M, gice)A” + 0(A") as A — oo. (1.6)

See §4.2 for the proofs of Theorem 1.1 and of the asymptotic formula in (1.6).

Having established these fundamental properties of the Hodge—Laplacian on such
spaces, we turn to the next natural topic: Hodge Theory. Here the object of study is
“Hodge cohomology,” or the space of L2 harmonic forms,

%fz(Ma gice) = {C( € LZ(QP(M)’gice) l do =0= 50!}’ (1.7)
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and one phrasing of the Hodge theory problem is to find a parametrization for
Jf’L"z(M, Zice) in terms of a topological invariant. As described in [18], in analogous
settings the relevant topological space for Hodge theoretic statements is not the
manifold M, but the stratified space X obtained by collapsing the fibration at the
boundary over the base,

X:=M/{p~q|p.q€iMandr(p)=mnr(qg)} (1.8)

In §4.3 we will prove the following.

Theorem 1.2. For a cusp edge space (M, gi..) whose link Z satisfies the Witt
condition (1.4), there is a natural isomorphism

K> (M, giee) = THz (X), (1.9)

where [Hg is the middle perversity intersection cohomology of X. Furthermore,
differential forms y € JfZZ(M , ice) admit asymptotic expansions at the boundary
of M.

Moreover, if Z ~ S/, the sphere of dimension f, then X is homeomorphic to a
differentiable manifold and the isomorphism (1.9) becomes

H2(M, gice) = Hyp(X), (1.10)

where the latter is the de Rham cohomology of X.

We recall the relevant facts about intersection cohomology, originally defined
by Goresky and MacPherson in [13, 14], in §4.3 below. The equivalence in (1.9)
will follow using the arguments from Hunsicker and Rochon’s recent work [20] on
iterated fibered cusp edge metrics (which are complete, non-compact Riemannian
manifolds). To elaborate on the asymptotic expansion for £2-harmonic forms y, we
will show in Lemma 4.5 below that in fact

RZz(M, gice) = {(X = LZ(QP(M)’gice) | A8icey — 0}‘

(that the former is included into the latter is obvious), and we show that elements in
the L? kernel of A& have expansions at dM analogous to Taylor expansions but
with non-integer powers, a statement which can be be interpreted as a sort of elliptic
regularity at the boundary of M.

One application of these results, and to putative further work we describe below,
is to the analysis on the Riemann moduli spaces M, y of Riemann surfaces of genus
y > 0 with £ > 0 marked points. These spaces carry a natural L? metric, the Weil—
Petersson metric gw p, which near the interior of a divisor is an incomplete cusp edge
metric with k = 3. In general divisors may intersect with normal crossings, but in at
least two cases only one divisor is present.
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Theorem 1.3. Let My (also known as the moduli space of elliptic curves) and Mg 4
be the spaces of, respectively, once punctured Riemann surfaces of genus 1 and 4
times punctured Riemann surfaces of genus zero, modulo conformal diffeomorphism.
Then the Hodge—Laplacian ASWF on differential forms is essentially self-adjoint
on L? with core domain C cob (see Theorem 3.7) with discrete spectrum and Weyl

asymptotics, and if,A_{ 1,1 and My 4 denote the Deligne-Mumford compactifications
(see e.g. [17,38]). Then the de Rham cohomology spaces Hagr(Mi 1) are naturally
isomorphic to J(’L*z (M1.,1, gwpr), and the same holds for My.a4.

We discuss the proof at the end of §4.3, though this is really a direct application
of our results together with the recent work on the structure of the Weil-Petersson
metric near a divisor in [27] and [32].

This article is partly motivated by Ji, Mazzeo, Miiller, and Vasy’s work [21] on
the spectral theory of the (scalar) Laplace—Beltrami operator on the Riemann moduli
spaces M, for which it was shown by methods different from ours that it is essentially
self-adjoint and its eigenvalues satisfy a Weyl asymptotic formula. Here they analyze
incomplete cusp edge spaces with normal crossings, and find in particular that the
value k = 3 in (1.5) is critical; indeed for values k < 3 one does not expect self-
adjointness. It would be interesting (though more complex) to find a parametrization
of the space of closed extensions of incomplete cusp edge Laplacians with k < 3,
which is expected to be infinite dimensional, e.g. by [3].

In contrast with [21], since our eventual goal is Hodge and index theory on moduli
space, our main technical contribution is the construction and detailed description of
the heat kernel H = exp(—¢ A%«). Indeed, our approach to establishing Theorem 1.1
(which justifies the use of the word “the” in the previous sentence) and Theorem 1.2,
is to develop in Theorem 3.7 below a precise understanding of the behavior of a
fundamental solution to the heat equation, which we only conclude is the heat kernel
after using it to prove Theorem 1.1; we establish asymptotic expressions for it at the
singular set, uniformly down to time ¢ = 0, obtaining in particular in Corollary 4.4,
an asymptotic formula for its trace (which has potential applications to index theory,
since our method for analyzing A& may be used for other natural elliptic differential
operators on these spaces as well) and fine mapping properties of A&« which allow
us to analyze its kernel, i.e. harmonic forms. This is all described in detail in §4.

Essential self-adjointness of a differential operator P is typically a statement
about the decay of L? sections u for which Pu € L2. (Here the derivative is taken
in the distributional sense.) The set of such sections is denoted

Dimax = Dpax (AF<) = {u € L? | Pu € L?}. (1.11)

This is the largest subset of L2 which is a closed subspace in the graph norm
lullr = llu|lz2 + || Pul|; 2. On the other hand, the smallest such closed extension
from the domain C2° (M) is the closure, i.e. the minimal domain

Dumin := Dmin(A¥*) = {u € L? | Juy € C°(M) with klim lux —u|lr = 03.
—00
(1.12)
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The essential self-adjointness statement in Theorem 1.1 says that the smallest closed
extension is equal to the largest, i.e. that

DT)max — c’rOmina (]]3)

and therefore there is exactly one closed extension. On the other hand, Dy, is dual
t0 Dpmin With respect to L2 and thus if (1.13) holds then P with core domain CX(M)
has exactly one closed extension, which we denote by D = Dpin = Dmax and (P, D)
is a self-adjoint, unbounded operator on L?. Equation (1.13) is a statement about
decay in the sense that to prove it we will show that a differential form o € Dpax
decays fast enough near dM that it can be approximated in the graph norm by
compactly supported smooth forms. This we do using the heat kernel.

Recall that the heat kernel / is a section of the form bundle I1: End(A) —
M° x M° x [0,00), where M° is the interior of M and End(A) is the vector
bundle whose fiber over (p.q,t) is End(AZ(M); A7 (M)), smooth on the interior
M° x M° x [0, 00);, which solves

(0; + A®«)H =0 and H; — Id,strongly ast | 0. (1.14)

For a compactly supported smooth differential form «, the differential form

B(w, 1) = [M H(w, i, )t () dVolg, (i)

solves the heat equation (d; + Af)f = 0 with initial data ;=9 = «. One
consequence of our precise description of H in Theorem 3.7 below will be the
following.
Theorem 1.4. On a Witt incomplete cusp edge space (M, gice) with metric satisfying
the assumptions in (2.7)—(2.8) below together with (1.5), there exists a fundamental
solution to the heat equation H, = H(w,W,t) in the sense of (1.14) such that
fort >0

H;: L*(M; Q*(M)) — Dumin, (1.15)

and such that H; and 0, H, are bounded, self-adjoint operators on L>.

Theorem 1.4 implies the essential self-adjointness statement; indeed the
fundamental solution H, directly gives a sequence (indeed a path) of sections on Dy,
which approaches a given form in Dy,,. Namely,

@ € Dpax — Hyax — ain Dyip ast | 0. (1.16)

As we see now, the proof of this is straightforward functional analysis given the
conclusions of Theorem 1.4.

Proof of essential self-adjointness using Theorem 1.4. The proof has nothing to do
with the fine structure of incomplete cusp edge spaces, it depends only on the soft
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properties of the fundamental solution H in Theorem 1.4. To emphasize this,
let (M, g) be any Riemannian manifold and P a differential operator of order 2 acting
on sections of a vector bundle E with hermitian metric G, such that P is symmetric
on L2(M; E). Fort > 0, let H, be a smooth section of End(E) — M x M, which
depends smoothly on ¢ and satisfies

(9; + P)H; =0, t]in(]) H; =1d, and H;:L>(M:E) — Dun, (1.17)

where the above limit holds in the strong topology on L2, and furthermore such that
H, and 9, H, are self-adjoint on L2,

Let u € Dpax(P), ie.u € L?, Pu € L?. We will show that u € Dy, (P) as
well, and thus Dy,i, = Dnax- Indeed, we will show that

Hyu — uin Dpay,  i.e. that Hou — v and PH,u — Pu in L2, (1.18)

This suffices to prove that u € Dy, since Hiu € Dpyiy by assumption and Dy, is
a closed subspace of Dp.x in the graph norm. To prove (1.18), we note first that
H,u — u in L? trivially since H, — Id in the strong topology on L?2. Also note that
since ¥4 € Dyax, Pu € L?, s0 H, Pu — Pu in L? also. Of course, this is not what
we want; we want PH,u — Pu, but in fact we claim that

U € Dy —» PHiu = HyPu, (1.19)

which will establish (1.13).

It remains to prove (1.19). Note that foru € Dy and v € L2, then (H; Pu,v) 2
= (Pu, H;v) 2 by self-adjointness of H; on L2, while (Pu, H;v) 2 = (u, PH;v) ;2.
Indeed, the adjoint domain of Dpy is Omax, S0 for any [ € Dmin, € € Drmaxs
(Pf,g)12 = (f. Pg);2. But, then since PH; = —d; H; we see that

(HIPU,U)Lz = —(u,athU)LZ.
But 9, H; is self-adjoint on L? so
(u, ath'U)Lz = (a{Htu,U>L2 = —(PHtu,U)LZ,

and thus (H; Pu,v);2 = (PHu,v);2 forall u € Dpax, v € L2, ice. (1.19) holds.
L]

The central vehicle for the construction of the heat kernel is the construction of
a manifold with corners MhzCat via iterated radial blowup of the natural domain of
the heat kernel, namely the space M x M x [0, 00),; thus the interiors of these two
spaces are diffeomorphic, and the blowup process furnishes a “blowdown” map

B: M2, — M x M x [0, 00),, (1.20)
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which encodes deeper information about the relationship between the various
boundary hypersurfaces (codimension one boundary faces) of M2, and those of
M x M x [0,00);. The upshot is that the heat kernel H, which lives a priori on
the latter space, pulls back via 8 to be “nice” (precisely to be polyhomogeneous, see
Appendix A) on M2 . In fact, in §3 we will construct a parametrix K for the heat
equation directly on M;2_ . To obtain the actual heat kernel H we use a Neumann
series argument to iterate away the error.

The latter process builds on what is now a substantial body of work on analysis
(in particular the structure of heat kernels) on singular and non-compact Riemannian
spaces, going back at least to the work of Cheeger on manifolds with conical
singularities [8—10]. Our approach here is more closely related to Melrose’s
geometric microlocal analysis on asymptotically cylindrical manifolds [30] (a non-
compact example) and Mooers’ paper [33] on manifolds with conical singularities
(an incomplete, singular example). The general procedure, which one sees in both
the parabolic and elliptic settings, is to express the relevant differential operator as
an element in the universal enveloping algebra of a Lie algebra of vector fields, and
to “resolve” this Lie algebra via radial blowup of the underlying space.

It is useful to compare our work with Mazzeo—Vertman [28], in which the authors
study analytic torsion on incomplete edge spaces, which are the k = 1 case of
incomplete cusp edges, as their work also involves a heat kernel construction using
blowup analysis, which is slightly simpler in their context as the resolved double
space has one less blowup (and thus the triple space is simpler). Still, the basic
outline of the proof is analogous in both cases; a parametrix for the heat kernel
is constructed and this parametrix is modified by a Neumann series argument to
construct a fundamental solution to the heat equation.

One phenomenon revealed by our results is that the space of self-adjoint extensions
of the Hodge—Laplacian can be much smaller for incomplete cusp edge spaces than it
is for related incomplete edge spaces. For example, a Witt space (this is a topological
condition and has nothing to do with the value of k) that is incomplete edge may
have infinitely many self-adjoint extensions if the family of induced operators on the
fibers have small non-zero eigenvalues [3]. One expects that the zero mode in the
fiber (the space of fiber harmonic forms) makes a similar contribution in both the
cusp and cone cases, in particular that an incomplete cusp edge space which is not
Witt will have an infinite dimensional space of closed extensions on which “Cheeger
ideal boundary conditions” must be imposed to make the operator self-adjoint, as is
the case in [3].

A second closely related work is Grieser—Hunsicker [16], which uses also
quasihomogeneous radial blowups, in this case to construct a Green’s function
for elliptic operators on a certain class of complete Riemannian manifolds (called
“¢-manifolds’) which require similar analysis. There are many other related works in
a similar vein including, just to name a few, Albin—Rochon [4], Briining—Seeley [7],
Gil-Kraine—Mendoza [12], Lesch [23], Schultze [35], and Grieser’s notes on
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parametrix constructions for heat kernels [15]. For analysis of moduli space, to
give just a sample recent work, we refer the reader to the papers of Liu—Sun—Yao, for
example [24,25].

2. Incomplete cusp edge differential geometry

We begin be recalling the differential topology of the underlying singular space X,
which we take to be a smoothly stratified space in the sense of [2, Sec. 2.1, Def. 1]
with only a single singular stratum Y. This means in particular, as described in
loc. cit., that X \ Y is dense in X, that there is a tubular neighborhood ¥ C T
and a retraction wy: T — Y which is a locally trivial fibration with fibre the
cone C(Z) := [0,1) x Z/{0} x Z with Z a closed manifold, and that we are
given a “radial function” p: T — [0, co) which is proper and such that p~1(0) = Y.
Moreover, Y is given a fixed atlas of charts Uy = {(¢, U)} where ¢ is a trivialization
7 (U) — U x C(Z), the transition functions of which preserve the rays of each
conic fibre as well as the radial variable p. As explained in [2, Sect. 2], there is
a resolution ¢: M — X, obtained essentially by opening up the tips of the cone
fibers, such that ¢! (¥) = dM and such that the radial function p lifts to a smooth
boundary defining function of M which we call, henceforth, x. The boundary dM
then becomes the total space of a smooth fibration with base Y and typical fibre Z.
A choice of boundary defining function x, meaning a function x € C*°(M) with
{x = 0} = M and dx non-vanishing on dM, fixes (after possibly scaling x by a
constant) a tubular neighborhood of dM

U~ IM x [0, 1)y, (2.1)

and U forms a locally trivial fibration over ¢ (M) = Y with typical fiber C;(Z). A
local trivialization near a point p € Y then takes the form

V x C(Z), (2.2)

with V' a neighborhood of p in Y, for local coordinates y on the base and z on Z,
then

(x, y, z) form a coordinate chart on M in a neighborhood of ¢! (p). (2:3)

Let
f:=dimZ, b:=dimY. (2.4)

We will consider differential forms and vector fields which are of approximately
unit size with respect to Riemannian metrics of the type in (4.1). These are the
incomplete cusp edge forms, which are sections of the incomplete cusp edge form
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bundle, “®A* (M), whose smooth sections are generated locally over the base by the
forms

dx, dy; (i =1,....b=dimY), xfdzy (@=1....,f =dimZ). (2.5)

Correspondingly, we will use the space of vector fields which are locally C°°(M)
linear combinations of the vector fields

B, By, X 0. (2.6)

These vector fields are local sections of a bundle “*TM which is dual to “*T*M =
ice AL(M). We denote sections of ““TM by V.

We consider metrics g on M which are positive-definite sections of Sym®2 (‘¢ T* M ).
This means that they are smooth linear combinations of the symmetric products
of dx,dy; and x¥dz, which are positive-definite up to and including over the
boundary x = 0. We will assume slightly more structure at x = 0 than merely
assuming g is positive definite; to discuss this structure we first build some examples.
Specifically, we consider those metrics arising from submersion metrics on dM.
Concretely, consider a metric 7 *h + Kk, where /4 is a Riemannian metric on Y and
k € Sym%?(9M), has the property that its restriction to any fiber is positive definite.
Then the metrics 7 *h + x¥k form a family of metrics on M and thus we obtain a
metric go = dx? + 7n*h + x2Xk on U. The metric gy is an exact incomplete cusp
edge metric. Note that in coordinates (x, y, z) such a metric takes the form

1 0 0 dx.
go=(dx dy' x*dz?)[0 (hy) x*kia) || v . 2.7)
0 xF(kyi) kg xkdzP

In general we consider a metric g of the form

g —go = O(x*, go), (2.8)

where g is an exact incomplete cusp edge metric and O(x*, go) refers to a O(x*)
norm bound with respect to the exact incomplete cusp edge metric g¢ as in (2.7),
and furthermore we assume that the O(x¥, go) term is polyhomogeneous conormal,
a regularity assumption defined precisely in Appendix A, which roughly speaking
means that the coefficients have an asymptotic expansion at x = 0 analogous to a
Taylor expansion but with non-integer powers and with precise derivative bounds
on the error terms. Metrics satisfying these assumptions are what we refer to
henceforth as incomplete cusp edge metrics. (Note that the assumptions on g are
stronger than merely assuming that ¢ € Sym®?(¢T* M), as the latter space contains
e.g. x(xkdz ®gym dx), which does not obey the error bound.)

Remark 2.1. As is shown in [27] (see the introduction for further discussion) with
previous results for example in [38,39], the Weil-Petersson metric on moduli space
takes the form (2.8) near the interior of a divisor and satisfies the polyhomogeneity
assumption.
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To understand the form the Hodge—de Rham operator takes on U, we use the
decomposition for the exterior derivative from [5, Prop. 10.1], elaborated in [6,
Prop. 3.4] to show that there is a flat connection on the bundle of fiber harmonic
forms. Note that the choice of a submersion metric #*h + k on dM induces a
connection on the bundle 7dM, i.e. a choice of horizontal space Ty dM on which
the map 7, restricts to an isomorphicm of the fibres to TY. (Indeed this is just
the space perpendicular to the vertical tangent bundle 7' (dM/Y).) Correspondingly
there is a decomposition of the form bundle

A @MY= )" APAOM),
ptq=d

where AP4(0M) = APT xyg M @ A1T*(0M/Y), and where T xyg M = a*T*Y
and T*(0M/Y) is its orthocomplement. Thus differential forms on dM can be
written as linear combinations

T*a A B, a€QP(Y), BeQIT*OM/Y), (2.9)

and, for y € Y, identifying AT*(OM/Y) over 7~ (y) with A(mw~1(Y)) via the
inclusion t: 771 (y) —> OM, we can define a fiber exterior derivative

domyy (T7a A B) = o A dapyy P (2.10)

(where on the right-hand side dyas, v is the differential on the fibre).
There is a decomposition of the exterior derivative, which we denote using the
convenient notation from [3, Sect. 1]

0 1,0 5.1
dom = daM + daM + daM ’

where dgj‘} = dppyy while d;}"‘; is the operator (denoted by 8y in [5, Prop. 10.1])
defined using a connection /Y V on the vertical tangent space T(dM/Y) — in
particular we can fix a submersion metric g and define our vertical connection
using its vertical projections and Levi-Civita connection. Here ala2 M ' = Ris defined
in terms of the curvature of the fibration. Their crucial properties in this context are
that dal 1;2 d;) A} = —dgj} d;;} and that (having chosen a connection on the fibration)
they behave nicely with respect to the decomposition of differential forms

Q" (M)= P Q7 oM),
prq=r

where Q2777 is the C°°(dM) linear span of homogeneous forms o ® B where « is a
horizontal form of degree p and B is a vertical form of degree g; specifically

A QP9 OM) — QPRGN
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We now discuss vertical harmonic forms. Let (dajp/y)”™ denote the adjoint
of dyp/y with respect to our fixed submersion metric, and write

domry = damyy + (dopyy)™.

Over the base Y we have the bundle of vertical harmonic forms H*(0M/Y) — Y
whose fibers are kerdy57/y. A fiber harmonic form can be thought of as a linear
combination of forms as in (2.9) where g satisfies 8ypr/y B = 0, in particular the
smooth sections of #*(dM/ Y') are naturally isomorphic to a subspace of the sections
of Q*(0M), and we denote by I1, the L2-orthogonal projection onto the closure of
the subspace generated by these forms. Thus, incidentally, #*(dM/Y) inherits a
flat connection from the operator l'lodalj? [Ty.

Shifting the focus back to our collar neighborhood U of M, we can, by thinking
of the [0, 1)y factor in [0, 1), x M as lying in the base of the induced fibration with
typical fibre Z (and base [0, 1), x Y), repeat the above argument and obtain a bundle
of vertical harmonic forms over [0, 1), x Y, sections of which, again, my be thought
of as linear combinations of forms as in (2.9), but now with @ € Q*([0, 1), x Y).
For us it is most convenient to work with fiber harmonic forms living over our tubular
neighborhood U which are also of bounded length with respect to our ice-metric g.
Thus we take J to be the direct sum of the spaces

/
J =P, where H? = Q([0, 1), x ¥) A X H,, . (2.11)
qg=0

Denote the projection onto the space of fiber harmonic forms by
Mge: x50 L2(CA*) — x50 F¢, (2.12)

where TTg is the L2-orthogonal projection onto the closure of the subspace of
Q¥ (W) := C(U; “°A*) given by viewing sections of H as lying over U. Then a
form p € Q3.(U) can be written locally as a linear combination of forms
p=adx At*a @ x*? B + b A*a’ @ X*PB’,
a,hb € C®(0, 1), xY), a,a’ € Q*(Y), B, € AP(OM/Y),
and
My p = adx An*a @ x*PTIof + b An*a’ @ x*PT1p,

with I1, as above. Since

Mo =0 <= Iy, Ajpmyyy = B,

solving term by term for a form p expanded in x near dM shows that for € x*0 Q7 (U),
p €N,

Mgp = Oepr (x0FF) < Ty € x0TPQX (U), such that Agyr/yy = p.
(2.13)
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We now compute the Hodge—de Rham operator for an exact ice-metric g¢. There
are decompositions of dps and the dual §3s on U corresponding to that of djyay,
obtained by the orthogonal decomposing of the ice-tangent bundle

e — T oM x x *T(OM/Y) x T[0, 1]x.

Writing differential forms o = t(dx)dx A @ + dx A t(dx)a, we then have

—k k
(X daM/Z + 8y + x*R 0
2= ( dx + kx 1N —(x_kdaM/Z + 8y + ka) ’ (2.14)

and taking adjoints with respect to go and writing dpar/z 1= (dapyz)™,

Sy — (x_kSaM/Y + (dy)* + xF R —8y —kx~(f —N) )
0 —(FSapapy + (dyp)* +xFRN) )

(2.15)
To state the main result we will need regarding the structure of the Hodge—de Rham
operator, we first point out that the operators d and § are both elements in the algebra
of differential operators Diff},,(M ;' A* M) generated by the ice-vector fields Vice
and the smooth (or more generally polyhomogeneous) endomorphisms of “®*A* M .
In fact, for any X € Vi, the operator Vy € Diffilce(M ;1 A*M); indeed, one can

check that Vy € DiffL (M ;*TM) using the the Koszul formula, from which the
claim follows.

Proposition 2.2. Let g be an incomplete cusp edge metric as above, in particular
satisfying (2.8) for some exact ice-metric go. The Hodge—de Rham operatord = d +§
decomposes as

8=00+ P+ E, P ecx'Diff]

ice?

E € x* TEnd(*A* M), (2.16)

where 89 = d + 8, is the Hodge—de Rham operator for g, so

5. X *Boursy + By + xKS —8x —kx"1(f —N)
0 9, + kx"IN —(x K Bppryy + 839 + xkS))
where 6;}3 = dalj? + (d;jg)* and S = R + R*. Here D3py depends on the
base Y parametrically, and acting on vertical differential forms is equal to the
Hodge—de Rham operator for the Riemannian manifold k| .

We remark further on the space x*Diffi.. (M ; 1 A* M) of operators among which
the error P in the proposition lies. Such operators are in particular b-differential
operators on ice-forms with polyhomogeneous coefficients

P e Diff}

buphg (M3 A M), 2.17)
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This is the space of differential operators generated by 'V, ne, the polyhomogeneous
vector fields tangent to the boundary dM . Concretely, it satisfies

P =axdy +bd, + %00 +d (2.18)

for polyhomogeneous, bounded endomorphisms a,b’, c%, d, and where repeated
indices are summed over. This follows from x* V. C Vp. In general, an element
Q € Diffy ., (M A™ M) also satisfies

O(x*y) = 0" (2.19)

for y € C®(M;"“A*M), and is given locally by polyhomogeneous linear
combinations of xdy, d,,d;, i.e.

0= Y diapxdy) %0t

I+|a|+]|Bl=m

where a; 4 g is a polyhomogeneous bounded endomorphism of “*A* M.

Proof of Proposition 2.2. We will write the Hodge-de Rham operators d + § in terms
of the Levi-Cevita connection and exterior multiplication € (defined as the operator
which takes a differential form @ to the endomorphism @ — @ A . By [5, Prop. 3.53]
we can write d +8 = Trclg 08V where ¢/ = e— for € exterior multiplication on A *,
¢ its dual with respect to g, and ¢ V is the Levi-Cevita connection on differential forms.
We choose an orthonormal frame for the exact metric g in the standard way, i.e. let g¢
be induced by a submersion metric g on 9M and let { f*}U{e? } be an orthonormal
frame of T*(dM ) where the £ are horizontal and the ¢’ vertical differential forms.
Then {dx, %, x*e'} is an orthonormal basis for gy and by Gram-Schmidt there is
an orthonormal basis of the form
{a)o = dx + Ogiicc(xk), % = %4 ngilcc(xk), nt = xkel + Oqi (xk)},

ice

where QL (x¥) a polyhomogeneous differential 1-form g with ||B]l, = O(x%).
Correspondingly the dual vector fields satisfy wg — 0y, Wq — fu. i — €i € X Vice.
Moreover, for X € Vi, the tensor 8 Vy — &0Vy is O(x*~1) as an endomorphism

of “©A* M, while cl, —clg, = O(x¥), so

b /
d+38=cly€)¥Ve+ ) clg(@)8Va, + x5 clg(n' )2V,
a=1 i=1
b I _
= clgo(dx)¥Vy, + Y clg,(f*)EV s, + x7¥ Z cly,(¢")8V,, + x*Diffl

a=1 i=1
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b S/

= clgo (dx)50Vy, + Y clgy(f*)50V s, + X5 " clg,(e)50V,,
a=1 i=1

+ Ogaggee A%y (x*™1) + x*DiffL,

(2.20)
which is what we wanted. ]

The Hodge—Laplacian A = 8% = d§ + 8d can now be decomposed along the
same lines. Proposition 2.2 together with the anti-commutation of 0p7/y and 0y
gives:

Proposition 2.3. Locally over the base, A can be decomposed as follows

A=Ay +x*P+x71E, (2.21)
where Ay = 32, i.e.
k 1
Ay = Idax2 (— Bi — —fax + WAGM/Y =+ AH)
X X
kN1 —k(f —N))x—2 —2hkx* dypr 7
T L), 22
—2kx ¥ 800y k(f —N)(1 —kN)x

where Ay = (65}3)2, Aypmyy =0 and

2
MY’
P =0y P+ POsr/y

with P as in Proposition 2.2 and E € Diﬁg’phg(M).

3. The heat kernel

In this section we construct a manifold with corners M2, as in (1.20) together with

a fundamental solution to the heat equation which is a polyhomogeneous conormal

distribution on Mhzeat with prescribed leading order terms in its asymptotic expansions

at the various faces (see Theorem 3.7). To do so, after the construction of M,f‘eat,

we perform a parametrix construction and then use this parametrix to obtain the
fundamental solution itself via a Neumann series.

3.1. Heat double space. The space M&al is obtained by performing three consecu-

tive quasihomogeneous radial blowups of M x M x [0, c0),. Here Mhzeat is a manifold

with corners which is a resolution of M x M x [0, 00); in the sense that there is a
map B as in (1.20) with the property that 8*C°°(M x M x [0,00);) C C®(M?2,)

C.

is a proper subset — exactly which “additional” smooth functions appear on Méat
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is the main content of the construction, as we discuss now in detail. To describe the
construction we follow the development in [16] closely.

A quasihomogeneous blowup of a manifold with corners (mwc) X is a mwc
[X: Y ]¢-hom constructed from: (1) a boundary p-submanifold ¥ C X, and (2) an
extension of Y of order a in X. We define these objects in detail now.

Recall that as X is a mwc, near every point p € X there is a neighborhood V
which is diffeomorphic to a an open subset of ]R’_‘F x R”7%, and thus there exist
coordinates functions (xq,...,Xg, ¥1,..-, Yn—k) With x; > Oforalli = 1,...,k
with independent differentials on V. A p-submanifold Y is anembedded mwc Y C X
such that for each p € Y there exist such local coordinates on an open set V > p
such that

YNV =4x"= (&1 000 %) =0, ¥ = F1, 5155 Im) = 0}
wherer <k,m <n—k, (3.1

SO ¥ = (Xp41s++»Xks Vm+1»--+»Yn—k) are local coordinates on ¥. Given a
boundary p-submanifold Y (i.e. a p-submanifold ¥ which is a subset of a boundary
hypersurface (bhs) of X), we need in addition an extension of ¥ to a an inferior
p-submanifold Y with ¥ N9X = Y. Givensuch ¥, locally we can take a coordinate
neighborhood 'V with coordinates z = (x’, ¥, y”) as above such that,

YNv={x'=0=)"} and YNV=4{ =0

To add flexibility to the choice of the extension, we define an extension of Y or order
a € N to be an equivalence class of p-submanifolds Y withdX NY = ¥ which agree
to order a at Y, in the sense that for ¥, ¥’ two such extension and coordinates chosen
as above for ¥, then Y/ NV = {y’ = G(x’, y")} satisfies D,/ ,»G = O(|x'|*).
Given such data, i.e. an mwc X, a boundary p-submanifold ¥ C X and Y an
interior extension to order a of Y, one can define the quasihomogeneous blowup

ﬁ: [X, Y]thum — X (32)

as follows. On each coordinate chart in 'V in the previous paragraph, with coordinates
z = (x', ', y”) we define the quasihomogeneous cylindrical decomposition (see [16,
eq. 12],

= (3 o+ X2 T 4y,

3.3
St :={(w,v) R xR": R(w,v)} = 1, =

so that, in an open rectangle V' x V" C 'V where V' = {(x’,y’) : |X|.|)/| < ¢},
V" ={y" . |y"| < ¢}, we have the map
Blioe: [V Y N V]ghom = S x [0,)g x V' — V
((w,v), R, y") —> (Rw, R%v, y").



716 J. Gell-Redman and J. Swoboda CMH

The open mwc’s can be patches together to invariantly define the total space of a the
resolution in (3.2).

From this construction it is clear that the function R in (3.3) is smooth on
[V:Y N V]ghom. The locus {R = 0} is a boundary hypersurface of the (open) mwc
[V:Y N V]inom. Picking a covering of Y by a finite collection of such coordinate
charts, V;,i € I, each with its corresponding function R;, and choosing a partition
of unity subordinate to V;, the function p = ) ., & R; is then a boundary defining
function for an introduced boundary hypersurface. More precisely, define, for a
mwc X,

MU (X)=M(X)={H C M : H abhsof X}.

Then

M([X, Y]q-hum) = M(X)Ufty, fty :={p=0}, (3.4)
where each H € M(X) lifts to a bhs by taking the closure of the pullback of lift,
cl(B~1(H \ dH)). (Alternatively one can take M (X)) to be the set of open bhs, and
then write {p = 0}° instead.) Here p is a boundary defining function for ffy, in
particular p is smooth on [X, Y], hom Whereas it is not smooth as a function on X.
Moreover the ratios of functions vanishing at ¥ are now smooth on certain open
subsets of [V, V N Y [q.nom, for example, notation as in the previous paragraph, y; /x¢
(defined is smooth away from the closure of the lift of x; = 0 via f. Whena = 1
this is just a homogeneous radial blow up.

For a detailed definition of such spaces we refer to Melrose’s work [31, Chapter 5]
which contains a more general construction which does not assume that one has in
particular a fixed extension for the manifold N away from the boundary, (whereas
here we fix once and for all a boundary defining function x as in (2.1), which will
give all the desired extensions below). See also [16,22].

We will need a slight extension of the concept of quasihomogeneous blowup,
which are sufficient for the elliptic equations studied in [16], to include the presence
of the time variable . There will be an additional defining function s for the
boundary p-submanifolds Y will blow up at a different homogeneity than that of
the other defining functions; that is, with x’, y’, y” coordinates as in (3.1), we will
have x” = (s, x1,...,x,), and we will want to blow up so that s/xl-za is smooth for
i = 1,...,r. Luckily, in all cases below, the function s can be defined on a full
tubular neighborhood of ¥ C 'V in such a way that for some (open) mwc V' we have
V = R} x'V'. This gives a special bhs Hy := {s = 0} in the open mwc R} x V', We
then blow up quasihomogeneously but with s being “parabolic” with respect to the y
variables, namely we will have a boundary defining function, first defined locally on
coordinate charts in @ C V', by

R=(s+x3 4 x2 4 y2 ... 4 y2)l/2a (3.5)
and, parallel to the simpler quasihomogeneous case above, defining

St :={(o.w,v)e ]Rjr“ xR™: R(o,w,v)} =1,



Vol. 94 (2019)  Spectral and Hodge theory of “Witt” incomplete cusp edge spaces 717

the (locally defined) resolutions
[0,6)g xS —Rf x0, (R, (0,0,v)) — (0R*, Rw, RV, ")

patch together to form a global resolution which we continue to call [X, Y ].nom. We
continue to refer to these as quasihomogeneous blow ups.

We now construct the heat double space Mt?eal via three blow ups. We first
define the blow ups iteratively, so that Mhzeat is at least defined, and then circle
back to discuss each blow up in detail, defining explicit coordinate charts near each
introduced boundary hypersurface which will be used in subsequent computations.

We begin by considering M x M x [0, o0);. Consider the subset
By := IM xgq, M x {O} CMxMx [0, 00); (3.6)

where the fiber diagonal M xg, xdM is the inverse image of diag Y via 7w x w: M x
oM — Y x Y. Blowing up homogeneously to form [M x M x [0, c0);; By] gives a
manifold with corners with new bhs ff;. We let py be a bdf of f; and write p, for bdf of
the lift of { = 0} to the blow up. We may also define the fiber diagonal of the tubular
neighborhood of the boundary U x U x {0} C M x M x [0, co), using the fibration
U=00M x[0,1)y — Y x[0, 1), so that U x4 U = IM x5, x0M x [0, 1), and
consider the proper tranforms of this set, and intersect it with ff}, i.e. define

C(Bl = ﬂ‘| ﬂcl(BM Xfib xdM x (0, l)x X {O}z)

This we blow up quasihomogeneously so that p; plays the role of the slow bdf 7 in (3.5)
to form [[M x M x [0, 00);; Bo]; B1]¢-hom Finally we blow up, homogeneously, the
lift of the diagonal atz = 0, that is the proper transform of diag(M ) x {t = 0}; setting
B, := cl(diag(M°) x {0},) with the closure in [[M x M x [0, 00);; Bo]; B1]y-hom
we have

M., = [[[M x M x [0,00);; Bol: B1]yhom: Bz)- (3.7)

heat

We now discuss this space in more detail at each step, including explicit coordinate
functions.

1. The blow up of By, the fiber diagonal in the corner. This is the subset of
IM x M x {0} C M x M x[0, c0),; consisting of points (p, g, 0) with 7(p) = 7(q)
where 7 is the projection of the fibration dM onto its base. If local coordinates
(x, v, z) are chosen as in (2.3) and identical local coordinates (x, y, z) are fixed on
the second copy of M in the product M x M x [0, c0),, then in this local coordinate
chart B is given by {x = X =t = y — y = 0}. We can define the intermediate
blow up space

M2y = [M x M x [0, 00),; Bol, (3.8)

with 1 ~ x* ~ X% ~ |y — J|? at the introduced bhs. To be precise, M, | is the
parabolic blowup in time of the set B as defined in [30, Chapter 7]. In particular there
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. g2 2 . 2
is a blowdown map f1: My, | —> M* x [0, 00),, and polar coordinates on My, |

near 871 (By) (once coordinates y, z are chosen on M) are given by
- ~201/2
p=(t+x>+3+y—7P) 2

{ -~ =
¢: (_21£3£’y y) (3.9)
2 p e p

= (¢r. Px. P5. Py), along with y, z, Z.

The set {p = 0} is a boundary hypersurface on Mlﬁ:at,l introduced by the blowup; we
call it ff;; we will see that only the projection of the heat kernel onto the zero mode
in Z is relevant at the face ff;. Letting s = x/X, the interior of ff; is the total space of
a fiber bundle over Y x (0, 00)y, which is the fiber product IM xg, OIM X, TY X Ry
where ¢’ is a rescaled time variable (see (3.11) below). Indeed, the map from ff; to
the base Y is simply B1 |,

2. Blow up of 81. The preceding blow up does not resolve the term ;WABM/Y in
t(d; + A) (see (2.22)). To accomplish this, we blowup the subset of ff; defined in
polar coordinates by

"(Bl = {P = Ov ¢t = ¢y = O7¢x = ¢f}7 (310)

iie.by p = 0,¢ = (0,1/+/2,1/+/2,0), quasihomogeneously so that near the new
face, ff, the function ¢ /x2k is smooth, and furthermore so that 102 is non-degenerate,
the latter condition being satisfied if (x — X)/+/t is smooth up to the interior of ff.
Near B; we can use projective coordinates

% s=x/% n=2=2 =17 3.11)
X

along with y,z,Z. The quasihomogeneous blow up of B; creates another
intermediate space M2 ,. This space has t' ~ |2 ~ (s — 1)2 ~ 2%~ and we
have polar coordinates near ff given by

5= ((t/7) + 2% 4 (s—1)2 + (ly — j-;'|/55)2)1/2(k—1)’
B BT [t E BF J—F o
¢ — (¢ta¢x» Wx, ‘;”y) - (3{2’—)2(](_1)’ 5* fﬁ(k—l)’ }ﬁ(k—l)) HIOHg with VyZsZ.
(.12)
Let
Bo: Mycy2 —> M x M x [0, c0); (3.13)

denote the blowdown map. Then, similar to the setup at ff;, if we define 0 =
(x — X)/X, the interior of ff is a bundle over Y x R, whose fiber over p € Y is
isomorphic to 7Y x Z2 x Rz for T the rescaled time variable below.

See Remark 3.4 below for further discussion of the need for the two distinct blown
up faces fI and ff;.
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3. Blow up of the time equals zero diagonal, B, = cl(Ba(diag(M°) x {t = 0})).
Note that B, intersects the face ff at ¢ = (1,0, 0, 0), so near the intersection, defining
the functions

_ S§=1 F—E . Jp=7 g ' B 5 11
NLoosga T m o 1T Trmey T G

we have the projective coordinates
% 7.00.T,z,% (3.15)

The full heat space is M2,

T ~ 02 ~ (z —%)? at the introduced bhs. The face tf introduced by the final blowup
satisfies

is the parabolic blow up of B, in M2, ,, and has has

tf® ~ T M, (3.16)

where T M is the incomplete cusp edge tangent bundle defined in (2.6). Concretely,
in coordinates (x, y, z) if we set

~

g:x_x n:yl_j;l Za_Ea fk ‘[:ﬁ
\/z (] 1 \/; \/Z ] fk )
then (x,y,z,£,1n,(,1) (or (X,¥,Z,E,1n,C,7)) form local coordinates near the

intersection of tf with ff and away from ¢ = 0, and the association § > 0y, n; > dy,,
o > x7*3,, induces the map.

(3.17)

":a:

In summary, we have constructed a manifold with corners M2, depicted in
Figure 1, with a blowdown map 8 as in (1.20), such that Mhzeat has six total faces,

three of them being the lifts of the standard faces

If :=cl(B~' ({x = 0}°)), f :=cl(B~'({X = 0}°)),
th = cl(B~'({r = 0}°)),

and then the three faces ff), ff, and tf constructed (in that order) by radial blowup as
described above. Denoting the set of the six boundary hypersurfaces by M(M_2, ) =
{If, rf, tb, ff), ff, tf}, and given e € M(M?2 ), below we will let p, denote a boundary
defining function for e, so pe € C°°(Mhzeat satisfies that {pe = 0} = e and dpe
is non-vanishing on e and pe > 0. We can take pg = p as in (3.12). Note also
that x vanishes at If, ff;, and fI, and although it is not a boundary defining function
of any of these three boundary hypersurfaces, for any choice of boundary defining
functions py, pgr,, an py, it holds that f := x/pirpg, pg is @ smooth, positive function
on Mhzeat. It follows, for example by setting p;r = f - pir that one can choose these
three boundary defining functions so that

(3.18)

PIEPHPE, = X, PrPEP, = X. (3.19)
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The same argument applies to p, which vanishes on ff; and ft, i.e. we can take
pm pr = p, ie. pr = p/p.

In Theorem 3.7 we will show that the heat kernel lifts to be polyhomogeneous

Y,z
7 is a b.d.f. for tf
X is a b.d.f. for ff

=

Figure 1. The heat double space (upper left) and the various intermediate blowups together with
their blow down maps.

3.2. Model operators. The blown up space Mhzeat is useful in the construction of a
parametrix for the heat equation in part because the operator d; + A (more specifically
t(d; + A)) behaves nicely at the three introduced boundary hypersurfaces ff, ff;, and tf;
in particular, the first steps in the parametrix construction involve finding the right
asymptotic behavior for the heat kernel so that the heat equation (1.14) is satisfied at
least to leading order at 1T, ft|, and tf.

Thus, we consider the operator A acting on the left spacial factor of M x M x
[0, 00);, and the pullback B*(¢(d; + A)) to M2, and show that this restricts to an

heat>
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operator at tf. To be precise, fix a point p € M and consider the fiber tf, = 7 Y (p)
where
w:tf — diagy, = M

is the projection onto the diagonal (or more concretely it is B|). In the interior
of tf, i.e. away from the intersection with ff, this is standard [30], so we concern
ourselves only with an open neighborhood of the intersection of tf with ff. Indeed,
working locally over the base in both spacial factors, consider a subset of tf of the
form {(X,y,Z,E,n,¢,1) : (X,¥,Z) € O}. Now note

t
Vidy =0, 13y = by, ikaz = 0; + O(2), (3.20)
X
and
1
19, = = (td; — R), (3.21)

where R = £0¢ + 1+ 0, + {0¢ is the radial vector field on the fiber. Letting
wp, R M x M x[0,00); — M

denote the projections onto the left and right M factors, and End — M x M the
endomorphism bundle, whose fiber at (p,¢) € M° x M® is End(Ag; A7), fort > 0,
the heat kernel restricted to the interior will be a smooth section of this bundle. To
study the heat kernel at the boundary we use the incomplete cusp edge forms and the
corresponding endomorphism bundle End(** A*) back to M x M x [0, o0), and then
to M2, via the blowdown f. As usual, restricting to the spacial diagonal gives the
“little endomorphism” bundle

End(iceA *) |diag(M) = end(iceA * ) ’

where end(®*A*) — M is the endomorphism bundle of the exterior algebra of M.
The restriction to the time face, 8* End|y, is isomorphic to the pullback of end(A;)
to the tangent bundle of M via the projection map.

Writing w = (x,y,z), w = (X,y,Z), sections of 8* End near the fiber of tf
over p can be written

o ZZ(JIJLZIU]®BIEJ, (3.22)
1,J

where 7, J run over all multi-indices and dwy is dual to dwy, and here a;; =
ary(w,w,t). We claim that, writing sections of 8* End near tf as sections of
B*End|y >~ A*(M) @ A(M),

t(0, + A) = (% (td; — R) + U(A)) ® Id +0(7). (3.23)
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where o(A) is a constant coeflicient differential operator in the coordinates 8 =
(&, 7, ) depending on the metric g at p = (X, ¥, Z), namely

(T(A) = (da -+ *;(lp)dgig(p))z, (3.24)

acting on differential forms on the vector space iceA;( M) with metric g(p). Indeed,
let w be geodesic normal coordinates. In the interior of tf away from ff we have
coordinates & = (w — w)/+/t, W, +/¢. Then

(O + M= (0@ + A) Y arsdwy ) ® iy
1,J
and moreover
*xdw; ® 0y = (xdwy) ® JWy
= tdwjie ® dwy + O(w — w)
= +(dWc + V1tdEB1c) @ Wy + O(V1E)
= (xg(pd W) ® Wy + O(I). (3.25)
Similarly, letting the exterior derivative act on the left gives
d(adw; ® 8@]) = (agiadﬁji A 151) ® Jwy.

To motivate our construction of the heat kernel further, in a neighborhood of tf
let y be a section of End with the property that y| diag,, = Id on the form bundles,

and consider the section of f* End on leem of the form
I -G
K(p.4.0) = Gomme P Ty, (3.26)

such that G(p, q) satisfies that 8*(G(p,q)/t)|¢ = || E ||§, , that is, that G(p,q)/t
restricts to the metric function on tf. Such a form y and function G can be constructed
but we neither prove nor use this; we merely use it as motivation. It is straightforward
to check that for any smooth compactly supported form o

i [ K(p.g.0a(@) Vol = @02 [ o a(p) Vepla ]
=0/ M M
~ a(p). (327

and in fact the convergence takes place in L2, (In fact, such an endomorphism y can
be constructed easily by taking the identity map on “®A* over M, pulling this back
via B to B* End|y and extending off smoothly in a neighborhood. On each exterior
algebra A7, M, the identity can be expressed in terms of a basis e; with dual basis e/
as ) ;er ® e7. In a neighborhood of tf N ff we can take the basis e; to be dx, dy;,
xkdz,, i.e. we can take the ¢; to be a basis of forms for “®A* all the way down
tox =0.)
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—7/2 = ¢7nX 7"k the Taylor expansion

Working in the coordinates (3.17), since ¢
of the heat kernel at tf should take the form

o0

1 n ,

= s,
(@) /25 7 E t/h;, (3.28)
J=0

P

where the b; = b;(x,y,Z,&,n,{) are sections of * End, which we again write in
a neighborhood of tf N ff as sections of End(***A*) pulled back to the fibers of tf.
Writing each b; as a finite sum of terms of the form

a® g B, (3.29)

1

where « and B are sections of “®*A* and g~! indicates taking the dual vector field,

we see that by (3.23) we have,

((5-5k+0() ®1d)h = ((g IR+ (AOE A(’E) )s Id)bo- (3.30)

The only solution to this equation which gives the identity operator at t = 0 is
by = e NIBIP/4 5 14, (3.31)

The procedure of solving for the remaining b; is standard [30, Chapter 7]; letting
the Laplacian act on this expansion we show that on each term a; it acts fiberwise
like a constant coefficient, second order elliptic differential operator plus the radial
vector field plus a constant corresponding to the order of the term in the expansion.
We have the following

Lemma 3.1. There exist sections b of Apne(End|y) satisfying
“N=12/4T ;~ ~ ~
b] =€ "H” /4bj(X,y,Z,é§sT]a§),

where b j is a polynomial in &, 1, { and a polyhomogeneous section of End over tf,
such that for any distribution H' in AP*¢(End) with asymptotic expansion near tf
given by (3.28) we have

t(0; + A)H = 0(z®),
i.e. t(0; + A)YH' vanishes to infinite order at the blown up t = 0 diagonal, and,
moreover, the asymptotic sum of the b; exists and yields such an H'.

The existence of a distribution H’ as in Lemma 3.1 is only a first step in
constructing a parametrix for the heat kernel. We will discuss the rest of the process
in §3.3.

A useful double check of the order of blowup of the heat kernel at ff is the
following. Near ff N tf we have

1
Sx = F)8(z =Dy = 7) = 8ETT)SMF)SCT) = —=r—5p SESMEED).
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Since Id = limy\ o H dVolg ~ lim,\ g HX*kf dXdydZ, we confirm that H should
have order —nk at ff. In fact, we can deduce more; considering kn g lfr, on the
interior of ff we can use coordinates in (3.15), we get that

§(x —X)8(y — Né(z —7) = ¥ B D*§(0)8(7)8(z — 2), (3.32)

which means that, on the face ff, we expect that the restriction X% H | will be given
by 8(0)6(17)6(z — Z) at least as the time variable T =t /X% goes to zero, as that is
the region in which the action of H is definitively approximated by the identity. On
the other hand, X commutes with the heat operator d; + A. As we will see in (3.35),
t(d; + A) restricts to an operator on I and defines a fiber-wise heat type operator
on ff, so we expect to have

1@ + N)|g(Z"* H)|g = 0. (3.33)

This, together with (3.32), implies that an ansatz for the heat kernel should include
that on each fiber of ff, X" H|g is the fundamental solution to the induced heat
equation on the fiber, more precisely, it is the solution which equals §;—085-¢ Idz
at time equals zero. The induced heat equations are translation invariant in o and 7,
thus induced by convolution operators, and the heat kernels we speak of are the
convolution kernels in o and 7).

As for the blowup at ff, as we will see below, the operator acts as a modified heat
operator in d, and Y on the bundle of fiber harmonic forms, so in the coordinates
in (3.11) we will have

1
B(x = D)8y — Pz =) = 580 — DB ~ D). (3.34)

In this case, 7 (d; + A) only admits a restriction to fI; on the fiber-harmonic forms #,
on which §(z — Z) becomes projections I1z , onto the kernel of Ayas/y. Thus we
expect that X1 +6+k/ | ¢, on fiber harmonic forms is given by the convolution kernel
for the heat kernel in 7, times the dilation invariant kernel for the heat kernel in s
with limit §y—; at time O.

We now compute the asymptotic behavior of ¢#(d, + A) at the faces ff and ff;.
First we will work at ff.

Proposition 3.2 (The model problem on ff). The operator
N (t(d; + A%)) = 10 + A*)|g
acts fiberwise on ff, and is expressed in the coordinates in (3.15) by

—8(2, + Ay + Aomyy 0
0 —05 + Ay + AaM/Y))
(3.35)
on the fiber above y € Y. Here A, is the constant coefficient Hodge—Laplacian
on the tangent space T\ Y with translation invariant metric h(y), and Ayp/y is the
Hodge—Laplacian on (Z, k).

Ni(t(d; + A8)) = T(af + (
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The situation is more delicate at ff;. As we will see in §3.3, near ff, it will
suffice to consider #(d; + A) restricted to fiber harmonic forms. Thus let y € x*J
(see (2.11)) and so by assumption 8ypr/y ¥, dapyyy = 0. From (2.21) it follows that
for such fiber harmonic forms,

Ay = Aoy + x *Bapy Py + O(x°7Y), (3.36)

where 50 acts on forms decomposed as in (2.14), as

kf

~ _ _ —2 _ —k—1
x, = _83(___#3#AH+(/< N(I —k(f —N))x 2k x %V dapgsz ) |
X

—2kx k180 y k(f —N)(1 —kN)x™2
The term x % Oam/y P acts on polyhomogeneous forms as operators of order T,
and thus in the heat operator ¢(d;, + A) there are term behaving like 7x* (on fiber
harmonic forms) but 7/ x 7% is not a bounded function at ff;! On the other hand, if we
project back to the fiber harmonic forms we kill these terms; concretely, with TT g
the fiber harmonic projector in (2.12), we have

MzpAllg = Ag + x L E’ (3.37)

where £’ € Diffﬁ’phg (see (2.17)), and thus does not decrease the order of vanishing

of polyhomogeneous distributions. Defining

B

o, A
Pyp:=—0; — ?as + (3.38)

and
a(N) :=kf. BIN):=kN(—k(f—N)), y(IN)=k(f—N)(1-kN), (3.39)

we have the following.

Proposition 3.3 (Heat operator on fiber harmonic forms at ff|). Restricted to the fiber
harmonic forms J€ as defined through (2.11),

Nir (10 + A%)) := Mgt (3, + A) Mg, (3.40)

restricts to the face ff| in the coordinates (3.11) as

P + A 0
Niry (¢ (3, + A%)) = t’(a r+ ( HLAED )) 341
ﬂ]( ( t )) t O Pa(N),y(N) e Ar, ( )

Remark 3.4. Analysis of the fiber harmonic forms is necessary in particular because
the structure of the operator A# is such that, off of the fiber harmonic forms, the
leading order term is x_ZkAaM/y, while restricted to the fiber harmonic forms
the leading order term drops in order. Indeed, if it weren’t for the presence of the
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term x % P in (2.21), which presents complications in the analysis, on fiber harmonic
forms A% would be given by to leading order by 50. Indeed, the need for the two
different regimes represented by the boundary hypersurfaces fI and ff; is exactly
this change in asymptotic order of the operator on and off the fiber harmonic forms.
Correspondingly, we will see below in the proof of Lemma 3.5 that the operator
t(0; + A) restricted to ff has a fundamental solution which vanishes at ff; to infinite
order off the fiber harmonic forms.

The heat equation for the regular singular ODEs in (3.38) has been studied in
detail. To such an operator there corresponds a pair of indicial roots given by the
order of vanishing of homogeneous solutions, specifically P4 g(s%) = 0if and only if

 —(A-1)x/(A-1)2+4B
- > .
The numbers ¢ give important information about the operator P4 p, in particular

they give the order of vanishing of the Green’s function at s = 0. The operators that
will arise in our work are those in the matrices in (3.41). We define the indicial set

¢

(3.42)

% O {—(a—l)i\/(a—1)2+4ﬂ,—(a—l)i\/(a—])2—|—4y

N=1 & 2
P (3.43)
= | J{-&kf—D/2£k(N=f/2)+1/2],
N —(f —1)/2+ k(N - f/2) —1/2]}.
Letting
R A-1)°
v:B+( . )>0 (3.44)

where v > 0, from [36, Vol. 2, Eqn. 8.60] there is a fundamental solution H 4, g(s,5,1)
(0; + PAB)Hap(s,5.1) =0 and H —Idast — Oon L%(s%ds). (3.45)
Indeed, one has the explicit formula

1 55
Hap(s,5 1) = (55U 2563—“‘2”2)/ at 1.,(-;—;) (3.46)

where [, is the modified Bessel function of order v of the first kind [1, Chap. 9].
As discussed below (3.34), at the face ff; we expect the heat kernel to be of order
X~1=b=k/  Thus we expect to have

0=1t(0;, + AH = + A)GEHPH Y, (3.47)

S1+b+kS (z(0;

and since TTg1(0; + A)I1g defines a differential operator on section of # ® H*
restricted to ff;, we include in our ansatz for the fundamental solution (1.14), and
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indeed prove in Theorem 3.7 below, that there is a fundamental solution /1 satisfying
that ¥!+2+%/ [ has a smooth restriction to ff;, and writing

Nig, (H) := (RS H)|g,, we have Nig, (t(9; + A) Ny, (H) = 0.  (3.48)

Furthermore, again as discussed below (3.34), it is sensible to include in the
ansatz for H that Ng,(H) is the fundamental solution for the model operator
Ny, (1(9; + A)), meaning specifically that Ny, (/) is a section of the restriction
of the sub-bundle End(#) to ff; and is given using the fundamental solutions to
the model heat equations H 4, g from (3.45)—(3.46). Specifically, we will have as an
ansatz that Ny, (H) = kq,, where

. [Hap(s, 1,1) 0 N—b/2  —In|2 /4’
Kff,y ‘= ( 0 Ha (s, 1.1) (4t g : (3.49)

where «, 8, y are as in (3.39), and in particular continue to be operators depending
on the fiber form degree N. The distribution Ny, (H) is polyhomogeneous on ff}, and
the leading order behavior at s = 0 satisfies that for0 < ¢ <t’ < C < o0, for some
smooth a(t’), b(t'),

Hyp(s, 1,y ~ s ® =024 @P) [, (5, 1,17) ~ s=&S=D2p (g7 g0 @)

(3.50)
with v as in (3.44)
k(f/2—N)—1/2 ifN< f/2,
v(a, f) = L . .
(N=f/2)+1/2 ifN=> f/2,
(3.51)
k(f/2—N)+1/2 ifN< f/2,
v, y) = . .
k(N— f/2)—1/2 iftN> f/2,
and thus by (3.50) on ff; in the region 0 < ¢ <t' < C < o0,
- —kN ifN < /2,
kg, = O(s"), where V(N) = {—kN + 1 itN= f/2, (3.52)

—k(f —N) ifN> f/2.

In words, each P, g has two indicial roots, the order of H, g for fixed 5, ¢ > 0 is the
larger of these two, and p is the smaller of the leading orders of Hy g and H .

The behavior of the heat kernel at ff; also shows what to expect at the left face,
the lift of x = 0. There we should just have the projection onto the fiber harmonic
forms times the leading order behavior of the H, g and H, ,, acting appropriately
on “®A* times the lifted heat kernel of the base Y. Indeed, we expect

H, (%, X,1) 0
Mol g =g o= | 20N N ) Hy, 3.53
T ( 0 Hymyyoo(x, %,0) ) 7F (35)
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where Hy is the heat kernel on (Y, k) lifted to the tubular neighborhood U in (2.1)
via the projection and « acts on sections of the bundle of fiber harmonic forms J
with its grading by fiber form degree N (see §2). In fact, with v = V(N) the fiber
degree dependent weight in (3.52), this k defines a section near the corner 0M x oM
of the endomorphism bundle of the vertical harmonic forms:

Kluxu € X" C®(U x U; @_o K™ @ (H#N)*) (3.54)

where J and J, respectively, the pullbacks of the fiber harmonic form bundle
(defined on a neighborhood U of the boundary) via the left and right projections of
U x U onto U. This is all cooked up so that

X el = ks (3.55)

indeed, extracting matrix components from the definition of «, using « = kf, and
writing x /X = s,1/X% = t’ gives

X1HoHkS g n.p00 (X, X, t) Hy

- 1 2,2 xX 1 5 2
_ ~ldbtkf omn—Gkf—-1)/2 L —x2+x2)ae, [ XX dist(y,7)2/4t 1/2
— (%) 2¢ b (ZI) 1b12°¢ 1+ 06)
1 2,=2 xX 1 : 3
_ (=S =1)/2 —OERRR Ay (2T ) A4 g 1/2
(/%) 20 /72¢ ' (21 ) (t/x2)b/2 ( )
1

_ —kf-2 L (s241y/ar i) L n2/ar fr
= 2° by (2t’ (t)’b/ze (I+0(™),

which implies (3.55). Below, we mean by « a form which restricts to U x U to be
as above and extends to all of M x M polyhomogeneously with the same index set
as x. (This is easily arranged, and the index set of « is well defined since U x U
intersects all bhs’s of M x M .)

As discussed below (3.33), on the face ff, we expect that the heat kernel will have
leading asymptotic Tk 50 we expect and prove that

Ni(H) == " H)|g = Nu(t(d, + A)Ng(H) = 0. (3.56)

Again, we will set Ng(H) equal to a fundamental solution to the heat equation,
namely, using the decomposition in (3.41), we expect to have Ny(H) = kg where

~ ~ (2 2 s
i,y(0,1,2, 2, T) = Idpso (4 T+ D12~ AT

Hz 5. (3.57)
where Hz , = Hz ,(z, 2/, T) is the heat kernel for Aomyy -

3.3. Parametrix construction and the asymptotic behavior of the heat kernel.
We now construct, and describe in detail the asymptotic behavior of, a parametrix
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for the heat kernel. Then, using a Neumann series argument and composition
properties for operators which are formally similar to our parametrix (established
in Appendix B), we upgrade this to a description of the heat kernel itself.

To begin our discussion of the parametrix construction for the heat kernel, let us
briefly recall the notion of an index set, which by definition is a &(e) = {(y, p)} C
C x N associated with each face e € {If, rf, tb, ff, ff, tf} such that:

(i) each half-plane Re y < C contains only finitely many y;
(ii) for each y, there is a number P(y) € Ny such that (y, p) € &(e) for every
0<p=P(y)and(y,p) ¢ &E(e)if p > P(y);
(iii) if (y, p) € E(o), then (y + j, p) € E(o) forall j € N.

We recall the full definition of polyhomogeneity in Appendix A, but roughly speaking,
we call a differential form « polyhomogeneous with index family

& = {E(e) | o € {If,f, tb, T, ff, tf}}

if it has an expansion at each boundary hypersurface e with exponents determined
by the corresponding index set & (o) and coefficient functions which are themselves
polyhomogeneous (with exponents determined by &). For example, smooth functions
on M?2,, are polyhomogeneous with indicial set satisfying € (e) = Z x {0} for all e,
and if a polyhomogeneous function vanishes to infinite order at a particular boundary
hypersurface e, then it is polyhomogeneous with an index set & satisfying &(e) = @.
We define

inf &(e) = inf{Re y | (y, p) € E(o)}.

Our first step is to establish the existence of a polyhomogeneous distribution whose
behavior at the various boundary hypersurfaces matches the behavior we expect from
the heat kernel.

Lemma 3.5. There exists a distribution Ky € A (M2, ; B*(End)), polyhomogen-
eous with respect to an index set & satisfying the following properties:

(1) K, satisfies (3.28) for the indicated b . In particular,
E(f) = N —dim(M), &(tb) = @.
and thinking of K (t) as an operator on differential forms on M for each t,

Kit)a - ainL?ast — 0. (3.58)

(2) At the faces ff and ft;, we have inf E(ff;) > —1 —b — kf and inf E(ff) > —kn;

more precisely
G KD = km, KD e = ks (3.59)

with kg, and kg the model heat kernels defined in (3.49) and (3.57).
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(3) In the neighborhood of the corner defined by U x U (for our fixed tubular
neighborhood U of OM ), in an open neighborhood of If and rf,

K =« (3.60)

where Kk is as in (3.53).

Moreover for the behavior at the codimension 2 face If Nrf, the leading order
behavior is the product of that at If and tf, i.e. Ky = O(pyp:) %721, In
particular,

inf & (If) > —%’i g 1, (3.61)

Furthermore, K can be taken fiber harmonic in a neighborhood of i .

Proof. Proving the existence of a polyhomogeneous distribution with prescribed
leading order behavior at the boundary hypersurfaces of a manifold with corners
boils down to showing that certain matching conditions hold at the intersections of
the bhs’s. For example, for smooth functions on a manifold with corners, a set of
functions f;: H; —> R admits an extension to a smooth function u (i.e. u|g, = f;)
if and only if fi|H,—ﬂHj = fj'H,—ﬂHj for all 7, j with H; N H; # &. For the
convenience of the reader we include the general matching condition in Lemma A.1
below, and we verify these now.

Such a K’ will exist by Lemma A.l in Appendix A provided the hypotheses
are satisfied, meaning that the following matching conditions hold. We must find a
set {pe} of boundary defining functions for the boundary hypersurfaces, e = If, rf,
tf, tb, ff, ff; of M2 such that

heat

I ) -
S = d hils
= At 2 7hjlw
jeN (3.62)

Sc'k”lcﬂ-, = ¥ Fb+kS e on N,

and that kg, kg, and the b; vanish to infinite order at tb. Indeed, in the notation
of Lemma A.1 we have k1 = (pg, /%) T2+%/ kq, and i = (pi/X)*" Ky, and the
matching conditions in terms of x; and x, in Lemma A.1 are exactly (3.62). We
use boundary defining functions pg = p, py, = p/p for the faces ff and ff; defined
in (3.12) and (3.9). Finally, we use 7 in (3.17) as py; though it is not valid at tb N tf,
all the distributions in question will vanish to infinite order there and there will be no
conditions to check.

The first matching condition in (3.62) follows easily since the coefficients of the
expansion of «, are determined by the same differential equation which determines
the b, and the coefficients in both expansions are uniquely determined by their being
equal to polynomials times Gaussians on the fibers of tf N {f.
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Finally we check that the second condition in (3.62) holds. First we consider
kg, = ky,,5(s, 1,1,¢") above the point ¥ € Y (i.e. restricted to ft}5). In the polar
coordinates in (3.12) and using the boundary defining functions above (3.19), we

have
= = 2k=1) 7 o]
2.2 TR 1 SR 1. (3.63)

Af p]f Pt
Using [1, Eqn. 9.7.1], we have that the modified Bessel function satisfies

Iy(z) = (e77/~V2nz)(1 4+ O(1/2)),

and thus

kf I
b Pir 1T |
o (o) ™ " k5 = (4n¢';(b+l)/2e W=ty [9/49 (| 4 0(og)). (3.64)

On the other hand, above each base point ¥ € Y, k4 5(0, 7', z, 2', T') can be written
using separation of variables with respect to the spectrum of Azp/y. Indeed,
since Hz,, has discrete spectrum, it is standard that Hz ,(z,Z,t) = Iy + E,
where Il is projection onto the kernel of Ajy/y and |E| < e 20! as 1 — 00, Ao
being the smallest non-zero eigenvalue of Agps/y. Thus

~ ) 2
K,y = (2JTT)_(b+1)/2e (0=+In |hl)/2ng + El, (365)

where E’ is exponentially decaying. Now we have

- —2(k—1 —(k—1 k—1) —
= Gior, Vot ' =g Ve o = Vpik. (3.66)
and thus
1+b+kf —kn Pie i —~(UZ+vy13)/ 4
P (prpsr)) ™ i = mp)e0i2¢ T (3.67)
so the matching condition at ff N {f; holds.
On the other hand, X'*?+Kf | = Ky, by (3.55). Since we have not yet
prescribed K’ near If and rf, we may set K’ equal to « in an open neighborhoods of
If Nft; and rf N ff; and the compatibility condition will be satisfied there. L]

Next we correct this distribution K; by adding terms to it, so that the resulting
distribution K satisfies appropriate decay estimates for the error (d; + A)K. Our
distribution K will have the same asymptotic properties at the boundary hypersurfaces
enumerated in Lemma 3.5 as K; does, except that (3) must be modified to include
error terms of order O(pﬁ-).
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Proposition 3.6. There exists a polyhomogeneous section K € Apng (M, hzeat; B*(End))
satisfying properties (1) and (2) of the distribution K in Lemma 3.5, and satisfying (3)
with the exception of (3.60), instead satisfying

K =«(1+ 0(of)) (3.68)

in a neighborhood of If,nn such that the “error” Q := t(d; + A)K is polyhomogen-
eous with index set &' satisfying

inf &'(ff))) > —1—b—kf +1, inf& () >—kn+1,

g'(If) = &'(tf) = &'(tb) = @. (3.69)

Proof. Taking a distribution K; provided by Lemma 3.5, we study #(d, + A)Kj;.
Automatically we have that ¢(d; + A)K; vanishes to infinite order at tf and tb, as
follows from Lemma 3.1. Furthermore, #(9; + A) K; vanishes to order —kn + 1 at ff
by (3.35) and the fact that the leading order term «¢ there solves the model problem.

At ffy things are again more delicate. Recall that K; = O(pg; b=tk ) at ffy,
where py, is the boundary defining function for ff; in, e.g. ps, = p/p with p as
in (3.9) and p as in (3.12). Since K is fiber harmonic near ff;, by (2.12) and (3.36)
we have

AKy = AoK1 + x 2 Mgy K1 + x *Bpryy PK1 + x'EK,
= EOKl +x_k63M/yPK1 —+ X_IEKl + x_k(’)aM/y PK’

2 0(p;1—b—kf+2k)‘
|

Furthermore, by (3.37) we have that I1g1t(d; + A)[1g Ky isorder —1 —b —k f + 1
since its leading order term solves the model problem.

We assert the existence of a polyhomogeneous distribution A of order —1 — b —
kf + k such that £ (d; + A)(K; — A) itself vanishes to order —1 —b — k f + 1 at ff.
Indeed, since the leading order term in ¢(9, + A) is tx 2k Ajm/y , and since by (2.13)
we can find B such that

AaM/yB = 63M/YPK,+63M/yPK1, (3.70)

where B is polyhomogeneous with asymptotic expansion determined by the
expansion of the right hand side, in particular B = O(pgll_b_kf ). Wetake A = x* B
and thus obtain, with P as in (2.21),
19 + A)(Ky —x*B) = 1(3; + Ao)(K1 — x*B) + tx E(K, — x*B)
—tx*Px*B + tO(pfFll_b_kf”LZk)
=13 + Ao)(Ki — x*B) + 10 (p; ")
- —1—b—kf —1-b—k
+x7 0 (op P 410 (o M)
—1—b—kf+1
- 0(pﬁ'] )
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Since the expansion of B at fI has the same order as K, the distribution
K2 e Kl — XkB

has all of the desired properties of K in the statement of the proposition except that
(d; + A) K> is not rapidly decreasing at If. Note that, since pllf+b+kf K| = 0(s"™)

1
where v is the (fiber degree dependent) order of k computed in (3.52). We claim
that B also satisfies B = O(py;). Indeed, B is determined by solving (3.70), i.e. by
inverting an elliptic differential operator on the space orthogonal to its cokernel; by

the basic elliptic regularity estimate, for any m € R there is a C such that
Appygu =0f == |ullgm@mspy < C| f Il pm=1om/8)-

Thus if f is a parametrized family satisfying /' = Ogm—1 (pff) thenu = Ogm (pff),
and the same goes for B, and since m can be taken arbitrarily large the claim follows
by Sobolev embedding.

To deal with the expansion at If we argue along similar lines, but there we iterate
the argument to get a parametrix K with (d; + A)K vanishing to infinite order at If.
(We work in the interior of If though the arguments at the intersection of If and ff;
are the same in the projective coordinates

S =x/F, 0 =0-N/E 1T =t/7F
together witl}._z, X,y,z.) Recall that K; = « near If and thus K, = i — x* B near fF;.
Again with P asin (2.21), we have
B + A)Ky = x P + x*2Ex — x*Agpgy B —x ¥ Px¥B 4+ 0(x"*)
= X *Bypny Prc — x K Agpyy B + O(x"TF72), (3.71)
where v is the leading order power of k computed in (3.52). As in the argument

at ff;, since the RHS of (3.71) manifestly gives that ITg ((d; + A)K>) = O(xv+k—2),
by (2.13) there is distribution Ay such that

xiAaM/yA() = Osmyy P — Aopyy B + O(XE_HC).
Here the factor x” in front makes it so that Ay is O(1). Thus
(0, + A)(K2 —x" TR 4g) = O(x"T*72) — x K PxPTr 4, = O(xY).

We will now solve away iteratively to decrease the order of the error. For this
we assume for the moment that we are given, for some ¢ > v + ¢, any distribution
A1 = x14, + O(x77€) with A smooth and non-vanishing up to the boundary as
an ice-form. First, we find a distribution B; so that

x9 Ay 1= (3 + A)(xTT2k By) — A,
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is fiber harmonic. We can do this by solving
(I = Tge) A1 = Dy Br + O(xF)
as in (2.13), where I1 g is the projection onto the fiber harmonic forms, since then
(@ + A)xTT* By = x9 Agprry Br + O(x7HF).

We then construct a term C; with (3; + A)x972C; ~ Aj, as follows. Decomposing
Ay = A% + A%dx with L(dX)Aé = 0, write

C1 = (—(@+2°—(@—D@@+2)+8) 43, (=g +2°—(@—1)(g+2)+y) ' 43),

then
Pa,ﬂ 0 q+2 . q
( 0 Pa!y)x Ci =x7A,.

(The numbers we divided by above are non-zero, since the indicial roots of Py g
and Py, are bounded above by v — €, as explained below (3.52).) For this C; we
have

x4y — (3 + A)xTT2C; = x9 45 — Aox?T2C; + x ¥ P'x972C, + O(x71?)
= 0(xq+8) + x5 P'x12C, + 0(xq+2+k_2),

where g + § can be taken to be the order of the subsequent term in the expansion of A4,
where Ag is in (3.36) and P is as in (2.21), and thus by (2.13) we see that the left
hand side lies in the image of Agps/y to order x*. We can thus find a distribution D
such that

x4, — (3; + A)(xTT2C — 222 DY)
= O(xTTY) — x9T27 K Agpgyy Dy + X% P'x972C,
— 0(xq+1),
which gives
(8 + A)(x9(x2* By — x2Cy + x*¥Dy)) = x94; + O(x719), (3.72)

It is straightforward to check that the added terms do not increase the order of blowup
at ff;. Thus we can kill off the leading order term of x? A, and in fact can kill off
all terms iteratively by this process. (If there are log terms present the argument is
analogous and left to the reader.)

From the previous two paragraphs, it follows that we can find a distribution K’
such that K := K, — K’ satisfies the requirements of the lemma, specifically such
that (d; + A)K, in addition to having the same leading order asymptotics at tf and
ff and ff; that 1(d; + A) K> has, also vanishes to infinite order at If. Indeed, since
we can solve away terms to obtain errors of succesivly decreasing order, taking the
Borel sum [31] of these distributions gives K. (]
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Finally we establish our main structure theorem for the heat kernel.

Theorem 3.7. There exists a section H € Afhg(M&a(; B* End) satisfying all of the
properties of the distributions K from Proposition 3.6, and which is a fundamental
solution to the heat equation, meaning that in the interior of Mhzea[, (0, + AYH =0,

while the operator H, defined initially on forms a € C2°(M:;Q2*(M)) by
H,a(w) = / H(w, w, t)x () dVolg (3.73)
M

extends to a bounded map of L*(Q*(M),d Volg), and for such « Hya — « as
t — 0in L2
We will prove the theorem now modulo arguments in Appendix B.

Proof. Consider the parametrix K whose existence is established in Proposition 3.6.
This K satisfies all but one of the properties of the / in the theorem, namely
(d; + A)K is not equal to zero. (Indeed, the statement about convergence to the
identity in (3.73) follows from the behavior of K at tf described in (3.28).

We now invert error Q = t(d, + A) K from Proposition 3.6 via a Neumann series.
To be precise, it will be convenient to think of distributional kernels A(p, p’,t) on
M x M x R¥ acting on CZ(M° x (0, 00)) by operating as convolution kernels in
the time variable, so for ¢ € C2°(M° x (0, 00)) by

t
(Axp)(p,t) = [M[o A(p, p'.t —s)¢(p',s)dsdVol, . (3.74)

Then N
O +MNK=1+1710, (3.75)

and the right hand side can be inverted via a Neumann series, i.e.
d+:710)(1 + Q') =14,

where 9’ = 352 ((=1)/ (¢7' Q) and 7' Q) =17 Q x-- %171 Q, j-times. We
then show that

H:= K + Q)
satisfies all of the properties claimed in the theorem, but now it is automatic that
(d; + A)H = 0; what it will remain to show is that K(/ + Q) continues to satisty
the properties of K from Proposition 3.6.

We use Proposition B.5 below to analyze the summands (t~'Q)’. Note
that £~ is a polyhomogeneous distribution on M, ; indeed t = pwpgof, pka
with ¢ € C®(M2,) with a > ¢ > 0. Thus t~1Q is polyhomogeneous with index
set &” given by shifting the index set & of Q from Proposition 3.6 by appropriate
integers, namely

inf 8"(ff))) > —2 —b—kf, inf&"(ff)> —kn —2k + 1,

g"(If) = &"(tf) = &"(tb) = @. (3.76)
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Proposition B.5 then implies that (t~' Q)7 is polyhomogeneous with index set &)
satisfying, for any € > 0,

inf EV(f)) > j(l —e)—3—b—kf, inf€V(F)> —kn—2k+1, (3.77)

in addition to £ (If) = €U (tf) = &) (tb) = @. There for the (' @)/ admit a
Borel sum, i.e.asum Q' = Z?ozl (—1)7 (7' Q)/ with the property that the difference
of a partial sum up to j = N with Q' is polyhomogeneous and vanishes at each face
to the order of (t~'Q)/ at each bhs. Moreover, as discussed in [5,30], this series
is convergent in C*°, indeed the uniform bounds in [5, Theorem 2.23] hold in this
setting, and the infinite order of vanishing of t~!Q at If is preserved in the sum,
i.e. Q' vanishes also to infinite order there. The form of the distributional kernel
H = K(I + Q') is analyzed as in [28]. There it is shown that polyhomogeneous
with the index set & satisfying the properties of Theorem 3.7. L]

4. Spectral and Hodge theoretic properties of the Hodge-Laplacian

In this section we deduce the main theorems from the introduction. We begin with a
detailed analysis of the polyhomogeneous forms in the maximal domain.

4.1. Polyhomogeneous forms in D,y and Dp,in. Recall the definition of Dy
and Dp, from the introduction, and the space eAaphg(“:e/‘\*) of polyhomogeneous
ice-forms (below denoted simply by A, ) discussed in Appendix A. We also recall
that the incomplete cusp edge manifold (M, gi.) is assumed to satisfy the Witt
condition (1.4) and that the metric g;. takes the form

8ice = dx? +x2ng + n*gY + (;,;,

where the exponent k > 3.

We determine conditions which assure that a given polyhomogeneous differential
form y € Ay, is contained in the maximal domain Dy, of A#. This will be used
to show, with an additional assumption on the index set of a phg form, that

i & Ll a“)phg — Y € Lty ) a"ophg. “4.1)

Let y € Appe be contained in the maximal domain, i.e. we assume that y € L2
and Ay € L?. Lety = x*y where ¥ = %9(y,z) + O(x¢). Here notation such
as @ (x€) indicates that the differential form y is locally a combination of basis forms

dyp /\kadzA and dx /\kadyI Ax*Ndz,,

where I and A are multi-indices on the base and fiber, respectively. with coefficient
functions which are bounded by cx€ pointwise in norm when x Y\, 0, and Y is a
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form on M whose coeflicient functions are independent of x. Let us determine the
possible range of values s. From (2.7)—(2.8) it follows that in a neighborhood of the
boundary, the volume form of the cusp edge metric g is

dVol, = X pdx ndy ndz,
where p = a(y,z) + O@(x*) and a is a non-vanishing positive function. It follows
that ,
X’y el?(M,g) < s> —E(kf +1). 4.2)
We begin by analyzing the indicial roots of A¥, specifically we find the order

of vanishing of fiber harmonic homogeneous forms in the kernel of A%. By
Proposition 2.3, the leading order part of A# restricted to fiber harmonic forms is

P 0
[y A% N::( 2 (N),5(N) )
=0 0 Poy),y(N)

with Pyny,sN)»  Pa(n),y(v) the operators, depending on fiber degree, defined
in (3.38)—(3.39) We note that

Po(r-N) (N = Pagiyyoy (N=0,..., f). (4.3)

Using (3.43), a straightforward calculation shows that Py gonx® = 0 if

f
se | J {1 —k(f = N),—k(f = N),—kN.1—kN}.
N=1
It in addition satisfies condition (4.2) if

—kN and N<Li(f+D),

1—kN and N<i(f+2),
= 2k (4.4)

—k(f —N) and N> 3(f —¢),

I —k(f—N) and N> 2(f—3).

Proposition 4.1. Suppose the differential formy = (y', y?) = (x*171, x5292) € A,
and that y = ¥ (y, z) + O(x€) is contained in the maximal domain Dyax. (Thus the
leading order term is assumed not to have a logarithm, as is a priori allowed for phg-
distributions.) Then each s is an indicial root of Py, for some 0 < N; < f
orsj > %(—kf + 3). In either case, s; > %(—kf + 3).

Proof. Recall from Proposition 2.3 the decomposition A = Ag + x ¥P + x1E
and write

1 —k—
o (Pa(N),,B(N) 0 ) n ;fz/tAagC/_Yl + An —12/636 "dam)z .
0 Pay,y (N —2kx Samyy ﬁAaM/Y + Apn
4.5)
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In view of the symmetry (4.3) it suffices to consider the image of the the component

y! = x%1%! under A#. The discussion naturally falls into several cases.

(1) The form )7(} is not fiber harmonic. Then the lowest nonvanishing term in (4.5)
is x72K*+51 Agpr/y P4, which is contained in L2 if and only if

51 > %(41( — %kf = 1).

(2) The form )701 is fiber harmonic. We then consider the following subcases.

(2.2) sy is an indicial root of Py(n,),(N,) and hence equals the number in (4.4).
(2.b) s is not an indicial root of Py(n;) g(Ny)> i-€- Pany). gy (X°171) # 0. We
claim that at least one of the following two statements holds true:

— The polyhomogeneous expansion of ¥! contains a term y £1 of order @ (x®) where
8§ —2k <s1 —2and fgl is not fibre harmonic.

— The lowest nonvanishing term in the first component of Ay is of order x*1 2.
If this claim holds true we conclude that the lowest nonvanishing term in the first
component of A€y is of order at most x%1 72, To prove the claim, assume that the
first statement is false. Then the second one must hold true as is clear from the form
of the Laplacian Ag in (4.5). To be specific, collecting the terms of order x*' =2 in
the first component of Agy we obtain

Pagv) pony) (517D + xR Agpgyy et + x T Vg v 22
+ x’kﬁaM/yPr3 + )C—k PB@M/Y”C4 (4.6)

for suitable differential forms ¢, ..., t* of orders
Tl — O(Xsl+2k_2), _[.2 = O(xs‘+k_1), and 'Ej _ O(.Xsl+k_2) (/ — 3’4)

By Hodge theory, the term BaM/yr4 vanishes, since otherwise a nonvanishing term
x 2% Agpr/y T+ would occur, which is of order strictly less than s; — 2, contradicting
our initial assumption. Considering the remaining three terms in (4.6) it follows from
Hodge theory and the assumption that )7(} is fibre harmonic that the sum

x_ZkAaM/yrl —l—x_k_ldaM/Ytz +x_k<’5Pr3 4.7)

is orthogonal, over each fibre, t0 Py(n,).pv,) (X*1 7). Hence we conclude that the
nonzero term PN,y g (X*1Y 1y cannot cancel with the sum (4.7). It follows that
the second statement is true, whence the claim.

The asserted statement follows by inspection of each of the above cases. In case (1)
it follows from

I I 1
51> 5(4k — kS - 1) > (kS +3),
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using that & > 3. In case (2.b) the lowest nonvanishing term in Afy is of order at
most 51 — 2. Since ¥y € Dpuy it follows from (4.2) that

1 1
Sl —2 = _E(kf ’I" ]) <:> Sl =¥ —E(kf ‘+_ 3).

Incase (2.a), the form )7& is fibre harmonic and therefore by the Witt condition N £ %
We continue by discussing each of the four possible cases in (4.4) separately. Suppose
first that s; = —k N and N < %(f + %). If f is even this implies that the integer

N < 12: — | (here we use the Witt condition) and consequently

a2

since k > 3. If f is odd then N < S _ 1 and

22

o1 kf 3
o > —kl= =) > —— ey
1 = (2 2)— > T3

where the last inequality follows again from the assumption £ > 3. Similarly, in the
case s1 = —k(f —N)and N > %(f — %) it follows that if f is even that N > % +1
(using the Witt condition). This implies the estimate

f kf 3
nzk(r-Lo1)z-H 2
51 = f 5 = e 2 5
using that k > 3. If f is odd then we conclude that N > % + % and hence
1 kf 3
s>—k( —'———)>—'— =y
k=g mg) 2T
using again thatk > 3. The conclusion in the remaining two cases where s; = 1—k N
ors; = 1 —k(f — N) follows analogously. ]

Lemma 4.2. Assume k > 3. Then Dpin N Aphg = Dimax N Aphg.

Proof. Tt suffices to prove the inclusion Dpyax N Appg S Diin N Apne. For e > 0 we
define the logarithmic cutoff function y.: [0, c0) — [0, 1] by

0, x < g2
e
Xe(x) := —%, 2 <x<e,
1, X > e.
For 2 < x < g it satisfies
/ 1 1
Xg(x) - = and Xg(x) — (4'8)

log(e)x log(e)x2’
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Let y € Dpax N Aphg and set y = yey. Then

k
ABy = xeBA¥y — (32 2e)y — (Bxxe)(Bxy) — %(axxa)y
+ Al (BIXE)(BZJ' y) + Bi(axX£)(ay;V)v 4.9)

where A/ = (9(xk ) and B! = (9(x2k) are bounded functions with that order of
decay in x. We show that

[ASye — A8yl 2 — 0 ase— 0, (4.10)
hence establishing that y € Dy,. It is clear that

IxeAfy — A8y lL2(argy) — 0 ase — 0,
and thus it suffices to consider the next three terms in (4.9) and to show that

— x*dx +
o (@) Je =3 ¥

&

1
—a.vPx* dx
logz(g) o2 x2| xV|

k2f2 £ 1

log?(s) Je> x4

ly12x* dx  (4.11)

converges to 0 as ¢ — 0. Let y = x*y for some y = @(1). A short calculation
shows that each integrand in (4.11) is of order x~ 19 for some § > 0 and hence
converges to 0 as ¢ — 0 if

B kf 4 . (4.12)
§>——4 —. ’
2 2
In the borderline case s = —% + % we still get convergence since then the first
integral in (4.11) becomes
[ L ax = ——(tog(e) ~log(e) = ——— >0 0
—dx = og(e) —log(e®)) = —— — as e — 0,
og?(e) Ja x " T log?e) o ¢ log ()

and analogously for the second and third integral. Hence

kf 3
52_7“‘5 — Veg)min

forany y = x*y € Dmax N Apng. On the other hand, Proposition 4.1 shows that

& k 3
f :xsy € c‘Dﬂmxnf","phg — 5= _Tf + 5,

and hence the claim follows. []
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4.2. Spectral theory.

Proof of Theorem 1.4. Let H € Aghg(Mhzcm; B* End) be as in 3.7; we will show that
such H has the properties stated in Theorem 1.4.
First note that, as we show in a moment, H maps into D,;, and hence the

following three properties hold:

e (3 +Ag;)H =0,

e lim,¢ H; = 1d,

e H(L?) C Dy, where Dy is the Friedrichs domain.

From [28, p.21], these three properties characterize the Friedrichs heat kernel of A.
Hence H; is automatically symmetric.

Since H; and d; H, are formally self-adjoint (i.e. symmetric), to show that they
are self-adjoint it suffices to show that they are compact operators. But indeed they
are, as follows from [34, Thm. V1.23-24] together with

H,,0,H, € L*(End: M x M),

where, given a smooth section 4 of End, then 4 € L?(End; M x M) if

[ ||A(p,q)||,2ind dVolas (p) dVolps (g) < oo.

For t > 0, H, is given by an L? integral kernel, so is a compact operator; indeed,
by (3.68), the index set ¥ of H; € Ay (M x M) restricted to ¢ > 0 constant is
F (If) = &(If) and F (rf) = &(rf), for & the index family of H. From (3.61), these
satisfy the lower bound

k
inf F (If), inf & (rf) > —‘7}{ + 1 (4.13)
(meaning H; is a bounded endomorphism) and
dVolas (p) dVolar (q) ~ x* 3% dx dX dy d¥ dz dZ, (4.14)

so the kernel of H; is square integrable.

It remains to establish (1.4), i.e. that H,(a) € Dy, for every a € L2, In
fact, Hy(x) is a polyhomogeneous distribution with index set &(If). This is
straightforward: writing the expansion of f; at x = 0 up to some order N we
have

Hy = Z x*log? (x)as,p(y,z,w) + EN,
(s,p)e&(r)
lsl=N
where w = (X, y, Z), and the coefficients ag, , are polyhomogeneous endomorphisms
on the manifold with boundary dM x M and Ey is a polyhomogeneous
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endomorphism on M x M with Ex = o(x"). Thus

H, (o) = fM( 3oox 1ogp(x)as,p(z,y,1ﬁ)a(m)+ENa(w)) dVol, ().

(s,p)e&(f)
Rs<N

(4.15)
For example by [26, Proposition 3.20], since the x ™ Ey are given by a
polyhomogeneous integral kernel, they define bounded maps of L2, and the
conormality estimates (see (A.3)—(A.4)) follow by differentiating x NEy. The
integrals coming from the partial expansion terms are finite and give the expansion
coefficients of H,(«). This shows that H;(«) € Apye, and moreover that the leading
order term has no logarithmic factor. Thus, In view of Lemma 4.2 it suffices to
prove H;(a) € Dnmay in order to conclude that H; () € Dmin. But indeed, inf & (If)
satisfies the lower bound (4.13), hence it follows that the lowest order term in the
polyhomogeneous expansion (4.15) is of order at least —% + 1 which by (4.2) is
sufficient to conclude H;(a) € L?. Because H, is a fundamental solution of the
heat equation, it follows that A% H,(«) = —d; H;(«) which by the same argument is
contained in L? since 9, H, has the same index set as H, fort > 0. ]

It now follows that the fundamental solution H; from Theorem 3.7 is in fact the
heat kernel in the following sense.

Proposition 4.3. The heat kernel exp(—tA?#) defined by applying the spectral
theorem to the self-adjoint operator (A% ,D) has Schwartz kernel equal to the
fundamental solution H, in Theorem 3.7, meaning

(e 2 a)(w) = [ Hy(w, W, t)a () dVolg (10).
M
Using this we may finish the proof of Theorem 1.1.

Proof of Theorem 1.1. As discussed below the statement of Theorem 1.4, Theo-
rem 1.4 itself establishes essential self-adjointness of A#. It remains to prove that
the spectrum is discrete, but this follows immediately from the spectral theorem and

the fact that /i, is a compact operator (hence has discrete spectrum.)
Moreover, the Weyl asymptotic formula in (1.6) follows from the standard heat
kernel argumentin [36, §8.3] together with the heat trace asymptotics in Corollary 4.4.
O

Corollary 4.4 (Heat trace asymptotics). Foreacht > 0, the fundamental solution H,
in Theorem 3.7 is trace class and satisfies that F(t) := Tr H, is a polyhomogenous
conormal distribution on R™ satisfying

f=dimZ
F(t) = t™"?Vol(M, g) + ( > ajt—n/2+f/2) + ot~ bHD/2+1/2k
=1
. O(I_(b+1)/2+1/2k+6). (4]6)



Vol. 94 (2019)  Spectral and Hodge theory of “Witt” incomplete cusp edge spaces 743

The proof of Corollary 4.4, which uses Theorem 3.7 and Melrose’s pushforward
theorem, is deferred to Section A.2 below.

4.3. Harmonic forms and Hodge theory. We begin our discussion of Hodge theo-
ry by pointing out that elements y € L? satisfying A8y = 0, admit asymptotic
expansions at the boundary of M. Indeed, for such forms y, by the spectral theorem
and the fact that H, is the heat kernel (Corollary 4.3), we see that

y = Hyp = f H;(w,w,t)y(w)dVolg (). 4.17)
M

By the proof of Theorem 1.4, specifically (4.15), we have the following.

Lemma 4.5. Assume that y € ker(Af: L? — L?). Then y is polyhomogeneous
conormal and y = O(1), i.e. is bounded in norm.

Lemma 4.5 allows us to conclude that the L2 kernel of A# is equal to the Hodge
cohomology in (1.7).

Lemma 4.6. Notation as above, J;2(M, g) = ker(A8: L? — L?).

Proof. If y € #;2(M, g) then y is in the maximal domains of both ¢ and &, and so
for smooth compactly supported g,

(ASy,BYr2 == (v, A B) 2 = (v, dbB) 2 + (y.8dB) 2 = 0+ 0 =0,

so y € ker(A%:L? — L?). On the other hand, if y € ker(A%: L? —> L?), then
by Lemma 4.5 we can integrate by parts to obtain

0= (A%y.y)2 = ldyl- + 18713,
soy € H[,(M,g). ]

We can now follow the arguments in [18,20] to prove Theorem 1.2 above. Before
we begin we recall some facts about intersection cohomology, a cohomology theory
that applies to stratified spaces. We do not attempt to make a full explanation of it
here, but mention only that there is in fact a family of intersection cohomology groups
for our stratified space X defined in (1.8) (obtained by collapsing the boundary of dM
over the base Y) depending on a function p: N — N called the “perversity,” which is
non-decreasing and whose values matter only on the codimensions of the strata of X .
Here we have only one singular stratum, ¥ C X, the image of the boundary dM via
the projection onto X, and its codimension is f + 1, where dim Z = f. The “upper
middle degree” perversity m is a special example of a perversity, which satisfies

_ (=172 if fis odd,
m(f + D= fir2—1 if f is even. (4.18)
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The “lower middle perversity” m differs from m only when f is even, in which case
m(f + 1) = f/2. As we will rely on the spectral sequence arguments from [18,20]
during the proof, we will only need to study the intersection cohomology locally,
specifically on a basis of open sets of X. Concretely, from [18], for canonical
neighborhoods U = V x Cy(Z) as in (2.2) with contractible V', we have

H?(Z) ifp< f—1—p(f+1),
05 iftp=f—1—p(f+1).

From the Witt condition (1.4), we see that

IHP(U) =

HP(Z) ifp< f/2,

IHE (U) = IH?. (U) =
=) n(¥) {0} if p = f/2,

(4.19)

regardless of the parity of f.

Proof of Theorem 1.2. Although Theorem 1.2 describes a relationship between the
Hodge cohomology and the intersection cohomology, to prove it we go through the
standard route and use the intermediary of L2-cohomology. Thus consider the chain
complex

e —> LIQPTN (M, g) — LEQP (M, g) — LIQPTI (M, g) — -+, (4.20)
where L(Zi, QP (M, g) is the maximal domain of the exterior derivative d, specifically
L3QP(M,g) = {a € L?’QP(M,g) : da € L*QPY (M, g)}.

Then the L2-cohomology is the quotient

{a € L2QP(M,g) : da = 0}
{dn:ne L3QP~ (M, g)}

L*HP(M.g) =

As explained in [20, p. 6], it suffices to show that
L*H?(M, g) ~ IHE (X;R), 4.21)

for then the L2-cohomology is finite dimensional, which implies that the range of d
(and thus its adjoint §) is closed. From [18, §2.1] it then follows using the Kodaira
decomposition theorem that J(’fz (M, g) is isomorphic to L?HP(M, g) and thus
by (4.21) Theorem 1.2 holds.

Thus it suffices to prove (4.21), and for this we also follow the arguments in [20,
pp. 5-6], where it is explained that it suffices to show that for canonical neighborhoods
U =V x Ci(Z) as in (2.2) with contractible V, the local chain complex

e — L2QPTN U g) — LIQP(U, g) — LIQPTN (U g) — -+, (4.22)
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satisfies
L*H? U, g) ~ IHE (V). (4.23)

Here L2H?(U,g) is defined as above with U replacing M. The intersection
cohomology groups for m are computed in (4.19), and thus we need only to analyze
the groups on the left. To see (4.23) we use the Kiinneth formula of Zucker, [40,
Corollary 2.34], whose assumptions are satisfied here by the fact that the exterior
derivative on Z is closed on its maximal domain. Thus, in the notation of [20, p. 5],
we have

1
L*HP(U.g) = @ WH ((0.1).dx> . k(p —i — f/2)) ® HP ' (Z:R), (4.24)
=0

where WH' ((0, 1), dx?, a) is the cohomology of the complex
d
0 — (x?L2Q°((0, 1), dx?)) — x*L*Q"((0, 1),dx?*) — 0, (4.25)

where the space on the left is the maximal domain of d on x?L2Q°((0, 1), dx?).
Again from [20] (via [18]),

WHY((0,1),dx%,a) =0 ifa #1/2,
WH((0,1),dx*,a) =R ifa < 1/2,and
{0} ifa > 1/2.

Wheni =1, k(p —i — f/2) # 1/2 since k > 1, sothei = 1 terms do not
contribute. Wheni = 0, we have k(p —i — f/2) = k(p — f/2) which satisfies

k(p—f/2) <1/2if p< f/2 and k(p— f/2)>1/2ifp> f/2.
Using the Witt condition then gives

H?(Z) itp < f/2,
105 if p> f/2,

matching (4.19) and completing the proof. |

L?H?(U,g) = (4.26)

We now discuss the proof of Theorem 1.3. As the spaces in the theorem are
incomplete cusp edge spaces in a neighborhood of the divisor by [32], our results
would apply to these spaces, if not for the fact that moduli spaces such as these have
interior orbifold points. This is not a problem, since, as in [21] we may lift to a finite
cover with no such points. One can then work on the space C c('),?)rb(Mlsl) of functions
which near each orbifold point are smooth when lifted to a local finite cover resolving
the singularity. Constructing a heat kernel on the lift and averaging over the group
action then gives a fundamental solution to the heat kernel downstairs which has all
the desired properties. We leave the details of this simple extension to the reader.
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A. Manifolds with corners

In this section we recall some of the facts about distributions on manifolds with
corners (mwc’s) used in this paper. This material is due largely to Melrose, and the
reader is referred to his book [30] for more details. See also [19].

The objects considered here, for example the ice-metrics, have polyhomogeneous
regularity, which we define now. The sheaf of polyhomogeneous conormal (or
polyhomogeneous, or simply phg) functions Apye(X) is defined as follows. First,
an index set & on a manifold with corners X is an association to each boundary
hypersurface H of X a set

&(H) C C x N satisfying that the subset

{(z,p) € (H) : Re z < ¢} is finite for all ¢ € R. (Al )

Given anindex set &, for aboundary face F' = ﬂle H; for boundary hypersurfaces H;,
define the subset &§(F) C C? x N? by (z, p) = (z1,...,2§, P1,..., P§) € E(F)
if and only if (z;, p;) € &(H;). We define the Frechet space Afhg (X) as follows. We
write u € .Afhg(X ) if and only if for each boundary face F = ﬂleH,-, writing p;

for a boundary defining function of H;, u satisfies

U ~ Z az,pp” log? p (A.2)
(z,p)€E(F)
where
]

8
p* =[]ri". log?p=]]log” pi.
=1 1

=1

and the symbol ~ means that

Eny =u— Z az,pp° log? p. (A.3)

(z,p)E€(F)
Re z; <N Vi

Here Ey is a smooth function on the interior of X which is O(|p|"), where
ol = (o} + -+ o)1/,

Moreover, E y is conormal, meaning that if 'V, = V;(X) denotes the set of smooth
vector fields on X that are tangent to all boundary hypersurfaces, then

s Y VEE € L=, (A.4)

Note that if a phg function u vanishes to infinite order at H, then u is
polyhomogeneous with index set & satisfying &(H) = @&.
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Lemma A.l1. Let X denote a mwe, M(X) = {H;};cq its boundary hypersurfaces,
and for each i € 4, let p; denote a boundary defining function of H;. Given a smooth
vector bundle E —> X, if k;j are polyhomogeneous sections on H;, then provided

Ci C:j
pi' kil = Pj"KilH,-nHj (A.5)

there exists a polyhomogeneous conormal distribution K on X satisfying
pi K|, = «i. (A.6)

Assume moreover that at a particular boundary hypersurface which we take to
be Hy, that we are given an index set Iy C C x N and polyhomogeneous sections
bjp € Apmg(E|g1: Hy). Then given functions k; on H;, i # 1, there exists a
distribution K satisfying (A.6) for i # 1 and such that

K~ > pjlog?(pi)bs,p (A7)
s,pEF

provided (A.S) holds for i, j # 1 and furthermore fori # 1

ki~ P Y p}log? (p)bs,plH; - (A.8)
s,pEF

Remark A.2. (1) Note the converse;if K = pfc" p;cj a for some positive function a
near f{; N H; then setting pf’KlH, = k7 for l = i, j, we have p? Kj = pl.cffcj
on H; N Hj.

(2) The matching condition (A.5) implies further matching conditions on multifold
intersections, e.g. it implies that

;G § el
pic’pj"/q = pl-c'plc’f(j = plC’pj’K,- on H; N H; N Hj.

(3) The second matching condition (A.8) merely says that the desired data on a
bhs H; has the same asymptotic expansion at H; as the the desired distribution
restricted to H;.

Proof. Denote the number of boundary hypersurfaces of X by m = |M|. There
is a number § and boundary defining functions p; such that the set {p; < &} is
diffeomorphic as mwc’s to H; x [0,8). Without loss of generality we take § = 1.

Following the remark, for a collection of bhs” H;,, ..., Hi,,s the distribution
— Cj .
Ki] ...i[; - ( l_[ p ! )K‘!k ]pl-E :---:pip =0
iFig

is well-defined independently of the choice of iy € {1,...,m}.
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Let y(x) be a cutoff function with y = 1 forx < 1/3 and y = 0 for x > 2¢/3.
For the distribution K we may take

K — Z(_I)P—l Z K,‘l.__jp( 1_[ X(Pj)P;cj).
p=1

I1<iy<-<ip<m Jeliiswslph

For example if m = 2 then

K = x(p1)p; k1 + x(p2)ps k2 — x(p1) x(p2)py ' oy P12

Note that each term in the sum defining K defines a polyhomogeneous conormal
distribution on all of X, as the distribution «;, ;, is defined on a neighborhood of
H;, N---N H;, off which the product [];y;, ip} X(pj) vanishes.

Letting A;, ..;, be the term corresponding term in the definition of K, note that if
i €{i1,...,ip}then pf’ Ay i, = pfi Ajy..i..ip|p;=0- Fixing i, multiplying by p¢ K
and restricting to p; = 0 gives

piCi Klpf=0
m—1
=K + Z(_I)Pélpgl ( Z Ail...ip - Z Ail...ip+|)|pj=0
4 I<ij<-<ip<m I<iy<-<ipyi1=m
i¢{i1...i,,} iE{i]...i,,.,.]}
— Kl’
which establishes (A.6).

We now prove the final statement of the lemma. Let y be the cutoff function
defined above. First, we claim that under the stated assumptions there exists a
distribution K’ supported in {p; < 1} satisfying both (A.7) (with K replaced by K’)
and that

o K'lg; = x(p1)ki (A9)

for each i # 1. To see this, take any distribution K’ supported in {p; < 1}
satisfying (A.7), and note that a; := p;' K" |, — x(p1)ki = O(p$°). By the support
condition, the distribution K" = K" =3, ,; x(pi)a; is defined globally, has the same
asymptotic expansion at H; as K”, and satisfies (A.9). This K’ will play the role
of y(p1)p~“'«k1 from the previous paragraph. Concretely, for 1 < iy <--- <ip, < m,
leta;, i, = (Hje{jl’_",ippj-j K’)|Hl.1 N--NH; , - Then we may take

K:Z(—l)p—1 Z Kil...i,,( l_[ X(Pj)P;Cj)
p=1

1<ij<-<ip<m J€lit,mip}

+K+ ) nrt Y “fl---ip( [1 X(pj)pycj)'
p=1

I<ij<-<ip<m J€litsnip}
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Again, for example if m = 2 then

K = K"+ x(p2)p, P2 — (05 K)o, 05 2 x(p2).

The given expression for K can be directly checked to satisfy (A.6) and (A.7). [

A.1. Melrose’s pushforward theorem. Given a map : X — Y between mani-
folds with corners, if M(e) with ¢ = X,Y denotes the space of boundary
hypersurfaces, then 8 is a b-map if it is smooth and if for each H € M(Y) with pgy
a boundary defining function for H then

" - e(H{,H) e(H,,H) e(H}, ,H)
Brpu = allyemxypy, '™ Py ™ o Py ;

where ¢ € C*°(X) is non-vanishing and N is the number of boundary hypersurfaces
of Y and the e(H’, H) are non-negative integers. This means foremost that py pulls
back to a smooth function, and the numbers e¢(H’, H) simply keep track of the order
of vanishing of 8*py at each face of X. The function

e: M(X) x M(Y) — Ny (A.10)

is the exponent matrix of 8, and e(H’, H) > 0 means H’ maps into H via B.

If ab-map has a few additional properties then it pushes forward polyhomogeneous
distributions (more accurately, densities) to polyhomogeneous distributions and their
index sets change in a way dictated by the exponent matrix. Note that it follows from
the definition of a b-map that every boundary face F of X (meaning an intersection
of boundary hypersurfaces), can be associated to a face S(F) of ¥ defined to be
the unique face with B(x) € B(F)° for every x € F°. A b-map f: X —> Y is
a b-fibration if:

e B does not increase _Ehe codimension of faces, i.e. for each boundary face F of X,
the associated face B(F) in Y satisfies that codim(F) < codim(B(F)).

« Restricted to the interior of any face F°, B: F° —> (B(F))° is a fibration of open
manifolds in the standard sense.

According to a theorem of Melrose [29] which we state below, a b-fibration
pushes forward phg densities to phg densities in a manner we describe now. First,
on a manifold with corners we choose a non-vanishing b-density p, meaning a
section of |A|*(°T* X), the density bundle of the b-cotangent bundle. The b-tangent
bundle ?TX is the bundle whose smooth sections are 'V, the vector fields tangent
to the boundary. The bundle ?7*X is the dual bundle of ?7X, and near a face
F = ﬂleH,- where p; are bdf’s and y are coordinates on F then, the sections
of T* X take the form

d ;
S 6 4 ndy.
; Pi
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It follows that near any intersection ' = Njey H;, of boundary hypersurfaces for
J C J where J indexes M(X) (i.e. any face of X) that a non-vanishing b-density

takes the form
dy [1] jedJ dpj

Hje] Pj
for some smooth non-vanishing function ¢ on X. A polyhomogeneous b-density
u € cy%fhg(X) ® |A|*(®T*X) can be written as fu for a phg function f and the
index set of u is by definition the index set of f.

Theorem A.3 (Melrose [29]). Let u € A% (X) ® |A|"(°T*X) be a polyhomo-
geneous b-density on X with index set &, let f: X — Y be a b-fibration with
exponent matrix e, and define the pushforward fiu to be the distribution on smooth
functions v € C5,,(Y) acting by ( fxu,v)y = (u, f*v)x. Then provided for each
H € M(X) we have

w=\a (A.11)

e(H,H)=0YH € M(Y) = &(H)>0, (A.12)

8/
then fiu € Aohe

81 = U A (G r) G- € 80D

with the (extended) union taken over H' withe(H’, H) > 0.

(Y)® |A|"(PT*Y) where

The extended union, defined in [30], contains the standard union and possibly
more log terms.

A.2. Heattrace asymptotics. We now use Theorem A.3 to prove the heat trace form-
ula in Corollary 4.4 above. The heat trace is equal to

Tr(e™"2) = / H;(w, w)dVolg = 0. ((t* H;) dVol), (A.13)
M

where ©: M x [0,00) —> M x M x [0, o0) is the diagonal inclusion and o: M x
[0, 00) —> [0, 00) is the projection onto the right factor. The natural space here on
which to consider H; is Méat, and thus to evaluate this pushforward we must see how
o and ¢ act on the natural blown up spaces. The following may be easily verified.
(1) The closure

(Mig,)a == cl(e(M® x (0, 00)))

is a manifold with corners with 4 boundary hypersurfaces, sf, ffld, ﬁ'd, tfd, equal to
the intersection of cl(¢(M ° x (0, 00))) with rf N If, ff}, ff, and tf, respectively

(2) The map o extends form the interior M ° x (0, c0) to a b-fibration

o: (M2, )a — [0,00)
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with exponent matrix
e (sf) = 0,65 (F19) =2,  ex (%) = 2k, eq (tf%) = 2.
To apply the pushforward theorem, we note that the volume density

df‘ _ xkf+l IdXddedt|

w= ‘dVolg =

Xt
is equal on (M2,) A to

1= a (pstpy,a pya ) T o

%

where o is a non-vanishing b-density on (M2, )a. Thus (t* H)p is phg on (M2, ) a
with index family &4 satisfying

inf €4(sf) = 3, inf &4 (M%) = —b,
inf&€4(T) =k(f —n)+1, &4WH={-n-n+1,..1%

Note that Tre“’A% = 04 ((t®H;)pt). The integrability condition (A.12) must be
checked only for st and thus holds by Theorem 3.7, and we apply the pushforward

theorem to obtain that Tre 2 is polyhomogeneous with index set

(€172, p1): (1, pr1) € 84 (H19) U {(&2/ (2k), p2): (L2, p2) € 89 (119))
U {(£3/2, p3): (L3, p3) € &9 (tf7)).

In particular,

f
F(r) = @122 fo = GHD/2H1/CR) | (= (b+1)/24+1/ @Rty
J

J=0

for some € > 0. As discussed in [28, Section 3.3], the heat kernel in fact lies in an
even calculus and thus the terms for odd ; in this sum are equal to 0, giving the trace
formula (4.16). The fact that the leading order term is the volume is standard.

B. Triple space

We will now analyze composition properties for “Volterra” type convolution operators
as described in (3.74). To do so, following [16, 30], we construct a “triple space,”
which we denote by Mh3eal, which is designed specifically to accommodate the process
of composing operators which have the structure of the error terms in (3.75). The

structure of our triple space is analogous to that constructed by Grieser and Hunsicker
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in [16], with slightly different homogeneities and with the added complication that
there are time variables involved.
Note that, given A;, i = 1,2, we want is to make sense of the integral

zl
/ / Ar(w, w', 1) A2 (W', W, t — t") dVolg (w)dt'. (B.1)
mJo
Define the wedge
W:={t—1t >0} CRf xR}, (B.2)
and define the left, center, and right projections
aLMxMxXMxW — Mx M x|[0,c0),
(w,w, W, t,t") — (w,w’, 1),
we:M XM xMxW — Mx M x|[0,c0), (B.3)

(w,w',w,t,t") — (w,W,1),
TRMxXMxMxW — MxM x|[0,00),
(w,w',w,,t') — (W, w,t —1t").

Then, formally, the integral in (B.1) says that the integral kernel of A; A, (as an
operator acting by convolution in time) is

(A1 A2)(w, W, t) = ()« (7] A1) (TR A2), (B.4)

where (¢ )« denotes the pushforward, i.e. the integral along the fibers of w¢ (which,
by the way we have set up the problem, requires the choice of a metric on the fibers
which we come to shortly.) Analysis of (B.4) becomes tractable if the space M3 x W
is blown up so that the pushforward theorem described in §A.1 applies.

Note that M3 x W is a manifold with corners with 5 boundary hypersurfaces

L=fx=0} C={#'=0L R==0,
thy =" =10} b = §f—+t' =0}
Itis easy to check that, in the language of Appendix A, the maps 7z, withe € {L, C, R}

are b-maps from M3 x W to M? x [0, co), and the exponent matrices are also easy
to compute,

1 e=1L, o =If, ,
: C ; " 1 e=1L, o — If,
o — 5 ® —T
eﬂ'L (., .,) = l . — tb/ y tb en-C (., .I) — 1 e = R, .I _ rf’
b ’ 0 otherwise,
0 otherwise,
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(B.6)

eJTR (.? .,) =

1
1
1 e=tb,, o =tb,
0 otherwise.

We blowup M3 x W to form a space E : M2, —> M3 x W in a sequence of steps

as follows.
First, consider the three pullbacks of the submanifold

Bo={x=X,y=¥.1 =0 C M?x[0,00);
defined in (3.6)
7, (Bo), mc'(Bo). g (Bo). (B.7)
These three sets intersect pair-wise in the triple intersection:
7, (Bo) Nrg' (Bo) = ' (Bo) Ny (Bo) = 7' (Bo) Ny ' (Bo) = 8. (B.8)
where
Sehex==i=tf=y—-3 =y -9 =0, (B.9)
We blowup the set &, with appropriate homogeneities, specifically letting

Mh?,eal,o = [M3 X W: S]q—hnms (B]O)

witht ~ x2 ~ (x/)2 ~ 32 ~ |y —y'|2 ~ |y’ = 7|2, and let Bo: M3, o —> M3xW
denote the blowdown map. Call the introduced boundary hypersurface ff;"”". Near
to ff;", we have polar coordinates

pr=(t+x2+ @2 +B+ 1y -y P+ -5

o=t r = Y 2N
qu:( & AX )y y y J’) (Bll)

P%q P% “en papn’ o pn
=: (¢, ;1. L, qbg,(bg,(ﬁ;,y,,qbg_;), along with y’, z, 2", Z.
The asymmetry of the y, y’, ¥ in the coordinates is spurious in the sense that if one
defines ¢! - = (¥ — ¥)/pn, then any two of the ¢} ,» ¢} _5 can be used in ¢ by

Jfg e
redefining pn using e.g. |y — y’|? and |y — 7|? (and then using ¢ qb;),_y). Either

n
y=¥"
set of coordinates is defined in a collar neighborhood of ff;".

We then blowup the closures of the lifts

84 := cl((7e 0 Bo) 1 (Bo) \ ;7).

i.e. the rest of the lifts of the B via the three projections, where ® € {L,C, R}.
These are disjoint subsets and we blow them up in any order, setting

M 1 = ML .07 Usmt,6, 8865 350ms (B.12)
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with the appropriate homogeneities, e.g. for 87, we have t’ ~ x? ~ (x')? ~ |y —y'|2.
Again, we have a blowdown map

BiiM3, ., — M xMxMxW. (B.13)

The new faces we call ff] with e € {L, C, R}. Coordinates at ﬁ’f can be determined
as follows. Note that &, is given in the coordinates (B.11) by ¢!} = ¢} = ¢0, =
qb;_y, = 0, and that in a neighborhood of &; away from ", qbtr? ~ t'. Thus, to
match homogeneities with the blowups of the double space, we want to blow this up

so that the following give polar coordinates near the intersection of fflL and ff;"":

oE = (67 + M2 + @M + 6™y P) 2,

n
oL :( ¢p @Y ¢p ¢y—yf) (B.14)
(pF)2" pt" pl " pt
= (qbﬁ,qﬁ)];,(b)";,,gb;‘_y,), along with y’,z,2', Z, pn, %, ¢)‘)_;,¢P_,,

with functions as in (B.11). It is also possible to use simpler projective coordinates,
as we will see below. Coordinates near [’f{Fe can be derived similarly by switching ¢p
with ¢, and ¢’ with ¢L. The situation at ff¢ is slightly different since, writing
¢;' = @1} + ;.. the pullback of ¢ on M7, | via e vanishes at ) = 0 = ¢!,
and thus 8¢ is codimension 1 higher than &, fore = L, R.

Here we blowup so that the following give coordinates

o€ = (¢ + @72 + (6N + 105112,

@")C = ( 7 4l Y 9% ¢9—f)

(pE) " (o€ " pt " p¥° p¥
= (¢7 . ¢ . 6 . ¢S . ¢S ;). along with y'. 2, 2", Z, pn. ¢7), ¢ 5.
(B.15)

Lemma B.1. With terminology as in Appendix A.l, the maps me extend from the
interior to b-maps
> 3 2 ;
Tle- Mheat,l - Mheat,l (B.16)

ore c {L,C, R} with exponent matrices ez, satisfying
p .

ez, (0 ) =1, ez (F) . ) = Sewr, ez (FX 1) =1, e (FR o) = 1,

ez (T 1) = 1, ez, (fFR 1) =1, ez (ffS,th) > 0, ez, (S, tb) > 0,
(B.17)
where 8o o = 1 if ® = o' and zero otherwise. When e € {L.,C,R, tb, tb}}, i.e. when
it is the pullback of a boundary hypersurface of M x M x M x W via the blowdown
map, then the exponent matrix satisfies (B.5) with 7 replacing .
Moreover, TTc is a b-fibration in the sense of Appendix A. 1.
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Remark B.2. The significance of the inequalities in (B.17) involving tb is that all the
distributions under consideration vanish to infinite order at tb, and thus the pullbacks
of these distributions via 7t g will vanish to infinite order at €, and the same for L.

Proof. We verify the lemma for for w¢ and leave the other nearly identical
calculations to the reader. That ¢ extends to a b-map follows easily by writing
the pulling back the coordinates in (3.9) and writing them in terms of those in (B.11).
In particular, note that the pullback

7ep = pnpS. (B.18)

so the exponent matrix claim holds. The rest of the definitions of b-fibration are easy
to check. 1

Remark B.3. The extended map 7, is not a b-fibration as it maps the interior of fflc
to the interior of the face tb N If due to the fact that t = 0 on W implies that ¢’ = 0
also, thus the map increases the codimension of a face. The same holds for g,
ie. Zr(FS) C tbNrf.

Next we must blowup the lifts of 8; in (3.10). Since by (B.17), e only maps ﬂ‘{l
to ff; if e = o', any of the pair-wise intersections is again equal to the triple
intersection

8 =7 (B NA (B1) = Fg (B1) N7 (By) = 7L (By) N7z (B1).

Indeed, each is a subset of ff', and in the polar coordinates defined on the interior
of ﬂ?, using the definition of B in (3.10)

8 ={p=op =¢/, =000 =3 =479}, =) _; =0}, (B.19)

with no restrictions on y’, z, z/, Z. We form a space [Mmlt 1: 8']q-nom With appropriate
homogeneities. To understand this space, note first that near §’ we can use projective
coordinates on ff; ", concretely we can take for example ¥ to be a boundary defining
function of ff; N and coordinates X, t'/x2, (t —t')/X2, x/X, x'/X, (y — y")/X,
(y" — ¥)/X to replace the polar coordinates in (B.11). Then the homogeneities are
determined by those in the ff blowdown of the double space, and one has coordinates

| t X —¥\2 ¥ — 52 — ¥I\2 f SN2y 1/2(k—1)
50:()(2@ 1)+~_+( - ) +( - )+(|y~y|) +(|y~y|)) ’
X X X X X

¢JWW@ﬂ%mwp%y%»

ﬁ(x t’ t—t' x—-X x'-%X y-J y’—)7)
T\ 5 ey 20k—1) ~p2(k—1) ~—k—1)" ~—k—1) ~—k—1)’ ~—(k—1
on xzpn( ) zp( )xﬁr(j ) xﬁ,(q )xﬁﬁ, ) /5( )

along with y, z, 2/, Z.
(B.20)
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One can also take coordinates in which x, x’, X are permuted, and the same with y,
Y, ¥

We let ff”' denote the introduced boundary hypersurface.

The lifts of the 7, 1(8B;) minus their intersections now have disjoint closures.
For example, we have

FUB) N\ = {$r = Pxnr = Py—y = 0},

while
7' (B0 N O\ = (g = fesz = G5 = O}

where ¢, = ¢+ + ¢, and qgﬁ_;c = ¢ + @5 and for T we have Y,y =
Vi = 0, ¥y = 0; since |¢p| = 1, these sets are disjoint. Furthermore, the
pullbacks satisfy that

ﬁ:l(ﬂl) N ﬂ:;/ = 80,0’,

fore,e’ € {R, C, L}, and each intersection is straightforward to write down, e.g. with
coordinates as in (B.15),

g (B1) NS = {p€ = ¢F = ¢, = ¢ —¢F = 0,65 5 =0}.

We will blowup first the 7,71 (81) N T’ and then the 7,1 (B) N ff] with for e €
{L., C. R}

In the interior of ff] with @ € {L, R} the blowups of the pullbacks of 8B are
particularly easy to understand as there we can just pullback the projective coordinates
in (3.14) and use these together with the other unaffected coordinates to obtain
projective coordinates e.g. near my, © Ea LB n fflL valid near the interior of the
introduced boundary hypersurface.

! t’

, O:s~l :x—x’ n,:y;y’ _
(x/)k—l (xr)k 2 (xr)k ’ (xr)zk’

X,

(B.21)

together with @, ¢ on the introduced boundary hypersurface. In the interior of it
one needs only to remember that the vanishing of the pullback of the ¢; coordinate
implies the vanishing of both ¢, and ¢,_,,. One can use X as a boundary defining
function and then two projective time coordinates 7/ = ¢/ /5% and T = (t — t")/X2.
In the interior of ff{' but away from ff”', we want the same homogeneities, but
now the pullback of x’ in the interior of ff”" is proportional to p" and in the
interior of the introduced blowup we will have coordinates as in (B.21) with all
the functions replaced by their ¢ counterparts, e.g. x’ replaced by ¢,/ and (yx T)J,'C
replaced by Vry_y//¢px.

We focus at the intersection ff;" N ff;®, first with ¢ = C. Near 8¢, we can
simplify things slightly by using projective coordinates, derived from (B.15) by




Vol. 94 (2019)  Spectral and Hodge theory of “Witt” incomplete cusp edge spaces 757

noting that ¢5? is non-zero at ft;"" N F;* N 8¢ and can thus be used as a boundary
defining function. Specifically, take

X t y

X = =
X2 x

X’

H

together with the other (non-polar) coordinates in (B.15). Blowing up to introduce a
face fF™-C , have

k—
P (J _*_p%(k 1) e (x_1)2_|_ |-y|2)1/(2( 1)),
W = (T/P2*D o /P, (X — 1)/ P+, y/p* 1),

but it follows that §; N ;€ intersects ff°C at ¥ = (0, 1,0,0) and thus p" can be

used as a boundary defining function. Again working near §¢ we can take pn as a

boundary deﬁmng function for ff™*¢ and use projective coordmates on,T/ ,oz(k b :

(X —1)/pk~1, Y/pk=1. Using these we blow up &, N ;€ with

_ T (X =12 Yk
P=(qam + @OV )
Pr Pn Pn
o ( T ¢~ X — 1 Y )
(Ppr)2*=D" P (Ppa)k—1" (Ppn)k-!
_( t X x—X y—y )
- \R2(Ppr)2*k=D Ppn F(P o)kl X (P )kl

and this is the final blowup of §¢. The blowups for &7, 8 are similar and left to
the reader.

Proposition B.4 (Incomplete cusp edge heat triple space). The above construction
yields a space and blowdown map

BM2, — MxMxMxW, (B.22)

such that the maps 7o from (B.16) extend to b-maps me: Mhedt — Mheal

exponent matrix satisfying (B.S), (B.17) (with w and 7 replaced by 7), and

5 With

e (0, ) = 1, e, (F7 ) = ez, (F, F) = 8u0r,
ez, (FVR 1)) = ez (7 ) = ez (BB, ff)) = ez (FF ) = 1,
ez, (TR, tf) = ez (F5, If) = ez (FR, 1f) = ez (Y1) = 1,
ez, (€ b)), ez, (FC, b)), ez, (™€, b)), ez, (FC, tb) > 1.
(B.23)

Moreover, apart from components of ez, (ft"C , o) and ez, (ff€, o) withe € {L, R},
all other components are zero.
Again, ¢ is a b-fibration.
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Proof. Again, we focus on 7c. To check that ¢ extends to a b-map, we pull back
the polar coordinates p, ¢, V, z,Z, from (3.12) defined at ff in Mhzeat,z- First, we
compute

e~ " BT ot reon 1/2(k—1)
wep =7E (/) + & D 4 (s —1)2 + (ly — 71/5)?) )

= (T + 20D 4 (X — 1)2 + |yP) /2D
jspn,
and then note that
~x T ~x t X x—X y—)7)
Tc = EC(%zﬁz(k—l)’E’ xﬁ(k—l)’ xptk—1)
B ( t X x—X y—y )
C\RA(Ppa)2 kD Ppn H(Ppn) kD Z(Ppr)ED
= U,
This establishes both claims for w¢. The R, L case are left to the reader. L]

Proposition B.5. Fori = 1,2, let A; € Aflig(Mhzeat,Z) with the index sets &; satisfying

& (ff)) > —3—b—kf, &(ff)> —kn—2k, &(f) =& (tb)=o, and &f)

satisfying (3.68). Then
t
Az 1= // Ar(w, w’, Y Ax(w', w,t —t") dVoly dt’
0

lies in Afﬁg(Mhzw’?_) where for any € > 0,

inf &5 (ff;) > inf & (ff}) + inf E () + 3+ b + kf —€,

_ (B.24)
inf &3(ff) > inf &, (ff) + inf &> (fF) + kn + 2k —e.

Remark B.6. The constants kn + 2k and 3+ b + k f in (B.24) should be interpreted,
for instance in the case of ff, as saying that the (Volterra type) composition of two
operators given by Schwartz kernels as in the theorem has Schwartz kernel whose
leading order asymptotic behavior at ff increases relative to the rate —kn — 2k, in
particular if both the composed operators grow like —kn — 2k then so does the
composition. These are, incidentally, the exact rates of blowup of the heat kernel
times ¢ ! at the faces ff and ff}, and furthermore the fact that the errors ¢ ~! Qin (3.75)
vanish one order faster than '/ means, as described above, that taking powers
makes them vanish at increasing rates at both ff and ff;.
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Proof. We write A3 as the pushforward of a b-density and then apply the Pushforward
theorem from Section A.1. First we define a non-vanishing b-density pg on M x
M x M x W as follows. We let v be a non-vanishing b-density on M satistying

v =dq| dx‘iiydz | for a smooth nonvanishing function a near the boundary, and consider
,~ | dt'dt
0=VVV|l—
. 7t —1')

where V',V are equal to v in the primed and tilded coordinates, respectively. Since
the blowdown map 8 from (B.22) is a b-map, B*i¢ is a b-density on M;2., and one
checks that

B* o = Gjto, (B.25)
for a non-vanishing b-density ftg on M2, and G € C®°(M2, ) satisfying that for

heat heat
some non-vanishing smooth function G’,

G = G’(pﬁ', L pffl o) pﬂ.l R )bpﬁ]bﬁ (pﬁ-L e pﬁR)kb+k—1

—1 2kb+2(k—1
X (pgn.L pgn.c pgn.r ) KTDETE o e=1),

Then we can write the desired pushforward as a pushforward of a b-density,
specifically

d
As (v 1501) = re)e (e v Az - (/1)@ = ) F o)
= (T ) (T A1 Az - B((' /1)t — 1) F (0 o))

where F is the function defined by dVol, = Fv and in particular

(B.26)

F :Clxkf+l,

where a is a non-vanishing polyhomogeneous function on M, and v,V are the
pullbacks of the density v above to the left and right spacial factors of M x M x R,
To find the asymptotics of A3 itself we must compute the asymptotics of the densities
on the left hand side of (B.26); Letting B, again denote the blowdown map

MZn —> M x M x [0,00)
in (3.13), we check that
B ((n’L)*v (ﬂ}e)*v%) = pf, P s,
where 145 is a non-vanishing b-density on leeat’z. Thus from (B.26), if the distribution

()« (T A1 Az - BX((¢/0)(t — ') F(w') o))
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is polyhomogeneous with index set &5 then A3 is phg with index set &3 satisfying
&3(ff)) = &5(ff)) — b, &3(fF) = &5(fF) — (kb + k — 1), (B.27)

and &3(e) = &} (o) otherwise.
Thus the index family of 77 A1 w; A»-B*((¢' /1) (t—t") F (w')) must be determined.
To determine J_TZA 1, we see that, at a bhs H of M3 . the index set of ﬁzAl is simply

heat®
the index set of A, at the bhs H' of M2, , at which H is incident. Thus from our

work above we see that ﬁ}':Al has index set &; satisfying

&1(L) = & (If) = @,
£1(C) = E1(h ™) = &1 (FF) = &M,
81(tb)) = &, (fF,¢) = & (ff™C) = &§,(ff°) = &,(tb) = @,
E1(ff,") = &1(fF, ") = & (F™F) = &1 (1f),
E1(ff7) = &1(fF™F) = &1(fF") = &1(FF),
EIR) = Z,
the last line coming from the fact that 7y Ay is independent of X, in particular is
smooth up to R. The index set & of mgA, has the same expression in terms
of &, but with all ‘R’s switched with ‘L’s, all If’s with rf’s, and all 1’s with 2’s
(except of course for the 1 in the subscript of ff;). For example, (c.f. the second line
above) &;,(C), Sz(fflL), 82(ffL) are all equal to &;(If), which is assumed to be &.
If we define the operation &, @ &> on index sets to denote the index set whose
elements are sums of elements of the two index sets, It follows that 7] A T A5 is
polyhomogeneous with index set ¥ satisfying
{F(©), F (L), F (%), F (), F (b)), F (tb}), F (f, ), F (F™), F ()} = @,
F") = &1(ff) @ & (ff), FH) =&,(fF) ® & (), F(R) = &(rf),
F(FR) = €,(f) @ & (), F({FR) = &,(f) @ &(f),

F(HEVR) = &,(ff) @ &), F (™) = &(F) @ Ex(F).
(B.28)
We now compute the asymptotics of the term

BX(((¢'/1)(t — ") F(w' o) = B*(((¢'/1)(t — ")) F(w')) G [io
with G in (B.25). First, write
B*((t(t —t))F(w) = 7} (VTR (TR (F),

where F is thought of as a function of the left factor of M x M x [0, 00). Recalling
p, p from (3.9) and (3.12), respectively, and letting a denote a polyhomogeneous
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function which is smooth and non-vanishing up to boundary hypersurfaces e for

which ¥ (e) # & (and whose value will change from line to line), we compute

Y 2k 2k
B (t(t D pw )= nL(p_i(;fﬁiﬁ;p S a (o )
C

— g (pmﬁpﬁ‘ﬁpﬁ‘”ﬁ)z(ﬁﬁﬂ Pﬂ‘]”‘Lpﬁ'L)Zk

(0,0 Pyr, € P& Pgn.L)? (0o oy, 0. pge )R
X (g, 0 Py, & Py ) (g0 Py, 0.8 )
X (PC Py, L Pyt Pig, 0 Py, R Py L Py Py, & Py )< 1
= a (pg, 1) (g, 2. pg2)* (i, 0 oy, ) (P Py 0.8 Py )
X (PC Py, L PyL i, " P, R Py P e oy ) T
= a (pg,n Py, R )2 (g 0L PR PR )

% (P, & Py, Py ok o2 P ) T

Putting this all together, we see that 77 A1TgA> - B*(((¢'/1)(t — ") F(w)po) is
polyhomogeneous with index set ¥
F (") = &1(fF) @ &x(fF) + 3+ kf + 2b),
F{ ") = &,(fF) @ &2(ff) + (1 + 2k + kf + 2kb),
F(R) = &;(rf)
FAER) = &,(f) ® &) + B+kf +b),
F(FR) = 8,(rf) @ &(F) + (1 + 2k + kf + kb)
7 (R = &1(fF) @ &x(fF) + (1 + 2k + kf + (k + 1)b),
F (L) = 81(fF) @ &(fF)) + (1 + 2k + kf + (k + 1)b),

(B.29)

and 3?(-) = @ for all other values of e.
Now we apply Theorem A.3 to analyze

(7Te)w(wp Avg Az - ((¢'/1)(t = ') F(w') o)

from (B.26). To check that the conditions of the theorem hold, we first recall that ¢
is a b-fibration. Also, note that

ere (C, H') = ez (b, H') = ex,.(tby, H') = 0

for all H' € M(Mhedl »), and so we must check the integrability condition there, but
by below (B.29) we have

F(C) = F(tb)) = F(tb}) = @,
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so the integrability condition holds. Thus A3(})*v (7f)*v is phg on M2

index set &5 satisfying

a2 with

gi(If) = F(L) U F (1)U F (th) = 2,
€5(rf) = F(R) U F (1, *) U 7 (),

g4(ff) = F(®N T F (") T F@EL) T FE™R), (B.30)
g(fF) = F (M) U F("C) U F (F€) = F ("),
€3(th) = &,

where we used from below (B.29) that various bhs’s have infinite order vanishing.
From this we see that the bounds in Proposition B.5 hold, in particular that for
any € > (),

inf €4(fF1) > inf &, (fF1) + inf E2(F)) + 3 + kf +2b —e,
E5(fF) = inf & (ff) + inf E(fF) + 1 + k + kn —e,

and thus by (B.27) the actual index set &3 of A3 satisfies (B.24), and the proof is
complete. ]
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