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On rational cuspidal plane curves
and the local cohomology of Jacobian rings

Alexandru Dimca™*

Abstract. This note gives the complete projective classification of rational, cuspidal plane curves
of degree at least 6, and having only weighted homogeneous singularities. It also sheds new light
on some previous characterizations of free and nearly free curves in terms of Tjurina numbers.
Finally, we suggest a stronger form of Terao’s conjecture on the freeness of a line arrangement
being determined by its combinatorics.

Mathematics Subject Classification (2010). 14H50; 14B05, 13D02, 32522.
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1. Introduction

The main result we prove in this note is the following.

Theorem 1.1. Let C be a rational, cuspidal plane curve of degree d > 6 such that C
has only weighted homogeneous singularities. Then C is projectively equivalent to
exactly one of the following ¢(d)/2 models

Cd k: yd + xkzd7k = ¢

E}

where the integer k satisfies | < k < d /2 and k is relatively prime to d. Here ¢
denotes the Euler function, with ¢(d) counting the number of integers m, where
1 <m <d — 1 and m relatively prime to d.

The normal form of the curves above is in fact just the homogenization of the
normal form of a simply-connected, irreducible affine plane curve X: by the Lin—
Zaidenberg theorem, see [17,24], any such curve X is given in suitable global
coordinates (1, v) on C2 by an equation u?¢ + vk = 0, for some coprime integers

d>k>1.

*This work has been supported by the French government, through the UCA’EP! Investments in the
Future project managed by the National Research Agency (ANR) with the reference number ANR-15-
IDEX-01.



690 A. Dimca CMH

A slightly stronger result than Theorem 1.1 is stated and proved below, see
Propositions 4.1 and 4.3. For detailed information on the rational, cuspidal plane
curves of degree < 5, we refer to [15, 16] and the references given there. The
curves Cy i above are called binomial cuspidal curves in [15, Section 7.1]. The
necessary restriction d > 6 in Theorem 1.1 is discussed in Example 4.4 below.

Theorem 1.1 is quite surprising, given that the classification of rational, cuspidal
plane curves, even of those having at most two singularities, is rather complicated;
see the Sakai—Tono paper [19], or Propositions 3.1 and 3.2 in [10] where their results
are quoted. It is known that there are no rational, cuspidal free curves of degree
d > 6 having only weighted homogeneous singularities, see [10, Theorem 2.8].
Theorem 1.1 says that if the word free is deleted from the above statement, only
the binomial cuspidal curves may occur, and they are all nearly free. Note also
that a weighted homogeneous cusp has only one Puiseux pair, but the class of plane
curve singularities with exactly one Puiseux pair is much larger. This explains the
complicated classification of rational unicuspidal curves with a unique Puiseux pair
in [14].

To prove Theorem 1.1, we use a number of key results, proved by A. A. du Plessis
and C.T.C. Wall in [12, 13], the main one being stated below in Theorem 3.1. To
make our note more self-contained, we include a short proof of a similar result to
Theorem 3.1, which we explain now.

Let S = C[x, y, z] be the graded polynomial ring in three variables x, y, z and
let C: f = 0 be a reduced curve of degree d in the complex projective plane P2.
The minimal degree of a Jacobian relation, or Jacobian syzygy, for the polynomial f
is the integer mdr( f) defined to be the smallest integer m > 0 such that there is a
nontrivial relation

afe+bfy +cfs =0 (1.1)

among the partial derivatives fx, fy and f; of f with coeflicients a, b, ¢ in S,, the
vector space of homogeneous polynomials of degree m. When mdr(f) = 0, then C
is a union of lines passing through one point, a situation easy to analyse. We assume
from now on that

mdr(f) > 1.

Denote by t(C) the global Tjurina number of the curve C, which is the sum of the
Tjurina numbers of the singular points of C. We denote by J ;s the Jacobian ideal
of f,i.e. the homogeneous ideal in S spanned by fy, fy, fz,andby M(f) = S/Jr
the corresponding graded ring, called the Jacobian (or Milnor) algebra of f. Let /¢
denote the saturation of the ideal J y with respect to the maximal ideal m = (x, y, z)
in S and consider the local cohomology group

N(f)=17/Ts = Hu(M(f)).

It was shown in [7] that the graded S-module N( /) satisfies a Lefschetz type
property with respect to multiplication by generic linear forms. This implies in
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particular the inequalities

0<n(flo=n(fn=--=n(fira =n(Hir/241 = =2n(f)r =0,

where T = 3d — 6 and n(f)x = dim N( f )i for any integer k. We set

v(C) = mjax{n(f)j}-

When d = 2m is even, then the above implies that n( f)3n,—3 = v(C). When
d = 2m+1 is odd, then the above and the self duality of the graded S-module N( f),
see [21,23], implies that

n(f)am—2 = n(f)zm-1 = v(C).

The second main result of this note is the following.

Theorem 1.2. Let C: f = 0 be a reduced plane curve of degree d and let r =
mdr(f). Then the following hold.

(1) Ifr <d/2, then

v(C)=Wd—-1)*=r(d—-1-r)—1(C).
(2) If r = (d —2)/2, then

w(C) = E(d = 1)2W —7(C).

Here, for any real number u, [u] denotes the round up of u, namely the smallest
integer U such that U > u. Written down explicitly, this means that for d = 2m is
evenand r > m — 1, one has v(C) = 3m? —3m + 1 — t(C), while ford = 2m + 1
is odd and r > m, one has v(C) = 3m? — t(C). For (d —2)/2 < r < d/2,
both formulas in (1) and (2) apply, and they give the same result for v(C). The
relation between Theorem 1.2 and du Plessis-Wall result in Theorem 3.1 is discussed
in Remark 3.2 below.

When C: f = 0 is a line arrangement, examples due to G. Ziegler show that
the invariant mdr( f) is not combinatorially determined, see [1, Example 4.3]. The
above result suggests that the following stronger version of H. Terao’s conjecture,
saying that the freeness of a line arrangement is combinatorially determined, might
be true. For more on Terao’s conjecture and free hyperplane arrangements we refer
to [4].

Conjecture 1.3. Let C: f = 0 be a line arrangement in P2, Then the invariant v(C)
is combinatorially determined.
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For a reduced plane curve one may state the following.

Conjecture 1.4. Let C: f = 0 be a reduced plane curve P2, of degree d > 6.
Then the invariant v(C) is determined by the degree of C and the list of the analytic
types of the isolated singularities of C. Or this version: similar claim, but with the
additional restriction that all the singularities of C are weighted homogeneous, and
we use now the list of topological type of singularities.

Note that it is the second version in Conjecture 1.4 which generalizes Conj-
ecture 1.3. Some cases where these conjectures hold are described in Example 4.4 (i)
(where the corresponding invariant mdr( f) is not determined by the data stated
in Conjecture 1.4), and in Proposition 3.5. The need of the assumption d > 6 in
Conjecture 1.4 is explained by looking at a pair of quintic curves with two cusps of
type A4, and respectively Eg, in Example 4.4 (iii). This pair of quintic curves occurs
already in [2, Remark 3.10], as a possible source of counter-examples to a generalized
Terao’s conjecture.

The examples of conic-line arrangements 4 and A’ in [20], having the same
combinatorics but different values for the invariant v(C), do not give counter-
examples to Conjecture 1.4, since, as implied by [20, Concluding remarks (2)], the
list of the analytic type of singularities in the two conic-line arrangements 4 and A’
are not the same, and some of the singularities are not weighted homogeneous.

Acknowledgements. We thank the referee for his many valuable suggestions, in
particular for drawing our attention on the two quintic curves described in Exam-
ple 4.4 (iii) below.

2. The proof of Theorem 1.2

Consider the graded S-submodule AR(f) C S? of all relations involving the partial
derivatives of f, namely

p=(a.b.c) € AR(f)m

if and only if afy + bf, + cf: = 0 and a,b,c are in S,,. We set ar(f)x =
dim AR( /) for any integer k.

Consider the rank two vector bundle 7' (C') = Der(— log C) of logarithmic vector
fields along C, which is the coherent sheaf associated to the graded S-module
AR(f)(1). Here we use the shift notation: for a graded S-module M and any
integer k, the shifted graded S-module M (k) satisfies M(k); = My ; for any j.
Using the results in the third section of [8], for any integer k one has

k d itk
H(T(C) (k) = 3( ;3) ~ ( +2 T 2) + 2(C). @2.1)
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Moreover, one has the following for £ = T (C) and any integer k, see [8,21].

h((E(K)) = ar(f)k+1,

1 , (2.2)
h((E(k)) =n(f)a+k, and h“((E(k)) = ar(f)a—s—k-

Assume that we are in the case d = 2m and apply the formulas (2.1) and (2.2)
for k = m — 3. We get
2ar(fm—z —v(C) = 1(C) — 3m?* + 3m — 1.

Letr = mdr(f) and note thatar(f)m— = 0ifr >m —1 = [(d — 1)/2] and
m-—r
ar(fIm— =dimS,,—2_, = ( 5 ) ifone has r <m — 2.

Indeed, it follows from [22, Lemma 1.4] that the S-module AR( ) cannot have two
independent elemens of degree d; and d; satisfying d; + d> < d — 1. Assume next
that we are in the case d = 2m + 1 and apply the formulas (2.1) and (2.2) again for
k =m — 3. We get

ar(f)m—2—v(C) +ar(f)m—1 = 1(C) — 3m>.
As above, if r = mdr(f), we have ar(f)m—2 = ar(f)m—1 = 0ifr > m =

[(d —1)/2] and

2

—r+1
and ar(.f)m—l =dim Spy—1—r = (m ' )

ar(f)m— =dimSy 5 , = (m N ")

2

if ¥ < m — 1, with the convention (}) = 0. These formulas, plus some simple
computation, prove Theorem 1.2 stated in the introduction.

Remark 2.1. An alternative proof of Theorem 1.2 can be obtained using the results
in [1]. Indeed, Proposition 3.2 in [1] implies that dlL” =rforr < (d —2)/2and
df0 = |(d —1)/2] forr > (d —2)/2. Here (d{°, d°), with d{® < d}°, denotes
the splitting type of the vector bundle T'(C)(—1) along a generic line L in P?. Then
[1, Theorem 1.1] says that

(d —1)2 —di°dlo = £(C) + v(C).

Since dlL" + dZL" = d — 1 by [1, Proposition 3.1], these facts give a new proof of
Theorem 1.2.
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In view of this remark, Conjecture 1.3 may be restated as follows.

Conjecture2.2. Let C: f = Obealine arrangement inP2. Then the generic splitting
type (d IL ° dzL Y)Y of the vector bundle T (C)(—1) is combinatorially determined.

This conjecture, in the form of a question, was made for the first time in [3,
Question 7.12]. Note that we can restate Conjecture 1.4 in a similar way, see
Example 4.4 (iii) below for an interesting pair of quintic curves.

3. Some related results and direct applications

We start this section by recalling the following result due to du Plessis and Wall, see
[12, Theorem 3.2].

Theorem 3.1. For positive integers d and r, define two new integers by
t(d,F)min =(d —1)(d —r—1) and t(d,")max = (d — D> —r(d —r —1).
Then, if C: f = 0 is a reduced curve of degree d in P? and r = mdr(f), one has
©(d, Mmin < T(C) < T(d, F)max-

Moreover, for r = mdr(f) > d /2, the stronger inequality

T(C) < t(d, r)max — (2r +22 B d)

holds.

Remark 3.2. Let C: f = 0 be areduced curve of degree d in IP? and r = mdr(f).
Note that the function t(d, r)max, regarded as a function of r, occurs also in Theo-
rem 1.2 (1), which can be restated as

T(C) + v(C) = t(d, r)max, (3.1)

forr = mdr(f) < d/2. The inequality t(C) < t(d, r)max in Theorem 3.1 is made
more precise, when r < d /2, by the result in Theorem 1.2 (1).

On the other hand, note that 7 (d, 7).y is a decreasing (resp. increasing) function
of r on the interval [0, (d — 1)/2] (resp. on the interval [(d — 1)/2, +00)), and the
number [ %(d —1)? ] that occurs in Theorem 1.2 (2) is precisely the minimum of the
values of the function 7(d, )max for r € [0, (d —1)/2] N N. Hence Theorem 1.2 (2)
implies only

H(C) < [f{(d— 1)2],

for r > d /2, which is weaker than the inequality in Theorem 3.1, though enough for
many applications.
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At the end of the proof of Theorem 3.1, in [12], the authors state the following
very interesting consequence (of the proof, not of the statement) of Theorem 3.1.

Corollary 3.3. Let C: f = 0be a reduced curve of degree d in P? andr = mdr( f).
One has

T(C) = l’(d, r)max
ifand only if C: f = 0 is a free curve, and thenr < d /2.

Since a plane curve C is free if and only if v(C) = 0, this characterization of
free curves follows also from Theorem 1.2, as explained in Remark 3.2.

In the paper [5], we have given an alternative proof of Corollary 3.3 and have
shown that a plane curve C is nearly free, which can be defined by the property
v(C) = 1, if and only if a similar property holds. Namely, one has the following
result, an obvious consequence of Theorem 1.2.

Proposition3.4. Let C: f =0be a reduced curve of degree d inP? and r = mdr( f).
One has

7(C) = t(d, max — 1
ifand only if C: f = 0 is a nearly free curve, and then r < d /2.
Concerning Conjecture 1.3 in Introduction we have the following.
Proposition 3.5. Let C be a plane curve of degree d such that, for d = 2m
(resp. d = 2m + 1) one has
(C) <t(d,m —2)pin = (m + 1)2m — 1)

(resp. T(C) < t(d,m — )pin = 2m(m + 1)). Then

v(C) = [ %(d — 13 W —17(C).

In particular, if C be a line arrangement (resp. a reduced plane curve) satisfying
these inequalities, then Conjecture 1.3 (resp. Conjecture 1.4) holds for C.

An example of quintic curves showing that the upper bounds on 7 (C) given above
are sharp is given in Example 4.4 (iii).

Proof. We give the proof only in the case d = 2m even. The function t(d, r)y, is a
strictly decreasing function of r on R, so Theorem 3.1 implies that r = mdr(f) >
m — 1. But then Theorem 1.2 (2) implies that v(C) is determined by d and t(C).
When C is a line arrangement, d and t(C) are both combinatorially determined.
For a plane curve in general, t(C) is determined by the analytic type of the local
singularities, but not by their topological type. ]
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Example 3.6. Let C = A: f = 0 be a line arrangement consisting of d lines.
For d = 6, there are 10 possibilities for the intersection lattice L(+A), see for details
[6, Section 5.6]. Out of them, 8 satisfy the inequality (+4) < 20 from Proposition 3.5.
For d = 6, r = mdr(f) is determined by the intersection lattice L(+), and there
are exactly 8 lattices with r > 2.

For d = 7, there are 23 possibilities for the intersection lattice L (). Out of
them, only 4 satisfy the inequality t(#A) < 24 from Proposition 3.5. For d = 7,
r = mdr(f) is again determined by the intersection lattice L(-A), and there are
exactly 19 lattices with r > 3, for which v(C) = v(+A) is given by the formula in
Proposition 3.5.

It would be interesting to find a lower bound for () in terms of d and r,
in the case of line arrangements, which is better than the bound t(7)mi, given by
Theorem 3.1.

4. The proof of Theorem 1.1

The following result is related to the main conjecture in [11], namely that a rational,
cuspidal plane curve is either free or nearly free. It is also the first step in proving
Theorem 1.1.

Recall that a plane curve C has only weighted homogeneous singularities if and
only if £ (C) = 7(C), where u(C) denotes the sum of all the Milnor numbers of the
singularities of C, see [18]. In general one has the obvious inequality 7(C) < u(C).
Proposition 4.1. Let C: f = 0 be an irreducible curve in P2, of degree d > 6.
Then the following properties are equivalent.

(1) 1(C) > d? —4d + 8.
) r=mdr(f) =1
(3) C is a rational, cuspidal plane curve such that u(C) = t(C), i.e. C has only
weighted homogeneous singularities.
If any of these properties hold, then C is a nearly free curve.
Note that the condition (1) implies d > 6. As the proof below shows, the
implication (2) = (3) hold for any d > 2, and the inequality d > 6 is essential for
the implication (3) = (1).

Proof. To prove that (1) implies (2), recall that the function t(d, r)nax is a decreasing
function of r on the interval [1, (d — 1)/2] and note that 7(d, r)max = T(d, r)max
forr +r =d — 1. Forr = 2 we get t(d,2)max = d* — 4d + 7. Then (1) implies
that r = mdr(f) has to be 1. Indeed, the value r = d — 2 is excluded using the
stronger final inequality in Theorem 3.1. Note that Theorem 1.2 (2) is also enough
for this purpose, as discussed in Remark 3.2. To prove that (2) implies (3), note that

T(d, Dmin = d?> —3d +2 < t(C) < 1(d, Dpmax = d* —3d + 3.
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The genus g(C) is given by
28(C) = (d —1)(d —=2) = Y _(u(C, p) +r(C.p)— 1),
p

where p runs through the singular points of C, pu(C, p) is the Milnor number of the
singularity (C, p) and r(C, p) is the number of its branches. It follows that

u(C) =Y u(C,p) < (d—1)d—-2),
P

with equality if and only if C is a rational cuspidal curve. Then the inequality
T(C) = u(C) < (d — 1)(d — 2) forces the equality

i, Digs = d% —3d +2 = z{C)

and we see that C is nearly free using Proposition 3.4. The fact that (3) implies (1)
is obvious as soon as d > 6, since then

7(C) = w(C) =(d — 1)(d —2) > d* —4d + 8. O

Remark 4.2. Irreducible, cuspidal nearly free curves satisfying u(C) = t¢(C), but
not rational have been constructed in [2]. For instance, for any odd integer k > 1, it
is shown that the irreducible curve

Czkif — x2k I )’2k + 22k _2(xkyk +xk2k + ykzk) =0,

has 3k singular points of type Ax_; as singularities, it is a nearly free curve with
mdr(f) = k and has genus

k —1)(k—2)
5 :
For k = 3, we have in this case t(C) = 18 < t(d, 2)max + 1 = 20.

The following result completes the proof of Theorem 1.1.

g(Co) =

Proposition 4.3. Let C: f = 0 be an irreducible plane curve of degree d > 6 such
that mdr(f) = 1. Then C is projectively equivalent to exactly one of the following
o (d)/2 models

Ca yd + xkz47k =,

where the integer k satisfies | < k < d /2 and k is relatively prime to d.

Proof. Using Proposition 4.1 and [13, Proposition 1.1], we see that C has a
1-dimensional symmetry, i.e. it admits a 1-dimensional algebraic subgroup H’
of PGL,(C) as automorphism group. This group lifts uniquely to an algebraic
1-parameter subgroup H of GL3(C), not contained in the center and preserving not
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only the curve C, but also its defining equation f. Such a subgroup H may be either
semi-simple or nilpotent, and [13, Proposition 3.1] tells us that only the semi-simple
case can occur for our situation. Indeed, as in the proof above, we know that

(C)=(d —1)(d —2) =d?*—3d +2.

Note that the statement of [13, Proposition 3.1] should be slightly corrected, namely
the part “if y¢ has non-zero coefficient in f” is to be replaced by “if y¢ has zero
coefficientin f.” Once we know that H is semi-simple, we can assume that H = C*
acting on P2 via

tilxiyig]=[tDxct" 2y i t53g];

for some integers w ;. Then using the discussion and the notation on page 120 in [13],
we see that the only possibilities to get irreducible curves correspond to line segments
Aay for 1 <k < d/2 and k relatively prime to d. ]

Example 4.4. (i) Consider the following two rational cuspidal quartics
Cif=y*—x2® =0and C"; ' = y* —x2° — 32,

Then both curves have an Eg-singularity located at [1 : O : 0], hence they have only
weighted homogeneous singularities. However, as noticed in [15, Section 7.1], in the
final part on semi-binomial curves, C and C’ are not projectively equivalent. This
follows there from the fact that C (resp. C’) has one (resp. two) inflection points.
From our point of view, the difference between C and C’ is that mdr( f) = 1, while
mdr(f") = 2, as a direct computation shows. Note that both curves C and C’ are
nearly free, since one has

1(C)=1(C)Y=6=17(4, Dmax — 1 = 7(4,2)max — 1.

Similar semi-binomial rational cuspidal curves C: f = 0 of arbitrary degree d,
with a unique Puiseux pair and 7(C) < p(C), and with all the possible values for
r =mdr(f) € [2,d/2], are discussed in [9].

(ii) Up to projective equivalence, all rational cuspidal quintic curves were described
and found by Namba in [16, Theorem 2.3.10, pp. 179-182]. In particular, any rational
cuspidal quintic curve with 4 cusps is projectively equivalent to

Cif = 16x4y -+ 128x2y22 — x>z 4 256y322 — 144xyz*3 +27z° =0,

see also the discussion of the curve Cg = [(23), (2), (2), (2)] in[15, Section 6.3]. This
curve has three A, cusps and one Ag cusp, hence only weighted homogeneous singu-
larities. A direct computation shows that mdr( f) = 2 and that t(C) = 7(5, 2)max,
and therefore C is a free curve.
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(iii) There are essentially two quintic curves with two cusps, one cusp of type A4
and the other of type Eg. The first curve, denoted by C5 4 in [15, Section 6.3], has the
parametrization (s° : 53¢2 : £°), and hence it is just the curve Cs 5 from Theorem 1.1,
if we forget the restriction d > 6 there. In particular, the curve Cs4 is nearly free,
and hence v(Cs4) = 1. The second curve, denoted by Csp in [15, Section 6.3], has
the parametrization (s> : s3¢2 : st* 4 £°), and hence it can be given by the equation

fag =y° —xy* + 2x%y%z — x322 = 0.

It follows that this curve is free, and hence v(Cs;p) = 0. Note that both curves
have 7(C) = 12, and hence the inequality in Proposition 3.5, which for d = 5
is t(C) < 12, fails just by a unit. This shows that the bounds given on 7(C) in
Proposition 3.5 are sharp. This pair of quintic curves has been considered also
in [2, Remark 3.10]. Using the above computations and Remark 2.1, we see that
the generic splitting type of the vector bundle T(Cs4)(—1) (resp. T(C3zg)(—1)) is
(df°,dl0) = (1,3) (resp. (d[°.dL") = (2.2)).

It is surprising that the condition ¢ > 6 in our results above avoids complicated
situations as described in this example.
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