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Aut-invariant norms and Aut-invariant quasimorphisms
on free and surface groups

Michael Brandenbursky and Michat Marcinkowski*

Abstract. Let F,;, be the free group on n generators and I' ; the surface group of genus g. We
consider two particular generating sets: the set of all primitive elements in F,, and the set of all
simple loops in I' . We give a complete characterization of distorted and undistorted elements
in the corresponding Aut-invariant word metrics. In particular, we reprove Stallings theorem
and answer a question of Danny Calegari about the growth of simple loops. In addition, we
construct infinitely many quasimorphisms on F that are Aut(F2)-invariant. This answers an
open problem posed by Miklés Abért.

Mathematics Subject Classification (2010). 57-xx.

Keywords. Free groups, mapping class groups, quasi-morphisms, invariant norms.

1. Introduction

Let G be a group and let Aut(G) be the group of all automorphisms of G. A
function |- |: G — [0, 00) is called a norm if it satisfies the following conditions for
all g, h € G:

* |g| =0ifandonlyif g = lg;
< lgl=1g7"
o [ghl| < |g| + |Al.

In this paper we study norms that are Aut(G)-invariant, i.e. for each x € G
and ¥ € Aut(G) we have |[x| = |{¥(x)|. An example of such a norm is the word
norm |- |g defined by Aut(G )-invariant generating set S, that is:

|x|s = min{n : x = 51,...,5,, wheres; € S foreachi}.

Under mild assumptions, up to bi-Lipschitz equivalence, there is only one Aut(G)-
invariant word norm. We denote it by |- |ay and call it the Aut-norm of G. We focus

*Both authors were partially supported by GIF-Young Grant number 1-2419-304.6/2016 and by SFB
1085 “Higher Invariants” funded by DFG.
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on two types of groups: surface groups, where the Aut-norm counts the minimal
number of simple loops needed to express an element in a group, and free groups,
where the Aut-norm counts the minimal number of primitive elements needed to
express an element in a group.

Let x € G. Recall that x is undistorted with respect to |-| if there exists
C > 0 such that |[x"| > Cn. Otherwise it is distorted. Note that this notion
depends only on the bi-Lipschitz class of |- |. In this paper we characterize distorted
and undistorted elements in surface and free groups. The main idea is to find an
appropriate quasimorphism on G. More precisely, in order to show that x € G is
undistorted in | - | oy, it is enough to find a homogeneous quasimorphism which is non-
zero on x but is bounded on some Aut(G )-invariant generating set S. This strategy
was previously used in the context of conjugation invariant norms, see e.g. [5, 6].

We say that G satisfies bg-dichotomy with respect to the Aut-norm, if for every
element x € G, either the cyclic group (x) is bounded in the Aut-norm, or we can
find a homogeneous quasimorphism which does not vanish on x but is bounded on
some Aut(G )-invariant generating set. That is, all undistorted elements are detected
by appropriate quasimorphisms.

The main result of this paper is presented below, i.e. we prove the following
theorem (see Theorems 3.6 and 4.12 in the text), which, in particular, answers (see
Corollary 4.14) a question of Danny Calegari from 2007 (see [9, Question 1.6]) and
gives a simple proof of Stallings theorem [25, Theorem 2.4] on Whitehead graphs of
separable elements.

Theorem 1. Surface groups and free groups satisfy bq-dichotomy with respect to
their Aut-norms. Moreover, in both cases, there is an explicit characterization of
undistorted elements.

This theorem has an application to geodesics on closed hyperbolic surfaces. More
precisely, we show that for every neighborhood U of a point p that lies on a closed
simple non-separating geodesic /, there is another simple closed geodesic /” which
passes through U, see Theorem 4.15.

In addition, the methods we use allow us to prove the following theorem (see
Corollary 5.6 in the text) which answers a question of Miklos Abért from 2010
(see [1, Question 47]) in the case of F;.

Theorem 2. The space of homogeneous Aut(F,)-invariant quasimorphisms on ¥,
is infinite dimensional.
As a corollary we provide an infinite dimensional space of quasimorphisms

on F, where each quasimorphism can not be expressed as a finite sum of counting
quasimorphisms, see Remark 5.7.

Acknowledgements. We would like to thank Mladen Bestvina for answering our
questions, and Danny Calegari and Hugo Parlier for comments on the early draft of
our paper.
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2. Preliminaries

2.1. Aut-invariant norm on free groups. Let F, be the free group of rank n. An
element b is called primitive, if it is an element of some free basis of F,. Note that
if b is primitive and € Aut(F, ), then ¥ (b) is primitive and each base element has
a form v (b) for some fixed b. In other words, the set of all primitive elements in F,
is a single orbit of the Aut(Fy) action.

Given an element of F,, where n > 3, it is difficult to decide if it is primitive or
not. In his celebrated papers ([26,27]), J. H. C. Whitehead provided an algorithmic
method to solve this problem. However, the time complexity of this algorithm seems
to be ineffective for large n (see [21] for an attempt to find fast algorithms). It is
worth to note that in the case of F, the situation is completely different. There is a
quadratic in time algorithm which checks whether an element of F5 is primitive or
not. It can be extracted from [22].

We consider the following norm:

|x|p, = min{n | x = by ...b,, where b; is a primitive element in F,, },

which we call the primitive norm of x. A priori it is not clear whether this norm
is unbounded. Indeed, for the free group of infinite rank, the norm of any element
is at most 2. In case of arbitrary finite rank, the unboundedness was proven in [2]
by exhibiting a relevant non-trivial homogeneous quasimorphism. Our Theorem 3.6
may be viewed as a generalization of this result. In the proof we use Whitehead
graphs and Whitehead automorphisms, and as a corollary we obtain a result due to
Stallings (See Corollary 3.7) on Whitehead graphs of separable elements.

2.2. Aut-invariant norm on surface groups. Let us denote by S, the oriented
closed surface of genus g and let x € Sg be a base point. Let 'y = 71(Sg, *). An
element s of T, is called simple, if it can be represented by a based loop with no
self-intersection points (such a loop is called simple). Simple elements generate I ¢,
thus we can consider the following norm:

|x|s = min{n | x = s1...s,, where s; is a simple element in ', }.

We call |- | the simple loops norm. Danny Calegari proved that every non-simple
element x € I'g is undistorted in this norm [9], leaving the case of simple elements
open. Theorem 4.12 solves this case. In particular, we show that an element which
is represented by simple separating closed curve is undistorted.
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Recently, Erlandsson considered generating sets consisting of simple loops and
obtained interesting results about intersection numbers [11,12]. However, generating
sets she considers are finite and we consider infinite generating sets.

Letus put an arbitrary hyperbolic metric on S, . Itis known that in every homotopy
class of a based loop there is a unique based closed geodesic. Using Theorem 4.12
we draw some conclusions concerning the behavior of closed geodesic in Sg, see
Subsection 4.4.

2.3. Generalization: H-norms. Let G be a groupand H < Aut(G) be a subgroup
of the group of automorphisms of G. The group H acts on G from the left. We say
that:

* G is H-generated by S C G if
S={h(s):seSUS ', he H}

generates G.

 H-invariant subset S of G is H-finite if S/H is finite, i.e. S is a sum of finitely
many [1-orbits.

* G is H-finitely generated if there exists an H -finite subset of G generating G.
Equivalently, if there exists a finite set S C G such that

S=1{h(s):seSUS™, he H}

generates G.

Having an H -finite set S which generates G, we consider the word norm |- |5 on G
defined by S. Note, that |- |z is H-invariant, ie. |h(g)|ls = |g|lg for h € H
and g € G.

The norm |- |5 depends on the choice of H -finite set S. However, as long as S
is H-finite, |- |5 belongs to the same bi-Lipschitz equivalence class. We denote
this equivalence class by |-|g. The norm |- |y is maximal among all H -invariant
norms on G, namely: for every H -invariant norm |- |, there exists C > 0 such that
|x| < C|x|g forevery x € G.

Examples include (we always assume that GG is H -finitely generated):

(1) H is trivial, then |- |y is the standard word norm.

(2) H is the group of inner automorphisms of G, then |-|g is the conjugation
invariant word norm, see e.g. [5].

(3) H is the full automorphism group, then |- | g is called the Aut-norm on G.

Let us show that the primitive norm and the simple loops norm are examples
of Aut-norms on free and surface groups. It is clear that the primitive norm is an
Aut-norm since the set of primitive elements in F,, equals to the set

W) | ¥ € Aut(F,)j,
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where b is an arbitrary chosen primitive element. Thus this set is a single Aut(F},)-
orbit. In the case of the simple loops norm we use the Baer-Dehn—Nielsen theorem
which states:

Aut(T p) = MCGE(S,. *).

Now it follows from the classification of surfaces, that Aut(I ;)-orbit of a simple
element s € I'y is determined by the homeomorphism type of the surface S, \ys,
where y; is the corresponding simple loop. Since there are only finitely many
homeomorphism types of such surfaces, the set of simple elements consists of finitely
many Aut(I' ¢ )-orbits.

2.4. Quasimorphisms and distortion. Let us recall a notion of a quasimorphism.
A function g: G — R is called a quasimorphism if there exists D such that

9(a) — qlab) + q(b)| < D

for all a,b € G. The minimal such D is called the defect of ¢ and denoted
by Dy. A quasimorphism g is homogeneous if q(x") = nqg(x) for all n € Z
and all x € G. Homogeneous quasimorphisms are constant on conjugacy classes,
ie. g(x) =q(yxy™ 1) forall x,y € G. We refer to [10] for further details.

Lemma 2.1. Let G be a group and let H < Aut(G). Assume that S C G is
an H-finite subset which generates G. Let x € G. If there exists a homogeneous
quasimorphism q: G — R such that g(x) # 0 and q is bounded on S, then x is
undistorted in the norm |- | g.

Proof. Let w € G and C be such that |g(s)| < C forall s € S ._We can write w
in the following form: w = s;...s, where n = |w|gy and s; € S. The following
inequality holds:

lg@)] < Y 1)+ (1= 1)Dy <nC + (n—=1)Dy < (C + Dg)|w|n.
1

We apply this to x™ and get
nlg(x)] = lg(x")] = (C + Dg)|x"|n.
Since q(x) # 0, |x" |z growths linearly with . [

Remark 2.2. In Lemma 2.1, instead of assuming that g is homogeneous, it is enough
to assume that g(x"") growths linearly.

Corollary 2.3. Assume that q is an H -invariant homogeneous quasimorphism and
q(x) # 0. Then x is undistorted in |- | f.
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Let g: G — R be a quasimorphism. We define
g(a) = lim g(a")/n.
n—>00

Straight-forward computations show that ¢ is a homogeneous quasimorphism, see
e.g. [10]. The following lemma relates general quasimorphisms with homogeneous
quasimorphisms.

Lemma 2.4 ([10]). Let g:G — R be a quasimorphism such that g(x") growths
linearly. Then a homogeneous quasimorphism q: G — R, called the homogenization

of q, satisfies |q(a) — q(a)| < Dy forall q € G, and g(x) # 0.

3. Aut-norms on free groups

In this section we use counting quasimorphisms in order to investigate distortion in
free groups.

3.1. Whitehead graph. LetF be a free group (possibly not finitely generated). Let
w € F and let B be any free basis of F. Here we use the convention that if b € B,
then b~! ¢ B. Suppose that w is a cyclically reduced word with respect to the
basis B and w = wyw; ... w, is the reduced expression of w in B. We define the
Whitehead graph Wh g (w) as follows: for each element » € B we have two vertices
in Whg(w) labeled by b and !, For every two consecutive letters w;, w; 1 in w,
we draw an edge from w; to w;_ +11. We regard w,, wo as being consecutive in w,
that is, we have an edge from w, to w, L If w is not reduced with respect to B, then
denote by r g (w) the unique cyclically reduced word in the conjugacy class of w. We
define Whp(w) := Whpg(rp(w)).

a h~1

Figure 1. Whyy py(aba™1h™1).

Theorem 3.1 (Whitehead [26]). If b € F is a primitive element and Whpg(b) is
connected, then Whpg (b) has a cut-vertex.

A vertex v of a graph is a cut-vertex if after removing v, the graph has more
connected components. In the example below a, b, a~! and ™! are cut-vertices.
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Figure 2. Why p cy(aba'h1¢).

Lemma 3.2. Let B be a free basis of ¥ and let b € F be a cyclically reduced base
element. Assume that x € F is a cyclically reduced word such that its Whitehead
graph Whpg(x) is connected and has no cut-vertices. Then the reduced expression
of b in the basis B does not contain the reduced expressions of x* and of x™2 as
subwords.

Proof. Let us fist notice, that if a reduced expression of » contains the reduced
expression of x2, then Wh g (h) contains Whg (x) as a subgraph. Indeed, every edge
of Whp(x) is given by two cyclically consecutive letters in x. If x? is a subword
of b, we can find all those edges in Whp(h). Whp(x) has no cut-vertices, it is
connected and has the same vertex set as Whg (b). Thus if Whp (x) is a subgraph of
Whpg(h), then Whp(b) is a connected graph with no cut-vertices. This contradicts
the Whitehead Theorem 3.1. L]

Remark 3.3. In Lemma 3.2, the assumption that b is cyclically reduced can not be
omitted. For general h one can show that the number of occurrences of x2 minus the
number of occurrences of x 2 is bounded by 2|x|z. Here |- |5 is the word metric
defined by B. We would like to add that a variation of Lemma 3.2 already appeared
in [2].

3.2. Counting quasimorphisms. Let w € F and let B be a basis of F. Having an
element x € F, we can write x and w as reduced expressions in the base B. We
define C,, (x) to be the number of occurrences of w as a subword of x (the subwords
can overlap). In [7] Brooks proved that the following function

Bry(x) = Cy(x) —Cw(x_l)

is a quasimorphism. See also [24]. Usually we suppress the basis B from the
notation.

Lemma 34. Let x € F be a cyclically reduced word. Assume that Whpg(x) is
connected with no cut-vertices. Then x is undistorted in the Aut-norm. Moreover,
there exists a homogeneous quasimorphism which is bounded on primitive elements
and is non-zero on Xx.
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Proof. Let Br, > be a counting quasimorphism defined with respect to the basis B.
Let b € F be a primitive element. By Lemma 3.2 and Remark 3.3 we have that

|Br.2(b)| < 2|x|p.

Moreover, |Br,2(x")| growths linearly with n, thus by Remark 2.2, x is undistorted
in the Aut-norm. In order to obtain a desired quasimorphism, it is enough to consider
the homogenization of Br,2, see Lemma 2.4. (|

3.3. Separable sets. Let A be a finite subset of F. We call A separable, if there exist
two non-trivial free factors Fy,F, such that F = F; x F,, and every element in A
can be conjugated into F; or F>. We always assume that elements in A are cyclically
reduced. Note that A is separable if and only if ¢p(A) is separable, where ¢ € Aut(F).
The following proposition follows from Proposition 2.2 and Proposition 2.3 in [25].

Proposition 3.5. Let x € F. [f Whp(x) is disconnected, then x is separable. If
Whpg(x) is connected and has a cut-vertex, then there is v € Aut(F), such that

¥ (x)|B < |x|B.

3.4. Distortion of elements in the Aut-norm of free groups.
Theorem 3.6. Let F be a free group and let x € F. Then either:

(a) x is separable and then the cyclic subgroup generated by x is bounded in the
Aut-norm, or

b) x is undistorted in the Aut-norm. Moreover, there exists a homogeneous
8
quasimorphism which is bounded on the set of all primitive elements and is
non-trivial on x.

Proof. Let |-|, be the primitive norm, see Subsection 2.1. Suppose that x is separ-
able. It means that F = F; % F,, F5 is not trivial and x can be conjugated into Fj.
Since |- |, is invariant under inner automorphisms, we can assume that x € Fj. Let
B and B; be some bases of F; and F; respectively. Let p € B; and n € N. Note
that the element x” p is primitive. Indeed, the set By U {x" p} U (B\{p}) is a free
basis of F. Thus |x"|, = |[x"pp~!|, < 2.

Now suppose, that x is not separable. Let B be a basis of F. We claim that we can
find an element y in the Aut(F)-orbit of x such that Whg(y) is connected and has no
cut-vertices. Note that Whg(x) is connected. Indeed, if it was not connected, then
by Proposition 3.5, x would be separable. Let |- | g be the word norm defined by B.
If Whpg(x) has a cut-vertex, then again by Proposition 3.5 there is an automorphism
¥ € Aut(F) such that |Y(x)|p < |x|B.

Now we consider Whp ((x)). As before, it is a connected graph. If it has a cut-
vertex, then we apply Proposition 3.5 again and find a new ¥ and further reduce the
length of the element. At the end we get an element y with the property that Whp (y)
is connected with no cut-vertices. Now consider the cyclical reduction y' = rg(y).
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By definition we have Whg(y’) = Whpg(y). Lemma 3.4 gives us a homogeneous
quasimorphism g which is bounded on primitives and is non-trivial on y’. Since
x and y’ are in the same Aut-orbit, there exists ¥ € Aut(F) such that ¥ (x) = y'.
If we define ¢’(w) = g(y¥(w)), then ¢’ is bounded on primitive elements and

q'(x) # 0. L]

Corollary 3.7. Anelement x of F is separable if and only if Whp(x) is not connected
or has a cut-vertex for every basis B.

Proof. Assume that x is separable. If there is abasis B such that Whp (x) is connected
and has no cut-vertices, then by applying Lemma 3.4 for an element rp(x), we see
that x is undistorted in the Aut-norm. Thus x is not separable by Theorem 3.6.

To prove the reversed implication, we apply inductively Proposition 3.5 and obtain
an element y in the same Aut(F)-orbit as x, such that Whg (y) is not connected. Thus
again by Proposition 3.5, an element y, and consequently x, is separable. []

Remark 3.8. Corollary 3.7 is not entirely new. It can be deduced from Theorem 2.4
and Proposition 2.3 in [25]. However, we think that our proof of this fact is interesting
since it is simpler and shorter than the proof of Stallings.

4. Aut-norm on surface groups

In this section we study distortion in surface groups. Our main tool is the theory
of mapping class groups. The principal idea is to embed a surface group in
its automorphism group (which is a mapping class group of a surface) via the
Birman embedding, and then find appropriate quasimorphisms on this group. In
Subsection 4.1 we recall the Nielsen—Thurston normal form of a mapping class. Then
in Subsection 4.2 we give the Nielsen—Thurston decomposition of mapping classes
which lie in the image of the Birman embedding. Finally, in Subsection 4.3 we use
the quasimorphisms defined by Bestvina—Bromberg—Fujiwara to prove Theorem 1
for surface groups.

4.1. Nielsen—Thurston normal form. Let S be a compact oriented surface with
finitely many punctures in the interior of S. By MCG(S) we denote the mapping
class group of §, that is the group of isotopy classes of orientation preserving
homeomorphisms of §. We assume that homeomorphisms and isotopies fix the
boundary of S pointwise.

We recall briefly the Nielsen—Thurston normal form of an element in MCG(S).
Aloop y in S is called essential, if no component of S\ y is homeomorphic to a disc,
a punctured disc or an annulus. An element g € MCG(S) is called reducible if there
exists a non-empty set C = {cy,..., cn ) of isotopy classes of essential simple loops
in S such that:
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(1) All elements in C can be represented by pairwise disjoint simple loops.
(2) The set C is g-invariant.

Such C is called a reduction system for g. A reduction system for g is maximal
if it is not a proper subset of any other reduction system for g. There may be many
maximal reduction systems. However, we can define the unique one by defining the
canonical reduction system to be the intersection of all maximal reduction systems.
Note that the canonical reduction system is not necessary maximal.

Now let us describe the canonical form of an element of a mapping class
group. Assume for a moment, that S has no boundary. Let g € MCG(S)
and let C = {cy,...,c,} be its canonical reduction system. Choose pairwise
disjoint representatives of the classes c¢; together with pairwise disjoint closed annuli
Ry,..., R, where R; is a closed neighborhood of a representative of ¢;. Let
S1,...,Sp be the closures of connected components of S\ [ /-, R;. Then there is
a power k and a representative ¥ € Homeo™ (S) of g% such that:

(1) The homeomorphism  fixes the subsurfaces, i.e. Y (R;) = R; for1 <i <m
and ¥ (S;) = S; for 1 <i < p.

(2) The restriction of ¥ to R; is a power of a Dehn twist.

(3) The restriction of ¥ to S; is pseudo-Anosov or the identity.

Thus, up to finite power, any element is described as a commuting product of
powers of Dehn twists and pseudo-Anosov homeomorphisms on subsurfaces. If §
has a boundary, then we need to add to our collection R; collar neighborhoods of
boundary curves. Then the additional terms which can appear in the decomposition
of g* are powers of Dehn twists along boundary curves. A mapping class which has
only one factor in the Nielsen—Thurston decomposition is called pure. We have the
following characterization of the canonical reduction system.

Proposition 4.1. Assume that the surface S has no boundary and possibly has
punctures. The system C = {cy,..., s} is the canonical reduction system for g if
and only if the following two conditions hold:

(a) There exists k € N and pairwise disjoint loops y; representing classes ¢; such
that g¥ restricted to any component of S\(y1 U --- U yy) is trivial or pseudo-
Anosov.

(b) The set C is a minimal set with this property.

Dehn twists are not mentioned in Proposition 4.1 since every Dehn twist along
some y; becomes trivial in the mapping class group of S\(y; U--- U ys).

4.2. Filling curves and the theorem of Kra. Let S be a closed oriented surface of
genus g, possibly with punctures, and let » € .S. Assume that .S has negative Euler
characteristic. We consider the the Birman exact sequence:

F
1 = 71(S, %) -5 MCG(S, *) —> MCG(S) — 1.
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By MCG(S, ) we mean the group of homeomorphisms which fix «, taken up to
isotopies which fix = at any time. Since fixing a point and removing a point does not
make any difference for mapping classes, we have that MCG(S, x) = MCG(S\ ).
The map F is the forgetful map. The map Push is defined as follows: let y be a
based loop which represents an element in 1 (S, x). Let ¥ be any homeomorphism
which fixes », such that: there exists an isotopy H:[0,1] x § — § such that
H(0,-) =idg, H(l,-) = ¥ and H(t, x) = y(t). Then Push([y]) = [¢]. This is a
well-defined map. One can imagine that Push([y]) takes = and pushes it along the
loop y. For a detailed discussion see [13].

The goal of this subsection is to understand the Nielsen—Thurston decomposition
of Push([y]). In Theorem 4.11 we generalize a theorem of 1. Kra [19], for the short
proof see [13]. It states that if y is filling (see Definition 4.6), then Push([y]) is
pseudo-Anosov.

Example 4.2. Let y be a simple loop based at x. We identify a tubular neighborhood
of y with the annulus S! x[—1, 1]. Let y* = S1x{41}. Then Push([y]) = L  jic B
where T + is the Dehn twist along yE. The surface S is not a torus. Hence y~ is not
homotopic to ¥y in S\{*}, and T}, + and 7,,— are different elements of MCG(S, *).

In what follows, a subsurface S’ of S always assumed to be closed in S, and
the boundary of S’ is a union of pairwise disjoint simple loops. A loop is called
primitive if, as an element of the fundamental group it is not a proper power of any
other element. We always assume, that a loop in § is in general position, i.e. it is a
smooth immersed loop with only double self-intersections. A loop is in a minimal
position if it has the minimal number of double points.

Definition 4.3. Assume that S is a closed oriented surface, possibly with punctures.
Let y:S! — S be a loop in a minimal position. We define a subsurface Sy in the
following way: First we consider a small collar neighborhood

N:S!'x[-1,1]— S,

where N is a smooth immersion and N(-,0) = y(-), such that the image of N
retracts onto the image of y. Then we add to the image of N all the components
of S\ im(N) which are disks or punctured disks.

Lemma 4.4. Assume that S is a closed oriented surface, possibly with punctures.
Let y be a loop in a minimal position such that it is not homotopic to a power of a
simple loop. Then the boundary components of S, are essential simple loops in S.

Proof. Assume that one boundary component dy.Sy is not essential in S. Then ¢Sy
bounds a disc or a punctured disc D. Thus S \ d¢ S, has two connected components:
D and S \ D. Hence y is contained either in D or in S \ D. By construction,
it is impossible that y C § \ D, because then we would add D to S,. Thus
y C D. Butin D every loop is homotopic to a power of a simple loop, and we get a
contradiction. L]
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Lemma 4.5. Assume that S is a closed oriented surface, possibly with punctures.
Let y be a non-trivial loop in a minimal position such that is not homotopic to a
power of a simple loop. Let 01S, and 0,S, be two homotopic components of 3S,,.
Then they bound an annulus lying outside of the interior of Sy,. Moreover, they are
not homotopic to any other component of 0S,.

Proof. Any two homotopic simple loops bound an annulus in S. Let A be an
embedded annulus bounded by 0.5, and 9,S5,. Since A is a connected component
of S\(91S, U 925,), the loop y is either outside 4 or inside A. The loop y cannot
be inside A, since every loop in A is a power of a simple loop and this is excluded by
the assumption.

Now assume that some boundary component 9; S, of S, is homotopic to d;S,.
Let 8, Sy denote a loop in the interior of A homotopic to 81 S,. Let A’ be an embedded
annulus bounding 9} S, and 3;S,. If ;S is not d; Sy or d,.5,, then 8,5, or 3,5,
are contained in the interior of A’. This is impossible, since we already know that
the interior of A’ is disjoint from S,,. Thus 9; S, equals to 3; S, or 0,.5,,. O]

In the following definitions and Lemma 4.8, S is an orientable surface, possibly
with boundary and punctures.

Definition 4.6. Let y be a loop on S. We say that y fills S, if every essential simple
loop on S has a non-trivial intersection with every curve homotopic to y.

Definition 4.7. A loop y:S! — S has an embedded 1-gon if there is a closed arc
a C S, such that y restricted to the interior of « is an embedding and y(dx) is a
single point. A loop y:S! — S has an embedded 2-gon if there are two disjoint
closed arcs «, B such that y(da) = y(9f) and y restricted to « and f is an embedding.

We need the following lemma.

Lemma 4.8 ([17, Lemma 2.8]). Assume that y has no embedded 1-gons and 2-gons.
Let ¢ be an essential simple loop and assume that ¢ is disjoint from some curve
homotopic to y. Then there is a simple loop ¢’ isotopic to ¢ such that y is disjoint
from ¢’

The next two lemmas deal with the surface S,. Since we defined S, only for
surfaces with no boundary, we assume below that S = 0.

Lemma 4.9. Let y be a loop in a minimal position on a closed orientable surface S,
possibly with punctures. Then y fills S,.

Proof. By the definition of S, we see that every connected component of S, \y is a
disc or a punctured disc. It follows that every essential simple loop intersects y non-
trivially. If there is an essential simple loop ¢ disjoint from some curve homotopic
to y, then by Lemma 4.8 we get some essential simple loop ¢’ disjoint from y, which
is a contradiction. O
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Lemma 4.10. Assume that y is in a minimal position and is not homotopic to a power
of a simple loop. Then the Euler characteristic of S, is negative.

Proof. On annulus, torus, disk, punctured disk or 2-punctured sphere, every loop
is homotopic to a power of a simple loop. Thus S, is none of those. Every other
oriented surface has negative Euler characteristic. L]

Now we prove the main result of this subsection.

Theorem 4.11 (Generalized Kra’s theorem). Let S be a closed oriented surface
(possibly with punctures) whose Euler characteristic is negative. Let x be a base
point. Then:

(@) If x € m1(S, %) is a power of a simple element represented by y", where y is
a simple essential loop in S, then Push(x) = T;’ T, is the Nielsen—Thurston
decomposition of Push(x) € MCG(S, *).

(b) If x € m1(S, ) is not a power of a simple element, then the Thurston—Nielsen
decomposition of Push(x) € MCG(S, x) consists of a single pseudo-Anosov
component.

Proof. If x is a power of a simple element, then by Example 4.2,
Push(x) = T/, T~

Since S is not a torus and y is by assumption essential, y T and y ~ are not homotopic
essential disjoint simple loops. If an element of a mapping class group can be
represented as a product of powers of Dehn twists along disjoint not homotopic
essential simple loops, then this representation is unique. It follows that the set
C = {y*,y | satisfies the conditions of Proposition 4.1. Indeed, if C is smaller,
then Push(x) equals to a power of T',+, and hence is not equal to T )f Y

Assume that x is not a power of a simple element. Let y be a loop in a minimal
position which represents x. Then by Lemma 4.10 the Euler characteristic of S,
is negative and by Lemma 4.9 y fills S,,. By the result of Kra ([19]), Push(x) is
pseudo-Anosov on S,,. We have to prove that Push(x), as an element of MCG(S, ),
has the desired decomposition.

Remark. Even though Push(x) is pseudo-Anosov on §,, it does not follow
automatically that it is pseudo-Anosov on the subsurface S, C S regarded as an
element of MCG(S, «). For example one can easily imagine a homeomorphism ¢
on S which is trivial in MCG(S, ) but is pseudo-Anosov on some smaller subsurface
containing the support of ¢. In addition, it also may happen that some boundary
loops of S, are homotopic, and hence the set of boundary loops of S, cannot be
taken as the canonical reduction system.
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Let C be a set of connected components of 45,. By Lemma 4.5 and Lemma 4.4,
we can write

C =1{015,.9,8,,....8:8,,0,8,.84+1Sy, 9428y, ... S, },

such that for each 0 < i < ¢ 4 1 loops 9;S, and 8:. Sy are homotopic, and the set
C® = {0, Sy, ..., 0,8y} consists of pairwise non-homotopic loops.

We prove that C? is the canonical reduction system for Push(x). To do that, it
is enough to check the first and the second conditions of Proposition 4.1. Let S, be
the connected component of $\C? which contains y. The surface S}’, is just S, with
annuli attached to some boundary components. Thus if Push(x) is pseudo-Anosov
on Sy, it is pseudo-Anosov on S). On any other component of S\C 0, Push(x) is
trivial.

Let us check the second condition. Let C’ C C°, 3;S, ¢ C’ and S’ a connected
component of S\C' which contains y. Since 9;S, C S’, Push(x) fixes 9,S,.
All components of the boundary of S’ are in CY, thus 9,S, is not homotopic to
any component of the boundary of S’. Thus 9,5, is essential. Since Push(x) is
nontrivial and fixes an essential curve, it is reducible. It follows, that C’ does not
satisfy the second condition. Hence C? is the canonical reduction system. Thus
the decomposition of Push(x) consists of a single pseudo-Anosov diffeomorphism
on S, ]

4.3. Distortion of elements in the Aut-norm of surface groups.
Theorem 4.12. Let x € T'y. Then either:

(a) x is a power of a simple non-separating loop, then the cyclic subgroup generated
by x is bounded in the Aut-norm, or

(b) x is undistorted in the Aut-norm. Moreover, there exists a homogeneous
quasimorphism bounded on the set of all simple elements and is non-trivial
on X.

We start with transferring the problem from finding a suitable quasimorphism
on I'g to finding a quasimorphism on (a finite index subgroup) of MCG(S). Let us
consider the general case first. Let G be a group and let Aut(G) be the group of
automorphisms of G. Let ¢, (x) = gxg~! be the inner automorphism induced by g.
Define homomorphism ¢: G — Aut(G) by c(g) = cg.

Lemma 4.13. Let G be an H -finitely generated group for some H < Aut(G), and
let Hy < H be a finite index subgroup such that im(c) < H,. Let x € G and assume
that there exists a homogeneous quasimorphism q: H, — R such that q(cx) # 0.
Then x is undistorted in |- | g.

Proof. Let S be an H -finite generating set of G. Then S is H,-finite since
#(S/Ho,) = #(H/H)#(S/H). Thus S can be used to define both norms ||y
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and |-|g,. To prove that x is undistorted in |- |y it is enough to prove that it is
undistorted in |- | g, .

Let g be the pull back of g to G, i.e. §(w) = g(cy) for w € G. Now we will
show, that § is Ho-invariant. Let w € G and ¢ € H,. Note that Yc, ¥ ' = ¢y )
and that ¢ is constant on conjugacy classes of /.. We have

(W) = qeyw)) = qWew¥ ™) = qlcw) = G(w).
We apply Corollary 2.3 and finish the proof. O

We will use this lemma in the case of G = I'y and H = Aut(I';). We need
to take a finite index subgroup H,, because in most cases there is no homogeneous
quasimorphism on the whole group Aut(I' ;) which is non-zero on a given element c.
We will be able to find such quasimorphism on some /1, and conclude undistortedness

of x in |- IAut(l‘g)-

Proof of Theorem 4.12. Case I. Let @ and y be the elements shown in the Figure 3.
We first prove that the cyclic group generated by « is bounded in | - [sur,)- Let |- s
be the simple loops norm. It is a simple observation, that the loop «”y is simple for
each n € Z. Thus we have

la" |y = |anVV_l|s =<2.
Since |- |5 defines bi-Lipschitz equivalence class | - |au(r ). the cyclic subgroup (a)
is bounded in the Aut-norm.

Figure 3. Loops « and y.

Now assume that x € I', is a power of a simple non-separating loop. Note that
every simple non-separating loop can be mapped to «. Indeed, for every two simple
non-separating loops 81, B2, the surfaces S\ f; are homeomorphic, thus all simple
non-separating loops are in one Aut(T" ¢ )-orbit. It follows that x can be mapped to o™
for some m € N. Thus the subgroup generated by x is bounded.

Case 2. Assume that x € I'; is not a power of a simple non-separating loop. Let S
be a closed surface without punctures and let » € T ;. Consider the natural map

W MCG(S, ) — Aut(T g)
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induced by the action of a homeomorphism on the fundamental group of (S, x). Let
Autt(I'p) = im(¥), then Aut* (I’ ;) has index 2 in Aut(T' ). By the Baer-Dehn—
Nielsen theorem, W is an embedding.

It is easy to see (at least for simple elements, see Example 4.2) that Push(w)
induces a conjugation on I', by w. Hence instead of working with Aut*(I',) and
homomorphism ¢, we work with MCG(S, ) and Push.

By the work of Bestvina—Bromberg—Fujiwara ([4]) we know that there are plenty
of quasimorphisms on mapping class groups. We describe their result in the way that
is convenient for us. The group MCG(S, ) acts on H(S,Z/3Z). Let H, be the
subgroup of MCG(SS, «) which contains all elements that act trivially. Hence H, is a
finite index subgroup of MCG(S, ). Since conjugation acts trivially on homology,
Push(I'g) < Ho. Itfollows from [4, Corollary 5.3 and Corollary 5.5] that there exists
a homogeneous quasimorphism on H, which is non-zero on Push(x) if one of the
following holds:

(a) In the Nielsen—Thurston decomposition of Push(x) there is at least one pseudo-
Anosov element.

(b) Inthe Nielsen—Thurston decomposition of Push(x) there is at least one non-trivial
power of a Dehn twist along some separating curve.

Now we finish the proof. If x € I'; is not a power of non-separating simple loop,
then by Theorem 4.11 either:

(a) x is not simple, and the Nielsen—Thurston decomposition contains exactly one
pseudo-Anosov element, or

(b) x is apower of a Dehn twist along separating loop, and then the Nielsen—Thurston
decomposition is
_ n n
Push(x) = TyJr T,-

for some separating simple loop y and n € N.

In both cases we have a homogeneous quasimorphism
qg:H, - R

which is non-trivial on Push(x). Since H, is a finite index subgroup of MCG(S, «) it
can be viewed as finite index subgroup of Aut(I'z). Using Lemma 4.13 we conclude
the proof of the theorem. ]

Let S, be the set of all elements of I'y which are represented by curves with
crossing-number at most n (see [9, Definition 1.1]) and let S; be the set of all
primitive elements in S,. In [9], D. Calegari proved that x € T, is undistorted
in |- |s, if it has a non-zero self-intersection number. He asked (see Question 1.6)
whether simple elements are undistorted with respect to the metrics |- |g; .

First of all, we note that all these metrics are bi-Lipschitz equivalent. Indeed, by
[9, Remark 1.4] all sets S, are Aut(T . )-finite. The proof is analogous to the proof of
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the fact that Sy, which is the set of all simple elements, is Aut(T ¢)-finite. It means
that all the metrics |- |s/ define the same bi-Lipschitz equivalence class | - [au(r ,)-
Thus the part of Theorem 4.12 that concerns simple elements gives a complete answer
to the question of D. Calegari, i.e. we proved the following:

Corollary 4.14. Simple separating elements in I ¢ are undistorted with respect to
the |- |s: -norm for every n, and simple non-separating elements generate bounded
cyclic subgroup.

4.4. More applications and remarks.

Theorem 4.15 (Many fellows property). Let S be a closed hyperbolic surface of
genus g and | be a closed simple non-separating geodesic. Then for every p € [
and every neighborhood U of p, there is another simple closed geodesic I passing
through U.

Proof. Assume on the contrary that there exists p € [/ and some neighborhood U of p
such that every closed geodesic different from / does not pass through U. Let I'; be
the fundamental group of S. For every x € I'; there is a unique closed geodesic /,
in the free homotopy class of x. Two geodesics [, and /s are equal if and only if x
and x" are conjugated. Moreover, simple elements of I ; correspond to simple closed
geodesics. Let [ = [,. Let @ be a 1-differential form supported on U such that
fz a # 0. In [3] Barge—Ghys showed that the following function:

g(x) = fzx a,

is a homogeneous quasimorphism. If x is a simple element not conjugated to x,,
then [, # Iy, and by our assumption [, does not pass through U. Hence g(I;) = 0.
It follows that the only simple elements on which ¢ is non-zero are conjugates of x.
Since g is constant on conjugacy classes, it is bounded on the set of all simple
elements. By Lemma 2.1 we get that x¢ is undistorted in the simple loops norm
which contradicts Theorem 4.12 []

Remark 4.16. Theorem 4.15 holds for separating closed geodesics as well, see
[23, Lemma 5.1]. Note that unlike the set of all closed geodesics, the set of simple
closed geodesics is not dense in S and, as suggested by Theorem 4.15, there are
some preferred tracks chosen by simple geodesics. For a further discussion of this
phenomenon see [8].

Remark 4.17. Let x be a simple non-separating element and let y be a loop that
represents x. Then there is no finite index subgroup of MCG(S, x) containing
Push(x) such that T),+ is not conjugated to T}, —. Indeed, otherwise one could find a
quasimorphism on MCG(S, ») which is non-trivial on Push(x). Using Lemma 4.13
we see that x would be undistorted in the simple loops norm which contradicts
Theorem 4.12.
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5. Aut(F2)-invariant quasimorphisms on F»

Let S, be a closed surface of genus g. Let o,x € Sg be two arbitrary points.
We shall regard o as a puncture and » as a base point. Let us consider the group
MCG(Sg \{o}, ») of mapping classes of S;\{o} fixing the point *.

The natural action of a homeomorphism on F»; = 71 (Sg \{o}, ») induces a map

m:MCG(Sg\{o}, ) — Aut(Fo).

We claim that this map is injective. Indeed, the surface S, \{o} can be described as a
regular 4g-gon with opposite edges identified, such that the point o lies in the center
and * is one of the vertices. If 7 () is the identity for some ¥ € MCG(Sg\{o}, *),
then there exists a representation of ¥ fixing pointwise the edges of the 4g-gon. Thus
we can regard this representation of ¥ as a homeomorphism of the punctured disc
fixing the boundary. By the Alexander trick ([13, Lemma 2.1]) such an element is
isotopic to the identity.

In the next theorem we consider non-simple element x € F,, such that for every
¥ € MCG(S, \{o}, x) we have x ! # 1 (x). We postpone the proof of the existence
of such elements to the next section (see Lemma 6.5).

Theorem 5.1. Let x € Fag such that for every ¥ € MCG(S,\{o}, x) we have
x~1 #£ ¥ (x), and x cannot be represented by a simple loop in Sg\{o}. Then there
exists a non-trivial MCG(Sg \{o}, x)-invariant homogeneous quasimorphism on F,4
which is non-zero on x.

Proof. We consider the Birman embedding F, b MCG(Sg\{o}, ). Since x is
not simple, it follows from Theorem 4.11 that the Nielsen—Thurston decomposition
of Push(x) consists of one non-trivial pseudo-Anosov pure component. In addition,
Push(x) is not conjugated to its inverse in the group MCG(S, \{o}, x). Indeed, if
there is an element ¥ € MCG(S, \{o}, ) which conjugates Push(x) to its inverse,
then it implies

Push(y(x)) = ¥ Push(x)y ! = Push(x)~! = Push(x™!).

—1 which contradicts our

Since Push is injective, we conclude that ¥(x) = x
assumption.

Now we use quasimorphisms constructed in [4]. Note that if an element in a
group is conjugated to its inverse, then every homogeneous quasimorphism vanishes
on this element. If follows from [4, Theorem 4.2] that for pure elements of
MCG(Sg \{o}, ), being conjugated to its inverse is the only obstruction to be detected
by homogeneous quasimorphisms. Due to Lemma 4.13, Push(x) is pure. Thus there
exists a homogeneous quasimorphism ¢ on MCG(Sg \{o}, ») which is non-zero on
Push(x). The pull-back of g to F2, by Push gives us an MCG(S, \ {0}, )-invariant
quasimorphism which does not vanish on x. L]
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Remark 5.2. Let n > 3. One would like to construct Aut(F,)-invariant quasi-
morphism on F,, by restricting a quasimorphism from Aut(F,) to F, which is
embedded in Aut(F,) via inner automorphisms. However, despite an extensive
study of Aut(F,) it is not known if there are quasimorphisms on Aut(F,) which
restrict non-trivially to F,,.

Theorem 5.3. The linear space of MCG(Sg \{o}, *)-invariant homogeneous quasi-
morphisms on ¥ag is infinite dimensional.

Proof. It follows from Lemma 6.6 and Lemma 6.5 that there is an infinite sequence
z1,22,... of integers such that the elements x; = aZkh??kq3?kp4?k have the
following properties:

(a) xi and x;l belong to different Aut(F,,)-orbits,

(b) fori, j € Z\{0} and k # k’, elements x,i and x,i, belong to different Aut(F, )-
orbits.

Elements x; are not simple. Indeed, every element x € F,, that can be
represented by a simple loop in MCG(Sg\{o}, ) is a primitive element of F,,,
and hence is inverted by some automorphism of K.

Recall that by Theorem 4.11, Push(xg ) is a pure mapping class, whose Nielsen—
Thurston decomposition consists only of one pseudo-Anosov component. Moreover,
using an argument from the proof of Theorem 5.1, property (a) implies that the
element Push(xy) is not conjugated to its inverse in the mapping class group, and
property (b) implies that for k # k' and any non-zero i and j, Push(xz)’ is not
conjugated to Push(xg/)/. In the language of chiral and achiral classes introduced
in [4], it means that the elements Push(xy) represent different chiral classes for
different k. Let k € N. It follows from [4, Proposition 4.4] that each function

{Push(x;),...,Push(xz)} — R

is a restriction of a homogeneous quasimorphism on MCG(Sg \{o}, ). If we pull-
back these quasimorphisms to F,, by Push, we obtain that each function

{X1,....x¢} =R

is a restriction of some MCG(S, \{o}, »)-invariant homogeneous quasimorphism.
Consequently, for each k € N we constructed a k-dimensional subspace of
MCG(Sg \{o}, x)-invariant homogeneous quasimorphisms. ]

For g > 1, 1(MCG(Sgz\{o}, »)) has infinite index in Aut(F,,). The situation is
different for ¢ = 1. For completeness we give a proof of the following lemma.

Lemma 5.4. 7 (MCG(S1\{o}, x)) has index 2 in Aut(F5).
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Proof. Let us extend the group MCG(S;\{o}, *) to MCGE(S;\{o}, x) by allowing
orientation reversing homeomorphisms. Then w naturally extends to the map
7 :MCG*(S;\{o},*) — Aut(F;). By the same argument as in the beginning
of this chapter, 7/ is injective. Let {a,b} be a basis of F,. The group Aut(F;) is
generated by the following automorphisms:

I a—b a— ab

b—b b —a b — b.

a—a

Each one of them can be realized by an element of MCG(S;\{o}, *). Thus 7’ is
onto. [

Every automorphism of F,, acts on its abelianisation which is isomorphic to Z",
thus defines a matrix over Z. Let Aut™(F,) be the subgroup consisting of all
elements which define matrices of determinant 1. In the case of n = 2, we have
Autt (F3) = n(MCG(S1\{o}, *)). An immediate consequence of Theorem 5.3 is
that the linear space of homogeneous Aut™ (F,)-invariant quasimorphisms is infinite
dimensional.

Remark 5.5. The fact that the space of homogeneous Aut™ (F,)-invariant quasimor-
phisms on F5 is non-trivial was recently proved in his thesis by Huber in [18]. He
showed that certain rotation number quasimorphism is Aut™ (F,)-invariant.

In the next corollary we improve this result to Aut(F,)-invariant homogeneous
quasimorphisms.

Corollary 5.6. The linear space of homogeneous Aut(F,)-invariant quasimorphisms
on F» is infinite dimensional.

Proof. Let a and b be generators of F,. Denote by o the automorphism defined by
o(@) =a',0(b) =b. Let {zi}72, be a sequence of integers such that ged(z;) #
ged(zj) fori # j. Let x; = a®bh??kq3?kh*?k . Consider the set

X = {x1,0(x1), x2,0(x2),...} C Fs.

It follows from Lemma 6.5 that no xi is inverted by an automorphism of F,. The
same applies to elements o (xg ). It means that each Push(o (xg)) is chiral.

For every x,y € X, the elements Push(x) and Push(y) define different chiral
classes in MCG(S;\{o}, ), see Lemma 6.9. It follows from [4, Proposition 4.4] that
each function

{Push(xy), Push(o(x1)),...,Push(xg), Push(o(x¢))} — R

is a restriction of a homogeneous quasimorphism on MCG(S;\{o}, ). By pulling
back to F», we obtain that every function

x1,0(x1), ..., Xk, 0(x)} > R

is a restriction of a homogeneous Aut™ (F,)-invariant quasimorphism.
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Let Q (Fz)Allt+ be the space of homogeneous Aut™ (F,)-invariant quasimorphisms
onF,. Let X; = {x1,0(x1), ..., Xk, 0(xx)}. Denote by R*k the set of all functions
from X to R. We have the following commutative diagram:

Q (FZ)Aut"‘ ﬂ) Q (Fz)Aut"'

L

RXx M0 RpXk

where
Sym, (¢)(x) = q(x) + q(o(x)),

forg € Q_(FZ)A‘“+. We claim that Sym (q) is an Aut(F,)-invariant homogeneous
quasimorphism. It is clear that Sym,(q) is a quasimorphism, because g is a
quasimorphism and ¢ is an automorphism of F,. To prove the Aut(F;) invariance, we
first note that Sym (g ) is o-invariant, which is obvious from the definition. Moreover,
for every ¥ € Aut™ (F,) we can find ¥’ € Aut™ (F,) such that ¥'o = 0. Now

Sym, (¢)(¥ (x)) = q(¥(x)) + g(o ¥ (x)) = g(x) + g(¥ 0 (x))
= q(x) + q(o(x)) = Sym, (q)(x).

Thus the quasimorphism Sym_(g) is o-invariant and Aut™ (F5)-invariant, and
consequently Aut(F5)-invariant.

The map §yTna is defined by Sf)Tng(f)(x) = f(x) + f(o(x)). The vertical
epimorphisms in the above diagram are restrictions. We have that

Im(Symy) = { / € R¥* : f(x;) = f(o(x;)) foreachl € {1,... k}}

is a k-dimensional linear space. Each element of Im(%a) is a restriction of
- - . .

Sym, (g) for some ¢ € Q(F)*'", which is an Aut(F,)-invariant homogeneous

quasimorphism. Thus for each k € N the space of Aut(F;)-invariant homogeneous

quasimorphisms on F; contains a k-dimensional subspace. []

Remark 5.7. In his thesis Hase [15, 16] proved that the space of quasimorphisms
on F, that are not Aut(F;)-invariant is dense in the space of all homogeneous
quasimorphisms on F,. In particular, finite linear combinations of counting
quasimorphisms are not Aut(F,)-invariant. Hence a rotation number quasimorphism
considered by Huber in [18] is not Aut(F;)-invariant, since it is a linear combination
of counting quasimorphisms.

It follows from Corollary 5.6, that there exists an infinite dimensional space of
quasimorphisms on F, where each quasimorphism can not be expressed as a finite
linear combination of counting quasimorphisms. On the other hand, Grigorchuk [14]
showed that every quasimorphism is a linear combination of (possibly infinitely many)
counting quasimorphisms.
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6. Whitehead algorithm and some elements of F,,

J.H. C. Whitehead [27] described an algorithm that, given two elements x, x" € F,,
it decides if there is ¥ € Aut(F,) for which ¥ (x) = x’. Below we recall the
Whitehead algorithm.

Definition 6.1. Let X be a basis of F,,. An element ¢ € Aut(F},) is called:
(a) Permutation automorphism if ¥ permutes the set X U X 1.

(b) Whitehead automorphism if there is an elementa € X UX ! suchthat ¥ (a) = a
and ¥ (x) € {x,ax,xa"',axa'} for each x € X\{a}.

Let 2, denote the set of all permutation automorphisms. The set €2, is a finite
subgroup of Aut(F,) which is isomorphic to the extended permutation group.

Theorem 6.2 (Whitehead). Let x € F, and let m = min{|y(x)|x} where the
minimum is taken over all v € Aut(F,). If |x|x > m, then there exists a Whitehead
automorphism h such that |h(x)|x < |x|x. If x and x" are in the same Aut-orbit
and |x|x = |x'|x = m, then there exists a sequence of permutation and Whitehead
automorphisms ty, ..., 1 such that:

1w s () = X

and lx|x = [1(X)|x = |26(X)|x =---=|t; ... 61(x)|x = m.

Let x € F,. We denote by x the conjugacy class represented by x. If ¢ is any
conjugacy class, we define its length by

lc|x = min{|x|x, X = c}.

Note that Aut(F,) acts on conjugacy classes of F,. It is easy to see, that the analogous
version of Whitehead algorithm works for conjugacy classes and the norm defined
above.

In the following lemmas we consider a sequence {x;}2° , where xx € Fy is of
the form

Xp = akbzka3kb4k.

Here the elements a and » denote two different generators of F,,.

Lemma 6.3. Let n = 2 and X = {a,b}. Lett be a permutation automorphism.
Then t(xx) = Xi if and only if t is the identity, i.e. the group 2, acts freely on the
orbit Q,(xg).

Proof. The conjugacy class ¢(xg) is represented by the element of the form
ukv2ky3ky** for some u, v € {a,b,a', b1} This element represents conjugacy
class of a*h**a3*p** if and only if u = ¢ and v = b. It means that t(¢) = a and
t(b) = b. Thus ¢ is the identity. U
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Lemma 6.4. Let  be a Whitehead automorphism and let x € 2, (xy). Then either

Y(X) =X or [¥(X)|[x > |X].

Proof. The element X equals to ¢ (xi) for some ¢ € €2,. Thus X is represented by
the element u¥v2k 3% y** where u,v € X U X' and u ¢ {v,v"'}. Consider a
Whitehead automorphism . Assume that ¢ from the definition of the Whitehead
automorphism is not equal to u, v,u~!, v™L. If Y (u) = aua™" and ¥ (v) = ava™?,
then ¥ (x) = Xx. In all other cases we have [ (X)|x > |X|x, since in ¥ (X) there
always will be some occurrences of the letter a.
Ifa € {u,v,u™"!, v~} then up to inner automorphisms, there are only 5 different

ways a Whitehead automorphism can act on {u, v}. They are listed below:

U—u u — uvt U—u

v —> v v —> U v — vut,
Direct computation shows that these automorphisms, except the one which fixes u
and v, increase the length of x (provided that & > 1). Thus ¥ does not increase the
length of x if and only if ¥ fixes x. L

Lemma 6.5. Elements x; and xk_l belong to different Aut(F,)-orbits.

Proof. 1Tt follows from Theorem 6.2 that 2,,(xg) is the set of all conjugacy classes
minimizing the norm |-|x in the Aut(F,)-orbit of x;. Indeed, if some y € F,
minimizes the norm, then there exist permutation or Whitehead automorphisms
t1,...,t such that

IXelx = 11X lx == |ty...t1(Xk)|x

and t;...11(Xx) = y. Since |Xg|x = |t1(Xx)|x, we conclude that either #; is a
permutation automorphism, or f; is a Whitehead automorphism and by Lemma 6.4
we have t1(Xx) = X. Then we apply the same argument to the element ¢, (x%) and
the equality

[t2(t1 (X)) [x = |61 (X)) | x

to conclude that ¢, is a permutation automorphism or £, (1 (X)) = t1(xg). It follows
that each ¢; is a permutation automorphism, or fixes the element #;—; ... ¢ (Xg).
Hence y € Q,(Xg).

If fk_l is in the same Aut(F,)-orbit as X, then X, would minimize the norm.
Thus to prove the lemma, it remains to prove that X,:l does not belong to 2, (xk).
Note that if 1(Xx) = X; ' for t € Q,, then necessarily (a), t(b) € {a,a”',b,b™"}.
It is easy to check that for such automorphisms we always have ¢ (xy) # )?',:1. [

1

Lemma 6.6. Leti, ] € Z\{0} and let k,| > 2 such that gcd(k) # gcd(l). Elements
(xx)' and (x;)? belong to different Aut(Fy)-orbits.
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Proof. For every element x € F, there is a unique (up to a sign) number # and a
unique (up to taking an inverse) element p which is not a proper power of any other
element such that x = p” = (p~!)™". Assume that there exists an automorphism
¥ € Aut(F,) such that ¥ ((xx)") = (x;)/. Both x; and x; are not proper powers,
hence ¥ (xx) = (x;)!. In what follows we show that this is impossible.

Every automorphism y: F,, — F,, induces the abelianisation automorphism

Ab(y): Z" — 7",

Elements x; and (x;)* are mapped to vectors with coordinates equal to 4k, 6k and
44/, £6/ in the abelianisation. It is enough to show, that these vectors belong to
different Aut(Z”)-orbits. Indeed this is the case, since automorphisms of Z" preserve
the greatest common divisor of coordinates of a vector, and

gcd(4k, 6k) = 2 ged(k) # 2ged(l) = ged(+41, £61). O

Lemma6.7. Letn = 2and X = {a,b}. Leto € Aut(F,) be defined by o(a) = a™ !,
o(b) = b. Then xi and o(xy) belong to different Aut™ (F,)-orbits.

Proof. Let us recall that the group Aut™ (F) consists of automorphisms v for which
det(Ab(y)) = 1. We have that

O’()Ck) _ a—kaka—3kb4k
and o € Aut(F,)\ Aut™ (F,). Suppose that o (x;) = ¥ (xi) for some automorphism
¥ € Autt (F). It means that ¥ o € Stab(xg) and ¥ 'o € Aut(F,) \ Autt (F»).
In what follows we show that Stab(x;) < Aut™t (F,) which is a contradiction.

Let us consider the stabilizer Stab(xy) of the conjugacy class xx. Of course
Stab(xx) < Stab(xx). We show that Stab(x) < Aut™ (F,). We use the construction
presented in [20] in order to find a generating set of Stab(xy). First we define a
graph A as follows: a vertex of A is a conjugacy class of minimal length in the
Aut(F;)-orbit of xi. It follows from the proof of Lemma 6.5 that this set equals
to 2, (xg). Two vertices vy, vy € 22(X%) are connected by a directed edge from v,
to v, if there is a permutation or Whitehead automorphism ¥ such that ¥ (v;) = vs.
We will consider edge embedded loops in A based at x;. The theorem of McCool [20]
says, that Stab(xy) is generated by elements which are products of labels read from
all possible loops like this.

It follows from Lemma 6.3 that the subgraph spanned by edges labeled with
permutation automorphisms is a complete graph on the set €2, (xx), with no loops.
Lemma 6.4 implies that all edges labeled by Whitehead automorphisms are loops.

Let § be aloop in A based at xz. Now we show that the word w which is read from
the labels of § is trivial in Aut(F,)/ Aut™ (F,) == Z/2Z. Note that all Whitehead
automorphisms belong to Aut™(F,). Thus we can ignore labels coming from the
edges labeled by Whitehead automorphisms. Since the edges labeled by Whitehead
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automorphisms are loops, we can assume that § goes through the edges labeled only
by permutation automorphisms. Thus we can assume, that the element read from the
labels of § is just a permutation automorphism which fixes x;. By Lemma 6.3 this
element is trivial. 0

Remark 6.8. More detailed analysis shows that Stab(xg) is a cyclic subgroup
generated by conjugation by xi. One also can prove the analog of Lemma 6.7
for F, by replacing x; with more complicated elements.

Lemma 6.9. Leti, j € Z\{0} and let k,l > 2 such that gcd(k # gcd(!). Then:
(a) x,i and o (xg)’ belong to different Aut™ (Fp,)-orbits.

(b) o(xx)* and o (x7)’ belong to different Aut(F,)-orbits.

(c) x,i and o (x;)? belong to different Aut(F,)-orbits.

Proof. 1t follows from the proof of Lemma 6.6 that we can assume i = 1 and
J = 1. Lemma 6.7 implies (a) for j = 1. To prove (a) for j = —1 it is enough
to note that o (xx)~! and x;l are in the same Aut(F,)-orbit. If x; and o (x;)™!
are in the same Aut™ (F,)-orbit, then x; and x; ! are in the same Aut(F,)-orbit,
which contradicts Lemma 6.5. The proof of (b) and (c) is analogous to the proof of
Lemma 6.6. Ll
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