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A local characterization of Kazhdan projections
and applications

Mikael de la Salle

Abstract. We give a local characterization of the existence of Kazhdan projections for arbitary
families of Banach space representations of a compactly generated locally compact group G.
We also define and study a natural generalization of the Fell topology to arbitrary Banach space
representations of a locally compact group. We give several applications in terms of stability of
rigidity under perturbations. Among them, we show a Banach-space version of the Delorme—
Guichardet theorem stating that property (T) and (FH) are equivalent for o-compact locally
compact groups. Another kind of applications is that many forms of Banach strong property (T)
are open in the space of marked groups, and more generally every group with such a property
is a quotient of a compactly presented group with the same property. We also investigate the
notions of central and non central Kazhdan projections, and present examples of non central
Kazhdan projections coming from hyperbolic groups.
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1. Introduction

Let G be a finitely generated group with finite symmetric generating set S and
associated word-length £. Consider the combinatorial laplacian A i.e. the element of
the group algebra of G defined by

2|S|Z(s—l) (s—l)—l— SEZS:sec[G

A unitary representation (7, #) has spectral gap if there is & such that the spectrum
of 7(A) is contained in {0} U [g, 2]. Since for ¢ € [0, 2], the inequality (I — £)?¢ <
(1-— %)Zt holds if and only if r € {0} U [, 2], this is equivalent to the validity of

n((l - %A)ZA) < (1 - %8)2H(A) in B(J).

Ifwewritern =1— 1A =14 ﬁ Y e 3, this is equivalent to the inequality
1/2 & 1/2
(X Ir@mmyx —aemx)2) < (1= 3)( X I —x?) . .0
SES SES

for every x € J€. In words, averaging on the orbit of x with respect to the probability
measure m gives a vector which is moved (1 — 5) times less than x by the elements
of S. The validity of (1.1) for every unitary representation (7, #) of G and x
in K therefore characterizes when G has a uniform spectral gap for every unitary
representation, i.e. when G has Kazhdan’s property (T). As was already observed
in [11], the importance of this criterion for property (T) is that it is local: if (i, E) is
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a Banach space representation (or more generally an affine action) which is close to a
unitary representation (or an isometric action on a Hilbert space) of G then the same
inequality will hold with & replaced by &/2 for (7, E). We will make the term “close
to a unitary representation” precise later, but for example this includes representations
on a space close to a Hilbert space (in the sense that the parallelogram identity holds
up to a small multiplicative error) of a group close to G in the space of marked
groups and such that || (g)|| is close to 1 for all g in S. This observation proves at
the same time (1) Fisher and Margulis’s theorem [2] that every isometric action of a
group with property (T) on an L7 space has a fixed point for p close enough to 2 (2)
Shalom’s theorem [25] that property (T) is an open property in the space of marked
groups (3) the fact that property (T) implies robust property (T) for spaces close
to Hilbert spaces. This last fact answers a question raised in a preliminary version
of [21].

All the preceding was probably known to experts, and in particular to the authors
of [11]. The first original contribution of this work is that the existence of a measure
satisfying (1.1) characterizes the existence of so called Kazhdan projection, not
only for unitary representations as the short computation above proves, but also for
arbitrary families of representations of G on Banach spaces, not necessarily isometric
or uniformly bounded.

The setting is the following. Let ¥ be a collection of representations of G on
Banach spaces satisfying the very mild condition

sup |l (g)llpE) <oco VgeSs. (1.2)
(r.E)eF

This condition allows to define a seminorm on the group algebra C[G] by

lall# = sup ||w(a)|B(E)- (1.3)
(n1.E)eF

We denote by € (G) the completion of C[G] for this seminorm. This is a
generalization of the maximal C *-algebra of a group, which corresponds to the
case when ¥ is the unitary representations of G on a Hilbert space.

Definition 1.1. A Kazhdan projection in €% (G) is an idempotent p belonging to the
closure of {m € C[G], >, m(g) = 1} such that, for every (r, E) in ¥, n(p) is a
projection on the space of invariant vectors E* = {x € E,n(g)x = xVg € G}.

A Kazhdan projection is called central if it belongs to the center of € (G).

The importance of such projections for general Banach space representations
comes from the work of Lafforgue [17], see subsequent work [15, 18, 19,21, 24].
Kazhdan projections have been studied in depth recently in [9], but our terminology
is a bit different, as they call a Kazhdan projection what we call here a central Kazhdan
projection. Motivations for this choice of terminology are presented in §3.2, where
the distinction between central and non central Kazhdan projections is made clear.
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In particular in Corollary 3.5 it is proved that when ¥ is stable by duality, then a
Kazhdan projection is always central. We also present in Remark 5.10 some natural
examples where there are Kazhdan projections but no central Kazhdan projections.
See Remark 3.2 for other comments.

If (7, E) is a representation of G (or more generally an action of G on a Banach
space E) and x € E, we will measure by

85(x) = max ||z (s)x — x| g (1.4)

the maximal amount by which x is moved by the elements of S. We could as well
have defined 87 by the formula (3", [|7(s)x — x||?)!/? asin (1.1), but since we do
not only work with Hilbert spaces, we prefer to use formula (1.4), which is not less
relevant but is simpler.

Our main new contribution is the following local characterization of Kazhdan
projections, which generalizes to non unitary representations the easy observation
from the beginning of the introduction.

Theorem 1.2. €4 (G) contains a Kazhdan projection if and only if there exists
m € C[G] with ), m(g) = 1 such that

1
85 (m(m)x) < §5§(x) forall (m, E) € ¥ and x € E. (1.5)

If these properties hold and if o is an affine action of G whose linear part belongs
to ¥, then o has a fixed point if and only if § (0 (m)x) < %5% (x) forall x € E.

We point out the following: contrary to the previous characterizations of Kazhdan
projections in [9], the fact that £” has a complement subspace is not part of the
hypothesis, it is a consequence of (1.5). Of course, Theorem 1.2 remains true if % is
replaced by any number in (0, 1).

The main interest of this characterization of the existence of Kazhdan projections
is that it is completely local: if the support of m is contained in Bg = {g € G,
lgls < R}, and if (x, E) is a representation of G such that for every x € E,
the Bgryq-orbit of x is “almost isometric” to the Bgyq-orbit of a point x" € E’
for a representation (7', E’) € ¥, then (2) also holds for (7, E), perhaps with %
replaced by % + . This opens the possibility of applying ultraproduct constructions
as in [11,12]. This simple observation by itself is however not very useful from
a representation-theoretical point of view, as this notion of (7, E') being close to a
representation in £ is strong. On the opposite there is a natural topology (related to
the Fell topology) on every set of Banach space representations of G satisfying (1.2),
that we define and study in §4. To feel the difference between these two notions of
representations being close, consider for example the case when x, is a sequence of
almost invariant unit vectors of a unitary representation 7. Saying that r is close in
the Fell topology to a representation satisfying (1.5) does not say anything about the
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validity of (1.5) for x,,, as it just says that the difference %8§ (xp)—08%5 (r(m)xy,) (Which
by assumption tends to 0) is close to a nonnegative number. In other words, only the
difference %83‘ (x)—8% (7w (m)x) (for x unit vectors) is continuous for the Fell topology,
whereas we would need the continuity of the ratio §5 (7 (m)x)/65(x). To obtain
useful information, it is better to arrange that 55 (x,) = 1. This amounts to zooming
around x,. Then the origin disappears from the vision, and the representation now
looks much more like an affine action with linear part a representation close to 7 in
the Fell topology. This vague discussion should give an informal explanation why
cohomology enters into our second main result, and this will be made precise in its
proof. Recall that H'(G;mw) = 0 means that every affine action of G with linear
part 7t has a fixed point. See Theorem 5.1 for a more precise statement.

Theorem 1.3. Let ¥ be a set of representations of G satisfying (1.2). If €#(G)
has a Kazhdan projection and HY(G; ) = 0 for every (n, E) € F, then there is a
strong neighbourhood (see Definition 2.2) ' of ¥ such that €¢/(G) has a Kazhdan
projection and H'(G; ) = 0 for every (m, E) € F'.

We end the introduction by listing several consequences of this result, which
follow from the understanding, obtained in §4.2, of strong neighbourhoods in several
examples.

If & is a collection of Banach spaces and m is a function from G to (0, 00), we
denote by F (&, m) the collection of all representations (7, £) on a space £ € & and
such that ||z (g)| r) < e™@) for all g (if m = c£ this boils down to the inequality
maxges [7(g)] < ¢).

Here are some of the consequences. Definitions can be found in the body of the
paper. Precise statements and other results can be found in §5.4, 5.5, and 5.6.

e (Corollary 5.5) If G has property (T), then there is £ > 0 such that €4 (G) has a
central Kazhdan projection and H'(G; ) = 0 for every (, E) € ¥, where ¥ is
the collection of all representations (7, E) such that maxges |[7(g)|| <1+ eona
Banach spaces satisfying

1
5 lx + YIP+lx = y1%) = A+ (Ix1* + IylI?) Vx,y € E.

With the vocabulary of [21] or Definition 3.8, property (T) is equivalent to robust
property (T) with respect to Banach spaces satisfying the preceding.

e (Corollary 5.9) Let 1 < p < oo. G has property (Fr ) if and only if there is
¢ > 0 such that G has robust property (T) with respect to {L,, |p —q| < &}.!

* (Corollary 5.13) Let & be a class of superreflexive Banach spaces closed under
ultraproducts (for example the class of L, spaces for some 1 < p < 00). Then the

'In particular, the set of values of p € (1, 00) such that G has (Fz ,) is open. Although we are not
aware of a place where this remark has already been made, we are sure that this was well known, as the
proof by Fisher and Margulis of the case p = 2 [2, Lemma 3.1] applies with almost no change.
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set of finitely generated groups with property (Fg) is open in the space of marked
groups.

The second point above is also valid for many other reasonable classes of Banach
spaces, for example non-commutative L, spaces. See Corollary 5.11 and 5.8. This
statement has to be compared to a celebrated theorem by Delorme and Guichardet
asserting that, for a countable group, property (T) is equivalent to (Fg). It is well
known that strictly speaking, the Delorme—Guichardet theorem is no longer true for
Banach space and for example L, spaces for p large (see Remark 5.10): there are
groups which have (Fy ) but not (T, ,). Corollary 5.9, which characterizes (Fr,)
in terms of the existence of a Kazhdan projection for some class of representations
on L ,, should be considered as the correct Banach-space analogue of the Delorme—
Guichardet theorem.

The above results, and all other results in the paper, are valid more generally
for locally compact compactly generated groups?, and can be combined. For
example, if & is closed under finite representability and G has (Fg), then there
is a compactly presented group G’ which surjects on G, an integer N and a positive
number € > 0 such that G has robust (T) with respect to the Banach space such that
all N-dimensional subspaces are at distance less than (1 + ¢) from a space in &. Let
us finally mention a result (Corollary 5.15) which almost says that every group with
Lafforgue’s strong property (T) with respect to a reasonable class & is a quotient of
a compactly presented group with strong property (T) with respect to &.

Comparision with previous work. It should be noted that a criterion similar to (1.1)
for property (T) was already at the heart of the work of Fisher and Margulis [11].
They also exploited that it still holds for actions (not necessarily on a Banach space)
which are “close” to actions by isometries on Hilbert space, and that for such actions,
mw(m)"x converges to a fixed point of 7z, so in particular = has a fixed point “not
too far from x”. This allowed them to reprove Shalom’s theorem that property (T)
is open in the space of marked groups. This technique also allowed them to prove
that (T) implies (Fz,) for p small enough to 2 (but this was only written in [2],
and actually without relying on (1.1), where they allowed a less restrictive meaning
of representations being closed). Compared to [11], we make the choice to work
only with linear/affine actions on Banach spaces, but we do not restrict to (close to)
isometric actions, and we discuss in length the notion of closeness, and its relation to
the variant Fell topology that we consider in §4. The characterization of Theorem 1.2
is new.

Theorem 1.3 can be informally expressed by saying that deforming a representa-
tion for this Fell-like topology preserves the vanishing of the first cohomology group.
Recently Bader and Nowak [3] also studied how deforming a representation affects

2There is a small subtlety related to continuity of representations, so the assumption that & is stable
by ultraproducts has to be replaced by stability by finite representability.
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its cohomology groups. Our results do not seem to be comparable, since they work
with a much stronger notion of deformation than ours, where the Banach space is
unchanged and the generators act by operators close in the norm topology from the
original generators.

Acknowledgements. I thank Masato Mimura and Izhar Oppenheim for interesting
discussions, and Masato Mimura for allowing me to include his argument for
Lemma 5.3. I also thank the referee for useful comments.

2. Preliminaries

2.1. The group G. Throughout this paper G will be a compactly generated locally
compact infinite group, and S C G will be a compact symmetric generating set. We
assume that the identity of G belongs to S, so that (Baire) every compact subset of G
is contained in S” for some N. We denote by ¢ the word length function

£(g) = min{n, g € S"}. (2.1)

We also fix a left Haar measure, and we denote [ f or [ f(g)dg the integration
with respect to it.

We will also assume that G is separable. This assumption is just for convience;
all the results of the paper remain true if « is the cardinality of a dense subset
of G and every occurence of the word separable is replaced “with a dense subset of
cardinality < «.”

By an approximate unit in C.(G) we mean a net f, € C.(G) such that [ f, =
[ 1.fx] = 1 and for every neighbourhood V' of e, the support of f, is contained in V
for all n large enough.

2.2. Representations and affine actions. By representation of G we will always
mean a pair (;r, E) of a Banach space E and a strongly continuous representation
of G on E, i.e. m is group homomorphism from G to the group GL(E) of bounded
invertible operators on E such that g — m(g)x is continuous for every x € E. Two
representations (7ry, £1) and (772, E3) are said to be equivalent if there is a surjective
linear isometry between £ and E, which intertwines the actions. We say that (7, E)
is an isometric representation if 7 (g) is an isometry of E forall g € G. We will keep
the word unitary representation for representations by isometries on a Hilbert space.

In §4 and 5 we will make the effort to explicitely work with sets of representations.
This is an issue because the class of all representations of a group is not a set. A
solution is to consider equivalence classes of representations with some bound on
the dimension of the Banach space. For example a reasonable set will be the set of
equivalence classes of representations on a separable Banach space. This is indeed
reasonable because, G being separable, every Banach space representation is a direct
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limit of separable Banach space representations. We could also bound the dimension
by some inaccessible cardinal, which would have the nice feature that our set of
Banach spaces will be stable by the operations of duality and most ultraproducts.

The dual (or contragredient) representation of a representation (i, E) is the
representation (*7r,” E) where * E is the closed subspace of the £ € E£* such that g
m(g~1)*E is continuous, and 7 (g) is the restriction of m(g~')* to this subspace.
If £ is reflexive then ‘£ = E*. In general ' E is only a weak-* dense subspace
of E™, but this implies that (z, £) is naturally a subrepresentation of (ttﬂ',ttE)
[24, Lemma 2.3].

The space of invariant vectors of a representation (i, £) is denoted E™:

E*” ={xe€ E,n(g)x = xVg € G}.

An important fact about isometric representations on reflexive Banach spaces is that
the space E7 has always a 7 (G)-invariant complement subspace [4,26]. This is not
the case for arbitrary Banach space representations. See for example [2, Remark 2.9]
(respectively [26]) where for every non-amenable discrete group, an example of
an isometric representation is given where E” has no 7 (G )-invariant complement
subspace (respectively has no complement subspace at all). There are also examples
in a different direction (reflexive spaces but not isometric representations). Indeed,
the dual representation of the representation constructed in [17, Théoreme 1.4] for a
hyperbolic group G is a representation with polynomial growth on a Hilbert space
where E” has no (G )-invariant complemented subspace. In a similar direction, it
follows from Remark 5.10 and Proposition 3.4 that for every hyperbolic group G,
there exist 1 < p < 2 such that, for every ¢ > 0, there is a representation of G on
E = L, such that maxes || (g)| < 1 + e and such that E” has a complemented
subspace but no (G )-invariant complemented subspace.

A continuous affine action of G on a Banach space E is a group homomorphism o
from G to the group of continuous invertible affine maps on E such that
g +— o(g)x is continuous for every x € FE. Since this group is isomorphic
to GL(E) x E, a continuous affine action is of the form o(g)x = 7w (g)x + b(g)
for a representation (i, £) of G and a continuous function h: G — E satisfying
the cocycle relation h(gh) = b(g) + n(g)b(h) for all g, h € G. Traditionally, the
vector space of such continuous cocycles is denoted by Z' (G, 1), the cocycles of the
form h(g) = x — mw(g)x (which correspond exactly to the affine actions with a fixed
point) are denoted by B!(G, ), and the quotient vector space Z! (G, w)/BY (G, )
is denoted by H'(G,m). So the formula H'(G, ) = 0 means that every affine
action with linear part (s, E) has a fixed point.

If (z, E) is a representation of G, and if m is a compactly supported complex
measure on G, we will denote by m(m) € B(FE) the operator x € E >

[ 7(g)xdm(g). If m is absolutely continuous with respect to the Haar measure,

we will denote w(m) by n(f) if f = ‘fi—? is the Radon—-Nikodym derivative. We
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will use the same notation o (m)x = [ o(g)x dm(g) when o is a continuous affine
action of G on X, and m is a compactly supported measure with f ldm = 1.

2.3. Ultrafilters. An ultrafilter on a set / is a set U of subsets of / that is closed
under taking supersets, and such that for every subset A of I, U contains either A
or I \ A (butnot both). As is standard, the set of ultrafilters on / is in natural bijection
with the set of characters of £, (/): an ultrafilter is something that chooses, for every
bounded family (a;);e; of complex numbers, a point in the closure of {a;,i € I} in
a way compatible with pointwise multiplication and addition.

If U is an ultrafilter on a set /, we denote by (a;);e; +> limg a; the associated
character of €, (/). It is characterized by the fact that A € U if and only
if limy lieq = 1.

If I is a directed set, we say that U is cofinal if limg 1;5;, = 1 forallip € I. It
follows by Zorn’s lemma that cofinal ultrafilters exist on every directed set.

2.4. Strong neighbourhoods. In a non-Hausdorff topological space, there is a diff-
erence for a net to converge to a point in a subset A, and for all its limit points to belong
to A. The next lemma and the definition that follows, related to this phenomenon,
will be important for us.

Lemma 2.1. Let X be a topological space, and A, B C X. The following are
equivalent.

(1) For every net (xj)ier in X whose accumulation points are contained in A, there
isig € I suchthat x; € B foralli > i.

(2) For every net (xj)ier in X such that x; € B¢ for all i, the net (x;) has an
accumulation point in A€.

(3) B belongs to every ultrafilter on X whose accumulation points are contained
in A.

Proof. (1) = (2) is obvious.

Assume (2). Let U be an ultrafilter on X such that B ¢ U. We shall prove that U
has an accumulation point in A¢. Since U is an ultrafilter, B¢ € U, and for every
C € U, thereis x¢ € C N B°. By (2) the net (x¢)cey has an accumulation point
x € A€. Then x is an accumulation point of U as requested.

Assume (3), and let (x;)ie; be a net such that for every iy € I, there is i > i,
such that x; € B¢. By Zorn’s lemma there is an ultrafilter U on X which contains B¢
and {x;,i > io} forall i. In particular, B ¢ U, so that by (3) U has an accumulation
point x € A€. It is in particular an accumulation point of (x;);es, which proves (1).

O

If X is compact and Hausdorff, then the equivalent properties in Lemma 2.1 are
equivalent to B being a neighbourhood of A. This justifies the following definition.
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Definition 2.2. If the equivalent properties in Lemma 2.1 are satisfied, we will say
that B is a strong neighbourhood of A.

We warn the reader that a strong neighbourhood of a set A does not necessarily
contain A. For example, if X contains a point xy whose only neighbourhood is X,
then the empty set is a strong neighbourhood of X \ {x}. More generally, x € 4
belongs to every strong neighbourhood of A if and only if {;} C A.

2.5. Ultraproducts and finite representability. We recall briefly some facts on the
local theory of Banach spaces. We refer to [14] (in particular section 9) for a concise
introduction.

If U is an ultrafilter on a set / and F£;,i € [ are Banach spaces, we denote
by [ 4, E: the ultraproduct Banach spaces, as introduced by Dacunha-Castelle and
Krivine [8]. Recall that [ [q; E; is the quotient of the Banach space [ [; £; of bounded
families with values in £; for the norm ||(x;)|| = sup; ||x;| £; by the closed subspace
of sequences satisfying limq || x;|| = 0. The equivalence class of (x;);e; will be
denoted by (x;)y. Its norm is limy ||x;|. If A; € B(E;) are operators such that
sup; || Ai|l < oo, its ultraproduct []q, A; is the operator sending (x;)y to (A; X; ).
This defines an isometric map [ [q, B(E;) — B(] [q, £:), which is not surjective in
general.

If C > 1, two Banach spaces Y, Y’ are said to be C-isomorphic if there is a
continous and bijective linear map u: Y — Y’ such that |Ju||u~!|| < C. The
Banach—Mazur distance (or isomorphism constant) between Y and Y is the infimum
of the constants C such that Y and Y’ are C-isomorphic. We warn the reader that
the Banach—Mazur distance is sub-multiplicative. So to get a distance satisfying the
usual triangle inequality, one should (but we will not) take the log of C. The Banach—
Mazur distance is particularly relevant for spaces of the same finite dimension, as it
typically infinite between infinite dimensional Banach spaces.

A Banach space X is finitely representable in a class & of Banach spaces if for
every finite dimensional subspace Y of X and every ¢ > 0, Y is at Banach-Mazur
distance less than 1+ & from a subspace of a space in & (that is, there is a space X’ € &
and a linear map u: Y — E such that (1 — &)||x|| < |lu(x)|| < ||x| forall x € Y).
For example, L ([0, 1]) is finitely presentable in £, and £, is fintely representable
in L, ([0, 1]). Recall [8] or [13] that X is finitely representable in & if and only if X
is isometrically isomorphic to a subspace of an ultraproduct of spaces in &. For the
convenience of the reader not familiar with the local theory of Banach spaces, we
reproduce here the standard proof of this equivalence. We will use similar arguments
later in the paper.

Proof. Assume that X is finitely representable in &. Denote by / the set of all pairs
(¢,Y) for e > 0 and Y a finite dimensional subspace of X. Declare that (&, Y) is
larger than (¢', Y') if ¢ < ¢’ and Y’ C Y. This is an order relation which makes / into
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a directed set. Let U be a cofinal ultrafilter on /. By assumption, for every i € [/,
there is a Banach space E; € € and a linear map u;: Y — E; such that

(I =) llxll < flui CHIl < x|l

for all x € Y. Extend u; to a nonlinear map X — E; by setting u;(x) = 0ifx ¢ E.
This allows to define amap u: E — [[q, E; by defining u(x) as the class of (u; (x));.
The cofinality of U implies that u is linear and isometric.

For the converse, assume that there is a set / with ultrafilter U, a family (X;); €
I € &' and anisometric embedding v of X into [ [, X;. Let Y beafinite dimensional
subspace of X,and yq, ..., y, beabasisfor Y. Forevery k < n,pick (yx,;)i € []; Xi
a representative of u(yg ). Define, for every i, a linear map u;: ¥ — X; by extending
by linearity the map yx > yi.;. Then by linearity of u, forevery y € Y, (4;(y)); is
a representative of u(y), and in particular limqy ||#;(y)|| = y. By compactness the
convergence in uniform in the unit ball of y, and in particular for every ¢ > 0, there
is 7 such that

(I=a)lyl < eI = A+ )yl
This proves that X is finitely representable in &. []

If & is a class of Banach spaces, we denote by V¢ the class of Banach spaces E
such that all N-dimensional subspaces of E are at Banach—-Mazur distance less than
1 + ¢ from a subspace of a space in &.

We shall use the following finitary version of the well known fact that the dual of
a subspace is isometric to a quotient of the dual.

Lemma 2.3. For every N € N,& > 0, there exists N' € N, &' > 0 such that the
following holds. If & is a class of Banach spaces and X € &N "¢ then every
subspace of X* of dimension < N is (1 + g)-isometric to a subquotient (= subspace
of the quotient) of the dual of a space in &.

In particular if & is stable under subspaces and duals, then for every Banach
space X in €V"¢ | its dual X* belongs to EN¢.

For the proof, we shall need the following classical lemma, to which we provide
a proof for the reader’s convenience.

Lemma 2.4. For every N € N, & > 0, there exists N' € N > 0 such that, for every
Banach space X and every subspace Y C X™ of dimension < N, there is a subspace
Z C X of dimension < N’ such that Y* is (1 + €)-isomorphic to a subspace of Z*.

Proof. By compactness, there is N’ such that for every Banach space Y of dimen-
sion NV, its unit sphere Sy contains an e-net F or cardinality < N’: Sy C Uyer B(x, &).

Let X, Y be as in the lemma, and ¥ C Sy an e-net as above. For every y € F,
let x, € X be a norm one element on which y almost attains its norm: [(y, x,)| >
(1 —¢€). Let yq in the unit sphere of Y. There is y € F such that ||yo — y| < &, and
therefore

[(vo. xy)| = [y, xp)| = [{yo — ¥y, xy}| = 1 —2e.
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In particular, if we define Z C X as the linear span of the x,’s, we have that the norm
on yp in Z* is at least (1 — 2¢). In other words, the formal inclusion (restriction of
linear formsto Z) u: Y — Z* satisfies

(I=28)|yll = lluI = NIyl

forevery y € Y, and Y is (1 — 2g)~!-isomorphic to a subspace of Z*. This is the
lemma, up to a change of «. L1

Proof of Lemma 2.3. Fix N € N, e > 0, and let N’ be given by the preceding lemma
for /2. Pick & > 0 such that (1 + &/2)(1 + &) < (1 + ¢).

Let X ¢ SN/’EI, and Y be a subspace of dimension < N of Y*. The
preceding lemma provides a subspace Z C X of dimension < N’ such that Y
is (1 + &/2)-isomorphic to a subspace of Z*. But by the definition of gN'' 7
is (1 + &’)-isomorphic to a subspace Z’ of a space X’ in €. This implies Z* is
(1 + &’)-isomorphic to Z’*, which is a quotient of X"*. Putting everything together,
Y is (1 + &¢/2)(1 + &’)-isomorphic to a subspace of a quotient of X’*. This proves
the first part of the lemma.

The second part is immediate because a subquotient of the dual of a space in &
belongs to & if & is stable under subspaces and duals. [

2.6. Superreflexivity. A Banach space X (respectively a class & of Banach spaces)
is said to be superreflexive if every Banach space finitely representable in X
(respectively &) is reflexive. By a celebrated theorem of Enflo [10] (see also [22]),
X is superreflexive if and only if it carries an equivalent uniformly convex norm.
Recall that a Banach space is said to be uniformly convex if its modulus of uniform
convexity is strictly positive, and that the modulus of uniform convexity of a Banach
space X is the function

re @ int{i— |22 1y e x Il <1yl =1 -yl 21,

By an {,-direct sum argument, one obtains that a class of Banach spaces is
superreflexive if and only if there is a constant C and of a function §: (0, 1) — (0, 1)
such that every space in & is C-isomorphic to a uniformly convex space with modulus
of uniform convexity > §.

3. A local characterization of (T) and its variants

3.1. Definition of Kazhdan projection. Let F be a class of representations of G
such that

sup ()l ey
(n,E)eF

is bounded on compact subsets of G.
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We define €4 (G) as the completion of C.(G) for the norm

I/ l# = suptllm (N ). (. E) € F}.

It is a Banach algebra for convolution. By construction, the map f € C.(G)
7(f) € B(E) extends uniquely to a bounded map on €#(G), that we still denote
by 7. For example, it ¥ is the class of unitary representations of G then € (G) is
the full C*-algebra of G.

Definition 3.1. A Kazhdan projection in € (G ) is an idempotent p belonging to the
closure of { f € C.(G), [ f = 1} such that 7(p) is a projection on E™ for every
(m, E) e F.

A Kazhdan projection is called central if it belongs to the center of €% (G).
Remark 3.2. The assumption that p belongs to the closure { /* € C.(G), [ f = 1}is
just here to make a nontrivial definition in the case E™ = {0} for every (n, E) € ¥
(otherwise we could just take p = 0 € C.(G)). This assumption is superfluous
otherwise: if p € €¢(G) is such that 7(p) is a projection on E™ for every
(m, E) € ¥, and if E™ # {0} for at least one (7, £), then p belongs to the closure
of { f € Cc(G), [ f = 1}. Indeed, if x € E™ \ {0} and f;, € C.(G) converges to p,
we have

x=ma(p)x = li;n 7l fp)x = li;n (f fn)x,

sothatlim, [ f, =1,and p=1lim,(f,/ [ f.) belongs to the closure of { f € C.(G),
Jf=1

We insist that for us Kazhdan projections are not necessarily central. One reason
is that, as indicated in Proposition 3.4, the question whether a Kazhdan projection
is central is essentially disjoint from the question whether there exists a Kazhdan
projection. Another reason is that there is a natural setting where non central Kazhdan
projections occur naturally. See Remark 5.10.

It is useful to realize that being a Kazhdan projection in €% (G') only depends on
the norm || - || #, and not on the specific ¥ .

Lemma 3.3. An element p € €4 (G) is a Kazhdan projection if and only if it
belongs to the closure of { f € C.(G), f f = 1} and satisfies | * p = (f f)p for
all € C.(G). It is a central Kazhdan projection if and only it moreover satisfies

p* f=(ffpforal f € Cc(G).

Proof. Forevery (m, E) in ¥, a vector x € E belongs to E” if and only if 7( f)x =
(/ f)x forall f € C.(G). Therefore, if p is a Kazhdan projection, we have that

w(f + ) = (o) = ([ 1)

for every (, E) € ¥, and hence f = p = ([ f)p. Conversely, if p belongs to
the closure of {f € C.(G), [ f = 1} and satisfies /' * p = (f f)p. then p is
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an idempotent, and for every (7, E) € ¥ we have that 7(p) acts as the identity
on E™ (because every f € C.(G) with [ f = 1 does), and its image is made of
invariant vectors (because (/) (p) = ([ f)n(p) forevery f € C.(G)). Thus p
is a Kazhdan projection. The statement about central projections is immediate. [l

3.2. To be central or not to be. We now discuss when a Kazhdan projection is
central.

Proposition 3.4. Assume that C3(G) contains a Kazhdan projection p. The
following are equivalent.

(1) p is a central Kazhdan projection.

(2) for every representation (m, E) in ¥, E™ has a n(G)-invariant complement
subspace in E.

(3) p is the only Kazhdan projection in € (G).

(4) There is an element p' in the closure of {f € Cc(G), [ f = 1} such that
p'x f = (] f)p forevery f € Cc(G).

(5) €#+(G) contains a Kazhdan projection.

Proof. (1) = (2). If p is central, then ker(s(p)) is a complement subspace of E£”,
and it is invariant by 7t ( /) for every f € C.(G) because w( f)n(p) = n(p)x(f).
By strong continuity of x, ker(;r (p)) is therefore invariant by 7(g) forevery g € G.

(2) = (3). Assume that for every (w,E) € %, E”™ has a m(G)-invariant
complement F. Then for every f € C.(G) (and therefore for every [ € €#(G)),
n(f)Fy C Fy. In particular if p’ is a Kazhdan projection in €% (G), then
n(p)F, C F, N E™ = {0}, so that (p") is the projection on ET parallel to Fj,.
In particular 7 (p) = n(p'), and therefore p = p’.

(3) = (1) If p is a Kazhdan projection, then for every f € C.(G) with [ [ =1,
p * [ is another Kazhdan projection, so thatby (3) px f = p = f * p. By linearity
we deduce that p x [ = f % p forevery f € C.(G), and that p is central.

(1) => (4) is obvious (take p’ = p). For the converse, suppose (4). Then pp’
belongs to the closure of {f, [ f = 1} and satisfies fipp’fo = ([ /) L)pp’,
so that by Lemma 3.3 pp’ is a central Kazhdan projection. By the already proven
implication (1) = (3) for pp’, we deduce that pp’ is the only Kazhdan projection,
so that p = pp’, and p is central (1).

(4) <= (5). For f € C.(G), define f € C.(G) by the property that fdg is

the image of the measure fdg by the map g — g‘l; For every representation
(m, E) and f € C.(G), the equality ||z (/)] = ||*#(f)]|| holds because ‘7 (f) is
the restriction to the weak-* dense subspace ‘E C E* of the weak-* continuous

operator w(f)* € B(E*). The map f +— f therefore extends to a surjective
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isometry €z (G) — Cg+(G). It preserves {f € C.(G), [ f = 1} and satisfies

fix o = f; * ﬂ It is immediate by Lemma 3.3 that an element p’ € €% (G)
satisfies (4) if and only if p’ is a Kazhdan projection in €g+ (G). EI

We say that ¥ is weakly self-adjoint if the the norms || f||# and || f| #+ are
equivalent on C.(G). By the proof of (4) <= (5) in the preceding proposition,
F is weakly self-adjoint if and only if the map f + f extends to a bounded map
on € (G) that we still denote by ~. Anelementa € € (G) is then called self-adjoint
if @ = a. For example, ¥ is weakly self-adjoint if #* C #.

Corollary 3.5. If ¥ is weakly self-adjoint, a Kazhdan projection in €¢(G) is
automatically central and self-adjoint.

If moreover the map f — f extends to a continuous map on €3(G), then a
Kazhdan projection is automatically central, self-adjoint and real.

Proof. Let p € €4(G) a Kazhdan projection. Then p satisfies (4) in the previous
proposition, so p is central (1). Then p is another central Kazhdan projection, so by
the previous proposition again p = p and p is self-adjoint.

If moreover f > f extends by continuity to €4 (G) then p is also a Kazhdan
projection so by the previous proposition again p = p and p is real. []

3.3. Examples of Kazhdan projections. The first example is for unitary represent-
ations: it is classical that G has property (T) if and only if the full C *-algebra of G
has a Kazhdan projection. More generally, if ¥ is a class of isometric representations
on a superreflexive set of Banach spaces, then €5 (G) has a (necessarily central by
Proposition 3.4 (2)) Kazhdan projection if and only if there exists € > 0 such that

max |7 (g)x — x|| = e||lx[|g/Ex
ges

for every (m, E) € ¥ and x € E, i.e. if and only if E/E”™ does not have almost
invariant vectors uniformly in (77, £) € ¥ . See [9, Theorem 1.2] (the argument in
the case of a discrete group was previously recorded in [16, Proposition 5.1]).

Let (7, E) be a Banach space representation of G. An argument of Guichardet,
originally used for unitary representations but valid for arbitrary Banach space
representations, shows that if H'(G;7) = 0 then E/E™ does not have almost
invariant vectors3. We shall see (this was observed by Masato Mimura [20]) by
some ultraproduct argument that in several case, this holds uniformly in (&, E)
(Lemma 5.3). In particular, in §5.3 we will deduce the following result.

3The argument goes as follows: it H'(G;x) = 0, the map x € E/E™ > (n(g)x — X)geqG
with values in the Banach space Z!(G; ) with the norm sup,cs |6(g)|l is continuous and bijective,
and hence invertible by the open mapping theorem. If C is the norm of the inverse we have § (x) >
C x|l g/ g= forevery x € E.
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Proposition 3.6. Let & be a class of superreflexive Banach spaces, and denote by ¥
all isometric representations of G on a space in &. If G has (Fg) then €4 (G) has a
Kazhdan projection in the following situations:

e & is stable by finite representability,

* or & is the class of L p-spaces for some 1 < p < oo,

e or G is discrete and & is stable under ultraproducts.

Finally, examples where Kazhdan projections occur are in the definitions of
Banach strong property (T) and its variant robust property (T). Let us recall the
definitions.

If &€ is a class of Banach spaces and m: G — (0, o] is a function, we denote
F (€, m) all equivalence classes of representations (7, ) such that £ € & and
Iz ()l < ™) forall g.

Vincent Lafforgue’s strong property (T) [17] was defined in terms of Kazhdan
projection.

Definition 3.7 (Lafforgue). If & is a class of Banach spaces, one says that G has
strong property (T) with respect to & is there there is s > 0 such that for all C > 0,
€3 (&,s¢+c)(G) has a Kazhdan projection.

Lafforgue originally only considered the case when & is stable by duality,
subspaces and complex conjugation and wanted the Kazhdan projection to be self-
adjoint and real, but in that case his definition coincides with Definition 3.7 by
Corollary 3.5.

Oppenheim [21] defined robust property (T) with respect to a class of Banach
spaces &, as an intermediate property between property (T) and strong property (T)
with respect to &. An almost 4 equivalent form of his definition is the following.

Definition 3.8. (Oppenheim) G has robust property (T) with respect to & if there
exists s > 0 such that €z (g ¢¢)(G) has a Kazhdan projection.

This is equivalent to the Kazhdan projection being central when ¥ (&, cf) is
weakly self-adjoint, for example if & is stable by duality and made of reflexive
spaces.

3.4. The main theorem. If (;, E) is a representation of G, for every x € X we
denote

85 (x) = max ||z (g)x — x| (3.1)
geS
Observe that by the triangle inequality, if g € S N then
(g — x| < N sup ()" ™85 (). (3.2)
g€

4In his original definition, Oppenheim requests, as in [24], that the Kazhdan projection belong to the
closure of the symmetric functions on G . In view of Corollary 3.5, this is automatic if ¥ (&, c£) is weakly
self-adjoint. This does not seem any more so relevant otherwise, so we prefer to drop this condition.
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We will also consider the quantity
$(x) = max [lo(g)x — x||
ges

when o is an affine action of G on E with linear part 7z, and in that case (3.2) still
holds in the form

lo(g)x — x|l < N sup [|x(g)]|¥ 162 (x).
ges

The following is Theorem 1.2 generalized to arbitrary locally compact groups.
Theorem 3.9. The following are equivalent:
(1) €% (G) contains a Kazhdan projection.
(2) There is a compactly supported measure m with [1dm = 1 such that
35 (r(m)x) < —%Ef;(x)ﬁ)r all (m, E) € ¥ and x € E.

If these properties hold and if (o, E) is an affine action of G whose linear part
belongs to ¥, then o has a fixed point if and only if 65(0(m)x) < %8% (x) for
all x € E,

We first record an easy fact on the displacement (3.1), that we will often use.

Lemma 3.10. Let m be a compactly supported measure on G with f ldm = 1.
There is a constant Cy, such that

lo(m)x —x||g < Cndg(x)
for every affine action o of G with linear part (x, E) € ¥ and every x € E.

Proof. Let N be such that the support of m is contained in SV, and ||m||7v the total
variation norm of m. Then (3.2) implies

lom)x —x|g < [ llo(g)x —x||gldm| < |m|lzy N sup I () 1V~ 85 (x).
ge

This proves the lemma because sup,cg |7 (g)|¥~! is bounded independantly of

(m,E)e ¥. ]

For the proof of the direction (1) = (2) we will need a uniform version of the
fact that the existence of a Kazhdan projection for (7, E) implies that (x, £) does
not almost have invariant vectors.

Lemma 3.11. If € (G) contains a Kazhdan projection, then there exists ¢ > 0 such
that
§5(x) > cl|x|g/ex Y(w,E) € F and x € E.
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Proof. Let p € €% (G) be a Kazhdan projection and f/ € C.(G) such that [ f = 1
and || f — p|l# < 1/2. Then for every x € E,

Ixlg/ex < |lx —m(p)x|E
<lx—==(f)xle + x(f —p)xlE

1
<|x—a(f)x|e + EHXHE-

By replacing x by x +y for y € E7 inthe preceding equation, theterm | x—x (/) x| g
is unchanged because [ f = 1 and we get

, 1
Ixllg/en < llx = 7()xl + 5 lx + 5.

Taking the infimum over y € E” we obtain |x|g/gx < 2[[x — n(f)|g. We
conclude by Lemma 3.10 for the measure f dg. ]

Proof of Theorem 3.9. (1) = (2). Lete > Otobedetermined later. Let p € €#(G)
be a Kazhdan projection, and f € C.(G) such that [ f = l and ||[p — f|l# < &
We prove (2) for the measure m = fdg if € is small enough. Define C by

C = sup max||7(g)llae)-
(n,E)e¥ 8€S

Then for (z, E) € ¥

§s(m(f)x) =85 (f — p)x) = (1 + O)llz(f — p)xlle = (1 + C)elx|e.

By applying this inequality to x + y for y € E”™ and taking the infimum over all y
we get
85 (m(f)x) = (1 + Cellx||g/ex,

which by lemma 3.11 is less than (1424(:)585 (x). This is less than % for e < 55

2+2C "
(2) = (1). Let (m, E) € ¥. By iterating the inequality in (2), we get that
g q
d5(mr(m)"x) < 27"65(x). If Cp is the constant given by lemma 3.10 for m,
we obtain
ll7e (m)" *x — 7w (m)" x| < 27" CmF (x).

By bounding

§%(x) < (1+ sup max|x(g)l)llxlle = (1 + C)|x|&.
(n,E)e¥ &€S

we get
Iz ()" — 7 (m)"|| < C(1 + C)27".



Vol. 94 (2019) A local characterization of Kazhdan projections and applications 641

This implies that w(m)" is a Cauchy sequence in B(E), and hence has a limit
Pr € B(E) and
l7w(m)" — Prllpey <27"C’,

for C" = 2Cy, (1 + C). Then §(Prx) = lim, 85 (w(m)"x) = 0 and Prx € E™
because S generates G. Since for x € E”, P;(x) = lim, #(m)"x = lim, x = x,
we get that P, is a projection on the invariant vectors. We are almost done, except
that m** = m * m * ---m might not be absolutely continuous with respect to the
Haar measure. This can be fixed by choosing a function fo € C.(G) with [ fo =1,
and observing that f x m™*" belongs to C.(G) and is Cauchy in Cg (G). Its limit p
satisfies w(p) = n( fo) Pr = Px,i.e. p is a Kazhdan projection.

Now assume that (1) and (2) hold, and let (o, E) be an affine action of G, the linear
part of which belongs to . If ¢ has a fixed point, then ¢ is just a representation in ¥
in which the origin has been renamed, so that the inequality 6 (o (m)x) < %Sg (x)
is immediate from (2). Conversely, if % (o (m)x) < %5% (x) for all x € E then the
proof of (2) = (1) shows that o (m™*")x is a Cauchy sequence, and hence converges
to a point y satisfying 8% (y) = lim,, 65 (o (m™)x) = 0, i.e. to a fixed point. ]

Finally, we record the following corollary of the proof of Theorem 1.2, which is
essential for applications to dynamics [6] (see also the analogous discussion below
for positive Kazhdan constants).

Corollary 3.12. If €4 (G) contains a Kazhdan projection, then there are C,s > (
and a Kazhdan projection p € €4 (G) such that p is at distance < Ce™" from the
continuous functions supported in S".

Proof. In the proof of (2) = (1) in Theorem 1.2, we constructed p as the limit
of fo * m™, where fy € C.(G), m is a compactly supported measure and

Ip— foxm™]| <C27".
This proves the corollary. ]

3.5. Positive Kazhdan projections. A natural variant of Definition 3.1 is to require
additionally that p belongs to the closure of the nonnegative functions { f € C.(G),
f = 0,/ f = 1}. This variant is particularily relevant to the applications to
dynamics, see [6]. To our knowledge, in all examples where a Kazhdan projection is
known to exist (for examples strong property (T), or Corollaries 5.5, 5.11), it belongs
to the closure of the nonnegative functions. However, we do not know if this is the
case in general.

We can note that the proof of Theorem 1.2 shows in full generality that €¢ (G)
contains such a “positive” Kazhdan projection if and only if there is a positive
compactly supported probability measure m such that §5 (m(m)x) < %ég (x) for all
(m, E) € ¥ and x € E. Moreover, in that case there are C,s > 0 and a Kazhdan



642 M. de la Salle CMH

projection p € €% (G) such that p is at distance < Ce™ " from the continuous
nonnegative functions supported in S”.

Also, we can give a positive answer to the previous question for central Kazhdan
projections and isometric representations.

Proposition 3.13. Assume that ¥ is made of isometric representations and is stable
by complex conjugation. If € (G) contains a central Kazhdan projection, then this
central Kazhdan projection belongs to the closure of the nonnegative functions.

Proof. Assume that €#(G) contains a central Kazhdan projection p. By
Proposition 3.4, p is real and there is a real valued function f € C.(G) with
[f =T1land|f —p| < % Moreover, by replacing every (w, E) € ¥ by
(7 |ker p, ker p) (which is indeed a representation because the projection is central, see
Proposition 3.4) we can assume that p = 0. Let f = af} — b f_ be a decomposition
of f with f}; and f_ nonnegative with integral 1, and «, h are nonnegative real

numbers such thata — b = 1. Then

17221 z al f+1 = I/l

This implies that || /4] < I/i—”’ < 1 (here we use that 7 is isometric to ensure

|l=(/=)|| < 1). Then the sequence of n-th power convolutions of f4 is a sequence
of nonnegative functions of integral 1 which also converge to 0 = p. []

4. A topology on the space of representations

The purpose of this section is to define a natural topology on sets of (equivalence
classes of) Banach space valued representations of locally compact groups, and to
characterize this topology in terms of ultraproduct representations.

4.1. Definition of the topology. Let G be a locally compact group and R be a set
of equivalence classes of Banach space representations of G.

For every (7, E) € R, every x1,...,x, € E, every compact subset Q C G
and every ¢ > 0 we define Wy, . .. 0.:(, E) C R as the set of all representations
(n', E') € R such that there is x|, ..., x; € E’ such that

n n
sup || D2 7Gxk | = | 2 woe| < @1
Sivendn V2 Pt
where the supremum is over all f1,..., f, € C.(G) supported in Q and with

I fellz, < 1.
The sets Wy, ... x,,0,¢(7r, E) form a basis for a topology on R. This topology is

not Hausdorff (every subrepresentation of (;r, E) belongs to the closure of {(, E)}).
If &R contains the trivial representation on the 0-dimensional Banach space, then it
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is compact-but-not-Hausdorft for the stupid reason that (R is the only neighbourhood
of 0.

Remark 4.1. Because we are dealing with strongly continuous representation, (4.1)
implies

n n
sup Z 7' (mg)xy, || — H Z (my)xk H‘ <eg
mi,....Mpy k=1 k=1
where the supremum is over all measures my, ..., m, supported in the interior of Q
and with total variation < 1. Conversely, (4.1) follows from the preceding inequality
where the supremum is over all measures my, ..., m, with finite support contained

in @ and with total variation < 1.

The restriction to unitary representations of this topology is not exactly the usual
Fell topology [5, Appendix F], since for example the trivial representation of G on C?
does not belong to the closure of the trivial representation on C, whereas it belongs
to the Fell topology closure of it. The next lemma in particular shows that a unitary
representation it belongs to the closure of another unitary representation p if and only
if 7 is weakly contained in the sense of Zimmer in p [30] (see also [5, Appendix FJ).

Lemma 4.2. Assume that R is a set of unitary representations of G. A representation
(r, H) € R belongs to the closure of A C R if and only if for every orthonormal
family &,...,&, € H, every compact subset Q C G and every € > 0, there is
a representation (p, K) € A, an orthonormal family nq,...,n, € K such that
max; j Maxgeo [(w()&;. &;) — (m(gIni. n;)| <e.

Proof. Clear, because if 7 is a unitary representation,
2 —1
| rwemos] =3 [t os e am@ amay. 0
k k.l

Remark 4.3. If (;r, E') belongs to the closure of ¥ C R, then

* lmm)| = sup grnes ' (m)| for every compactly supported measure on G.
In particular €#(G) and €z (G) are isometric. By Lemma 3.3, this implies that
if C# (G) has a Kazhdan projection, then so has €z (G).

o F is finitely representable in {E’, (7', E') € F}. In particular if G = {1}
is the trivial group, we have just defined a (classical) topology on sets of Banach
spaces which is characterized as follows: X belongs to the closure of a subset & if
and only if X is finitely representable in &. Hence (Subsection 2.5) this topology
can be characterized in terms of ultraproducts. In the rest of this section we show
such a characterization in the case of an arbitrary group G. This will be rather
straightforward for discrete groups, and technically more involved in the general
case.

Before that we investigate strong neighbourhoods for this topology in the sense
of Definition 2.2.
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4.2. Examples of strong neighbourhoods. Here we characterize, in several exam-
ples, the strong neighbourhoods of subsets of . We need to recall some notation.
If &€ is a class of Banach spaces and m: G — (0, oo] is a function, we denote ¥ (€, m)
(respectively ¥ (&, m)) the set of all equivalence classes of representations (1, E)
in R such that E is isometric to a space in & (respectively E is finitely representable
in &) and ||7(g)| < e™® for all g. Recall the definition of €N in §2.5.

Proposition 4.4. Let & be a class of Banach spaces and m: G — (0, o0] a function.
Every strong neighbourhood of ¥ (€ , m) contains ¥ (8¢, m + et) for some N € N
and € > (.

Proof. Let ' be a strong neighbourhood of . Assume by contradiction that for
every paira = (N, ¢) of aninteger N and a positive number ¢ there is a representation
(74, E4) which belongs to % (€"¢, m + £€) by not to . Then every accumulation
point of this net (for the order (N,e) < (N',&') if N < N’ and ¢ > &) belongs to
37(§, m) (see Remark 4.3). This is a contradiction with (2) in Lemma 2.1. []

A particular case of the preceding proposition is worth mentioning.

Proposition 4.5. Let H be the class of Hilbert spaces and m: G — (0, 00] a function.
Every strong neighbourhood of ¥ (#, m) contains ¥ (& (&), m + &f) for some & > 0,
where & (g) is the class of Banach spaces such that

1
E(IIX +yI2+llx = 217) < A+ e)(IxI” + Iy1?)  Vx,y € E.

This is indeed a particular case because, since the parallelogram inequality
characterizes the Hilbert spaces, for every N, there is & > 0 such that #N-*
contains & (¢’).

If & is a class of Banach spaces and m: G — (0, 00] is a function, we denote
G (&, m) the set of all equivalence classes of representations (, E) € R which are
equivalent to a subrepresentation of (i/, E') where E’ € & and |7/ (g)|| < ™€) for
all gin G.

Proposition 4.6. Let & be a class of Banach spaces stable by ultraproducts and
m:G — (0,00] a function. Assume that G is discrete. Then §(&,m) is closed and
every strong neighbourhood of §(&, m) contains § (&, m + &l) for some ¢ > .

Proposition 4.7. Let 1 < p < oc. Then §(L,,0) is closed and every strong
neighbourhood of (L p,0) contains Uye[p—g p4519(Lyg, el) for some & > 0.

We postpone the proof of these propositions to the end of the section, because
their proof requires the material in the rest of the section.



Vol. 94 (2019) A local characterization of Kazhdan projections and applications 645

4.3. Ultraproduct of Banach space representations. Let G be a locally compact
group. We define ultraproducts in the category of continuous Banach space linear
representations of G in the same way as for unitary representations in [7].

Let (77;);e; be a family of representations of G on Banach spaces E;. Assume
also that sup; ||7; (¢)| B(£;) is bounded on compact subsets of G. Let U be an
ultrafilter on /. Let [ [, E; be the Banach space ultraproduct of E;, and, for g € G,
7(g) the ultraproduct of 7; (g), which makes sense because sup; ||7; ()| p(£;) < o
(§2.5). For f € C.(G) we define 7 ( /) as the ultraproduct of ; ( /), which makes
sense because sup; ||7r; (¢)|| (&;) is bounded on the support of f.

Then 7 is a group morphism from G to the invertible operators on [[q E;.
However it is in general not strongly continuous, and to fix this we consider Eq; the
subspace of [ [¢, £; defined as the closure of the space spanned by

{w(x.x e [T Ei f € CG)f.
Uu

It is straightforward (see Lemma 4.8 for a stronger statement) that the space Eq
is invariant by m(g) for all g € G, and the restriction of & to Eq; is a strongly
continuous representation of G. We define the ultraproduct of (r;, E;) with respect
to U as (mwyy, Ey), where mqq is the restriction of 7 to Eq;.

We also have the following characterization of Eq; (see §2.1 for the terminology).

Lemma 4.8. Let f, € C.(G) be an approximate unit, and let x € [|q E; with
representative (x;); € [|; E;i. Then the following are equivalent:
(1) x € Eq.
(2) limy, | (fn)x — x| = 0.
(3) Forevery e > 0, there is a neighbourhood U of e in G such that

lim sup ||7; (g)x; — xi|| < e.

geU

Proof. The (2) == (1) direction is obvious: if lim, |7 ( f,)x — x| is equal to 0,

then x = lim, 7 ( f,)x belongs to Eq. Sois (3) = (2) because if Q, denotes the
support of f,,
7w (fu)x — x|l = lim [|7; (fu)xi — x;]| < lim sup [|l7; (g)xi — x;].
u u g€y
Let us prove the implication (1) = (3). Assume that x € Eq. Fix Uy a
compact neighbourhood of the identity in G, and define My = sup, ¢y, sup; |7 (g)|-
Let ¢ > 0, and take y = >, w(hr)y® with hy € C.(G) and y®) € [Ty Ei

i

such that |y — x| < e. Let (J’;‘( € [1; E: be a representative of y®), so that

(vi =y mi (hk)yi(k)),- is a representative of y. Then for every g € G,

i (9)xi —xill <Y wghi — i)yl + (1 + @) lyi — xil.
k
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where Ao hy(g") = hip (g7 'g"). Letalso Q C G acompact subset which contains the
support of iy and Aghy forall g € Ug and all k. Let M = sup, ¢ sup; |7 (g)], so
that ||m; (Aghr — hi)|| < M||Aghg — hi| L, (G)- For g € Uy the previous inequality
becomes

Iz (g)xi — xill < M > Aghe — il @ 1y 1 + (1 + Mo)lly: — xill.
k

By continuity of the translations on L (G ), there exists U C Uy a neighbourhood of
the identity such that

M Ndghe — hell, o) ly®l <&
k

for every g € U. Taking the supremum on U and taking the limit in the preceding
inequality we get

lim sup |7 (g)x; — xi || < (2 + Mo)e.

U gelU

This proves (3). []
Lemma 4.9. Let x, € Eqy, 1 < k < n be a finite family with representative (xy ;);,

and Q C G a compact subset. If M(Q)1 denotes the set of all complex measures
supported in Q and with total variation < 1, we have

n
lim sup H‘ Z i (M ) X i
U yy,...ompeM(Q), T

St =0
k=1

Also, forevery x = (x;); € Ev and every compactly supported complex measure

onG, [ wy(g)xdm(g) = ([ mi(g)xi dm(g))u. Inparticular wy (f) = (7 (f))u
forevery f € C.(G).

Proof. The formula woy(my)xy = (; (mg)xg ;) is obvious by linearity when my
is a finitely supported measure by definition of mq, and it implies

n n
lim | 2 mmose| = | 3 rutm |

The convergence is easily seen to be uniform among all measures of total variation < 1
and support contained in a fixed finite subset of G. We will reduce to finitely supported
measures with the help of the preceding lemma. Let ¢ > 0. By (3) in Lemma 4.8
there is a neighbourhood U of the identity such that

lim sup ||7w; (g)xk ;i — Xk,ill < &
gelU
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for every k € {l1,...,n}. By compactness of Q there exists a finite subset Q' =
{g1,....8} C Q such that Q C U;zlgsU. Let us extract a partition Q =
Q1 U---UQ; with Oy C g,U. If we denote M = sup(;, gyer SUPgeg lI7i (2|, we
deduce that

lim sup ||7;(g)xk,i — 7i(gs)Xk,ill < Me.

u g€0;
Let my be a complex measure supported in (0 and with total variation less than 1,
and define mj. = . mi(Qp)8g,. Itis a signed measure supported in O’ and with
total variation less than 1. We have

|7 (mi)xi ;i — mi(my ) xg ;|| < max sup || (g)xk,;i — 7i (€r)Xk,i ||,
ZEQ

and therefore we get (using also the same estimates for mq)
lim sup ‘ H Z i (Mg )Xk i

- Z mu(mi)e | |
U my,...mpeM(Q),

< lim sup | H Z TT; (m}c)xk,,- ‘
k

U il eM(0),

- ” Znu(m}c)xk ‘H +2nMe
k

=2nMe.

The last equality is because Q’ is finite. By taking the limit as & goes to 0 we get

u m] "'-5mﬂ eM(Q)l

n n
lim sup H‘ Z i (mg)Xp,i| — H Znu(mk)xk ‘H =
k=1 k=1

We can now move to the second part. Take m’ a finitely supported measure such
that || qy (m)x — wqu(m’)x|| < e. Then since oy (m")x = (7; (m')x;)y

7w (m)x — (i (m)xi)ull < llru(m)x — o (m')x|| + [|Gri (m")xi — i (m)xi)

= 28,
because || (7r; (m")x; — 7; (m)x;)y || = ||mu(m)x — e (m’)x|| by the first part of the
lemma with n = 1. We conclude by taking the limit ¢ — 0. L]

We will use the following standard Banach algebraic lemma.

Lemma 4.10. Assume that []q Ei is reflexive. Then Eq is M-complemented
in | g Ei, where M is the infimum over all neighbourhoods V of the identity in G

of limy supg ey ||7i ()]

Proof. Let ( f,) be an approximate unit in C.(G), and Q,, the support of f,,. Then

7w ()l = lim sup [l (£)]].

8€0n
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Therefore lim sup,, |7 ( f,)]| < M. Since [ [q, E; is reflexive, the balls in B(] [, E;)
are compact for the weak operator topology. So there exists P € B([|q Ei) an
accumulation point, in the weak operator topology, of the net (( f;)). It has norm
|P|| < M. The image of P is contained in Eq; because this is the case for (f;)
for all n. Moreover, the restriction of P to Eq; is the identity because (Lemma 4.8)
7( f,,)x converges in norm to x for every x € Eq;. Therefore P is a projection in Eq
of norm M, as requested. L]

We deduce the following.

Proposition 4.11. Let 1 < p <oo. Assume that E; is an L, -space withlimy p; = p,
and that limy ||7; (g)|| = 1 uniformly on compact subsets of G. Then (7w, Ey) is
an isometric representation on an L p-space.

Proof. 1t is clear that wq is an isometric representation. It is well known that
[ e Ei is an L, space. For example the proof of [13, Theorem 3.3 (ii)] applies
without a change. In particular it is reflexive, and by the preceding lemma, Eq is a
1-complemented subspace of an L, space, and therefore is isometric to an L, space
by [28]. L]

4.4. Ultraproducts of affine actions. Let (0;);e; be a family of affine actions of G
on a Banach space E;, with linear part 7; and translation part b;: G — E;. This
means that o; (g)x = m;(g)x + bi(g) for all x € E;. We assume that sup; ||7; (g)/|
is bounded on compact subsets of G. Let U be an ultrafilter on /. We wish to
define the ultraproduct of o; as the continuous affine action with linear part the
ultraproduct of 7; and translation part h(g) = (hi(g))u € [y Ei- An obvious
necessary condition is that (b; (g))ies is bounded and that b is continuous at 0. The
following proposition shows that this is not far from being sufficient.

Proposition 4.12. Let t; be a family of representations of G on Banach spaces E;,
with sup; ||; (g)|| bounded on compact subsets of G, and let (0;); be affine actions
of G on a Banach space E;, with linear part wt; and translation part b;: G — L.
Assume that the cocycles b; are pointwise bounded:

Vg, sup [|bi(g)]l < oo
14

and equicontinuous at the identity of G :

Ve > 0, 3U C G neighbourhood of the identity, sup sup ||bi(g)|| <&  (4.2)
i geU

Let U be an ultrafilter on 1. There is a continuous affine action oy of G on Eq with
linear part mwy and translation part b(g) = (bi (g))u-
Moreover for every x = (xj)y € Ey, we have

S (x) = lgn 8§ (xi). 4.3)
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Proof. From the assumption sup; ||b; (g)| < oo, the element h(g) = (hi(g))u is
well-defined in [ [¢, E;, and it is clear that h(g) satisfies the cocycle relation

b(gh) = b(g) + (i (g))ub(h),

so the only things that deserve a proof are that h(g) belongs to Eq and that b is
continuous.

Fix g € G and &€ > 0. Let U be neighbourhood of the identity in G. From the
cocycle relation we deduce that

i (W)bi (2) — bi(g) = mi(g)bi (g hg) — bi(h)
and that

sup ||l (h)bi (g) — bi (Il < (1 + [l ()I)  sup b ()].
heU heUUg1Ug

By (4.2) there is a choice of U such that the preceding is less than . Since ¢ is
arbitrary Lemma 4.8 implies that b(g) € Ey.
The continuity of b at the identity is immediate from (4.2). From the relation

b(g) — b(go) = mulgo)b(gy'g)

the continuity of b at the identity implies the continuity of b at every point gg € G.
This concludes the proof that b € Z'(G; y).
By writing

g™ (x) = sup [|wy(s)x +h(s)|| and & (x;) = sup [l (s)x + bi ()],
SES SES
the last assertion follows from Lemma 4.9 and the equicontinuity of the maps b; that
we just established. ]

4.5. Topology and ultraproducts. We now characterize (when ultraproducts make
sense) the topology defined in §4.1 in terms of representation ultraproducts. For
ultraproducts to make sense, we assume in this part that R is a set of equivalence
classes of Banach space representations of G such thatsup(, gyeg [[77(£)|l is bounded
on compact subsets of G.

Theorem 4.13. The closure of a subset A C R coincides with all equivalence classes
belonging to R of subrepresentations of an ultraproduct (., Ey) of representations
in A.

Proof. We have two inclusions to prove. First assume that (7, £) € R is equivalent
to a subrepresentation of an ultraproduct (;q, Eqq) of afamily (7;, E;)ies € AT, Let
u: £ — Eq the corresponding G-equivariantisometry. Letxy,....x, € E,Q C G
a compact subset. Pick representatives (xx ;); € [[; Ei of u(xx) € Eq. Define a
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linear map u;: FF — E; by u; (xx) = X; x. Lemma 4.9 implies that for every £ > 0,
(7wi, E;) belongs to Wy, . x..0,(w, E) for U-almost every i. In particular, every
neighbourhood of (i, E') intersects A, thereby proving the first inclusion.

Let us move to the second inclusion. Assume that (7, E) belongs to the closure
of A. Consider I, the set of all triples (F, Q,¢) where FF = (x1,...,x,) is a
finite sequence of elements of E, Q C G is compact containing a neighbourhood
of the identity and & > 0. It is a directed set for the order (F, Q,¢) < (F',Q’, &)
when F C F/, Q € Q' and ¢ > &. Foreveryi = (F,Q,g) € I, there is
(i, E;) € AN Wroe(m, E). Let u;(x1),...,ui(xn) € E; be a witness of this
inclusion. Note in particular that (since e € Int(Q)) taking my € {0,5.} in the
definition of Wr ¢ ¢(m, E) (see Remark 4.1) we have

[[[u; ()| — ||x]||| <& forallxeF, 4.4)
and taking my a multiple of &,
llui (x + Ay) — ui(x) — Aui (p)|| < emax (1,]A]) (4.5)

forall x,y € F and A € C such that x + Ay € F. Similarly, taking my €
{0, %(56 —8g). g € Int(Q)} we get that for all U C Int(Q),

sup ||7; (g)ui(x) —u; (x)|| <2e&+ sup ||w(g)x —x|| forallx € F. (4.6)
gel geu

Finally taking my € {0, 3¢, g € Int(Q)} we have

i ()i (x) —ui (7w (g)x)|| < & (4.7)

for all x € F and g € Int(Q) such that n(g)x € F. We extend u; to a map
ui: £ — Ey() by setting u;(x) = 0is x ¢ F. Finally let U be a cofinal ultrafilter
onl:{i €l,i>iy} € Uforalliy e I. Consider the ultraproduct (;y;, Eq1). For
every x € X, define u(x) = (u; (x))y € [[q E:i. Since U is cofinal, (4.4) and (4.5)
imply that u is linear isometric, (4.6) and Lemma 4.8 imply that u takes its values
in Eqq, and (4.7) implies that it satisfies u(w(g)x) = my(g)u(x) for all x € E
and g € G. Therefore, u realizes (7, E) as a subrepresentation of (;q;, Ey). This
shows the second inclusion. ]

We can now give the following proof.

Proof of Proposition 4.6. As in the proof Proposition 4.4, we have to show that
every accumulation point (7, E) of a sequence (w,, E,) € §(&, m + o0(1)£) belongs
to (&, m). For every n, realize (1, E,) as a subrepresentation of (z,, E;) with
E) € & and |7 (g)] < ¢™(&) By Theorem 4.13, (z, E) is a subrepresentation of
an ultraproduct (my, Eq) of a family (7, ., Ey,)ies with limy n; = oo, which is
itself a subrepresentation of the ultraproduct (7rq;, Eq,) of (7, , E, )ier. Then

e () < lim ey, ()] < &™)
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for every g. Moreover, since G is discrete, Eq, = []q En;, which belongs to &
because & is stable by ultraproducts. So (x, E) € §(&, m). O

Proof of Proposition 4.7. The same proof applies, except that instead of using that G
is discrete, use Proposition 4.11. L]

5. Applications

5.1. Choice of R. In the previous section &R could be an arbitrary set of equivalence
classes of Banach space representations, but in the applications we need R to be large
enough. For this we fix M > 1 and take for R the set of all equivalence classes
of Banach space representations (rr, E') on a separable Banach space and such that
SUPges ()| < M forall g € G.

The reason why we impose a bound on |z (g)| is that this ensures that
ultraproducts of representations in & make sense. The reason why we have to
bound the dimensions of the spaces in R is because otherwise R would not be a set.
The separability is enough for our purposes because R is stable by ultraproducts in
the following sense: for every ultraproduct (7rq;, Ev;) of a family (7;, E;); € R’ and
every continuous function f: G — Eq, there is a wq (G )-invariant closed subspace
E C Eq containing f(G) such that the equivalence class of (7, E) belongs to R.

5.2. Proof of Theorem 1.3. We now prove the following precise form of Theorem 1.3,
in the general setting of locally compact compactly generated groups.

Theorem 5.1. Let ¥ C R. Assume that €¢(G) has a Kazhdan projection and
that H' (G, ) = O for all (n, E) € ¥. Then there is a strong neighbourhood ¥'
of ¥ such that €¢:/(G) has a Kazhdan projection and that H (G, m) = 0 for
all (n, E) € ¥

Remark 5.2. As we shall see in §5.5, it is not true that if one moreover assumes
that €. (G) has a central Kazhdan projection, then €%/ (G) has a central Kazhdan
projection.

Proof. By Theorem 3.9, there is a compactly supported measure m with f ldm =1
such that §S (o (m)x) < %8% (x) for every affine action o on E with linear part in ¥
and every x € E. We shall find another measure m’ and a strong neighbourhood %’
of ¥ such that §3 (o (m’)x) < %Sg (x) for every affine action o with linear part (i, E)
in £’ and every x € E. By the converse direction in Theorem 3.9 this will imply
that €4 (G) has a Kazhdan projection and that H'(G, ) = 0 for all (7, E) € ¥,
and prove the theorem.

The proof is particularily simple in the case when the group is discrete, and in
that case we can take m’ = m (and replace % by % say). In the general case we fix

a nonnegative function fo € L(G) with compact support Qg and [ fo = 1 which
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will be used for regularization (if G is discrete just take fo = J.). By Lemma 3.10
there is C > 0 such that

85 (0 (fo)x) < Cg(x) 5.D

for every affine action o on a Banach space £ with linear partin R and every x € E.
Take k € N such that 2% < %, and denote m’ = m** x fo. Define ¥ as the set of
representation classes (i, £) € R such that 6 (o (m')x) < %5% (x) for every affine
action o with linear part (7, £') and every x € E.

To prove that ' is a strong neighbourhood of ¥ we use the characterization
in Lemma 2.1: we consider a net (7;, E;);c; contained in R \ F’, and we have to
construct an accumulation point of this net which does not belong to #. By definition
of ¥/, for every i € I, there is an affine action g; of G on E; with linear part m;

and x; € E; such that

_ 1 o
8¢ (o(m)xi) > 55? (xi).
By normalizing we can assume that 8?' (x;) = 1. The formula

bi(g) = 0i(g)oi(fo)xi — oi(fo)xi

defines a cocycle with values in 7;, cohomologous to the cocycle g — 0;(g)0.
By (5.1), it satisfies sup,cg [|5:(g)|| = C, and therefore by the cocycle relation we
have sup; ||h; (g)|| < oo for every g € G. Moreover, we have

16: (D < lAg fo— foll,a) sup  lloi(gh)xi —oi(h)x; .
h,h’EQ()

Since limg ¢ [[Ag fo — follL,(6) = 0, this implies that the b; are equicontinuous
on the neighbourhood of e. Take U a cofinal ultrafilter on /. By Proposition 4.12,
b(g) = (bi(g))u is acocycle with values in (;rq;, Eq1), and defines an affine actiono.
Since G is separable, there is a separable closed subspace £ C Eq that is invariant
under 7w and o. Then (q, E) € R and by Theorem 4.13 and the cofinality of U,
(mqq, E) is an accumulation point of the net (ir;, £;);. On the one hand we have

§5(0) = sup [|b(g)]| = C,
ges

and on the other hand by (4.3) in Proposition 4.12,
. . 1
8% (0 (m*)0) = tim 85 (0 (m)05 (fo)xi) = lim 85’ (03 (")) = .

By the definition of k& we therefore have 8¢ (o (m*)0) > 27% 8% (0). This implies that
(my, E) ¢ ¥ and concludes the proof of the theorem. [
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5.3. Fixed point and Kazhdan projections. The next lemma, a form of which has
been proved by Masato Mimura, gives an improvement on Guichardet’s argument
that H'(G; ) = 0 implies that £/E™ does not have almost invariant vectors. We
provide a proof for completeness.

Lemma 5.3. Let ¥ C R be closed with the property that for every (w, E) € ¥ and
every continuous affine action of G on E with linear part i has a fixed point. There
exists £ > 0 such that §5 (x) > e||x||g g~ for every (x, E) € ¥ and x € E.

Proof. If (m, E) is a Banach space representation of G, we denote by &(m, §) the
associated Kazhdan constant, i.e. the best (= largest) € such that 65 (x) > ¢||x| g/g=
forevery x € E. If the lemma was not true, there would exist a sequence (7, £,) € &
such that lim, &(7,, S) = 0. Denote &, = &(;,,S). As recalled in Subsection 3.3,
&y is strictly positive. Let U be a free ultrafilter on N and (7rq;, Eq¢) the ultraproduct
of (my, En). Let x, € Ej such that §5(x,) = 1 and |xullg, ,grn > ﬁ Let
fo € Cc(G) nonnegative with [ fo = 1 and y, = n(fo)x,. By Lemma 3.10 there
is C > 0 such that ||x, — y,|| < C for all n, so that

ynll g,y = Wxnll g, n — Uym — XnllEn = 3
En
for all n large enough. Moreover, if we define b,(g) = 7(g)yn — yn, then as in
the proof of Theorem 5.1 b(g) := (b,(g))y defines an affine action o with linear
part (., Eq) and there is a closed subspace E C Eq that is invariant under wy
and o such that (ry, £) € R. By Theorem 4.13 (mq;, £) belongs to ¥ because F
is closed. This affine action therefore has a fixed point z = (z,)y € E, so that the
class of (b,(g)) in the ultraproduct coincides with the class of (7 (g)z, — z,), for
some z = (z,)y € E. By proposition 4.12, we get limy, 65" (yn — z») = 0, whereas

Iyn = znllEusE7 = 1YnllE0/EZ — 2]l = i
En

for all # large enough. This contradicts the definition of &,. L]
We can now prove Proposition 3.6.

Proof of Proposition 3.6. If & is stable by finite representability, then ¥, the set of
all isometric representations (rz, E) € R on a space in &, is closed (Remark 4.3). By
Lemma 5.3 and [9] €# (G) has a Kazhdan projection.

If € is only closed by ultraproducts and G is discrete, then the same proof applies
to ¥ = §(&,0) (see Proposition 4.6). If & = L, the same proof applies with
F =9(Lp,0) (Proposition 4.7). ]
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5.4. Application to fixed point properties. Recall that if &€ is a class of Banach
spaces, we denote by ¥ (&, m) the set of all equivalence classes of representations
(7w, E) € R such that £ is isomorphic to a space in & and such that |7 (g)| pr) <
e™® forallg € G.

Corollary 5.4. Let &€ be a class of Banach spaces closed under finite representability
and m: G — (0,00). If Cg(g,m)(G) has a Kazhdan projection and every affine
action with linear part in ¥ (8™, m) has a fixed point, then there exists N € N,
& > 0 such that the same is true for ¥ (V% m + &f).

If moreover m is symmetric and & is stable by duality, then there exists N, & such
that the Kazhdan projection in Cg(gn.c p 1 00)(G) is central.

Proof. By Theorem 5.1 there is a strong neighbourhood £’ of ¥ (&, m) such that
€4/(G) has a Kazhdan projection and every affine action with linear part in ¥’
has a fixed point. By Proposition 4.4 %’ contains ¥ (6N, m’) for some &, N, with
m' = m + el.

It remains to prove that, if N, ¢ is replaced by some N’ > N, &’ < g, the Kazhdan
projection can be taken central if & is stable by duality. By Corollary 3.5 it is enough
to show that for some N, ¢/, ¥ (&N, m’) is contained in a weakly self-adjoint
subset of . But by Lemma 2.3 there is N’ > N and & < & such that X * belongs
to &M forall X € V"¢, Since m and m’ are symmetric, this implies that the set of
representations in & (§7V°* m’) such that all separable subrepresentations of its dual
representation belong to % (8¢, m’) contains ¥ (§V"¢', ¢'). But this set is clearly
weakly self-adjoint. This concludes the proof. [

We can now prove the following corollaries, mentioned in the introduction.

Corollary 5.5. If G has property (T), then there exists ¢ > 0 and a central Kazhdan
projection in Cg (g(s),:0)(G), and every affine action with linear part in ¥ (& (¢), ef)
has a fixed point, where & () is the class of all Banach spaces E satisfying

1
-2~(||x FyI2+ I =p1?) < A +a(lxI® +IyI?) Vx,y ek (5.2)

Proof. This is Corollary 5.4 for & the class of Hilbert spaces (recall Proposition 4.5).
]

Corollary 5.6. Let & be a class of superreflexive Banach spaces closed under finite
representability. If G has (Fg) then there exists N € N and ¢ > 0 such that
Cyq (gN.= £0)(G) has a Kazhdan projection and every affine action with linear part
in ¥ (8¢, el) has a fixed point. The Kazhdan projection is central if € is stable by
duality.

Proof. Combine Proposition 3.6 and Corollary 5.4. []
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Remark 5.7. The (proof of the) preceding corollary says that if a class of
superreflexive Banach spaces & is stable by finite representability then (Fg) implies
robust property (T) with respect to & (and more generally to €V¢ for some N, g),
see §3.3 for the definition of Oppenheim’s robust property (T). Oppenhein proved
that the converse holds for every set & such that every space X € & thereis X' € &
isometric to X @, C for some I < p < oo. Together, this shows that (Fg) is
equivalent to robust (T) with respect to & if & is the class of Hilbert spaces, or the
class of spaces C -isomorphic to Hilbert spaces, or (for some 1 < p < o0) the class
of subspaces of L, spaces, or the class of subquotients of L , spaces. .. We can also
replace L, spaces by non-commutative L, spaces because non-commutative L,
spaces are closed under ultraproducts [23]. Corollary 5.9 will also imply that (Fy )
is equivalent to robust (T) with respect to L ,, spaces.

Recall that one says that G has (Fg) if every affine action on a space in & whose
linear part is a uniformly bounded representation has a fixed point.

Corollary 5.8. Let & be a class of superreflexive Banach spaces closed under finite
representability. The following are equivalent:

(1) G has (Fg).

(2) Forevery C > 0, there exists N € Nand e > O suchthat Cggn.c ¢04c)(G) has
a Kazhdan projection and H' (G ) = 0 for every (i, E) € F(EN? el + C).

(3) For every C > 0, there exists € > 0 such that Cg (g ¢1+)(G) has a Kazhdan
projection and H'(G; ) = 0 for every (n,E) € F(&,¢l + C).

(4) (If & contains a space of infinite dimension) For every C > (), there exists € > ()
such that €z (g ¢0+c)(G) has a Kazhdan projection.

In that case, and if € is stable by duality, then € g ¢¢+c)(G) has a central Kazhdan
projection.

Proof. (1) = (2) is Corollary 5.4. The implications (2) — (3) = (4) and
(3) = (1) are obvious.

Assume (4). By an argument of Lafforgue [18, §5.3], this implies that
H'(G; ) = 0forevery uniformly bounded representation (i, E) with E isomorphic
to a hyperplane in a space in &. So (1) is a consequence of the following claim: every
separable space E in & is isomorphic to a hyperplane in another space E' in &. If E
is finite dimensional this is obvious because we assumed that & contains a space of
infinite dimension, and in particular a subspace of dimension dim(£)+ 1. Otherwise,
let £, C E beanincreasing sequence of finite dimensional subspaces such that U, E},
is dense in E. Let U be a cofinal ultrafilter in N. Then E is isometric to a subspace
of [ [q« Ex by sending x € U, E,, to (1,e£,X)u and extending by continuity. Itis a
strict subspace because [ [q, £, is not separable, so if x € [[q, £, \ E, we have that
the linear span of x and E belongs to & and contains E as a hyperplane. O
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The point (4) is almost strong property (T) with respect to &, except on the
order of the quantifiers, which should be Je, VC instead of VC, de. This “small”
difference is a bit unfortunate, because Shalom conjectured that hyperbolic groups
do not have (1_352), whereas Lafforgue [17] proved that hyperbolic groups do not have
strong property (T) with respect to Hilbert spaces.

5.5. Application to L , spaces. We now prove the following result for property (Fy, ).
Corollary 5.9. Let 1 < p < oo. The following are equivalent.
(1) G has property (Fr ).

(2) there exists € > 0 suchthat Cg ({1, ge[p—e,p+elt,e0)(O) has a Kazhdan projection
and every affine action with linear part in ¥ ({L4,q € [p — &, p + €]}, el) has
a fixed point.

(3) there exists & > 0 such that € (1, , £0)(G) has a Kazhdan projection.

In that case, and for all & small enough, the projection in (2) and (3) are central if
and only if G has (Fi, , ) where p’ = ;’_’—1 is the conjugate exponent of p.

Remark 5.10. This Corollary provides natural examples where there is a Kazhdan
projection, but not a central Kazhdan projection. Indeed, consider 1" a discrete
Gromov-hyperbolic group with property (T) (for example a cocompact lattice in
Sp(n, 1), or a suitable random group). It was proved by Bader, Furman, Gelander and
Monod [2] that, as every group with property (T), I' has (Fz ,) forevery 1 < p < 2.
On the other hand, Yu [29] proved that every hyperbolic group with property (T) has
a proper action on £, for some 1 < p < 2, and in particular does not have (Fz, ,).
By the above corollary, there is & such that €L , ¢¢)(G) has a Kazhdan projection,
but not a central Kazhdan projection.

Proof. (2) = (3) is obvious, and (3) = (1) is [21]. (1) = (2) is not formally
a consequence of Corollary 5.6 because L, spaces are not stable under subspaces.
However, for the first part, the same proof works with Proposition 4.4 replaced by
Proposition 4.7.

For the second part, if G has (F L, ) and (F, ,) then by the first part there is also, for
all small enough &1, a Kazhdan projection for ¥ ({L,,q € [p — €1, p + 1]}, €1f),
which is the dual of ¥ ({L4,q € [p—e1, p+e1]}, e1£). By replacing & by min(e, &1),
the implication (5) = (1) in Proposition 3.4 implies that the Kazhdan projection
for ¥ ({Lg.q € [p —&. p + €]}, el) is central, and hence also for F{L,, &l).
Conversely, assume that € (1, ¢¢)(G ) has a central projection for some & > 0, then by
Proposition 3.4 €y, , £¢)(G) has a Kazhdan projection and hence G has (Fr,). O

Similarly using Proposition 4.6.

Corollary 5.11. Let & be a class of superreflexive Banach spaces stable by
ultraproducts. Then, for discrete groups, (Fg) implies robust (T) with respect to &.
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Recall [21] that the converse holds if for every X € &, thereis 1 < p < oo such
that X ¢, C€ €.

5.6. From compactly generated to compactly presented. We can now state a
result, which is an extension to Banach space representations of a result proved for
unitary representations by Shalom [25] for discrete groups, and Fisher—Margulis [11]
for locally compact groups.

A locally compact group G with acompact generating set S is said to be compactly
presented if, as an abstract group, G has a presentation with S as a set of generators
and with relators of bounded length (this does not depend on ).

If H is a quotient of G and ¥ C R we denote F[z] the set of all equivalence
classes of representations in ¥ which factor through H.

Theorem 5.12. Assume that G is compactly presented, that H is a quotient of G by
a discrete normal subgroup, and let ¥ C R be closed. If Cg;,,,(H) has a Kazhdan
projection and H'(H ;) = 0 for every (m, E) € Fmy, then there is a compactly
presented intermediate quotient G — H' — H such that Cypn(H ") has a Kazhdan
projection and H'(H'; r) = 0 for every (n, E) € Fiun.

Proof. The theorem is proved exactly as Theorem 5.1, so we only give a short sketch.
By Theorem 3.9 there is a measure m with [ 1dm = 1 and such that

l
550 (m)x) < S65(x) (53)

for every affine action o of H on E with linear part in #[g7 and every x € E. Let
fo € L1(G),C > 0,k € Nand m’ = m** % f; as in the proof of Theorem 5.1.

Since G is compactly presented, it has a presentation G = (S, R) with relations
of length < ngy. For n > ny, let R, be the set of words of length less than or equal
to n in the letters S which are trivial in H, and define a sequence of intermediate
compactly presented intermediate quotients H, by

H, = (S, R,).

Assume by contradiction that for every n, there is an affine action o, of H,, on E,
with linear part in g, and x, € E, such that

1 1
8;” (c(m"x,) > ESg” (xp) = 5
Consider the cocycle b,(g) = 0,(2)on(fo)xn — on(fo)x,. Let U be a cofinal
ultrafilter on N. Then there is a separable subaction o of the ultraproduct action

which factors through H (because it factors though H, for all n), with linear part
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in ¥ (because F is closed) and with translation part b(g) = (b, (g))u. Therefore
by using successively Proposition 4.12, (5.3) and (5.1) we get

1
5 < lim 8% (on(m')x,) = 8% (o (m)*0) < 27%8%(0) < 27%C,

a contradiction with the definition of k. ]

An example of consequence is the following result. However, as Masato Mimura
pointed out to us, there is a more direct and easy proof, that he attributes to Gromov—
Schoen [12] (see also [27]), of this corollary which works without the assumption
that & is superreflexive.

Corollary 5.13. Let & be a class of superreflexive Banach spaces closed under finite
representability. If a locally compact group compactly generated group H has (Fg),
then H is the quotient by a discrete normal subgroup of a compactly presented locally
compact group with (Fg ).

Remark 5.14. For discrete groups, the same conclusion holds under the weaker
assumption that & is a class of superreflexive Banach spaces closed under
ultraproducts.

Proof. For convenience of notation we only give the proof when H is separable.
It was essentially proved in [1] and rediscovered in [11] that there is a compactly
presented group G and a continuous surjective group homomorphism G — H with
discrete kernel. Moreover if one follows the proof, G is separable. Take R as
defined in §5.1 for this group G and some M > 1, and let ¥ = ¥(&,0). It is
closed (see Remark 4.3). By Proposition 3.6 €g,,,(G) has a Kazhdan projection
and H'(G;m) = 0 for every (, E) € Fy). By the previous theorem, there is a
compactly presented intermediate group G — H' — H such that the same holds
for F1g. In particular H' has (Fg). III

One can imagine other results of this kind. Let us state one that we will use in a
forthcoming work with Gomez-Apparicio and Liao.

Corollary 5.15. Let & be a class of Banach spaces stable by finite representability
and containing an infinite dimensional space. Assume that G is compactly presented,
and that H is a quotient by a discrete subgroup such that H has strong property (T)
with respect to €. Then for every C > 0 there is s > 0 and a compactly presented
intermediate quotient G — H’ — H such that €¢ g so4+-c)(H') has a Kazhdan
projection, which is self-adjoint if & is stable by duality.

Proof. Since H has strong (T) with respect to &, there exists s > 0 such
that Cg (g se+c),(H1) has a central Kazhdan projection for every C > 0.
By an argument of Lafforgue [18, §5.3], this implies that H1(H;7x) = 0 for
every (m, E) with E a hyperplane in a space in & and with a constant C such that
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|7 (g)| < e**®*C forall g in G. So the corollary is a consequence of Theorem 5.12
and of the fact, already proved in the proof of Corollary 5.8, that every separable
space E in & is isomorphic to a hyperplane in another space E" in &. L]
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