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A local characterization of Kazhdan projections
and applications

Mikael de la Salle

Abstract. We give a local characterization of the existence of Kazhdan projections for arbitary
families of Banach space representations of a compactly generated locally compact group G.
We also define and study a natural generalization of the Fell topology to arbitrary Banach space
representations of a locally compact group. We give several applications in terms of stability of
rigidity under perturbations. Among them, we show a Banach-space version of the Delorme-
Guichardet theorem stating that property (T) and (FH) are equivalent for cr-compact locally
compact groups. Another kind of applications is that many forms of Banach strong property (T)
are open in the space of marked groups, and more generally every group with such a property
is a quotient of a compactly presented group with the same property. We also investigate the
notions of central and non central Kazhdan projections, and present examples of non central
Kazhdan projections coming from hyperbolic groups.

Mathematics Subject Classification (2010). 22D12, 46B07; 22D10, 22D15, 46B08.

Keywords. Representations of groups on Banach spaces, Kazhdan's property (T), property FX,
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1. Introduction

Fet G be a finitely generated group with finite symmetric generating set S and

associated word-length I. Consider the combinatorial laplacian A i.e. the element of
the group algebra of G defined by

2|5||> *) G 1 |5|.X>eC[G]-

A unitary representation (n, M) has spectral gap if there is s such that the spectrum
of TV (A) is contained in {0} U [e, 2]. Since for t e [0,2], the inequality (1 —

(1 — I)2t holds if and only if t {0} U [e, 2], this is equivalent to the validity of

nr((l - ^A) a) < (l — tt(A) in B(J£).

If we write m 1 — \ A \ Y2seS v' this is equivalent to the inequality

\\jr(s)jt(m.)x-jr(m)x||2)
'

< (i - |) ^ ||7r(.v)x - x||2)
'

(1.1)
seS seS

for every x G M. In words, averaging on the orbit of x with respect to the probability
measure m gives a vector which is moved (1 — |) times less than x by the elements

of S. The validity of (1.1) for every unitary representation of G and x
in M therefore characterizes when G has a uniform spectral gap for every unitary
representation, i.e. when G has Kazhdan's property (T). As was already observed

in [11], the importance of this criterion for property (T) is that it is local: if (;r, E) is
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a Banach space representation (or more generally an affine action) which is close to a

unitary representation (or an isometric action on a Hilbert space) of G then the same

inequality will hold with s replaced by e/2 for (n, E). We will make the term "close

to a unitary representation" precise later, but for example this includes representations
on a space close to a Hilbert space (in the sense that the parallelogram identity holds

up to a small multiplicative error) of a group close to G in the space of marked

groups and such that ||7r(g)|| is close to 1 for all g in S. This observation proves at

the same time (1) Fisher and Margulis's theorem [2] that every isometric action of a

group with property (T) on an Lp space has a fixed point for p close enough to 2 (2)
Shalom's theorem [25] that property (T) is an open property in the space of marked

groups (3) the fact that property (T) implies robust property (T) for spaces close

to Hilbert spaces. This last fact answers a question raised in a preliminary version
of [21].

All the preceding was probably known to experts, and in particular to the authors

of [11]. The first original contribution of this work is that the existence of a measure

satisfying (1.1) characterizes the existence of so called Kazhdan projection, not

only for unitary representations as the short computation above proves, but also for
arbitrary families of representations of G on Banach spaces, not necessarily isometric
or uniformly bounded.

The setting is the following. Let 3* be a collection of representations of G on
Banach spaces satisfying the very mild condition

sup Ik(g)||ß(£) < oo WgeS. (1.2)
(jt ,E)eF

This condition allows to define a seminorm on the group algebra C[G] by

||û||sr sup \\n{a)\\B(E)- (1-3)
Or ,E)eF

We denote by Gy-(G) the completion of C[G] for this seminorm. This is a

generalization of the maximal C*-algebra of a group, which corresponds to the

case when E is the unitary representations of G on a Hilbert space.

Definition 1.1. A Kazhdan projection in Gjr(G) is an idempotent p belonging to the

closure of {m e C[G], J2geG m(s) U such thät, for every (jt, E) in !F, n(p) is a

projection on the space of invariant vectors En {x e E, n(g)x xWg e G}
A Kazhdan projection is called central if it belongs to the center of Gjr(G).

The importance of such projections for general Banach space representations
comes from the work of Lafforgue [17], see subsequent work [15, 18, 19,21,24].
Kazhdan projections have been studied in depth recently in [9], but our terminology
is a bit different, as they call a Kazhdan projection what we call here a central Kazhdan

projection. Motivations for this choice of terminology are presented in §3.2, where
the distinction between central and non central Kazhdan projections is made clear.
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In particular in Corollary 3.5 it is proved that when !F is stable by duality, then a

Kazhdan projection is always central. We also present in Remark 5.10 some natural

examples where there are Kazhdan projections but no central Kazhdan projections.
See Remark 3.2 for other comments.

If (n, E) is a representation of G (or more generally an action of G on a Banach

space E) and x G E, we will measure by

the maximal amount by which x is moved by the elements of S. We could as well
have defined 8J by the formula (XXes ||tt(.v)x — x\\2)x^2 as in (1.1), but since we do

not only work with Hilbert spaces, we prefer to use formula (1.4), which is not less

relevant but is simpler.
Our main new contribution is the following local characterization of Kazhdan

projections, which generalizes to non unitary representations the easy observation
from the beginning of the introduction.

Theorem 1.2. Gjr(G) contains a Kazhdan projection if and only if there exists

m e C[G] with m{g) 1 such that

If these properties hold and if a is an affine action of G whose linear part belongs
to IF, then a has a fixed point ifand only if8g(o(m)x) < h8^ (x) for all x G E.

We point out the following: contrary to the previous characterizations of Kazhdan

projections in [9], the fact that En has a complement subspace is not part of the

hypothesis, it is a consequence of (1.5). Of course, Theorem 1.2 remains true if \ is

replaced by any number in (0, 1).

The main interest of this characterization of the existence of Kazhdan projections
is that it is completely local: if the support of m is contained in Br {g G,

Itfls 5 F}, and if (jt, E) is a representation of G such that for every x e E,
the ßß+i-orbit of x is "almost isometric" to the Br+1 -orbit of a point x' e E'
for a representation (jt', E') G !F, then (2) also holds for (it, E), perhaps with \
replaced by ^ + e. This opens the possibility of applying ultraproduct constructions
as in [ 11, 12]. This simple observation by itself is however not very useful from
a representation-theoretical point of view, as this notion of (jt, E) being close to a

representation in IF is strong. On the opposite there is a natural topology (related to
the Fell topology) on every set of Banach space representations of G satisfying (1.2),
that we define and study in §4. To feel the difference between these two notions of
representations being close, consider for example the case when xn is a sequence of
almost invariant unit vectors of a unitary representation jr. Saying that jt is close in
the Fell topology to a representation satisfying (1.5) does not say anything about the

8r(x) max ||jr(.v)x — x|| e
ses

(1.4)

8^(Tt{m)x) < -8r(x) for all (jt, E) G T and x G E. (1.5)
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validity of (1.5) for xn, as itjust says that the difference (xn)—8^(jz(m)xn) (which
by assumption tends to 0) is close to a nonnegative number. In other words, only the

difference l8j,(x)—Sg (jz(m)x) (forx unit vectors) is continuous fortheFell topology,
whereas we would need the continuity of the ratio 8^(jz(m)x)/8g(x). To obtain
useful information, it is better to arrange that 8J(xn) 1. This amounts to zooming
around xn. Then the origin disappears from the vision, and the representation now
looks much more like an affine action with linear part a representation close to jz in
the Fell topology. This vague discussion should give an informal explanation why
cohomology enters into our second main result, and this will be made precise in its

proof. Recall that H1(G',jz) 0 means that every affine action of G with linear

part 7i has a fixed point. See Theorem 5.1 for a more precise statement.

Theorem 1.3. Let '.F be a set of representations of G satisfying (1.2). If 'Cp G

has a Kazhdan projection and IifG : jz 0 for every (jr, E) £ F, then there is a

strong neighbourhood (see Definition 2.2) S7' of '.F such that FFpf (G has a Kazhdan

projection and Hx(G\jz) 0 for every (jz, E) £ J7'.

We end the introduction by listing several consequences of this result, which
follow from the understanding, obtained in §4.2, of strong neighbourhoods in several

examples.

If 8 is a collection of Banach spaces and m is a function from G to (0, 00), we
denote by (F(8, m) the collection of all representations (jz, E) on a space E £ 8 and

such that ||7r(g)||ß(£) < em^ for all g (if m cl this boils down to the inequality

max^s Ik (g) II < ec).
Here are some of the consequences. Definitions can be found in the body of the

paper. Precise statements and other results can be found in §5.4, 5.5, and 5.6.

• (Corollary 5.5) If G has property (T), then there is s > 0 such that G37(G) has a

central Kazhdan projection and T/1 (G; jt) 0 for every (jz, E) £ !F, where !F is

the collection of all representations (7r, E) such that maxges |kC?)ll —
1 + £ on a

Banach spaces satisfying

l-(\\x + y\\2 + \\x - y\\2) < (1 + £)(||x||2 + ||y||2) V.r. y 6 E.

With the vocabulary of [21] or Definition 3.8, property (T) is equivalent to robust

property (T) with respect to Banach spaces satisfying the preceding.

• (Corollary 5.9) Let 1 < p < 00. G has property (Flp if and only if there is

s > 0 such that G has robust property (T) with respect to {Lq, | p — q \ < g}.1

• (Corollary 5.13) Let S be a class of superreflexive Banach spaces closed under

ultraproducts (for example the class of Lp spaces for some 1 < p < 00). Then the

'In particular, the set of values of p & 1, 00) such that G has (F^,,) is open. Although we are not
aware of a place where this remark has already been made, we are sure that this was well known, as the

proof by Fisher and Margulis of the case p 2 12, Lemma 3.11 applies with almost no change.
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set of finitely generated groups with property (Fg) is open in the space of marked

groups.

The second point above is also valid for many other reasonable classes of Banach

spaces, for example non-commutative Lp spaces. See Corollary 5.1 1 and 5.8. This
statement has to be compared to a celebrated theorem by Delorme and Guichardet

asserting that, for a countable group, property (T) is equivalent to (F//). It is well
known that strictly speaking, the Delorme-Guichardet theorem is no longer true for
Banach space and for example Lp spaces for p large (see Remark 5.10): there are

groups which have {¥lp) but not (Tlp)- Corollary 5.9, which characterizes (Flp)
in terms of the existence of a Kazhdan projection for some class of representations
on Lp, should be considered as the correct Banach-space analogue of the Delorme-
Guichardet theorem.

The above results, and all other results in the paper, are valid more generally
for locally compact compactly generated groups2, and can be combined. For
example, if 8 is closed under finite representability and G has (Fg), then there
is a compactly presented group G' which surjects on G, an integer N and a positive
number £ > 0 such that G has robust (T) with respect to the Banach space such that
all yV-dimensional subspaces are at distance less than (1 + s) from a space in 8. Let
us finally mention a result (Corollary 5.15) which almost says that every group with
Lafforgue's strong property (T) with respect to a reasonable class 8 is a quotient of
a compactly presented group with strong property (T) with respect to 8.

Comparision with previous work. It should be noted that a criterion similar to 1.1

for property (T) was already at the heart of the work of Fisher and Margulis [11).
They also exploited that it still holds for actions (not necessarily on a Banach space)
which are "close" to actions by isometries on Hilbert space, and that for such actions,

jt(m)nx converges to a fixed point of ji, so in particular n has a fixed point "not
too far from x". This allowed them to reprove Shalom's theorem that property (T)
is open in the space of marked groups. This technique also allowed them to prove
that (T) implies (Flp) for p small enough to 2 (but this was only written in [2],
and actually without relying on (1.1), where they allowed a less restrictive meaning
of representations being closed). Compared to 111], we make the choice to work
only with linear/affine actions on Banach spaces, but we do not restrict to (close to)
isometric actions, and we discuss in length the notion of closeness, and its relation to
the variant Fell topology that we consider in §4. The characterization of Theorem 1.2

is new.

Theorem 1.3 can be informally expressed by saying that deforming a representation

for this Fell-like topology preserves the vanishing of the first cohomology group.
Recently Bader and Nowak [3] also studied how deforming a representation affects

2There is a small subtlety related to continuity of representations, so the assumption that 8 is stable

by ultraproducts has to be replaced by stability by finite representability.
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its cohomology groups. Our results do not seem to be comparable, since they work
with a much stronger notion of deformation than ours, where the Banach space is

unchanged and the generators act by operators close in the norm topology from the

original generators.

Acknowledgements. I thank Masato Mimura and Izhar Oppenheim for interesting
discussions, and Masato Mimura for allowing me to include his argument for
Lemma 5.3. I also thank the referee for useful comments.

2. Preliminaries

2.1. The group G. Throughout this paper G will be a compactly generated locally
compact infinite group, and S G G will be a compact symmetric generating set. We

assume that the identity of G belongs to S, so that (Baire) every compact subset of G

is contained in SN for some N. We denote by I the word length function

l(g) mm{n,geSn}. (2.1)

We also fix a left Haar measure, and we denote / / or f f (g) dg the integration
with respect to it.

We will also assume that G is separable. This assumption is just tor convience;
all the results of the paper remain true if k is the cardinality of a dense subset

of G and every occurence of the word separable is replaced "with a dense subset of
cardinality < k."

By an approximate unit in Cc(G) we mean a net fn e Cc{G) such that / fn
J \ fn I 1 and for every neighbourhood V of e, the support of /„ is contained in V
for all n large enough.

2.2. Representations and affine actions. By representation of G we will always

mean a pair {it, E) of a Banach space E and a strongly continuous representation n
of G on E, i.e. n is group homomorphism from G to the group GL(Zs) of bounded

invertible operators on E such that g \ > n(g)x is continuous for every x e E. Two

representations (tz\ E\) and (7r2, E2) are said to be equivalent if there is a surjective
linear isometry between E\ and E2 which intertwines the actions. We say that (n, E)
is an isometric representation if n{g) is an isometry of E for all g e G. We will keep
the word unitary representation for representations by isometries on a Hilbert space.

In §4 and 5 we will make the effort to explicitely work with sets of representations.
This is an issue because the class of all representations of a group is not a set. A
solution is to consider equivalence classes of representations with some bound on
the dimension of the Banach space. For example a reasonable set will be the set of
equivalence classes of representations on a separable Banach space. This is indeed
reasonable because, G being separable, every Banach space representation is a direct
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limit of separable Banach space representations. We could also bound the dimension

by some inaccessible cardinal, which would have the nice feature that our set of
Banach spaces will be stable by the operations of duality and most ultraproducts.

The dual (or contragredient) representation of a representation (n, E) is the

representation ('n, ' E) where ' E is the closed subspace of the f E* such that g m>-

is continuous, and 'jr(g) is the restriction of jt(g~1)* to this subspace.

If E is reflexive then 1E E*. In general ' E is only a weak-* dense subspace

of E*, but this implies that (n, E) is naturally a subrepresentation of (''n, 'E)
(24, Lemma 2.3].

The space of invariant vectors of a representation (n, E) is denoted En:

En {x e E,n(g)x xVg e G}.

An important fact about isometric representations on reflexive Banach spaces is that
the space En has always a 7r(G)-invariant complement subspace [4,26]. This is not
the case for arbitrary Banach space representations. See for example [2, Remark 2.9]
(respectively [26]) where for every non-amenable discrete group, an example of
an isometric representation is given where E71 has no 7r(G)-invariant complement
subspace (respectively has no complement subspace at all). There are also examples
in a different direction (reflexive spaces but not isometric representations). Indeed,
the dual representation of the representation constructed in [ 17, Théorème 1.4] for a

hyperbolic group G is a representation with polynomial growth on a Hilbert space
where EK has no 7r(G)-invariant complemented subspace. In a similar direction, it
follows from Remark 5.10 and Proposition 3.4 that for every hyperbolic group G,
there exist 1 < p < 2 such that, for every e > 0, there is a representation of G on
E Lp such that max^s ||?r(^)|| < 1 + e and such that E11 has a complemented
subspace but no 7r(G)-invariant complemented subspace.

A continuous affine action of G on a Banach space £ is a group homomorphism a
from G to the group of continuous invertible affine maps on E such that

g r-> a(g)x is continuous for every x e E. Since this group is isomorphic
to GL(£) k E, a continuous affine action is of the form cr(g)x n(g)x + b(g)
for a representation (n, E) of G and a continuous function b.G E satisfying
the cocycle relation b(gh) — b(g) + Ti{g)b(h) for all g,h G. Traditionally, the

vector space of such continuous cocycles is denoted by Z1 (G, n), the cocycles of the

form b(g) x — ir(g)x (which correspond exactly to the affine actions with a fixed

point) are denoted by ß' (G, n), and the quotient vector space Z1(G, n)/Bl(G, n)
is denoted by Hl(G,:r). So the formula Hl(G,jt) 0 means that every affine
action with linear part (n, E) has a fixed point.

If (7T, E) is a representation of G, and if m is a compactly supported complex
measure on G, we will denote by n(m) e B(E) the operator x e E i->

/ n(g)x tlm(g). If m is absolutely continuous with respect to the Haar measure,

we will denote n{m) by n(f) if f (l,"' is the Radon-Nikodym derivative. We
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will use the same notation o(m)x / o(g)x dm(g) when a is a continuous affine

action of G on X, and m is a compactly supported measure with f 1 dm 1.

2.3. Ultrafilters. An ultrafilter on a set / is a set K of subsets of / that is closed

under taking supersets, and such that for every subset A of /, U contains either A

or I \ A (but not both). As is standard, the set of ultrafilters on / is in natural bijection
with the set of characters of Ioo / : an ultrafilter is something that chooses, for every
bounded family (fl; )ie/ of complex numbers, a point in the closure of {a,, i £ / } in

a way compatible with pointwise multiplication and addition.

If K is an ultrafilter on a set /, we denote by (a, )ze/ i-> limn c/, the associated

character of too(I)- It is characterized by the fact that A e U if and only
if limn heA 1.

If / is a directed set, we say that U is cofinal if limn li>i0 1 '°r all i0 E /. It
follows by Zorn's lemma that cofinal ultrafilters exist on every directed set.

2.4. Strong neighbourhoods. In a non-Hausdorff topological space, there is a

difference for a net to converge to a point in a subset A, and for all its limit points to belong
to A. The next lemma and the definition that follows, related to this phenomenon,
will be important for us.

Lemma 2.1. Let X be a topological space, and A, B C X. The following are
equivalent.

(1) For every net (.Xj)ie/ in X whose accumulation points are contained in A, there
is io £ I such that Xi £ B for all i > i0.

(2) For every net (.ï,)ie/ in A such that Xi £ Bc for all i, the net (xj) has an

accumulation point in A c.

(3) B belongs to every ultrafilter on X whose accumulation points are contained
in A.

Proof (1) => (2) is obvious.
Assume (2). Let U be an ultrafilter on X such that B f U. We shall prove that U

has an accumulation point in Ac. Since V. is an ultrafilter, Bc e U, and for every
C e U, there is xc 6 C D Bc. By (2) the net (xc)ceU has an accumulation point
x e Ac. Then x is an accumulation point of V. as requested.

Assume (3), and let (.r, ),e/ be a net such that for every i0 e /, there is i > 'o
such that xi e Bc. By Zorn's lemma there is an ultrafilter UonX which contains Bc
and {xj, i > io} for all i. In particular, B <f. U, so that by (3) U has an accumulation

point x £ Ac. It is in particular an accumulation point of (x,),/, which proves (1).

If X is compact and Hausdorff, then the equivalent properties in Lemma 2.1 are

equivalent to B being a neighbourhood of A. This justifies the following definition.
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Definition 2.2. If the equivalent properties in Lemma 2.1 are satisfied, we will say
that B is a strong neighbourhood of A.

We warn the reader that a strong neighbourhood of a set A does not necessarily
contain A. For example, if X contains a point x0 whose only neighbourhood is X,
then the empty set is a strong neighbourhood of X \ {xo}- More generally, x A

belongs to every strong neighbourhood of A if and only if \x \ C A.

2.5. Ultraproducts and finite representability. We recall briefly some facts on the

local theory of Banach spaces. We refer to [14] (in particular section 9) for a concise
introduction.

If U is an ultrafilter on a set / and If, i g 1 are Banach spaces, we denote

by ] [.w Et the ultraproduct Banach spaces, as introduced by Dacunha-Castelle and

Krivine [8]. Recall that J~[ u E\ is the quotient of the Banach space ]~[/ E, of bounded

families with values in Ei for the norm ||(x,)|| supz- ||x, We, by the closed subspace

of sequences satisfying lim^ ||x,|| 0. The equivalence class of (x,-),-6/ will be

denoted by (x;)<u. Its norm is linvy ||x,-||. If 4, e B(Et are operators such that

sup(- || /1, || < oo, its ultraproduct ["[m is the operator sending (xfy to (/1,;x, )•//.

This defines an isometric map ]~[w B{Ei) ß(rit( E{), which is not surjective in

general.

If C > 1, two Banach spaces Y. Y' are said to be C-isomorphic if there is a

continous and bijective linear map u: Y -+ Y' such that ||w|| H«-11| < C. The

Banach-Mazur distance (or isomorphism constant) between Y and Y' is the infimum
of the constants C such that Y and Y' are C-isomorphic. We warn the reader that
the Banach-Mazur distance is sub-multiplicative. So to get a distance satisfying the

usual triangle inequality, one should (but we will not) take the log of C. The Banach-
Mazur distance is particularly relevant for spaces of the same finite dimension, as it
typically infinite between infinite dimensional Banach spaces.

A Banach space X is finitely representable in a class S of Banach spaces if for

every finite dimensional subspace Y of X and every s > 0, Y is at Banach-Mazur
distance less than 1 +e from a subspace of a space in 8 (that is, there is a space A" G 8
and a linear map u:Y -> E such that (1 — £)||x|| < ||u(x)|| < ||x|| for all x G Y).
For example, Lp([0,1]) is finitely presentable in tp, and tp is fintely representable
in Lp([0,1]). Recall [8] or [13] that X is finitely representable in 8 if and only if X
is isometrically isomorphic to a subspace of an ultraproduct of spaces in 8. For the

convenience of the reader not familiar with the local theory of Banach spaces, we

reproduce here the standard proof of this equivalence. We will use similar arguments
later in the paper.

Proof. Assume that X is finitely representable in 8. Denote by / the set of all pairs
(e, Y) for s > 0 and Y a finite dimensional subspace of X. Declare that (e, Y) is

larger than (s', Y') if s < e' and Y' c Y. This is an order relation which makes / into



Vol. 94 (2019) A local characterization of Kazhdan projections and applications 633

a directed set. Let U be a cofinal ultrafilter on I. By assumption, for every i G /,
there is a Banach space Et G 8 and a linear map it,-: Y —> Ei such that

(1 -e)||x|| < ||w,(x)|| < ||x||

for all x G Y. Extend m,- to a nonlinear map X —> Ei by setting u, (x) 0 if x f E.
This allows to define a map u: E —> £, by defining w(x) as the class of (Uj (x));.
The cofinality of U implies that u is linear and isometric.

For the converse, assume that there is a set / with ultrafilter K, a family G

/ 81 and an isometric embedding u of X inton<u^c Let T be a finite dimensional

subspace of and yi, y„ be a basis for Y. For every k < n, pick {yk,i)i £ FL
a representative of u (y%). Define, for every/, a linear map w,: Y > X, by extending
by linearity the map y^ h-> y^j. Then by linearity of w, for every y G Y, (u,-(y)),- is

a representative of u(y), and in particular lim« \\ui (y)|| y. By compactness the

convergence in uniform in the unit ball of y, and in particular for every e > 0, there

is i such that
(1 - e)IIJII 5 N(y)|| < (1 + e)||y||.

This proves that X is finitely representable in 8.

If 8 is a class of Banach spaces, we denote by SN,S the class of Banach spaces E
such that all V-dimensional subspaces of E are at Banach-Mazur distance less than
1 + s from a subspace of a space in 8.

We shall use the following finitary version of the well known fact that the dual of
a subspace is isometric to a quotient of the dual.

Lemma 2.3. For every N N, e > 0, there exists N' G N, e' > 0 such that the

following holds. If 8 is a class of Banach spaces and X G 8N ,e then every
subspace ofX* ofdimension < N is 1 + s)-isometric to a subquotient subspace

of the quotient) of the dual ofa space in 8.
In particular if 8 is stable under subspaces and duals, then for every Banach

space X in 8N'-£', its dual X* belongs to SN,£.

For the proof, we shall need the following classical lemma, to which we provide
a proof for the reader's convenience.

Lemma 2.4. For every N G N, s > 0, there exists N' G N > 0 such that, for every
Banach space X and every subspace Y C X* ofdimension < N, there is a subspace
Z C X ofdimension < N' such that Y* is (1 + e)-isomorphic to a subspace ofZ*.

Proof. By compactness, there is N' such that for every Banach space Y of dimension

N, its unit sphere Sy contains an e-net F or cardinality < N': Sy C Uxep B(x, s).
Let X, Y be as in the lemma, and F c Sy an e-net as above. For every y G F,

let xv G X be a norm one element on which y almost attains its norm: |(y, Xj,)| >
(1 — e). Let y0 in the unit sphere of Y. There is y G F such that ||yo — y|| < e, and

therefore

l(jo,-*y>l > \{y,xy)\ -\{yo-y^xy)\ >1-2s.
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In particular, if we define Z C X as the linear span of the xy's, we have that the norm
on jo in Z* is at least (1 — 2s). In other words, the formal inclusion (restriction of
linear forms to Z)u:Y Z* satisfies

(1 — 2e)||j|| < ||M(j)|| < HJII

for every y e Y, and Y is (1 — 2e)_1-isomorphic to a subspace of Z*. This is the

lemma, up to a change of e.

ProofofLemma 2.3. Fix N e N, s > 0, and let N' be given by the preceding lemma
for e/2. Pick s' > 0 such that (1 + «/2((1 + s') < (1 + «)•

Let X G 8n'-e', and Y be a subspace of dimension < N of Y*. The

preceding lemma provides a subspace Z C f of dimension < N' such that Y

is (1 + e/2)-isomorphic to a subspace of Z*. But by the definition of 8N 'e Z
is (1 4- «'(-isomorphic to a subspace Z' of a space X' in 8. This implies Z* is

(1 + «'(-isomorphic to Z'*, which is a quotient of X'*. Putting everything together,
Y is (1 + e/2)( 1 + «'(-isomorphic to a subspace of a quotient of X'*. This proves
the first part of the lemma.

The second part is immediate because a subquotient of the dual of a space in 8
belongs to 8 if 8 is stable under subspaces and duals.

2.6. Superreflexivity. A Banach space X (respectively a class 8 of Banach spaces)
is said to be superreflexive if every Banach space finitely representable in X
(respectively 8) is reflexive. By a celebrated theorem of Enflo [10] (see also [22]),
X is superreflexive if and only if it carries an equivalent uniformly convex norm.
Recall that a Banach space is said to be uniformly convex if its modulus of uniform

convexity is strictly positive, and that the modulus of uniform convexity of a Banach

space X is the function

t (0,1) h» inf |l - X-~~ \x, y e X, ||x|| < 1, ||y|| < 1, \\x — y\\ > fj.

By an f2-direct sum argument, one obtains that a class of Banach spaces is

superreflexive if and only if there is a constant C and of a function S: (0,1) (0, 1)

such that every space in 8 is C-isomorphic to a uniformly convex space with modulus

of uniform convexity > S.

3. A local characterization of (T) and its variants

3.1. Definition of Kazhdan projection. Let Tbea class of representations of G

such that

sup ik(g)||B(£)
(7T,E)eF

is bounded on compact subsets of G.
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We define Gy(G) as the completion of Cc(G) for the norm

WfWr sup{II^ COIIb(e) F\.

It is a Banach algebra for convolution. By construction, the map / £ Cc(G) i->

Ji(f) e B(E) extends uniquely to a bounded map on Gjr(G), that we still denote

by Ji. For example, if !F is the class of unitary representations of G then G37(G) is

the full C*-algebra of G.

Definition 3.1. A Kazhdan projection in G37(G) is an idempotent p belonging to the
closure of {/ e Cc(G), f f 1} such that n(p) is a projection on E71 for every
(JT, E) e F.

A Kazhdan projection is called central if it belongs to the center of G37 (G).

Remark 3.2. The assumption that p belongs to the closure {/ e Cc(G), / / 1} is

just here to make a nontrivial definition in the case E71 {0} for every (jt, E) e F
(otherwise we could just take p 0 G Cc(G)). This assumption is superfluous
otherwise: if p 6 G37(G) is such that Ji(p) is a projection on En for every
(it, E) e !F, and if E71 f {0} for at least one (jt, E), then p belongs to the closure
of {/ e Cc(G), f f 1}. Indeed, if x e E71 \ {0} and /„ e Cc(G) converges to p,
we have

x jr(p)x \\mjT(fn)x lim ^ J fn^x,

so that lim„ f fn 1, and p lim„ (fn / f fn) belongs to the closure of {/e Cc(G),

// !}•
We insist that tor us Kazhdan projections are not necessarily central. One reason

is that, as indicated in Proposition 3.4, the question whether a Kazhdan projection
is central is essentially disjoint from the question whether there exists a Kazhdan

projection. Another reason is that there is a natural setting where non central Kazhdan

projections occur naturally. See Remark 5.10.

It is useful to realize that being a Kazhdan projection in G^r(G) only depends on
the norm || • || $r, and not on the specific 5r.

Lemma 3.3. An element p G37(G) is a Kazhdan projection if and only if it
belongs to the closure of {f e Cc(G), f f — 1} and satisfies f * p (f f)p for
all f Cc(G). It is a central Kazhdan projection if and only it moreover satisfies

P * f (/ f)pforall f eCc(G).

Proof. For every (jt, E) in !F, a vector x e E belongs to E71 if and only if n(f)x
(/ f)x for all / e Cc(G). Therefore, if p is a Kazhdan projection, we have that

* P) TT (f)jT(p) J f^jjr(p)

for every (jt, E) IF, and hence / * p (/ f)p. Conversely, if p belongs to
the closure of {/ £ Cc(G),f f 1} and satisfies / * p (f f)p, then p is
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an idempotent, and for every (jr, E) e '.F we have that jt p) acts as the identity
on E71 (because every f e Cc(G) with / / 1 does), and its image is made of
invariant vectors (because n(f)n(p) (/ f)jr(p) for every / G Cc(G)). Thus p
is a Kazhdan projection. The statement about central projections is immediate.

3.2. To be central or not to be. We now discuss when a Kazhdan projection is

central.

Proposition 3.4. Assume that TV G contains a Kazhdan projection p. The

following are equivalent.

(1) p is a central Kazhdan projection.

(2) for every representation (jt, E) in V, En has a Jt(Gf invariant complement
subspace in E.

(3) p is the only Kazhdan projection in TV(G).

(4) There is an element p' in the closure of {f G Cc(G), f f 1} such that

f' * f (/ f)p' for every f G Cc(G).

(5) TV * (G) contains a Kazhdan projection.

Proof. (1 =4 (2). If p is central, then ker(jr(/?)) is a complement subspace of E31,

and it is invariant by n(/) for every / G Cc(G) because n(f)n(p) Ji(p)n(f).
By strong continuity of jt, ker(7r(p)) is therefore invariant by jt(g) for every g G G.

(2) =>• (3). Assume that for every (jt, E) g IF, En has a jr(G)-invariant
complement Fn. Then for every / G Cc (G (and therefore for every / 6 TV(G)),
Ti(f)Fn c Fn. In particular if p' is a Kazhdan projection in G^-(G), then

jt(p')Fn C Fn (T En {0}, so that n(p') is the projection on En parallel to Fn.
In particular n(p) n(p'), and therefore p p'.

(3) => (1) If p is a Kazhdan projection, then for every / e Cc(G) with f f 1,

p * / is another Kazhdan projection, so that by (3 p* f p — f * p. By linearity
we deduce that p * f f * p for every / e Cc(G), and that p is central.

(1) ==>• (4) is obvious (take p' p). For the converse, suppose (4). Then pp'
belongs to the closure of {/, J f 1} and satisfies f\pp'fi (/ J\)(f flipp',
so that by Lemma 3.3 pp' is a central Kazhdan projection. By the already proven
implication (1) (3) for pp', we deduce that pp' is the only Kazhdan projection,
so that p pp', and p is central (1).

(4) < (5). For / e Cc(G), define / G Cc(G) by the property that fdg is

the image of the measure fdg by the map g m* g-1. For every representation
(jt, E) and / G Cc(G), the equality ||jt(/)|| || J7r(/)|| holds because 'tx(/) is

the restriction to the weak-* dense subspace ' E c E* of the weak-* continuous

operator n(f)* G B(E*). The map / m- / therefore extends to a surjective
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isometry Xjp (G -» Gyr*(G). It preserves {/ G Cc(G), f f — 1} and satisfies

/i * f2 f2 * f\. It is immediate by Lemma 3.3 that an element p' G Gyr(G)
satisfies (4) if and only if p' is a Kazhdan projection in Gp* (G).

We say that IF is weakly self-adjoint if the the norms \\f\\'jr and ||/||jr* are

equivalent on Cc(G). By the proof of (4) •<=>• (5) in the preceding proposition,
IF is weakly self-adjoint if and only if the map f m>- / extends to a bounded map
on Gyr(G) that we still denote by7. An element a G Gyr(G) is then called self-adjoint
if a a. For example, IF is weakly self-adjoint if F* C IF.

Corollary 3.5. If IF is weakly self-adjoint, a Kazhdan projection in Gy? G is

automatically central and self-adjoint.

If moreover the map f i-> f extends to a continuous map on Gyr (G then a
Kazhdan projection is automatically central, self-adjoint and real.

Proof. Let p G Gy(G) a Kazhdan projection. Then p satisfies (4) in the previous
proposition, so p is central (1). Then p is another central Kazhdan projection, so by
the previous proposition again p p and p is self-adjoint.

If moreover / / extends by continuity to Gyr(G) then p is also a Kazhdan

projection so by the previous proposition again p p and p is real.

3.3. Examples of Kazhdan projections. The first example is for unitary representations:

it is classical that G has property (T) if and only if the full C*-algebra of G

has a Kazhdan projection. More generally, if F is a class of isometric representations
on a superreflexive set of Banach spaces, then Gyr(G) has a (necessarily central by
Proposition 3.4 (2)) Kazhdan projection if and only if there exists s > 0 such that

max ||jr(g)x - x\\ > e||x||e/e*
ges

for every (n, E) G '.F and x G E, i.e. if and only if E/ EK does not have almost
invariant vectors uniformly in (n, E) e IF. See [9, Theorem 1.2] (the argument in
the case of a discrete group was previously recorded in [16, Proposition 5.1]).

Let (n, E) be a Banach space representation of G. An argument of Guichardet,
originally used for unitary representations but valid for arbitrary Banach space

representations, shows that if Hl(G\n) 0 then E/E71 does not have almost
invariant vectors3. We shall see (this was observed by Masato Mimura [20]) by
some ultraproduct argument that in several case, this holds uniformly in (n, E)
(Lemma 5.3). In particular, in §5.3 we will deduce the following result.

3The argument goes as follows: if H] (G; 7r) 0, the map x e E/En (-> (n(g)x — x)xec
with values in the Banach space Z' (G; n) with the norm supseS ||è(g")|| is continuous and bijective,
and hence invertible by the open mapping theorem. If C is the norm of the inverse we have 8$ (x) >
C-1 Hxll^/gjr for every x e E.
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Proposition 3.6. Let 8 be a class ofsuperreflexive Banach spaces, and denote by 3~

all isometric representations of G on a space in 8. If G has (Eg) then Gfl (G has a

Kazhdan projection in the following situations:

• 8 is stable by finite representability,

• or 8 is the class of L p-spaces for some 1 < p < oo,

• or G is discrete and 8 is stable under ultraproducts.

Finally, examples where Kazhdan projections occur are in the definitions of
Banach strong property (T) and its variant robust property (T). Let us recall the

definitions.
If 8 is a class of Banach spaces and m:G —> (0, oo] is a function, we denote

f(8,m) all equivalence classes of representations (n,E) such that E e 8 and

lk(g)|| < em(g) for all g.
Vincent Lafforgue's strong property (T) [17] was defined in terms of Kazhdan

projection.

Definition 3.7 (Lafforgue). If 8 is a class of Banach spaces, one says that G has

strong property (T) with respect to 8 is there there is s > 0 such that for all C > 0,

tSi+c)(G) has a Kazhdan projection.

Lafforgue originally only considered the case when 8 is stable by duality,
subspaces and complex conjugation and wanted the Kazhdan projection to be self-

adjoint and real, but in that case his definition coincides with Definition 3.7 by

Corollary 3.5.

Oppenheim [21] defined robust property (T) with respect to a class of Banach

spaces 8, as an intermediate property between property (T) and strong property (T)
with respect to 8. An almost 4 equivalent form of his definition is the following.

Definition 3.8. (Oppenheim) G has robust property (T) with respect to 8 if there

exists s > 0 such that G:f(g s(fiG) has a Kazhdan projection.

This is equivalent to the Kazhdan projection being central when E(8,ct) is

weakly self-adjoint, for example if 8 is stable by duality and made of reflexive

spaces.

3.4. The main theorem. If (jt, E) is a representation of G, for every x e X we
denote

(3.1)

Observe that by the triangle inequality, if g e SN then

7t(g)x-x\\ < N sup II JT 00
1

<$?(*)• (3.2)
gss

4In his original definition, Oppenheim requests, as in [24], that the Kazhdan projection belong to the

closure of the symmetric functions on G. In view ofCorollary 3.5, this is automatic if !F (8, c£) is weakly
self-adjoint. This does not seem any more so relevant otherwise, so we prefer to drop this condition.



Vol. 94 (2019) A local characterization of Kazhdan projections and applications 639

We will also consider the quantity

8as(x) max ||CT(g)x — x\\
geS

when a is an affine action of G on £ with linear part n, and in that case (3.2) still
holds in the form

\\cr(g)x-x\\ <(Vsup IlTrOOll"-1^).
geS

The following is Theorem 1.2 generalized to arbitrary locally compact groups.

Theorem 3.9. The following are equivalent:

(1) Tfo(G) contains a Kazhdan projection.

(2) There is a compactly supported measure m with J 1 dm 1 such that

Sg(tt(m)x) < ^8$ (x) for all (n, E) e F and x e E.

If these properties hold and if (a, E) is an affine action of G whose linear part
belongs to F, then a has a fixed point if and only if 8foa(m)x) < ^8as{x) for
all x G E.

We first record an easy fact on the displacement (3.1), that we will often use.

Lemma 3.10. Let m be a compactly supported measure on G with f I dm 1.

There is a constant Cm such that

\\o(m)x — x\\e < Cm8as(x)

for every affine action a of G with linear part (re. E) e IF and every x e E.

Proof Let N be such that the support of m is contained in S N, and ||/n||rK the total
variation norm of m. Then (3.2) implies

\\a(m)x — x\\e < / \\(j{g)x — x\\s\dm\ < \\m\\rvN sup ||zr(^f)||iV—1 (xc).
J geS

This proves the lemma because supgg5 II^OGll^1 is bounded independantly of
(tr, E) e E.

For the proof of the direction (1) —A (2) we will need a uniform version of the
fact that the existence of a Kazhdan projection for (n, E) implies that (jr. E) does

not almost have invariant vectors.

Lemma 3.11. If TV (G) contains a Kazhdan projection, then there exists c > 0 such

that

8$ (X) > c||x||£:/£7r V(7T, E) e F and x e E.
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Proof. Let p e Gjr(G) be a Kazhdan projection and / Cc(G) such that f f 1

and 11/ — /?Il< 1/2. Then for every x e E,

\\A\eie" < \\x - ti(p)x\\e
< \\x - jt{f)x\\E + Il n(f - p)x\\e

< \\x- n(f)x\\E + \\\x\\e-

By replacing x by x+y for y e En in the preceding equation, the term || x—n(f)x\\E
is unchanged because / / 1 and we get

I\x\\e/E" < \\x - n(f)xII + ~||x + y||£.

Taking the infimum over y EK we obtain ^x^e/E" < 2||x — n(f)\\E- We
conclude by Lemma 3.10 for the measure f dg.

Proofof Theorem 3.9. (1) =4- (2). Lete > 0 to be determined later. Let p 'Cjr(G)
be a Kazhdan projection, and / Cc(G) such that / / 1 and \\p — /||y < e.

We prove (2) for the measure m fdg if e is small enough. Define C by

C sup max ||7r(g) ||/,<£).
(jt,E)eF ssS

Then for (jt. E) e 3>

8s(n(f)x) 8%(jt(f - p)x) < (1 + C)\\n(f - p)x\\E < (1 + C)e||x||£.

By applying this inequality to x + y for y e En and taking the infimum over all y
we get

8%(n(f)x) < (1 + C)e\\x\\eie*,

which by lemma 3.11 is less than 0+C)£gg js jess tjlan i for £ < 2+c2C.

(2) => (1). Let (jr. E) e rf. By iterating the inequality in (2), we get that

8g(jr(m)nx) < 2~n8g(x). If Cm is the constant given by lemma 3.10 for m,
we obtain

||7r(m)"+1x — 7r(m)"x|| < 2~nCm8g(x).

By bounding

<$£(*)< (1+ sup max ||jr(g)||)||x||£ (1 + C)||x||£,
(k,E)&3J SeS

we get

||7t(/jî)"+i — jz(m)n || < Cm(l + C)2~n.
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This implies that n(m)n is a Cauchy sequence in B(E), and hence has a limit
Pn £ B(E) and

Mm)n - P„\\b(E) <2~nC',

for C 2Cm(l + C). Then 8^{Pnx) lim„ 8^(n(m)nx) 0 and Pnx £ E71

because S generates G. Since for x £ En, PK(x) lim„ n(m)nx lim„ x x,
we get that I'n is a projection on the invariant vectors. We are almost done, except
that m*n m * m * m might not be absolutely continuous with respect to the

Haar measure. This can be fixed by choosing a function /0 6 Cc(G) with f f0 1,

and observing that f0 * m*n belongs to Cc(G) and is Cauchy in Gy(G). Its limit p
satisfies n(p) n{ f\))PJI Pn, i.e. p is a Kazhdan projection.

Now assume that 1 and (2) hold, and let (a, E) be an affine action of G, the linear

part of which belongs to E. If a has a fixed point, then a is just a representation in E
in which the origin has been renamed, so that the inequality 8^(a(m)x) < }^8as(x)

is immediate from (2). Conversely, if 8as(n{m)x) < ^8^(x) for all x G E then the

proof of (2) (1) shows that a(m*n)x is a Cauchy sequence, and hence converges
to a point y satisfying 8^(y) lim„ 8g(o(m*n)x) 0, i.e. to a fixed point.

Finally, we record the following corollary of the proof of Theorem 1.2, which is

essential for applications to dynamics [6] (see also the analogous discussion below
for positive Kazhdan constants).

Corollary 3.12. If 'Cjr G contains a Kazhdan projection, then there are C, s > 0

and a Kazhdan projection p £ Cy (G such that p is at distance < Ce~sn from the

continuous functions supported in Sn.

Proof. In the proof of (2) (1) in Theorem 1.2, we constructed p as the limit
of f0 * m*n, where f0 £ Cc(G), m is a compactly supported measure and

\\p — fo * m*"\\ < C'2~n.

This proves the corollary.

3.5. Positive Kazhdan projections. A natural variant of Definition 3.1 is to require
additionally that p belongs to the closure of the nonnegative functions {/ £Cc(G).

f >0,// 1}. This variant is particularily relevant to the applications to

dynamics, see [6|. To our knowledge, in all examples where a Kazhdan projection is

known to exist (for examples strong property (T), or Corollaries 5.5, 5.11), it belongs
to the closure of the nonnegative functions. However, we do not know if this is the

case in general.
We can note that the proof of Theorem 1.2 shows in full generality that Cjr (G)

contains such a "positive" Kazhdan projection if and only if there is a positive
compactly supported probability measure m such that 8g(n(tn)x) < (x) for all

(jt, E) £ E and x £ E. Moreover, in that case there are C.s > 0 and a Kazhdan
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projection p e "G$-(G) such that p is at distance < Ce~sn from the continuous

nonnegative functions supported in S".
Also, we can give a positive answer to the previous question for central Kazhdan

projections and isometric representations.

Proposition 3.13. Assume that 'J7 is made of isometric representations and is stable

by complex conjugation. If Xfp (G contains a central Kazhdan projection, then this

central Kazhdan projection belongs to the closure of the nonnegative functions.

Proof. Assume that Gjr(G) contains a central Kazhdan projection p. By
Proposition 3.4, p is real and there is a real valued function / e Cc(G) with

/ / 1 and 11/ - p || < Moreover, by replacing every (jr, E) e IF by

(^Iker/)- ker p) (which is indeed a representation because the projection is central, see

Proposition 3.4) we can assume that p 0. Let / af+ — bf- be a decomposition
of / with f\ and /_ nonnegative with integral 1, and a, h are nonnegative real

numbers such that a — b 1. Then

1/2 > 11/11 > a || /+1| — 61| /-1|.

This implies that ||/+|| < < 1 (here we use that n is isometric to ensure

||7r(/"—)|| < 1). Then the sequence of n-th power convolutions of /+ is a sequence
of nonnegative functions of integral 1 which also converge to 0 p.

4. A topology on the space of representations

The purpose of this section is to define a natural topology on sets of (equivalence
classes of) Banach space valued representations of locally compact groups, and to
characterize this topology in terms of ultraproduct representations.

4.1. Definition of the topology. Let G be a locally compact group and IR be a set

of equivalence classes of Banach space representations of G.

For every (n, E) e -R, every x\ x„ 6 E, every compact subset Q c G

and every s > 0 we define WXu.,.,Xn,Q,E(jt, E) c SI as the set of all representations

(ji', E') e IR such that there is x[ x'n e E' such that

sup Z*'(AK -||£ n(.fk)xk
k=1 k=1

< (4.1)

fn e Cc(G) supported in Q and withwhere the supremum is over all f\,.
IIAIIl, <1.

The sets WXu...jX„,Q,e(x> E) f°rm a basis for a topology on IR. This topology is

not Hausdorff (every subrepresentation of (n, E) belongs to the closure of {(jt, E)}).
If .R contains the trivial representation on the 0-dimensional Banach space, then it
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is compact-but-not-Hausdorff for the stupid reason that Si is the only neighbourhood
of 0.

Remark 4.1. Because we are dealing with strongly continuous representation, (4.1)
implies

sup £ Jt'(mk)x'A - J27T(mk)xk
m i k=l k=\

< £

where the supremum is over all measures m \ ,mn supported in the interior of Q
and with total variation < 1. Conversely, (4.1 follows from the preceding inequality
where the supremum is over all measures m\ mn with finite support contained
in Q and with total variation < 1.

The restriction to unitary representations of this topology is not exactly the usual

Fell topology [5, Appendix F], since for example the trivial representation of G on C2

does not belong to the closure of the trivial representation on C, whereas it belongs
to the Fell topology closure of it. The next lemma in particular shows that a unitary
representation jz belongs to the closure of another unitary representation p if and only
if 7i is weakly contained in the sense of Zimmer in p [30] (see also [5, Appendix F]).

Lemma 4.2. Assume that Si is a set ofunitary representations of G. A representation
(n, St) G Si belongs to the closure of A C Si ifand only iffor every orthonormal
family £i,.. e M, every compact subset Q C G and every s > 0, there is

a representation (p. X) e A, an orthonormal family rji e K such that

max,-j max^eg \ (n(g)li,lj) - {n(g)t]i,r]j)\ < s.

Proof. Clear, because if it is a unitary representation,

TtB {n(h
1 £)&,£/) dmk(g) dmi(h).

k,l "
Remark 4.3. If (jr, E) belongs to the closure of IF c Si, then

• ||7T(m) || < sup^^gjr ||jr'(m) || for every compactly supported measure on G.
In particular Gjr(G) and G^(G) are isometric. By Lemma 3.3, this implies that

if Gy(G) has a Kazhdan projection, then so has Xi.p(G).
• E is finitely representable in {E', (nf, E') e &}. In particular if G {1}
is the trivial group, we have just defined a (classical) topology on sets of Banach

spaces which is characterized as follows: X belongs to the closure of a subset S if
and only if X is finitely representable in 8. Hence (Subsection 2.5) this topology
can be characterized in terms of ultraproducts. In the rest of this section we show
such a characterization in the case of an arbitrary group G. This will be rather

straightforward for discrete groups, and technically more involved in the general
case.

Before that we investigate strong neighbourhoods for this topology in the sense

of Definition 2.2.
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4.2. Examples of strong neighbourhoods. Here we characterize, in several examples,

the strong neighbourhoods of subsets of St. We need to recall some notation.

If 8 is a class of Banach spaces and m : G -> (0, oo] is a function, we denote F (8, m)
(respectively F(8,m)) the set of all equivalence classes of representations (it,E)
in Si such that E is isometric to a space in 8 (respectively E is finitely representable
in 8) and ||jr(#)|| < for all g. Recall the definition of 8N'e in §2.5.

Proposition 4.4. Let 8 be a class ofBanach spaces and m: G -> (0, oo] a function.
Every strong neighbourhood of3* (8, m) contains F (8 N'E, m + el) for some IVeN
and s > 0.

Proof Let IF' be a strong neighbourhood of F. Assume by contradiction that for

every pair a (N. s) of an integer N and a positive number e there is a representation
(ita, Ea) which belongs to F(8N'E, m + si) by not to F'. Then every accumulation

point of this net (for the order (N, s) < (N', s') if N < N' and s > s') belongs to

F(8, m) (see Remark 4.3). This is a contradiction with (2) in Lemma 2.1.

A particular case of the preceding proposition is worth mentioning.

Proposition 4.5. Let M be the class ofHilbert spaces and m: G —>• (0, oo] afunction.
Every strong neighbourhood ofF SI. m contains F (8 (e), m + et) for some s > 0,

where 8 (e) is the class ofBanach spaces such that

\{\\x + Til2 + II* - Til2) < (1 + s)(\\x\\2 + ||tI|2) V.v, y E.

This is indeed a particular case because, since the parallelogram inequality
characterizes the Hilbert spaces, for every N, e there is e' > 0 such that J£ '£

contains 8(s').
If g is a class of Banach spaces and m.G -> (0, oo] is a function, we denote

~§(8, m) the set of all equivalence classes of representations (it, E) e Si which are

equivalent to a subrepresentation of (it', E') where E' e 8 and ||7r'(^)|| < em^ for
all g in G.

Proposition 4.6. Let 8 be a class of Banach spaces stable by ultraproducts and
m : G s (0, oo] a function. Assume that G is discrete. Then 8 (8. m) is closed and

every strong neighbourhood of8(8, m) contains 8(8, m + si) far some s > 0.

Proposition 4.7. Let 1 < p < oo. Then 8(Lp, 0) is closed and every strong
neighbourhood of 8(Lp, 0) contains UqS[p^e^p+e]8(Lq, st) for some s > 0.

We postpone the proof of these propositions to the end of the section, because

their proof requires the material in the rest of the section.
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4.3. Ultraproduct of Banach space representations. Let G be a locally compact
group. We define ultraproducts in the category of continuous Banach space linear
representations of G in the same way as for unitary representations in |7|.

Let (ni)iej be a family of representations of G on Banach spaces /?,. Assume
also that sup, 17; (g)||ß(£,) is bounded on compact subsets of G. Let U be an

ultrafilter on /. Let J ]u /?, be the Banach space ultraproduct of £j\ and, for g G G,
TT (g) the ultraproduct of 7T,(g), which makes sense because sup,- |7;(g)||ß(£,-) < oo

(§2.5). For / G Cc(G) we define n(f) as the ultraproduct of which makes

sense because sup, \\ni{g)\\B(Ei) is bounded on the support of /.
Then tt is a group morphism from G to the invertible operators on £,.

However it is in general not strongly continuous, and to fix this we consider En the

subspace of £) defined as the closure of the space spanned by

eY\Ei, f eCAG)}.
u

It is straightforward (see Lemma 4.8 for a stronger statement) that the space Eu
is invariant by n(g) for all g G G, and the restriction of n to Ey is a strongly
continuous representation of G. We define the ultraproduct of (jt,-, E, with respect
to U as (ny, Ey), where ny is the restriction of 7r to Ey.

We also have the following characterization of Ey (see §2.1 for the terminology).
Lemma 4.8. Let fn G Cc(G) be an approximate unit, and let x G |~[u El with
representative (x;); G ]"[ Ey. Then the following are equivalent:

1) X G Ey.
(2) lim„ ||jr(/„)x - x\\ 0.

(3) For every e > 0, there is a neighbourhood U ofe in G such that

lim SUp \\lTi(g)Xi Xi || < s.
u geU

Proof. The (2) =A (1) direction is obvious: if lim„ \\ji(fn)x — x|| is equal to 0,
then x lim„ n(fn)x belongs to Ey. So is (3) ==> (2) because if Qn denotes the

support of f„,
\\n(fn)x-x\\ lim ||^i(7„)x,- -x,-|| < lim sup ||jr,(g)x,- -x,-||.

U U gsQ„

Let us prove the implication (1) (3). Assume that x G Ey. Fix UQ a

compact neighbourhood of the identity in G, and define M0 sup^6[/() sup, |7,(g)||.
Let s > 0, and take y f2kn(hk)y^ with h^ e Cc(G) and e J~[uEi
such that || y - x|| < s. Let (y\k))i G fi, Ei be a representative of y(k'. so that

(\>i ffk n' (hk)y\k))i is a representative of y. Then for every g e G,

Iki (g)xi — xf || < \\Tt(Xghk~hk)y\k)\\ + (1 + || tt (g) II) || yt -x,||,
k



646 M. de la Salle CMH

where Xghk(g') hk(g~lg'). Let also Q C G a compact subset which contains the

support of hk and Xghk for all g e Uq and all k. Let M supgeg sup,- ||tt, (^)||, so

that \\Tti(Xghk — hk)II < M\\Xghk — ä*-|Ili(G)- F°ri? e Uo the previous inequality
becomes

I\m(g)xi xt || < M ^2 \\Xghk ~ hk\\Ll{G)\\ylk)\\ + (1 + M0)\\yi - xt ||.

k

By continuity of the translations on Li(G), there exists U C Uo a neighbourhood of
the identity such that

M^||A^fe-^||il(G)||y«||<£

for every g e U. Taking the supremum on U and taking the limit in the preceding
inequality we get

lim sup || jtt(g)Xi - Xi || < (2 + M0)s.
g^U

This proves (3).

Lemma 4.9. Let xk e Ky, 1 < k < n be a finite family with representative (xkj)j,
and Q C G a compact subset. If M(Q)\ denotes the set of all complex measures

supported in Q and with total variation < 1, we have

lim sup Xi (mk)xkJ - I Y nu(mk)xk
k=1 k=1

0.

Also, for every x (a, e Ey and every compactly supported complex measure
onG, f nu(g)xdm(g) (/ Jti(g)xi dm(g))u Inparticular jtu(f) (x,(f))y
for every f e Cc(G).

Proof The formula nu(mk)xk (Jti(mk)xkj)u is obvious by linearity when mk
is a finitely supported measure by definition of ny, and it implies

lim J] Y -T i.mk)xk,i J] Y nu(mk)xk
k=1 k 1

The convergence is easily seen to be uniform among all measures of total variation < 1

and support contained in a fixed finite subset of G. We will reduce to finitely supported
measures with the help of the preceding lemma. Let s > 0. By (3) in Lemma 4.8

there is a neighbourhood U of the identity such that

lim sup I\7ti(g)xkj - xkJ || < £
u geU
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for every k e {1,...By compactness of Q there exists a finite subset Q'
{gr gt} c Q such that Q c U^=1gs£/. Let us extract a partition Q

Qi U • • • U Q, with Qs c gsU. If we denote M sup(jt£)eÄ sup^eg |\jii(g)\\, we
deduce that

lim sup \\jr,(g)xkJ - JVi(gs)xkJ\\ < Me.
U gsQs

Let ink be a complex measure supported in Q and with total variation less than 1,

and define m'k mk(Qp)8gP- Itis a signed measure supported in Q' and with
total variation less than 1. We have

Iki (mk)xk,i ~ ni (m'k)xk>i || < max sup \\ni(g)xkti - Jii(gk)xkj ||,
k geQk

and therefore we get (using also the same estimates for nu)

lim sup
rai,...,m„eM(g)i

< lim
u

m Cmk)xk,i - Y2 nu(mk)xk

sup
m'keM{Q') i

2nMe.

i(m'k)xkA - jY2nu(m'k)xk + 2nMe

The last equality is because Q' is finite. By taking the limit as e goes to 0 we get

lim sup
tt eM(g)i

YY 71i (mk)xk,i - YY nu(mk)Xk
k=1 k 1

0.

We can now move to the second part. Take m' a finitely supported measure such

that \\tc<u(m)x — nu(m')x\\ < e. Then since ny (m')x (n, (m')Xi)u

I\nu(m)x - (.Tti(m)Xi)u\\ < I\nu(m)x - nu(m')x\\ + \\(ni(m')xi - ni(m)xi)u\\
< 2s,

because |\{jti(m')xi — Jii(m)xi)u\\ \\rtu(m)x — Jtu(m')x\\ by the first part of the

lemma with n 1. We conclude by taking the limit s —0.

We will use the following standard Banach algebraic lemma.

Lemma 4.10. Assume that riw Ei is reflexive. Then Ty is M-complemented
in ]~[ uEi, where M is the infimum over all neighbourhoods V of the identity in G

of \imusupgeV |k,(g)||.

Proof. Let (/„) be an approximate unit in Cc(G), and Qn the support of f„. Then

lk(/B)|| < lim sup |k, (g)||.
U gzQn
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Therefore lim sup„ ||7r(/„)|| < M. Since Ei is reflexive, the balls in ß(n« Ei)
are compact for the weak operator topology. So there exists P e B(J~[y_ Ei) an

accumulation point, in the weak operator topology, of the net (n(fn)). It has norm
II P || 5 M. The image of P is contained in Eu because this is the case for n(fn)
for all n. Moreover, the restriction of P to Ey is the identity because (Lemma 4.8)

jt{fn)x converges in norm to x for every a g Eu- Therefore P is a projection in Eu
of norm M, as requested.

We deduce the following.

Proposition 4.11. Let 1 < p < oo. Assume that Ei is an LPj -space with lirrv;/ p, p,
and that Iimu 11^(^)11 1 uniformly on compact subsets of G. Then (ny, Eu) is

an isometric representation on an Lp-space.

Proof. It is clear that ny is an isometric representation. It is well known that

Uu Ei is an Lp space. For example the proof of [13, Theorem 3.3 (ii)] applies
without a change. In particular it is reflexive, and by the preceding lemma, Eu is a

1-complemented subspace of an Lp space, and therefore is isometric to an Lp space

4.4. Ultraproducts of affine actions. Let (o,)ie/ be a family of affine actions of G

on a Banach space /?,, with linear part ir,- and translation part b,: G > Ei. This

means that o;(g)x iti(g)x + hi(g) for all x G Ei. We assume that sup, ||7r, (^)||
is bounded on compact subsets of G. Let U be an ultrafilter on I. We wish to
define the ultraproduct of <r, as the continuous affine action with linear part the

ultraproduct of ir;- and translation part h(g) (bi(g))u e WuEi- An obvious

necessary condition is that (b, (tg));-e/ is bounded and that b is continuous at 0. The

following proposition shows that this is not far from being sufficient.

Proposition 4.12. Let Jtt be a family of representations of G on Banach spaces Ei,
with sup,- ||7r, (^)|| bounded on compact subsets of G, and let (a,), be affine actions

of G on a Banach space Ei, with linear part n ,• and translation part hi'. G —> Ej.
Assume that the cocycles hi are pointwise bounded:

and equicontinuous at the identity of G :

Vs > 0, 3U C G neighbourhood of the identity, sup sup ||b, (,g) | < e. (4.2)

Let U be an ultrafilter on I. There is a continuous affine action au of G on Eu with
linear part nu and translation part b(g) (ht (g))y

Moreoverfor every x (x-i)u G Ey, we have

by [28],

Vg, sup \\bi(g)\\ < oo

i geU

8gU(x) Ihn (xi). (4.3)
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Proof. From the assumption sup( ||b,(g)|| < oo, the element b(g) (bj(g))u is

well-defined in {~[k Ei, and it is clear that b(g) satisfies the cocycle relation

b(gh) b(g) + (jti(g))ub(h),

so the only things that deserve a proof are that b{g) belongs to Eu and that h is

continuous.
Fix g G and e > 0. Let U be neighbourhood of the identity in G. From the

cocycle relation we deduce that

Jti(h)bi(g) - bt(g) 7ri(g)bi(g~1hg) - bi(h)

and that

sup \\iti(h)bi(g) - hi(g)|| <(14- W^i(g)W) sup \\bi(h)\\.
heU heUUg-1 Ug

By (4.2) there is a choice of U such that the preceding is less than e. Since e is

arbitrary Lemma 4.8 implies that b(g) 6 Eu-
The continuity of b at the identity is immediate from (4.2). From the relation

b(g) - b(g0) nu(go)b(gôlg)

the continuity of b at the identity implies the continuity of b at every point go G G.

This concludes the proof that h e Z1 (G ; jzu )•

By writing

Sgu (x) sup || itu {s)x + b(.v) || and 8J (xl sup || jzi (s)x + bt (s) ||,
seS seS

the last assertion follows from Lemma 4.9 and the equicontinuity of the maps hi that

we just established.

4.5. Topology and ultraproducts. We now characterize (when ultraproducts make

sense) the topology defined in §4.1 in terms of representation ultraproducts. For

ultraproducts to make sense, we assume in this part that 51 is a set of equivalence
classes ofBanach space representations of G such that sup(7t II ^00II is bounded

on compact subsets of G.

Theorem 4.13. The closure ofa subset A C 51 coincides with all equivalence classes

belonging to 51 ofsubrepresentations ofan ultraproduct (nu, Eu) ofrepresentations
in A.

Proof. We have two inclusions to prove. First assume that (7r, E) 51 is equivalent
to a subrepresentation of an ultraproduct jzu Eu) of a family (jr,-, £,)/e/ A1. Let

u: E -x Eu the corresponding G-equivariantisometry. Letxi ,xn e E, Q C G

a compact subset. Pick representatives (x^, ),- e J~[/ Et of i/(x>) e Ey Define a
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linear map up. F —> Ej by w;(x/t) x!;£. Lemma 4.9 implies that for every s > 0,

(ni, Ei) belongs to Wx Xn,Q,e(n, E) for K-almost every /'. In particular, every
neighbourhood of {n, E) intersects A, thereby proving the first inclusion.

Let us move to the second inclusion. Assume that (n, E) belongs to the closure

of A. Consider /, the set of all triples {F, Q,s) where F (xi xn) is a

finite sequence of elements of E, Q C G is compact containing a neighbourhood
of the identity and e > 0. It is a directed set for the order (F, Q,e) < (F', Q', e')
when F c F', Q c Q' and s > s'. For every i — {F, Q,s) e I, there is

(ni, Ei) e A fi W[7 Q t {n. E). Let Ui(x\) ,Ui(x„) G Ei be a witness of this
inclusion. Note in particular that (since e G Int(<2)) taking G {0, 8e} in the

definition of Wp,Q^(n, E) (see Remark 4.1) we have

11|M; (x)|| — ||*|||| 5 s for all x G F, (4.4)

and taking ra^a multiple of Se

\\ui(x + Ay) — m,-(x) — Xui(y)\\ <£max(l,|A|) (4.5)

for all x, y g F and À G C such that x + Ay G F. Similarly, taking G

{0, A(5e — 8g), g G Int(ö)} we get that for all U C Int( Q),

sup ||TT, (g)Ui (x) — Uf (x)|| < 2s + sup ||7r(g)x — x|| for all x G F. (4.6)
geU geU

Finally taking e {0,8g, g g fnt(6>)j we have

\\Tti (g)ui (x) - Ui (n(g)x)|| < £ (4.7)

for all x G F and g G Int((9) such that n(g)x G F. We extend m, to a map
Uj \ E -x Ea(i) by setting ut (x) 0 is x <fi l<\ Finally let U be a cofinal ultrafilter
on /: {/ G Fi > io} G U l'or all /0 G /. Consider the ultraproduct nu, Eu)- For

every x e X, define u(x) (ui(x))u G J~[k Ei- Since U is cofinal, (4.4) and (4.5)

imply that u is linear isometric, (4.6) and Lemma 4.8 imply that u takes its values

in Eu, and (4.7) implies that it satisfies u(n(g)x) nu(g)u(x) for all x G E
and g G G. Therefore, u realizes (n, E) as a subrepresentation of (nu, Eu)- This
shows the second inclusion.

We can now give the following proof.

ProofofProposition 4.6. As in the proof Proposition 4.4, we have to show that

every accumulation point (n, E) of a sequence (nn, En) G ~§(8,m + o( l)£) belongs
to F(8,m). For every n, realize (nn, En) as a subrepresentation of (n'n, E'n) with
E'n G 8 and \\n'n(g)\\ < em^s\ By Theorem 4.13, (n, E) is a subrepresentation of
an ultraproduct (nu, Eu) of a family (nnj, Fni)ief with linvj/ n, oo, which is

itself a subrepresentation of the ultraproduct (n'u, E'u) of (n'n., E'n.)iei- Then

lkw(kr)H ^ lljr«, (kr)ll < em{8)
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for every g. Moreover, since G is discrete, E'u ] [<(y Eni, which belongs to 8
because 8 is stable by ultraproducts. So (jt, E) e ~§(8,m).

ProofofProposition 4.7. The same proof applies, except that instead of using that G

is discrete, use Proposition 4.11.

5. Applications

5.1. Choice of 31. In the previous section 31 could be an arbitrary set of equivalence
classes of Banach space representations, but in the applications we need 31 to be large

enough. For this we fix M > 1 and take for 31 the set of all equivalence classes

of Banach space representations (jt, E) on a separable Banach space and such that

suPsss Ik0sr)ll < M for all g eG.
The reason why we impose a bound on ||jr(g)|| is that this ensures that

ultraproducts of representations in 31 make sense. The reason why we have to
bound the dimensions of the spaces in 31 is because otherwise 31 would not be a set.

The separability is enough for our purposes because 31 is stable by ultraproducts in
the following sense: for every ultraproduct (jtu, Eu) of a family (jt;, E, e 3tf and

every continuous function f:G—>• Eu, there is a 7r<(/(&'/invariant closed subspace
E c Eu containing /(G) such that the equivalence class of (jt, E) belongs to 31.

5.2. ProofofTheorem 1.3. We now prove the following precise form ofTheorem 1.3,

in the general setting of locally compact compactly generated groups.

Theorem 5.1. Let F C 31. Assume that 'Cyr G has a Kazhdan projection and
that H1(G,jt) 0 for all (jt, E) e j~. Then there is a strong neighbourhood F'
of F such that üy(G) has a Kazhdan projection and that H1(G,jt) 0 for
all (jt, E) e F'.
Remark 5.2. As we shall see in §5.5, it is not true that if one moreover assumes
that Gcf(G) has a central Kazhdan projection, then Eyr>(G) has a central Kazhdan

projection.

Proof. By Theorem 3.9, there is a compactly supported measure m with / 1 dm I

such that 8as(cj(m)x) < for every affine action a on E with linear part in F
and every x e E. We shall find another measure m' and a strong neighbourhood F'
of F such that <j/(<T(/n')A") < J//(x) for every affine action a with linear part (n, E)
in F' and every x e E. By the converse direction in Theorem 3.9 this will imply
that G'jrfG has a Kazhdan projection and that Hl(G, jt) 0 for all (jt. E) e F'.
and prove the theorem.

The proof is particularily simple in the case when the group is discrete, and in
that case we can take m' m (and replace ~ by -^=, say). In the general case we fix

a nonnegative function /0 e I, \(G) with compact support Qo and / /o 1 which
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will be used for regularization (if G is discrete just take /0 8e). By Lemma 3.10

there is C > 0 such that

8as(v(fo)x)<C8°s(x) (5.1)

for every affine action a on a Banach space E with linear part in !R and every x G E.
Take k e N such that p- < and denote m' m*k * /o. Define E' as the set of

representation classes (tt, E) e E such that 8°s(a(m')x) < }^8as{x) for every affine

action a with linear part (tt, E) and every x e E.
To prove that !F' is a strong neighbourhood of E we use the characterization

in Lemma 2.1: we consider a net (tvEj ),-<=/ contained in Ft \ E', and we have to

construct an accumulation point of this net which does not belong to E. By definition
of E', for every i e I, there is an affine action rr(- of G on Et with linear part tt,-

and xi e Ei such that

8°s ip{m')xi) > ^(Xi).

By normalizing we can assume that 8^' (x,) 1. The formula

bi(g) (Ti(g)(Ti(fo)Xi -Oi{fo)Xi

defines a cocycle with values in 7r,-, cohomologous to the cocycle g rr, (tg)0.

By (5.1), it satisfies sup^ejS ||6, (^)l! 5 C, and therefore by the cocycle relation we
have sup,- ||6,;(,g)l < 00 for every g e G. Moreover, we have

limite)II < Ugfo - ./oIIl,(G) sup \\oi(gh)xi-Oi(h')xi\\.
h,h'eQ{)

Since lim^^e ||Ag /o — /o||l,(G) 0, this implies that the bj are equicontinuous
on the neighbourhood of e. Take U a cofinal ultrafilter on I. By Proposition 4.12,

b(g) (bj (g))u is a cocycle with values in (nu, fin), and defines an affine action a.
Since G is separable, there is a separable closed subspace E c Eu that is invariant
under n and cr. Then jtu E) e 31 and by Theorem 4.13 and the cofinality of U,
(jiu, E) is an accumulation point of the net (jr,, On the one hand we have

<$£(0) sup IIb(g) II < C,
ges

and on the other hand by (4.3) in Proposition 4.12,

8°s(o(mk)0) lim8%(oi(mk)cri( f0)xi) lim 8% ((Ti(m')xi) >

By the definition of k we therefore have 8°s(n(mk)()) > 2 k8"s(0). This implies that

(nu, E) E and concludes the proof of the theorem.
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5.3. Fixed point and Kazhdan projections. The next lemma, a form of which has

been proved by Masato Mimura, gives an improvement on Guichardet's argument
that H1(G',jc) 0 implies that E/E71 does not have almost invariant vectors. We

provide a proof for completeness.

Lemma 5.3. Let 'F C -R he closed with the property thatfor every (jt, E) g :.F and

every continuous affine action of G on E with linear part Jt has a fixed point. There

exists s > 0 such that 8J(x) > sWxWe/e* for every (n, E) G !F and x G E.

Proof. If (jt, E) is a Banach space representation of G, we denote by s(n. S) the

associated Kazhdan constant, i.e. the best largest) e such that till(x) > sWxWe/e71

foreveryx G E. If the lemma was not true, there would exist a sequence (nn, En) G S

such that lim„ e(nn. S) 0. Denote en e(nn, S). As recalled in Subsection 3.3,

e„ is strictly positive. Let XL be a free ultrafilter on N and (tiu- Eu) the ultraproduct
of (nn,En). Let xn e En such that <5|(x„) 1 and \\xn \\En/Efn > Let

/o G Cc(G) nonnegative with / f, 1 and y„ jr(/o)x„. By Lemma 3.10 there

is C > 0 such that \\xn — y„ || < C for all n, so that

for all n large enough. Moreover, if we define hn(g) n(g)yn — yn, then as in
the proof of Theorem 5.1 h(g) := (hn(g))u defines an affine action a with linear

part (nu- Eu) and there is a closed subspace E C E'u that is invariant under nu
and a such that (jtu- E) G tiR. By Theorem 4.13 (rtu, E) belongs to 3> because !F
is closed. This affine action therefore has a fixed point z (zn)u G E, so that the
class of (hn(g)) in the ultraproduct coincides with the class of (jz(g)zn — zn)„ for
somez (zn)u e E. By proposition 4.12, we get lim^ <5J" (v„—z„) 0, whereas

We can now prove Proposition 3.6.

ProofofProposition 3.6. If 8 is stable by finite representability, then IF, the set of
all isometric representations (jt, E) e tiR on a space in 8, is closed (Remark 4.3). By
Lemma 5.3 and [9] Ffo(G) has a Kazhdan projection.

If 8 is only closed by ultraproducts and G is discrete, then the same proof applies
to IF ~§(8,Q) (see Proposition 4.6). If 8 Lp the same proof applies with

Wynhn/Ef» — \\xn II £„/£"" HL« x«II.Eh —

II yn Zn II En/ET > II V" II EnjE,* Itn

for all n large enough. This contradicts the definition of en.

IF Fi(Lp,0) (Proposition 4.7).
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5.4. Application to fixed point properties. Recall that if 8 is a class of Banach

spaces, we denote by F (S, m) the set of all equivalence classes of representations

(jt, E) e R such that E is isomorphic to a space in 8 and such that || || ä(£T) <
em(g) for all g eG.

Corollary 5.4. Let 8 be a class ofBanach spaces closed underfinite representability
and m: G --> (0. oc). If Tfg(g ,m) (G) has a Kazhdan projection and every affine
action with linear part in F 8 N7. m has a fixed point, then there exists Ne N,

s > 0 such that the same is true for F (8N'e,m + si).
Ifmoreover m is symmetric and 8 is stable by duality, then there exists N, s such

that the Kazhdan projection in C^^gN.rm+l_jfiG) is central.

Proof. By Theorem 5.1 there is a strong neighbourhood IF' of F(8,m) such that

~$r'(G) has a Kazhdan projection and every affine action with linear part in 'J7'

has a fixed point. By Proposition 4.4 IF' contains F(8N'e, m') for some e, N, with
m' m + si.

It remains to prove that, if N, s is replaced by some N' > N,s' < s, the Kazhdan

projection can be taken central if 8 is stable by duality. By Corollary 3.5 it is enough
to show that for some N',s', F (8N 7 ,m') is contained in a weakly self-adjoint
subset of F'. But by Lemma 2.3 there is N' > N and s' < s such that X* belongs
to 8n'£ for all X e 8N 'e Since m and m' are symmetric, this implies that the set of
representations in F (S m') such that all separable subrepresentations of its dual

representation belong to F(8N'S ,mr) contains F(8N 7 s'). But this set is clearly
weakly self-adjoint. This concludes the proof.

We can now prove the following corollaries, mentioned in the introduction.

Corollary 5.5. If G has property (T), then there exists s > 0 and a central Kazhdan

projection in G'jr (g(egfx){G), and every affine action with linear part in F (8 (s), si)
has a fixed point, where 8(e) is the class ofall Banach spaces E satisfying

Proof. This is Corollary 5.4 for 8 the class of Hilbert spaces (recall Proposition 4.5).

Corollary 5.6. Let 8 be a class of superreflexive Banach spaces closed under finite
representability. If G has (Eg then there exists N e N and s > 0 such that

FgfigN..' e()(G) has a Kazhdan projection and every affine action with linear part
in F (8N'E, si) has a fixed point. The Kazhdan projection is central if8 is stable by
duality.

Proof. Combine Proposition 3.6 and Corollary 5.4.
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Remark 5.7. The (proof of the) preceding corollary says that if a class of
superreflexive Banach spaces 8 is stable by finite representability then (Fg) implies
robust property (T) with respect to 8 (and more generally to SN,e for some N, e),

see §3.3 for the definition of Oppenheim's robust property (T). Oppenhein proved
that the converse holds for every set 8 such that every space X e 8 there is X' e 8
isometric to X ®p C for some I < p < oo. Together, this shows that (Fg) is

equivalent to robust (T) with respect to 8 if 8 is the class of Hilbert spaces, or the

class of spaces C-isomorphic to Hilbert spaces, or (for some 1 < p < oo) the class

of subspaces of Lp spaces, or the class of subquotients of Lp spaces... We can also

replace Lp spaces by non-commutative Lp spaces because non-commutative Lp
spaces are closed under ultraproducts [23], Corollary 5.9 will also imply that (Flp)
is equivalent to robust (T) with respect to Lp spaces.

Recall that one says that G has (Fg) if every affine action on a space in 8 whose

linear part is a uniformly bounded representation has a fixed point.

Corollary 5.8. Let 8 be a class of superreflexive Banach spaces closed under finite
representability. The following are equivalent:

(1) G has (Fg).

(2) For every C > 0, there exists N e N and e > 0 such that 6jr(g/v.f:iE(+c)(6j has

a Kazhdan projection and H\G',jz) 0 for every (:r, E) e !F(8N'£, et + C).

(3) For every C > 0, there exists e > 0 such that Tf/r(e,Et:+C)(G) has a Kazhdan

projection and Hx(G',n) Ofor every (tt, E) G !F(8,£l + C).

(4) (If& contains a space of infinite dimension) For every C > 0, there exists e > 0

such that 'Cjr(s e(+c)(G) has a Kazhdan projection.

In that case, and if8 is stable by duality, then Gyçs.ei-i-C)(G) has a central Kazhdan

projection.

Proof. (1) =>• (2) is Corollary 5.4. The implications (2) => (3) ==> (4) and

(3) => (1) are obvious.
Assume (4). By an argument of Lafforgue [18, §5.3], this implies that

Hx(G\n) Ofor every uniformly bounded representation (n, E) with E isomorphic
to a hyperplane in a space in 8. So (1) is a consequence of the following claim: every
separable space E in 8 is isomorphic to a hyperplane in another space E' in 8. If E
is finite dimensional this is obvious because we assumed that 8 contains a space of
infinite dimension, and in particular a subspace of dimension dim( £') + 1. Otherwise,
let En C E be an increasing sequence of finite dimensional subspaces such that U„ En

is dense in E. Let V. be a cofinal ultrafilter in N. Then E is isometric to a subspace

of n<u En by sending x UnEn to (1 xeEnx)u and extending by continuity. It is a

strict subspace because J~[t( En is not separable, so if x e [ ].(/ En \ E, we have that
the linear span of x and E belongs to 8 and contains E as a hyperplane.
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The point (4) is almost strong property (T) with respect to 8, except on the

order of the quantifiers, which should be 3g, VC instead of VC, 3e. This "small"
difference is a bit unfortunate, because Shalom conjectured that hyperbolic groups
do not have (fo2), whereas Lafforgue [17] proved that hyperbolic groups do not have

strong property (T) with respect to Hilbert spaces.

5.5. Application to L p spaces. We now prove the fol lowing result for property (Fip).
Corollary 5.9. Let 1 < p < oo. The following are equivalent.

1 G has property (Flp)-

(2) there exists s > 0 such that *C3r({Lq,qe[p-e,p+é\},el)(G) ^as a Kazhdanprojection
and every affine action with linear part in IF({Lq,q G [p — e, p + e]}, et) has

a fixed point.

(3) there exists e > 0 such that p,sl)(G) has a Kazhdanprojection.

In that case, and for all e small enough, the projection in (2) and (3) are central if
and only if G has (Flp/) where p' is the conjugate exponent of p.

Remark 5.10. This Corollary provides natural examples where there is a Kazhdan

projection, but not a central Kazhdan projection. Indeed, consider T a discrete

Gromov-hyperbolic group with property (T) (for example a cocompact lattice in
Sp(n, 1), or a suitable random group). It was proved by Bader, Furman, Geländer and

Monod [2] that, as every group with property (T), F has Gfp) for every 1 < p < 2.

On the other hand, Yu [29] proved that every hyperbolic group with property (T) has

a proper action on lpr for some 1 < p < 2, and in particular does not have (Fl ,)•

By the above corollary, there is e such that T£s?(Lp,Ei)(.G) has a Kazhdan projection,
but not a central Kazhdan projection.

Proof. (2) =4> (3) is obvious, and (3) => (1) is [21], (1) => (2) is not formally
a consequence of Corollary 5.6 because Lp spaces are not stable under subspaces.

However, for the first part, the same proof works with Proposition 4.4 replaced by

Proposition 4.7.

For the second part, if G has (FL> and (TLn then by the first part there is also, for
all small enough e\, a Kazhdan projection for !F ({Lq>,q e [p — £i, p + £\]},e\t),
which is the dual of IF ({Lq, q G [p — S\, p + s\\},s\t). By replacing £ by min(e,£i),
the implication (5) => (1) in Proposition 3.4 implies that the Kazhdan projection
for f({Lq,q G [p — s, p + e\},et) is central, and hence also for !F{Lp,el).
Conversely, assume that 1ÊV(Lp ,ei) (G) has a central projection for some e > 0, then by

Proposition 3.4 ,;E£)(G) has a Kazhdan projection and hence G has (Fl„)-

Similarly using Proposition 4.6.

Corollary 5.11. Let 8 he a class of superreflexive Banach spaces stable by

ultraproducts. Then, for discrete groups, (Fg) implies robust (T) with respect to 8.
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Recall [21] that the converse holds if for every X 8, there is 1 < p < oo such

that X Ç& p C G 8.

5.6. From compactly generated to compactly presented. We can now state a

result, which is an extension to Banach space representations of a result proved for
unitary representations by Shalom [25] for discrete groups, and Fisher-Margulis [11]
for locally compact groups.

A locally compact group G with a compact generating set S is said to be compactly
presented if, as an abstract group, G has a presentation with 5 as a set of generators
and with relators of bounded length (this does not depend on S).

If H is a quotient of G and IF C IR we denote the set of all equivalence
classes of representations in !F which factor through H.

Theorem 5.12. Assume that G is compactly presented, that H is a quotient of G by
a discrete normal subgroup, and let '.F C IR be closed. If H) has a Kazhdan

projection and Hl(H\ jt) 0 for every (jr. E) e •R{h]> then there is a compactly
presented intermediate quotient G —> H' -> H such that ï?.'/r[//7] (H') has a Kazhdan

projection and n) 0 for every (n, E) e 3*[h']-

Proof. The theorem is proved exactly as Theorem 5.1, so we only give a short sketch.

By Theorem 3.9 there is a measure m with f Idm 1 and such that

8%(o(m)x) < ^8°s{x) (5.3)

for every affine action a of H on E with linear part in 'J7\h\ and every x e E. Let
/o 6 L\(G), C > 0, k G N and m' — m*k * /o as in the proof of Theorem 5.1.

Since G is compactly presented, it has a presentation G (S, R) with relations
of length < «0- F°r n > no, let Rn be the set of words of length less than or equal
to n in the letters S which are trivial in H, and define a sequence of intermediate
compactly presented intermediate quotients Hn by

Hn (S,Rn)

Assume by contradiction that for every n, there is an affine action an of Hn on En
with linear part in lE[Hn] and xn e En such that

8as"(o(m')xn) > ]-8asn(xn)

Consider the cocycle hn(g) a„(g)an(fo)x„ — <in(f\))xn. Let U be a cofinal
ultrafilter on N. Then there is a separable subaction a of the ultraproduct action
which factors through H (because it factors though Hn for all n), with linear part
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in E (because F is closed) and with translation part b(g) (h,,(g))y. Therefore

by using successively Proposition 4.12, (5.3) and (5.1) we get

X-
< limSas"(cTn(m')xn) 8as(o(m)k0) < 2"k8^(0) < 2~kC,

a contradiction with the definition of k.

An example of consequence is the following result. However, as Masato Mimura
pointed out to us, there is a more direct and easy proof, that he attributes to Gromov
Schoen [12] (see also [27]), of this corollary which works without the assumption
that 8 is superreflexive.

Corollary 5.13. Let 8 he a class ofsuperreflexive Banach spaces closed underfinite
representahility. Ifa locally compact group compactly generated group H has Fg
then H is the quotient by a discrete normal subgroup ofa compactly presented locally
compact group with Fg

Remark 5.14. For discrete groups, the same conclusion holds under the weaker

assumption that 8 is a class of superreflexive Banach spaces closed under

ultraproducts.

Proof For convenience of notation we only give the proof when H is separable.

It was essentially proved in [1] and rediscovered in [11] that there is a compactly
presented group G and a continuous surjective group homomorphism G >11 with
discrete kernel. Moreover if one follows the proof, G is separable. Take !R as

defined in §5.1 for this group G and some M > 1, and let 3* IF(8,0). It is

closed (see Remark 4.3). By Proposition 3.6 %Cjr[Hi(G) has a Kazhdan projection
and H1(G:jt) 0 for every (it, E) e Tj/zj. By the previous theorem, there is a

compactly presented intermediate group G -> H' -> H such that the same holds

for I" particular H' has (Fg).

One can imagine other results of this kind. Let us state one that we will use in a

forthcoming work with Gomez-Apparicio and Liao.

Corollary 5.15. Let 8 be a class ofBanach spaces stable by fin ite representahility
and containing an infinite dimensional space. Assume that G is compactly presented,
and that H is a quotient by a discrete subgroup such that FI has strong property (T)
with respect to 8. Then for every C > 0 there is s > 0 and a compactly presented
intermediate quotient G —> II' —> II such that 'CV(e.,st+C)(H') has a Kazhdan

projection, which is self-adjoint if 8 is stable by duality.

Proof. Since H has strong (T) with respect to 8, there exists s > 0 such

that 'Cf(s,sI+c)[H](.H) has a central Kazhdan projection for every C > 0.

By an argument of Lafforgue [18, §5.3], this implies that H1(H;jt) 0 for

every (it, E) with E a hyperplane in a space in 8 and with a constant C such that
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11^(^)11 5 esi(-8^+c for all # in G. So the corollary is a consequence of Theorem 5.12
and of the fact, already proved in the proof of Corollary 5.8, that every separable

space E in S is isomorphic to a hyperplane in another space E' in S.
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