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Dynamically exotic contact spheres in dimensions > 7

Marcelo R. R. Alves* and Matthias Meiwes**

Abstract. We exhibit the first examples of contact structures on S2" -1 with n > 4 and

on S2 x S2, all equipped with their standard smooth structures, for which every Reeb flow has

positive topological entropy. As a new technical tool for the study of the volume growth of Reeb

flows we introduce the notion of algebraic growth of wrapped Floer homology. Its power stems

from its stability under several geometric operations on Liouville domains.

Mathematics Subject Classification (2010). 37J05, 53D40.
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1. Introduction

On a contact manifold there exists a natural class of flows, the so-called Reeb flows.

Although the dynamics of distinct Reeb flows on the same contact manifold can be

very different, there are dynamical properties which are common to all Reeb flows
on a given contact manifold. For instance, the combined works of Hofer [26] and

Taubes [44] imply that on a closed contact 3-manifold all Reeb flows have at least one

periodic orbit. In this paper we construct a large class of contact manifolds on which
all Reeb flows have chaotic dynamics. Surprisingly, some of the contact manifolds
we construct have a very simple topology, which contrasts with the complicated
dynamics of their Reeb flows.

A contact structure is said to have positive entropy if all Reeb flows associated

to this contact structure have positive topological entropy. We show that there

exist contact structures with positive entropy on spheres of dimension > 7 and

on S3 x S2. As a consequence we prove that every manifold of dimension > 7 that
admits an exactly tillable contact structure also admits a (possibly different) contact
structure with positive entropy. Our approach to prove these results is based on

wrapped Floer homology and uses in an essential way its product structure. This
product structure enables us to define the notion of algebraic growth of wrapped
Floer homology, and we relate this growth to the volume growth of Reeb flows. Even

*Marcelo R. R. Alves was supported by the Swiss National Foundation.
**Matthias Meiwes was supported by German-Israeli Foundation (GIF).
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though the richer algebraic structures in Floer homology were studied extensively,
so far they lead to only very few applications in dynamics: the ones we are aware of
are Viterbo's result [461 on the existence of one closed Reeb orbit on hypersurfaces
of restricted contact type in Liouville domains with vanishing symplectic homology,
and Ritter's result [38] on the existence of Reeb chords for exactly tillable Legendrian
submanifolds on Liouville domains with vanishing symplectic homology.

1.1. Basic notions. An important measure of the complexity of a dynamical system
on a manifold M is the topological entropy hlop which quantifies in a single number
the exponential complexity of the system. We refer the reader to [23] for the definition
and basic properties of htop. By deep results of Yomdin and Newhouse, hlop((p) for a

C°°-flow (p ((p')tes. equals the exponential growth rate of volume

v(cp) sup v(cp. N).
NCM

log VolnM'(N))
where v(<p, N) lim sup (1)

f—»• oo t

Here, n dim N, the supremum is taken over all submanifolds N C M, and Vol"
is the «-dimensional volume with respect to some Riemannian metric g on M.

In this paper we study the topological entropy for Reeb flows of contact manifolds.
Recall that a (co-oriented) contact manifold (£,£) is a compact odd-dimensional
manifold E2"^1 equipped with a contact structure £, that is, a hyperplane distribution
on £ which is given by £ kera for a 1-form a with a A (da)"~l ^ 0. Such an a
is called a contactform on (£, £), and we can associate to it the Reeb vectorfield Xa
defined by ixada 0, a(Xa) 1. Denote the flow of Xa, the Reeb flow of a,
by (pa (<p'a)teR- An isotropic submanifold of E2"-1 is one whose tangent space
is contained in £; isotropic submanifolds of dimension n — 1 are called Legendrian
submanifolds.

1.2. Main results. The main result of this paper is the existence of contact structures
with positive entropy on high dimensional manifolds.

Theorem 1.1.

(A) Let S2"~x be the (2n-\)-dimensional sphere with its standard smooth structure.
For n > 4 there exists a contact structure on S2n 1

with positive entropy.

(B) There exists a contact structure on S3 x S2 with positive entropy.

Recall that a contact manifold is said to be exactly tillable if it is the boundary of
a Liouville domain. From Theorem 1.1 and the methods developed in this paper we
obtain the following more general result.
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Theorem 1.2.

& If V is a manifold ofdimension 2n — \ >7 that admits an exactly fillable contact
structure, then V admits a contact structure with positive entropy.

O If V is a 5-manifold that admits an exactly fillable contact structure, then the

connected sum V#(S3 x S2) admits a contact structure with positive entropy.

Note that the standard contact structure on spheres as well as the canonical
contact structure on S *S3 s S3xS2 have a contact form with periodic Reeb flow. In

particular these are not diffeomorphic to the contact structures in Theorem 1.1. Other
exotic contact spheres have been constructed by several authors, see [17,20,32,45],
The contact spheres constructed in this paper are, from our perspective, the "most
exotic" ones. From the dynamical point of view they are the most remote from
the standard contact spheres since they admit Legendrian submanifolds that have

exponential volume growth under every Reeb flow. It would be interesting to relate

our examples of exotic contact spheres to others that were constructed so far.

In order to explain further the relevance of these results we recall what is

known about the topological entropy of Reeb flows. Motivated by results on

topological entropy for geodesic flows (see [36]), combined with the geometric
ideas of [21], Macarini and Schlenk proved in [30] that for various manifolds Q the

unit cotangent bundle (S* Q, £) equipped with the canonical contact structure £ has

positive entropy1.
In previous works of the flrst author, different examples of contact 3-manifolds

with positive entropy were discovered. In [5-7] it was shown that contact 3-manifolds
with positive entropy exist in abundance: there exist hyperbolic contact 3-manifolds
with positive entropy (see also [8]), non-fillable contact 3-manifolds with positive
entropy, and even 3-manifolds which admit infinitely many non-diffeomorphic contact
structures with positive entropy. This shows that the class of contact manifolds with
positive entropy is much larger than the class of unit cotangent bundles over surfaces

with positive entropy, which were studied in [30]. One common feature of all known
examples of contact 3-manifolds with positive entropy is that the fundamental group
of the underlying smooth 3-manifold has exponential growth. We expect this to be

always the case:

Conjecture 1.3. If a contact 3-manifold S, £ has positive entropy, then jt i E

grows exponentially.

Already from the unit cotangent bundles of simply connected rationally hyperbolic
manifolds, which were considered in [30], we know that Conjecture 1.3 is false in

higher dimensions. However it is natural to ask if there are restrictions on the

smooth topology of contact manifolds with positive entropy in higher dimensions.

1 In a recent work [15] Dahinden extended the results in [ 3()| proving that on the unit cotangent bundles

(S*Q, £) studied in [301 every positive contactomorphism has positive topological entropy. It would be

interesting to investigate if Dahinden's result is true for any contact manifold with positive entropy.
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Theorem 1.1 shows that in contrast to what happens in dimension three, the

phenomenon in higher dimensions is quite flexible from the topological point of
view.

Remark 1.4. Examples of contact manifolds of dimension > 9 which have positive
entropy and are not unit cotangent bundles are also constructed using connected sums

in an ongoing work of the first author and Macarini [9], following an idea of Schlenk.

However, these contact manifolds have very complicated smooth topology, in the

sense that the underlying smooth manifolds are rationally hyperbolic. For this reason

they are much less surprising than the ones obtained in the present paper.

Let us now explain our approach to establishing these results.

1.3. Symplectic and algebraic growth. To establish our results we introduce the

notion of algebraic growth of wrapped Floer homology. This notion is useful because,

on one hand, it gives a lower bound for the growth rate of wrapped Floer homology
defined using its action filtration and, on the other hand, it is stable under several

geometric modifications of Liouville domains.
The contact manifolds we consider in this paper arise as boundaries of Liouville

domains. Recall that a Liouville domain M (Y, a>. A) is acompact exact symplectic
manifold (T, a>) with boundary X dY and a primitive A of w such that um '= A|s
is a contact form on X, and such that the Liouville vector field X\ in Y defined

by iXx00 ^ Points outward at the boundary X: we let kerum be the

contact structure induced by M on X. For two exact Lagrangians L0 and L\ in M
that are asymptotically conical, i.e. conical near dY with Legendrian boundaries A0
and A] in (X, Çm), we consider the wrapped Floer homology of (M, L0, L\) with
Z2-coefficients denoted by HW(M,L0 -> Li), whose underlying chain complex
is, informally speaking, generated by Reeb chords from A0 to Aj and intersections
of L0 and L\. We write HW(M, L) for HW(M, L -» L), see Section 2.2.

Results on positive entropy can be obtained from the exponential symplectic
growth of wrapped Floer homology, which is defined as follows. By considering
only critical points below an action value a, one obtains the filtered Floer homology
HW"(M, L<) -» L\). The homologies HWa(M, L0 ^ Li) form a natural filtration
of HW(M, L0 —> Li), and they come with natural maps La: HWfl(M, L0 -» L\) ->
HW(M, L0 —> L i) into the (unfiltered) Floer homology. The exponential symplectic
growth rate Tsymp(M, L0 —> L\) of HW(M, Lq —Li) is given by

r-isympsi* I \ I• log(dimIm ia)
T y P(M, L0 -> Li) limsup ; (2)

a—>00 M

see Section 2.2 and Definition 2.16. Since the generators of HW(M, L0 L\)
correspond essentially to Reeb chords from A0 to Ai, the symplectic growth gives
a lower bound on the growth of Reeb chords with respect to their action. Assuming
that A] is a sphere, we adapt the ideas of the first author in |7| to get lower bounds
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for the volume growth v((f>a, Aq) in terms of the exponential symplectic growth rate

of HW(M, L() —> LI for every contact form a on •

A topological operation on a Liouville domain M is a recipe for producing a

new Liouville domain N from M. To obtain examples of contact manifolds with
positive entropy we perform certain topological operations on Liouville domains.
The operations we consider are: attaching symplectic handles on M and, in the

case M is the unit disk bundle of a manifold, plumbing M with the unit disk bundle

of another manifold. Although one can understand the change or invariance of the

(unfiltered) wrapped Floer homology under these operations, it is often much harder

or not even possible to understand the effect of these operations on the symplectic
growth. For instance, by an adaptation of a theorem of Cieliebak 114] we show

that HW(M', L) is isomorphic to HW(M, L n M) if M' is obtained by subcritical
handle attachment on M (Theorem 6.2). By contrast it is much harder to control the

filtered Floer homology under this operation, see [32] for an approach in the case

of symplectic homology. In the case of plumbings of two cotangent bundles the

computational results of a relevant part of the unfiltered wrapped Floer homology
obtained by [4] do not carry over to the symplectic growth rates of the plumbing.

To overcome this difficulty we look at a notion of growth that is defined purely
in terms the algebraic structure on wrapped Floer homology, the algebraic growth.
Let us explain this briefly. Let A be a (not necessarily unital) /f-algebra with
multiplication * and S C A a finite set of elements of A. Given j > 0, let

Ns(j) {a e A \ a s\ ä2 * • • • * sj ; sj,..., Sj c 51}; i.e. NsU) is the set of
elements of A that can be written as a product of j not necessarily distinct elements

of S. We define Ws(n) C A to be the smallest A'-vector space that contains the union

U" i A7s(J)- The exponential algebraic growth rate of the pair {A, S) is defined as

Fa'g(A) limsup- logdim/f Ws(n) e [0, oo).
/i—>oO tl

In case A K(G) is the group algebra over a finitely generated group (G (5),*),
it is elementary to see that T^8(A) coincides with the exponential algebraic growth
of G in the usual geometric group theoretical sense. Now, induced by the triangle
product in Floer homology, HW(M, L) is equipped with a ring structure * turning it
into a Z2-algebra. Given a finite set S of HW(M, L) we define (cf. Definition 2.20)
ralg(M, L) \= ralg(HW(M, L)). We say that HW(M, L) has exponential algebraic

growth if there exists a finite subset S of HW(M, L) such that r^lg(M, L) > 0.

Our main motivation for studying the exponential algebraic growth of HW is the

following:

Proposition 1.5. Let M be a Liouville domain and L be an asymptotically conical
exact Lagrangian in it. and assume that HW(M. L) has exponential algebraic growth.
Then we have:

(A) The Liouville domain M' obtained by attaching subcritical handles to M has

exponential algebraic growth of HW. More precisely, if the attachments are
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made away from L (so that L survives as an asymptotically conical exact
Lagrangian suhmanifold of M') then HW(M',L) has exponential algebraic
growth.

(B) If M is the unit disk bundle of a closed orientable manifold Qn whose

fundamental group grows exponentially, and M' is obtained by a plumbing
whose graph is a tree and one of the vertices is M, then M' has exponential
algebraic growth ofHW. More precisely, if Lq is a unit disk fibre in M and the

plumbing is done away from Lq then HW(M', Lq) has exponential algebraic
growth.

This result essentially says that plumbing and subcritical surgeries are topological
operations that preserve exponential algebraic growth of HW, and will allow us to
construct many examples of Liouville domains which admit asymptotically conical
exact Lagrangian disks with exponential algebraic growth of HW.

The exponential algebraic growth of our examples stems from the algebraic growth
of the homology of the based loop space H*(Q.Q) equipped with the Pontrjagin
product, where Q is a compact manifold. In fact, we will only use the degree 0 part
whose algebraic growth is that of Jt\(Q).

Remark 1.6. The exponential algebraic growth of symplectic homology always
vanishes since its product is commutative. Thus our approach is specifically designed
for the open string case.

In order to obtain our main results we will bound the topological entropy of
Reeb flows from below in terms of the algebraic growth of HW(M, L). For that

we will use the crucial fact that the spectral number c: HW(M, L) —> M+ defined

by c(x) inf{a £ 1 | x e Imia} is subadditive, i.e. c(x * y) < c(x) + c(y)
for all x,y e HW(M,L). It follows (see Proposition 2.21) that for any finite
S C HW(M, L) we have

rsymp(M, L) > -Lrf(M.L),
piß)

where p(S) max^s c(,v). By using that HW(M, L -* L\) is a module over

(HW(M,L),*), this lower bound can be extended to Tsymp(M, L -> L\) for
all LI that are exact Lagrangian isotopic to L, see Lemma 4.3. In other words,

exponential algebraic growth of HW(M, L) implies positive symplectic growth of
HW(M, L L\). This, combined with ideas from [7], leads to:

Theorem 1.7. Let L be an asymptotically conical exact Lagrangian on a Liouville
domain M (Y,a>, A), S := dY and a m := A|e. We denote by %m '= ker o,m the

contact structure induced by M on E. Assume that there is afinite set S C HW( M,L)
such that rf(M, L) > 0 and that A 3L is a sphere. Then, for every contact
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form a on (£, £m) the topological entropy of the Reehflow <f>a is positive. Moreover,

if fa is the function such that \aa\i a then

rf (M, L)
/'top (</v) — 7777 TTV'p(S)max(fa)

Our paper is organised as follows. In Section 2 we consider the algebraic growth
and the growth of filtered directed systems in general, and then we recall the definition
of wrapped Floer homology together with its product structure. In Section 3 we

present the construction of the Viterbo map and derive some of its properties.
Section 4 establishes implications of the growth properties of HW to topological
entropy. In Section 5 we recall the computation of the algebra structure of the Floer
homology of unit disk bundles and in Section 6 we give a proof of the invariance
of HW under subcritical handle attachment, recollect a result on HW of plumbings
and prove Proposition 1.5. Finally, in Section 7, we construct our examples and

prove the main theorems. The appendix contains a construction of exact Lagrangian
cobordisms used in the paper.

Acknowledgements. Most of this work was done when the second author visited
the Université of Neuchâtel supported by the Erasmus mobility program, and the

first author visited the Universität Münster supported by the SFB/TR 191. This work
greatly benefited from discussions with Felix Schlenk and Peter Albers: we thank
them for their interest in this work and their many suggestions. We also thank Lucas
Dahinden for carefully reading the manuscript.

2. Wrapped Floer homology and its growth

As explained in the introduction, two features of wrapped Floer homology are crucial
in this paper.

First, its natural filtration by action gives the wrapped Floer homology HW the

structure of a filtered directed system and allows one to define the spectral value of
elements of HW. These give rise to the notion of symplectic growth2 of HW; this is

explained in Section 2.2.2.

Second, the product structure of HW gives it the structure of an algebra and gives
rise to the notion of algebraic growth of HW. This is explained in Section 2.3. The
link between these notions is given by the crucial fact that the spectral number is

subadditive with respect to the product structure on HW, see also Section 2.3.

We first recall the relevant algebraic notions and deduce some direct consequences.

2.1. Algebraic growth and growth of filtered directed systems. Fix a field K.
We use the convention that log(0) := 0.

2This was explicitly observed in |34| although it is implicit in [21,30].
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2.1.1. Filtered directed systems and growth.

Definition 2.1. A filtered directed system over E+ [0, oo) or for short f.d.s. is a

pair V, 7i) where:

• Vt, t [0, oo), are finite dimensional /f-vector spaces.

• 7ts^t: Vs —> Vt, for s S t are homomorphisms (persistence homomorphisms),
such that 7ts->t ° tir-¥s ttr^t for r < s < t, and nt^,t idy, for all t G M+.

Let 3 be the smallest vector space of ®;sK Vt containing Qv<* \7is^t(xs)—xs\.
The direct limit lim V of V is defined by lim V := ®f6]R+ Vt/Z- The inclusions

Vt ®,gR_ Vt induce maps to lim F which we denote by it. The spectral

number cy, or just c if the context is clear, of an element x G lim V is

cy(x) := inf{r G [0, oo) | 3xt G Vt such that it(xt) x}.

It is clear from the definition of cy that if X\ xn G V and k\,..., k„ G K we
have

Cyl YkiXi J < max Cy(Xi). (3)
\ Z ' / 1 <('</!yi 1

7

Definition 2.2. Let df := dim{x | cy(x) < t}. The exponential growth rate of the

f.d.s. V is

f(F) := lim sup - log df.
r->oo t

We say that V has exponential growth if 0 < T(F) < oo.

Definition 2.3. A morphism between f.d.s. (V. it) and (V, jt') is a collection of
homomorphisms / (ft)te[o,oo)> ft'- Vt I7/, that are compatible with respect to
the persistence homomorphisms:

ft 0 xYt ° fs- (4)

An asymptotic morphism is a collection of homomorphisms ft\ Vt -> Vf
t G (K, oo), for some K > 0 such that (4) holds for K < s < t.

Let V, 7i) be a f.d.s. and rj > 1. We can dilate V by t] to a filtered directed system

(V(rj),n(ri)) given by V(rj)t Vvt, 7t(rj)s^t nvs-*r,t- It follows that n gives
rise to a canonical morphism 7i[rj\: V -r V(rj) by tv[rj\t nt^vt. For a morphism

f \ V —> W we get a dilated morphism f(rj): V(p) —> W(rj) by setting /(p)t /,,,.
Definition 2.4. Let V, try) and (W, tzw) be f.d.s. We call them (rji, r®-interleaved,
or interleaved, if there are asymptotic morphisms/: V —> W(tj i)andg: W —> V(t]2)

for two real numbers t]\,t]2> 1 such that

/(t?2> °g nwlm^] and g(iji) o f nv[rnr)2].
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The direct limits of interleaved f.d.s. are isomorphic. It is also easy to see the

following
Lemma 2.5. Let V and W be (rji, ^-interleavedfor some t]\,t}2 > 1. Then

r(K) < 171 f(W) and f(W) < jfef(K).

Remark 2.6. The notion of interleaving comes from the theory of persistence
modules (see [37] for applications of persistence modules and interleaving distance
in symplectic geometry).

2.1.2. Algebras and their algebraic growth. We recall from the introduction the

definition of the algebraic growth of a A'-algebra A and a finite subset S c A. Given

j > 0 let N$(j) {a e A \ a s\ * s2 * ••• * sj\ .vj sj £ S}\ i.e. Ns(j) is

the set of elements of A that can be written as a product of j, not necessarily distinct,
elements of S. We define Ws{n) c A to be the smallest A-vector space that contains
the union Uy=i ^s(j )- The exponential algebraic growth rate of the pair (A, S) is

defined as

ri'ë(A) lim sup - log dimk W(n) £ [0,00).
/!-»00 n

We will need the following definition.

Definition 2.7. Let M be a module over an algebra A with scalar multiplication
denoted by *. The module M is called stretched if there exists an element mo & M
such that for all elements a ^ 0 e A we have a * mo ^ 0. An element mo G M
satisfying this condition is called a stretching element.

In the following let V be a filtered directed system and assume that the vector

space A lim V has a A"-algebra structure with multiplication We do not assume

that A is finitely generated. Furthermore, let IT be a filtered directed system, such

that M lim IT is a module over A with multiplication *, i.e. a module over (A,
with scalar multiplication * which is compatible with the A-vector space structure
of A and M.

Furthermore assume that the spectral numbers cy and cw are subadditive with
respect to * and *, i.e.

cy(a b) < cy(.ci) + cy(b), for all a,b £ A, (5)

and

cw(a * m) < cy(a) + cjv(m), for all a G A and m G M. (6)

Lemma 2.8. Let V be a f.d.s. such that A fim V has a K-algebra structure with

multiplication and assume that cy is subadditive with respect to *. Then for every
finite subset S G A we have

f(V) > —raJg(A),7 " p(S) s J

where p(S) maxxes cy(x).
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Proof. From the subadditivity of cy with respect to * it follows that if a .sq * s2
• • * ,y„, Si e S, we have

cv(a) Cyißi * • • • * sn) < cv{si) H h cv{sn) < p(S)n.

It then follows from (3) that W(n) c {x e A \ c(x) < p(S)n\. We thus conclude
that

rtlg(/4) lim sup — log dim W(n)
n ->00 n

< lim sup - log dim{x | c(x) < p(S)n} < p(S)r(F).
n—* 00 "

Lemma 2.9. Let V and W be f.d. s. and assume that the vector space A lim V has

an K-algebra structure with multiplication and that M := hm W has the structure

of a module over A with multiplication *. Assume that cy and cw are subadditive
with respect to * and *, respectively, and that M f 0 is a stretched module over the

algebra A. Then

V(W) > f (F). (7)

Moreover, for every finite set S C A we have

f (IF) > —1—T^(/1). (8)
p(S)

Proof. Take a stretching element m0 f 0 in M. We have a * mo f h * m0 for
a 7^ b, a, b G A. In particular a a * m0 is an injective homomorphism from A

to M. Therefore, by (6),

dj dim{a e A \ cy(a) < t}
< dim{m M \cw{m) < t + cw(m0)} d^Cw(mo),

for all t > 0. We then get

fog dj log dp / >/\ t • o t 1 t~\~C\yilTl0)r(K) lim sup — < lim sup
t—>oO t t—>oo t

^t+cw(mo) t + cw(mo) Tru/Slimsup r(Jr
t —^"Oo t+cw(m0) t

This proves (7). Inequality (8) is obtained by combining (7) with Lemma 2.8.

In order to get results on entropy, we will need the following notions.

Definition 2.10. Let TV W(i)ief be a family of f.d.s. with direct limits M(i) that

are modules over A := Hm V. We say that the family M(i )lFi is uniformly stretched

if there exists a constant B > 0 such that for every i e / there exists a stretching
elements«,: G M(i) with ^
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Definition 2.11. Let 'VV W(i ),e/ be a family of filtered directed systems. The

uniform exponential growth rate of 'W is

rie/(TV) := lim sup - log (inf d^^).
t —>-oo I 1

Lemma 2.12. Let V be a fd.s. such that A lim V has a K-algebra structure

with multiplication Let 'Vf W(i ),<=/ be a family off.d. s. such that for every
i G I the direct limit M(i) lim IV(i is a module over A with multiplication *(/).
Assume that cy is subadditive with respect to that cw(i) is subadditive with respect
to *(/) for every i G I, and that the family M{i)lC[ is uniformly stretched over the

algebra A. Then

ÎWCVf) > f (F). (9)

Proof Since M(i),;e/ is uniformly stretched there exists B > 0 such that for every
/ G I, we can find a stretching element m, G M(i) with ^(m,) < B. Hence

we have by (6) that d^ < inf/ dJ^'J and the result is obtained as in the proof of
Lemma 2.9.

2.2. Wrapped Floer homology. In the following we give the definition and
conventions for wrapped Floer homology used in this paper. This Floer type homology
theory appeared in [1] for contangent bundles, and the case of general Liouville
domains can be found in [3]. We refer to these papers and [38, Section 4] for more
details.

2.2.1. Liouville domains and Lagrangians. A Liouville domain M (Y, m, A) is

an exact symplectic manifold (F, co) with boundary X 3 F and a primitive À of o>

such that am A | s is a contact form on X, and such that the Liouville vector field X
in Y, defined by ixco A, points outward at the boundary X. We let Çm ker am
be the contact structure induced by M on E. Using the flow of X, one can attach an

infinite cone to M along X that gives the completion M := (F, <y. A) of M with

F F Us ([1, oo) x X), A|y=A, A|[i!00)Xs m, and m — dA.

Remark 2.13. In order to simplify notation, we will usually write M and M instead

of F and F, respectively, as the domain of Hamiltonian functions or the target space
of Floer trajectories. This does not cause any confusion since the smooth manifolds
F and F are part of the data defining M and M, respectively. Similarly, when we

write S 3M it should be understood as X 3 F.

Lett: 3F —»• (0, oo) be a smooth function. Let Ff F \ {(r, x) | r > f(x), x g 3F}.
It is easy to see that Mf (Ff, m\yv A|yf) is a Liouville domain. For example,
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given 8 > 0 we denote by M\+$ theLiouville domain (K1+fl, ùJ\+s, Ai+g) embedded

in M defined by

Y\+s Y us ([I-1 + <S] x E), coi+s=(o|r1+4, Ai+a Â|y1+4.

In our paper we only consider Liouville domains that have vanishing first chern
class ci(M) c H2(M; Z).

We consider Lagrangians (L, 9L) in (M, E) that are exact, i.e. X\L — df, and

that satisfy

A 9L is a Legendrian submanifold in (E, £a/),

L fl [1 — e, 1] x E [1 — e, 1] x A for a sufficiently small e > 0.

We will call a Lagrangian that satisfies (10) asymptotically conical. We can extend

it naturally to an exact Lagrangian L L Ua ([1, oo) x A) in M. We will refer to

a Lagrangian in M of this form also as asymptotically conical (with respect to M).
More generally, given a subset !/cMwe say that L is conical in U if the Liouville
vector field is tangent to L fl int(t/) in the interior int(f7) of U.

2.2.2. Wrapped Floer homology. For two asymptotically conical exact Lagrangians

L0 and Li in M denote by fpLn-+L\ {y ' [0' 1] -> A? | y(0) e L0, y(l) £ L j}
the space of (smooth) paths from L0 to Li.

Denote by XaM the Reeb vector field on the boundary (E, kero^ A Reeh

chord of length T of o;« from A0 9L0 to Aj dL\ is a map y: [0, T] —> E with

y(t) XaM (y(t)) with y(0) A0 and y(T) e A i. Denote the set of Reeb chords

of length < T by (cüm), and the set of all Reeb chords by 7Â0^a! («m)-
The Reeb chord y of length T of am from A 0 to A i is said to be transverse if the

subspaces 7V(i)(0j£ (Ao)) and ry(])A i of 7V(i)E intersect at only one point. The

spectrum of the triple (M, L0 —>• L\ denoted by S(M, L0 -> L\), is the set of
lengths of Reeb chords from A0 to K\ in E. It is a nowhere dense set in [0, oo).

Given a contact form a on (E, %m) and a pair of Legendrian submanifolds

(A0, Ai) on (E,£a/), we say that the triple (a, A0 -> Ai) is regular if all Reeb

chords of a from A0 to Ai are transverse. We say that (M, /.0 > L\) is regular if
(As, A0 —> A]) is regular and L0 and L\ intersect transversely.

From now on, we assume that for the contact form am induced by M on (E,
the triple (olm, A0 -> Aj) is regular.

An autonomous Hamiltonians H: M > M is called admissible if
• H < 0 on M,
• and there exist constants pt > 0 and b < —p. such that H (x, r) h(r) pr + h

on [1, oo) x dM.

If H: M M is admissible and satisfies H(x, r) pr + b on [1, oo) x 9M we say
that H is admissible with slope p (at infinity).
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Define the action functional A^^Ll Ah'- —>• M by

Ah(y) fo(xm-Mx(l))+ fl y*X — f1 H(y(t))dt,
Jo Jo

where f0 and f\ are functions on L0 and L\ respectively with dfc A|£., z 0, 1.

The critical points of Ah are Hamiltonian chords from L0 to L\ that reach L\ at

time 1. We define

:= Crit AH ={ye Pl^lx I HO

and write Tl(H) instead of Here Xh is the Hamiltonian vector field
defined by co(Xh •) —dH. We call an admissible Hamiltonian non-degenerate
for Lq —> L\ if all elements in are non-degenerate, i.e. <f)lx (Lo) is

transverse to L\. Such a Hamiltonian must have slope /x ^ S(M, L0 -> L\). Note
that every admissible Hamiltonian can be made non-degenerate for L() —>• Li after a

generic perturbation [3, Lemma 8.1]. We denote by

Jfreg(M,Lo -> LO (11)

the set of admissible Hamiltonians which are non-degenerate for L0 -> L\. For a

Hamiltonian H e J(reg(M, Lo -* L\ all elements in (H) have their image
contained in M.

For admissible Hamiltonians H with slope pt ^ S that are constant in M
away from the boundary, depend on r and increase sharply near dM, Sl,,-»./,, (H)
corresponds to Ai(cxm) and intersection points of L0 and Lx in M. If
(M, L0 —> L\) is regular, such Hamiltonians belong to the set Jfreg(M, L0 L\).

If (<xm-A0 —> is regular but (M, L0 -> LO is not, we can take

H e Jfreg(A/, L0 LO to be a C2-small negative function away from the boundary
of M, and to depend only on r and increase sharply near dM. Then, Tl0-+L\(H)
will correspond to 7^^A[ (c/.m) and intersection points of L0 and L\ in M that are
not destroyed by the Hamiltonian flow of H.

An almost complex structure J on ((0, oo) x dM, X rocm) is called cylindrical
if it preserves Çm kera^, if •/ |ç,v/ is independent of r and compatible with
d(raM)\çM, and if JXaM rdr. In the following we take almost complex
structures J on M that are asymptotically cylindrical, i.e. cylindrical on [r, oo) x 3M
for some r > 1. The L2-gradient of the action functional with respect to the

Riemannian metric given by dX(J •) g(, •) is given by

VAh(Y) -J(Y)(ßtY ~ xh(Y)),
and we interpret the negative gradient flow lines as Floer strips

u: M x [0. 1] —> M,
3 J,h (m) 3çW + J(u)(dtu — Xh{u)) 0, (12)

u(-, 0) Lo, and u{, 1) e L\.
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We define the moduli space of parametrized Floer strips connecting two critical points
x and y of AH

M(x,y, H, J) {u: Ex [0, 1] —> M \ u satisfies (12), lim x and lim y}.
s—y—oc s—>+oo

(13)
There is a natural R-action on M(x, y. H, J) coming from the translations in the

domain. Letting Ml(x, v. H, J) be the set of elements of M(x, y, H, J) that have

Fredholm index 1 we write

M°(x, y, H, J) := Ml(x, y, H, J)/R, (14)

where the quotient is taken with respect to the R-action mentioned above.The energy
of an element u is

/OO \VAh\2L2 ds AH(x) - AH(y)-
-oo

For a generic J and non-degenerate admissible H define the wrapped Floer chain

complex

CW(H, L0 -x L\) 0 Z2 • x,
xGCri^eA//)

with differential 3: CW(H, L0 -> L\) -> CW(H, L0 -> L\) given by

aw E #z2AC°(x, y, H, J) y.
y eCritCeA //

For generic J the differential is well-defined and moreover 32 0. For simplicity
we will write CW(H) instead of CW(//, L0 -> L{) when there is no possibility of
confusion. In this paper we are not concerned with gradings in CW. The homology
of (CW(7/, L0 -> Li), 3) is called the wrapped Floer homology of (H, L0 -> L\)
and is denoted by HW(//; L0 —r L\), or in short HW(H).

Next we consider continuation maps. Let H- and H+ be non-degenerate
admissible Hamiltonians with H+(x) > H-(x) for all x e M, in short H+ > H-.
Take an increasing homotopy through admissible Hamiltonians (Hs)ser, 3SHS > 0,

with Hs H± near ±oo. For elements in M°(x-, x+, Hs, J), i.e. Floer strips

u: R x [0,1] —> M,

dj,Hs(m) := dsu + J{dtu - XjjJu)) 0,

lim u(s,t) x±,
5->±00

u(- ,0) e L0, and u(, 1) e L\,
with Fredholm index 0 connecting x_ G Crit(«A^_) and x+ e Crit(.y(//_ the action
difference is

AH-(-*-) - Ah+(x+) E(u) + / dsHs(u).
J lx[0,l]
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Hence the action decreases under the continuation maps

LH~'H+:CW(//_) -> CW(//+),

given by

lh~'h+(x-) ^ #Zzx+, Hs, J) • x+.
x+ Crit(cA

Define the wrapped Floer homology

HW(M, L0 Li) := fim ÄHW(//; L0 -* Lx),

where the direct limit is taken over all H e Jfreg(M, Lo > L i

Definition 2.14. The homology HW(M, L0 -> LO is the direct limit of the filtered
directed system HW(M, L0 L\) (HW°(M, L0 —> ^i))ae(0,oo}- Here

HW"(M, L0 Li) := fim ffHWa(H\L0 -> LO,

where HW(//; L0 > LO is the homology of the Floer chain complex restricted to
critical points of action less than a. The persistence maps

la^b-HWfl(M, L0 -* Lf) -> UWb(M, L0 -> LO

are induced by the natural maps HWa(//, Lo -> Li) -> HWè(//, L0 -» L\) that

come from inclusions. We write

ia:HWa(M, L0 -> LO -> HW(M,L0 -> ^0
for the induced map from HW" (M, L0 L\) to the direct limit HW(M, L0 —>• Li).

Let H' > H be Hamiltonians in L0 Li) and b > a. Let

i^:UWa(H,L0 LO -> HWè(//',L0 -* LO

be the continuation map induced by any non-decreasing homotopy from H to H'. In
case b +oo we write

':HWa(H,L0 -> LO -> HW(//'.L0 -> Lx).

H HRemark 2.15. Notice that ial^b is the map induced by the chain level inclusion

CWa(H, L0 -> LO CWb(H, Lo -> L\). For this reason we will denote this
inclusion also by

Hjjy. cw«(// Lo ^ Ll) ^ CWb(H, Lo -> LO-
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By the construction of HW(M, L0 -> L\) presented above we have for every
number a > 0 and Hamiltonian H e jereg(M, L0 -> L\) a map

HWfl(//, L0 -> Li) -* HWa(M, L0 -> Lx). (16)

This allows us to dehne for every Hamiltonian H e Jfreg(M, Lo > L\) and numbers

b > a the map

XaLb ia->b o Xa->a HWfl(//, L0 Lj) -> HWè(M, L0 Li).

Using functoriality properties of continuation maps it is straightforward to check that

H H H,H
Xa^b

For simplicity, in the case h +oo we write

Xa La O Xa^a- HW"(H, L0 -> Li) HW(M, L0 -> LX).

For each H e J£rcg(M, L0 -> L\) we also have a map

/:HW(//, Lo -» LO -> HW(M, L0 -> Lj).

To dehne it, we hrst notice that since 7l(I^L| (77) is a hnite set we can choose a

number«// > maxJC6j-/ ^ (//){=A(x)}. For this choice of a h the chain complexes

(CW(//, L0 Li), 9) and (CWa/y (//, L0 -> Li), 9) are identical, and we get

HW(//,L0 -» L\) HW"" (//, L0 -> Li).

We then dehne := XaH • 'i is an elementary exercise to check that the dehnition

of xH does not depend on the choice of a h > maxx6 <//) !-A(x)}. In the same

way we can construct for each b > max-xeTLo^Ll (ä){Ä(jc)} a map

x"b-HW(H,Lo -> Li) -* HW* (M,L0 -* Li).

These maps are useful for the study of spectral numbers done in the next section.

We will need the identity
Xa =XH'ot^H', (17)

which is established in an elementary way from the functoriality properties of
continuation maps. In particular, we have

XH=xH'o iH'H\ (18)

and

Xa=XH^a'H- (19)
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We will now define the symplectic growth rate of HW.

Definition 2.16. The exponential symplectic growth rate Tsymp(M, L0 -> L\) is

defined by

Tsymp(ALL0 -» Li) := lim sup
log(dimIm f(HW(M,L0 -> Lj)). (20)

a->-oo CI

Analogously, given a family (L;)jg/ of asymptotically conical exact Lagrangians
in M we define

r^;p(M, L0 -> Li) := ri6/(HW(M,L0 -> Lj)ieI),

where f;g/(HW(AL L0 -> L,)ie/) is defined as in Definition 2.11.

2.2.3. Spectral numbers in HW.

Definition 2.17. As HW(M, Lo L i) is the direct limit of the f.d.s. HW(M, L0 ^ L\),
we define the spectral number c of elements of HW(M, L0 —r L i) via the recipe
given in Section 2.1.2.

We now present an equivalent definition of c which is more geometrical. Given

H G Jfreg(M,L0 -> Li), and a cycle w e CW(H,L0 -> L\) we denote by

[w] G HW(H,L0 -> Li) the homology class of m in HW(/L L0 —>• LÇ. The

cycle w can be expressed in a unique way as a sum of elements of and

we denote by A(w) the maximum of the actions of these elements.

If w' G CWa(H, L0 -» L) then it can be expressed in a unique way as a sum of
H Helements in (H). This expression is identical to the one of ia ' (w'), from

what we conclude

< a for all w' G CWa(H. L0 -> Lx). (21)

The right hand side in the following identity is often taken as the definition of the

spectral number c(f)).

Lemma 2.18. For a homology class h G I IW( M. L0 —> L\ we have

c(h) inf {d4>(u>) | w G CW(//, L0 L\) is a cycle with /^([w]) f)}.
HeXIct(M,L0^L\)

(22)

Proof. Let H G JCreg(M, Lo L\) and w e CW(//, L0 -* Lf} be a cycle
with xH(iw]) b- F°r each a > <A>(w) we know that there exists a cycle w' G

CWÖ(//, L0 -> Lp) such that ia'H(w') m. Using (19) we obtain

x?M) x* xÄ (M) *>•



586 M. R. R. Alves and M. Meiwes CMH

This implies that h is in the image of Xa ar|d If108 'n the image of ia, from what we

get c(f)) < a. Since this is valid for each a > A>(w) we obtain that c(()) < A{w),
and it follows that

c(h) < inf {<A(w) | w G CW(H,L0 -> Li) is a cycle with /^([m]) I)}.
HçJ(rCg(M,L()—>L \

(23)
To obtain the reverse inequality let a > c(f)). Then there exists ß G ffWa{M,

Lo —> L\) such that ia(ß) 1). By the construction ofHW" (M, L0 —> Li we know
that there exists H e Jf[Cg(M,L0 Lx) and a cycle w' G CWa(H,L0 -> Lx)
such that Xa-+a(lw']) ß- h follows that

Xa([w']) G ° Xa~>a (KD La(ß) (}•

H HLet w := ia ' (w By the observation we made before the lemma we have

A(w) < a. Using (19) we obtain

XH([U>]) XH{ia'HiW])) X?([W']) ft-

We have shown that for each a > c(fi) there exists H G J£rcg(M, Lq —> L \ and a

cycle m G CW(H,L0 —L\) such that w) < a and xH ilw]) b- It follows that

c(f)) > inf {eA(u;) | w G CW(H, L0 -> L\) is a cycle with /H(KD h}.
HeXTCg(M,L()->L])

(24)

2.2.4. A special type of Hamiltonians. Given an admissible Hamiltonian H m M
and a number a > 0 we write H < a if the slope of H is < a. We first define

K(M, L0 L\) := max{max{/0(x) — j\ (x) \ x G L0 IT Li}, 0}. (25)

For a > K(M, L0 —* L\) a careful choice of a cofinal family of Hamiltonians
shows that HWa(M, L0 -> L\) is isomorphic to lim ^aHW(//; L0 —Li), where

the direct limit is taken only over all non-degenerate admissible H with slope less

than a.
To explain this we first take a collar neighbourhood *33 ([1 - 5,l]xS)c M

of 3M on which L0 and L\ are conical, and A is given by raM Since a >
K(M,L0 -> Li) we can choose K(M,L0 -> L\) < /z < a, such that there is

no element in 7a0^Ai («m) with length in the interval We now choose an

admissible Hamiltonian //'' in M with slope /r such that

• Hß is a negative constant — k in M \ 03, with k small,

• Hß depends only on r in 03, and is a convex function of r that increases sharply
close to 3M.
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If k is small enough, and Hß increases sharply enough close to dM then we have

the action of all elements of 7l(I->-Li (Hß) have action < a\

see for example [38, Lemma 9.8].

If (M, L0 L\) is regular then Hß e 3freg(M, L0 L\). In this case we have

the set Tl0^h (Hß) is in bijective correspondence with TAi)^A[ (aA/)U(L0nLi).

In case (öm, A0^- L\) is regular but (M, L0 ~^L\) is not, we can make aC°°-small
perturbation of H11 inside M that still satisfies and is in JCreg(M, L0 - > L i ; for
simplicity we still denote this perturbation by Hß. In both cases, the reasoning used

to prove [46, Lemma 1.5] gives

zf":HW(Hß, L0 -+ L\) -» HWÖ(M, L0 -> L,) is an isomorphism. (27)

It follows that for a > K(M, L0 —>• Li) we have

2.3. Algebra and module structures on wrapped Floer homology.

2.3.1. Algebra structure in HW. Let L be an exact asymptotically conical Lagrang-
ian on a Liouville domain M. We endow M with an asymptotically cylindrical almost

complex structure as in Section 2.2. We recall the definition of the triangle product
in the wrapped Floer homology HW(M, L), and follow the conventions of [2].

We first define the triangle A. One first takes the disjoint union M x [-1.0] U

M x [0,1], We identify the points (.v, 0 6 M x [—1,0] and (,v, 0+) e R x [0, 1] for
all ,v > 0, and denote the resulting space by A. Let /?sing be the point in A which
comes from the points (0,0_) e R x [— 1,0] and (0,0+) e R x [0, 1],

The interior of A coincides with (Rx(-1,1))\((—oo, 0]x{0}). As (lx(-1, 1))\
((—oo, 0] x {0}) is a subset of C we can restrict the complex structure of C to

(Ex(-1, 1 \ ((—oo, 0] x {0}). We then obtain a complex structure j in the interior
of A. This extends to a complex structure on A \ />Sing. Using again that the interior
of A coincides with (ix(-l, 1 \ ((—oo, 0] x {0}), we can define global coordinates
(.V. t) on A \ Psmg •

For an admissible Hamiltonian // onM, the solutions of the Floer equation on A
are maps m : A —»• M that satisfy

(26)

HW"(M,L0 -> Lj) lim//^HW(//;L0 Lx). (28)

9j,h(u) :== + J(u)('dtu — Xn{t, u)) 0. (29)

We write H 2H e C°°(M).
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Given x\, x2 £ Tl(H) and y e Tl(H) we let M(x\, x2; y, L, J) be the space of
maps u: A —> M that satisfy 3y,//(w) 0 and such that u{z) e L for all z e 3(A),

lim u(s, t — 1) x\{t) fort 6 [0,1],
s—t—oo

lim u(s,t) jc2(t) fort £ [0,1],
s —>—oo

and lim u(s,2t — 1) y(t) fort e [0, 1],
S^+OO

Dehne n(x i,x2, y) as the number of elements of M{x\, x2; y, L, J) which have

Fredholm index 0. If the moduli spaces M(x\,x2\ y, L, J) are transversely cut out,
something that can be achieved by perturbing H and J, the numbers n(xi, x2; y) are

always finite.
Dehne TL:CW(//, L) ® CW(7/, L) -> CW(H, L) by

Tl(x\ x2) ^2 (n(x\, x2; >•) mod 2)y (30)

y^TL(H)

for X\,X2 e Tl(H), and extending it linearly to CW(//, L) <g) CW(H,L). It is

proved in |2] that descends to a map

HTL:UW(H, L) ® HW(//, L) -> HW(7/, L),

that endows HW(//, L) with a product which we denote by It is compatible with
the continuation maps, as follows by the results in [41, Chapter 5], and passing to
the direct limit HT/, endows HW(M,L) with a product. For homology classes

1), f)' £ HW(M, L) we will also denote their product by h * h'- The product is

associative: the proof is identical to the proof in [41] that the pair of pants product in
Floer homology is associative. As * is distributive with respect to the vector space
structure of IIW(M, L) it gives HW(M, L) the structure of a ring. Since we dehned

HW(M, L) with coefficients in Z2 the product * actually endows HW(M, L) with
the structure of an algebra.

It was proved in [2] that in the case where M T* Q of a compact manifold Q
and L TqQ for some point q £ Q, the triangle product coincides with the

Pontrjagin product.
An important property of the triangle product is given by:

Lemma 2.19. The spectral numbers c of HW(M, L) are subadditive with respect
to *.

Proof. We will need the triangle inequality

Afi{y) < Ah(X\) + AH(X2). (31)

that must be satisfied by the actions of x\, x2 & Tl(H) and y £ Tl(H) if the moduli

space M(x\, x2; y, L. J) 0 (see [2, Formula 3.18|).
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Let (h, 1)2 e HW(M, L). Given 8 > 0, we know from Lemma 2.18 that there

exist Hamiltonians H\, H2 e Jfreg(M, L) and cycles )/; e CW(H,. L) such that

XH> (K]) fand AÇw'fi < c(V) + ^

for i 1,2. Let now // G JCreg(M, L) such that H > H\ and H > H2. We dehne

uoj := i"' jr(w'j for / 1,2. Since the action decreases under the continuation

maps iHi'H we have A(wi) < c(f)j) + §, and using (18) we obtain

*"([«>,•]) x"(^^(K'])) h,:,

for z 1,2. By (31) we have ^(^(ici <g> w2)) < c(l)i) + c(h2) + By dehnition

[Yl(wi <8> w2)] [wi] [w2], and by our construction of in HW(M, L) we have

XH([w\\ * M) XH([wi]) * XH([W2]) f)i * 1)2-

It then follows from Lemma 2.18 that

c(l)i * f)2) < *A(Tl(uj, ® w2)) < c(f)i) + c(h2) + 5.

Summing up, we have shown that for any 5 > 0 we have

C(f)l * 1)2) < C(f)l) + C(f)2) +

which implies

c(f)i * f)2) < c(f)i) + c(f)2). (32)

We are ready to dehne the algebraic growth of HW.

Definition 2.20. Let S be a finite set of elements of HW(M, L). We define

rf{M, L) := ralg(HW(M, L)). (33)

Combining Lemma 2.8 and Lemma 2.19 we obtain:

Proposition 2.21. For every finite set S of HW (M, L) we have

ra'g(M, L)
rsymP(M,L) > Lm (34)

Piß)
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2.3.2. HW(M, L —y L') as a module over HW(M, L). We start by picking two
exact asymptotically conical Lagrangians L and L' on (M.co, A). The boundary 3(A)
contains three connected components: the component <£>ien which is equal to M x
{—1}, the component <£)mid which contains the singular point, and the component
•©right which is equal to M x {1}.

Let x: Tl(H), z g and z G We let M(x; z, z, J, H)
be the moduli space of maps u: A —> M which satisfy (12) and such that

w(©left) C L,, li (<©micl C L, U <©right C L

and

lim u(s, t — 1) x(t) for t G [0,1],
s—>—oo

lim u(s, t) z(t) fort G [0, I],
J->—oo

and lim u(s,2t — 1) z(t) fort G [0,1],
s->-|-oo

Let n(x; z, z) be the number of elements in M(x; z, z,J,H)that have Fredholm index 0.

For non-degenerate H and a generic choice of J, all the spaces M(x; z, z, J, H) are

transversely cut out, and therefore the numbers n(x; z, z) are all finite.

We then define a map

®l,L'-CW(H; L) ® CW(H; L ^ L') -* CW(H; L -» L')

by letting

^2 (n(x\z, z) mod 2) z, (35)

zeTL^L/(H)

for x e Tl(H), z g and extending it linearly to CW(7/;L) ®
CW(H;L L').

The map ®l,l' descends to a map

//BU.:HW(7/;L)®HW(//:L -> L') -* HW(H;L^ L').

The proof is again identical to the one used in [41] to show that the pair of pants

product descends to the Floer homology. Taking direct limits we obtain a product

H@l,L' : HW(M, L) <g> HW(M, L -> L') —» HW(M, L -> L').

We will use the notation H®l,l'(f), m) h * m.
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In order to conclude that HW(M;L —> L') is a module over the algebra

HW(M; L) we must prove that:

1} * (mi + 11x2) 1) * mi + h * tri2 for all h e HW(H \L)
and mi,m2 e HW(H; L —>• L'),

(f)i + f)2) * tn hi * m + i)2 * nt for all hi, 62 e HW(//; L)
and m e HW(//;L -> L'),

(f)t * h2) * m hi * (hi * m) f°r a'l hi, h2 £ HW(//; L)
and m e HW(//; L —> L').

The first two properties follow from the linearity of //Bl.l'- The proof of the third

one is a cobordism argument identical to the one of [41, Chapter 5| that proves the

associativity of the triangle product An argument identical to one used to prove
Lemma 2.19 gives:

Lemma 2.22. The spectral numbers c are subadditive with respect to *.

3. Viterbo functoriality

The Viterbo transfer map on HW will be described. As first applications we
then deduce invariance properties under a graphical change of the boundary of the

Liouville domain in the completion.

3.1. The Viterbo transfer map on HW. The Viterbo transfer map was first
introduced as a map for symplectic homology in [46], see also [14,31], The analogous

map in wrapped Floer homology was studied by [3], see also [381. Our tbcus lies on

its compatibility with the action filtration.
Let M := {Ym,cl>m,Xm) be a Liouville domain and let j:W M be a

codimension 0 exact embedding of a Liouville domain W := (IV, u>w, Xw) into M,
i.e. j*Xm Xw- Let L0 and L\ be asymptotically conical exactLagrangians in M,
and assume L'0 := L0 fl W and L\ := L\ D W are asymptotically conical in W.

Additionally assume that L0 is also conical on M \ W and L \ satisfies the property

Ml\l' vanishes on the boundary 3(L \ L') 3L U 3L', and

one can write A| l\l> df, where / vanishes near 3L U 3L'.

We will call a Lagrangian with this property transfer admissible for the pair (M, W).
See [3] for a discussion of that condition and why the transfer map can in general not
be defined if one removes this condition.

We give the construction of the Viterbo transfer map as an asymptotical morphism
of filtered directed systems j(Lo, L\ ): HW(M, Lq —»• Lf) —> HW(VL, L'0 —> L'f).
More precisely we get lor a > K K{M, L0 —> Lj), defined in (25), homomorph-
isms

j\(Lo, L\)a:HWa(M, L0 -* L1) -> HWa(W,L'0 -> L\)
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that are compatible with the persistence morphisms La^.b, tor A" < a < b. Moreover,
the homomorphisms are functorial with respect to a composition of embeddings
W\ C W2 C M and the induced maps in the direct limit

J(Lo) T\(L0, L0): HW(M, Lq) -> HW(fL, L'0),

and 7i(L0,Li):HW(M,L0 —» Li) —» HW(fL, L'0 -» L\)

are compatible with the algebra and module structure, i.e.

j\(L0)(x * y) j\(L0)(x) * ji(L0)(y) (37)

and j\(Lo, L\)(x * z) j\(L0)(x) * j\(L0, L\)(z) (38)

for all x, y HW(M, L0) and z G HW(M, L0 -> Li).
We first give the definition of j\(L0, Lj). We may assume that (M, L0 -> Lj)

and (W, LJ, —> Lj) are regular. Otherwise we can perform the construction
considering suitable compactly supported Hamiltonian perturbations of L0 and L\.
LetiS := S(M, L0 -> L\)ll£{W, L'0 L\). We furthermore assume that actually
W C Mx2 for some r < 1, sufficiently close to 1. One can get the maps for general
W C M by an inverse limit.

First of all, for every R > 1 one can construct a compactly supported Hamiltonian

isotopy °n M, (t^f id, ifr := t/r^) that leaves L0 invariant and maps L\
to a Lagrangian Zf that is conical on (M \ Mr) U (Wr \ W) and that is transfer
admissible for the pair (Mr, Wr) as follows. Map L\ \ W by the Liouville flow
(<piogt)te[i,R] into Ar Mr \ Wr. Since L\ is conical near dW, we can extend

(L\ U(^i0g,(Li\fF)),e[i to a 1-parameter family of exact Lagrangians interpolating
between L\ and a Lagrangian Zf. Therefore we can choose a Hamiltonian isotopy
(x//tR)te[oj] in M that realizes this Lagrangian isotopy and is supported in M i

R \ Wx.

Since Zo is conical outside W, we can choose the isotopy to leave Lo invariant. We

can choose the isotopy such that (\// o Ç)*X RÇ*A, where Ç: L\ \ W M is the

embedding of L\ restricted to L\ \ W. The function

R. with Mx) \Mx)
)R,f\(t/r x), elsewhere

is a primitive of
We now carefully choose for every /i ^ S sufficiently large a step-shaped

Hamiltonian ///sitep on M. Let

k\v := min{/o(x) — f\(x) \ x G Lq (T L\ (T W},

where fi are the primitives of à|l(. i =0,1. Let k max{—kw, 0}. Let

K K (M, W, Lo —> L\) max{max{/o(x)-/i(x) | x G L0 n Lx n M \ W}, 0}.
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Choose a small e > 0. Let /i > K, /i £ -8, and let 8ß min{dist(/x, 8), /1 — K).
Choose R > (k + /r + 4e)/8ß.

.step

21* 21**
r r rw

<g** qj*

r rM

Figure 1.

We choose a smooth function Hßep: M —> E that only depends on the radial
coordinate r rw in (0, R) x dW and only on the radial coordinate r rM in

(rR, oo) x dM, and such that

—e,
d2H
dr

ifx g tCT

> 0,

/ir - /i,
"Tv(x) ={%£-< 0,

if x (r, y) G fL \ Wx,

ifx (r,y)e WzR\W,
if x (r,y) G WR \ WzR,

(R-l)H-e, if xeMzR\WR,
>0, ifx (r,y) G MR\MzR,

fir — ii, if x (r, y) e M \ Mr.

(39)

of//,*tep withWe divide the critical points of the action functional A := A slcp
1

^ ^
"u

respect to L0 and Lq into four classes: Intersections of L0 and L\ in Wr denoted

by 21*, Hamiltonian chords close to 3W denoted by 21**, intersections of L0 and Lf
in Mr \ WR denoted by 23*, and chords close to dWR and dMR denoted by 23**.
We can estimate the action values as follows.

A(x) > kw — > —,k — e, if x G 2t*, (40)

A(x) > —e > —k — e, ifx G 2l*r (41)

A(x) < RK -{(R-< -k - 3c, ifx G 23*, (42)

and .A(x) < (/x — dist(/r, 8))R — ((R — l)/r — e) < — k — 3e, if x G 23*? (43)

In (42) we use that /o(x) — fR(x) < KR for every x G 23*.
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Altogether we get that

A(x)>-k-, if x e 21 21* U 21**

and A(x) < -k - 3c, if x e 93 93* U 23**.

Hence there are no Floer trajectories from 23 to 21. So

CW^-2e'+oo\H^;L0 -» If) CW,(//^)/CWl-00'-^2e)(//^)

generated by elements of action larger then —k — 2e is a chain complex, and the

projection CW( //j]tep) -> CW(^2f'+°°'(//;jep) induces a map

HW(//^tep; I0 Lf -> HW(^2£'+oo)(//^ep; I0 -> If) (44)

on homology.
Let now Hff be a non-degenerate admissible Hamiltonian with respect to M

on M with slope /r, and Ha non-degenerate admissible Hamiltonian with respect

to W on W with slope /r. We have the isomorphisms

HW(//f ;L0 —> L,) -5- HW«^"1)*//^ ;I0 -* If) 3- HW(//*tep; I„ -» If),
(45)

and

HW(-fc-2e,+oo)(//steP; £o HW(//f; Lq -+ L', (46)

Here, the second isomorphism in (45) holds, since (\L—1 )* Hff and H^ep

can be connected by a compactly supported homotopy of Hamiltonians. To

get the isomorphism in (46) we choose a conical almost complex structure

near dW. By [3, Lemma 7.2], see also [38, Appendix D| there are no Floer

trajectories with asymptotics in W that leave W and hence the differential of
CW(-fc-2e'+°°)(//^tepj £0 _> Lf only counts Floer trajectories that map into W.

Combining (44), (45), and (46) gives maps

,/V HW(//f ; L0 -> LO HW(H*; L'0 L\) (47)

for any [i > K, /x ^ S. The isomorphisms (44), (45), and (46) are all compatible
with Floer continuation maps induced by monotone increasing homotopies of the

corresponding Hamiltonians. We do not give the details here and refer the reader

to [38, Theorem 9.8]. We thus get commutative diagrams:

HW(//^; L0 Li) HW(H*: L'0 -> Lj

I Lnjr.nir

HW(//f;L0 -> L\) HW(F/f ;L'0 -> Lj)
for any rj > /x > K, /r, rj fi S.
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Hence, for any a > K K(M,L0 —> L\) > K one obtains, because of the

construction in Section 2.2.4, a map

j\(Lo, Li)a:HWa(M, L0 Lx) -> HWa(lF, L'0 -> Lj)
induced in the direct limit taken over all non-degenerate admissible Hamiltonians
with slope pt, K < pt < a. By the construction these maps are compatible with the

persistence morphisms for K < a < h.

By a standard compactness-cobordism argument, and by using once again the

non-escaping result [3, Lemma 7.2] one can show the compatibility of the algebra
and module structure with the Viterbo transfer maps (37) and (38); for this see [38].

3.2. Change of the contact hypersurface 3M. From the Viterbo transfer one can
deduce invariance properties of HW under a graphical change of 3M in M. This
will be used to bound the growth rate of Reeb chords for different choices of contact
forms on (3M, %m)- Let M be a Liouville domain with asymptotically conical exact

Lagrangians L0 and L\ as above, let 0 < e < 1.

Lemma 3.1. Assume that Li, i 0,1, are conical on M \ Me. Then, for a > K
K(M, Lo —> L\), we have

(pa 1

HWa(Mf, L0 n Me Lx n Me) s HW?a(M,Lo -* Lx).

Moreover, the Viterbo map

HWa(A/,L0 -> Lx) HW"(Mf, L0 n Me ^ Lx n Me)

composed with (pa is the persistence morphism

HWa(M, L0 -> L\) HWea(M, L0 -> Lx).

Proof. Note, that adding a constant to any Hamiltonian H or applying a compactly
supported deformation to H does not change its Floer homology. Let H be an

admissible Hamiltonian with slope p. with respect to Me. Then H — p,(^ — 1) is an

admissible Hamiltonian with slope ^/x with respect to M. Moreover, if one chooses

a cofinal sequence of Hamiltonians of the first kind with slopes K < pt < a, there are

compactly supported homotopies of the shifted Hamiltonians to a cofinal sequence
with respect to M with slopes ^/x. This gives the first statement.

Observe, that both the Viterbo transfer map in the present situation and the

persistence morphisms are given by a continuation map induced by a monotone
homotopy. One can apply a usual chain homotopy argument in Floer homology to
see the second statement.

Let f: 9M —[1, oo) be a smooth function. Recall that

M\ — M \ {(r, x) I r > f(x), x 6 3M}.

Let £ maxgjv/ f.
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Lemma 3.2. The filtered directed systems

(HW(M, Lo LO)ûS(0>oo) and (HWû(Mt, L0 n M, -> L0 n Mf))fle(0lOO)

are (£, 1 )-interleaved.

Proof. The morphisms of filtered directed systems / and g, with

/a:HWa(M,L0 -> L\) ^ HWÇa(Mç,L0 L,)
-> HWfa(Mf, L0 n Mf, Li n Mf)

and

ga:HWa(Mf,L0 n Mf,L! n Mf) -> HWa(M,L0 -> Lx),

given by Viterbo maps, yield by functoriality of Viterbo maps and Lemma 3.1 the

l)-interleaving of

L0 ^ L1))ae(0;Oo) and (HWa(Mf, L0rWf ^ L0nMf))a6(0>oo).

4. From algebraic growth to positivity of topological entropy

In this section we prove Theorem 1.7.

4.1. Legendrian isotopies, transfer admissible Lagrangians and growth. We start

by introducing some notation. Let M (Y, at, A) be a Liouville domain and L be an

asymptotically conical exact Lagrangian disk in M. We denote by A the Legendrian
sphere 3L. Letting S := 3M and am '= A|s be the contact form induced by M
on S we assume that (am, A —> A) is regular. As usually, we denote by the

contact structure ker am
Our approach to prove invariance of the exponential symplectic growth of HW

differs from the ones developed by [30,33], It makes extensive use of the module
and algebra structures that exist on HW. We will need the following:

Definition 4.1. Let /i > 0 and A0 be a Legendrian sphere in (£,£m)- Assume
that Ai is Legendrian isotopic to A0. We say that Ai is fi-close to A0 in the
C3-sense if there exists a Legendrian isotopy 9: [—1, 1] x Sn~l -* (E,£m) from A0
to A] whose C3-norm is < /x, and which is stationary in the first coordinate outside

a compact subset of (—1, 1).

Recall that the symplectisation of a contact form a on is the exact

symplectic manifold ((0, +oo) x Y,.dra,ra) where r denotes the first coordinate
in (0, Too) x £. The following lemma is essentially due to Chantraine [13] and is

proved in Appendix B.
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Lemma 4.2. Fix a constant e > 0, a contact form a on (E,£), a Legendrian A0
in V. £), and a tubular neighbourhood U(Aq) of Ao in S. Then there exists 8 > 0

such that if A i is 8-close to A0 in the C3 -sense, then there exist exact Lagrangian
cobordisms f~ from Ai to A o and IT+ from A0 to A\ in the symplectization of a
satisfying:

(a) f~ is conical outside [1 — §, 1 — |] x S,

(b) f+ is conical outside [l + |,l + |]xS,
(c) the projections of IT+ and f~ to S are completely contained in U(Aq),

(d) the primitives f± of (ra)\%± have support in [1 — |, 1 — |] x S and [1 +
1 + |] x S, respectively, and |/± |co < e.

Moreover iff is the exact Lagrangian cylinder obtained by gluing £+ C\ [ 1. +oo) x E)
on top of f~ n ((0, 1] x X) we have that

(e) IT is Hamiltonian isotopic to M x Ao in the symplectization of ot, and
the Hamiltonian producing the isotopy can be taken to have support in

[1 — f, 1 + §] x S.

We now fixe > 0 such that L is conical on M \ M\-2e. We choose a Legendrian
tubular neighbourhood K(A) of A on (£, %m)- For these choices of e > 0 and K(A),
we choose <5i > 0 given by Lemma 4.2.

We then choose a Legendrian sphere Ai which is 8\-close to A in the C3 sense,
is disjoint from A, and satisfies that (oim. A -> Ai) is regular.

It follows from Lemma 4.2 that there exists an exact Lagrangian cobordism f~
from A i to A in the symplectization of ocm which is conical outside [1 — §.1 —f]x£.
We can then glue £ n [1 — |, 1] x S to L n to obtain an exact Lagrangian
submanifold L\ in M. The Lagrangian L\ is an exact filling of A i. Let fr be the

primitive of À |l which vanishes in A. Using Lemma 4.2 we can glue f~ to the

restriction of ft to L IT Mj_f to obtain primitive of //,, of A |/,, which vanishes

in Ai.
Because of the control given by Lemma 4.2 on the function |/~|c<> on f~, and

the facts that L and L\ coincide on M1_$j and ft vanishes onLn(M\M,_|)we
have

K(M, L —> Li) < e. (48)

By Lemma 4.2(d) the Lagrangian L i is transfer admissible for the pair (M, M\-e).
Combining this with (48) we obtain for each a > e > K(M, L L\ a Viterbo map

4>!_:HWa{M,L^ Lx) -> HWa(M1_e,L),

where to simplify notation we keep denoting by L and L \ the restrictions of L and L \
to M\-t. Passing to the direct limit we obtain a map

4Le-:HW(M,L -> Lx) -> HW(Mi_e, L).
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By Lemma 4.2 we also have an exact Lagrangian cobordism X+ from A to A],
which is diffeomorphic to M x Sn_1, and is conical over A for r > 1 + | and conical

over Aj for r < 1 4- By gluing X+ fl ([1,1 + e] x S) to Lx we obtain an exact

Lagrangian L in Mx+e. By Lemma 4.2 (d) the Lagrangian L is transfer admissible
for the pair (Mi+e, M). By gluing f+ to ftx we obtain a primitive of A \^.
Reasoning as in the proof of (48) one obtains

K(M1+e, L -> L) < (49)

We thus obtain for each a > e a Viterbo map

Vax+:HWa(M1+e,L -» L) -> HWa(M, L -> Lx),

where by abuse of notation we denote by L the conical extension of L to Mi+e.
Passing to the direct limit we obtain a map

vl>£+:HW(M1+e,L -* Z) -> HW(M, L —> Lx).

By Lemma 4.2, L is Hamiltonian isotopic to the conical extension of L to Mi+e,
which we will still denote by L, for a Hamiltonian function which vanishes outside

M1+é \ Ml_(. A continuation argument then implies that for each admissible

Hamiltonian H that is regular for both (Mx+e,L -> L) and (M\+e,L) and has

slope > we have that HW(H,L —> L) and HW(H,L) are isomorphic. By
Section 2.2.4 we conclude that for each a > e the wrapped Floer homologies

HWa(M1+e, L -» L) and HWö(M1+f, L) are isomorphic. (50)

This induces an isomorphism <L: HW(Mi+e, L) —> HW(M1+e, L L).
Since L is conical on M\+ \ M\-e, M \ M\-t and A/i+e \ M, we have transfer

maps:

Vf: HW(Mi+0 L) -> HW(M,_e, L),
4/^:HW(AL,L) -> HW(Mi_e,L),

HW(M1+f, L) -> HW(M, L).

We notice that the contact forms induced by A on {1 - e} x S and {1 + e} x S
are and respectively. Thus, as explained in Lemma 3.1, the maps
and are induced by asymptotic isomorphisms of f.d.s. For this reason we will
denote by At the algebras HW(M|+C, /.), HW(A/i_e,L) and HW(M,L). More
generally, the same reasoning shows that for any £ > — e the algebra HW(M)+ç, L)
is isomorphic to HW(A/1_e, L) by an asymptotic isomorphism.

The homologies HW(M, L Li), HW(Mi+e,L -> L), and HW(M!_e, L)
are modules over the algebras HW(M,L), HW(Mi+f,L), and HW(Mi_e,L),
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respectively: they are therefore /t^-modules. By this discussion and (38) in Section 3

the maps <f>, and are /l^-module homomorphisms.
By functoriality of continuation maps, the diagram:

HW(M1+e,L^Z) — HW(M1+e,L)

Vx-°Vx+

HW(Mi_e, L) 4-^— HW{Mx-e,L)

is commutative. It thus follows that the map *If£- o vp^+ is an Al-module
isomorphism. We thus conclude that 4^+ is injective. Let I/, be the unit
in HW(Mi+e,L). As O is an /l^-module isomorphism and is an injective
/li-module homomorphism we know that the element := o O(Il) in

HW(M, L —> L\) is a stretching element. We have thus proved the following:

Lemma 4.3. The wrapped Floer homology HW(M, L —v L i is a stretched module

over HW(M, L). Itfollowsfrom Lemma 2.9, Lemma 2.19, and Lemma 2.22 that

rsymp(AL L —>• Li) > rsymp(M, L). (51)

Recall that our Legendrian sphere A | was chosen disjoint from A. It follows
that intersections of the Lagrangian disk L\ and L are contained in M\-c. By a

small Hamiltonian isotopy supported inside Ml_j we can perturb L\ to an exact

Lagrangian L\ that is transverse to L. We take the perturbation to be small enough
so that there is a primitive fjj of À \L/ which vanishes in 3L\ and satisfies

K(MUL -> L[) < e. (52)

A continuation argument identical to the one used in the proof of (50) implies that for
a > e the homologies HWa(M, L —> L\) and HW"(M, L -> L\) are isomorphic.

We let

Cregium PI L). (53)

This number will be useful later for estimates of the growth of the number of Reeb

chords.
We now consider a tubular neighbourhood K(Ai) which does not intersect A.

By Lemma 4.2 there exists <52 > 0 such that if a Legendrian sphere A2 is 32-close

to A] in the C3-sense, then there exist exact Lagrangian cobordisms from A2
to Ai, and <£i^2. from Ai to A2, both contained in the symplectization of «m- It
follows from Lemma 4.2 that by taking 82 > 0 smaller, if necessary, we can guarantee
that

• .£2^1 is conical outside [1 — 1 — |] x S,

• £1^2 is conical outside [1 + |, 1 + |] x E,
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• the projections of d£2->i and X\^,2 to S are contained in t((Ai),
• there exist primitives /2^i and /i->2 of raM\x2^\ and |x,^2, respectively,

with support in [1 — 1 — |] x S and [1 + |, 1 + |] x S, respectively, such that

I/2-Hle" < e antl I./W2I < G

• the exact Lagrangian X 1^1 in the symplectisation of am obtained by gluing
X\^.2 H ([1, +00) x S) on top of X2-+i D ((0,1] x S) is Hamiltonian isotopic to

(0, +00) x Ai for an isotopy which is stationary outside (1 — |, 1 + |) x S.

It is clear that one can glue /i->2 and /2->i to obtain a primitive f\~+\ of rotM\x1_+l
which satisfies |/i^i| < e.

We then glue X2^-\ n ([1 ~ f, 1] x £) on top of L\ C to obtain an

asymptotically conical exact Lagrangian L2 with L2 D 9M A2. Let L2 be the

exact Lagrangian submanifold obtained from gluing X2^.i fl ([1 — 1] x E) on top
of L\ C W|_f. It is clear that L'2 and L2 are Hamiltonian isotopic for a Hamiltonian
which has support contained in A/j_g.

Notice that the intersection points of L2 fl L are the same as the intersection

points of L\ fl L. We thus conclude:

#(L'2 D L) Cregium- (54)

We can glue /2_>i to the restriction of /l, to Li fl Mi_t to obtain a primitive fi2
of A |l2 such that

K(M, L —>• L2) < e. (55)

Similarly, one obtains a primitive fij of A \L> such that

K(M,L ^ L'2) <e. (56)

Assuming that («m, A -» A2) is regular the Lagrangian L2 is admissible for the

pair (M, We then obtain for each a > e a transfer map

vfo^iHWa(M,L-> L2) -> HWa(M^^L -> L,).

These induce a map

4>x2^, : HW(M, L -> L2) -> HW^.g, L -+ Lj).

By (55) and (56) and the fact that L2 and Lj are Hamiltonian isotopic for an

isotopy supported inside Mx_s., we can apply the reasoning used to prove (50) to
show that for each a > e

HWa(M, L -+ L2) and HW"(M, L —y L2) are isomorphic. (57)

Gluing i—>2 fl ([1,1 + |] x S) on top of L2 C M we obtain an asymptotically
conical LagrangianLi in M] + g which is transfer admissible for the pair(A/1 + g, M).
Reasoning as in the proof of (48) we obtain that

K(M1 + |,L —» Li) < e. (58)
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We thus get for each a > e a transfer map

VaZx^.\Wa{Ml+%,L -> Lj) -* HWÛ(M, L -> L2),

and in the direct limit a homomorphism

Zj) -» HW(M, L -> L2).

We hnally glue Z+ D ([1 + |, 1 4-e] x £) on top of Li to obtain an asymptotically
conical exact Lagrangian Z on M\+. The Lagrangian Z is an exact filling of A.
It is clear from Lemma 4.2 that Z is Hamiltonian isotopic to L, for a Hamiltonian
which has support contained in M1+e \ Reasoning as in the proof of (48)
we obtain a primitive /z of A |z such that

K(Mi+e,L -* Z) < e. (59)

We claim that for every a > e there exists an isomorphism

z:HWa(M1+f, L) -> HWa(Mi+e, L -> Z). (60)

To establish this claim we first notice that if H is a Hamiltonian in3 JCreg(M\+,
L ^ L) n J(reg(A7|+e, L) it follows from the fact that Z is Hamiltonian isotopic
to L for a Hamiltonian which has support contained in M1+1 \ e that there
exists a continuation isomorphism

L z: HW(//, L) -* HW(W, L -> Z).

Equation (60) then follows from combining these isomorphisms and the identifications

HWa(M1+e,L) lim^flHW(//;L)
and HWa(Mi+e, L) s lim Ä^flHW(//; L -* Z)

for « > c > max{K(M1+e,L —* L): K(M\+e, L)} which were established

in (28). The maps ~ are compatible with the persistence morphisms of the

f.d.s. HW(Mi+e, L) and HW(M1+f, L —» L) and induce an asymptotic morphism
between them. On the direct limit we get a map

4iZ:HW(M1+f,L)^HW(M1+f,L^ Z). (61)

The succession of exact Lagrangian submanifolds we constructed is schematically
presented in Figure 2.

3By [3. Lemma 8.11 any admissible Hamiltonian in Mi+e can be perturbed to one in

Jfrcg(A/i _|_f, L —> L) n J(rcg(M] L).



602 M. R. R. Alves and M. Meiwes CMH

< L 2

-L\ / !"
L X r ^ X < Lh ^ : : ; 1

H >•

l-c 1-f 1 1+f \+ r

Figure 2.

Since Z is transfer admissible for (A/]+e, M1+j) we also obtain for each a >

e > K(Mi+6, L -> Z) a transfer map

4>*+:HW°(A/1+e,L -» Z) -> HWfl(M1 + |,L -> Zi).

This induces a homomorphism

d>^+:HW(M1+e,L -> Z) -> HW(M1 + f, L -> Lx).

Analogously, it follows from Lemma 4.2 that L i is transfer admissible for the pair

a map

(Mt_£, M i_e), which gives us for each a>> K (M, L-±L\)> K(Mx_e,L-+LX)

-* L,) -> HWa(M,_e,L).

These homomorphisms induce a homomorphism

$x-:HW(Mh,L^ L0 ->HW(M!_e,L).

The following lemma will be important for the study of the growth rate of
HW(M, L -> L2).

Lemma 4.4. For 0 < <51 and 0 < <52 chosen as above we have that the spectral
number of L j(\/,) is < e.

Proof. We know from [38] that c(1l) 0. This implies that for every a > 0 the

element 1^ is in the image of ta: HWa(Mi+e, L) —> HW(M]+6, L).
Let a > c. As remarked above, the maps +" - are compatible with the persistence

morphisms of HW(M]+e,L) and HW(Mi+e,L —> L), which implies that the

diagram:
_

HWa(Ml+e,L) —HWa(M1+e,L - Z)

HW(M1+e,L) HW(M1+f, L -> L)
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is commutative. It follows that *I>L x^l) is in the image of

(a:HWö(M1+f,L -> Z) -> HW(M1+(, L —> L),

from what we obtain that clyHL ^(11)) 5 Since this is true for every a > e we
conclude that c(^L £(1l)) <

By our discussion so far we have transfer maps

(|) _i_

HW(Mi+e,L -> L) ——>• HW(M1+|, L —^ Li) HW{M,L->L2)

HW(Mi_e, L) HW(Mj_|,L -> L{)

Using the fact that L is Hamiltonian isotopic to L by a Hamiltonian with support
contained in M1 + t \ Mx_<l and reasoning identically as in the proof of Lemma 4.3

we conclude that the composition d>£- o o ° ^£+ ° l's induced

by an asymptotic isomorphism from HW(AL1+e, L) to HW(Mi_e, L). It follows that

^£,^2 ° OX+:HW(M1+,L -> Z) -> HW(M, L -> L2)

is an injective A^-module homomorphism. We define

>nx2 Vxi^2 °

The element m/,2 e HW(M.L —> L2) is stretching since it is the image of a

stretching element by an injective A /,-module homomorphism.
By the behaviour of spectral numbers under transfer maps, combined with (59)

and Lemma 4.4 we conclude that

c(rriL2) < max{c(4>L £(1l)), K(Ml+e, L -> Z)} < e. (62)

We denote by VaM (A i) the set of Legendrian spheres A2 in the same Legendrian
isotopy class of Ai that are <52-close to A! is the C3-sense. Let (AU c
VaM (A i be the subset of these A2 for which, in addition, (a«, A -> A2) is regular.
We denote by L2 the filling of A2 constructed above. Our discussion so far implies
the following

Proposition 4.5. The family (HW(M,L Li))a2gvX (A,) of Ax-modules is

uniformly stretched. It follows from Lemma 2.12, Lemma 2.19, and Lemma 2.22 that

L2) " rSymP^'L>- (63>

Proof. The proposition follows directly from the fact that the element m x2 HW( M,
L —> L2) is stretching and from (62).
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Let a be a contact form on (S, %m)- We assume that the function fa defined by
oi faOiM satisfies \a > I. We thus have the inclusions Mf(ï C Mmaxfa and M c M\a.

We denote by VMreg(A | c 'V7^ (A j the set of A2 G Vum (A i) such that

(a, A -> A2) is regular.
Let W+ := MmaxfQ. \ Mfo, and := \ M. Since the Lagrangians L\

and L2 are conical in Mmaxfa, \M we obtain for elements A2 G V"( Erc2) A j transfer

maps

IV+,Z.^Z.9 ®W~ ,L-^Lo
HW(Mmaxfa, L ^ L2) -> HW(Mfff, L -> L2) » HWfM, L-> L2).

By Lemma 3.2, the composition <bw-,L^L2 ° <&w+,l^>l2's induced by asymptotic

morphisms, andthef.d.s. HW(Mf[ï, L —> L2)andHW(M,L —> L2) are (max fa, 1)-
interleaved.

The following proposition then follows from combining this observation and

Proposition 4.5.

Proposition 4.6. Let a be a contactform on and assume that the function
defined by a =\a<x m is > I. Then, thefamily off d.s. (I IW(/V/f(y ,L^L2)) A e-ya~rc8(A2 of v 1

satisfies

-* L2) > ITTTTl "• (64i-iSymp ,1# w rs^P(M,L)
A2eV«Vg(A1)( 2) ~ rnaxf«

A reasoning identical to the one used to establish (57) shows that for every
A2 g V"MTee(A\ and for the exact filling //2 of A2 constructed above we have

HW° A/ta, L -> L2) and HWfl(Mfff, L -» L'2) are isomorphic. (65)

Combining this with Proposition 4.6 we have:

Corollary 4.7. Let a be a contactform on (E, and assume that thefunction fa

defined by a m is > 1. Then, thefamily offid.s. (HWfMf^, L^- L'2))A \2 Of^ v 1 /
satisfies

(M L Lfi- pSymP(M'L)
r66^L2)_

max L ' (66)
A26V^(a,)v ^ " max fa

a Jcg(A ; the exact filling L'2 <

#(l'2 n L) — ^regium- (67)

Recall that for every A2 G V"MrLg( A i the exact filling L2 of A2 satisfies

Now, given a Legendrian A2 G V^^fAj) let N£(A -* A2) #T£^A2(a).
We define

Na(A W^~reg(Ai)) := inf {N«(A A2)}. (68)
A26V^rct-(A,)
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Let a > e. By the results of Section 2.2.4 there exists a Hamiltonian Ha G

J(re«(M„, L > L'2) with slope < a such that:

(p.l) all elements in 3~l-+l'2 (Ha) have action < a,

(p.2) there is a bijection between TL^L>fiHa) and Ta^.At(û') U (L D L'2),

(p.3) the map jf^:HW(Ha,L -> L2) -> HWa(M/n,L -> L'2) is isomorphism.

Combining (p.3) and Corollary 4.7 we obtain that

'°g inf A2e<7;c!J(A,) 'dim CW(//a• L L2)}) rsymp(M, L)
lim sup — > (69)
a—>+00 ^ max fa

Since #(L CI L'2) Cregium it follows from (p.2) that dim(CWa(7/a, L L'2)) —

Cregium N£(A -> A2). This together with (69) gives:

Corollary 4.8. The sequence ofnumbers N£(A -> VMreg(Ai)) satisfies

log N£(A -> Vaa"reg(A 1)) rsymp(M, L)
hmsup — > (70)
a—>-+00 ^ max fa

This corollary will be crucial for the estimate of the topological entropy of (j>a

proved next.

4.2. From the growth of Reeb chords to topological entropy. Let a be a contact
form on a contact manifold (E, £), and Xa be its Reeb vector field. Recall that a

Riemannian metric g on X is said to be compatible with a if g(Xa, Xa) 1 and Xa
is orthogonal to £ with respect to g.

We proceed by fixing some more notation. We denote by O" (p) the n-dimensional
disk of radius p > 0 around the origin. We endow D"(p) with the Euclidean metric,
and consider on TfW(p) W(p) x S"_1 the contact form aeut associated to the

Euclidean metric. For each zeD" (p) the sphere S"~l := {z J- x Sn~l is Legendrian
in (B"(p) x 5"_1, kercteuc)- Let ground be the metric with constant curvature 1

on Sn~l and geuc be the Euclidean metric on D)"(p). The metric g geuc © ground

on B"(p) x Sn~l is compatible with the contact form aeuc\ see [12].

Proposition 4.9. Let a be a contact form on E, |^/ and assume that we have

rsg(Mf<*> A) > 0. Then there exists a Riemannian metric g on (E, £m) adapted to
the a, such that

logVoÇ-^A)) Tsymp(M,L) Ahmsup > >0, (71)
f^+00 t max fa

where Vol" 1

is the (n — \)-dimensional volume with respect to g, and fa is the

function such that a faot{E,A).
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Proof. The proof will consist of several steps.

Step 1. It suffices to prove the proposition for all contact forms a tor which f„ > I.

Indeed assume that the proposition holds for all such contact forms.
Take a contact form a' on (£, %m)- For the contact form a := mj"( we have

fg mif^
/

> 1. By assumption there is a Riemannian metric g on £ compatible

with a and such that

log Vol^-1 (01(A)) Tsymp(M, L)
hmsup > (72)
t —^~Too f max fg

The Riemannian metric g' := (min V)2g is compatible with a'. A simple

computation shows that

iogVoi"r1(0£,(A)) r*ymP(M,L)
lim sup >
t^+oo t max fa>

as claimed. We thus fix from now on a contact form a on (£, Çm) with \a > 1.

Step 2. A tubular neighbourhood of A i and construction of the metric g. It
follows from the Legendrian neighbourhood theorem (see [29, Proposition 43.18])
that there exists a tubular neighbourhood "V(Ai) of (Ai) and a contactomorphism
T: (V(Ai), %m) —* (©"(p) x Sn~l, keraeuc) that satisfies

T*aeuc a, (73)

T(A1) {0}x5""1. (74)

We extend the Riemannian metric T*g, which is compatible with a on V(Ai),
to a metric g on £ which is compatible with the contact form a.

After shrinking the neighbourhood V(Ai) and p > 0, we can assume that for

every z G D"(p) the Legendrian Az := T-1 (jzj x .V"-1 is in the neighbourhood

yaM (A i) constructed in Section 4.1.

Step 3. For each a > 0 we define the map Ff\ Ax [0, a\ > £ by

F^(qj)=4>ta(q). (75)

Let Cyl^(A) be the image Ff{K x [0,«]). We want to estimate from below the

«-dimensional volume Vol^(Cyl^(A)) of Cyl^(A) with respect to the Riemannian

metric g. For this we define 23£(A) := T(Cyl£(A) IT V(Ai)). We have

Vol£(Cyl£(A)) > Vol^(Cyl^(A) n *V(A1)) Volf(®2(A)). (76)

Let II : D" (p) x .S'""1 > D" (p) be the projection to the first coordinate. Applying
Sard's theorem to the map

n O T O FI ({a} X A) n (F^r1(V(A1)) -* D"(p)



Vol. 94(2019) Dynamically exotic contact spheres in dimensions > 7 607

we conclude that the set D"(p) \ n o T(0^(A)) is an open set of full Lebesgue

measure in D"(p). We define the set 112(A) c D"(p) \ n o T(^(A)) by the

property
• z G 112 (A) if all a-Reeb chords from A to Az with length < a are transverse.

The proof of the next lemma is identical to the one of [7, Lemma 4].

Lemma 4.10. The set U£(A) is an open subset o/D"(p) offull Lebesgue measure.

The set U£(A) C 112(A) of elements z G 112(A) such that Az G V"Mri?(A i is a

dense subset offull Lebesgue measure in 112(A).

Step 4. A volume estimate. The function ha:ii^( A) —» [0, +oo) defined by ha(z) \ —

#(Ta^a=(oi)) is locally constant on il^(A) since it is continuous and takes only
integer values.

We define 912(A) := FT^i^A)) n «2(A). Since 912(A) C «2(A) we have

Vol-(«2 (A)) > Vol-(912(A)).

As the map II:D"(p) x S""-1 —> ED"(p) is a Riemannian submersion we have that

Vol-(912(A)) > Voisin(912(A))),

where Vol^ (n(«2 (A))) is computed with multiplicities. If an open set is

covered k-times by LI:912(A) -> 112(A), then its volume contributes k-times to

VolLc(nWA)))-
For each z G H2(A) the number of times 11:912(A) —>• 112(A) covers z is

ha(z) #(Ta^az(oi)). We thus obtain

V°lLc(n(^2(A))) f ha(z)dvolgcuc, (77)
Jits (A)

where r/volgcuc is the volume form generated by geuc on D"(p).
Since r'ymp(-J|/'L) > 0, we can fix 0 < q < ft follows from

max 1a ' ' max fa
Corollary 4.8 that there exists a sequence aj +oo such that ha> (z) > eva>

for all z G 1(2' (A). Since Ü27 (A) is dense in ll21 (A) and ha> is locally constant

on H2'(A) we obtain haJ (z) > e1,aj for all z e It27 (A) and all aj. With (76) it
follows that

Vol£(Cyl27 (A))>/„. ha> (z) Jvol^euc > e"a' up2 (78)
JUaJ (A)

for every aj.
Step 5. A Fubini type equality. We define g := (FA)*g. Then

Vol" (Cyl2(A)) [ dvo\g, (79)
JAx[0,a]
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where <7 voir, is the volume form associated to g. Since the metric g is adapted to the

contact form a the Reeb vector field has length 1 and is orthogonal to the Legendrian
spheres Ff(t, A) <j>'a( A) for every t e [0, a]. Letting '<), be the tangent vector field
on [0, a] x A associated to the first coordinate t e [0, a], and using the definition
of Ff, it follows that D(F£)dt Xa. Therefore dt has £-norm equal to 1 at every
point in [0, a] x A, and is orthogonal to the spheres {(} x A. We thus conclude that:

Vol" (Cyl^(A)) f dvo\g
»/Ax[0,ö]

(80)

J VoTfl({t} x A) dt J Vol^~1 {<pla(A)) dt,

where Vol| is the (n — l )-dimensional volume associated to g.

Step 6. End of the proof. To finish the proof we argue by contradiction and assume

that lim supf^+00
'°gV"'y < r]. In this case, there exist a0 > 0 and s > 0

such that for all t > aQ we have Vol"-1 (<j)'a A < et(r>~f:K Integrating both sides of
this inequality from 0 to a > a0 and invoking (80) we obtain

ea(ri-e) _ aotrç-s) rap
Vol"(Cyl£(A)) < +/ Volng~l(tit*))dt. (81)

t] — £ Jo

For a large enough the right hand side of (81) is smaller than eriatip2.
contradicting (78). We thus conclude that

log Vol"-1 (fla(F
hmsup >rj. (82)
f-*+oo I

Since this is valid for any t] < r the proof of the proposition is completed.

ProofofTheorem 1.7. From Proposition 4.9 and Yomdin's theorem (see (1)) it
follows that if T^M, L) ' 0, then for every contact form a on A. 7\j we
have

rsymP(M, l)
max(fa)

We then obtain Theorem 1.7 by combining (83) with the inequality

h top (fta) > —"TV- (83>

p(S)

from Lemma 2.21.
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5. Algebras in loop space homology

Let F be a compact manifold and fix a point q e V. We denote by Tlq( V) the

based loop space of F with basepoint in q, which is the space of continuous maps
from [0, 1] to F that map 0 and 1 to q.

The concatenation of based loops gives Qq(V) the structure of an //-space
(see [24]). More precisely, the concatenation induces the so-called Pontrjagin product
on the singular homology H* (Tlq (F)) of Q,q (V with Z2 coefficients. The Pontrjagin
product [ai] • [CI2] of two homology classes [a\], [«2] £ H*(f2?(V) is well known
to be associative. As it is distributive with respect to the vector space structure of

H*(^(F)), it makes H*(£2?(F)) into a ring. Because the homology H*(£29(F)) is

considered with coefficients in Z2 it actually has the structure of an algebra.

5.1. Relation between the algebra structure of the singular homology of loop
spaces and the algebra structures of the Floer homology of cotangent bundles.
Given a manifold F and q G V we denote by Lq c T*V the cotangent fibre over q.
The singular homology H^Li^CF)) of the based loop space f2?(F) is isomorphic to
the wrapped Floer homology HW(T* F, Lq)\ see Viterbo [46], Salamon-Weber [39]
and Abbondandolo-Schwarz [1] for different proofs.

The Floer homology HW(//g, Lq) is isomorphic to the wrapped Floer homology
HW(Lg) we use in this paper. The key point is that the Hamiltonian Hg is quadratic
in the fibres. This isomorphism is proven in [38], and it preserves the triangle product
and the spectral value of homology classes.

Let ^AS,q- H*(£29(F)) —> HW(T* F, Lq) be the isomorphism constructed in [1].
In [2] the authors proceed to study more properties of the map 4*AS,q They show

that 4>AS,q is also algebra isomorphism if we consider FL(G(/(F)) as an algebra with
the Pontrjagin product and HW(Hg,Lq) as an algebra with the triangle product.
Combining this with the isomorphism FIW(Hg,Lq) HW(Lç) we obtain the

following
Theorem 5.1 (Abbondandolo-Schwarz [2]). The singular homology H*(G(/(F))
and the wrapped Floer homology HW(L^) are isomorphic as algebras.

For simplicity we will still denote by 4>AS,q the isomorphism between H* (F2? F))
and HW(L?).

6. Topological operations

6.1. Subcritical surgery. Here we study the Viterbo transfer maps under subcritical
handle attachment in the situation that is sufficient for our purpose, that is we assume
that the Lagrangians do not intersect the handle.

Let IF (IV, co, X) be a Liouville domain, S dW, A|s a and £ kera.
We recall some notions using the terminology of [22, Section 2.5.2]. The form da
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endows £ with a natural conformai symplectic bundle structure. Let S be an isotropic
submanitbld of (S, £). We write TS1- for the sub-bundle of £ that is r/or-orthogonal
to TS. Because S is isotropic TS c TS-1. We can therefore write the normal bundle

of S in S as

rs/rs rs/£ © Ç/TS1- © TS±/TS.

The conformai symplectic normal bundle CSN(S) TS1 /TS has a natural

conformai symplectic structure via da. If S is a sphere, TS/£ © %/TS1 has a

trivialization. The following theorem is due to Weinstein.

Theorem 6.1 (|471). Let Sn be an isotropic sphere in S with a trivialization of
CSN(.S'). Then there is a Liouville domain M with an exact embedding W C M,
such that 3M is obtained from S by surgery on S.

The Liouville domain M is obtained by attaching an (n + 1 )-handle to W and the

Liouville vector field X can by chosen such that there is exactly one point p e M\W
where X vanishes. The integral lines of X that are asymptotic to p intersect X in S

and 3M in the co-core sphere B C 3M. (See [14,47] or [22, Chapter 6) for details.)
Let now L'0, L\ be two asymptotically conical exact Lagrangians in W whose

boundaries AJ, and A\ in S do not intersect S. Outside S the integral lines of the

Liouville vector field starting at 3 W intersect 3M and so the completed Lagrangians

L\ C M intersect 3A/. Moreover, L; L\ n M c M for i 0,1 are exact and

conical in the complement of W. We say that (M, L0, Li) is obtained by surgery
from (IT, If. L\).

As described in section 3 we get a Viterbo transfer map

j\{L0,Lx)-.WH(M,L0 -> L0 - HW (W, L'0 -> L\).

Assume that the isotropic sphere S has the property that there is no Reeb chord

from AJ, to S. If S is subcritical, i.e. dim(5) < n — I, this can be achieved by a

generic choice of S.

The following proposition was proved by Cieliebak [14] for symplectic homology.
The proof in our situation is analogous and even simpler. We give it here for the

convenience of the reader.

Proposition 6.2. The Viterbo transfer map in the direct limit,

J(L0, L\)\ HW(M, L0, L0 -> HW(IT, L'0, L\

is an isomorphism.

For the proof of Proposition 6.2 it is convenient to introduce the following weaker

form of interleaving of f.d.s. Let o : [0, oo) -> [0, oo) be a monotone increasing
function and V a filtered directed system. Analogously to the notation in 2.1.1 let

(F(<t), tt(o)) be given by

— Vo(t)t> — foj(.s).s^-CT(f)r and 7r[rr]j — tta(t)t
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If / is a morphism from V, n) to another f.d.s. we write f(o), f„(t)t for the

induced morphism with domain (K(rr), n(a)). Call two f.d.s. V, ny) and (W, nw)
weakly interleaved if there are morphisms /': V —> W(c>\ and g: W -> V(o2) for
monotone increasing functions oq, a2 > 1 such that

f(o2) o g nw[n\\ and g(oq) o / nv[n2\,

where cj\, and <r2 are suitably chosen. The fact that the map j\(L0, L i in Proposition

6.2 is an isomorphism will follow from a weak interleaving of the corresponding
f.d.s., which is in general not an interleaving. This is the reason why we cannot directly

prove lower bounds for Tsymp(M, L0 -> L\ in terms of rsymp(l/l/. L'0 > L\ and

this was originally our motivation to introduce the algebraic growth of wrapped Floer
homology.

r rM

1

B

\r^Mfh
JdW \ S

Figure 3.

ProofofProposition 6.2. Let U HW(M, Lo L\) and V HW( W. L'{) L'{).
We will construct a filtered directed system Q that is isomorphic to V and weakly
interleaved with U.

For convenience we may assume K(M,L0 -> L\) 0. Let S C dW be the

attaching sphere and B c dM be the co-core sphere. For a > 0, choose a tubular

neighbourhood Ua C dW of S such that there is no Reeb trajectory starting at A J,

that intersects Ua at a time less than a, and such that Uf, C Ua if« < h. Denote the

Liouville flow on M by tpt and let g: 3M \ B —(0,1] given by g(x) t, where t
is the unique number such that ((>\oèt{x) c- 3W. Note that g tends to 0 as v tends

to B. Define^ := {x e dM \ <P\IISg(x)(x) e dW\Ua}. Choose a family of smooth
functions fa: dM (0,1], a e (0, oo), with the property

fa\Na anpl for all x G dM, fa(x) is monotone decreasing in a.

Note that W C Mfh C
l

Mja, for h > a and dW \Ua C 3Mfa. Define

a(a) rnin3^ f Define Qa HWa(Mfa.L0 -> Li), where by abuse of notation

we write L(- instead of /., fl Mja, i =0,1. For a < b define jza^b \ Qa —>• Qf, as the
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composition of the Viterbo map HW"(Mfa, L0 —> L\) -> HWa(Mfh, L0 -> L\)
and the persistence map HWa(Mfh,L0 —> L\) -> HWè(Mfh, L0 -» L\). By
the commutativity of the Viterbo map with persistence maps and by functoriality of
the Viterbo map it follows that na^,c Jtb->c ° for a < b < c, and hence

(Q,jv) is a filtered directed system. Furthermore, (j>: U -> Q, with cj)a: HWa(M) ->
HWa(Mfa) is a morphism of f.d.s. We define Q -» f/fo) by the Viterbo transfer

HWff(M/u) —> HWa(Afmin/fl) HWa^'a(M). It is clear that (<p, xfr) is a weak

interleaving of U and Q.
It remains to show that Q and V are isomorphic. Let a > 0. Assume that L0

and L\ are conical in the complement of Wi. Let Hß be an admissible Hamiltonian

with slope /z with respect to W±. Consider a Hamiltonian Kß such that

It follows that Kß(x) 2fir + b, for some be M, where x is written in the

coordinates (r, y) (1, oo) x dW \ Ua. Hence we can assume additionally that

By definition of Ua, Aand Aku have the same critical points, and so it follows
from [3, Lemma 7.2] that we actually have HW(^) HW(Hß). On the other
hand Kß — ^/z is admissible with respect to Mfa with slope 2/z. One concludes,

reasoning as in Lemma 3.1, that

which is, by Lemma 3.1, isomorphic to HWa(fL, L'0 -> L\) Va. That this
identification respects the persistence morphisms of Q and V is again deduced from
the functoriality of the Viterbo maps and the fact that the Viterbo maps are themselves

morphisms of filtered directed systems. Denote the isomorphism from Q to V by r.
We have obtained a weak interleaving (t o 0, i/r o r-1). Moreover to </> j, by
construction.

6.2. Plumbing. Let Q\ and Q2 be closed orientable «-dimensional manifolds. We

let D* Qi be the unit cotangent bundle of Qj. We choose balls /fi C Qi in each Qi.
The plumbing N of D* Q\ and D* Q2 is obtained by identifying D* B\ and D* B2

via a symplectomorphism that swaps the momentum and position coordinates of
these manifolds; see [4, 22] for the details. There are obvious embeddings of
D*{Qi \ B\) and D*(Q2 \ B2) into N. It is shown in [4, Section 4] that N
admits a Liouville structure which coincides with those of D*(Q, \ Bi) on the image
of these embeddings. This implies that for points q\ e Q\ \ B\ the cotangent disc
fibre Lgi over q\ survives as a conical exact Lagrangian in the Liouville domain N.

Kß(x)=Hß(x), if x £ W3.

Kß(x) =Hß(x), if x (r, y) e (0, +00) x dW \ Ua.

(84)

(85)

Kß(x) =2/ir + b, where x (r, y) e (L 00) x dMfa. (86)

Qa=UWa(Mfa,Lo^ Hwia(IT, ,L'0 -> L\)
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This construction can be generalised in the following way. Let {Qi | 1 < i < k)
be a finite collection of orientable «-dimensional manifolds. Let T be a tree with k
vertices and use a bijection to associate to each vertex a manifold Q,. For each edge rj

leaving the "vertex" Qi we choose an embedded open ball BQi]) in Qj. We assume
that these balls are chosen to be disjoint and do not cover Qi. For all i ^ j and

every edge rj connecting Qi and Q j (there can be at most one such edge as T is a

tree) we identify D*(B{(r/)) and D*(Bj(rj)) by the recipe explained in the previous
paragraph. The resulting manifold N can be given a Liouville structure as explained
in [4, Section 4] and [22], Let Q\ be the complement of the "edge balls" in Q1, and

q i e Q i. In [4, Section 4] the following result is proved.

Theorem 6.3 ([4]). There exists an injective algebra homomorphismfrom the group
algebra Jj2[ni(Qi)\ toYlW(N, LqQ.

In fact the injective algebra homomorphism obtained in [4] is for the respective
homologies with Z coefficients, and applying the Universal Coefficient Theorem one
obtains the homomorphism mentioned above. Thus if jti(Öi) grows exponentially
then HW(A, Lqi has exponential algebraic growth; see Section 7.1.

ProofofProposition 1.5. Part (A) follows from Proposition 6.2 and Part (B) follows
from Theorem 6.3.

7. Construction of contact structures with positive entropy

In this section we prove Theorem 1.1 and Theorem 1.2.

7.1. Preliminaries. Let Q be a closed connected smooth manifold and g a Riemann-
ian metric on Q. Let (D* Q, Ageo) c (T* Q, Ageo) be the unit disk bundle with respect
to the Riemannian metric g where Ageo is the canonical Liouville form on T*Q. By
Theorem 5.1 of Abbondandolo and Schwarz the map

is an algebra isomorphism. It is well known that there is an algebra isomorphism

Composing these two maps we obtain an injective algebra homomorphism

T>AS,gi : H*(fi9l (Q)) -> HW(D*gQ,Lq] (87)

^:Z2[n1(Q,q1)]^U0(Qqi(Q)). (88)

<E>: Z2[7Ti((7, <7i)] -> HW(Z)*<2, Lqi (89)

For a finitely generated group G and a finite set o of generators of G, let f0(G)
be the usual exponential growth of the group G with respect to the set ct; see [16,
Section VI.C]. To a finite set a of generators of tx \(Q. q \), we associate the finite
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set S C Z2[jri(<2, q\)] that is formed by the elements of a and its inverses. It is

immediate to see that

faOri(ß,?i)) rf (Z2[7ri(0,?i)]). (90)

Using that <t> is injective we obtain

r0(ni(Q,qi)) rf (Z2MQ,qi)]) < rgS)(HW(D*gQ,Lqi)), (91)

We have shown the following

Lemma 7.1. It Ji\{Q,q\) has exponential growth then there exists a finite set S C

HW(D*Q, Lqj such that T'f{D*gQ, L(U > 0.

7.2. Proof of statement (A) of Theorem 1.1 and statement of Theorem 1.2.

Proofof statement (A) of Theorem 1.1. Let G be a finitely presented group such that:

• Hi(G) H2(G) 0,

• G has exponential growth,

• G admits a presentation on which the number of relations does not exceed the

number of generators.

Then, it follows from [27], that for every n > 4 there exists a manifold Qn which is

an integral homology sphere and which satisfies n\(Qn) G. We denote by q(G)
the minimal number of generators of G.

We denote by D* Q" the unit disk bundle of Qn, with respect to a Riemannian

metric g in Qn, endowed with the canonical symplectic and Liouville forms. We

choose a point q e Qn and g generically so that q is not conjugate to itself. Let

S*Qn 3D* Q" be the unit cotangent bundle of Qn. In order to prove our result

we consider two distinct cases.

Case 1: n is odd and > 5. In this case the Euler characteristic of Qn vanishes.

Because G grows exponentially, we know that HWo(D*Qn. Lq) has exponential
algebraic growth. Let N1 be the plumbing of D*Qn and D*Sn performed far
from Lq. By Proposition 1.5, HWolA1, Lq) has exponential algebraic growth.

It is a result of Milnor that the boundary of the plumbing of the unit disk bundles

of two odd-dimensional homology spheres of dimension > 3 is a homology sphere;

see [10, Chapter VI, Section 18]. Applying this to the pair D*Qn and D*S" we
conclude that 3N1 is a homology sphere. Since N1 retracts to the one point union
of Q and S" we know that the homology of N1 is zero in every degree different
from 0 and n, where we have H0(A= Z and H„ (V1) Z © Z.

Case 2: n is even and > 4. In this case the Euler characteristic of Qn is 2. We

consider the plumbing associated to the E8 tree; see [10, Chapter VI, Section 18]. To

each vertex of the E8 tree we associate a disk bundle in the following way:
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• to the leftmost vertex we associate D* Qn,

• to every other vertex we associate D*Sn.
We let N1 be the plumbing associated to the E8 tree determined by this choice of disk
bundles at each vertex, and assume that the plumbing is done away from a cotangent
fibre Lq c D*Qn It was shown by Milnor (see [10, Chapter VI, Section 18])
that 3V1 is a homology sphere. Since Nx retracts to the wedge sum of Q and

seven copies of Sn determined by the E8 tree, we know that the homology of Nx

is zero in every degree different from 0 and n, where we have I [0(/V1 Z and

H^V1) ©?=1Z. By Proposition 1.5, HW0(N1,Lq) has exponential algebraic

growth.

We now treat both cases simultaneously. By attaching 2-handles to N1 away from Lq
we can obtain a simply connected Liouville domain N2 such that HW(V2, Lq) has

exponential algebraic growth. We choose the framing of these handle attachments so

that the first Chern class of N2 vanishes.

The effect of the handle attachment on the homology of the boundary can be read

from the surgery formula in j 28, Section X. 1 ]. One concludes that the homology
of 3N2 coincides with that of dN\ except in degree 2, and H2(3A2) is the direct sum

ofp(G) copies of Z.
By Hurewicz' theorem there is a basis of H2(3/V2) which is composed of

embedded S2. Since the first Chern class of N2 vanishes, it follows from [32,
Lemma 2.19] that these S2 can be made isotropic and disjoint from Lq by an isotopy
and that their symplectic normal bundle is trivial. We can thus perform the Weinstein
handle attachment over these spheres. The resulting Liouville domain V3 still
contains the Lagrangian Lq and it follows from Proposition 1.5 that HW(N3,Lq)
has exponential algebraic growth. By the surgery formula in [28, Section X.l ], the

effect of these handle attachments on the homology of the boundary implies that

H2(3V3) 0 and that the homologies of dN3 and 3N2 coincide in all other degrees.

Therefore, dN3 is a simply connected homology sphere. It follows from
Whitehead's theorem for homology [24, Corollary 4.33] that dN3 also has the

homotopy groups of a sphere. Since the dimension of dN3 is > 5 the h-cobordism
theorem tells us that dN3 is homeomorphic to a sphere. Since the smooth spheres
under connected sum form a finite group, we can take the connected sum of finitely
many copies of 3N3 to get the sphere 3/V4 with the standard smooth structure such

that HW(A4, Lq) has exponential algebraic growth. This proves statement (A) of
Theorem 1.1.

Proofof statement 9» ofTheorem 1.2. Let V be a (2n — l)-dimensional manifold
where n > 4, and assume that there exists an exactly tillable contact structure Ç

on V. Denote by My a Liouville domain whose boundary is (V, f). Let N4 be

the Liouville domain constructed in the proof of statement (A) of Theorem 1.1. By
Proposition 1.5, the Liouville domain N5 N4#My has an asymptotically conical
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exact Lagrangian L such that IIW(/V5. L) has exponential algebraic growth. The

statement then follows from Theorem 1.7.

7.3. Proof of statement (B) of Theorem 1.1 and statement <> of Theorem 1.2.

Proofofstatement (B) of Theorem 1.1. We will consider a carefully chosen 3-mani-
fold Q. Consider the Brieskorn manifolds of dimension 3,

M(p,q,r) {(zi,z2,z3) e C3 | zxp + z2q + zf 0} n S5.

M(p,q,r) is a Z-homology sphere if p,q,r are relatively prime (see for
example [40]). It was shown by Milnor [35] that its fundamental group
7t\ (M(p, q, r)) is the commutator subgroup of the group

G G(p, q,r) {yi,y2,y2 I rf Y2 k3 YiYzYi),

see also [42]. The groups S G/Z(G) are the triangle groups, where Z(G) is the

center of G. Consider the case p 2, q 3, r 7. A short computation shows

that
G(2, 3. 7) [G(2, 3,7), G(2,3, 7)] m (M(2,3. 7)).

One has f (G(2, 3, 7)) > f (E(2, 3,7)), and the exponential growth of S(2, 3,7) is

log(x), where x « 1.17628 is equal to Lehmer's Salem number (see [25] or [11]).
We take Q M(2, 3,7). The integral homology of D* Q is the same as that of Q,
which is Z in degrees 0 and 3 and vanishes in all other degrees. Moreover it is clear

that ni (S*Q) n\(Q x S2) n\{Q) is generated by the elements yi and y2.
Let N1 be the Liouville domain obtained by plumbing D*Q with the unit disk

bundle D*S3 of S3. We assume that the plumbing is performed away from the

cotangent fibre Lq over a point q G Q. Therefore Lq survives as a conical exact

Lagrangian in N1. By Proposition 1.5 we know that I IW*(/V 1, Lq) has exponential
algebraic growth.

Since N1 is the plumbing of D* Q and D*S3, and Q and S3 are both homology

spheres we obtain that dN1 is a homology sphere; see [10, Chapter VI, Section 18].

Combining this with the fact that N1 retracts to the one point union of S3 and Q we
conclude that

• Ho(Vi) Z, H3(Vi) Z ® Z, and IT, (V, 0 for i f 0. 3,

• Ho(aNi) Z, H5(9Vi) Z, and II, (iW, 0 for i f 0, 5.

Let now {öi, ö2,03} be generators of jï\(<)N\) n\(Q) corresponding to y1,

y2 and y3 respectively. By the h-principle for subcritical isotropic submanifolds

of contact manifolds [22] we can isotope the curve ö3 to a curve o3 which is

isotropic in (S*Q, Çgeo). We can also assume that o3 does not intersect Aq := 3Lq.
Since n3 is isotropic and has trivial normal bundle we can apply the Weinstein handle
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attachment [47] and attach a 2-handle to V1 over o3, obtaining a new Liouville
domain N2. From the presentation of n\(Q) that we used, it is clear that dN2 is

simply connected, and so is N2 by [32, Lemma 2.9]. We choose the framing of the

handle attachment so that dN2 is spin. Using the Mayer-Vietoris sequence we obtain
that H0(cf/V2) Z, H2(9A^2) 2, and Hi(3A2) 0. By Smale's classification of
spin simply-connected five manifolds [43] it follows that 3N2 is S 3 x S2.

Since N2 is obtained from V1 via a subcritical handle attachment and the

Lagrangian Lq is far from the attaching locus of this handles, we know that Lq
survives as a conical exact Lagrangian in V2. Moreover Proposition 1.5 implies that

HW*(V2, Lq) has exponential algebraic growth, and it follows from Theorem 1.7

that the contact manifold dN2 has positive entropy.

Proofofstatemen t O of Theorem 1.2. The statement is proved by a connected sum

argument identical to the one in the proof of statement 4k-

Remark 7.2. To guarantee the vanishing of the second Stiefel-Whitney class of 3N2

one must only guarantee the vanishing of the first Chern class of N2. As observed

in the proof of [32, Lemma 2.10], one can choose the framing when performing the

attachments of the 2-handles so as to guarantee the vanishing of the first Chern class

of N2.

Appendix

Construction of exact Lagrangian cobordisms. Before proving the lemma we
recall that the symplectization of the contact form a on (X, £) can also be given by

(R x X, esa), where s denotes the R-coordinate. It is straightforward to see that the

diffeomorphism
F: ((0, +00) x X, rot) —> (R x X, esa)

given by F(r, p) (log r, p) is an exact symplectmorphism.
It follows that an exact Lagrangian submanifold is conical in ((0,+00) x X, rot)

outside [1 - 2f, 1 - e] x S if, and only if, X~ := F(£~) is conical in
(R x X, esa) outside [log(l — 2e), log(l — e)] x X. Analogously, an exact Lagrangian
submanifold is conical in ((0, +00) x X, rot) outside [1 + e, 1 + 2e] x X if, and

only if, X+ := F(X+) is conical in (RxS.e'a) outside [log(l +e), log(l + 2e)] x S.

Proofof Lemma 4.2. We use the technique presented in [19, Lemma 6.3],

Step 1. We first apply the Legendrian neighbourhood Theorem [29, Proposition

43.18] to find a neighbourhood U(A0) of the Legendrian of A0 such that
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there exists a strict contactmorphism

T: (D(A0), a) -> /V(Â0) C R2n~\dz + j
^ i=t

'

that satisfies T(A0) A0, where A0 is the standard Legendrian unknot in M2"-1

(see [18, Example 3.1]) and L(A0) is a tubular neighbourhood of A0 in M2""1.
Given this identification, it suffices to establish the lemma for the case of A0 since it
will follow if we can establish it for £/(A0) C U(A0).

Step 2. Clearly, it suffices to establish the lemma for all 0 < c < 1/e1000. We
thus fix 0 < e < 1/e1000 and a tubular neighbourhood U(A0) of A0. To establish

the lemma for A0 we assume that A i is a Legendrian sphere in (R2"_1,acan
dz + YTi=i xidyi) that is p-close to A0 in the C3-sense, with p > 0 so small that

• A, C U(A0),

• there exists a Legendrian isotopy 9: [— 1, 1] x A"-1 -> R2"-1 which is /x-small in
the C3-topology and satisfies 9({—1} x A"-1) A0 and 0({1} x A"-1) A\.

Moreover if p > 0 is chosen sufficiently small we can also assume that

• the isotopy 9 is constant in the first coordinate for t £ [log( 1 — 2c), log(l — e)].

Extend 9 to R x A"-1 by 9(t,p) 9(—\,p) fort < —1 and 9(t,p) 9(\,p)
for t > 1.

We write 9(t, p) (x(t, p), y(t, p),z(t, p)) for coordinates (x, y, z) R"_1 x
R"-1 x R, set F(t, p) := ardn(dt9(t, p)), and define the cylinder

0: R x A""1 -> (R x R2B-1,e,acan)

in the symplectization (R x R2"-1, esa^.dn) of acan by

0(f, p) (t,x(t, p), y(t, p), z(t, p) + F(t, p)). (92)

ft is clear that if p > 0 is chosen sufficiently small then 0 will be an embedding, since

it will be a small compact perturbation of the embedding (f, x(t, p),y(t, p),z{t, p)).
Let fl:Rx R2"-1 > R2"-1 be the projection of the symplectization to the contact
manifold.

A direct computation shows that

®*(esaCdn) d(e' F(t, p)). (93)

Step 3. Step 2 implies that the cylinder X, 0(R x A"-1) is an admissible exact

Lagrangian submanifold of (R x R2" 1, cAffcan). By taking p even smaller we can

guarantee that

• is conical over Aj in [log(l — e), +oc) x R2"-1 and is conical over A0 in

(0, log(l — 2c)] x R2"-1,
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• and the projection of 3L~ to R2"-1 is contained in U(A0).
In order to construct we use the inverse isotopy 9 + (t, p) 9(—t, p), and

apply the construction above. We have established statements (a), (b), and (c) of
Lemma 4.2.

Toconclude (d), notice that f~ : e' F(t, p) has support in [log(l—2c), log(l—e)]

x 5"_1 and if /x > 0 is chosen small enough then f~ := e' F(t,p) will satisfy

|/"|co < e since the C°-norm of F(t,p) will be small. Applying the same

argument to (£+ implies (d).

Step 4. Statement (e) is obtained by performing this construction for a smooth
1 -parameter family of Legendrian isotopies which starts with the isotopy 9 and

ends at the stationary isotopy from A0 to itself. As the construction above depends

C°°-smoothly on the parameter we obtain a smooth 1-parameter family of exact

Lagrangian embeddings

vlLRxS"-1 ->(Ix R2n~1,esClean),

which starts at £ and ends at R x A0, and which is constant in (R \ [log(l — 2e),

log(l +2e)])x5n_1. This is an exact Lagrangian isotopy from X. := F(^C)toRxA0
which is constant in (R \ [log( 1 — 2e), log(l + 2e)]) x A0. Statement (e) then follows
from [34, Lemma 5.6].
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