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Dynamically exotic contact spheres in dimensions > 7

Marcelo R. R. Alves* and Matthias Meiwes™*

Abstract. We exhibit the first examples of contact structures on S2”~! with n > 4 and
on S3 x §2, all equipped with their standard smooth structures, for which every Reeb flow has
positive topological entropy. As a new technical tool for the study of the volume growth of Reeb
flows we introduce the notion of algebraic growth of wrapped Floer homology. Its power stems
from its stability under several geometric operations on Liouville domains.
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1. Introduction

On a contact manifold there exists a natural class of flows, the so-called Reeb flows.
Although the dynamics of distinct Reeb flows on the same contact manifold can be
very different, there are dynamical properties which are common to all Reeb flows
on a given contact manifold. For instance, the combined works of Hofer [26] and
Taubes [44] imply that on a closed contact 3-manifold all Reeb flows have at least one
periodic orbit. In this paper we construct a large class of contact manifolds on which
all Reeb flows have chaotic dynamics. Surprisingly, some of the contact manifolds
we construct have a very simple topology, which contrasts with the complicated
dynamics of their Reeb flows.

A contact structure is said to have positive entropy if all Reeb flows associated
to this contact structure have positive topological entropy. We show that there
exist contact structures with positive entropy on spheres of dimension > 7 and
on S3 x S2. As a consequence we prove that every manifold of dimension > 7 that
admits an exactly fillable contact structure also admits a (possibly different) contact
structure with positive entropy. Our approach to prove these results is based on
wrapped Floer homology and uses in an essential way its product structure. This
product structure enables us to define the notion of algebraic growth of wrapped
Floer homology, and we relate this growth to the volume growth of Reeb flows. Even
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though the richer algebraic structures in Floer homology were studied extensively,
so far they lead to only very few applications in dynamics: the ones we are aware of
are Viterbo’s result [46] on the existence of one closed Reeb orbit on hypersurfaces
of restricted contact type in Liouville domains with vanishing symplectic homology,
and Ritter’s result [38] on the existence of Reeb chords for exactly fillable Legendrian
submanifolds on Liouville domains with vanishing symplectic homology.

1.1. Basic notions. An important measure of the complexity of a dynamical system
on a manifold M is the topological entropy /., which quantifies in a single number
the exponential complexity of the system. We refer the reader to [23] for the definition
and basic properties of /,,. By deep results of Yomdin and Newhouse, Ay, (¢) for a
C>®-flow ¢ = (¢");er equals the exponential growth rate of volume

v(¢) = sup v(@, N),

NcM
log Vol” (¢ (N
where v(¢p, N) = limsup : gt(¢( )). (1)
—>00

Here, n = dim N, the supremum is taken over all submanifolds N C M, and Volg
is the n-dimensional volume with respect to some Riemannian metric g on M.

In this paper we study the topological entropy for Reeb flows of contact manifolds.
Recall that a (co-oriented) contact manifold (X, &) is a compact odd-dimensional
manifold 2"~ ! equipped with a contact structure £, that is, a hyperplane distribution
on X which is given by § = ker« for a 1-form « with a A (da)*~! # 0. Such an «
is called a contact form on (X, ), and we can associate to it the Reeb vector field X
defined by 1y, da = 0, a(Xy) = 1. Denote the flow of Xy, the Reeb flow of a,
by ¢o = (¢p.)cer. An isotropic submanifold of >"~! is one whose tangent space
is contained in £; isotropic submanifolds of dimension n — 1 are called Legendrian
submanifolds.

1.2. Main results. The main result of this paper is the existence of contact structures
with positive entropy on high dimensional manifolds.

Theorem 1.1.

(A) Let S?"~1 be the (2n—1)-dimensional sphere with its standard smooth structure.
For n > 4 there exists a contact structure on S*"~1 with positive entropy.

(B) There exists a contact structure on S> x S? with positive entropy.

Recall that a contact manifold is said to be exactly fillable if it is the boundary of
a Liouville domain. From Theorem 1.1 and the methods developed in this paper we
obtain the following more general result.
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Theorem 1.2.

& If V is a manifold of dimension 2n — 1 > 7 that admits an exactly fillable contact
structure, then V admits a contact structure with positive entropy.

& If V ois a 5-manifold that admits an exactly fillable contact structure, then the
connected sum V#(S3 x S?) admits a contact structure with positive entropy.

Note that the standard contact structure on spheres as well as the canonical
contact structure on S*S3 =~ S3 x §2 have a contact form with periodic Reeb flow. In
particular these are not diffeomorphic to the contact structures in Theorem 1.1. Other
exotic contact spheres have been constructed by several authors, see [17,20,32,45].
The contact spheres constructed in this paper are, from our perspective, the “most
exotic” ones. From the dynamical point of view they are the most remote from
the standard contact spheres since they admit Legendrian submanifolds that have
exponential volume growth under every Reeb flow. It would be interesting to relate
our examples of exotic contact spheres to others that were constructed so far.

In order to explain further the relevance of these results we recall what is
known about the topological entropy of Reeb flows. Motivated by results on
topological entropy for geodesic flows (see [36]), combined with the geometric
ideas of [21], Macarini and Schlenk proved in [30] that for various manifolds Q the
unit cotangent bundle (S* Q, £) equipped with the canonical contact structure £ has
positive entropy!.

In previous works of the first author, different examples of contact 3-manifolds
with positive entropy were discovered. In [5—7] it was shown that contact 3-manifolds
with positive entropy exist in abundance: there exist hyperbolic contact 3-manifolds
with positive entropy (see also [8]), non-fillable contact 3-manifolds with positive
entropy, and even 3-manifolds which admit infinitely many non-diffeomorphic contact
structures with positive entropy. This shows that the class of contact manifolds with
positive entropy is much larger than the class of unit cotangent bundles over surfaces
with positive entropy, which were studied in [30]. One common feature of all known
examples of contact 3-manifolds with positive entropy is that the fundamental group
of the underlying smooth 3-manifold has exponential growth. We expect this to be
always the case:

Conjecture 1.3. If a contact 3-manifold (X,§) has positive entropy, then m1(%)
grows exponentially.

Already from the unit cotangent bundles of simply connected rationally hyperbolic
manifolds, which were considered in [30], we know that Conjecture 1.3 is false in
higher dimensions. However it is natural to ask if there are restrictions on the
smooth topology of contact manifolds with positive entropy in higher dimensions.

'In a recent work [15] Dahinden extended the results in [30] proving that on the unit cotangent bundles
(S™Q, &) studied in [30] every positive contactomorphism has positive topological entropy. It would be
interesting to investigate if Dahinden’s result is true for any contact manifold with positive entropy.
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Theorem 1.1 shows that in contrast to what happens in dimension three, the
phenomenon in higher dimensions is quite flexible from the topological point of
view.

Remark 1.4. Examples of contact manifolds of dimension > 9 which have positive
entropy and are not unit cotangent bundles are also constructed using connected sums
in an ongoing work of the first author and Macarini [9], following an idea of Schlenk.
However, these contact manifolds have very complicated smooth topology, in the
sense that the underlying smooth manifolds are rationally hyperbolic. For this reason
they are much less surprising than the ones obtained in the present paper.

Let us now explain our approach to establishing these results.

1.3. Symplectic and algebraic growth. To establish our results we introduce the
notion of algebraic growth of wrapped Floer homology. This notion is useful because,
on one hand, it gives a lower bound for the growth rate of wrapped Floer homology
defined using its action filtration and, on the other hand, it is stable under several
geometric modifications of Liouville domains.

The contact manifolds we consider in this paper arise as boundaries of Liouville
domains. Recall thata Liouvilledomain M = (Y, w, A) is acompactexact symplectic
manifold (Y, w) with boundary ¥ = dY and a primitive A of w such that aps := A|x
is a contact form on X, and such that the Liouville vector field X in Y defined
by tx,w = A points outward at the boundary X: we let £y = kerayps be the
contact structure induced by M on X. For two exact Lagrangians Ly and L; in M
that are asymptotically conical, i.e. conical near Y with Legendrian boundaries A
and Ay in (X, &ar), we consider the wrapped Floer homology of (M, Ly, L) with
Z.,-coeflicients denoted by HW(M, L.y — L), whose underlying chain complex
is, informally speaking, generated by Reeb chords from Ay to A; and intersections
of Lo and L. We write HW (M, L) for HW(M, L. — L), see Section 2.2.

Results on positive entropy can be obtained from the exponential symplectic
growth of wrapped Floer homology, which is defined as follows. By considering
only critical points below an action value a, one obtains the filtered Floer homology
HW%(M, Ly — L). The homologies HW* (M, Ly — L) form a natural filtration
of HW(M, Ly — L), and they come with natural maps t,: HW*(M, Ly — L) —
HW (M, Ly — L) into the (unfiltered) Floer homology. The exponential symplectic
growth rate '™ (M, Lo — L) of HW(M, Ly — L) is given by

, log(dim Im
Y. Lo > Ly) = limsup C2imIm ).

a—00 a

2)

see Section 2.2 and Definition 2.16. Since the generators of HW(M, Ly — L)
correspond essentially to Reeb chords from Ay to Ay, the symplectic growth gives
a lower bound on the growth of Reeb chords with respect to their action. Assuming
that A is a sphere, we adapt the ideas of the first author in [7] to get lower bounds
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for the volume growth v(¢y, Ag) in terms of the exponential symplectic growth rate
of HW(M, Lo — L) for every contact form « on &y.

A topological operation on a Liouville domain M is a recipe for producing a
new Liouville domain N from M. To obtain examples of contact manifolds with
positive entropy we perform certain topological operations on Liouville domains.
The operations we consider are: attaching symplectic handles on M and, in the
case M is the unit disk bundle of a manifold, plumbing M with the unit disk bundle
of another manifold. Although one can understand the change or invariance of the
(unfiltered) wrapped Floer homology under these operations, it is often much harder
or not even possible to understand the effect of these operations on the symplectic
growth. For instance, by an adaptation of a theorem of Cieliebak [14] we show
that HW(M’, L) is isomorphic to HW(M, L. N M) if M’ is obtained by subcritical
handle attachment on M (Theorem 6.2). By contrast it is much harder to control the
filtered Floer homology under this operation, see [32] for an approach in the case
of symplectic homology. In the case of plumbings of two cotangent bundles the
computational results of a relevant part of the unfiltered wrapped Floer homology
obtained by [4] do not carry over to the symplectic growth rates of the plumbing.

To overcome this difficulty we look at a notion of growth that is defined purely
in terms the algebraic structure on wrapped Floer homology, the algebraic growth.
Let us explain this briefly. Let A be a (not necessarily unital) K-algebra with
multiplication » and § C A a finite set of elements of A. Given j > 0, let
Ns(j)={acA|a=s5 %S x--x8j;81,...,5; €S} ie Ng(j) is the set of
elements of A that can be written as a product of j not necessarily distinct elements
of S'. We define Ws(n) C A to be the smallest K-vector space that contains the union
U'}-=1 Ns (). The exponential algebraic growth rate of the pair (A, S) is defined as

Fglg(A) = lim sup ! logdimg Ws(n) € [0, 00).
n—oo H

Incase A = K(G) is the group algebra over a finitely generated group (G = (S), %),
it is elementary to see that Fglg(A) coincides with the exponential algebraic growth
of G in the usual geometric group theoretical sense. Now, induced by the triangle
product in Floer homology, HW(M, L) is equipped with a ring structure * turning it
into a Z,-algebra. Given a finite set S of HW (M, L) we define (cf. Definition 2.20)
F;lg(M, L) = Fglg (HW(M, L)). We say that HW (M, L) has exponential algebraic
growth if there exists a finite subset S of HW(M, L) such that ['y*(M, L) > 0.

Our main motivation for studying the exponential algebraic growth of HW is the
following:

Proposition 1.5. Let M be a Liouville domain and L be an asymptotically conical
exact Lagrangian in it, and assume that HW (M, L) has exponential algebraic growth.
Then we have:

(A) The Liouville domain M’ obtained by attaching subcritical handles to M has
exponential algebraic growth of HW. More precisely, if the attachments are
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made away from L (so that L survives as an asymptotically conical exact
Lagrangian submanifold of M') then HW(M', L) has exponential algebraic
growth.

(B) If M is the unit disk bundle of a closed orientable manifold Q" whose
Sfundamental group grows exponentially, and M’ is obtained by a plumbing
whose graph is a tree and one of the vertices is M, then M’ has exponential
algebraic growth of HW. More precisely, if L4 is a unit disk fibre in M and the
plumbing is done away from Ly then HW(M', L,) has exponential algebraic
growth.

This result essentially says that plumbing and subcritical surgeries are topological
operations that preserve exponential algebraic growth of HW, and will allow us to
construct many examples of Liouville domains which admit asymptotically conical
exact Lagrangian disks with exponential algebraic growth of HW.

The exponential algebraic growth of our examples stems from the algebraic growth
of the homology of the based loop space H.(2Q) equipped with the Pontrjagin
product, where Q is a compact manifold. In fact, we will only use the degree O part
whose algebraic growth is that of 71 (Q).

Remark 1.6. The exponential algebraic growth of symplectic homology always
vanishes since its product is commutative. Thus our approach is specifically designed
for the open string case.

In order to obtain our main results we will bound the topological entropy of
Reeb flows from below in terms of the algebraic growth of HW(M, L). For that
we will use the crucial fact that the spectral number ¢: HW(M, L) — R defined
by c(x) = inf{a € R | x € Imi,} is subadditive, i.e. c(x » y) < c(x) + c(y)
for all x,y € HW(M, L). It follows (see Proposition 2.21) that for any finite
S C HW(M, L) we have

: 1 alg
Y™ (M, L) > —T¥%(M, L),
p(S)

where p(S) = maxges c(s). By using that HW(M, L — Lj) is a module over
(HW(M, L), %), this lower bound can be extended to I'Y™P(M,L — L) for
all L, that are exact Lagrangian isotopic to L, see Lemma 4.3. In other words,
exponential algebraic growth of HW(M, L) implies positive symplectic growth of
HW(M, L — Ly). This, combined with ideas from [7], leads to:

Theorem 1.7. Let L. be an asymptotically conical exact Lagrangian on a Liouville
domain M = (Y,w,A), X := Y and ap := A|x. We denote by Eyp := keraps the
contact structure induced by M on X. Assume that there is a finite set S C HW(M, L)
such that F;Ig(M ,L) > 0 and that A = 0L is a sphere. Then, for every contact
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Jorma on (X, £pr) the topological entropy of the Reeb flow ¢y, is positive. Moreover,
if fo is the function such that fyapy = o then

[ (M, L)
p(S) max(fy)

Our paper is organised as follows. In Section 2 we consider the algebraic growth
and the growth of filtered directed systems in general, and then we recall the definition
of wrapped Floer homology together with its product structure. In Section 3 we
present the construction of the Viterbo map and derive some of its properties.
Section 4 establishes implications of the growth properties of HW to topological
entropy. In Section 5 we recall the computation of the algebra structure of the Floer
homology of unit disk bundles and in Section 6 we give a proof of the invariance
of HW under subcritical handle attachment, recollect a result on HW of plumbings
and prove Proposition 1.5. Finally, in Section 7, we construct our examples and

prove the main theorems. The appendix contains a construction of exact Lagrangian
cobordisms used in the paper.

hiop(fa) =

Acknowledgements. Most of this work was done when the second author visited
the Université of Neuchéatel supported by the Erasmus mobility program, and the
first author visited the Universitit Miinster supported by the SFB/TR 191. This work
greatly benefited from discussions with Felix Schlenk and Peter Albers: we thank
them for their interest in this work and their many suggestions. We also thank Lucas
Dahinden for carefully reading the manuscript.

2. Wrapped Floer homology and its growth

As explained in the introduction, two features of wrapped Floer homology are crucial
in this paper.

First, its natural filtration by action gives the wrapped Floer homology HW the
structure of a filtered directed system and allows one to define the spectral value of
elements of HW. These give rise to the notion of symplectic growth? of HW; this is
explained in Section 2.2.2.

Second, the product structure of HW gives it the structure of an algebra and gives
rise to the notion of algebraic growth of HW. This is explained in Section 2.3. The
link between these notions is given by the crucial fact that the spectral number is
subadditive with respect to the product structure on HW, see also Section 2.3.

We first recall the relevant algebraic notions and deduce some direct consequences.

2.1. Algebraic growth and growth of filtered directed systems. Fix a field X.
We use the convention that log(0) := 0.

2This was explicitly observed in [34] although it is implicit in [21, 30].
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2.1.1. Filtered directed systems and growth.

Definition 2.1. A filtered directed system over R = [0, c0) or for short fid.s. is a

pair (V, ) where:

o Vi, t €[0,00), are finite dimensional K -vector spaces.

e g Vs — Vi, for s < t are homomorphisms (persistence homomorphisms),
such that w5 o w5y = mp 5, forr <s <t,and m;,, = idy, forallz € R .
Let J be the smallest vector space of EB,GRJr Vy containing (o, {75 (x5) — X5}

The direct limit lim V of V' is defined by h_r)n V = @t€R+ V¢ /3. The inclusions

Y, =% E]}teR+ V; induce maps to 11>n V' which we denote by i;. The spectral

number cy, or just ¢ if the context is clear, of an element x € h_n; Vis

cy(x) := inf{z € [0,00) | Ax; € V; such that i, (x;) = x}.

It is clear from the definition of ¢y that if xq,...,x, € V and ky,...,k, € K we
have

n
Cv(zki)ﬁ') = cy (xi). (3)
l:
Definition 2.2. Let d) := dim{x | ¢y (x) < t}. The exponential growth rate of the
f.ds. Vis |
[(V) := limsup A log dtV.

t—00
We say that V' has exponential growth if 0 < (V) < oc.

Definition 2.3. A morphism between f.d.s. (V, ) and (V’, n") is a collection of
homomorphisms f* = (f¢)refo0,00)» J1: Vi = V/, that are compatible with respect to
the persistence homomorphisms:

Jt 0 Tssy = Ty 0 [ 4

An asymptotic morphism is a collection of homomorphisms f;:V, — V/,
t € (K, 00), for some K > 0 such that (4) holds for K < s < 1.

Let (V,m)beaf.d.s.and n > 1. We can dilate V by 7 to a filtered directed system
(V(n), m(n)) given by V(n); = Vyr, m(n)s—: = Mys—y,. It follows that 7 gives
rise to a canonical morphism z[n]: V — V(n) by n[n]; = mt—y,. For a morphism
f:V — W we getadilated morphism f(n): V(n) — W(n) by setting f(n); = fy:-

Definition 2.4. Let (V, ry) and (W, ) be f.d.s. We call them (11, n2)-interleaved,
or interleaved, if there are asymptotic morphisms f:V — W(n;)and g: W — V(n»)
for two real numbers 71y, n2 > 1 such that

f(n2) og = mwlmnz] and  g(n) o f = wy[ninal.
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The direct limits of interleaved f.d.s. are isomorphic. It is also easy to see the
following

Lemma 2.5. Let V and W be (01, n2)-interleaved for some 11,12 > 1. Then
Ty =mTw) and T(W) <nl(1),

Remark 2.6. The notion of interleaving comes from the theory of persistence
modules (see [37] for applications of persistence modules and interleaving distance
in symplectic geometry).

2.1.2. Algebras and their algebraic growth. We recall from the introduction the
definition of the algebraic growth of a K-algebra A and a finite subset S C A. Given
J=>0letNg(j)={a€A|a=sxs3*%---x5;;5,...,85; € S};ie. Ng(j)is
the set of elements of A that can be written as a product of j, not necessarily distinct,
elements of S. We define Wg(n) C A to be the smallest K -vector space that contains
the union U;=1 Ns(j). The exponential algebraic growth rate of the pair (A4, S) is
defined as
F;lg(A) = lim sup £ log dimg W(n) € [0, c0).
n—oo N
We will need the following definition.

Definition 2.7. Let M be a module over an algebra A with scalar multiplication
denoted by *. The module M is called stretched if there exists an element my € M
such that for all elements a # 0 € A we have a * my # 0. An element my € M
satisfying this condition is called a stretching element.

In the following let V' be a filtered directed system and assume that the vector
space A = h_r)n V has a K-algebra structure with multiplication . We do not assume
that A is finitely generated. Furthermore, let W be a filtered directed system, such
that M = h_r)n W is a module over A with multiplication %, i.e. a module over (A, x)

with scalar multiplication * which is compatible with the K-vector space structure
of Aand M.

Furthermore assume that the spectral numbers ¢y and cy are subadditive with
respect to » and *, i.e.

cy(axb) <cy(a)+cy(b), foralla,be A, 5)
and
cwl(a xm) <cy(a) + cw(m), foralla € Aandm € M. (6)

Lemma 2.8. Let V be a f.d.s. such that A = ll_n;l V' has a K-algebra structure with

multiplication %, and assume that cy is subadditive with respect to x. Then for every
finite subset S C A we have

= 1 alg
I'(V) > ——I'G°(A),
()_p(S) s (4)

where p(S) = maxyes cy (x).
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Proof. From the subadditivity of ¢y with respect to » it follows that if a = s1 x 55
ook 8y, 8 €8, we have

cy(a) = cy (s x - *8p) < cy(s1) + -+ cvsa) < p(S)n.

It then follows from (3) that W(n) C {x € A | c(x) < p(S)n}. We thus conclude
that

i |
Fglé’(A) = lim sup — log dim W(n)
n

n—>00

< lim sup l log dim{x | ¢(x) < p(S)n} < p(S)f‘(V). ]

n—oo H

Lemma 2.9. Let V and W be f.d.s. and assume that the vector space A = 11_n>1 V has
an K-algebra structure with multiplication x, and that M := h_r>n W has the structure

of a module over A with multiplication x. Assume that cy and cy are subadditive
with respect to * and %, respectively, and that M # 0 is a stretched module over the
algebra A. Then

Fw) =Tw). ()
Moreover, for every finite set S C A we have
~ | S
F(W) = —T'¢*(A). (8)
p(s) *

Proof. Take a stretching element mo # 0 in M. We have a * my # b * mg for
a # b,a,b € A. In particular a — a * my is an injective homomorphism from A
to M. Therefore, by (6),

dY =dim{a € A|cy(a) <t}

<dim{m € M |ew(m) <t + cw(mo)} = d¥

t+cw (mop)?

for all + > 0. We then get

= log dV log d w
F(V) = lim sup < lim sup t+ew (mo)
R t—00 t

w
— lim sup 108 deteytm £ + v ()

=T (W).
t—>00 I+CW(m0) 4 ( )

This proves (7). Inequality (8) is obtained by combining (7) with Lemma 2.8. []

In order to get results on entropy, we will need the following notions.
Definition 2.10. Let W = W(i);es be a family of f.d.s. with direct limits M (i) that
are modules over 4 := ll_r)n V. We say that the family M (i ); ey is uniformly stretched
if there exists a constant B > 0 such that for every i € [ there exists a stretching
element m; € M(i) with cpr)(m;i) < B.
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Definition 2.11. Let ' W = W(i);c; be a family of filtered directed systems. The
uniform exponential growth rate of ‘W is

- 1 .
Tie7 (W) := limsup ; log (il}f dtW(’)).

=00

Lemma 2.12. Let V be a f.d.s. such that A = h_r)n V has a K-algebra structure
with multiplication x. Let W = W(i)ics be a family of f.d.s. such that for every
i € I the direct limit M(i) = 11_1’)11 W (i) is a module over A with multiplication x(i).
Assume that cy is subadditive with respect to *, that cy )y is subadditive with respect
to x(i) for every i € I, and that the family M (i);cy is uniformly stretched over the
algebra A. Then

Tier(W) = T(V). 9)

Proof. Since M(i);ey is uniformly stretched there exists B > 0 such that for every
i € I, we can find a stretching element m; € M (i) with cp)(m;) < B. Hence

we have by (6) that sz < infy dtvi%) and the result is obtained as in the proof of

Lemma 2.9. L]

2.2. Wrapped Floer homology. In the following we give the definition and con-
ventions for wrapped Floer homology used in this paper. This Floer type homology
theory appeared in [1] for contangent bundles, and the case of general Liouville
domains can be found in [3]. We refer to these papers and [38, Section 4] for more
details.

2.2.1. Liouville domains and Lagrangians. A Liouville domain M = (Y, w, 1) is
an exact symplectic manifold (¥, @) with boundary ¥ = dY and a primitive A of @
such that aps = A|x is a contact form on %, and such that the Liouville vector field X
in Y, defined by tyw = A, points outward at the boundary X. We let £3r = ker ops
be the contact structure induced by M on %. Using the flow of X, one can attach an
infinite cone to M along X that gives the completion M := (Y,d, ) of M with

?: Y Us ([I,OO)XE), 1|Y = A 1|[1,oo)x2 = ropy, and @:di.

Remark 2.13. In order to simplify notation, we will usually write M and M instead
of Y and Y, respectively, as the domain of Hamiltonian functions or the target space
of Floer trajectories. This does not cause any confusion since the smooth manifolds
Y and ¥ are part of the data defining M and M, respectively. Similarly, when we
write ¥ = dM it should be understood as ¥ = dY.

Letf: 3Y — (0, co) be asmooth function. Let}; = Y \{(r,x) | r >f(x),x € dY}.
It is easy to see that M; = (Y;,@ly,, Aly,) is a Liouville domain. For example,



580 M. R. R. Alves and M. Meiwes CMH

given 6 > (O we denote by My s the Liouville domain (Y 1§, w; 45, A1+s) embedded
in M defined by

Y1+8 =Y Ug ([l’] + 8] X E), Wi+ = CB'Y]_H;: )‘1+5 - X|Y|+§-

In our paper we only consider Liouville domains that have vanishing first chern
class c; (M) C H3(M ;7).

We consider Lagrangians (L, dL) in (M, X) that are exact, i.e. A|L = df, and
that satisfy

A = 9L is a Legendrian submanifold in (X, &pr),

10
LN[l —€,1]x X% =[1—¢,1]x A for a sufficiently small € > 0. A

We will call a Lagrangian that satisfies (10) asymptotically conical. We can extend
it naturally to an exact Lagrangian L =LUx ([1,00) x A) in M. We will refer to
a Lagrangian in M of this form also as asymptotically conical (with respect to M ).
More generally, given a subset U C M we say that L is conical in U if the Liouville
vector field is tangent to L N int(U/) in the interior int(U) of U.

2.2.2. Wrapped Floer homology. For two asymptotically conical exact Lagrang-
ians Lo and L in M denoteby Pz, 1, = {y : [0, 1] — M | ¥(0) € L y(1) € Ll}
the space of (smooth) paths from Eo to El.

Denote by X,, the Reeb vector field on the boundary (2, £3r = kerap). A Reeb
chord of length T of apy from Ag = dLgto Ay = 0L isamap y:[0,T] — X with
y(t) = Xa,, (y(t)) with y(0) € Ag and y(T) € A;. Denote the set of Reeb chords
of length < T by TA;C,—>A, (aar), and the set of all Reeb chords by Ta,—a, (car).
The Reeb chord y of length T of aps from Ag to Ay is said to be transverse if the
subspaces Ty(l)(qb;aM (Ao)) and T, (1) A1 of Ty, (1) X intersect at only one point. The
spectrum of the triple (M, Ly — L), denoted by (M, L.y — L), is the set of
lengths of Reeb chords from Ay to Aq in X. It is a nowhere dense set in [0, 00).

Given a contact form « on (2, £p) and a pair of Legendrian submanifolds
(Ag, A1) on (X, Epr), we say that the triple (o, A9 — A1) is regular if all Reeb
chords of « from Ay to Ay are transverse. We say that (M, Lo — L) is regular if
(Ax, Ao — Ap)isregular and Lo and L intersect transversely.

From now on, we assume that for the contact form a7 induced by M on (X, £p7)
the triple (apr, A9 — Ay) is regular.

An autonomous Hamiltonians H: M — R is called admissible if

e H<0OonM,

* and there exist constants & > 0 and b < —p such that H(x,r) = h(r) = ur +b
on [1,00) x M.

If H: M — R is admissible and satisfies H(x,r) = pr+bon|l,o0) x dM we say

that H is admissible with slope  (at infinity).
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Define the action functional EAIIZIOQL‘ = Ay Pr,—~r, = Rby

1 1
Amw:ﬁmw»—ﬁumrﬂﬂym—ﬁfmm»m,

where fq and f1 are functions on Lg and L respectively with df; = A|; ,i =0, 1.

The critical points of 4y are Hamiltonian chords from EO to El that reach Zl at
time 1. We define

TL()—>L|(H) = CritAy = {V € E7)11()—>L| | V(t) = XH(V([))}’

and write 77, (H) instead of 77,7 (H). Here Xy is the Hamiltonian vector field
defined by w(Xg,-) = —dH. We call an admissible Hamiltonian non-degenerate
for Lo — L if all elements in 77,1, (H) are non-degenerate, i.e. qb)l(H (Lo) is

transverse to il. Such a Hamiltonian must have slope u ¢ §(M, Lo — L1). Note
that every admissible Hamiltonian can be made non-degenerate for L.y — L after a
generic perturbation [3, Lemma 8.1]. We denote by

Jereg(MsLO_)Ll) (11)

the set of admissible Hamiltonians which are non-degenerate for L., — L. For a
Hamiltonian H € Heo(M, Ly — Ly) all elements in 77,7, (H) have their image
contained in M.

For admissible Hamiltonians H with slope @ ¢ & that are constant in M
away from the boundary, depend on r and increase sharply near oM, T, .1, (H)
corresponds to ‘]X’; 5 Al(on) and intersection points of Lo and Ly in M. If
(M, Ly — L) is regular, such Hamiltonians belong to the set H.,(M, Lo — L;).

If (epr, Ao — Ay) is regular but (M,Ly — L;) is not, we can take
H € H.oe(M, Lo — L) tobe a C%-small negative function away from the boundary
of M, and to depend only on r and increase sharply near M. Then, 77,1, (H)
will correspond to TZ(L( A (aar) and intersection points of L and L in M that are
not destroyed by the Hamiltonian flow of /.

An almost complex structure J on ((0, 00) x IM, A = rayy) is called cylindrical
if it preserves &y = kerayy, if J|g,, is independent of r and compatible with
d(ram)le,,, and if JXy,, = rd,. In the following we take almost complex
structures J on M that are asymptotically cylindrical, i.e. cylindrical on [r, c0) x IM
for some r > 1. The L?-gradient of the action functional with respect to the
Riemannian metric given by dA(J-,:) = g(-,-) is given by

VAu(y) = =J(r)@ry — Xu(y)).
and we interpret the negative gradient flow lines as Floer strips
u:R x [0, 1] — M,
By, () = dsu + J W) @u — X () = 0, (12)
u(-,0) € Lo, andu(-,1) € Ly.
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We define the moduli space of parametrized Floer strips connecting two critical points
x and y of Ay
JVt(x,y, H,J)={u:R x[0,1] — M | u satisfies (12) hm = xand lim = y}.

—00 §—>—+00
(13)
There is a natural R-action on M(x, y, H, J) coming from the translations in the
domain. Letting cMil(x y, H, J) be the set of elements of rM(x y, H, J) that have
Fredholm index 1 we write

MO(x,y, H, J):= M (x,y, H,J)/R, (14)

where the quotient is taken with respect to the R-action mentioned above.The energy
of an element u is

E(u) ::[ VA3, ds = A (x) — An(y).

—00
For a generic J and non-degenerate admissible H define the wrapped Floer chain
complex
CW(H.Ly— L) = P Z-x.
x€Crit(Agy)
with differential 0: CW(H, Ly — L) — CW(H, Ly — L;) given by

ox)= Y #z,M(x,y, H J)-y.
yeCrit(A )

For generic J the differential is well-defined and moreover 92 = 0. For simplicity
we will write CW(H ) instead of CW(H, Ly — L) when there is no possibility of
confusion. In this paper we are not concerned with gradings in CW. The homology
of (CW(H, Ly — L), d) is called the wrapped Floer homology of (H, Ly — L)
and is denoted by HW(H ; Ly — L), or in short HW(H).

Next we consider continuation maps. Let H_ and H4 be non-degenerate
admissible Hamiltonians with H, (x) > H_(x) forall x € M, in short H, > H_.
Take an increasing homotopy through admissible Hamiltonians (Hy)ser, ds Hy > 0,
with H; = Hy near +oc0. For elements in M°(x_, x, Hy, J), i.e. Floer strips

u:R x [0,1] — M,
7,1, () := d5u + J(du — X, () = 0

lim (s, 1) = X,
s—+o00

u(-,0) € Lo, and u(-,1) € Zl,

(15)

with Fredholm index O connecting x_ € Crit(+Ag_) and x4 € Crit(4A g ), the action
difference is

A (62) (o) = B + [ | slistw.
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Hence the action decreases under the continuation maps

H—H+ . CW(H_) - CW(H,),
given by

LH_’H+(X_) — Z #ZZMO(-X—,-X-F’HS’J)"X""
xt Crit(d‘oHJr)

Define the wrapped Floer homology
HW(M, Ly — Ly) = H_r)nHHW(H; Lo — Ly),

where the direct limit is taken over all H € Hoy(M, Lo — Ly).

Definition 2.14. The homology HW(M, Ly — L) is the direct limit of the filtered
directed system HW(M, Lo — L1) = (HW*(M, Lo — L1)),4e(0,00)- Here

HW®(M, Lo — L1) := lim gHW*(H; Lo — Ly),

where HW*(H ; Ly — L) is the homology of the Floer chain complex restricted to
critical points of action less than a. The persistence maps

tysp: HWH(M, Lo — L1) - HW? (M, Ly — L)

are induced by the natural maps HW*(H, Ly — L) — HWb(H, Ly — L) that
come from inclusions. We write

tg:HW*(M, Lo — L) - HW(M, Lo — L)
for the induced map from HW*(M, Ly — L) to the direct limit HW(M, Lo — L1).
Let H" > H be Hamiltonians in J#.;(M, Lo — Li)and b > a. Let

H,H'
La—)b

:HW?(H, Lo — L{) — HW?(H', Lo — L1)

be the continuation map induced by any non-decreasing homotopy from H to H'. In
case b = 400 we write

LH  HW(H, Loy — L1) - HW(H', Lo — L,).

Remark 2.15. Notice that Lf_’_fz is the map induced by the chain level inclusion

CW%H, Ly — Ly) — CWb(H, Lo — L;y). For this reason we will denote this
inclusion also by

H.H.owa(H, Ly — L1) = CWP(H, Ly — Ly).

ta—>b‘
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By the construction of PTW(M , Lo — L1) presented above we have for every
number ¢ > 0 and Hamiltonian H € H,(M, Ly — L) a map

xHL HWA(H, Ly — L) — HW*(M, Lo — L). (16)

This allows us to define for every Hamiltonian H € H.,(M, Ly — L) and numbers
b > a the map

X2 = b oy, =HW(H, Ly — L1) - HW"(M, Ly — L1).

Using functoriality properties of continuation maps it is straightforward to check that

H . | H,H
Xa—sb = Xp—b © La—>b'

For simplicity, in the case b = +o00 we write
xH =0 xH, CHWO(H, Ly — L1) - HW(M, Lo — L1).
For each H € H.,(M, Ly — L) we also have a map
yH:HW(H, Ly — L) > HW(M, Ly — L1).

To define it, we first notice that since 77,1, (f) is a finite set we can choose a
number ag > Maxyer;, ., (#){#4(x)}. For this choice of a g the chain complexes
(CW(H, Ly — Ly),0) and (CW*# (H, Ly — L), d) are identical, and we get

HW(H, Ly — L1) = HW?# (H, Ly — L,).

We then define y? := Xfﬂ- It is an elementary exercise to check that the definition
of ¥y does not depend on the choice of ¢y > max x€Tr g1, ( my1+A(x)}. In the same
way we can construct for each b > MaXxeTr,, ., (H)1+4(x)} a map

2L HW(H, Lo — L1) — HW?(M, Ly — Ly).

These maps are useful for the study of spectral numbers done in the next section.
We will need the identity
H H' _ HH’
Xa = X ©lg
which is established in an elementary way from the functoriality properties of
continuation maps. In particular, we have

5 (17

P =g o (18)
and
Xf — XH oLf’H. (19)
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We will now define the symplectic growth rate of HW.

Definition 2.16. The exponential symplectic growth rate 'Y (M, Lo — L) is
defined by

log(dim Im ¢,)
p

Y™ (M, Lo — Ly) := limsu = T(HWM, Lo — L1)). (20)

a—>o0
Analogously, given a family (L;);ey of asymptotically conical exact Lagrangians
in M we define

iel
where f’ieI(I’-de\f(M, Lo — L;j)ieq) is defined as in Definition 2.11.

2.2.3. Spectral numbers in HW.

Definition 2.17. AsSHW(M, Lo — L) is the direct limit of the f.d.s. HW(M, Lo — L1),
we define the spectral number ¢ of elements of HW(M, Lo — L) via the recipe
given in Section 2.1.2.

We now present an equivalent definition of ¢ which is more geometrical. Given
H € Heeoe(M,Ly — Ly), and a cycle w € CW(H, Ly — L;) we denote by
[w] € HW(H, Lo — L) the homology class of w in HW(H, Ly — L1). The
cycle w can be expressed in a unique way as a sum of elements of 77,7, (H) and
we denote by +(w) the maximum of the actions of these elements.

If w' € CW*(H, Ly — L1), then it can be expressed in a unique way as a sum of
elements in 7% _,, (H). This expression is identical to the one of (ZIH (w'), from
what we conclude

,A,(Lf’H(w’)) < aforall w' € CW*(H, Ly — L). 21

The right hand side in the following identity is often taken as the definition of the
spectral number c¢(b).

Lemma 2.18. For a homology class h € HW(M, Ly — L;) we have
c(h) = inf {AW) | w e CW(H, Ly — L) is a cycle with y™ (Jw]) = b}.
HGJfrcg(M,L()—)Ll)
(22)

Proof. Let H € Ho(M,Lo — Lp) and w € CW(H,Ly — L) be a cycle
with ¥ ([w]) = h. For each a > A(w) we know that there exists a cycle w’ €
CW*“(H, Ly — Ly) such that Lf’H(w’) = w. Using (19) we obtain

12w = ) o H (') = xH(w) = b.
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This implies that b is in the image of x/ and thus in the image of t,, from what we
get c(h) < a. Since this is valid for each a > A(w) we obtain that c(h) < A(w),
and it follows that

ch) < inf  {AWw)|w e CW(H, Ly — Ly)isacycle with 7 ([w]) = h}.
HeHeeg(M,Lo—>L1)
(23)
To obtain the reverse inequality let ¢ > c¢(h). Then there exists B € HW*(M,
Ly — Lq)suchthati,(8) = h. By the construction of HW* (M, Loy — L1) we know
that there exists H € Ho(M, Ly — Ly) and a cycle w' € CW*(H,Ly — Ly)
such that y, _([w']) = B. It follows that

xa (W) = o xila (' = w(p) = .

Let w := (& ’H(w’ ). By the observation we made before the lemma we have
A(w) < a. Using (19) we obtain

KT (w)) = 7 (w]) = xH(w']) =b.

We have shown that for each a > ¢(b) there exists H € Ho(M, Lo — L) and a
cyclew € CW(H, Ly — L) such that A(w) < a and y (Jw]) = b. It follows that

c(h) > inf  {A(w) | we CW(H, Ly — L) is a cycle with y ([w]) = h}.
HeHy(M,Lo—L1)

(24)

[]

2.2.4. A special type of Hamiltonians. Given an admissible Hamiltonian H in M
and a number a > 0 we write H/ < a if the slope of H is < a. We first define

K(M, Ly — Ly) := max{max{ fo(x) — f1(x) | x € Lo N Ly}, 0}. (25)

For a > K(M, Ly — L) a careful choice of a cofinal family of Hamiltonians
shows that HW? (M, Ly — L) is isomorphic to h_)m H<aHW(H; Ly — L), where
the direct limit is taken only over all non-degenerate admissible /7 with slope less
than a.

To explain this we first take a collar neighbourhood U = ([1 —4,1] x X)) C M
of dM on which Ly and L are conical, and A is given by rap. Since a >
K(M, Ly — L1) we can choose K(M, Ly — L1) < p < a, such that there is
no element in T3, A, (pr) with length in the interval [, a). We now choose an
admissible Hamiltonian H* in M with slope p such that

e H" is a negative constant —k in M \ U, with k small,

e H* depends only on r in 2, and is a convex function of r that increases sharply
close to dM .
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If k is small enough, and H* increases sharply enough close to dM then we have
B the action of all elements of 77,1, (H{*) have action < a;

see for example [38, Lemma 9.8].
If (M, Ly — L) isregularthen H* € H,(M, Ly — Ly). Inthis case we have

the set 77,1, (H") is in bijective correspondence with Tzfo—m. (ap)U(LoNLy).

(20)
Incase (cpr, Ag— L) isregular but (M, Ly — L) is not, we can make a C *°-small
perturbation of H# inside M that still satisfies B and is in H,(M, Lo — Ly); for
simplicity we still denote this perturbation by H*. In both cases, the reasoning used
to prove [46, Lemma 1.5] gives

Xfu: HW(H", Ly — L) — HW*(M, Lo — L) is an isomorphism.  (27)
It follows that for a > K(M, L.y — L) we have

HW“(M,LO—>L1);li_n>1H<aHW(H;LO—>L]). (28)
2.3. Algebra and module structures on wrapped Floer homology.

2.3.1. Algebrastructurein HW. Let L be an exactasymptotically conical Lagrang-
ianona Liouville domain M. We endow M with an asymptotically cylindrical almost
complex structure as in Section 2.2. We recall the definition of the triangle product
in the wrapped Floer homology HW (M, L), and follow the conventions of [2].

We first define the triangle A. One first takes the disjoint union R x [—1,0] U
R x [0, 1]. We identify the points (s,07) € R x [—1,0] and (s,0") € R x [0, 1] for
all s > 0, and denote the resulting space by A. Let pg,, be the point in A which
comes from the points (0,07) € R x [-1,0] and (0,07) € R x [0, 1].

The interior of A coincides with (Rx (=1, 1))\ ((—o0, 0] x{0}). As (Rx(—1, 1))\
((—00,0] x {0}) is a subset of C we can restrict the complex structure of C to
(R x (—1,1))\ ((—o0, 0] x {0}). We then obtain a complex structure j in the interior
of A. This extends to a complex structure on A \ pgine. Using again that the interior
of A coincides with (R x (—1, 1))\ ((—o0, 0] x{0}), we can define global coordinates
(S, t) on A \ Psing-

For an admissible Hamiltonian H on M , the solutions of the Floer equation on A
are maps u: A — M that satisfy

a1 (W) == dyu + JW)(Bu — X (t.u)) = 0. (29)

We write H = 2H € C®(M).
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Givenxy,x € Jp(H)and y € rJ'L(lff) we let M(x1,x2;y, L, J) be the space of
maps u: A — M that satisfy dy g (1) = 0 and such that u(z) € L for all z € d(A),

lim u(s,t —1) = x1(t) fort € [0, 1],
S—>—00
lim u(s,t) = x2(¢) fort € [0, 1],
S§—>—00
and lim u(s,2t —1) = y(t) fort € [0, 1].
s—>+00

Define n(x, x2; y) as the number of elements of M(x, x2; y, L, J) which have
Fredholm index 0. If the moduli spaces M(xy, x; y, L, J) are transversely cut out,
something that can be achieved by perturbing H and J, the numbers n(xy, x;; y) are
always finite.

Define Y,: CW(H, L) ® CW(H, L) — CW(H, L) by

Yo(xix2) = ) (n(x1,x2:y) mod 2)y (30)
yeTL(H)

for x1,x2 € Jp(H), and extending it linearly to CW(H,L) ® CW(H,L). It is
proved in [2] that T, descends to a map

HY.:HW(H,L) @ HW(H, L) — HW(H, L),

that endows HW (H, L) with a product which we denote by *. It is compatible with
the continuation maps, as follows by the results in [41, Chapter 5], and passing to
the direct limit H Y; endows HW(M, L) with a product. For homology classes
h,h’ € HW(M, L) we will also denote their product by b » h’. The product * is
associative: the proof is identical to the proof in [41] that the pair of pants product in
Floer homology is associative. As = is distributive with respect to the vector space
structure of HW(M, L) it gives HW (M, L) the structure of a ring. Since we defined
HW(M, L) with coefficients in Z, the product » actually endows HW (M, L) with
the structure of an algebra.

It was proved in [2] that in the case where M = T* Q of a compact manifold Q
and L = T,Q for some point ¢ € Q, the triangle product coincides with the
Pontrjagin product.

An important property of the triangle product is given by:

Lemma 2.19. The spectral numbers ¢ of HW(M, L) are subadditive with respect
fo *.

Proof. We will need the triangle inequality
Ag(y) = An(xr) + Ag(xz), (31

that must be satisfied by the actions of x;,x, € T (H)and y € TL(ﬁ) if the moduli
space M (xy, x2;y, L, J) # @ (see [2, Formula 3.18]).
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Let by, b, € HW(M, L). Given § > 0, we know from Lemma 2.18 that there
exist Hamiltonians Hy, H, € Hyeo(M, L) and cycles w; € CW(H;, L) such that
H; ! / 8
x(w;]) = b and  A(w;) < c(h;) + 2
fori =1,2. Let now H € Ho(M, L) such that H > Hy and H > H,. We define

w; = JHiH (w;) for i = 1,2. Since the action decreases under the continuation
maps (i we have A(w;) < c(h;) + 2, and using (18) we obtain
p 2 g

x Qi) = 1 (i) = 2™ (wil) = b

fori = 1,2. By (31) we have A(Y1(w; ® wz)) < c¢(h1) + c(h2) + 8. By definition
[Tr (w1 ® wy)] = [wq] * [wz], and by our construction of x in HW (M, L) we have

17 ([wi] * [wa]) = 1™ Qwid) % 2™ ([wa]) = b1 + b,
It then follows from Lemma 2.18 that
c(hr * bh2) < A(YL(w1 ® wz)) < c(hr) + c(h2) + 6.
Summing up, we have shown that for any § > 0 we have

c(hr * b2) < e(br) +c(h2) + 4,
which implies

c(hy * b)) < c(hy) + c(h2). (32)

We are ready to define the algebraic growth of HW.

Definition 2.20. Let S be a finite set of elements of HW (M, L). We define
T2(M, L) := T35 (HW(M, L)). (33)

Combining Lemma 2.8 and Lemma 2.19 we obtain:

Proposition 2.21. For every finite set S of HW(M, L) we have

TE8(M, L)

Y™ (M, L
M=)

(34)
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2.3.2. HW(M, L — L’) as a module over HW (M, L). We start by picking two
exact asymptotically conical Lagrangians L and L’ on (M, w, A). The boundary d(A)
contains three connected components: the component D¢ Which is equal to R x
{—1}, the component D,,;y which contains the singular point, and the component
Drigny Which is equal to R x {1}.

Letx € Tp(H),z € Tp»p/(H)and Z € T/ (H). We let M(x;z,Z,J,H)
be the moduli space of maps u: A — M which satisfy (12) and such that

u(oﬂleﬂ) C L, u("romid) CL, u(i)righl) C L,a

and
lim u(s,t —1) = x(¢) fort € [0, 1],
S—>—00
lim wu(s,t) = z(t) fort € [0, 1],
§—>—00
and lim u(s,2t — 1) = Z(¢) fort € [0, 1].
s—>—+00

Letn(x; z, Z) be the number of elements in M(x; z, Z,J, H) that have Fredholm index 0.
For non-degenerate H and a generic choice of J, all the spaces M (x;z,Z, J, H) are
transversely cut out, and therefore the numbers n(x; z, Z) are all finite.

We then define a map
O CW(H;L)® CW(H:;L — L") - CW(H;L — L)

by letting

OLr(x®z)= Z (n(x;z,2) mod 2) Z, (35)
EeTL—)L’(H)

for x € Jp(H), z € Tp-p/(H) , and extending it linearly to CW(H;L) ®

CW(H; L — L.
The map Oy ;- descends to a map

H®p ; HW(H; L) @ HW(H: L — L'y - HW(H; L — L').

The proof is again identical to the one used in [41] to show that the pair of pants
product descends to the Floer homology. Taking direct limits we obtain a product

HO, ;. : HW(M,L) @ HW(M,L — L') — HW(M, L — L').

We will use the notation H®y, 1/(h, m) = b« m.
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In order to conclude that HW(M ;L — L’) is a module over the algebra
HW(M ; L) we must prove that:

hx(my +mp) =hxm; +h*xmy forallhe HW(H; L)
andm;,m, € HW(H ;L — L),

(h1 + b)) *xm="h; «m+h,*m forallhy, b, € HW(H; L)
andm e HW(H ;L — L),

(b1 * b)) *xm = by * (hy xm) forall hy,h, € HW(H; L)
andm e HW(H: L — L').

The first two properties follow from the linearity of H®y ;-. The proof of the third
one is a cobordism argument identical to the one of [41, Chapter 5] that proves the
associativity of the triangle product . An argument identical to one used to prove
Lemma 2.19 gives:

Lemma 2.22. The spectral numbers ¢ are subadditive with respect to *.

3. Viterbo functoriality

The Viterbo transfer map on HW will be described. As first applications we
then deduce invariance properties under a graphical change of the boundary of the
Liouville domain in the completion.

3.1. The Viterbo transfer map on HW. The Viterbo transfer map was first intro-
duced as a map for symplectic homology in [46], see also [14,31]. The analogous
map in wrapped Floer homology was studied by [3], see also [38]. Our focus lies on
its compatibility with the action filtration.

Let M := (Yap,wap, Ap) be a Liouville domain and let j: W — M be a
codimension 0 exact embedding of a Liouville domain W := (Y, wow, Ay ) into M,
i.e. j*Ay = Aw. Let Lo and L, be asymptotically conical exact Lagrangians in M,
and assume Ly := Lo N W and L) := L; N W are asymptotically conical in W.
Additionally assume that L is also conical on M \ W and L satisfies the property

Alrz\r vanishes on the boundary o(L \ L") = dL U JL', and

one can write A|z\z = df, where f vanishes near 0L U dL'. 0)

We will call a Lagrangian with this property transfer admissible for the pair (M, W').
See [3] for a discussion of that condition and why the transfer map can in general not
be defined if one removes this condition.

We give the construction of the Viterbo transfer map as an asymptotical morphism
of filtered directed systems j(Lg, Ly): HW(M, Ly — L) — HW(W LG — LY).
More precisely we get fora > K = K(M, Ly — L), defined in (25), homomorph—
isms

Ji(Lo, L1)a: HW*(M, Loy — Ly) — HW*(W, Ly — L))
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that are compatible with the persistence morphisms ¢, 5, for K < a < b. Moreover,
the homomorphisms are functorial with respect to a composition of embeddings
W, C W, C M and the induced maps in the direct limit

Ji(Lo) = ji(Lo, Lo): HW(M, Lo) — HW(W, L),
and (Lo, L1):HW(M, Lo — Ly) — HW(W, L{ — L))

are compatible with the algebra and module structure, i.e.

J(Lo)(x x y) = ji(Lo)(x) * ji(Lo)(y) (37)
and (Lo, L1)(x % 2) = ji(Lo)(x) * ji(Lo, L1)(2) (38)

forall x,y € HW(M, Ly) and z € HW(M, Ly — L).

We first give the definition of ji(Lg, L1). We may assume that (M, Ly — L)
and (W,L; — L) are regular. Otherwise we can perform the construction
considering suitable compactly supported Hamiltonian perturbations of Ly and L.
LetS§ := 8(M, Ly — L1)US(W, Ly — L'). We furthermore assume that actually
W C M > for some 7 < 1, sufficiently close to 1. One can get the maps for general
W C M by an inverse limit.

First of all, for every R > 1 one can construct a compactly supported Hamiltonian
isotopy (Wz )ielo, 1jon M, (1,00 = i, A = w{e) that leaves LO invariant and maps L1
to a Lagrangian Lf that is conical on (M \ Mg) U (Wg \ W) and that is transfer
admissible for the pair (Mg, Wg) as follows. Map L; \ W by the Liouville flow
(rogr)eefi,r) into Ag = Mg \ Wg. Since L, is conical near W, we can extend
(L] U¢k,u(L1\W))t€[1 R] to a 1-parameter family of exact Lagrangians interpolating
between Ll and a Lagrangian LR Therefore we can choose a Hamiltonian isotopy

(R )iefo,1] in M that realizes this Lagrangian isotopy and is supported in M 1 R\ Wr.
Since Lo is conical outside W, we can choose the isotopy to leave Lo invariant. We
can choose the isotopy such that (Y o {)*A = R{*A, where {: Ly \ W < M is the
embedding of L restricted to 1.1 \ W. The function

fi(x), ifxel; =LRnw,

:ZR—HR, with x) =
Jr: L r(x) Rfi(y~'x), elsewhere

is a primitive of A7 &.
We now carefully choose for every u ¢ & sufficiently large a step-shaped
Hamiltonian H:}ep on M. Let

kw = min{ fo(x) — fi(x) | x € LoN Ly N W},
where f; are the primitives of A[,,i = 0, 1. Let k = max{—kw,0}. Let

K =K(M,W, Ly — Li) = max{max{ fo(x)— fi(x) | x € LoN L, NM\ W},0}.
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Choose a small € > 0. Let u > K, u ¢ 8, and let 8, = min{dist(u,8), u — K}.
Choose R > (k + p + 4¢€)/8,.

Hslep
n
I
BOR = 1) = € ooy ;
—64 l k r _rW .......... k r :> rM

Figure 1.
We choose a smooth function H ,itep: M — R that only depends on the radial
coordinate r = ry in (0, R) x dW and only on the radial coordinate r = rps in
(TR, 00) x M, and such that

_'E, ifx & W‘rq
2 :
aafl > (), ifx=(r,y)e W\ W,
Jr — ifx=(r,y) e Wer \ W,
2 :
HE (x) = < 2H <, if x = (r, y) € Wg \ Weg, (39)
(R—Dp—e, ifxe Mg\ Wg,
2 :
0. ifx=(ry) € Mg\ Mer.
wr — [, ifx =(r,y) e M\ Mg.

Z()%E{{
Hslcp

yva
respect to Lo and L(If into four classes: Intersections of Ly and L in W; denoted

by 2*, Hamiltonian chords close to W denoted by 2**, intersections of Lo and I:f’
in Mg \ Wg denoted by 8™, and chords close to dWg and dM g denoted by B**.
We can estimate the action values as follows.

We divide the critical points of the action functional A := A of H,;® with

~

A(x) > ky —€ > —k —¢, if x € A*,  (40)
Ax) > —€ > —k —e, if x €AY (41)
AX) < RK — (R—Dp —¢€) < —k — 3, if x € B*  (42)

and  A(x) < (u —dist(ie, 8)R — (R — D —€) < —k — 3¢, if x € B*F  (43)

In (42) we use that fo(x) — fr(x) < KR for every x € ‘8%,
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Altogether we get that
A(x) > —k — €, ifx e A =A*UA**
and A(x) < —k — 3¢, if x € B =B*UB*,

! A

Hence there are no Floer trajectories from B to 2. So

CW{k-2et00) (prsen; Ty LY = CW, (HSP) /CW o0 k=20) (pysier)

M

generated by elements of action larger then —k — 2¢ is a chain complex, and the
projection CW (H ;") — CW{k=2€.100) (j1 ¥y induces a map
HW(H s Ly — L) — Hwk2ete gien. [ [LR) (44)
on homology.
Let now H li” be a non-degenerate admissible Hamiltonian with respect to M

on M with slope w, and H JV a non-degenerate admissible Hamiltonian with respect

to W on W with slope . We have the isomorphisms

HW(HM: Ly — L) > HW((y ) HM; Ly — LR) S HW(H; Lo — LF),
(45)

and
HWk=264e0) (gsep, Ty LRY S HW(HY; Ly — LY). (46)
Here, the second isomorphism in (45) holds, since (Iﬂ_l)*Hliw and H:L[ep
can be connected by a compactly supported homotopy of Hamiltonians. To
get the isomorphism in (46) we choose a conical almost complex structure

near 0W. By [3, Lemma 7.2], see also [38, Appendix D] there are no Floer
trajectories with asymptotics in W that leave W and hence the differential of

CW(k=2e+00) (P [ — LR) only counts Floer trajectories that map into W.
Combining (44), (45), and (46) gives maps

JuBW(HM Ly — L) > HW(H ) ; Ly > L)) (47)

for any . > K, ju ¢ 8. The isomorphisms (44), (45), and (46) are all compatible
with Floer continuation maps induced by monotone increasing homotopies of the
corresponding Hamiltonians. We do not give the details here and refer the reader
to [38, Theorem 9.8]. We thus get commutative diagrams:

HW(HM: Ly — L) —%> HW(HY L) — L)
LHI’}”ﬂ#”l LHIEV’H'IT/VJ'
HW(HM: Ly — Ly) —2> HW(HY: L, > L))

foranyn > p> K, u,n ¢ 8.
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Hence, for any a > K = K(M, Ly — L;) > K one obtains, because of the
construction in Section 2.2.4, a map

ji(Lo. L1)a: HW*(M, Ly — L) — HW*(W, L, — L})

induced in the direct limit taken over all non-degenerate admissible Hamiltonians
with slope 1, K < p < a. By the construction these maps are compatible with the
persistence morphisms ¢, 5, for K < a < b.

By a standard compactness-cobordism argument, and by using once again the
non-escaping result [3, Lemma 7.2] one can show the compatibility of the algebra
and module structure with the Viterbo transfer maps (37) and (38); for this see [38].

3.2. Change of the contact hypersurface dM. From the Viterbo transfer one can
deduce invariance properties of HW under a graphical change of dM in M. This
will be used to bound the growth rate of Reeb chords for different choices of contact
forms on (M, £pr). Let M be a Liouville domain with asymptotically conical exact
Lagrangians L and L as above, let0 < € < 1.

Lemma 3.1. Assume that L;, i = 0, 1, are conical on M \ M. Then, fora > K =
K(M, Ly — L), we have

HW4(M,, Lo N Me — L1 N M) = HWE9 (M, Lo — Ly).
Moreover, the Viterbo map
HW*(M, Ly — L,) > HW* (M., Lo N M, — L1 N M)
composed with @, is the persistence morphism
HWA(M, Ly — L) — HWea(M, Lo — L).

Proof. Note, that adding a constant to any Hamiltonian H or applying a compactly
supported deformation to H does not change its Floer homology. Let H be an
admissible Hamiltonian with slope u with respect to M. Then H — u(é —1)isan
admissible Hamiltonian with slope % p with respect to M. Moreover, if one chooses
a cofinal sequence of Hamiltonians of the first kind with slopes K < u < a, there are
compactly supported homotopies of the shifted Hamiltonians to a cofinal sequence
with respect to M with slopes %u. This gives the first statement.

Observe, that both the Viterbo transfer map in the present situation and the
persistence morphisms are given by a continuation map induced by a monotone
homotopy. One can apply a usual chain homotopy argument in Floer homology to
see the second statement. L]

Let f: M — [1, 0co) be a smooth function. Recall that
M;=M\{(r,x) | r > f(x),x € IM?}.

Let ¢ = maxyyy f.
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Lemma 3.2. The filtered directed systems

(HW*(M, Lo — L1))aco,00) and (HW*(My, Lo N My — Lo N M))ae(o,00)
are (¢, 1)-interleaved.

Proof. The morphisms of filtered directed systems f and g, with

fa: HW4(M, Lo — Ly) = HWS4(M¢, Lo — L)
— HWS4(My, Lo N My, Ly N M)

and
ga:HW(My, Lo 0 My, L1 N M) — HW*(M, Loy — L),

given by Viterbo maps, yield by functoriality of Viterbo maps and Lemma 3.1 the
(¢, 1)-interleaving of

(HWY(M, Lo — Li))ac(o,000 and (HW?(M;, LoNM; — EoﬂMf))ae(o,oo)- ]

4. From algebraic growth to positivity of topological entropy

In this section we prove Theorem 1.7.

4.1. Legendrian isotopies, transfer admissible Lagrangians and growth. We start
by introducing some notation. Let M = (Y, w, A) be a Liouville domain and L be an
asymptotically conical exact Lagrangian disk in M. We denote by A the Legendrian
sphere dL. Letting ¥ := dM and opy := A|x be the contact form induced by M
on ¥ we assume that (apr, A — A) is regular. As usually, we denote by &7 the
contact structure ker a/py.

Our approach to prove invariance of the exponential symplectic growth of HW
differs from the ones developed by [30,33]. It makes extensive use of the module
and algebra structures that exist on HW. We will need the following:

Definition 4.1. Let > 0 and A, be a Legendrian sphere in (X, &p7). Assume
that Ay is Legendrian isotopic to Ag. We say that Ay is p-close to Ag in the
C3-sense if there exists a Legendrian isotopy 8: [—1, 1] x §"~! — (X, &) from Ay
to A1 whose C3-norm is < j, and which is stationary in the first coordinate outside
a compact subset of (—1, 1).

Recall that the symplectisation of a contact form « on (3, &) is the exact
symplectic manifold ((0, +00) x X, dra, ra) where r denotes the first coordinate
in (0, +00) x X. The following lemma is essentially due to Chantraine [13] and is
proved in Appendix B.
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Lemma 4.2. Fix a constant € > 0, a contact form o on (£, §), a Legendrian A
in (X, &), and a tubular neighbourhood U(Ag) of Ag in X. Then there exists § > 0
such that if Ay is 8-close to Ag in the C3-sense, then there exist exact Lagrangian
cobordisms £~ from Ay to Ay and £ from Ay to Ay in the symplectization of
satisfying:

(a) £~ is conical outside [1 — %, 1-— %] % ¥,

(b) £% is conical outside [1 + §,1+ 5] x X,

(c) the projections of £ and £~ to X are completely contained in U(Ay),

(d) the primitives =+ of (ra)| g+ have support in [1 — 5,1 — 2] x Zand [1 + g,
1 + 5] x X, respectively, and | fE]co <e.

Moreover if € is the exact Lagrangian cylinder obtained by gluing £ N[1, +00) x X)
ontop of £~ N ((0, 1] x X) we have that

(e) £ is Hamiltonian isotopic to R x Ay in the symplectization of «, and
the Hamiltonian producing the isotopy can be taken to have support in
[l— 514 5] =2l

We now fix € > 0 such that L is conical on M \ M{_,.. We choose a Legendrian
tubular neighbourhood U(A) of A on (2, £ar). For these choices of € > Oand U(A),
we choose §; > 0 given by Lemma 4.2.

We then choose a Legendrian sphere A; which is §;-close to A in the C> sense,
is disjoint from A, and satisfies that (apr, A — A1) is regular.

It follows from Lemma 4.2 that there exists an exact Lagrangian cobordism £~
from A to A in the symplectization of aps which is conical outside [1—5,1—§]x Z.
We can then glue £~ N[1 -5, 1] x X to L N M;_¢ to obtain an exact Lagrangian
submanifold L in M. The Lagrangian L; is an exact filling of A;. Let f7 be the
primitive of A |z which vanishes in A. Using Lemma 4.2 we can glue /™ to the
restriction of f7 to L N M 1—¢ to obtain primitive of f1, of A |, which vanishes
in A 1-

Because of the control given by Lemma 4.2 on the function | f ~|c0o on £, and
the facts that L and L; coincide on M;_¢ and f1r vanishes on L N (M \ M,_<) we
have

KM,L — L) <e. (48)

By Lemma 4.2(d) the Lagrangian L is transfer admissible for the pair (M, M1 _¢).
Combining this with (48) we obtain for eacha > ¢ > K(M, L — L) a Viterbo map

¢—HW*(M,L — L) > HW*(M;_, L),

where to simplify notation we keep denoting by L and L the restrictions of L and L
to M;_.. Passing to the direct limit we obtain a map

Wy HW(M, L — L;) — HW(M,_, L).
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By Lemma 4.2 we also have an exact Lagrangian cobordism £ from A to Ay,
which is diffeomorphic to R x S"=1 andis conical over A forr > 1 + % and conical
over Ay for r < 1 + §. By gluing TN (1,1 + €] x ) to L; we obtain an exact
Lagrangian L in M; .. By Lemma 4.2 (d) the Lagrangian L is transfer admissible
for the pair (M14¢, M). By gluing /¥ to fz, we obtain a primitive f; of A |7.
Reasoning as in the proof of (48) one obtains

K(Mite, L — L) <e. (49)
We thus obtain for each a > € a Viterbo map
WS HW*(Myye, L — L) > HW*(M, L — Ly),

where by abuse of notation we denote by L the conical extension of L to M.
Passing to the direct limit we obtain a map

Wy HW(M 4e,L — L) - HW(M,L — L,).

By Lemma 4.2, L is Hamiltonian isotopic to the conical extension of L to M4,
which we will still denote by L, for a Hamiltonian function which vanishes outside
Mg \ Ml_%. A continuation argument then implies that for each admissible
Hamiltonian H that is regular for both (M4¢, L — L) and (M4, L) and has
slope > ¢ we have that HW(H,L — L) and HW(H, L) are isomorphic. By
Section 2.2.4 we conclude that for each a > € the wrapped Floer homologies

HW* (M 4e, L — L) and HW?(M,4., L) are isomorphic. (50)

This induces an isomorphism ®: HW (M, L) — HW(M ¢, L — L).
Since L is conical on My4¢ \ Mi—¢, M \ M1_¢ and M \ M, we have transfer
maps:

WEHW (M) 4e. L) — HW(M;_, L),
W HW(M, L) - HW(M,_, L),
W HW(My e, L) — HW(M, L).

We notice that the contact forms induced by A on {1 — €} x ¥ and {1 + €} x X
are S22 and $AL, respectively. Thus, as explained in Lemma 3.1, the maps W7, W,
and q,zr are induced by asymptotic isomorphisms of f.d.s. For this reason we will
denote by Aj the algebras HW(M4¢, L), HW(M_¢, L) and HW(M, L). More
generally, the same reasoning shows that for any { > —e the algebra HW(M ¢, L)
is isomorphic to HW (M _¢, L) by an asymptotic isomorphism.

The homologies HW(M, L. — Ly), HW(M 4¢, L — L), and HW(M;_, L)
are modules over the algebras HW(M, L), HW(M; 4., L), and HW(M,_., L),
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respectively: they are therefore A7 -modules. By this discussion and (38) in Section 3
the maps @, W¢—, and W¢+ are A7 -module homomorphisms.
By functoriality of continuation maps, the diagram:

— [}
HW(M1+€,L = L) < HW(M1+E,L)

lllzo\Dz_Fl q;lii

id
HW(Mi—, L) «—— HW(Mi_, L)

is commutative. It thus follows that the map Wg— o We+ is an Aj-module
isomorphism. We thus conclude that We¢+ is injective. Let 17 be the unit
in HW(M|4¢, L). As @ is an A7 -module isomorphism and W+ is an injective
Ar-module homomorphism we know that the element my, = Wet o ®(17) in
HW(M, L — L) is a stretching element. We have thus proved the following:

Lemma 4.3. The wrapped Floer homology HW(M, L — L) is a stretched module
over HW (M, L). It follows from Lemma 2.9, Lemma 2.19, and Lemma 2.22 that

rsymp(M,L s Ll) > FS)’mP(M’ L) (5])

Recall that our Legendrian sphere A; was chosen disjoint from A. It follows
that intersections of the Lagrangian disk L; and L are contained in M;_<. By a
small Hamiltonian isotopy supported inside M;_¢ we can perturb L to an exact
Lagrangian L' that is transverse to L. We take the perturbation to be small enough
so that there is a primitive /7 of Al 1/, which vanishes in dL’ and satisfies

K(My, L — L) <e. (52)

A continuation argument identical to the one used in the proof of (50) implies that for
a > € the homologies HW*(M, L — L) and HW*(M, L — L) are isomorphic.
We let
Cregium = #(Lll N L) (53)

This number will be useful later for estimates of the growth of the number of Reeb
chords.

We now consider a tubular neighbourhood ﬂ(AI) which does not intersect A.
By Lemma 4.2 there exists 3 > 0 such that if a Legendrian sphere A, is d,-close
to A in the C3-sense, then there exist exact Lagrangian cobordisms &£,_,1 from A,
to Ay, and £,-,2, from A to A,, both contained in the symplectization of aps. It
follows from Lemma 4.2 that by taking 6, > 0 smaller, if necessary, we can guarantee
that

* £ is conical outside [1 — £, 1 — £] x X,

€
gv
* £ is conical outside [1 + £, 1 + £] x X,
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e the projections of £,_; and £1_,, to X are contained in ﬂ(A 1),

* there exist primitives f>,1 and f12 of rapm|g, ., and rapy|g, ., respectively,
with supportin [I — £, 1—¢] x X and [1 + §, 1 + £] x X, respectively, such that
| f2=1lco < €and | fis2| <,

* the exact Lagrangian £, in the symplectisation of aps obtained by gluing
L1552 N([1, +00) x X) on top of L2517 N ((0, 1] x ) is Hamiltonian isotopic to
(0, +00) x Ay for an isotopy which is stationary outside (1 — £, 1 + £) x X.

It is clear that one can glue f1_.» and f>_.; to obtain a primitive fi1 of raam|e, .,

which satisfies | f11] < €.

We then glue £2,1 N ([1 — £,1] x X) on top of Ly C M;_¢ to obtain an
asymptotically conical exact Lagrangian L, with L, N dM = A,. Let L), be the
exact Lagrangian submanifold obtained from gluing £, N ([1 — £, 1] x X) on top
of Ly C M;_¢. Itisclear that L, and L are Hamiltonian isotopic for a Hamiltonian
which has support contained in M -

Notice that the intersection points of L) N L are the same as the intersection
points of L] N L. We thus conclude:

#(L, (1 L) = Crogium. (54)

We can glue f2-,1 to the restriction of fz, to Ly N M;_¢ to obtain a primitive fz,
of A |, such that ‘
KM, L — Lj) < e. (55)

Similarly, one obtains a primitive f; of A |L/2 such that
KM,L — L)) <e. (56)

Assuming that (apr, A — A») is regular the Lagrangian L, is admissible for the
pair (M, Ml_%). We then obtain for each a > € a transfer map

4 HWAM, L — Ly) —> HW*(M,_¢, L — Ly).

b o

These induce a map
\p:ﬁz%I . HW(M, L — Lz) 3 HW(MI_%, L — L]).

By (55) and (56) and the fact that L, and L’ are Hamiltonian isotopic for an
isotopy supported inside M;_¢, we can apply the reasoning used to prove (50) to
show that for each a > ¢ *

HW*(M, L — L,) and HW*(M, L — L) are isomorphic. (57)

Gluing £152 N ([1,1 + £] x X) ontop of Ly C M we obtain an asymptotically
conical Lagrangian L;in M 1 ¢ which is transfer admissible for the pair (M, +§7 M).
Reasoning as in the proof of (48) we obtain that ‘

K(Myyc. L — Ly) <e. (58)
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We thus get for each a > € a transfer map

% o HW (M, ¢ L — L) > HW*(M,L — L),

L1552

and in the direct limit a homomorphism
We, s HW(M e, L — Ly) > HW(M. L — L).

We finally glue £ N ([l+ £, 1+€]xX)ontop of Ly to obtain an asymptotically

conical exact Lagrangian L. on My . The Lagrangian L is an exact filling of A.
It is clear from Lemma 4.2 that L is Hamiltonian isotopic to L, for a Hamiltonian
which has support contained in M 4 ¢ \ M;_¢. Reasoning as in the proof of (48)
we obtain a primitive f7 of A |7 such that

K(Miqe. L — L) < e. (59)
We claim that for every ¢ > € there exists an isomorphism
Ve 2 HWY (Myge, L) = HW (M y4e, L — D). (60)

To establish this claim we first notice that if H is a Hamiltonian in3 Hy.o (M e,
L — Z) N Heeg(M14¢, L) it follows from the fact that L is Hamiltonian isotopic
to L for a Hamiltonian which has support contained in M ¢ \ M 1—¢ that there
exists a continuation isomorphism

Wy, , p:HW(H, L) > HW(H,L — L).

Equation (60) then follows from combining these isomorphisms and the identifica-
tions

HW* (M, L) = lim H<aHW(H ; L)
and HW*(Miye. L) = lim g <HW(H: L — L)

for a > ¢ > max{K(Mi4e, L — Z);K(M1+€,L)} which were established
in (28). The maps llfz 7 are compatible with the persistence morphisms of the

f.d.s. PTW(MHG, L) and }TVT/(MHG, L — L) and induce an asymptotic morphism
between them. On the direct limit we get a map

W, :HW(M 4. L) > HW(My 4. L — L). 61)

The succession of exact Lagrangian submanifolds we constructed is schematically
presented in Figure 2.

3By [3, Lemma 8.1] any admissible Hamiltonian in M;4. can be perturbed to one in
Jercg(M1+eaLﬁL)mgfrcg(Ml-FEaL)
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 —] E 1L B
I—e I—¢ 1 1+& l+e T
Figure 2.

Since L is transfer admissible for (M e, M1+%) we also obtain for each a >

€ >K(Mite, L — Z) a transfer map
%, HW! (M 4e, L — L) > HW*(M ¢, L — Ly).
This induces a homomorphism
Py+ :HW(Myye, L — L) > HW(My ¢, L — Ly).

Analogously, it follows from Lemma 4.2 that L is transfer admissible for the pair
(Ml__;_, M _¢), which gives us for each a > € >K(M, L—>L1)2K(M]_%,L—>L1)
a map ’

%_:HW“(MI_%,L — L) > HW*(M,_¢, L).

These homomorphisms induce a homomorphism
dp—: HW(MI_%, L — L) —>HWM;_¢, L).

The following lemma will be important for the study of the growth rate of
HW(M, L. — L,).

Lemma 4.4. For 0 < §; and 0 < 8, chosen as above we have that the spectral
number of Wy 7(11) is < €.

Proof. We know from [38] that ¢(17) = 0. This implies that for every a > 0 the
element 1y, is in the image of (;: HW*(M14¢, L) - HW(M4¢. L).
Leta > €. Asremarked above, the maps llfz fare compatible with the persistence

morphisms of ITW(MHG,L) and I?W(MHE,L — Z), which implies that the
diagram:
7

HW*(Mj1e. L) ——> HW*(My4c. L — L)

| ol

Yo 1

HW(Mi4e, L) ——> HW(Myte, L — L)
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is commutative. It follows that W, 7 (1) is in the image of
e HW (M 4e, L — L) — HW(M; ¢, L — L),

from what we obtain that ¢(¥; 7(1r)) < a. Since this is true for every ¢ > € we
conclude that ¢ (W, 7(1.)) < e. ]

By our discussion so far we have transfer maps

4 cI)-f"' =4 \II-ZI—>2
HW(My1e, L — L) —=SHW(My e, L — L) ——> HW(M, L — L)

Y, l

b p—
HW(Mi_,L)  «<— HW(M;_¢.L — L)

Using the fact that L is Hamiltonian isotopic to L by a Hamiltonian with support
contained in M 14§ \ M 1% and reasoning identically as in the proof of Lemma 4.3
we conclude that the composition Pg— oWy, , oWg, , 0Pgs oW, 7isinduced
by an asymptotic isomorphism from HW (M ¢, L) to HW (M, _¢, L). It follows that

We, , 0 Qg HW(M4e. L — L) > HW(M, L — L;)
is an injective A7 -module homomorphism. We define
mp, =Weg, ,0Ppyt (qJL,z(lL))-

The element m;, € HW(M,L — L,) is stretching since it is the image of a
stretching element by an injective A;-module homomorphism.

By the behaviour of spectral numbers under transfer maps, combined with (59)
and Lemma 4.4 we conclude that

c(mr,) < max{c(W, 7(11)),K(Mi4e, L - L)} <e. (62)

We denote by Vy,, (A1) the set of Legendrian spheres A, in the same Legendrian
isotopy class of A; that are §,-close to Aj is the C3-sense. Let Vg, (Ay) C
Vi, (A1) be the subset of these A, for which, in addition, (cpr, A — A3) is regular.
We denote by L, the filling of A, constructed above. Our discussion so far implies
the following

Proposition 4.5. The family (HW(M, L — L)) A2€VEL (A)) of Ap-modules is
uniformly stretched. It follows from Lemma 2.12, Lemma 2.19, and Lemma 2.22 that

rj\y;“;vgi! iy Mol — L) 2 P2 CM, L). (63)

Proof. The proposition follows directly from the fact that the elementm, € HW(M,
L — Lj) is stretching and from (62). ]
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Let o be a contact form on (X, £a7). We assume that the function f, defined by
o = fyap satisfies f, > 1. We thus have the inclusions My, C My, and M C M;, .

We denote by Vy,, ®(A1) C Vuo (A1) the set of Ay € V5 (Ay) such that
(x, A — A5) is regular.

Let Wb := Myaxt, \ My, and W, := M, \ M. Since the Lagrangians L,
and L are conical in My, \ M we obtain for elements A, € Vi [, (A1) transfer
maps

Pyt LoL, Pw—.L->L,
HW(Mmaxfa 5 L— Lz) HW(Mfa, L —)Lz) _—> HW(M, L— L2)

By Lemma 3.2, the composition @ — 11, © Py + 1,1, is induced by asymptotic
morphisms, and the f.d.s. ﬁ\TV(Mfa, L — L,)and HW(M, L — L) are (max fy, 1)-
interleaved.

The following proposition then follows from combining this observation and
Proposition 4.5.

Proposition4.6. Let « be a contact formon (2,6 p ) and assume that the function fy de-
fined by o =fyap is > 1. Then, the family of f.d.s. (HW(M;, ,L—)Lz))Aoev(x—rcg(Al)
VA &7
satisfies
[Y™P(M, L)

(My,,L —> Ly) > —————, (64)

A€V, B(A ) max fy

A reasoning identical to the one used to establish (57) shows that for every
Az € Vg, ®(A1) and for the exact filling L, of A, constructed above we have

HW*(M;,,L — L) and HW“(M;,, L — L)) are isomorphic. (65)

Combining this with Proposition 4.6 we have:

Corollary 4.7. Leta be a contact form on (X, §p ) and assume that the function Ty de-
fined by o =fqop is > 1. Then, the family of f.d.s. HW(M;,, L — le))Azev(‘,,";,’“g(A 0
satisfies

Y™ (M, L)

e M;,,L > L) > ————. (66)

A2eVy BN max fy

Recall that for every A, € Vg, ®(A1) the exact filling L), of A, satisfies
#(le NL)= Cregium- (67)

Now, given a Legendrian A, € Vg;,mg(Al) let N(A — Ajz) = #’]X‘_)Az(a).
We define

NE(A — VETE(A L)) = inf  INZ(A = Ay)}. (68)
)

Ar€Vg, B(A
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Let ¢ > €. By the results of Section 2.2.4 there exists a Hamiltonian H¢ €
Hreg(My,,, L — L) with slope < a such that:
(p.1) all elements in 77 _, L:’z(H 4) have action < a,
(p.2) there is a bijection between TL_)UZ(H“) and Tp A, (o) U (L N LY),
(p.3) the map )(fl,f;: HW(H* L — L)) - HW*(My,, L — L) is isomorphism.
Combining (p.3) and Corollary 4.7 we obtain that

1og(ian2€v3A—4mg( AptdimCW(H®, L — L})}) _ TYR(M, L) )

lim sup >
a——+00 a max f(x

Since #(L N L}) = Cregium it follows from (p.2) that dim(CW*(H“, L — L)) —
Cregium = N& (A — A3). This together with (69) gives:
Corollary 4.8. The sequence of numbers N&(A — Vg, 2(A1)) satisfies

fi 5p log N2 (A — Vo, F(A1)) - [SYmP (M, L)
a—>-+o00 a N max fﬂ,‘ .

(70)

This corollary will be crucial for the estimate of the topological entropy of ¢y
proved next.

4.2. From the growth of Reeb chords to topological entropy. Let o be a contact
form on a contact manifold (X, &), and X, be its Reeb vector field. Recall that a
Riemannian metric g on X is said to be compatible with « if g( Xy, Xo) = 1 and X,
is orthogonal to & with respect to g.

We proceed by fixing some more notation. We denote by D” (p) the n-dimensional
disk of radius p > 0 around the origin. We endow D" (p) with the Euclidean metric,
and consider on T;"D"(p) = D"(p) x § "1 the contact form o, associated to the
Euclidean metric. Foreach z € D" (p) the sphere S?~! := {z} x " is Legendrian
in (D"(p) x S" !, Kerdtey.). Let groung be the metric with constant curvature 1
on S”~! and g, be the Euclidean metric on D" (p). The metric & = Zeue D Lround
on D" (p) x S"~! is compatible with the contact form ae,.; see [12].

Proposition 4.9. Let o be a contact form on (X, £pr) and assume that we have
Fglg(M fu» L) > 0. Then there exists a Riemannian metric g on (%, §p) adapted to
the o, such that

log Vol (¢4 (A)) _ T™(M, L)
lim sup =

> > 0, (71)
t—+00 t max fy

where Voi’g,_l is the (n — 1)-dimensional volume with respect to g, and f, is the
function such that « = fy(X,A).
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Proof. The proof will consist of several steps.

Step 1. It suffices to prove the proposition for all contact forms « for which f, > 1.
Indeed assume that the proposition holds for all such contact forms.
Take a contact form «’ on (X, £pr). For the contact form @ :=

a/

- we have
min s

fa/
minfa/
with & and such that

ty = > 1. By assumption there is a Riemannian metric g on X compatible

log VoIg™! (¢5(A)) _ ™™ (M, L)

lim sup B (72)
t—400 t max fg
The Riemannian metric g’ := (minfy)?¢ is compatible with o’. A simple

computation shows that

_ log Vol ' (gL, (A))  T'¥™P(M, L)
lim sup >

PRI t — maxfy

as claimed. We thus fix from now on a contact form « on (X, £pr) with f, > 1.

Step 2. A tubular neighbourhood of Ay and construction of the metric g. It
follows from the Legendrian neighbourhood theorem (see [29, Proposition 43.18])
that there exists a tubular neighbourhood V(A ;) of (A1) and a contactomorphism
T: (V(A1), Ep) — (D" (p) x S™ 1, ker cteyc) that satisfies

T*O‘ﬂauc = o, (73)
T(Aq) = {0} x S" 1. (74)

We extend the Riemannian metric Y*g, which is compatible with @ on V(A ),
to a metric g on X which is compatible with the contact form «.

After shrinking the neighbourhood V(A1) and p > 0, we can assume that for
every z € D" (p) the Legendrian A% := Y~ 1({z} x §”71) is in the neighbourhood
Vs (A1) constructed in Section 4.1.

Step 3. For each a > 0 we define the map F{: A x [0,a] — X by
FR(g.1) = ¢,(q)- (75)

Let Cylg, (A) be the image F§(A x [0,a]). We want to estimate from below the
n-dimensional volume Volg (Cylg(A)) of Cylg (A) with respect to the Riemannian
metric g. For this we define B%(A) := T(Cyli(A) N 'V(A1)). We have

Vol?, (Cyl2(A)) = Vol (CyIZ(A) N V(A1) = VoI(BA(A)).  (76)

Let IT: D" (p) x S"~1 — ID"(p) be the projection to the first coordinate. Applying
Sard’s theorem to the map

Mo Yo Fi:({a} x A) N (FH ' (V(A) — D"(p)



Vol. 94 (2019) Dynamically exotic contact spheres in dimensions > 7 607

we conclude that the set D" (p) \ IT o YT (¢Z(A)) is an open set of full Lebesgue
measure in D”(p). We define the set U%(A) C D"(p) \ IT o T(¢Z(A)) by the
property
e z € U4(A) if all -Reeb chords from A to A? with length < a are transverse.
The proof of the next lemma is identical to the one of [7, Lemma 4].

Lemma 4.10. The set 3% (A) is an open subset of D" (p) of full Lebesgue measure.
The set 42 (A) C ULG(A) of elements z € UG (A) such that AZ € Var S(A1) is a
dense subset of full Lebesgue measure in U5 (A).

Step 4. A volume estimate. The function h*: 4% (A) — [0, +-o00) defined by h¢(z) :=
#(T{_, Az (a)) is locally constant on L7 (A) since it is continuous and takes only

integer values.
We define R%(A) := [T (U4 (A)) NBL(A). Since RE(A) C BE(A) we have

Vol% (Bg (A)) = VolZ(9R5 (A)).
As the map IT: D" (p) x S"~! — D" (p) is a Riemannian submersion we have that
VOIZ(R4(A)) = Vol (TIERE(A))),

where Vol (TT(BG(A))) is computed with multiplicities. If an open set is
covered k-times by IT: RS (A) — UG (A), then its volume contributes k-times to
Vol (TG (A))).

For each z € U4 (A) the number of times IT:RE(A) — UG (A) covers z is
h%(z) = #(T)_, 5-(r)). We thus obtain

Volp (@A) = [ () dvol.. )

where dvoly, . is the volume form generated by ge,. on D" (p).
Since % > 0, we can fix 0 < n < % It follows from
Corollary 4.8 that there exists a sequence a; — +00 such that 7%/ (z) = €%
for all z € g’ (A). Since ﬂz’ (A) is dense in $fg7 (A) and h9/ is locally constant
on Uy’ (A) we obtain h%/ (z) > e"% forall z € o’ (A) and all a;. With (76) it
follows that

Vol (Cyly’ (A)) > f”' h%/ (z) dvolg,,. > "% p* (78)
ua'l (A)

forevery a;.

Step 5. A Fubini type equality. We define g := (F§)*g. Then

Voly (Cylg(A)) = f dvolg, (79)
Ax[0,a]
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where dvol; is the volume form associated to g. Since the metric g is adapted to the
contact form « the Reeb vector field has length 1 and is orthogonal to the Legendrian
spheres F§(t, A) = ¢ (A) forevery ¢ € [0, a]. Letting 9, be the tangent vector field
on [0,a] x A associated to the first coordinate ¢ € [0, ], and using the definition
of F§, it follows that D(F§)d; = X,. Therefore d; has g-norm equal to 1 at every
point in [0, a] x A, and is orthogonal to the spheres {¢} x A. We thus conclude that:

Volg (Cylg (A)) = f dvolg
Ax[0,a] (80)

_ ]0 ’ Vol L({r} x A)dt = fo ’ VoI~ (gf,(A)) dt,

where Volgf1 is the (n — 1)-dimensional volume associated to .

Step 6. End of the proof. To finish the proof we argue by contradiction and assume

n—1¢at A
that lim sup, _, | 1og Yol t(¢°‘( P n. In this case, there exist ap > O and ¢ > 0

such that for all 7 > ay we have Volg_1 (¢L(A)) < e'"~9) Integrating both sides of
this inequality from O to ¢ > a( and invoking (80) we obtain

a(n—e) _ pap(n—e)

Vol (Cylg (A)) < + /00 V()lg_l(q;;(/\)) dt. (81)
n—e 0

For a large enough the right hand side of (81) is smaller than e7?mnp?,
contradicting (78). We thus conclude that

log Vol ™! (¢4 (A)) _

lim sup (82)

t—>+00 t

TSYmP(M, 1)

max fo

Since this is valid for any n < , the proof of the proposition is completed.

Ll

Proof of Theorem 1.7. From Proposition 4.9 and Yomdin’s theorem (see (1)) it
follows that if T*Y™P(M, L) > 0, then for every contact form « on (2,&p) we

have .
SYMe(M, L
htop(gba) = —(—_) (83)
max (fy)

We then obtain Theorem 1.7 by combining (83) with the inequality

Ie8(M, L)
p(S)
from Lemma 2.21. []

Y™ (M, L) >
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5. Algebras in loop space homology

Let V be a compact manifold and fix a point ¢ € V. We denote by ,(V) the
based loop space of V' with basepoint in g, which is the space of continuous maps
from [0, 1] to V' that map O and 1 to g.

The concatenation of based loops gives 2,(V) the structure of an H-space
(see [24]). More precisely, the concatenation induces the so-called Pontrjagin product
on the singular homology Hx« (24 (V)) of 4 (V) with Z; coeflicients. The Pontrjagin
product [aq] - [a2] of two homology classes [a1], [a2] € H«(24(V) is well known
to be associative. As it is distributive with respect to the vector space structure of
H.(24(V)), it makes H, (£24()) into a ring. Because the homology Hx (€2,(V)) is
considered with coefficients in Z, it actually has the structure of an algebra.

5.1. Relation between the algebra structure of the singular homology of loop
spaces and the algebra structures of the Floer homology of cotangent bundles.
Given a manifold V and ¢ € V we denote by L, C T*V the cotangent fibre over g.
The singular homology H. (£2,(V)) of the based loop space 2,(V) is isomorphic to
the wrapped Floer homology HW(7*V, L, ); see Viterbo [46], Salamon—Weber [39]
and Abbondandolo—Schwarz [1] for different proofs.

The Floer homology HW(H,, L) is isomorphic to the wrapped Floer homology
HW(L,) we use in this paper. The key point is that the Hamiltonian H, is quadratic
in the fibres. This isomorphism is proven in [38], and it preserves the triangle product
and the spectral value of homology classes.

Let Wys 4: He (R24(V)) — HW(T™V, L) be the isomorphism constructed in [1].
In [2] the authors proceed to study more properties of the map W45 4. They show
that W 45 4 is also algebra isomorphism if we consider Hx(£2,4(V')) as an algebra with
the Pontrjagin product and HW(H,, L,) as an algebra with the triangle product.
Combining this with the isomorphism HW(H,, L,) = HW(L,) we obtain the
following

Theorem 5.1 (Abbondandolo—Schwarz [2]). The singular homology H.«(S24(V))
and the wrapped Floer homology HW (L) are isomorphic as algebras.

For simplicity we will still denote by W 4 5, the isomorphism between H, ($2,(V))
and HW(L,).

6. Topological operations

6.1. Subcritical surgery. Here we study the Viterbo transfer maps under subcritical
handle attachment in the situation that is sufficient for our purpose, that is we assume
that the Lagrangians do not intersect the handle.

Let W = (Yw,w, A) be a Liouville domain, ¥ = oW, A|y = « and § = kera.
We recall some notions using the terminology of [22, Section 2.5.2]. The form do«
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endows & with a natural conformal symplectic bundle structure. Let S be an isotropic
submanifold of (X, £). We write TS+ for the sub-bundle of £ that is da-orthogonal
to T'S. Because S is isotropic 7S C T'S+. We can therefore write the normal bundle
of S in X as

TY/TS =TE/EDE/TS-@TSH/TS.

The conformal symplectic normal bundle CSN(S) = TS*/TS has a natural
conformal symplectic structure via da. If S is a sphere, TX/& @ &/ TS+ has a
trivialization. The following theorem is due to Weinstein.

Theorem 6.1 ([47]). Let S™ be an isotropic sphere in % with a trivialization of
CSN(S). Then there is a Liouville domain M with an exact embedding W C M,
such that OM is obtained from ¥ by surgery on S.

The Liouville domain M is obtained by attaching an (n 4 1)-handle to W and the
Liouville vector field X can by chosen such that there is exactly one point p € M\ W
where X vanishes. The integral lines of X that are asymptotic to p intersect ¥ in S
and M in the co-core sphere B C dM . (See [14,47] or [22, Chapter 6] for details.)

Let now Ly, L be two asymptotically conical exact Lagrangians in W whose
boundaries Aj and A} in X do not intersect S. Outside S the integral lines of the
Liouville vector field starting at dW intersect dM and so the completed Lagrangians
f,: C M intersect M. Moreover, L; = E:. NM C M fori = 0,1 are exact and
conical in the complement of W. We say that (M, Lo, L) is obtained by surgery
from (W, L;,, L).

As described in section 3 we get a Viterbo transfer map

j1(Lo, L1):HW(M, Ly — L) — HW(W, L, — L).

Assume that the isotropic sphere S has the property that there is no Reeb chord
from A() to S. If S is subcritical, i.e. dim(S) < n — 1, this can be achieved by a
generic choice of .

The following proposition was proved by Cieliebak | 14] for symplectic homology.
The proof in our situation is analogous and even simpler. We give it here for the
convenience of the reader.

Proposition 6.2. The Viterbo transfer map in the direct limit,
Ji(Lo, L1):HW(M, Ly, L) — HW(W, Ly, L)),

is an isomorphism.
For the proof of Proposition 6.2 it is convenient to introduce the following weaker
form of interleaving of f.d.s. Let 0:][0,00) — [0,00) be a monotone increasing

function and V' a filtered directed system. Analogously to the notation in 2.1.1 let
(V(0), (o)) be given by

V(o) = V(I(t)t~ T(0)s—t = Mg (s)s—o(t)t> and JT[U]t = TTg(t)t-
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If f is a morphism from (V, ) to another f.d.s. we write f(0); = fo() for the
induced morphism with domain (V (o), 7(0)). Call two f.d.s. (V, 7y) and (W, mw)
weakly interleaved if there are morphisms f:V — W(oy) and g: W — V(0o,) for
monotone increasing functions o1, 07 > 1 such that

f(02) 0o g = nwlo1] and g(o1) o f = 7y [02],

where 7, and &, are suitably chosen. The fact that the map ji(Lg, L1) in Proposi-
tion 6.2 is an isomorphism will follow from a weak interleaving of the corresponding
f.d.s., which is in general not an interleaving. This is the reason why we cannot directly
prove lower bounds for '™ (M, Ly — L) in terms of Y™ (W, Ly — L) and
this was originally our motivation to introduce the algebraic growth of wrapped Floer
homology.

Figure 3.

Proof of Proposition 6.2. Let U = HW(M, Lo — L) and V =HW(W, L}, — L/).
We will construct a filtered directed system @ that is isomorphic to V' and weakly
interleaved with U.

For convenience we may assume K(M, Ly — L1) = 0. Let § C dW be the
attaching sphere and B C dM be the co-core sphere. For ¢ > 0, choose a tubular
neighbourhood U, C aW of S such that there is no Reeb trajectory starting at Aj
that intersects U, at a time less than «, and such that U, C U, if a < b. Denote the
Liouville flow on M by ¢, and let g: IM \ B — (0, 1] given by g(x) = ¢, where ¢
is the unique number such that ¢i,,(x) € dW. Note that g tends to 0 as x tends
to B. Define N, := {x € IM | ¢iog4(x)(x) € IW \ Uy }. Choose a family of smooth
functions f,: M — (0, 1], a € (0, co), with the property

Jfaln, = g,and forall x € M, f,(x) is monotone decreasing in a.

Note that W C My, C My, for b > a and OW \ U, C 0My,. Define
o(a) = l__ Define Q, = HW*(M s, , Ly — L1), where by abuse of notation

ming s fa
we write L; insteadof L; "My, ,i = 0, 1. Fora < b define m,_5: Q4 — Qp as the
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composition of the Viterbo map HW* (M, , Lo — L1) - HW*(My,, Ly — L)
and the persistence map HW*(M s, , Ly — L;) — HWb(th,LO — Ly). By
the commutativity of the Viterbo map with persistence maps and by functoriality of
the Viterbo map it follows that 7, = 7p e © Ty _sp, for a < b < ¢, and hence
(Q, ) is a filtered directed system. Furthermore, ¢: U — Q, with ¢p,: HW* (M) —
HW*“(M g,) is a morphism of f.d.s. We define ¥»: Q — U(o) by the Viterbo transfer
HW*(Ms,) — HW*(Myy, 7,) = HWP@9(M). Tt is clear that (¢, ¥) is a weak
interleaving of U and Q.

It remains to show that Q and V are isomorphic. Let a > (. Assume that L
and L, are conical in the complement of W% . Let H,, be an admissible Hamiltonian
with slope p with respect to W%. Consider a Hamiltonian K, such that

K, (x) =H,(x), ifxe€ W%. (84)
K,(x) =H,(x), ifx=(r,y) € (0,+00)x W \ U,. (85)

It follows that K, (x) = 2ur + b, for some b € R, where x is written in the
coordinates (r, y) € (1,00) x dW \ U,. Hence we can assume additionally that

K, (x) =2pur +b, wherex = (r,y) € (1,00) x IMy,. (86)

By definition of U, Ay, and Ak, have the same critical points, and so it follows
from [3, Lemma 7.2] that we actually have HW(K,) = HW(H,). On the other
hand K, — % v is admissible with respect to M ¢, with slope 2u. One concludes,
reasoning as in Lemma 3.1, that

Qu = HW4(M, Lo — L) = HW%“(W%,L() — L)

which is, by Lemma 3.1, isomorphic to HW*(W, Ly — L}) = V,. That this
identification respects the persistence morphisms of Q and V is again deduced from
the functoriality of the Viterbo maps and the fact that the Viterbo maps are themselves
morphisms of filtered directed systems. Denote the isomorphism from Q to V by t.
We have obtained a weak interleaving (t o ¢, % o T !'). Moreover T o ¢p = j by
construction. O

6.2. Plumbing. Let Q; and Q, be closed orientable n-dimensional manifolds. We
let D* Q; be the unit cotangent bundle of Q;. We choose balls B; C Q; ineach Q;.
The plumbing N of D* Q4 and D* Q, is obtained by identifying D* B, and D* B,
via a symplectomorphism that swaps the momentum and position coordinates of
these manifolds; see [4, 22] for the details. There are obvious embeddings of
D*(Q1 \ By) and D*(Q; \ B) into N. It is shown in [4, Section 4] that N
admits a Liouville structure which coincides with those of D*(Q; \ B;) on the image
of these embeddings. This implies that for points ¢; € Q1 \ B; the cotangent disc
fibre L,, over g survives as a conical exact Lagrangian in the Liouville domain N .
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This construction can be generalised in the following way. Let {Q; | 1 <i <k}
be a finite collection of orientable n-dimensional manifolds. Let T be a tree with k
vertices and use a bijection to associate to each vertex a manifold Q;. For each edge n
leaving the “vertex” Q; we choose an embedded open ball B;(n) in Q;. We assume
that these balls are chosen to be disjoint and do not cover Q;. For all i # j and
every edge n connecting Q; and Q; (there can be at most one such edge as T is a
tree) we identify D*(B;(n)) and D*(B;(n)) by the recipe explained in the previous
paragraph. The resulting manifold N can be given a Liouville structure as explained
in [4, Section 4] and [22]. Let Q; be the complement of the “edge balls” in 01, and
g1 € Q1. In [4, Section 4] the following result is proved.

Theorem 6.3 ([4]). There exists an injective algebra homomorphism from the group
algebra Z3[m1(Q1)] to HW(N, Ly, ).

In fact the injective algebra homomorphism obtained in [4] is for the respective
homologies with 7 coefficients, and applying the Universal Coeflicient Theorem one
obtains the homomorphism mentioned above. Thus if 77; (Q) grows exponentially
then HW(N, L, ) has exponential algebraic growth; see Section 7.1.

Proof of Proposition 1.5. Part (A) follows from Proposition 6.2 and Part (B) follows
from Theorem 6.3. U

7. Construction of contact structures with positive entropy

In this section we prove Theorem 1.1 and Theorem 1.2.

7.1. Preliminaries. Let Q be aclosed connected smooth manifold and g a Riemann-
ianmetricon Q. Let (D} Q, Ageo) C (T* Q. Ageo) be the unit disk bundle with respect
to the Riemannian metric ¢ where A4, is the canonical Liouville form on 7% Q. By
Theorem 5.1 of Abbondandolo and Schwarz the map

Was,q Ha(Qg,(Q)) > HW(DZ Q. Ly,) (87)
is an algebra isomorphism. It is well known that there is an algebra isomorphism
®: Z[m1(Q. 91)] = Ho(L2¢, (Q)). (88)
Composing these two maps we obtain an injective algebra homomorphism
®: Zo[mi (Q.91)] = HW(DZ Q. Ly,). (89)

For a finitely generated group G and a finite set o of generators of G, let I (G)
be the usual exponential growth of the group G with respect to the set o; see [16,
Section VI.C]. To a finite set ¢ of generators of ;(Q, g1), we associate the finite
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set S C Z,[m1(Q,q1)] that is formed by the elements of o and its inverses. It is
immediate to see that

Lo (m1(Q.41)) = Tg*(Z2[m1(Q. q1))). (90)
Using that d is injective we obtain

Lo(m1(Q.q1) = T§*(Zalmi(Q.q)]) = Tge (HW(D;Q. Lg))). D)

We have shown the following

Lemma 7.1. It 71(Q, q1) has exponential growth then there exists a finite set § C
HW(D} Q. Lq,) such that Tg*(DEQ, Lq,) > 0.

7.2. Proof of statement (A) of Theorem 1.1 and statement & of Theorem 1.2.

Proof of statement (A) of Theorem 1.1. Let G be a finitely presented group such that:
e Hi(G) = Hy(G) =0,
e G has exponential growth,

e (G admits a presentation on which the number of relations does not exceed the
number of generators.

Then, it follows from [27], that for every n > 4 there exists a manifold Q" which is
an integral homology sphere and which satisfies 7 (Q") = G. We denote by o(G)
the minimal number of generators of G.

We denote by D* Q" the unit disk bundle of Q”, with respect to a Riemannian
metric g in 0", endowed with the canonical symplectic and Liouville forms. We
choose a point ¢ € Q" and g generically so that ¢ is not conjugate to itself. Let
S*Q0" = dD* Q" be the unit cotangent bundle of Q". In order to prove our result
we consider two distinct cases.

Case 1. n is odd and > 5. 1In this case the Euler characteristic of Q" vanishes.
Because G grows exponentially, we know that HW(D*Q", L) has exponential
algebraic growth. Let N! be the plumbing of D*Q" and D*S" performed far
from L,. By Proposition 1.5, HWy (N L L) has exponential algebraic growth.

It is a result of Milnor that the boundary of the plumbing of the unit disk bundles
of two odd-dimensional homology spheres of dimension > 3 is a homology sphere;
see [10, Chapter VI, Section 18]. Applying this to the pair D* Q" and D*S" we
conclude that 9N is a homology sphere. Since N! retracts to the one point union
of Q and S” we know that the homology of N1 is zero in every degree different
from O and n, where we have Hy(N!) = Z and H,(N') = Z ® 7Z.

Case 2: n is even and > 4. 1In this case the Euler characteristic of Q" is 2. We
consider the plumbing associated to the E8 tree; see [10, Chapter VI, Section 18]. To
each vertex of the E8 tree we associate a disk bundle in the following way:
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* to the leftmost vertex we associate D*Q",

* to every other vertex we associate D*S".

We let N ! be the plumbing associated to the E8 tree determined by this choice of disk
bundles at each vertex, and assume that the plumbing is done away from a cotangent
fibre L, C D*Q" . It was shown by Milnor (see [10, Chapter VI, Section 18])
that ON! is a homology sphere. Since N! retracts to the wedge sum of Q and
seven copies of S” determined by the E8 tree, we know that the homology of N'!
is zero in every degree different from 0 and n, where we have Hy(N') = Z and
H,(N') = @%_,Z. By Proposition 1.5, HWo(N', L,) has exponential algebraic
growth.

We now treat both cases simultaneously. By attaching 2-handlesto N ! away from Ly
we can obtain a simply connected Liouville domain N2 such that HW(N?2, L,) has
exponential algebraic growth. We choose the framing of these handle attachments so
that the first Chern class of N2 vanishes.

The effect of the handle attachment on the homology of the boundary can be read
from the surgery formula in [28, Section X.1]. One concludes that the homology
of N2 coincides with that of dN; except in degree 2, and H, (3N ?) is the direct sum
of o(G) copies of Z.

By Hurewicz’ theorem there is a basis of H,(dN?) which is composed of
embedded S?2. Since the first Chern class of N2 vanishes, it follows from [32,
Lemma 2.19] that these S? can be made isotropic and disjoint from L4 by an isotopy
and that their symplectic normal bundle is trivial. We can thus perform the Weinstein
handle attachment over these spheres. The resulting Liouville domain N3 still
contains the Lagrangian L, and it follows from Proposition 1.5 that HW(N?3, L,)
has exponential algebraic growth. By the surgery formula in [28, Section X.1], the
effect of these handle attachments on the homology of the boundary implies that
H> (N ?) = 0 and that the homologies of dN 3 and AN ? coincide in all other degrees.

Therefore, N3 is a simply connected homology sphere. It follows from
Whitehead’s theorem for homology [24, Corollary 4.33] that AN also has the
homotopy groups of a sphere. Since the dimension of dN? is > 5 the h-cobordism
theorem tells us that N3 is homeomorphic to a sphere. Since the smooth spheres
under connected sum form a finite group, we can take the connected sum of finitely
many copies of N3 to get the sphere N * with the standard smooth structure such
that HW(N*, L) has exponential algebraic growth. This proves statement (A) of
Theorem 1.1. O

Proof of statement & of Theorem 1.2. Let V be a (2n — 1)-dimensional manifold
where n > 4, and assume that there exists an exactly fillable contact structure £
on V. Denote by My a Liouville domain whose boundary is (V,£). Let N* be
the Liouville domain constructed in the proof of statement (A) of Theorem 1.1. By
Proposition 1.5, the Liouville domain N° = N*#My has an asymptotically conical
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exact Lagrangian L such that HW(N?>, L) has exponential algebraic growth. The
statement then follows from Theorem 1.7. ]

7.3. Proof of statement (B) of Theorem 1.1 and statement < of Theorem 1.2.

Proof of statement (B) of Theorem 1.1. We will consider a carefully chosen 3-mani-
fold Q. Consider the Brieskorn manifolds of dimension 3,

M(p,q,r) ={(z1,22,23) € C3 | 2P + 27 + 23" =0} N S°.

M(p,q,r) is a Z-homology sphere if p,q,r are relatively prime (see for
example [40]). It was shown by Milnor [35] that its fundamental group
w1 (M(p,q,r)) is the commutator subgroup of the group

G =G(p,q,r)=(y1,v2,v3 | L =v1 =y} = yiyav3),

see also [42]. The groups ¥ = G/Z(G) are the triangle groups, where Z(G) is the
center of G. Consider the case p = 2, ¢ = 3, r = 7. A short computation shows
that

G(2,3,7) =[G2,3,7),G(2,3,7)] = m:1(M(2,3,7)).

One has f(G(2, 3,7)) > ['(Z(2,3,7)), and the exponential growth of £(2,3,7) is
log(x), where x ~ 1.17628 is equal to Lehmer’s Salem number (see [25] or [11]).
We take Q = M(2,3,7). The integral homology of Dy O is the same as that of Q,
which is Z in degrees 0 and 3 and vanishes in all other degrees. Moreover it is clear
that 71 (S*Q) = m1(Q x §?) = w1 (Q) is generated by the elements y; and ys.

Let N'! be the Liouville domain obtained by plumbing D7 Q with the unit disk
bundle D*S3 of S3. We assume that the plumbing is performed away from the
cotangent fibre L, over a point ¢ € Q. Therefore L, survives as a conical exact
Lagrangian in N!. By Proposition 1.5 we know that HW,(N!, L,) has exponential
algebraic growth.

Since N is the plumbing of D} Q and D*S?, and Q and S* are both homology
spheres we obtain that IN ! is a homology sphere; see [10, Chapter VI, Section 18].
Combining this with the fact that N ! retracts to the one point union of S and Q we
conclude that

e H()(N]) = Z, Hg(Nl) =7Z & Z, and H;(N]) =0fori # 0, 3,
e Hy(dNy) = Z,Hs5(dN;) = Z, and H; (dN,) = O for i # 0, 5.

Let now {61, 0,,03} be generators of w1(dN;) = m1(Q) corresponding to y;,
v2 and y3 respectively. By the h-principle for subcritical isotropic submanifolds
of contact manifolds [22] we can isotope the curve o3 to a curve o3 which is

isotropic in (Sg O, £geo). We can also assume that o3 does not intersect Ay := 9Ly,
Since o3 is isotropic and has trivial normal bundle we can apply the Weinstein handle
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attachment [47] and attach a 2-handle to N! over o3, obtaining a new Liouville
domain N2. From the presentation of 71 (Q) that we used, it is clear that IN?2 is
simply connected, and so is N2 by [32, Lemma 2.9]. We choose the framing of the
handle attachment so that dN 2 is spin. Using the Mayer—Vietoris sequence we obtain
that Hy(0N2) = Z, Hy(0N;) = 7Z, and H{(0N,) = 0. By Smale’s classification of
spin simply-connected five manifolds [43] it follows that dN, is S x S2.

Since N? is obtained from N! via a subcritical handle attachment and the
Lagrangian L, is far from the attaching locus of this handles, we know that L,
survives as a conical exact Lagrangian in N 2. Moreover Proposition 1.5 implies that
HW.. (N2, L,) has exponential algebraic growth, and it follows from Theorem 1.7
that the contact manifold dN, has positive entropy. L]

Proof of statement < of Theorem 1.2. The statement is proved by a connected sum
argument identical to the one in the proof of statement &. Ol

Remark 7.2. To guarantee the vanishing of the second Stiefel-Whitney class of dN 2
one must only guarantee the vanishing of the first Chern class of N2. As observed
in the proof of [32, Lemma 2.10], one can choose the framing when performing the
attachments of the 2-handles so as to guarantee the vanishing of the first Chern class
of N2.

Appendix

Construction of exact Lagrangian cobordisms. Before proving the lemma we re-
call that the symplectization of the contact form « on (X, £) can also be given by
(R x 2, e*a), where s denotes the R-coordinate. It is straightforward to see that the
diffeomorphism

F: ((0, +00) x T, ra) - (R x X, ew)

given by F(r, p) = (logr, p) is an exact symplectmorphism.

It follows that an exact Lagrangian submanifold £~ is conical in ((0,+00) X X, rr)
outside [l — 2¢,1 — ¢] x ¥ if, and only if, £ = F(£7) is conical in
(R x X, e*ar) outside [log(1—2¢),log(1—¢)] x X. Analogously, an exact Lagrangian
submanifold £V is conical in ((0, +00) x X, ra) outside [1 + €, | + 2¢] x X if, and
only if, £t = F(£ ") is conical in (R x X, e*a) outside [log(1+¢€), log(1+2¢)]x Z.

Proof of Lemma 4.2. We use the technique presented in [19, Lemma 6.3].

Step 1. We first apply the Legendrian neighbourhood Theorem [29, Proposi-
tion 43.18] to find a neighbourhood U (Ay) of the Legendrian of Ay such that
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there exists a strict contactmorphism

n—1

Y: (U(Ay), @) — (V(KO) CHP L dz 4 indy,-)

i=1

that satisfies Y (Ag) = Ao, where Ay is the standard Legendrian unknot in |
(see [18, Example 3.1]) and V(Ag) is a tubular neighbourhood of Ag in R2%~1,

Given this identification, it suffices to establish the lemma for the case of A() since it
will follow if we can establish it for U(Ag) C U (Ay).

Step 2. Clearly, it suffices to establish the lemma for all 0 < € < 1/e'%%%. We
thus fix 0 < € < 1/¢1990 and a tbular neighbourhood U(Ag) of Ag. To establish
the lemma for Ao we assume that A, is a Legendrian sphere in (R2" 1 ey =
dz + ZI 1 Xidy;) that is p-close to Ao in the C3-sense, with £ > 0 so small that
e A C U(A()),
e there exists a Legendrian isotopy 0: [—1, 1] x $*~! — R2#~! which is p-small in
the C3-topology and satisfies 8({—1} x ") = Ag and ({1} x $"~') = A;.
Moreover if ;o > 0 is chosen sufficiently small we can also assume that
e the isotopy 0 is constant in the first coordinate for ¢ ¢ [log(1 — 2¢), log(1 — ¢€)].
Extend 0 to R x S"~! by 0(¢t, p) = 6(—1,p) fort < —1 and 0(z, p) = 0(1, p)
fort > 1.
We write 0(¢, p) = (x(¢, p), y(t, p), z(t, p)) for coordinates (x, y, z) € R"~! x
R x R, set F'(¢, p) := ttean(9;0(¢, p)), and define the cylinder

@R xS - (R xR o)
in the symplectization (R x R>"™!, e*aean) of ctean by

O(t, p) = (¢, x(t, p), y(t, p).z(t, p) + F(z, p)). 92)

It is clear that if ;« > O is chosen sufficiently small then ® will be an embedding, since
it will be a small compact perturbation of the embedding (¢, x (¢, p), y(t, p), z(z, p)).
Let IT: R x R??~1 — R2"~! be the projection of the symplectization to the contact
manifold.

A direct computation shows that

O (¢*aeun) = d(e' F(t, p)). (93)

Step 3. Step 2 implies that the cylinder £ = O(R x S™1) is an admissible exact

Lagrangian submanifold of (R x R2"~! eSa,,). By taking u even smaller we can

guarantee that

£~ is conical over Aj in [log(l — €), +00) x R2"~! and is conical over A in
(0,log(1 — 2¢)] x R2"71,
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« and the projection of £~ to R2"~! is contained in U(A).

In order to construct £ we use the inverse isotopy 01 (¢, p) = 6(—t, p), and
apply the construction above. We have established statements (a), (b), and (c) of
Lemma 4.2.

To conclude (d), notice that /'~ :=e’ F(t, p) has supportin [log(1—2¢), log(1—¢)]
x $" 1 and if © > 0 is chosen small enough then f~ := e’ F(¢, p) will satisfy
|/ |lco < e since the C%-norm of F(¢, p) will be small. Applying the same
argument to £ implies (d).

Step 4. Statement (e) is obtained by performing this construction for a smooth
I-parameter family of Legendrian isotopies which starts with the isotopy € and
ends at the stationary isotopy from KO to itself. As the construction above depends
C®°-smoothly on the parameter we obtain a smooth 1-parameter family of exact
Lagrangian embeddings

R x S$" ! > (R xR e*ag),

which starts at £ and ends at R x Ag, and which is constant in (R \ [log(1 — 2¢),
log(1+2€)])x S™ . This is an exact Lagrangian isotopy from L= F(£) to R x Ay
which is constant in (R \ [log(1 —2¢), log(1 + 2¢)]) x Ay. Statement (e) then follows
from [34, Lemma 5.6]. L]
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