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Fourier optimization and prime gaps

Emanuel Carneiro, Micah B. Milinovich and Kannan Soundararajan

Abstract. We investigate some extremal problems in Fourier analysis and their connection to
a problem in prime number theory. In particular, we improve the current bounds for the largest
possible gap between consecutive primes assuming the Riemann hypothesis.

Mathematics Subject Classification (2010). 41A30, 11M06, 11M26, 11N05.

Keywords. Bandlimited functions, Fourier uncertainty, prime gaps, Riemann hypothesis.

1. Introduction

In this paper we study a new set of extremal problems in Fourier analysis, motivated
by a problem in prime number theory. These problems (which will be described
shortly) are of the kind where one prescribes some constraints for a function and its
Fourier transform, and then wants to optimize a certain quantity. When available,
a solution to such a problem usually requires two main ingredients: a tool to prove
optimality and a tool to construct an extremal function. A classical example in
approximation theory is the problem of finding the best L' (R)-approximation of real-
valued functions by bandlimited functions (i.e. functions with compactly supported
Fourier transforms). For the two-sided problem (i.e. unrestricted approximation), one
usually works with the so called extremal signatures to establish optimality, whereas
for the one-sided problem (in which one is interested in majorizing or minorizing a
given function) the Poisson summation formula is useful as a tool to prove optimality.
For an account of such methods see, for instance, [10,37,42] and the references
therein. Optimal bandlimited majorants and minorants have several applications to
inequalities in analysis and number theory, for instance in connection to the theory of
the Riemann zeta-function, e.g. [6—8,11]. Slightly different extremal problems appear
in the work [33], in connection with the question of bounding the least quadratic
nonresidue modulo a prime. Another example of a Fourier optimization problem
was proposed by Cohn and Elkies [12], in connection to the sphere packing problem.
This recently attracted considerable attention with its resolution in dimensions 8
and 24 (see [13,43]).
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As we see below, the Fourier optimization problems considered here are simple
enough to be stated in very accessible terms but rather delicate in the sense that
the usual tools in the literature to prove optimality and construct extremal functions
are not particularly helpful. While we have been unable to determine explicitly
the solutions to our optimization problems, we are able to make progress on the
existence and uniqueness of extremizers, and to establish good upper and lower
bounds for the values of the sharp constants. In addition, we establish a connection
between these extremal problems in Fourier analysis and the problem of bounding the
largest possible gap between consecutive primes (assuming the Riemann hypothesis).

1.1. Fourier optimization problems. For F € L'(R), we let

A~ w .
Fft) = f g R Pirshdy
—00

denote the Fourier transform of /. We also let x := max{x,0}and 1 < A < oo be
a given parameter (note that we include the possibility that A = c0), and we consider
the following problems.

Extremal problem 1. Given 1 < A < o9, find

1 ~
C(A) := ¢ F(0)]—A F(t)|de), 1.1
) i (FOI-A [ [Fo]a) 1

where the supremum is taken over the class A of continuous functions F: R — C,
with F € L1(R). In the case A = oo, determine

F(0
€(00) = sup Ll )I, (1.2)
Fee IFlh
F#0

where the supremum is over the subclass & C 4 of continuous functions F: R — C,
with F € L'(R) and supp (F) C [-1,1].
Extremal problem 2. Given 1 < A < oo, find
1 5
€t (4) = sup (F(O) - A/ (F(l))Jr dt) , (1.3)
(yal [~1,1]¢

FeAat
F2£0

where the supremum is taken over the class A" of even and continuous functions
F:R— R, with F € L' (R). In the case A = oo, determine

F(O
€t (o0) = sup L, (1.4)
reet I1F 1
F#0

where the supremum is over the subclass & C A of even and continuous functions
F:R — R, with F € L'(R) and F(t) <0 for |t| > 1.
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There has been some previous works in connection to problem (1.2) and its
analogue for trigonometric polynomials, see for instance [2,24,29,40]. The current
best numerical upper and lower bounds for € (c0), reviewed in (1.5) below, are due
to Hormander and Bernhardsson [29]. We were not able to find any mention to
the other problems in the literature. If one further imposes the condition that F is
nonnegative on R, then (1.2) reduces to a folkloric problem for bandlimited functions
while (1.4) reduces to the Cohn—Elkies problem [12, Theorem 3.1] in dimension 1. In
both cases Poisson summation shows that the required maximum is 1, being attained
by any constant multiple of the Fejér kernel F(x) = (sin(zx)/(7x))?. Classical
interpolation formulas of Vaaler [42, Theorem 9] show that these are indeed the
unique extremizers for this simplified version of (1.2), whereas this simplified version
of (1.4) admits other extremizers (see [12, Section 5]).

We restricted the parameter A to the range 1 < A < oo because in the range
0 < A < 1 the corresponding problems (1.1) and (1.3) are trivial in the sense that
€(A) = €t (A) = oco. This can be seen by taking F,(x) = ﬁe‘”z/”” with
e — 0%, It is also clear that the mappings A — €(A) and A +— €1(A) are
non-increasing for 1 < A < oo.

The extremal problems presented here are certainly related to the phenomenon of
Fourier uncertainty, and works like [17, 18], that discuss L!-uncertainty principles,
provide interesting insights. The recent works [3, 23] on the “root-uncertainty
principle” for the Fourier transform also consider interesting extremal problems
related to the theory of zeta-functions in number fields. Toward the problems of
determining the exact values of the sharp constants €(A) and €1 (A) we establish
the following results.

Theorem 1.1. Let 1 < A < oo. With respect to problems (1.1) and (1.2), the
following propositions hold:

(@) If A = ox, then:

(a.1) There exists an even and real-valued function G € &, with G(0) = 1, that
extremizes (1.2).

(a.2) All the extremizers of (1.2) are of the form F(x) = ¢ G(x), where ¢ € C
with ¢ # 0.

(a.3) The extremal function G verifies the identity

€ (c0) f_oo sgn(G(x)) F(x)dx = F(0)

fJorany F € &.
(a.4) (cf. 129]) The sharp constant € (c0) verifies the inequality

1.0818576438 < €(oc) < 1.0818576441. (1.5)
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(b) If A = 1 then €(1) = 2, but there are no extremizers for (1.1).
() If1 < A < o0, then:
(c.1) There exists an even and real-valued function G € A that extremizes (1.1).

(c:2) Letco = 4( ', 9t qr)™ = 1.07995... and let dy = 1.09769... be

-1

defined by (4.5). Let A = A(A) be the unique solution of

1—% :Sin(%&)—%cos(%)

with) < A < 1. Then

max {ZA — %A — 1] . Jrf;co cos (nlz(A))}

do
1-0.3/(A—2)

geu)gmm{( ),4,(L®
where the first upper bound on the right-hand side of (1.6) is only available
in the range 2.6 < A < oo.

Remark. The function
cos2mx

— 1.7
| —16x2 (1.7

belongs to the class € and verifies || H ||; = 1/co. Wethenhave H(0)/|| H ||, = ¢y =
1.07995 . . ., and this yields a slightly inferior lower bound for € (0o) when compared
to the one in (1.5) (which is obtained in [29] by means of more complicated numerical
examples). Due to its simplicity, this particular function H(x) plays an important
role in our work, being used in the proof of the lower bound in (1.6) and in the proof
of Theorem 1.5.

H(x) =

Theorem 1.2. Let 1 < A < oo. With respect to problems (1.3) and (1.4), the
following propositions hold:

(a) If A = oo, then:
(a.1) There exists a function G € €™ that extremizes (1.4).
(a.2) The sharp constant €T (o0) verifies the inequality
€(00) < €t (c0) < 1.2.
(b) If A = 1 then €1 (1) = 2, but there are no extremizers for (1.3).
(©) If1 < A < oo, then:

(c.1) There exists an even and real-valued function G € A" that extrem-
izes (1.3).
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(c.2) The sharp constant € (A) verifies the inequality

e) <€ (4) Smi“{(l—o.zzléi(A—1))’2}’ (1.8)

where the first upper bound on the right-hand side of (1.8) is only available
in the range 1.222 < A < o0.

(c.3) In particular, if A = 36/11 a numerical example yields the lower bound

j—f < €+(§). (1.9)

Remark. Note that for small values of A, the right-hand side of (1.8) gives a better
bound than the right-hand side of (1.6), and can be used instead. The reason, as
we shall see, is that such bounds come from modifying the test functions in the
dual problem for the case A = oo. In our construction, these modifications do not
necessarily maintain the hierarchy as A approaches 1.

1.2. Bounds for prime gaps on RH. Let p, denote the nth prime. Assuming the
Riemann hypothesis (RH), a classical result of Cramér [14] yields the bound

< (1.10)
n—00 A/ Pn log pn

where ¢ is a universal constant. Building upon the works of Goldston [21] and
of Ramaré and Saouter [39], the current best form of this bound is due to Dudek
[19, Theorem 1.3], who obtained (1.10) with constant ¢ = 1. Here we improve this
and other bounds in this theory by establishing an interesting connection with the
extremal problems presented in the previous section.

Our strategy consists of three main ingredients: (i) the explicit formula, (ii) the
Brun-Titchmarsh inequality, and (iii) the derived extremal problems in Fourier
analysis. Letting 7(x) denote the number of primes less than or equal to x, we
define the Brun—Titchmarsh constant B in our desired scale by

m(x + /x) = 7(x)

B := limsu 1.11
x—->oop ﬁ/ ]Og X ( )
and we observe that
36
Il <B<— (1.12)

T
The lower bound in (1.12) follows from the prime number theorem 7 (x) ~ x/log x

as x — oo and the upper bound on B follows from the work of Iwaniec [30,
Theorem 14].

—_—
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We prove the following general result.

Theorem 1.3. Assume the Riemann hypothesis. Let € (-) be defined in (1.3) and B
be defined in (1.11). Then, for any o > 0, we have

1 - 1+2
inf {c > 0; liminf H(x ik ng) ) > oe} E —_— (1 + 20)
X—00 ﬁ

The last inequality comes from (1.9) and (1.12).

T E(l + 2a).
(1.13)

The case @ = 0 in Theorem 1.3 yields an affirmative answer for a question posed
in [19], on whether one could establish (1.10) with a constant ¢ < 1.

Corollary 1.4. Assume the Riemann hypothesis. Let €7 (-) be defined in (1.3) and B
be defined in (1.11). Then

I Pn+1— Pn 1 21
im sup < < —,
n—soo /Pnlogp, — Ct(B) 25

We note from (1.12) and Theorem 1.2 (b) that the limit of this method would yield
a constant % on the right-hand side of (1.14). On the other hand, under stronger
assumptions, namely the Riemann hypothesis and Montgomery’s pair correlation
conjecture, it is known that the limit supremum in (1.14) is actually zero (see, for
instance, [26,27,36]).

The case ® = 1 in Theorem 1.3 yields the constant

3 63
== < —
€+t®B) 25

(1.14)

on the right-hand side of (1.13). This also sharpens the previous best result, due to
Dudek [19], who had obtained this inequality with constant ¢ = 3.

By working with a particular dilation of the bandlimited function (1.7) and
an explicit version of the Brun-Titchmarsh inequality due to Montgomery and
Vaughan [35], we are able to make all of our error terms effective and, assuming the
Riemann hypothesis, prove that

Pn+1— Pn < g\/pn log py

for all primes p, > 3.

Theorem 1.5. Assume the Riemann hypothesis. Then, for x > 4, there is always a
prime number in the interval [x, x + % JVx log x].

This theorem improves a result of Dudek, Grenié, and Molteni [20, Theorem 1.1],
who had previously reached a similar conclusion with ¢ = 2 replaced by ¢ =

c(x)=1+ é;. Cramér [15] has conjectured that

Pnt1 — pn = O(log? p,),
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and this problem remains open to this date. It has been verified by Oliveira e Silva,
Herzog, and Pardi [38, Section 2.2] that

Prnt1 — Pn < log? py (1.15)

for all primes 11 < p, < 4-10'®. Estimate (1.15) plainly implies the conclusion
of Theorem 1.5 for all 4 < x < 4.10'%, Therefore, in our proof, we assume
that x > 4- 1018,

We now proceed to the proofs of the main results stated in this introduction.
This is carried out in Sections 2—6. In Section 7 we have a general discussion on
some related extremal problems in Fourier analysis, which includes for example the
existence of extremizers for the Fourier optimization problem of Cohn and Elkies [12]
related to sphere packing. Some of this material may be of independent interest.

2. Existence of extremizers

In this section we discuss the existence of extremizers for the extremal problems
(1.1)—(1.4). We prove here parts (a.1), (b), and (c.1) of Theorems 1.1 and 1.2. We
begin by making some simplifying observations, that will be helpful for the rest of
the paper. Note that we may restrict ourselves to the situation when F e L'(R)
(otherwise the quotients on right-hand sides of (1.1), (1.3), and (1.4) yield —o0), and
we assume this throughout the rest of the paper. In particular, F' decays at infinity
and || F|| s is attained at some point.

The class # in Theorem 1.1 includes complex-valued functions, but for our
extremal problems we can restrict attention to even, real-valued functions. Indeed,
given a non-identically zero F' € A, the following steps either increase the quotients
on the right-hand sides of (1.1)—(1.2) or leave them unaltered:

* by translating F over R, we may assume that | F/(0)| = || F||co;

* by dilating F, we may assume that || F||; = 1;

by multiplying F by a unimodular complex number, we may assume that £ (0) > 0;

by replacing F(x) by (F(x) + F(x))/2 we may assume that F is real-valued;

by replacing F(x) by (F(x) + F(—x))/2 we may assume that F is even.

From the definitions it is clear that € (A) and € (A) are non-increasing functions
of A. The observations above show that in (1.1)—(1.2) we can restrict attention to
even, real-valued functions, so that €(4) < €71(A4). The Fejér kernel F(x) =
(sin(rx) /(7 x))? reveals that € (co) > 1. For every F € A we have

1
rol- [ Fols|[ Folasarn e
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so that € (1) < 2. A similar argument gives € (1) < 2. Putting together all of these
observations, for 1 < A < oo, we obtain the chain of inequalities

1 £ €loe)y =€) €T () <€) =2

2.1. Proofof Theorem 1.1 (a.1). This isthe case A = oo and we are restricted to the
class & C A of continuous functions F: R — C, with F € L'(R) and supp (F) C
[—1,1]. Let {F,},>1 be an extremizing sequence verifying the conditions above,
i.e. a sequence {F,},>1 C & of even and real-valued functions, with || F,|; = 1,
”Fn”oo = Fn(o) >0, and

nanolo F,(0) = €(c0).

Since € (c0) < 2, it follows that { F,, },>1 is a bounded sequence in L?(R). Hence,
there exists G € L2(R) such that (after passing to a subsequence, if necessary)
F, — G weakly in L?(R). In this case, supp (é) C [—1,1] and by Fourier
inversion G can be taken continuous. For any y € R, we have

o

sin 2w (x — y)

1
Fu(y) :/; 2TV E (1) dt :[ Fp(x)dx

1 —00 JT(X - y)
foo sin2m(x — y)
—

—o0 (X —Y)
as n — oo. It follows that G is even, real-valued and G(0) = €(oc0). Moreover, by
Fatou’s lemma, we have |G ||; < 1. Hence G € &, and from the definition of € (00)
we must have |G|y = 1 which makes G an extremizer. Multiplying this G by
the constant factor €(co)~! we arrive at the extremizer stated in the theorem (that
assumes the value 1 at x = 0).

I . -~
G(x)dx :f MG () dt = G(y).
-1

2.2. Proof of Theorem 1.1 (b). We already observed in (2.1) that €(1) < 2. By
taking Fo(x) = ﬁe_”z/‘? with ¢ — 01 we see that €(1) = 2. In order to

obtain equality in (2.1) we must have ﬁ(t) = c¢| F|; for all € [—1, 1], for some
constant ¢ € C with |¢| = 1. This is not possible, and hence there are no extremizers
in this case.

2.3. Proof of Theorem 1.1 (c.1). Here 1 < A < oco. Suppose F € A is non-
identically zero, with
1 FO)] = A [y e |[F(0)]dt

o . 2.2)
2 11

Since

1>

1
| Fol=|Fo - [ Foa]zirer-21F
[—1,1]¢ —1
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we may use (2.2) to see that

1

2

1 I [l (2.3)

FO) < 20

Inserting this estimate into (2.2), we also have

3
F(t)|dt < ———||F|;. 2.4
[, Vol < s @4

Let {F,}n>1 C A be an extremizing sequence of even and real-valued functions,
with || £ |

n@;@um—A/‘]JEMNm):EM)

Since €(A) > 1, from our observation in (2.3) we see that {F},(0)},>1 is a bounded
sequence, and from (2.4) that {|| F,,||1}»>1 is also bounded.

2.3.1. Step 1. Since | Fy|loc = Fx(0), the sequence { Fy, },>1 is bounded in L2 (R).
Passing to a subsequence, if necessary, we may assume that /,(0) — ¢, for some
constant ¢ > €(A), and that F, — G weakly in L?(R) for some G € L?(R). By
Mazur’s lemma [4, Corollary 3.8 and Exercise 3.4], there exists a sequence Hy — G
strongly in L2(IR), with Hy € Conv({F,},>x}) (i.e. each Hy is a finite linear convex
combination of functions F,, with n > k). Note that Hj is even and real-valued,
| Hilloo = Hrk(0) — ¢, ||Hi |1 <1 and{||H;C |1 }x>1 remains bounded. By passing
to a further subsequence, we may also assume that H; — G and H k= &, pointwise
almost everywhere. Hence G is also even and real-valued. Note that { Hy }x>1 is also

an extremizing sequence.

2.3.2, Step 2. By Fatou’s lemma ||G|; < liminfg_oo || Hrll1 < | and ||6||1 <
liminfg_ o || ﬁk||1 < 0o. By Fourier inversion, we may assume that G is continuous
(after eventually modifying it on a set of measure zero), hence G € A. First we
claim that G is nonzero. In fact, since { Hy }x>1 is an extremizing sequence and
Hi (0) —> ¢ = €(A), from (2.3) we find that liminfy o || Hrll1 = ¢1 > 0. From
the L2-convergence (applied below just in the interval [—1, 1]) and Fatou’s lemma,
we have

G@—AﬁﬂrﬁmMI
1 A~
:[ G(t)dt — f - (|G(t)|—G(r))dt—(A—l)/ 1G] de

>l]gs;p [ Hye(1)dr — f,”f (IHy (1) — Hy (1)) de
— (A —1 Hi (1) d
a-n [ o))
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= limsup(Hk(O)—A/[ . |ﬁk(t)|dr)

k—o0

> ¢y €(A).

This shows that GG is nonzero. The same computation above (up to its third line)
shows that G is indeed an extremizer, since ||G||; < liminfz_ o || Hk||1-

2.4. Proof of Theorem 1.2 (a.1), (b), and (c.1). The proof of part (b) follows along
the same lines as the argument in §2.2 (with the same extremizing family). The
proofs of parts (a.1) and (c.1) follow the outline of §2.3 and we simply indicate the
minor modifications needed.

In seeking extremizers when 1 < A < 0o, we may assume that /'(0) > 0 and
that F € LY(R) (recall that here we are already working within the class of even and
real-valued functions). Suppose that F' € AT is non-identically zero, with

I FO) = A [ e (F)4df

L _ (2.5)
2 I F [l

Since {
| (Fw)azro - [ Fea=Fo-20F],
[—1,1]¢ -1

we may use (2.5) to see that
1

dfl == 5
F(0) < £l (2.6)
A—1
As before, inserting this estimate into (2.5) we obtain
~ 3
Fie) b8 £ F]1 (2.7)
f[—l,llf( )+ 2(A-1)

Let{F,}n>1 C A" be an extremizing sequence with || F,,||; = 1, F,(0) > 0, and
F, € L'(R). Note that, in principle, we do not necessarily have || Fp|lco = Fy(0).
Since €1 (A) > 1, from (2.6) we see that {F,(0)},>1 is a bounded sequence, and
from (2.7) we see that {|| Fy |1 }n>1 is also bounded.

The rest of the proof follows as in Steps 1 and 2 of §2.3. Note that the
corresponding sequence { Hy x> will be extremizing, due to the general property that
(f+2)+ < f++ g+, and inequality (2.6) shows that liminfy o || Hg|l1 = ¢1 > 0.
For the final computation, one uses the identity

1
G(O)—Af[nu]{_ (G(1)), dr = /-1 G(t)dt —j[ﬁl,]](: —(G(1))_dt

— (A — 1)f[41’1](l (G(), dr.

For the case A = oo (part (a.1)), the required modifications are similar and we
omit the details.
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3. Uniqueness of extremizers

In this section we continue the study of the extremal problem (1.2). We prove the
uniqueness of a bandlimited extremizer (up to multiplication by a complex scalar)
and provide its variational characterization as described in parts (a.2) and (a.3) of
Theorem 1.1.

3.1. Proof of Theorem 1.1 (a.2). Let G € & C A be an even and real-valued
extremizer of (1.2) with G(0) = 1. Let G; € & be another extremizer of (1.2), with
G1(0) = 1. It suffices to show that G; = G.

Let F = (G + G1)/2. Then, by the triangle inequality, we have

j |F(x)|dx < %f (|G(x)| + |G1(x)|)dx = # (3.1)

L o €(00)’

and F(0) = 1. To avoid strict inequality in (3.1) we must have
|G(x) + G1(x)| = |G(x)| + [G1(x)]
for all x € R. In particular, this shows that G;: R — C is real-valued and that
G(x)Gi(x) =0

forall x € R. Let R = G - G;. Then R is a nonnegative and integrable function
with supp(R) C [—2,2]. By a classical result of Krein [1, p. 154], we have R(x) =
|S(x)|?, for some S € L?(R) with supp (S) C [—1, 1]. Observe that |S(0)| = 1 and
that

/*00 |S(x)|dx = [_00 VG(x)Gi(x)dx

1 1
< - Gx)|+ |Gi(x)])dx = ——. (3.2)
> | (6wl + 6@ i = o
In particular S € L!(IR). To avoid strict inequality in (3.2) we musthave G (x) = G(x)
for all x € R, completing the proof.

3.2. Proof of Theorem 1.1 (a.3). Let G be the unique extremal function of (1.2)
with G(0) = 1. Let FF € & be a real-valued function with F(0) = 0 and define,
fore e R,

oo

D(e) 1= foo |G(x)+8F(x)|dx=f (G(x) + eF(x))*) " dx.

—00 —00
This is a differentiable function of the variable ¢ and, since G is an extremizer, we
must have
od o
)= 8—(0) — / sen(G(x)) F(x)dx. (3.3)
£

—00
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If Fy € & is a generic real-valued function (not necessarily with F(0) = 0), by (3.3)
we obtain that

‘C’(oo)[_ sgn(G(x)) Fi(x)dx = E(oo)[_ sgn(G(x))(Fi(x) — Fy (O)G(x)) dx

+ €(0) foo sgn(G(x)) F1(0) G(x) dx
- (3.4)
— F(0). (3.5)

Finally, if F, € & is a generic complex-valued function, we may write F,(x) =
A(x) —iB(x), where A(x) = (Fa(x) + F2(x))/2 and B(x) = i(F2(x) — F2(x))/2
are real-valued functions in &, and use (3.4) to arrive at

€ (00) ]_00 sgn(G(x)) Fr(x)dx = F»(0).

4. Upper and lower bounds

In this section we conclude the proofs of Theorems 1.1 and 1.2 by establishing the
proposed upper and lower bounds for the sharp constants €(A) and €71 (A).

4.1. Approximations. For the purpose of finding the values of the sharp constants
€(A) and €1 (A) in problems (1.1)—(1.4), without loss of generality we may work
with smooth functions. For instance, let us show that we can simply consider
Fe C°(IR). This observation is useful in some passages later in the paper.

Starting with 0 # F € A (or 0 # F € A™ in the case of (1.3)), we write

|FO) — A fi_y 1y 1F ()] dt
1F 11

FO)— A [l e (F(1)4 dt
£+

J(F) :=

and JH(F) =

In either situation we may also assume that F € L'(R) and that J(F) and J T (F)
are positive. Let K(x) = (sin(;rx)/(7x))? be the Fejér kernel and, for A > 0, define
K;(x) = A7'K(x/A). By Young’s inequality we have |F * K,||; < || F|1, and
using dominated convergence it follows that limsup;_,, J(F * K;) > J(F) and
limsup,_.o J T (F * K;) > J1(F). Hence we may assume that our test function F
is bandlimited.
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Let n € C2°(R) be an even, nonnegative, and radially non-increasing function
such that n(0) = 1, supp(n) C [-1,1], and f  N(x)dx = 1. Again, let 9 (x) =
A In(x/A). If supp(F) C [—A, A], then F na € CX(R) and supp(F x1ny) C
[-A — A, A + A]. By dominated convergence, we have limy_,o J(F - 7) = J(F)
and limy_o J 7(F - ;) = J 1 (F). This verifies our claim in the cases 1 < 4 < oo.
In the cases A = oo one has to slightly dilate F beforehand in order to apply the
procedure above and arrive at a function in the class & C 4 for (1.2) and €T C AT
for (1.4).

4.2. Proof of Theorem 1.1 (a.4). The bounds
1.08185... < €(o0) < 1.09769... 4.1)

were proved in the very interesting work of Gorbachev [25, Theorem 3], to which we
refer the reader for details. These are slightly inferior to the ones presented in (1.5)
but will be more convenient for our purposes, especially the upper bound, since the
test functions used are described more explicitly. These bounds improved upon the
work of Andreev, Konyagin, and Popov [2], who had previously obtained

co = 1.07995 ... < €(c0) < 1.17898. (4.2)

As already pointed out in the introduction, the lower bound in (4.2) comes from
the simple example

The Fourier transform of H is (1) = % cos(mt/2) x{—1,17(¢), which may be verified
by starting with our expression for i (t) and computing its Fourier transform to
recover H. Thus H belongs to the class &, and H(0) is clearly 1. To compute
the L!-norm of H we observe that sgn(H(x)) = 2X[_%’£](x) — sgn(cos 2 x), and
use Plancherel’s theorem and the fact that sgn(cos 2x) has distributional Fourier
transform supported outside (—1, 1) to get!

= [ Heolar = [ @y 00— sen(eos2m0) () ax

—00

= 1;22)([_%,‘1‘]()6) H(x)dx = _/—1 (%77/2))(2@05(”1‘/2))

1 ..
sinmt
:i[ i dl:l/C().
4 —1 Tt

This example will be useful later on to generate lower bounds for € (A) in the general
case 1 < A < oo. The lower bound of Gorbachev [25] in (4.1) comes from more
complicated numerical examples.

'The function x +> sgn(cos 27 x) is an example of a high pass function, as studied in [34].
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The upper bound in (4.1) comes from a dual formulation of the problem. Suppose
that ¥ € L°(R) is such that its distributional Fourier transform is identically
equal to 1 on the interval (—1,1). Let §(R) denote the Schwartz class. Then,
for F € & N 8(R) (as discussed in §4.1), we have

Wl [~ 1Ftax=| [~ Fowea] = | [ Fodoa] = 1Fo

which implies that
€(00) < [|[¥|loo-

With this dual formulation, it suffices to exhibit a nice test function .

We now briefly describe the construction of Gorbachev [25, Lemma 9]. To
simplify the notation (and align with the terminology of [25] to facilitate the
references) we let

in what follows. For 7 = 29289/100000 = 0.29289 we define a continuous and
piecewise linear function «: [0, 1 /2] — R by

2x — 1, 0<x<r;
2t —14+2(1—-0)(x—1)/e, 1<x<t1+4¢

a(x):<1, T+e<x=<1/2-2¢ 4.3)
1 —y(x—1/24 2¢)/e, 1/2—-2e <x<1/2—¢;
l—y+y(x—=1/24¢)/e, 1/2—e<x<1/2,

where
2 =2¢41/2 -

14y —2%
and, having defined (4.3) and (4.4), y is finally chosen so that

1/2 (1 _
f m)—) cos(2rx)dx = 0.
0

0, 4.4)

Jj(x)
One arrives at the values y = 0.43056... and ¢ = 0.0000053884.... Let
1/2 [ -1
do = ( [ —alx) dx) — 1.09769 ... (4.5)
0 J(x)

and define 1—periodic even functions a(x) and h(x) by

dop —a(x) B

a(x) =dpa(x) and b(x) = 270

I; for x € [0,1/2].
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As observed in [25], with this construction the functions a and b have Fourier series
expansions

a(x) = Z 2a, cos(2rnx), b(x) = Z 2b, cos(2unx),

n=1 n=2
o0 o.¢]
Y lanl < oo, and ) |ba| < o0
n=1 n=2

(notice that the first Fourier coeflicients verify ag = by = b1 = 0). A numerical
evaluation leads to

ar =—0.5622..., a> =0.0684..., a3 =0.1005...,

and since ||a||iz[ Tl 0.7238... and 24?7 = 0.6321..., an application of
32

Plancherel’s theorem gives us that |a,| < |a;| for all n. For the function b we

adopt a slightly different approach to bounding the Fourier coefficients b, (since

|6l 721 1 is very large). A numerical integration yields
L2[-1,4] y larg

ifa
|ba] 5] b(x)] dx = 0.8283 ...
—1/2

forall n > 2.
Finally, let ¢(x) = 2j(x)(1 + b(x)), and define

Y(x) = ¢(x) +alx). (4.6)

This is the test function constructed by Gorbachev [25], which verifies ||/ ||co = do
and has distributional Fourier transform identically equal to 1 on the interval (—1, 1).
In fact, we have

V() =)+ Y an(8(t —n) + 5t + n))

n=1

= X-1,110) + Z bu (X1=1,11(t = 1) + x—1.11(t + 1)) (4.7)

n=2

+ Zan(S(l —n) + 8(t + n)),

n=1

where § is the Dirac delta distribution. We shall use this construction to generate
upper bounds for €(A) in the general case 1 < A < oo. The observation that
¢l = 1 will be relevant later on.
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Remark. In an earlier version of this manuscript, without being aware of the
references [2,25], and [29], we had initially arrived at the test function

oo

n=1

—dg sgn(cos(2mx)),

where @, = 4 Z j=n are the Fourier coefficients in the expansion

(2 +1)2

_(mt/2)

0
2) a t
%m(nt/Z) ap + ’; dp cos(nmt)

for —1 < ¢ < 1. This leads to the bound €(00) < |[¥|lec = @0 = 1.16624 ...,
which is intermediate between (4.1) and (4.2).

4.3. Proof of Theorem 1.1 (c.2).

4.3.1. Lower bounds. As before, let H(x) = (cos 2mx)/(1—16x?). Take F(x) =
H(x/A) for a suitable parameter A € (0, 1] to be optimized. Then F(0) = 1 and
|Flli = AH |1 = A/co with ¢g = 1.079950. ... The ratio to be maximized is

Co

T [ e (5 ) = -0 -0 ()

Calculus shows that this is maximized by choosing A such that

1 — % — Rin (];—)L) — %)L cos (];—)L) (4.8)

For A = A(A) verifying (4.8), this examples demonstrates that

€(A4) =

nzco cos (nlﬁz(A)).

Note that as A — 17, this lower bound goes to wcg/2 and is not very effective.
Alternatively, we can then use a dilation of the Fejér kernel K (x) = (sin(x)/ (7w x))?
(note that I?(r) = (1 —|t])+). Again we consider F(x) = K(x/A) and optimize the
dilation parameter A € (0, 1]. The ratio we seek to maximize is

%(1 —AA flsms% (1= [Ar]) de) = %—A(% +1-2).

The optimal choice is A = /(A — 1)/ A, which leads to the bound

€(A) > 24 —2/A(A—1).
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4.3.2. Upper bounds. We already know that €(A) < €(1) = 2. The other upper
bound comes from duality considerations. Suppose that ¢ € L°°(IR) is such that its
distributional Fourier transform is identically equal to 1 on the interval (—1, 1) and
|@(t) — 1| < Aforallt € R. Then, for F € A N 8(R) (as discussed in §4.1), we
have

||¢||mfZ|F(x)|dx . y[_: FOo) (o) dx]

- U_Z ﬁ(r)@(t)dr‘ > |F(0)] —A/[_l . [F(0)]d.

This leads to €(A4) < ||¢]oo-

Let ¥ be defined by (4.6). The idea is to mollify this function (used in the case
A = 00) in order to “bring down the delta functions™ in its Fourier transform into
the acceptable range |@p(t) — 1| < A for all t € R. First we dilate 1} defined by (4.7)
to push the delta functions away from the interval [—1, 1], in other words, for y > 1,
we observe that

Y(t/y) =d/y)+ Y yan(8(t —yn) + 8(t + yn)).

n=1

Let R(t) = y[—1/2.1/2(t). For A > 0, we write R, (t) = A~'R(r /1) and define
§(6) == (¥ (/1) * Ri) (@)

= (BC/7)* RO + 3 5 (g 490 = ym) + 1y 4900+ ym).

n=1

(4.9)

Recall that |a,| < |a1| < 0.6 for all n > 1. Let ¢ = 0.6, so that all the delta
functions in (4.7) have coeflicients at most ¢. Let us assume that 4 > 2 + ¢ (so that
our particular choices of A and y below verify 0 < A < y). We choose y — 1 = %
(so that the support of the mollified delta functions in (4.9) stay away from the interval
(—1,1)) and % = A — 2 (so that the height of the mollified delta functions in (4.9)
is at most A — 2). This leads to the explicit forms
A:z# and yzflc ;
sl =2)=—1 1 — A=)

From (4.9) we conclude that ¢(t) = 1 fort € (—1, 1) and, since ”(E"oo = 1, we also
have |¢(r)] < A — 1 forall t € R, which in particular implies that |@(1) — 1| < A
for all t € R (note that the mollified delta functions on the right-hand side of (4.9)
have disjoint supports due to the fact that A < y). Since ¢(x) = y ¥ (yx) R(x /M),
our upper bound is then ||¢]lco = Y|V lcoc = ¥ do.
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4.4. Proofof Theorem 1.2 (a.2). We proceed again via duality considerations. Supp-
ose that ¥ € L°°(R) is a real-valued function such that its distributional Fourier
transform is identically equal to 1 on the interval (—1, 1) and @(t) —1 < 0 for
all € R. Then, for F € €t N 8(R) (as discussed in §4.1), we have

||m11||mfoo |F(x)|dx > /oo F(x)W(x)dx = foo F()W(r)dt > F(0),

—C0 —00 —00
which implies that
€T (00) < [|Wloo-

Experimentation gave the following numerical example. Leta = 0.018, b = 0.027,
and ¢ = 0.002, and consider

sin(2w x 2 sin(amx 2sin(b
x) = ( ) -+ \dmn) cos(3mwx) + ﬂ cos(4mx)
X X X
2sin(cmwx)

cos(10rx) — 0.888 cos(2wx) — 0.01 cos(6rx), (4.10)
X

which has Fourier transform

(1) = x—1,11(0) + X—aj2,a/21(t — 3) + Xcaj2.a/2 + 2)
+ X[=b/2,6/21(t —2) + X[=b/2,b/2](t +2)
+ Xi—c/2,c/21(E = 5) + X[=c/2,c/21(¢ +5) 4.11)
—0.444(5(t + 1) + 8(t — 1)) — 0.005(8(¢ + 3) + 8(t — 3)).

For this test function we have ||W] < 1.2.

Figure 1. Graph of the function ¥ in (4.10) in two different scales.

4.5. Proof of Theorem 1.2 (c.2). We have already seen that €1 (A4) < €7 (1) = 2.
The other upper bound comes from the following dual formulation. Suppose that
® € L°°(IR) is a real-valued function such that its distributional Fourier transform is
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identically equal to 1 on the interval (—1,1) and —A4 < CTJ(I) — 1 <O0forallt € R.
Then, for F € AT N 8(R) (as discussed in §4.1), we have

19100 f OLE [ F(x) &(x) dx

—00 —0Q

:f F(t) () dr > F(O)—A/[_l . (F(t)), dt

—00

which leads to

€T (A) < [|]|oo-

The idea is to mollify the test function in (4.10) to bring down the delta functions to
the required range, as done in §4.3.2. Let ¢ = 0.444 be the largest coefficient of a
delta function in (4.11) and assume a priori that A > 1 + % (so that our choice of A

below is in fact positive). With the same notation as in (4.9) we choose y — 1 = % and

%{i = A — 1. Note that the four delta functions in (4.11) have negative coefficients,

while the rest of the Fourier transform lies between 0 and 1, so we may take A4 — 1

here instead of A — 2. Moreover, since these delta functions are supported in non-

consecutive integers, the condition y — 1 = % already guarantees that the mollified

delta functions will not overlap (hence we do not need to assume here that A < y).
This yields

2 1
= e———— and =
SRR E R G

Since ®(x) = y W(yx) ﬁ(x/k), our upper bound is || P||cc < V||¥]oo < ¥ x 1.2.

4.6. Proof of Theorem 1.2 (c.3). For the specific value of A = %, the lower bound

described in (1.8) and (1.6) yields ‘C’ﬂ%) > 1.1569. ... We found a better example
through experimentation. The function
F(x)=—-438 x2e335% | | 5 x2p7T4%7

520%™ £ 137287 1 0.18¢72F  (4.12)

gives

F0) = A fi_; e (F(0)4dt 25
. =1.1943... > —.
171 21

We have found more complicated examples that do slightly better.
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15,

Figure 2. Graph of the function F in (4.12) on the left, and graph of F on the right.

S. Prime gaps: asymptotic version

In this section we prove Theorem 1.3. The proof uses two main tools: the explicit
formula connecting the prime numbers and the zeros of the Riemann zeta-function,
and the Brun—Titchmarsh inequality as expressed in (1.11) and (1.12).

Lemma 5.1 (Guinand-Weil explicit formula). Let h(s) be analytic in the strip
[Ims| < % + & for some ¢ > 0, and assume that |h(s)] < (1 + [s))~+9) for
some § > 0 when |Res| — oo. Then

1

Sn("2) = () + (= 57) ~ 5 h0 e
som [ re (5 +5) du_%m 2 () +h(52).

where p = B +iy are the non-trivial zeros of £(s), I''/ I is the logarithmic derivative
of the Gamma function, and A(n) is the Von Mangoldt function defined to be log p if
n = p™ with p a prime number and m > 1 an integer, and zero otherwise.

Proof. The proof follows from [31, Theorem 5.12]. []

5.1. Set-up. Motivated by the discussion in §4.1, throughout this section we fix
F:R — R to be an even and bandlimited Schwartz function, with F(0) > 0.
Let us assume that supp(l*:) C [=N, N] for some parameter N > 1. It then
follows that F extends to an entire function (which we continue calling /') and
the fact that x> F(x) € L>®(R) implies, via the Phragmén—Lindeldf principle, that
|F(s)] < (1 + |s])”2 when |Res| — oco. We may therefore apply the explicit
formula (Lemma 5.1).

Our idea to approach this problem can be summarized as follows. We use the
explicit formula above to measure the size of an interval that does not contain too
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many primes. Note that the information about the primes is on the right-hand side
of the formula, while on the left-hand side we have information on the zeros of {(s).
We modify our test function F' in such a way that F emphasizes the mformatlon
on said interval, translating and rescaling F to concentrate the mass of F on this
interval. We then try to understand the effect of this localization in all the terms
of the formula through an asymptotic analysis. Since the function F must be small
near its endpoints, it is advantageous to use the Brun—Titchmarsh inequality to (over)
estimate the contribution from the primes on the edges of the interval.

Let) < A < 1and 1 < a be free parameters to be chosen later. We anticipate
that we will be choosing A — 0% and ¢ — o0, so it is not harmful to further assume
that

2rAN <loga. (5.1)

Define f(z) := AF(Az) and note that supp(f) C [-AN, AN]. Assuming RH, an
application of the explicit formula (Lemma 5.1) to the entire function 4(z) = f(z)a'?
yields the following inequality:

£(5:)a"2 + £ (= 55 ) < G ("B tog

+ ‘E[—oo fu)a™ Re %(% + %) du’
v 5 R ), A (-5).)

5.2. Proof of Theorem 1.3. The idea is to proceed with an asymptotic evaluation
of both sides of (5.2). We start with its left-hand side. Note that

f(_zl—;) = AF(%) » Af:; AR (1) di

N N
= A[ F(t)dr + A/ (™D —D)F@)dt
-N

—N
= AF(0) + O(A?).

(5.2)

We may similarly estimate f (—%). Therefore, the left-hand side of (5.2) equals

f(Z]l) v T f( 211)a_1/2 AF(O)((IUZ —|-Ll_1/2) + 0(A2 1/2)

For the right-hand side of (5.2), we first consider the error terms. From (5.1) we have

271

1 -~ log a | PN lo
—f( & )logn = —F( =
21 21 A

e )logn = 0.
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Also, using Stirling’s formula l%(s) = logs + O(|s|™1) and (5.1), we get

/ f(u)a™ Re L,(— %) du

o Joga 1 iy
— | F(y)ePmGED 1o l— —‘d o(1
[ roe g5 + 5| @y + 000

— ooF()z’”'y@’%)(ll A2 4 4y%) +1 (1))d + O(1)
= y)e iog( y ogl1x))

—00

(35 F(- 353) + o0 - o0,

Thus, we have deduced that

AF(0)(a'? +a™'/?) §ZI.f(J/)I

() () ) oy o
n=>2

(5.3)

It remains to estimate the two remaining sums on right-hand side of this inequality.

5.2.1. The sum over zeros. Let N(x) denote the number of zeros p = B + iy of
¢(s) with 0 < y < x. Using the fact that N(x) = 5-log5- — 5 + O(log x), we
evaluate the sum »_, | /(y)| using summation by parts to get

R +1xl / +
20N = [ 1r@ltogt ) dx o+ 01 oo + 11576 o 14111).

where logtx = max{logx,0} for x > 0. Recalling that f(x) = AF(Ax), this
yields

Zlf(m —_E f IF()| log*ly/27A] dy + O(1)

M|| Flly + 0Q)). (5.4)

5.2.2. The sum over primes and the choice of parameters. Fix o > 0 and assume
that ¢ is a fixed positive constant such that

" I o
— 7(x + c/x log x) w(x) -
X—00 \/E
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Then, given & > 0, there exists a sequence of x — oo such that

m(x + c/x log x) — m(x)
T <oa+e¢ (5.5)

along this sequence. For each such x, we choose a and A such that

[x,x 4+ co/x logx] = [ae ™2, a 2. (5.6)
Then (allowing the implicit constants in the big-O notation here to depend on ¢) we

have 5

log x log x log” x
4rA =log(1+c—=) = +o(=2) 5.7
e Y S x 27
and | e
a=x(1+c ng) — x + O(J/%log x). (5.8)
Jx

By (5.1), the sum we want to evaluate is

R AUC S RNCE SRR LS SR

n>2

Note that the last sum is supported on n with ae 2™V < n < g2V The
contribution of the (at most) (« + £)/x primes in the interval (x, x + ¢/x log x] =
(ae2™2 g e?™2] to the sum (5.9) is bounded above by (using the trivial bound

(F()+ < |F1)

log p log x
<IFlh Y EP < IF | (@ +e)v/x —22 =
pE(a e~2JTA,a eZJ'(A] \/f '\/E

| Fll1(x + ¢) log x.

It is not hard to show that the contribution of the prime powers n = pX with k > 2
in the full interval [a e 272N g ¢27AN] to the sum (5.9) is O(1). It remains to
estimate the contribution of the primes in the intervals [z e 22V a ¢272] and
[a ™2, a e?™AN], and for this we use the Brun-Titchmarsh inequality. Let B be
defined by (1.11) and let B’ > B. For x sufficiently large we have

Z log p ﬁ(IOg(P/a)) EB’f ﬁ(log(t/a)) g+0(1)
VP 2rA T+ 1<| gD |y 2rA T+t

1<| 82/ <

— B'a (27A) (F (1)), dt + O(D).
[-1,1]¢

The inequality above can be seen by covering the intervals [a ¢ 2"V g ¢=274] and

[a 272, a e?™AN] by subintervals of size v/, and applying the Brun—Titchmarsh
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inequality in each summand of the corresponding Riemann—Stieltjes sum associated
to this partition (the details of this argument are carried out in §6.2 for a specific
function and can be modified to handle the general case). Combining estimates, we
see that

AR 7(-5).)

< ||F|li (@ + &) log x + B'a 2nA) (F(1)), dr + 0(1). (5.10)
[—1,1]¢

5.2.3. Conclusion. Inserting the estimates in (5.4) and (5.10) into (5.3) and then
rearranging terms, it follows that

log(1/2nA)

ava(Fo) -8 [ (o), o) <

[—1,1]¢
1
4+ —||F|l1 (@ + &) logx + O(1),
20
where we have used (5.7) and (5.8) to combine the error terms. Sending x — oo
along the sequence (5.5), we conclude that
£ 1|1
(FO) =B fi_y e (F (1)) dt)

where we naturally assume that the denominator above is positive. Since this holds
for all ¢ > 0 and B’ > B we finally arrive at

c < (1+42a+ 2¢)

IFl |
(F(0)—B fi_, o (F (1)1 di)

This is the connection to our extremal problem (1.3) and the discussion in §4.1 leads
to the desired conclusion, since we may now optimize (5.11) over such bandlimited F.

c < (1 +2@)

(5.11)

6. Prime gaps: explicit version

We now move on to the proof of Theorem 1.5. Instead of initially following the proof
outlined in Section 5 with a particular choice of test function F in the Guinand—
Weil explicit formula (and carefully estimating the error terms), we start off slightly
differently using a Mellin transform approach to the problem. For our fixed choice
of test function, this approach simplifies some of our calculations. Moreover, it may
be the case that the kernel we are using will be helpful in other applications. For
a generic choice of test function, however, the Fourier transform approach to the
problem used in the previous section is perhaps more illuminating.
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Lemma 6.1. Let 9 and § be positive numbers satisfying 98 = /2. Then, fora > €°
and ¥ not an ordinate of a zero of {(s), we have

A(n) a W \/a _ a'? cos(8y)
Z NG cos(ﬁlog;):l———(e‘m%—e 5/2) 2192

1 2 2
aeS<n<aed 4 +9 v )/

—Z f g—20-142 ((2n+1/2)8+e—(2n+1/2)3).

(6.1)
‘ (2n+3)? 4 92

Here the first sum on the right-hand side runs over the nontrivial zeros p = 1 /2 +1iy
of C(s) where y € C with |Re(y)| < 1/2.

Proof. Forany ¢ > 0,8 > 0 and £ > 0 we have

c+ioco 8s _ ,—6s 1, ife™? < £ < e,
1 sf€ e : +8
— | & ( Y Jds = {172, ifg =P,
eree ‘ 0, otherwise.

It then follows, for any ¢ > 1/2,a > 0, § > 0 (assuming ae®® ¢ N), and any real
number 7, that

1 c+ioo ’ —8s

ey A ——(s+ +u9)as+tﬂ(5%e)dsw Z A;%)(%)m

<n <ae

For details on this calculation we refer to [16, Chapter 17]
at ¥ and —9 and then adding, we deduce that

2 Z A\ﬁ? Ccos (1‘} log %)

. Applying this formula

ae—S<n<aed

1 c+ioo é—l

- _ —?(w+2)a (

C—100

S(w—iﬁ) . e—8(w—i19) eS(w-i—il?)_e—S(w-t-iz?)
: -+ - )dw.
w—iY w+ i

(6.2)

In the case ¥ = n/2, after dividing by 2, this formula simplifies to

A(n) a
cos | ¥ log —
ae_SSanae5 ﬁ ( n)

1 c+ioo é-/

— ——(w+ 1)a"
27” c—ioo é_ ?

w(e“w +e %) dw; (6.3)

note the removable singularities of the integrand at w = +i? and that the formula

now holds when ae®? ¢ N, as well. Sincea > e5, we can shift the line of integration
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left from Re(w) = ¢ to Re(w) = —oo and, using the calculus of residues, the integral
in (6.3) equals

dVa | s s a'” C()Q(S)/)
T, 92 el - 2192

D a—2n—1/

_Z(2n+2)2+192

( (2n+1/2)8 _|_e—(2n+1/2)8)'

Combining estimates, the lemma follows. L]

Remark 6.2. Slightly more generally, if #§ = % (mod ), then we can also evaluate
the integral in (6.2) in terms of an absolutely convergent sum over the nontrivial zeros
of {(s) (but not otherwise).

Since 96 = /2, the first term on the right-hand side of (6.1) is

N N § (%2 4¢79/2) 28\  48ya

T2 + 52 T

Our assumptions below imply that ¢® /a < 1/+/3, so the third term on the right-hand
side of (6.1) is bounded in absolute value by

HEEPIC RIS NORS Ol

Hence, taking absolute values in (6.1) and using the previous two estimates, it follows
that

48;/5 = Z A\y;) cos (19 log %) + 2792‘;25(57/) n ﬁ(;)S/Z_

ae—S<n<ael

(6.4)
At this point, it is convenient to make a change of variables so that we can retrace
our steps from the proof of Theorem 1.3 in Section 5 using a dilation of the Fourier
transform pair

cos(2mx)

2@ = 12

and H(r) = Zcos (112 ))([ 1,11(2).
We set f(x) = AF(Ax) where F(x) = H(x/A) so that F(r) = AH (Ar). Then,

letting

8:% and 19:i
A 4A
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in (6.4) (note that 96 = m/2), after a little rearranging it follows that

AVa < Zlf(y)l 4o Z () +5A(

eZnA/k

)5/2. (6.5)

Note that the sum over n is supported on the interval (ae272/4 qe27A/1),

We assume that there are no primes in the interval [x,x + ¢4 /xlogx] for
% <c¢ <1, and we choose a and A to satisfy (5.6). In particular, the equalities
in (5.7) and (5.8) still hold. As mentioned at the end of the introduction, we may
assume that x > 4 - 108, Using the fact that log(1 + y) < y for y > 01in (5.7), we

note that A < %(l‘«”’fx) < 1078,

6.1. Sum over zeros. We now explicitly estimate the sum over the zeros of the zeta
function on the right-hand side of (6.5).

Lemma 6.3. Let N(x) denote the number of zeros p = B+iy of {(s)with0 < y < x.

Then

7
N(x)——logﬁ—g <0.15logx + 3

for x > e.
Proof. The result holds for ¢ < x < 10, since N(10) = 0. From [41, Corollary 1]
we have

7 0.2
N(x) — ~log =~ — -| <0.1121ogx + 0.278 log log x + 2.51 + — (66)
2 2me 8

which holds for all x > ¢. The estimate

0.278 loglog x < 0.038log x + 0.28 (6.7)
holds for all x > e, while
0.2
— < 0.02 (6.8)
X
holds for x > 10. Combining (6.6), (6.7), and (6.8), we arrive at our desired bound
for x > 10. L]
Write
X 7
N(x)=— log — + + R(x)
2w 8
and let xo = 9.676. .. be such that
X0 X0
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Then, assuming the Riemann hypothesis and using summation by parts and Lem-
ma 6.3, we have

YW= [ (555 ) /@l - [ RO

e )
X0 X0

y=>0

o0 l X o]
5[ (— log—)|f(x)|dx+[ (0.151og x + 3) | f'(x)| dx
xo V27 2 X0
= — log |F(y)|dy+A/ (0.151og % + 3) | F'(v)|dy.
[Ax(, (an QJIA) Axo A »)ldy

Therefore

1 e 1 =
SO =5 [ togty IFG)Idy + 5 tog(1/278) [ 17010y

y>0

+ (0.15)Af0 log™ y |F'(y)|dy + (O.IS)Alog(l/A)/O |F'(y)|dy

—I—3A[O |F'(y)|dy.

The same bound holds for the zeros with y < 0. Since A < 10~® implies that
Alog(1/A) <2 x 1077, we conclude that

log(1/2mA) 1 n
; SO < = ——IFlh + 5—lllog" [y| F»)lx (6.9)

+(0.15) x 107% x [[log™ || F' ()]l
+ B x 1078 4 (0.15) x 2 x 107 || F'|I1

- log(1/2mA) 0.070

F
27 £+ 2

(6.10)
6.2. Sum over prime powers. We use a version of the Brun—Titchmarsh inequality
due to Montgomery and Vaughan [35, Theorem 2] which states that

2y
log y’

m(x+y)—mx) < (6.11)

for all x, y > 1. For us, the relevant range is y > 4/x, so that (6.11) corresponds to
an application of the Brun-Titchmarsh inequality with the bound B < 4. This
is slightly worse than Iwaniec’s bound (1.12) but is completely explicit. With
A = 4, the lower bound in (1.6) was established in §4.3.1 with a dilation of the
function H(x) with dilation parameter A = A(4) = 0.892422. ..., leading to the
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bound €(4) > 1.141186... = (0.8762...)"!. For the sake of simplicity, we work

instead with the dilation parameter A = 0.9 and note that for F(x) = H(x/A) we

have R

F(0) =4 [i_y . |F0)|dr
£ 1ls

With @ and A chosen as in (5.6), we need to estimate the contribution of the
primes p such that 1 < |1”2grf Alal < A1 to the sum over n in (6.5). We cover the

25
J(F) = = 1.1405... > -~ (6.12)

interval (a ¢2™2,q ™24 7'] ¢ UJJ-;(I)(xj,xjH], with xo = ae?™ and x| =
x; + J/X;. Using (6.11) in each subinterval (x;,x;1] and the fact that F is
decreasing on [0, A™1] we obtain

log p 5 log(p/a) <H logx; ~rlog(x;/a)\\ 4%
Z ﬁF( 2nA )_JZ:(:)(\/X_J-JF( Zn{A ))long

1
1<2Rt <A~

<4F(1) + — Z (logz(;’A/“)) Y

10g(f/a)
Fly + — [c() S ) ‘ (6.13)

= 4F (1) +4ﬁ(2nA)f # F(y)e*™ ™ dy
1
R AT
:4F(1)+4\/5(27rA)[ F(y)dy+4\/_(27rA)f F(y) 23"'”Ay—l)dy
1

A 1
F()+ 4\/5(2nA)(f ﬁ(y)dy) + 4a An A E(H(A = 1),
1

where we have used the basic estimate e* — 1 < 2x, for x < 1, in the last passage.
We treat the other interval in a similar way, covering [a e 272%™ q =274
U Zolxj+1, %)), with xo = ae > and x; = xj41 + \/Xj11. Using (6.11) in
each subinterval [x 41, x;) and the fact that Fis increasing on [-A7!, 0] we obtain

) log p ﬁ(log(p/a)) - Z_: (10gx1+1 A(IOg(x]/a)))‘K/W

—at<lgese g VP 21 A NETES) 2w A log x ;41
a3 log(x;/a)
S4F (- AR
\/m =t 2w A )
N 4 2w A X0 /] {
<4F(-1)+ = f F(M) dt (6.14)
&0 Jey 2w A
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~ _1 ~
< 4F(—1) 4 4+/a >4 (zm)] F(y)dy
_ =1
-1
<4F(—1) + 4ﬁ(2nA)f F(y)dy + 84a @nA)? F(—1)(A™! —1).
——1

Combining (6.13) and (6.14) we conclude that

Z log p ﬁ(log(p/a))
2 A
1<| g2/ )1 VP

<8F(1) + 4\/5(2m)[[ - F(y)dy +24/a QrA? F(H(A™' = 1)
" (6.15)

< 0.886 + 4+/a (27A) F(y)dy.
[-1,1]¢

Here we have used the estimate Sﬁ(l) < 0.885 along with the inequalities ¢ < 4x and
2102
log(1+y) < yfory > 0in(5.7) and (5.8) to see that \/a 27 A)? < C"%" <1077

forc < 1and x > 4-10'8 and thus that 24./a (27A)? F(1)(A~!' — 1) < 0.001.
Since supp(F) C [-A7L, A7 C [-2.2] and |F(y)| < 7mA/4 < 1, the
contribution from the prime powers n = pk with k > 2 to the sum over # in (6.5) is

_ log p
Yy oy o

k22 ae—4]’t’A 5n§ae4”A

n=pk
log(ae™*"*) Y e
N = L+ ak (e4m8/k — o ~imdlky),
IV ae—AtA ];2 ( )
k<log(a et )/ log2

where we used a trivial estimate for the total number of kth powers that can lie in the
interval [ae~*"2 ae*2]. This is readily bounded by

< M(zﬁ(EZnA . e—ZHA))M
2Jae—*7h log2
B log(ae™*"2) l()g(ae4”A)( 2D g2
o ae 278 log?2 ¢
| —4mAy | 4rA 2(1 1)3
_ loglae ™ ) logae ™) | rziogx < 20EETY _p001.  (6.16)

log2 /a

6.3. Finishing the proof. Note that ae™2"2/* > x/2 > 2.10'® and thus

ae 2mA Jog2

3 ,e2"BA/A\5/2 0.001
M) =

2 a - 2x
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Combining this estimate with (6.5), (6.9), (6.15), and (6.16), (after multiplying both
sides by 2m) we derive that

Ja 2rA) < log (2 )||F||1 + 4/a rA) F(y)dy + 0.958.
11

Rearranging and dividing by | F||; = A||H ||; = 0.83337 ... we obtain (with J(F')
defined in (6.12))

1
J(F) /@ (2nA) < log (—) ¥ 1.16. 6.17)
2 A
Sincea > x,1 > ¢ > 5, andlog(1 +y) >y — - fory > (, we derive from (5.7)
and (5.8) that
& cZlog?x ¢
2nA) > —logx — > —logx —0.001.
Va @) = Slogx = 2% = Dlogx
Using the inequalities ¢ > 3 1 and log(1 + y) > ylog2, which holds for0 < y < 1,
it follows that 2 A = 1 log ( l(’?’x) a k’g 2 l”gx and therefore
1 2 Wfx
SR | (
log(2rrA) =06 clog2logx)
1 2 1
= 5 log x —log ( log(4 - 1018)) 5 log x — 2.

Inserting these estimates into (6.17), we derive that

cJ(F) | _ 1 | 1
0 —logx——.
gx = 35log 5
This is not possible if ¢ = J—(lF—) < E Hence there must be a prime in the interval

[x,x + 22./x log x].
7. Concluding remarks

There are several related extremal problems in Fourier analysis that could be the
sources of further investigation. We briefly discuss a few of these here.

7.1. Multidimensional analogues. The corresponding versions of the extremal prob-
lems (1.1)—(1.4) in R4 arise as natural generalizations. The compact interval
[—1, 1] C R could be replaced by any convex, compact, and symmetric set K C R?,
for instance. Of those, the most basic ones are certainly the cube Q = [—1,1]¢ and
the unit Euclidean ball B = {x € R?;|x| < 1}. The same ideas used here could be
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applied to show the existence of extremizers in this general situation. By averaging
over the group of symmetries of K, one can show that extremizers admit, without loss
of generality, these symmetries. Note that a crucial step in our proof of the uniqueness
of extremizers in Section 3 (for the bandlimited problem (1.2)) was the ability to write
a nonnegative function with Fourier transform supported in 2K as the square of a
function whose Fourier transform is supported in K. In general, this decomposition is
not available for any given K, but in the case of the unit ball B, with respect to radial
functions, this statement holds. This was proved, for instance, in [9, 28], exploring
the connection with the theory of Hilbert spaces of entire functions of L. de Branges.
Hence, in dimension d > 1 and for K = B, one has indeed the uniqueness of radial
extremizers (up to multiplication by a complex scalar) for the multidimensional
version of (1.2). Letting €4 x(A) denote the sharp constant in the multidimensional
version of (1.1)—(1.2), one can show that €; o (0c0) = ‘€(oo)d , and a tensor product
of one-dimensional extremizers is an extremizer for the multivariable problem. In the
general case, one has €4 g(o0) < vol(K). A lower bound for €4 g (c0) may come,
for instance, from the solution of the “one-delta problem for K, which is the same
problem as (1.2) with the additional constraint that /* > 0. Such problem is also
vastly open, having been solved only in a few particular cases such as the cube Q and
the ball B (see the discussion in [5,22,32]). It would be interesting to have refined
upper and lower bounds for all of these extremal problems, as we have here in our
Theorems 1.1 and 1.2.

7.2. Sphere packing. The following extremal problem in Fourier analysis was
proposed by Cohn and Elkies [12] in connection to the sphere packing problem. Find

F(O
C = sup ©

F eé:;,L F (O)
F#0

(7.1)

where the supremum is taken over the class 8; of real-valued, continuous, and
integrable functions F:R¢ — R with F > 0 and F(y) < 0 for |y| > 1. This
is the multidimensional analogue of our extremal problem (1.4) with the additional
constraint that ¥ > (. By averaging over the group of rotations SO(d) we may
restrict the search to radial functions and by following the outline of §2.3 and §2.4
we obtain the next result.?

Proposition 7.1. There exists a radial extremizer for (7.1).

As a matter of fact, Cohn and Elkies [12] proposed this optimization problem over
the more restrictive class of admissible functions F: R¢ — R such that | F| and | F|
are bounded above by constant times (1 + |x|)™¢~% for some § > 0. Standard

2This result has been previously communicated by E. Carneiro and Alvaro A. Gomez (with a slightly
different proof than the one presented here), as part of the M.Sc. thesis of the latter under the supervision
of the former.
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approximation arguments show that the sharp constant over this restricted class is
the same C in (7.1), although extremizers of (7.1), in principle, need not have this
particular decay. In addition to dimension d = 1, the value of the sharp constant
in (7.1) is known only in dimensions d = 8 and 24 (see [43] and [13], respectively).
The extremizers found by Viazovska in [43] and by Cohn, Kumar, Miller, Radchenko,
and Viazovska in [13] are indeed radial Schwartz functions.
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