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Asymptotics of analytic torsion for hyperbolic three-manifolds

Jean Raimbault

Abstract. We prove that for certain sequences of hyperbolic three-manifolds with cusps which
converge to hyperbolic three-space in a weak (“Benjamini—Schramm”) sense and certain
coeflicient systems the regularised analytic torsion approximates the L?-torsion of the universal
COVeT.

We also prove an asymptotic equality between the former and the Reidemeister torsion of
the truncated manifolds.
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1. Introduction

1.1. Integral homology of congruence manifolds. In [4] Bergeron and Venkatesh
have shown that for odd m, in sequences of compact arithmetic hyperbolic m-mani-
folds which converge to H™ the homological torsion has an exponential growth
for certain local systems. That is, there exists Q-representations of SO(m, 1) on a
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space V such that if " is a uniform arithmetic lattice in this Q-form of SO(m, 1),
preserving a lattice Vz in V and I',, a sequence of finite-index subgroups of I" such
that the injectivity radius of the M,, = I',\IH" goes to infinity we have that

102 [H (T, V2 iors
liminf Y og | Hp(Un- V2hool _ (1.1)

n—o00 vol Mn
r=1;...m—1
m—1

p="5 (mod 2)

In [1] it is essentially proven that the limit (1.1) holds for any sequence of torsion-free
congruence subgroups of a uniform arithmetic lattice (see [34, 6.1] for a detailed
argument). Moreover, when m = 3 elementary arguments show that one can deduce
from Bergeron and Venkatesh’s proof an actual limit for the left-hand side, that is

im | H (D Vg) |1/ Yo Mn — ¢ (1.2)

where ¢ > 1 depends only on V. The present paper, originating from the author’s
Ph.D. thesis [34], aims at providing tools to prove an analogue of (1.2) for nonuniform
lattices in SO(3,1) = SL,(C). Weaker results (generalisations of (1.1)) were
previously obtained by J. Pfaff in [32] and by the author in [34, Section 6.5]. We
refer to the introduction of [35] for more details and further questions, and to [4,12],
and |37] for information on the number-theoretical significance of torsion homology
of congruence subgroups.

1.2. Analytic torsion and Cheeger-Miiller equality. The main tools used in [4]
are the Ray—Singer analytic torsion 7(M,; V) and the Cheeger—Miiller theorem.
Bergeron and Venkatesh prove that the limit

o logT(My; V)
llm =
n—00 vol M,

1@ ) (1.3)

holds, where the right-hand side (V) is the L2-torsion associated to the
representation (p, V). In the case m = 3, we have that SO(3, 1) is isogenous to
G = SL,(C), and the real representations of the latter are given by its natural action
on the spaces

V(I’l], I’lz) = Sym”’ ((Cz) ® Sym”z(@z), ni,ny €N

(where C2 means that the action of SL,(C) is by conjugate matrices). For V =
V(ni,n,) Bergeron and Venkatesh compute the numerical value of 1@ to be:

—1
tDW) = ——((n1 +n2+2)%— ng —ns)?
48
Tt 3|n1 —nzl(nl +ny + 2)(7’!1 + ny + 2— [n1 —n2|)). (].4)
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On the other hand, W. Miiller’s generalisation [26] of the Cheeger—M iiller theorem
(a more general result was proven independently by J.M. Bismut and W. Zhang in [7])
yields that

m
T(Mn; V) = l_[ lH[)(Fﬂ1 VZ)I()YS|(_l)p
=0

from which (1.1) follows at once since the L?-torsion t(z)(V) is positive for m = 3
(mod 4) and negative for m = 1 (mod 4); to deduce (1.2) when m = 3 one needs
to study independently the torsion in Hy and H,. One of the issues in [1] is
then to prove that (1.3) holds under weaker conditions than those of [4] and that
these conditions are satisfied by sequences of congruence subgroups. Following the
work of 1. Benjamini and O. Schramm on graphs the notion of Benjamini—Schramm
convergence of Riemannian manifolds is defined there (see 2.6 below) and it is then
a relatively easy matter to show that the proofs of [4] extend to this setting. Note that
the first step of the proof outlined above is purely differential-geometric and does not
use the arithmeticity of the manifolds.

1.3. Approximation for regularised analytic torsion. The first goal of the present
paper is to define an analytic torsion for non-compact, finite-volume hyperbolic three-
manifolds and to prove a generalisation of (1.3) in this context. The definition of the
regularised analytic torsion Tg(Mp,; V') is based on the Selberg trace formula; it is
essentially the same torsion as that defined in [28] (but see 1.7.3 for some comments
on the differences). The definition depends on a choice of parametrisations (which
we call “height functions” on M,; see 2.2) for the cusps of M, as T; x [1, +o0[
where the 7 are flat tori. Let M, be a sequence of finite-volume hyperbolic three-
manifolds; the conditions we need to prove approximation of the L2-torsion are as
follows:

e Geometric conditions:

(1) The sequence (M,) is Benjamini—-Schramm convergent to H? (see 2.6);

(2) We suppose that there is a § > 0 such that sys(M,) (the smallest length of a
closed geodesic on M,,) is larger than 6 for all n.

(3) Some kind of regularity for the cusps: in this introduction we will take this to
mean that the sequence be cusp-uniform (i.e. the cross-sections 7; of the cusps
of all lie in a fixed compact subset of the set of Euclidean tori up to similarity),
but this can be relaxed a little (see (4.19) in the statement of Theorem 4.5).

* Analytic assumptions:

(4) Asin [4], we need to use coefficients systems that induce a uniform spectral gap
for all hyperbolic manifolds (such coefficients systems are called strongly acyclic;
V(ny,n3) is so exactly when ny # nj: see Proposition 3.1 or [4, Lemma 4.1]);
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(5) In addition, to deal with the continuous spectrum we need to assume that the
derivatives of the intertwining operators are well-behaved near the origin, namely
that their trace be an o(vol M) uniformly in a neighbourhood of 0.

* A normalisation condition for the height functions (we emphasise that this is really
not of the same nature as the other conditions and should be seen as specifying the
range of height functions for which we can expect approximation results):

(6) We suppose that }_ ; |log(inj(7}))| = o(vol My,).

* We need also to choose lifts to SL,(C) of the holonomies 71 (M,) — PSL,(C);
while our results are valid without assumptions on these (see 1.7.1), in this paper we
will work under the following hypothesis

(7) The lifts of all peripheral elements (i.e. elements in the image of maps 7((7;) —
1 (M)) are unipotent (equivalently the image of w1 (M) in SL,(C) does not
contain an element with trace —2).

Our first main result is Theorem 5.1, which can be stated as follows.

Theorem A. Let V' be a strongly acyclic representation of G = SL,(C) and 'y, as
sequence of torsion-free lattices in G. We suppose that the manifolds M, = T, \H?>
are endowed with height functions and satisfy (1), (2), (3), (5) and (6), and that T,
satisfies (7). Then we have

. logTr(M,: V)
lim

— @
= (V). 1.5
B —y T (V) (L.3)

Note that it is easily shown that for any given finite-volume hyperbolic three—
orbifold there are sequences of finite covers which satisfy the assumptions (1) and (3)
above (see Proposition 2.3), but we will not check that (5) holds for them in the
present paper (it will be proven to hold for sequences of congruence covers of
arithmetic orbifolds in [35]). Conditions (5), (6) (unlike the others) depend on the
choice of height functions on the M,,; however whether (5) holds or not does not
depend on this choice in the range of height functions such that (6) holds (see the
remark after Theorem 5.1). Finally, if we consider a sequence of finite covers M, of a
fixed orbifold M then the natural height functions to use on the M, are the pull-back
of those on M, and it is very easily seen that they satisty (6) (see Lemma 4.7).

Let us say a few more informal words about the necessity of these conditions:
(1) is necessary (there are sequences of covers where one can see that the torsion
has an exponential growth with a different rate); (3) may or may not be (there are
sequences of congruence covers which do not satisfy it, but we do not know whether
approximation for the analytic torsion holds in these); (2) is very likely necessary (one
can make the torsion vary arbitrarily by doing Dehn surgeries on a given manifold).
Condition (5) was shown by J. Pfaff and W. Miiller to always hold for sequences of
covers (cf. [29], whose prepublication was posterior to the first submission of the
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present paper), but in general not much more is known; (4) is likely not necessary
for covers, but it is in general (see [9]). Of course (6) is necessary since for a given
manifold the regularised analytic torsion can take arbitrarily large values if one does
not put limitations on the height functions one wants to consider.

1.4. An asymptotic Cheeger—Miiller equality. The next step in adapting Bergeron
and Venkatesh’s argument to the case of non-compact manifolds is to relate the
regularised analytic torsion to a combinatorial, or Reidemeister torsion (the latter is
named after K. Reidemeister who was one of the first to study this kind of invariants,
for somewhat different purposes). In this paper we do not define such a torsion in
an intrinsic way for a non-compact hyperbolic manifold M of finite volume (this is
carried out in [12], see also [35]); we will instead use the truncated manifold MY,
which are obtained by “cutting off the cusps” of M using a parameter Y (see (2.3) for
the definition). Thus MY is a compact manifold with boundary, for which analytic
and Reidemeister torsion are well-defined and the Cheeger—Miiller equality is known;
see 6.1. Our second main result is then the following (Theorem 6.2).

Theorem B. Suppose that M,, and V are as in the statement of the previous theorem
and that the sequence (M,,) satisfies the additional condition that

B, & vol M,,
" log(vol M,)20

(where h,, is the number of cusps of M, ), then there exists a sequence Y" € [1, 4+-o0[™
such that we have

[ Jog TR(My: V) — log zan(M,) " V)
1im
n—00 vol M,

= 0. (1.6)

An explicit formula for Y” is given in the statement of Theorem 6.1. Note that
the sequences constructed in Proposition 2.3 satisfy also the stronger assumption in
this theorem.

1.5. Betti numbers. The behaviour of the characteristic 0 homology in BS-converg-
ent sequences of non-compact hyperbolic manifolds is not dealt with in [1]. For
three-manifolds we prove the following result.

Proposition C. Let M,, be a sequence of finite-volume hyperbolic three-manifolds
and suppose that M,, BS-converges to H3. Then we have for p = 1,2

bp(Mp)

vol(My) n—oc

This limit is well known for exhaustive sequences of covers as follows for example
from M. Farber’s generalisation [15] of Liick’s theorem [21] (applied to the manifolds
truncated at 1).
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We will give two proofs of this: one which uses the techniques in this paper,
and which consequently needs the assumption that the sequence M, satisfies the
condition (4.19), and then a proof in all generality using Thurston’s hyperbolic Dehn
surgery and the results of [1, Section 9]. The second proof does not generalise to
higher dimensions but the first one does (after modifying (4.19) adequately). We will
perhaps return to this in the broader setting of (Q-rank one lattices of semisimple real
Lie groups in the future.

1.6. Outline of the proofs.

1.6.1. Convergence of finite-volume manifolds, regularised traces and Betti num-
bers. In[1, Definition 1.1] the notion of Benjamini—Schramm convergence of locally
symmetric spaces to their universal cover is introduced, and a good part of the paper
studies the implications of this notion for compact manifolds. In this work we extend
some of these results to nonuniform lattices in SL,(C) (see Section 2.6). Let us
remind the reader that Benjamini—Schramm convergence (to the universal cover H?)
is an interpolation between the weaker pointed Gromov—Hausdorfl' convergence
and the stronger condition that the global injectivity radius goes to infinity. It is
conveniently summarised by saying that “the injectivity radius goes to infinity at
almost all points”; formally, for a sequence M, of finite-volume hyperbolic three-
manifolds to be convergent to H? we require that for all R > 0 the sequence
vol{x € M), : inj, M,, < R} be an o(vol My,).

The regularised trace Trg(K) of an automorphic kernel K on a finite-volume
manifold M is defined by taking either side of a very unrefined form of the trace
formula for K, of which we give a mostly self-contained proof — minus the theory
of Eisenstein series, which we review in 3.2 — in Section 4. The study of the
geometric side in Benjamini—Schramm convergent sequences is not very hard and
results in Theorem 4.5; note however that we need an additional condition on the
geometry of the cusps to prove the convergence of the unipotent part. We prove,
using comparisons of traces with the truncated manifolds, that the Betti numbers
in a BS-convergent sequence are sublinear in the volume in Proposition 9.1 (we
cannot deduce it directly from Theorem 4.5 since we did not manage to control the
non-discrete part of the spectral side of the trace formula in general). On the other
hand, to study Betti numbers in dimension three one can bypass all this by using
[1, Theorem 1.8] and hyperbolic Dehn surgery.

1.6.2. Analytic torsions. Our definition of analytic torsion for cusped manifolds is
the same as in [30] or [28] (we could have just quoted the results of the latter but we
use a slightly different method to prove the asymptotic expansion of the heat kernel
which is better suited to the rest of this paper). Let M be a finite-volume manifold
and K/ its heat kernel on p-forms (we will suppose here that the coefficients are in
a strongly acyclic bundle, but with more work one can see that the definition carries
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over to the general case; see [28, 30]). One defines the analytic torsion as in the
compact case, by putting:

- d{ 1 [P ooy dt
Tr(M) ng(—l)pa(ﬁj(; Trr(K?)t 7)szo+ft(

which does not depend on #z, > (. The justification of this definition uses
meromorphic continuation and is highly nontrivial, see 5 below or [28] for the details
needed to ensure the convergence of the integrals and their analytic continuation.
In a sequence of manifolds we study the first summand using the geometric side of
the trace formula and the second one using the spectral side, as in [4, Section 4].
The spectral side is dealt with using the uniform spectral gap property established
there; however the part coming from the continuous spectrum causes some additional
difficulty which explains the conditionality of our approximation on the hypothesis (5)
on intertwining operators which we were not able to check for general sequences. The
study of the geometric side is actually quite simple once the asymptotic expansion
for K7 att — 0 has been established (see Proposition 5.4) using our unrefined trace
formula. We remark that in [34] we dealt with these problems in the more general
context of finite-volume hyperbolic good orbifolds — the elliptic terms in the trace
formula do not cause any real additional difficulty.

We also show that under hypotheses (very) slightly more restrictive as for the
approximation of analytic torsion there is an asymptotic equality between absolute
analytic torsion for the truncated manifold M ¥ and regularised analytic torsion for
the complete manifold, cf. Theorem 6.1 below. As in the proof of the approximation
result we separate into small and large times. We deal with the small-time part
in Section 7, where we use estimates on the integral of automorphic kernels over
the truncated manifolds and a result of W. Liick and T. Schick [23]; for this part we
also need to extend the well known Gaussian bound for the heat kernel (proven for
example in [36, Section 5]) to the case of the universal covers of truncated manifolds;
we explain how to adapt the arguments from loc. cit. in Appendix A. The large times
are taken care of in Section 8; the main point in the proof is to control the spectral gap
for the truncated manifolds (Proposition 8.2) and this is achieved using techniques
inspired from F. Calegari and A. Venkatesh [12, Chapter 6].

o dt
TrR(Kf’)T,

)

1.6.3. Asymptotic Cheeger—Miiller theorem and homology growth. In contrast
with the compact case, for our coeflicient systems there is usually a nontrivial
homology in characteristic (. Thus, to state and hopefully prove a Cheeger—Miiller-
type equality one needs to define a suitable Reidemeister torsion. This is done by
F. Calegari and A. Venkatesh in [12], in a manner similar to the regularisation for
traces of integral operators. Thus a natural way to prove such an equality would be
to apply the Cheeger—Miiller equality for manifolds with boundary [11,20] to the
truncated manifolds and to compare both sides with their regularised analogue.
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Here we deal only with the first part of this program, we refer to [35] for the
applications of the results in the present paper to congruence subgroups and their
homology growth. From the asymptotic equality of analytic torsions (Theorem 6.1)
it is not hard to deduce an asymptotic equality with the absolute Reidemeister torsion
of the truncated manifold using a recent generalisation by J. Briining and X. Ma of
the Cheeger—Miiller theorem; see Theorem 6.2.

1.7. Remarks.

1.7.1. Non-unipotent holonomies. In the case where condition (vii) on the holo-
nomies of peripheral subgroups is not satisfied both Theorem A and B still hold. To
prove this one must consider two cases depending on whether n, — n; is even or
odd. In the first case the representation SL,(C) — SL(V(ny,n3)) factors through
PSL,(C) and it makes no difference whether or not (vii) holds. When n; — n, is
odd the heat kernels become integrable in the “bad” cusps whose fundamental group
has an holonomy containing elements of trace —2 (note that if all cusps are such, the
heat kernel is in fact trace-class). The parabolic summand for the trace formula in
Theorem 4.4 changes a bit (see [34, 3.5]), but the estimates used all along the proofs
in 5.4.3 and 7 can still be used. The proof of Proposition 8.2 still holds since in the
bad cusps the eigenfunctions decay exponentially.

1.7.2. Related recent results. In addition to the papers [4] and [1] from which this
work originates there have been other papers dealing with similar problems. There
has been a number of papers studying the asymptotic behaviour of analytic torsion of
a compact manifold as the coeflicient systems varies. This was done independently
and concurrently, with different methods, on the one hand by W. Miiller and J. Pfaff
(starting with [27]) and on the other, in a more general setting, by J.M. Bismut, X. Ma
and W.Zhang [6]. This has been extended to the noncompact setting (based on
the work of Miiller—Pfaff) by P. Menal-Ferrer and J. Porti [25] and by W. Miiller and
J. Pfaft [28].

Cheeger-Miiller type equalities for manifolds with cusps (and more general
singularities) have attracted a lot of interest recently. Let use cite some papers
which are close to our topic here: [2,31,33].

1.7.3. Analytic torsion here and in [28]. Though we use the same definition of
analytic torsion as W. Miiller and J. Pfaff do in [28], there is a slight difference in
setting between their paper and ours, which we will explain here. In the present work,
one starts from an hyperbolic manifold M and assign it an arbitrary parametrisation
of the cuspidal components of its thin part; if M has finite hyperbolic volume we use
these functions to derive a trace formula which is then used to define the regularised
analytic torsion. In[28], one starts from a lattice I" in SL, (C), chooses representatives
for the conjugacy classes of parabolics and then defines height functions on the
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quotient by choosing a point in H? (the fixed point of SU(2)) and assigning to it
height 1 for all the parabolics. Then [28] use existing forms of the trace formula to
define the regularised analytic torsion, which is the same as the one we define here
using these particular height functions.

1.7.4. About [34]. As noted above, in the Ph.D. thesis of the author some of the
problems here were tackled in greater generality, rendering assumption (vii)
unnecessary and also dealing with orbifolds. However, there are some very
embarrassing (to the author) and serious gaps in this manuscript (especially in a
previous version of Proposition 8.2), which nevertheless do not affect the validity of
the results we quote (and which are filled in the present work).

Acknowledgements. A first version of this paper was written while I benefited from
a doctoral grant from the Université Pierre et Marie Curie (Paris 6). The present
version was written while I was a post-doc at the Max-Planck Institut fiir Mathematik
in Bonn.

The reading of a preliminary version of [12] has been extremely profitable for
the writing of this paper and I want to thank the authors for allowing me to read
it.  During the redaction I became more and more permeated by the point of
view of Benjamini—Schramm convergence introduced in the joint work (with Miklos
Abért, Nicolas Bergeron, lan Biringer, Tsachik Gelander, Nikolay Nikolov and Iddo
Samet) [ 1]. Ialso benefited greatly from a week spent in Bonn with Werner Miiller and
Jonathan Pfaff, whose comments on previous versions of this paper were especially
useful and thorough, and who pointed out a serious gap in a previous approach
to Proposition 8.1. A pair of anonymous referees provided helpful suggestions for
improving the presentation and spotted numerous mistakes. Last but not least I want
to thank my Ph.D. advisor, Nicolas Bergeron, under whose supervision this work was
conceived.

2. Hyperbolic manifolds and Benjamini—-Schramm convergence

Let G = SL,(C), so that K = SU(2) is a maximal compact subgroup and the

Riemannian symmetric space G/ K is isometric to hyperbolic three—space H?>, which

we will identify here with the Poincaré half-space Cx]0, +oo[ endowed with the

dzafi—l!—dy2
y

Riemannian metric given by in coordinates (z, y).

2.1. Height functions on H3. Define the following subgroups of G:

_{fa b - B 1 b
= (8 B)cwccmnech nam|(t f)rec)
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a 0 - et? 0
Aoo:{(o a_l),aeRJr}, Moo:{(o e_m),ee[o,zn]}.

The proper parabolic subgroups of G are the conjugates of Ps.. Let P = gPsg™
be such a subgroup and N, A, M the conjugates of Ny, Axo, Moo by g. We call
any function that is conjugated by g to the function (4 %) > a? on A a norm
on A. We have the Langlands decomposition P = NAM = M AN and the Iwasawa
decomposition G = NAK. A height function on H? at P is then defined to be any
function of the form gK +> |a| where g = nak € NAK and | - | is any norm on A.
(as an illuminating example take P = P4, then the height functions at P are of the
form (z, y) >ty fort € RY).

The level sets of a height function at P are called horospheres through P; they
are isometric to the Euclidean plane C and are acted upon simply transitively by
the subgroup N. Let yp be a height function at P; we may identify N with
{yp = 1} = C and we denote by |n| the induced length function on N. If we
normalise the Haar measure dn on N so that it is the pullback of the Lebesgue
measure on C, then the volume form of H? is equal to dndyp/y3. For x € H? the
quotient |n|/yp(x) does not depend on the choice of yp and we have the following
estimate for the translation length of unipotent elements.

1

Lemma 2.1. There exists a function £: [0, +00) — [0, +00) such that

d(x,nx):e( id ) @2.1)
yp(x)

for all parabolics P = MAN, n € N and x € H3. Moreover £(r) > log(1 + r).

Proof. We give a very awkward but very explicit proof. Obviously it suffices to prove
the lemma for P = Poo; forn = (} 3) € Noo we may take |n| = |z|. Let x € H?,
¥ = Yoo(x). The formula [3, Corollaire A.5.8] yields

B |n|? n|?
d(x’”")—z(“’g(‘*\/W)“"g(“\/m)) .

so that d(x,nx) = £(|n|/y) where we put

t(r) = 2(]0g (] + (1 + (r/Z)_Z)_%) —log (] =] = (i‘/2)_2)_%))_

It remains to check that £(r) > log(1 + r): the first summand is in [0, log(2)], and
besides for ¢ € [0, +00) one has (1 +12)71/2 > (1 +¢)™! so that

—log (1= (1 + 1272 > —log (1 — (1 +7H7") = log(1 +1).

from which the conclusion follows at once. []
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2.2. Height functions on hyperbolic three-manifolds. Let I" be a lattice in G
(i.e. T is discrete and I'\ G carries a finite right-G-invariant Borel measure). Given
a parabolic subgroup P we put 'p = I' N P and we say that P is I'-rational if ['p
contains a subgroup isomorphic to Z? (equivalently ' N N is cocompact in N).
Then I' is cocompact if and only if there are no I'-rational parabolics (equivalently
if I" contains no unipotent elements). In any case there are finitely many ["-conjugacy
classes of I'-rational parabolics. We may thus choose representatives Py, ..., Py for
these classes and height functions yp ,..., yp, at each one of then, and define a
function y; on H? by

-1
i(x) = max . X),
yi(x) yei, yp; (¥ x)

which we call a ['-invariant height function (and which is, indeed, I'-invariant). If I"
is torsion-free let M be the manifold I'\H? and for ¥ € (0, +00)" put:

MY ={xeM:Vj=1,... ,hwehave y;(x) < Y,}. (2.3)

Then for Y large enough (depending on the choice of the original height
functions yp,) M Y is a compact manifold with boundary a union of flat tori 77,
j=1,...,h. Theends {x € M, y;(x) > Y;} are isometric to the warped products
Tj x (Y}, +00) with the metrics (dx* + dy%)/y7 where d.x? is the euclidean metric
on T'j. In this paper we will work under the following convention: we always suppose
that the height functions are normalised so that the maps I'p \{yp, > 1} — M are
embeddings (in particular, the horospheres of height one are disjoint).

Finally, if I'" C T is a finite-index subgroup the I"-invariant height functions are
I-invariant; when dealing with a sequence of finite covers of a given manifold (or
orbifold) we will always suppose that the height functions on the covers come from
those of the covered manifold.

2.3. Euclidean lattices. Let A be a lattice in C; we denote by vol(A) its covolume
(i.e. the volume of a fundamental parallelogram) and define

a1 (A) = min{|v| : v € A,v # 0}
and for any v; € A such that |v;| = a1 (A)
az(A) = min{|v| ;v € A, v & Zvy}.

Then the ratio a2 (A) /a1 (A) depends only on A up to similarity. We denote by N (1)
the number of points in A of absolute value less than r and

Na(r) = Na(r) =1 =[{v e A\{0} : [v] < ri.

We will use N * rather than N further on; moreover we get a cleaner bound in the
lemma below. The following estimate for the counting function was proven by Gauss;
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we include a proof only for the reader’s convenience and because we need a precise

statement with regard to the constants.

Lemma 2.2. Define:
3

r
E = Ni(r) — ——.
Alr) A(r) vol(A)
For any lattice A C C we have the estimate
r a2 (A
|EA(r)] < | i) 2.4)

Otl(/\) O[](A)

where the constant does not depend on A.

Proof. First we consider r < aj(A) so that Ex(r) = mr2/vol(A). By
Minkowski’s First theorem, if wr? > 4vol(A) then A contains a nonzero vector
of length < r, which implies that the quotient vol(A)/ay(A)? > m/4. Thus
En(r) < (r/ai(A))? < r/ai(A).

Now suppose that » > «;(A). We can choose a fundamental parallelogram I1
for A whose diameter d is < a»(A) and by Minkowski’s Second theorem we have
vol(A) =< aa(A)ai(A). Forr > d let zy,. .., z, be all the points in A such that
|zk| < r, then we have that B(0,r —d) C (J,zx + 1T C B(0,r + d) so that
w(r —d)? < vol(IDn < n(r + d)?. It follows that:

wre d? 2rd oz (A)? r
Na(r) — < + « W)
vol(A) vol(A)  vol(A) vol(A)  a;(A)
@ MY iy
a1(A) o (A)
which finishes the proof of (2.4). L]

We say that a set S of euclidean lattices is uniform if there exists a C > 0 such
that

VA €S, vol(A) < Cua;(A)>%. (2.5)

By Mabhler’s criterion this is equivalent to asking that when we normalise the lattices
in S so that they are unimodular they form a relatively compact setin SL,(IR)/SL,(Z).
If A belongs to a uniform set S then the proof above yields that

r

|[EA(r)] < N

(2.6)

with a constant depending only on §.
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2.4. Cusp-uniform sequences. If P is a parabolic subgroup and yp is a height
function at P then we may identify the unipotent radical N of P with the horosphere
yp = 1 and the conformal structure on N thus obtained does not depend on the
chosen yp. Since the uniformity of a set only depends on the conformal structures
of its elements we may define a cusp-uniform sequence as a sequence of lattices
[, C G such that the set

{(I'y)p, n > 1, P is a [',-rational parabolic}

is a uniform set of euclidean lattices. The following result gives a source of examples
satisfying some the geometrical conditions of our main results.

Proposition 2.3. Let I' C G be a lattice, then there exists a cusp-uniform sequence
'y C ' which exhausts T and satisfies in addition that h, < (vol MH)I_S for
some § > 0.

Proof. It is well known that up to conjugation we may assume I' C SL,(F') for
some number field F. Let OF be the ring of integers of F'; as ' is finitely generated
there exists an @ € @ such that I' C SLy(@p[a—']). For an ideal 7 C Of
coprime to ¢ we may define I'(J) as the set of matrices in I" congruent to the identity
modulo J. Then the sequence of I'(n) for n € N coprime to a is clearly exhaustive
and we claim that it is cusp-uniform. Indeed, if P is a I'-rational parabolic we have
I'p =1+ 7ZX, 4+ ZX> for some X, X, in the Lie algebra sl (@ f[a~']). Let J be
the ideal in @ [a~!] generated by the entries of X1 and X5 and m the unique positive
rational integer such that 3 N Z = m#Z. Put A,, = nl'p; then the A, are a uniform
family of lattices in N and we have A, C I'(n)p C m~'A,, so that {I'(n)p,n} is
uniform as well. Since the subgroups I'(n) are normal in I" we need only consider a
finite number of P and the claim of cusp-uniformity follows.
For all I'-rational parabolic P we have

[Cp:T(n)p] > C[A1: An] > Cn?.

On the other hand, if Pq,..., Py, are representants for the conjugacy classes of
["(n)-rational parabolics we have

hp
[ :T(m)] =) [p, : T(n)p;] > Chyn®
j=1

We have finally [ : T'(n)] < |SL2(Of/n)| < n3FQl and it follows that n? >
[ : I'(n)]° forsome § > 0 (depending on F') sothat we get h,, < [ : T'(n)]'~%. [

2.5. Some counting lemmas in hyperbolic space. For this subsection we always
denote by & the Margulis constant for H>. If I' is a finitely generated, discrete
subgroup of G we let sys(I") denote the systole of I'\IH?, i.e. the smallest translation
length of a loxodromic element in I".
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2.5.1. Orbits. The following lemma is well known in the case of groups containing
no unipotent isometries, but needs a slight modification to incorporate the general
situation.

Lemma 2.4. There is an absolute constant ¢ > O such that the following holds: let T’
be a torsion-free discrete subgroup in G. Let x € H3 and let A be the subgroup
of 1" generated by the elements in 1" which commute with a unipotent n € " such that
d(x,nx) < e (thus A is a free abelian group of rank < 2). Then there is a C > 0
depending only on sys(I") such that for all r > 0 we have:

{y e T — A :d(x,yx) <r}| < Ce. (2.7)

This implies in particular the following: for a discrete subgroup I' in G we let I'j«
be the set of loxodromic elements in I and for any x € H? and r > 0 put

J\fr(x, r) = |{V € Fl())h d('xa Vx) E r}| (28)
Then there is a constant C depending only on the systole of M such that:
Nr(x,r) < Ce’. (2.9)

Proof of Lemma 2.4. We define:
|
§=08(x,r) = 3 min(d(yx,y'x) :y,y € T — A, d(x,yx), d(x,y'x) <r).

The balls B(yx,d8) fory € I' — A, d(x, yx) < r are pairwise disjoint. Moreover
their union is contained in the ball B(x,r + §). It follows that the right-hand side
in (2.7) is smaller than V(r + §)V(8)~! where V(R) denote the volume of a ball of
radius R in H?. We have r¢ < V(r) < e for an absolute cq and thus the lemma
follows from the claim that for any x € H? we have § > Ce™" for some C > 0
depending only on sys(I").

To prove this we may suppose that I'x lies in a noncompact component of the
e-thin part M<, of M = T'\H? (otherwise § > min(e, sys(I"))). We let H be
the horosphere preserved by A (defined as in the statement) lifting the component
of IM, closest to I'x, and we claim that §(x,r) = +oo for all r < d(x, H) and
§(x,r) > e 4&H) for p > d(x, H), from which the original claim immediately
follows. To prove the newest claim we first observe that any y € I' — A must move x
outside of the horoball bounded by H, hence the first part of the claim. Now the
Euclidean displacement of an element of A on the horosphere through x is at least
e~ 40 g (since its displacement on H is at least &), hence inj, (M) > C'ge ¢ H)
for an absolute C’ by Lemma 2.1. We have §(x,r) > inj, (M) for any r and the
second part of the claim follows. [
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2.5.2. Horospheres. We let B be a collection of disjoint (closed) horoballs in H?
and J be the collections of horospheres {dB : b € B}. For a point w € H? and a
radius R > 0 we denote by Ny (w, R) the number of horoballs in 8 which are at a
distance smaller than R from w.

Lemma 2.5. There are absolute constants C, ¢ such that for any J as above and
any w € H3 we have:

Ny(w, R) := |{H € # : d(w, H) < R}| < Ce“R. (2.10)
Proof. Let V(R) denote the volume of a ball of radius R in H>. We claim that:
Ng(w,R)- V(1) < V(R + 2). (2.11)

Since V(R) < e for some ¢ the lemma follows.

The proof of (2.11) is straightforward: let N = Ng(w, R) and By,..., By € K
be the horoballs meeting the ball of radius R around w. Fori = 1,..., N take
a x; € 0B; such that d(x;,w) < R and let x; be the point at distance 1 from .x;
along the inwards normal to dB; at x;; finally, et U; be the ball of radius 1 around xlf.
Then the balls U; are disjoint (since U; C B; and the B; themselves are disjoint) and
contained in the ball of radius R + 2 around w; it follows that we have

V(R +2) > vol(Ui) = N - V(1),

which finishes the proof of (2.11) L]

2.6. Benjamini-Schramm convergence for manifolds with cusps. Let M =I"\H?
be an hyperbolic three-manifold and let x € M. Pick an arbitrary lift X of x to H?
and define

£y = min{d(X,yX), y €T, vy # lg} = 2inj, (M).

For R > 0 we define the following subset of M :

Recall from [1] that a sequence M, is said to converge to H? in the Benjamini—
Schramm topology (hereafter abreviated as M, BS-converges to H?) if for any

R > 0 we have
vol((Mn)<R)
vol(M,) n—oo
A source of examples is given by sequences where the injectivity radius goes to
infinity; for example M, = I',\H? where I',, is an exhaustive sequence of torsion-
free finite-index subgroups of a lattice I' (a sequence I',, C I' is said to exhaust I
if any y € I' belongs to at most a finite number of the I';). Another is given by

0. (2.12)
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sequences of congruence lattices (see [1,35]). It follows from Proposition 2.3 that
every hyperbolic three-manifold has a sequence of finite covers that is BS-convergent
to H? and cusp-uniform.,

In the sequel we will always consider a sequence M,, = I',\H? of finite-volume
hyperbolic three-manifolds. We will denote by A, ;, j = 1,...,h, the Euclidean
lattices corresponding to the cusps of M,,, which are well-defined up to similarity.
Recall that we have defined the counting function AT in (2.8).

Lemma 2.6. The sequence My, is BS-convergent to H? if and only if

Vr > 0, f N1, (x,r)dx = o(vol M) (2.13)
My,
and "
n A
3 ©2Anj) _ o vol My), (2.14)
e aI(An,j)

Proof. We won’t use the “if” statement in the remainder of this paper, and its proof
is straighforward. Suppose now that the sequence M,, is BS-convergent to H?>. If we
suppose in addition that the systole of the M,, is bounded away from 0 then (2.13)
follows immediately from (2.9): for any r > O we have

Nr, (x,r)dx = f N, (x,r)dx < Ce" vol(My) <,
(M) <r

where C does not depend on n, and the right hand-side is an o(vol M,) by the
definition of BS-convergence. In general, we obtain from this resoning the conclusion
that for any § > 0 the part of the integral in (2.13) on the §-thick part of M,, is an
o(vol M,). The proof that (2.13) holds in general then depends on a fine analysis of
the orbits of points in H? mapping to the §-thin part of M (for § smaller than the
Margulis constant) which is carried out in [1, Section 7].

We finally establish (2.14) when M, is BS-convergent to H?3: let & > 0 be
the Margulis constant for H?3, and let Cq, ..., Cj, be the noncompact components
of (M,)<¢. The boundaries of the C; are Euclidean tori T1,...,T; and we have
e < cay(T}) for some absolute ¢ > 0; it follows that

M”

2 0{2(/\]')

ar(Ay)
where A ; is the lattice in C corresponding to 7, (whose conformal class is well-
defined). It follows that

vol(T;) > a1 (Tj)ax(T;) > ¢

" (A )
i e(A)

hence the right-hand side must be an o(vol M, ) which is precisely the content
of (2.14). ]

h
vol(My)<e > Z vol(T'}) > g2
j=1
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We record as a separate fact the following weaker consequence of (2.14).

Lemma 2.7. Let M,, be a sequence of finite-volume hyperbolic three-manifolds, h,
the number of cusps of M. If M,, BS-converges to H? then h,, = o(vol M,).

When we assume cusp-uniformity we only need to look at the behaviour of closed
geodesics; we have the following criterion for a sequence of cusp-uniform hyperbolic
three-manifolds to BS-converge. The direct implication is contained in Lemma 2.6
above and the converse is proved in [34, Proposition 4.7].

Lemma 2.8. Let M, be a cusp-uniform sequence of finite covers of a hyperbolic
three-manifold M. Then M, BS-converges to H?> if and only if condition (2.13)
holds.

3. Spectral analysis on manifolds with cusps

3.1. Local systems on hyperbolic manifolds.

3.1.1. Definitions. Let I’ C G be a lattice and put M = I'\H3. The flat real
vector bundles (a.k.a. “real local systems™) on M are obtained as follows: if o is
a representation of I' on a finite-dimensional real vector space V' we get a vector
bundle F; on M whose total space is the quotient '\ (H? x V). For y € I" and
a p-form f on H? with coefficients in V we denote y* f = o(y) Lo f o APTy.
Then the p-forms on M with coeflicients in F correspond to I"-equivariant sections
of APTH? — V ie. tothose f € QP(H3; V) such that y* f = f forally € I'.

Particularly interesting among all flat bundles are those whose holonomy comes
from restricting a representation p of G on a real vector space V. The representation
o = p|r is never orthogonal but the bundle F; has an alternative description which
yields a natural euclidean product and which we will now describe. Up to scaling
there is a unique inner product on V' which is preserved by K and such that p (the
orthogonal for the Killing form of the Lie subalgebra £ C g of the group K) acts by
self-adjoint maps (see [24]). We have a vector bundle £, on M whose total space is
(I'\G x V)/K so that it has a natural metric | - | coming from the K-invariant metric
on V. The square-integrable sections of E, correspond to the subspace:

{f:T\G =V, |f| € L*(T\G), Vg € G. k € K, f(gk) = p(k™") f(g)}.v

More generally, identifying the tangent space of IH? at the fixed point of K (which is an
irreducible real K-representation) with p, the square-integrable p-forms correspond
to:

L2QP(M; E,) = (L2(T\G) ® V ® APp*)~
(where we use the habitual notation HX for the fixed subspace of K in a vector
space 1). We have an isomorphism £, — F,; induced by the map

GxV—>GxV,(gv)—(gp(g)-v).
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In the sequel we will denote by L2Q? (M ; V) the space of square-integrable p-forms
on M with coefficients in £ .

The Hodge Laplacians A?[M | are essentially self-adjoint operators on the Hilbert
spaces L2QP(M:V); see [8] or [4, Section 3].

3.1.2. Strong acyclicity. The group G = SL,(C) acts naturally on C2. As a real
Lie group it also has a representation on C? given by ¢ + g (where = denotes
the complex conjugate matrix). We will use the notation C2 to indicate that we
consider this conjugate action. For every pair of nonnegative integers we then have
a representation of G on the vector space V(n1, ny) defined by:

V(ny,nz) = Sym™ (C?) ® Sym™ C2.

Standard representation theory tells us that these are all the irreducible finite-
dimensional representations of G.

The most important (for us) feature of the representations V(ni,n;) is the
following spectral gap property, which is proven in [4, Lemma 4.1] and also follows
from [8, Proposition 6.12 in Chapter II]; Bergeron and Venkatesh term this “strong
acyclicity” of the representation.

Proposition 3.1. Let ny # ny and V. = V(nq,n3). There exists Ag > 0 such that
for any lattice ' in G, M = T'\IH3, p = 0,1,2,3and ¢ € L>QP(M;V) we have

(AP[M]D.d) 20rm:vy = Aoll@ll L2ar a1y

3.1.3. Unitary representations. Let 0,,, y be defined by:

e? 0 - t 0

For s € C and m € 7 we denote by 7 (s, m) the representation of G induced by the
character 0,,, ® y1+% of Poo = Moo Aoo Noo. This is the representation P defined
in [19, (2.11)]; it is unitary if and only if s € i R.

3.1.4. Laplace eigenvalues and differentials. Let e, e_; be the canonical basis of
C?2. Forl = —n,—n +2,...,n put ¢ = e§"+”/zeg’1—l)/2 € V(n,0) and for
I =—ny,....n1,k =—na,....naputex = e e_x € V(ny,ny). Thus we have

=k
p(ma) -ej g = o4k (M)y(a) 2 e, meE Moo, a € Aco.

Define Vix = Cerk, Vim = Y j1kem Vik- Let P = goPoogy ' be a parabolic
subgroup, yp a height function at P, s € C, v € V and define a section of G x V¢
by the formula:

bs0(@) = yp(@)'T2p(k™") v, g = nak.
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If v € go Vi then ¢y, belongs to the space of 7 (s, m). Its K-type is contained in V¢,
and thus it yields a section of £, over H?>.

By computation of the Casimir eigenvalues in the induced representation (see (4,
5.7] who cite [ 19, Proposition 8.22 and Lemma 12.28]) the functions ¢5 4, v € go Vi,
give rise to sections of £, which are eigenvectors of A°[H?] with eigenvalue

|s|> —m? + (ny +ny +2)* + (n; —ny)>

Note that this bounded away from zero for all ny,n,,m and s € iR (since m €
[-n1 —na,ny + na)).

Now let W = V ® V(2,0). The G-equivariant bundle associated to W¢ is
isomorphic to the bundle of I-forms with coefficients in V. Using the same
construction as above we get an eigenform with coefficients in £, and eigenvalue

— 52— (m+&)* + (n1 +ny +2)* + (n; — ny)?, (3:2)

where ¢ = 0, =2 according to whether v € goV,;, ® V¢; the eigenvalue is larger than
(ny —ny)? for s € iR, in particular bounded away from O when n; # n,.

Now let us compute the differentials for sections and 1-forms. In both cases this
has to be done in the G-equivariant model for £,,. Letv € V} i, thenthe G-equivariant
section corresponding to ¢y is ¢ — yp (g)' TEH=R/2 5 . v, ¢ = nak and thus:

I stk
d¢s,v(g)=5(-\'+l—k+2)yp(g) 2 (p(n)-v)®@dyp +---

where . .. indicates terms which are orthogonal to dyp. If v € V; ; & V_3 o then the
corresponding G -equivariant 1-form on H? is given by yp (g) S =5/2(p(n)-w)®@dz
and we have:

1 —k—
dispae, = 508 +1=k)yp(@"™' o) v) ®dyp Adz 4+ (33)

where the . .. indicate terms in dz A dZz, and a similar computation holds for forms
in dz. The forms in dy p are closed.

3.2. Spectral decomposition. From now on we fix a GG -representation p on a vector
space V. It is a well known fact that one has the orthogonal sum

L2QP(M; V)= L2 QP(M;V)® L2 _QP(M;V), (3.4)

disc cont

where AP[M] has only discrete spectrum in L3 2P(M;V) and completely
continuous spectrum in L2 Q7(M;V). Here we briefly describe the proof of

this result through the theory of Eisenstein series developed by Selberg, Langlands
and others which actually yields a complete description of the continuous part.



478 J. Raimbault CMH

3.2.1. Constant terms and cusp forms. Let P be any ['-rational parabolic and
f € L?2QP(H?3; V) a I'-equivariant p-form. Its constant term at P is defined to be
the p-form given by

N dn
fp(v) = frp\N’? f(@m- (3.3)

This descends a p-form on I'p\H? (which depends only on the I'-conjugacy class
of P) which is actually N -equivariant. If h: '\G — V ® APp* is the K-equivariant
function corresponding to f (see 3.1.1) then the one corresponding to fp is given by
g 1/2 frp\N h(ng)dn. A p-form f is said to be cuspidal when fp = 0 for all
["-rational parabolics, and we denote by quspﬂp (M ; V) the space of all such forms.
Theorem 4.4 below implies that we have L2, C L.

3.2.2. Eisenstein series. If P is a ['-rational parabolic there is a map £ f; from the
subspace of N -equivariant forms in L2Q? (H?3; V) to L?>Q? (M V) given by

EL(f)= D> v*f (3.6)

yel’/Tp
If P, P’ are two equivalent I"-rational parabolics then the obvious map
0: L>(N\H?; V) — L*(N'\H?; V)

intertwines E5 and E,,i.e. Ef = EF, 0 8. We choose representatives Py, ..., Py

of the conjugacy classes of I'-rational parabolics and put E7 = @?:1 E f,i. Then

we have the following facts:
« im(EP) = L2 QP (M; V)

2

e there is a finite-dimensional subspace LZ,

orthogonal sum im(E) = L2 @ L2

cont res:®

inside im(E) such that we have the

When V' is strongly acyclic the subspace eres is actually zero for all p; when V' is

trivial it is of dimension one for p = 0 or p = 3 and zero for p = 1,2. We will
now describe how the map allows to describe the continous part L2 Q7 (M;V):
we begin by a general exposition and then specialise to sections and 1-forms with

coeflicients in a bundle £,,.

3.2.3. About references. Our main reference for this subsection is G. Warner’s
disquisition [38]; the theory we expose here is developed there in greater generality
(for all real-rank-one locally symmetric spaces) with more details (though the author
frequently refers to [17] for complete proofs). The exposition in this reference
is not particularly user-friendly; for a more accessible one (only in the case of
Fuchsian groups and functions, but all the main ideas are already present) we refer
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to H. Iwaniec’s textbook [18]. The case of arithmetic 3-manifolds is also treated in
detail in [34, Chapitre 5]; the book [14] contains a complete treatment of functions
on more general hyperbolic manifolds.

3.2.4. Eisenstein series with coefficients in a K -equivariant bundle. Let ¢ be a
finite-dimensional representation of K on a complex vector space W, with highest
weight ¢ € N. The space W decomposes as the orthogonal sum

. Wk g = % ny — n, even:

W= It;:_q +ny—1
n np—
Di—_y Wak+1 g ="52=, n1—nzodd,

where W; is the subspace on which M acts by the character o; defined in (3.1).
Let E; be the bundle on I'p\H? whose total space is given by (W x I'p\G)/K;
then the smooth sections of E; are identified with the space (W ® C®(I'p\G))X.
For s € C we identify the subset of such sections which are N -invariant on the right,
proportional to y,l,ﬂ and in the image of (W; ® C®(I'p\G))X with W;: we denote
this identification by w + wg. Then for w € W, the Eisenstein series Ep(wy)
corresponds to the Eisenstein series denoted by E(P : w : s/2 : -) in [38]', and
hence we have the following properties for it from loc. cit.:

e The series is convergent for Re(s) > 0, and admits a meromorphic extension to C
with no poles on the imaginary axis [38, p. 9].

* The constant terms of Ep; (wy) are given by

145 1-%
Si,ij’_ 2w+ Yp, D g (Hw, (3.7)

where ®; ;.; is a meromorphic function with values in Homc (W;, W_;) [38,
pp-7, 13], where ®; ;.; & ®; ;._; corresponds to CP;|P, (w, s)).

« Putd;(s) = P; ; i ju(s) € Hom((Wp)", (W_;)"). Then we have the functional
equations ®;(—s)P;(s) = id, and P;(iu)* = P;(iu)"! foru € R [38, p. 8].

* The continuous partof L?(M ; E;) is spanned by the functions fjozo Y(u)E(wiy) du
for y € L>(R) and w € W, where E(w,) = Y4_| E((w;);) [38, p.32].

ForY = (Y1,...,Yy) € [1, +o0[ one defines the truncation operator at height Y
by:

h
TY (&) = (&) = D _ ;100 (7i (@).fP; (8). [ € C®(M;Ey).

J=1

'Note that our parameter s differs from that used in this reference by a factor of 2, but this does not
affect any of the results we quote from there.
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For w € (W;)" we have the “Maass—Selberg relations™:

h
T E@} 200:5 = 2 D 102 Dwj [ + (®r(s) ™ Dr(s) (w), w) o
j=1
"o
+ ;(Yf((@(—b‘)w)j, wilw =Y (@p()w)j, wj)w)  (3.8)
j=1"

see [38, p. 83].

3.2.5. Sections. Let v € V"; we denote by E(s,v) the section of the bundle E,,
over I'\H? corresponding to E(vy) in the notation above. For [ = —¢q,...,q we
let Wi (s) = P, j,u(s) € Hom(V/, ;) so that the constant terms of E (s, v) are
given by

E(s,v)p; = v + y 1 (W (5));

for v € V;. Forv € (V;)" the sections E(s,v) are eigenfunctions of the laplacian
AP[M] with eigenvalue —s> — [? + Ay where Ay is the Casimir eigenvalue of V,
Ay = (ny +ny +2)*> + (ny —n)*if V.= V(ny,nz) by (3.2).

For v € V; the Maass—Selberg relations (3.8) are written:

h
ITY ECs, DI Z21:v) = 2 Y log(Y) w13 + (Wi (s) " Wi (s) (v). v)
i=1
"o i
32X, ;(Yjs((‘yl(_s)v)j, vy =Y (Wi (s)v)j,v)v)  (3.9)
j=1"

3.2.6. 1-forms. We denote by Q;r (V) (resp. 27 (V)) the space of 1-formson I'p, \N;
with coefficients in the restriction of E, which are of the form dz; ® v (resp. dzZ ®v)
for v € V, and by Q}'(V;) the supspace of those for which v € g;V; where g,
conjugates P; to the parabolic at infinity P (and define £2°(V}) similarly). We put

QEWV) = EB,' Qj!:(Vl)sQ:t(V) = EB]' QJi(V)

On the other hand, the 1-forms in coefficients in £, on I'p \H? correspond to the
sections of the bundle E£; where t = p|x ® Ad|x (where Ad is the adjoint representa-
tion of G, which is isomosphic to (2, 0)). The representation t has two summands:
one isomorphic to p|x which corresponds (in the correspondance set in 3.2.4) to the
differential of sections, and its orthogonal which corresponds to co-closed 1-forms,
whose constant terms are of the form w + @ forw € QT (V), @ € Q™ (V): we denote
the latter by W, and by W, the subspace Q7 (V;_») @ Q7 (V;42). Then for v € W,
the 1-form E(s,®) corresponding to E(w;) is an eigenform of the laplacian with
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eigenvalue —s? — (I F 2)?> + Ay (again by (3.2)). The constant terms of E(s, @) are
given more precisely by

E(s,0)p; = y' Pwj + y 7 (@(s)w);.
The Maass—Selberg relations are given by:
” TY E(S’ 0)) “%}Q 1 (M;V)
h
=2 log(Y)|w; éi(v) + (DT ()T OF(s) (@), 0) g (). (3.10)
j=1
3.2.7. 2- and 3-forms. The Hodge * yields isometries
L?QP(M;V) — L?>Q3P(M; V),

so that the spectral decomposition for L.2Q2, L2Q3 spaces follows from that of L2Q!
and L? respectively.

4. Selberg’s trace formula and regularised traces

4.1. Automorphic kernels. As noted in 3.1.1 the Laplacians A?[H?] on H? with
coeflicients in a flat bundle are essentially self-adjoint operators and the spectral
theorem thus allows, for a function ¢ € C°°([0, +00)), to define an operator
S (AP[H3]) on L2QP(H?3; V). Moreover, if ¢ is sufficiently decreasing at infinity
this operator is given by convolution with a kernel

kpp € CO(H? x H’; (AW’ TH? @ V) @ (NWTH? @ V)*),

i.e.kp p(x,y)eHom(APTIH?®V, APTYH?®V) and fora p-form fe L>QP (H?;V')
one has

HATIE 10) = [ ko.p(.) f) .

The kernels kg, are invariant under the diagonal action of G on H* x H?, meaning
that for g € G, x, y € H? we have

kg p(x,y) = (APTyg ' @ 1dy) o kg p(gx, gv) o (AP Trg @ Idy). (4.1)

The Plancherel formula for G allows to compute the kg , and with a lot more work
one can obtain the following lemma (essentially due to F. Sauvageot), an explanation
of which can be found in [1, Proposition 6.4] (by density of a subset S we mean that
any Radon measure is determined by its restriction to ).
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Lemma4.1. The space A(R) of smooth functions ¢ on R such that for any ¢ € A(R)
wehave kg ,(x,y) < e~ 44XV forall A > 0is dense in the space 8 (R) of Schwartz
functions.

From now on we will always suppose that ¢ € A(R). For g € G we put:

g ko p(x.y) = (A" Tyg ' ®p(g)™") 0 kg p(x.y)
3 3
€ Hom (AP TYTHP @ V. APTY | H @ V).

—Ad(x

By the above lemma we have |g%kg ,(x,y)| K e ¥) 5o that it follows from the

well known estimate
{y € I'd(x,yy) <r}| < Ce’

(where ¢ is absolute and C depends on I', x; see also Lemma 2.4) that the following
series converges uniformly on compact sets of H? x H?3:

Kg o (x,3) =D v ke p(x.yy).
yell

The kernel K g B is ['-equivariant in each variable and hence can be seen as a section
of (N’TM @ V) ® (APTM ® V)*. On the other hand, since the operator A?[M ]
(the Laplacian on p-forms on M with coefficients in £,) is essentially self-adjoint
we can define the operator ¢(AP[M]) on L2QP(M; V). Then K};’p is a kernel for

¢ (AP[M]), in other words for f € L?QP(M; V) we have:

pATN) ) = [ KE e @2)

4.1.1. Truncation. Inthe sequel we will write K f for the convolution of a section f
with a kernel K. Let P be a parabolic subgroup of GG, we define the constant term
at P of kg, to be the kernel given by

(kp,p)p(x,y) = [N n*ke,p(x,ny)dn.

For a I'-rational parabolic subgroup P we define the constant term (K ql; p)p of Kg %
at P by

1
P . 2 : *
yer/Tp

|
:m Z L(yn)*k¢,p(x,yny)dn.

yel'/Tp
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For f € L?QP(M V) aroutine calculation yields
(Kg,p)p (/) = (Kg ) (fP). (4.3)

Recall that the truncated manifold MY was defined in (2.3). One naturally defines
the truncated kernel on M by:

P ET ) Ke p (o) = (KG e (6, y) 30 2 Y
N P AN O yemY,

and it follows from (4.3) that

TV Ky ,(f) = Kg (T ). (4.4)
4.2. Geometric side. Let hy , be the function on [0, +oc[ defined by

hg,p() = tr (n*kg, p(x,nx)) 4.5)

for any unipotent isometry n € G such that £ = d(x,nx). This definition is
legitimate, i.e. the right-hand side depends only on £: indeed, if n,n’ are two
unipotent elements of G and x, x’ two points in H? such that d(x,nx) = d(x’,n’x")
there exists a g € G such that gx = x’ and gng—!' = n’ (this follows immediately
from Lemma 2.1 and the fact that the stabiliser of an horosphere in H? acts transitively
on euclidean spheres — note that this is no longer true in symmetric spaces other
than the real hyperbolic spaces) and hence

tr (n*kg,p(x,nx)) = tr ((gng™") ke p(gx, gnx)) = tr ((n") kg p(x’, n'x")).

Let " be a torsion-free lattice in G and let 4 be the number of cusps of the
manifold M = I'\H?3, which we suppose endowed with an arbitrary height function
y = max; y;. Let Ay,..., Ay be the Euclidean lattices associated to the cusps of M
and y; we associate to them the following quantity:

(1 —2logai(Aj))
vol(A ;) ’

400 d
o
Kj=2f Ex;(p)—= +
a1 (A;) P

note that only the second summand depends on the choice of y. We also define

Trr (k¢,p) = vol(M) - tr (k¢,p()C0, JC())),

where x is any point of H*. For the statement and proof of the following proposition
we will suppose that I' N P C N for all parabolic subgroups P of G with unipotent
radical N (we remark that a modified version of the proposition is true in all generality,
see [34, 3.5]).
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Proposition 4.2. Let ¢ € AR), p = 0,....3 and let K g P be the associated
automorphic kernel on M. Then for any Y € [1, +oo[" the integral

TYKD (x,x)dx
[M Pl

is absolutely convergent, and as min;(Y;) tends to infinity we have the following
asymplotic expansion:

+o00 h
Tr (TYKQEP) = (27rhf0 rhg. p(£(r)) dr) Z]og ¥

J=1

+ Trr kg, p + f Z tr()/*k(b,p(x, yx))dx
M

Y€l

+co
4+ 27h f rlog(r)hg, ,(L(r)) dr
0

h +o0
+ Kj vol(Aj)[ rhg,p(E(r)) dr + o(1).
Je=t £

Proof. To make things more readable we will deal only with the case where M
has only one cusp (only notational alterations are necessary to deal with the general
case). We fix a ["-rational parabolic P with unipotent radical N and denote by A the
Euclidean lattice associated to 'p = 'Y N. We let D denote a fundamental domain
for ["in H3 and DY C D the preimage of MY : we suppose that the only ideal vertex
of D is the fixed point of P, so that for ¥ large enough D — DY is contained in the
horoball of height ¥ at P. By the definition of the function 4 , and Lemma 2.1 we
have

Y I _ r r
[M—M” lr 77 Ky, (x, %) dx = /D—DY |tr(Ky , — (Ky ,)p)(x, x)|dx

: )~ oo ()
<y neAZ_{U}h¢'P(E(yp(x) o J, oo (1)) o)

1
k. p(x, d
+L_Dy Z VO](A)/;\TI #.p(X,ynx)|dndx

vel'/Tp
y#I'p

+f kg p(x,yx)| dx
. erﬁp 1291

yEF—FP
+ vol(D — DY)|trkg, ,(xo, X0)|
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Now we prove that the I fork = 1,...,4 are finite and go to 0 as ¥ — +o0. The
term /4 is trivial to deal with. Let us deal with /5: for any ¢ > 0, since ¢ € A(R)
we have |kg ,(x, y)| < e~2d(x.¥) and it follows that:

+oo
I3 5[ Z e YX) gy — f f e AN (r)dx
D-DY p-pY Jo

yel'-T'p

where Ny (r) = [{y € I' = I'p : d(x, yx) < r}|; integrating by parts we get:

+00 +oo
I3 < / / ae " Ny(r)drdx <pq vol(D — DY)/ e gy,
D-DY Jo 0

where the last estimate follows from Lemma 2.4. Taking a > c it follows that /5
goestoOas Y — +oo.

Now we deal with I,; the main point is that for any (large enough) a we have an
estimate

[ kg (%, ¥)| dy < Caem@CHD) 4.6)
H

for any horosphere H such that x doe not lie in the horoball that it bounds. Let us
prove this: let yo be the projection of x on H ; we have

1
d(x.y) = 5(d(X- H) +d(yo.))

forall y € H (indeed, since d(y, x) > d(yo, x) = d(x, H) it holds trivially if either
d(y,yo) > d(x,H) =d(x, yp)ord(y, yo) <d(x, H))and since we supposed that
¢ € A(R) (see Lemma 4.1 and the remark afterwards) for A = 2a we get that

|k¢',P (x7 Y)l <<a e_ad(x’H)e_ad(y9y())

foralla > 0 and y € H; since the integral [, e~2d:30) gy converges for a large
enough we obtain (4.6). It follows that

Is =€, / Y, gl (4.7
D-DY
yel'/Tp

y#Cp

and by Lemma 2.5 the inner sum is finite and uniformly bounded for x € D — D!,
hence I, is finite and goes to 0 as ¥ — +oc.

Finally we deal with the first term, which is more subtle. The integrand is
N -invariant and hence it equals

+00
h:f
Y

y

2 1o lt(5) = fren(e(5)) )5

V3
neA—{0} Y
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Recall that .M, is the counting function for the Euclidean lattice A, Ny = Ny — 1

and EA(r) = NS — w’)’lg\) < 37tay- Now we compute:

e |U|)) 1 ( (l”l)) dy
h | — — h W — ) )dn|—
fy neAz_:{O} ¢”’( (y vol(A) [N SAN D e
T pres r . 2nr dy
= [, | ren (o)) (- i 4053

TR [T dhg (U)o wr? dy
‘fy fo dr (NA(”_vol(A))drlﬁ

e e L dhy, p(ﬂ(r))| dy
< — = |EA(ry)dr—.
_fY /O ‘ P A(ry) )3

We have Ep(ry) < (r + 1)y as y — oo, uniformly in r (see Lemma 2.2) and it
follows that the right-hand side (hence /) is finite and goes to O as ¥ — +-o0.

Figure 1. BX is in grey, with R in a darker shade.

It remains to prove the stated asympotic expansion: what we did above shows
that it suffices to prove that the integral [,y tr K £ (X, x) dx has such an expansion.
Let O be a fundamental parallelogram for A in N and B the union of all geodesics
from the fixed point of N passing through O (for example if N = N is the
upper triangular unipotent group which fixes oo, identifying N with C we have
Ba = {(z,t) : z € O,t €]0, +0o0[ }). Define:

BY ={x e By:yp(x) <Y} (4.8)
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Let R be the union of the pieces of horoballs y(Ba — BX) N Bp fory & I'p (see

Figure 1). Let MY be the universal cover of MY, which is naturally identified with a
subset of H>. The strip OA is a fundamental domain in H* for A, and it follows that
BX — R = By N MY is a fundamental domain in MY for A. On the other hand,

Uyer/rp yDY is also a fundamental domains in MY for A and it follows that we
have the following expression for the sum over the unipotent elements:

/MY DD hgp(dxyny T %)) dx

yel'/Tp ne A—{0}

= Z / § Z he p(d(x,nx))dx

yer/Tp M7 pen—foy 4.9)
- fy Z hg,»(d(x,nx)) dx—f Z he p(d(x,nx))dx.
BA nea—{o} R yea—to)

We can bound [ ZneA—{O} he,p(d(x,nx)) dx by using arguments similar to
those used for I, above (see (4.7)) and this shows that it is o(1) as Y — +o00. The
integral [,y tr K};’ (X, %) dx can be decomposed as a sum over the elements of T’
and using the conclusion of (4.9) to modify the sum over unipotent elements we
obtain:

fMY tr K};,p(x, x) dx = vol(M) tr (kg, »(xo, x0))

—|—fM Z tr(y*kg,p(x. yx)) dx

Y €Tl0x

+/;3Y Z hg,p(d(x,nx)) dx + o(1).

A neA—{0}

(4.10)

Hence we need to get an asymptotic expansion when ¥ — oo of:
/ y Z he,p(d(x,nx)) dx = / y Z he.p (ﬁ(ﬂ)) dx. (4.11)
BA nea—{0y BY 1 cA—{o} ype(x)
The integrand is N -invariant so that the integral in (4.11) equals
¥
d
VOl(A)[ Z he,p (E(m))—);
0 LeA—{o} y y

and by substituting r = |n|/y in the right-hand side we obtain the following express-
ion:
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d
vol(a) Y f ()T

neA—{0}

+o00 1
= vol(A) f rhep(t(r)) Y —=dr. (4.12)
0 k1 n|
o<|n|<rY

On the other hand, forany R > 0 we get from integrating by parts (or Abel summation)
that:

|v]?

5~ L_[R dNX(p):eNX(R)+]R M)
ot a(a) PP R? MO S
0<|v|<R

and since we have "

* o
N = E
(p) vol(A) + Ea(p)
we get that:
1 T EA(R 2 (log(R) — log ag (A d
;3 = z;(z) (log( )I(A)g 1( ))+[ En(p) 2
veA v VO VO a(A) 1Y
0<|v|<R
_ o EA(R) | 2n(log(R) — loga(A))
~ vol(A) R2 vol(A)
“+o00 d +o0 dp
+f EA(p)—f—] En(p)—3
a1 (A) P max(R,xq1 (A)) P
(4.13)

where the second line follows from the fact that the integral f1+°° Ea(p)dp/p? is
absolutely convergent by Lemma 2.2. Putting

o — [+°° EA(P) dp JT(] —2logay(A))
ar(A) VOl(A)
we can rewrite (4.13) as:
1 27 log(R) /‘+°° dp EA(R)
= + ka — EA(p)5 + —5— 4.14)
v%:\ [v]> vol(A) max(R,a1 (A)) P> R?
0<|v|<R

Plugging this into (4.12) we obtain:

+o00
[B Z hg.p(d(x,nx)) dx ~[0 2 log(rY)rhg ,(£(r)) dr

A peA—{0}
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+o0
+ KA vol(/\)/0 he,p(£(r))dr

+oc0

“+o0 dp
— vol(A) [ rhe, p(£(r)) Ea (,o)—3 dr (4.15)
max (e (A),rY) P
e EA(rY
iy vol(A)[ rhe p(£(r)) (A)(]r)z)

The terms on the second and third lines are O(Y 1), and plugging this expansion
in (4.10) finishes the proof. L]

4.3. Spectralside. The decomposition L.? = L2

dMEBLEIS from (3.4) induces a splitt-
ing of the operators 7Y Kr’p into

TY(KqI;,p)disc S TY(Kg,p)Eis-

It is well known that the operators (K g p)diSC are trace-class (see e.g. [38, Theo-
rem 4.3]). All these operators have integrable kernels and we have

Tr(Kg’p)disc = /M (Kg,p)dis(?(x’ x) dx'

We will denote by Tr(TY ) the integral of the kernel TY Kg on M. We have
computed it from the geometrlc expansion in Proposition 4.2, now we will use the
Maass—Selberg relations to compute it from the spectral decomposition. We note
that our computation is essentially the same as that of the “third parabolic term”
in [38, Section 4]; see especially p. 85 in loc. cit.

Proposition4.3. ForanyY € [1, +oco[" we have the following asymptotic expansions
as min;(Y;) — +oo (we put dy = dim(W})):

Y T & log¥; [+ .z Z 4
Tr(TYKpo) = D > dip(? +u? + Ay) du

—0Q l_

- — Z d(1% + u? —f—)LV)tr(\Ifl(lu) !

21 J—co l=—2q

dW;(iu)
du )

+Tr (Kﬁb() dls(, Z ¢(12 +)LV)tI'\I-’1(O) +()(1)
l:—2q

(4.16)
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T(TY Ky1) = Tr(TY (Kjo)kss)

210g ¥; iy
[ Z dl‘;b((l :FZ) 4+u +AV) du —|—TI‘(K¢ l)dlxc
Xy =—2g-2
1 oo 2 ., d (i)
) Y e F? +u? Ay (CDl(zu) T) du + o(1)

I=—2q—2
4.17)

(here Tr(TY (K(I;’O)Eis) is the trace of the restriction of TY (K to the subspace L.
spanned by Eisenstein series and it is given by (4.16) minus the term Tr(K ¢,0)dlsc ).

Proof. We can compute the operation of automorphic kernels on the continuous part
of L2(M; V) in the following way. Let ¥ € L?(R) and v € W}, we have:

“+o00
Ky EW.0) = [_OO (I F2)> +u” + Ay)Y W) E(iu,w) du
Put d = dim V, choose an orthonormal basis vy, kK = 1,...,dh for V where all

v € (W), ). From the preceding identity and (4.4) it follows that

Joo dh
Tr (TY (K. 0)Eis) = f Do+ + Av)ITY EGiu,vi) |1 du.

T k=1

Now expanding || 7Y E (iu, vx)||? using the Maass—Selberg reletions (3.9) yields:

Tr(TY Ky o) = Tr(Kg)

disc

h 2q

logY;

+y =4 o8 f > dip(I® +u? + Ay) du
j=1 X j=_2g

[ fo= g o . AW (iu)
o I_Z—:qu(l +u +/\V)tr(llll(zu) T)du

oo Y I 4 Wy (—ine) — ¥ tr Wy (iw)

ZZlez-l—u —l—lv)[ du

iu
Jj=11==-2q4

+ o(1).

To deduce (4.16) we must deal with the last line: but a classical computation (cf. [ 14,
Proposition 5.3 in Chapter 6]) shows that for any function £ € §(R) one has

+o0 Yziu W, (—f _Y—Ziu v, (i 1
Jim ([ g HER T ) = LE O o)

56 2iu

and hence we are finished. The proof of (4.17) is exactly similar, using (3.10) in
addition. ]
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4.4. Trace formula. The output of the work done in the previous two subsections is
the following result, an avatar of the Selberg Trace Formula. We do not push further
the analysis of the loxodromic summands on the geometric side since we will not
need it.

Theorem 4.4. For any ¢ € A(R) the operators (Kg’ p)diSC are trace-class and we
have the equality for p = 0:

1 +oo 24 J (i
Tr (K(b,o)disc o g f Z ¢'(12 + Uz —+ )\,V) tr (lpl (i?/!)_l 735 M)) du
e I=-2¢q
i1 jVi ¢ (1% + Ay ) tr ¥y (0)
4 [=—2¢q :

= Trr kg0 + [M Z tr (y*k¢,0(x, yx)) dx

Y€ 0x

+o0 h +o00
+ 27h [ rlog(r)hgo(€(r)) dr + Z Kkj vol(A ;) f rhgo(€(r))dr.
0 = 0

A similar equality holds for p = 1, replacing the right-hand side above by the
appropriate spectral terms according to (4.17).

Proof. Let B’, B denote respectively the right-hand side and the left-hand side of
the equality in the statement; the equality between B and B’ follows from the fact
that we have written the expansion as min;(Y;) — +oo of TR K.;,p) as either
AlogY + B +o(1) (Proposition 4.2) and A" log Y + B’ +o0(1) (Proposition4.3). [

4.5. Asymptotics of regularised traces. Let M = I'\IH? be a finite-volume hyper-
bolic three-manifold. For a function ¢ € A(R) we define Trg(¢(A?[M])), which
we will also denote by Trg Kg, p» 10 be either side of the equality in Theorem 4.4.
The convenient form in which we wrote the trace formula allows the following result

to be proven very easily.

Theorem 4.5. Let Iy, be a sequence of torsion-free lattices in G which contain no
element with trace —2 and such that M,, = T, \H?3 is BS-convergent to H>. Suppose
that the height functions on the My, are chosen such that

h

> logay(Aja)| = o(vol My) (4.18)
j=l

(where the notation is as in Lemma 2.6).
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Suppose also that the following condition holds:

hﬂ

A, i)
3 % — o(vol M,,). (4.19)
j=1 el

Then we have the limit
TrR(Kj;j'p)

' = Tr® (k4 ). 4.20
s Vol(My) T Kép) ¢h20)

4.5.1. Remarks.

(1) For cusp-uniform sequences, the condition (4.19) reduces to /4, = o(vol M),
which always holds for BS-convergent sequences by Lemma 2.7.

(2) The hypothesis (4.18) on the height functions is satisfied if we take a sequence
of covers of some given orbifold M and the pull-back of the height functions on M
(see Lemma 4.7 below).

(3) If y,. y, are two height functions on M,, which both satisfy (4.18) then we have
log(yn/y;) = o(vol M) (indeed, high enough in the jth cusp the function y,/y,,
is constant and equals a1 (Ap, ;) /e (An,j)).

4.5.2. Proof of Theorem 4.5. Let &, be the number of cusps of M,; we choose
representatives Py, ..., Py, of the I',-classes of I'-rational parabolic subgroups and
s before denote by A, ; the Euclidean lattice (I'y)p; inside Nj where N; is the
unipotent radical of P;, identified with the horosphere {yp, = 1}.

For p = 0,1,2,3 we have 3d > dim V ® APp so that

tr (y*kg,p(x. ¥x)) < 3d|p(y ")y lke,p(x. yx)|. (4.21)

For x = gK.y = ¢'K € H’ we put H(d(x,y)) = 3d|p(g~"g")| - lkg,p(x. ¥,
then we have H(r) < ¢~ @ for all a > 0 as r — oo. We first want to estimate:

H, :[ Y H(d(x,yx))dx.
M” yerlnx

which is done in the following lemma.
Lemma 4.6. If M, BS-converges to H? then H,, = o(vol M,,).

Proof. For a large enough (so that all the integrals below are absolutely convergent)
we have

+o0
H, < / f e “"dNr,(x,r)dx
M, JO
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+o0 +o00
= aj j e "N, (x,r)drdx = a[ e_ar/ Nr, (x.r)dxdr.
Mn 0 0 MII

If we add the hypothesis that sys(I’;) > & > 0 for all » then the lemma
is a consequence of (2.9) (which imply that the sequence of functions r
g |, M, Nr, (x,r)/ vol(My,) dx is dominated), Lemma 2.6 and Lebesgue’s theo-
rem. In general one needs to study in addition the integral on the Margulis tubes near
small closed geodesics; this is carried out in the proof of Theorem 7.14 in [1]. [

We have:
+o0
C, :=2mh, / rlog(r)h(£(r)) dr = o(vol M) (4.22)
0
by Lemma 2.7. To conclude we need also the following asymptotic estimate:

hn +o0
Up =) Kn,jvol(Ap,j) f rh(¢(r)) dr = o(vol My) (4.23)
g=i 0

where we denote

(1l — 2loga1(/\n,j)

+o0 dp
R o

](An.j)
We get from Lemma 2.2 the following estimate:

1 +00

+oo d
0
/ Ep, ;(p)—= <
o P

dp
S (o + e2(An )L
l(An.j) o1 (An:]) al(An,j) P

_ 1 0-’2(/\11,j)
0!1(/\n,j)2 al()tn,j)3

& 1 (az(/\n,j) +052(An,j)z)
VOl(Ap i) \a1(Ay, ;) a1(Ay,;)

with a constant that does not depend on n or j, and it follows that

az(An,j)z
O51(/\11,1')2

so that by the hypothesis of the theorem,

Kn,j Vol(Ay,, ;) K + log oy (A;;).

hll
Up € Z log aq (A2) + o(vol My,)
F=1
and the right-hand side is an o(vol M) according to the assumption on the height
functions.
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n

Now the summands in Trg K};, '\, given by the right-hand side of the trace
formula in Theorem 4.4 are, with the exception of Trr(ky, ,) vol(M,,), majorised by
U, + C, + H, according to (4.21). So it follows from (4.22), (4.23), and Lemma 4.6
that

| Trr(K,y") — Trr (kg p) vol(My)| = o(vol My,)

which proves the theorem.

4.5.3. Height functions in coverings.

Lemma 4.7. Suppose that M, is a sequence of finite covers of a finite-volume
orbifold M and that the height functions are pulled back from those (chosen
arbitrarily) on M. Then Z?":l o1(Ap,j) = o(vol My).

Proof. We show that for all C > 0 we have

hn
. >t ar(An,j)
lim sup <

c—k, 4.24
n vol M, - ( )

We order the P; so that a1 (A, ;) is increasing with j and denote by hf the largest
index such that a; (A, ;) < C forall j < hS. Then:

hy hy
Y ai(An) KChL + Y (@(An, ) ' [A) 1 Anjjl

j=1 J=h§ +1
hn
&K Chy + (al(An,hgfﬂ))_l Z [Ag b B gl
j=hS +1

< Chy + C7 1[I : Ty,

where /1 is the number of cusps of M. The conclusion (4.24) then follows at once
from Lemma 2.7. []

5. Analytic torsion and approximation

From now on we fix a strongly acyclic representation p, V' of G and all forms are
taken with coefficients in E,. We will define the regularised torsions T(M ; V') and
the L2-torsion ¢® (V) in Section 5.3 below, and prove the following result.

Theorem 5.1. Let M,, := I',\H? be a sequence of finite-volume hyperbolic three-
manifolds (together with height functions) satisfying the assux of Theorem 4.5.
Suppose in addition that the systole of the M,, is bounded away from 0, and that there
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exists € > 0and a sequence a, = o(vol M) suchthatforalln > 1,1 = —2q,...,2q
and u € [—e¢, €] we have

tr (\IJ, (iu)™! W) <dap, tr (<Dz (iu)™! W} £ .

Then we have Te(M,: V)
R ns _ (2
— = = \(V). 5.1
nLngo vol(M,,) V) =

Note that the condition on the intertwining operators holds (or not) independantly
of the choice of the height functions satisfying condition (4.18) (see Remark 3 after
the Theorem 4.5).

5.1. Heat kernels. For ¢(u) = e~** the kernel k4 , (resp. qu;, ) is called the heat

kernel of 3 (resp. of M). We will use the bounds for the heat kernel given by the
following result (see for example [4, Lemma 3.8]).

Proposition 5.2. Let p be a finite-dimensional representation of SL,(C) and E,
the associated SL,(C)-equivariant Hermitian bundle on H? (see 3.1.1). Let ty > 0;
there exists a constant C depending only on tog such thatforall x,y € X andt €]0, tp|
we have

3 _ _dx,»)?
|e—IAP[H ](x,y)| S Cl, d/Ze XSIy )

We will also make use of the following fact about the heat kernel (see [5,
Theorem 2.30].

Proposition 5.3. There exists a;, € C*°(G,End(APp® V) such that for all x € H?
we have the asymptotic expansion att — (0

m—+1
3 _3 _d(x.gx0)? 1
gre AT (x ox) =72 E ap(g)e Sk 4 o(:m*2).
k=0

Moreover the term ag (g) equals g*tgx(x) where t,(x) denotes parallel transport
from x to y along the unique geodesic arc between them.

5.2. Asymptotic expansion of the heat kernelat¢ — 0. We will need the following
result to define the regularised analytic torsion. Note that [28, Proposition 6.9] prove
a more precise result where all coefficients b,f are shown to vanish for odd k.

Proposition 54. For all p = 0,1,2,3 and m > 1 there are coefficients
af)’, Y bg, ..., b} and a function H? such that
m+2 m
Trg (e_’Ap[M]) — 13 Z a,ft% + h{)’t—% log(t) + 172 Z b,ft% log(t) + H? (1)
k=0 k=2
(5.2)

and HP(t) < "3 ast — 0.
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Proof. We fix p and put hf () = tr(n*e 1AM (x nx)) for a unipotent element
n € G and a x € H? such that d(x, nx) = £ (cf. (4.5)). We choose a fundamental
domain D for I' and define

+o0
S1(t) = ZJrh/ rlog(r)h? (£(r)) dr,
+o00
S, (1) = Zx, vol(A ; )/ rh?((r))dr

501- [, 32 vl Wi o)

4 Erlox

so that by Proposition 4.2 we have:
Trg e 18" M] — Ty o A7) 6 (r) 4 So(2) + S5 (7). (5.3)

Putting g = 1¢ in Proposition 5.3 and integrating over D we get an expansion

m
Ter e 2T —vol(D) Y 715 4+ 0(:"7), (5.4)
k=—3

where the fkp are absolute coeflicients, which takes care of the first summand.
Now we deal with S3; if we put £, = sys(I") we get:

d(x.yx)?
Z tr(p*e A7 M (x yx)) < Z Ct 3¢5

Y€l Y€l

+oo 5 2
= Cf t Ze STdNr(x,{)
Lo (5.5

+o0 5 2
= Cf t 28e 5t Np(x,0)d L
Lo

P

=S
<Lt 2¢ 5t

so that S3(¢) is actually an o(tm+%) for any m > 0.
To deal with S; and S we will use the following expansion at t — 0 (which
follows immediately from Proposition 5.3)

il 2
WP =72 S bP (e ik 4 0" 3) (5.6)
k=0

together with an elementary lemma in real analysis.
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Lemma 5.5. Let w be smooth in a neighbourhood of [0, 1]. For every integer m > 1
there are constants cy, c; for I =1,...,m+ 1 (depending on w) such that

1 m
f r log(r)a)(r)e_f(’)z/‘”dr = Z tl/z(cl + c;logt) < cm+1t(’"+1)/2. (37)
4 1=2

Proof. Since r + £(r) is a smooth diffeomorphism of [0, +o0o[ and the function
¢+ rlog(r)/€(r)log(€(r)) is a smooth function near 0, by the change of variable
from r to £(r) we are reduced to showing that for a smooth function wg on [0, 1] there
an expansion of the right form as r — 0 of:

! 2 tlogt (1 '°
/ Clog(f)we(C)e™T dt = ‘;g [ Lt 0)e™C de
0 0

t—l/2

+t f Clog(D)wo (2 0)e ™ dt.
0

This is an immediate consequence of Taylor’s formula applied to wq at 0 and of the
following easy estimate:

tg% 2 e 2, k 1
f ke du =f e de+ 0727 7). O
0 0

2
We get an expansion similar to (5.7) (without the log ¢ factor) for fol ro(r)e” dr

using the same argument. We finally get that for all m > 1 there are coefficients
cf.d] e; such that we have at 7 — 0

+00 , " i - B m41
[ rlog(r)h; (E(r)) dr = Z c 12 + Z d;t2logt + 0(t 2 ),
0

k=-3 k=—1 (5.8)

TR e k m+1
f rhf (U(r))dr = Y eft> +0(t 2)
¢ k=—3

and from this, (5.3), (5.4), and (5.5), we get the following expansion for the regularised
trace:

m+2 m
Trg (e 7'4" M) = 13 2 aft% 412 Zb,ft% log(t) + HP(1). (5.9
k=0 k=0

It remains to prove that the coefficient bf’ in (5.9) is zero. Looking at the proof
of (5.7) we see that it comes from the degree-1 monomial in the Taylor expansion when
£ — 0 of the (variable) coeflicient b€ (/1) from (5.6). According to Proposition 5.3
we have that b} (s) is equal to tr(n¥t,, c(x)). The map s > n¥ is the inverse of
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the parallel transport along the horocycle in H?® associated to the unipotent one-
parameter group s > ny. To show the vanishing of b{’ we thus have to prove that
parallel transport is the same up to O(s?) when done along a geodesic or horospheric
arc with the same endpoints.

Here is an explanation for why this is true. As s — 0 the tangent vectors between
the horosphere and the geodesic are O(s)-close (in any smooth metric near x). Taking
a smooth trivialisation of Q27 (M ; V') near x the parallel transports are thus solutions
of differential equations of the form x(u) = A(u)x(u) (for the horosphere) and
y(u) = (A(u) + &5(u)) y (u) (for the geodesic) where |5 (u)| < s for0 < u < 5. We
get using Taylor’s formula that for x(0) = y(0) we have :

x(t) = y(1) = (X(0) = (0))u + O?) = ues(0) - x(0) + OW?) Kyss 52,

which finishes the proof. 0
5.3. Definition of analytic torsions.

5.3.1. Regularised torsion. We fix a nonuniform torsion-free lattice I" in G. As
usual we also denote by I" Euler’s Gamma function defined for Re(s) > 0 by the
formula I'(s) = f0+°° gt % and meromorphically continued to C. It has a simple
pole at each s = —n for n € N and no zeroes, so that 1/I" is holomorphic on C. We
want to check that

1 e —tAP[M]y,s 4
Epls) = F(s)fo Trg (e )t o (5.10)

defines a holomorphic function on the half-plane Re(s) > 3/2 which can be continued
to a meromorphic function on C which is holomorphic at 0. The large-time
convergence of the integral is ensured by the spectral gap for the Laplacian (when
there’s no spectral gap the integral converges only in a half-plane Re(s) < ¢ < 0
and has also to be analytically continued, see [30] or [28]) as we now explain: the
spectral expansion (4.17) applied to the heat kernel yields, for example for p = 1,
the following estimate as t — oo:

Trg e—tAl[M] — Ty (e—tA‘[M]) i e—f("l—nz)zT

disc
where T is bounded as f — +00, whence it follows that Trg e *AM] & ¢=40f where
Ao > 0 is a lower bound for the whole spectrum of all A?[M | (see Proposition 3.1)
as t — oo. Thus we get that for any 7y > 0 the integral ft:oo TrR(e_‘Ap[M])tS%
converges for all s € C. An easy computation moreover yields that

d{ 1 [T dt oo i A
I( f TrR(e_tAp[M])ts—) :[ Trg (e 727 IMN 2 (5.11)
s\ I'(s) Jy, t /o ' t
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To deal with the small-time part we use the following classical lemma.
Lemma 5.6. Let ¢ € CY(0, +00) such that there are integers m,m’ > 0, coeff-

icients ax, k = —m’, ..., m and a continuous function H so that
m
k/2 k/2
i) = t brt™' = log(t H(t
¢()H0k2/(ak + bit*1log(n)) + H (1)
=—m

wirh bo = 0 and H(t) < t™*V/2 near 0. Then for all ty > 0 the integral
F( 3 o % Q(t)? ? converges on the half-plane Re(s) > m’/2 and the holomorphic
function it defines may be meromorphically continued to a function on Re(s) > 1/2

which is regular at 0.

Proof. For a € C the integral j;;“ t@t5=1 dt converges absolutely on Re(s) > o
and defines a meromorphic function on C with a single simple pole at s = —a,
and since 1/T has a zero at 0 and the integral [, O H(t)ts dt/t converges for
Re(s) > —m/2 we get the first part. The formula for the derivative at O follows
from a straightforward computation.

The proof for the terms |, 0 pets—1og() dt is the same except that we get a
double pole at s = «, thus we need to assume by = 0 for the continuation to be
holomorphic at 0 (see also [5, Lemma 9.35]). Ol

It follows from Proposition 5.4 and Lemma 5.6 that we may define the regularised
determinant of the Laplacian by

det g AP[M] := exp({,(0)) (5.12)

and the analytic torsion by

; ) 1
Tie(h) = ( T det (M) "7) " = (det (AW det (s D).
= (5.13)

5.3.2. L2-torsion. The natural candidate to be the limit of finite torsions is the
L?-torsion, cf. [22, Question 13.73]. The following definition does not depend on
to > 0:

@rr- = _tAp[H? !
logT'“(M;V) = ZP( )p( (F()[ Tep ) dt)ro

“+o0 . dt
+ [ Trp (¢ 7*A7 ) 7). (5.14)
t

0

The convergence of the fist integral follows from the asymptotic expansion (5.4); the
large-time convergence is obvious here because the Laplacian on H? with coefficients
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in VV has a spectral gap. We see that log 7'® is a multiple of vol(D) and we denote
by 1@ (V) the constant log(T® (M, V))/ vol(M). This has been computed in all
generality in [4] to yield (1.4).

5.4. Proof of Theorem 5.1.

5.4.1. Plan of proof. We naturally study small and large times separately. We want
first to prove that for any 7o > 0 the following limit holds:

1 d ‘0 Z 3 dt
— f Trg (e *A7IMnl) _Trp, (e7#A7H) )5 — —— 0.
vol(My) ds \ Jo = t oo n—o0
(5.15)

The proof of this is more involved than that of the pointwise convergence of the
traces since we have to control the asymptotics as ¢ — 0 of the heat kernels of M,
as n — oo. We carry it out in 5.4.3 by going to go over the steps of the proof of
Theorem 4.5 with extra care for the dependency in ¢ of the majorations.

We also have to deal with the convergence of the large-time integral as n varies.
What we need are the following limits, which we will prove right away in 5.4.2 below.

+00 Trg (e71A7IMnl) gy
lim (limsup[ —) =L (5.16)
to—>+00 \ nooo Jy, vol(M,,) {
i dt
lim (f Trp (e—fA”[H3])_) =1, (5.17)
l‘()—)OO f() [

Assuming all these limits we can now conclude the proof of Theorem 5.1: the
limit (5.15) above yields for all g > 0

lim sup < lim sup vol(M,) ;

log Tr(M,) —log T@(M,,) ( /+°° Trg (e"2"[Mnl) dt)
n—00 VOl(Mn) n—>o0 f(

)

+
+ f iy (e‘““’“ﬂl:‘])ﬂ
) [
and by (5.16), (5.17) we get that the right-hand side goes to 0 as #p — 400, so that
the limit superior on the left must be 0.

5.4.2. Spectral gap and large times. Obviously (5.17) follows from the converg-
ence of the integral. Now we prove (5.16) using the uniform spectral gap. Let us first
deal with the continuous part. For u € [g, +00) the Maass—Selberg relations (3.9)
for Y = 1 yield

L dllll(iu) .
_(‘I’l(lu) IT 'U’U)Vg = 1T EGu,0) 1241, )

£ %((ll!l(iu) 10, U)VCh — (W (—iu) - v, U)Vg)'
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As W, (iu) is unitary the right-hand side is bounded below by —2¢ 1 and it follows
that 2e™ 11,0 — Wy (iu)~! —lya’,% is positive when |u| > &; in particular,
C

>0

e (28_1 Lyin — ‘Pl(iu)_lw)

du

u

. —fal s
and since for ¢ > 1 we have e ™" < ™™ we get:

iy .1 dVY(iu)
— tr| W —)d
flulze e r( 1(iu) " u
— 26 1, dim(V) e dy + f E(u)e ™ du
[u|=e |u|>¢

< —2¢ Y, dim(V) eV du + f Ew)e™ du
lu|>e lul=e

= (28‘1 dim(V') e du)h,, - f e tr (wl(m)—‘w) du.
lu|>¢ lu>e du

We put

(5.18)

C = (28_1 dim(V) eV du),
lu|=e

recall from (3.2) that /2 + Ay > (ny — n»)? for all / under consideration here, so
that e~ +20)t < o=(11=n2)*(=1 =2 +2v): from the last line of (5.18) we get:

—f e~ WAHI AV (\111 (iu)! —dq}l (iu)) du < Chne_("‘*"z)zt
|u|>e

du
—e_(”‘_"z)z(’_l)[ e~ WP HAY) ¢ (‘Ilz(iu)_]—d%(m))du. (5.19)
[qu du
Since a,, > tr ¥, (iu)_ld—q’é—l(ji) we also have
Unp A _ldllll(iu)
tr{ ———1 0, — VY (iu)” ——— | >0
(h,, dimV Ve 1(u) du -

and we obtain in the same way

d W, (i
— j el gy (\Ill (iu)~? —I—(LLQ) du
jul<e du
dV, (i
171(”[)) du.

< Clilyy— f et (lllg(iu)_ (5.20)
|u5£ du
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Since tr W; (0) < d;h, for all /, we also have

3 et 1wy (0) < dim(V )by + ¢TI N =AY g (0),

[ [
(5.21)

Now let Ay be the lower bound on the spectra of all (A?[Mp])aisc given by Proposi-
tion 3.1; we may suppose Ag < (17, —n,)>. We have

Tr (¢ 1A 1M))

—tAP[My,

< g —Ag(t—1) Tr(e—Ap[Mn])

disc — disc

and since Trg e 1 is the sum of this with the terms on the right-hand side of
(5.19), (5.20), and (5.21) we finally obtain:

Trgr e 1A Mn] < e—lo(!—l)TrR o AIMn] g 0(€—t(n1—"2)2(an e hn))

from which follows:

1 Foe dt
w0 (Lo [ T )
n VO](MH) 115 t

AP
_ /‘+OO e—l(}(t—l)ﬁ - sup TrR e AP [M,] 0(an + hn) '
i I n vol(My,) vol(Mp,)

By Theorem 4.5, Lemma 2.7 and the hypothesis on @, we have the right-hand side
above is bounded in # and goes uniformly to 0 as 7y — oo.

5.4.3. Small times. To deal with the small-time part we analyse each of the terms
in (5.3). Recall that for j = 1,..., h, we have put A, ; = (I'y) p, and

= dp  w(l+2loga(A,,))
o — POES |
, VO](An,j)

)

Then we get that

Trg e tA7Mn] _ Ty o~tAPIHE] f Z tr y*e_tAp[H3](x, yx)dx
n D,
Y€(mox

+00 hn +00
+ 27rhnf rlog(r)h? (L(r)) dr + E Kn,j vol(An,j)[ rh? (L(r))dr
0 . 0
F=l
= T] + Tp_.

By the estimates from Theorem 5.2 we have

s dt

d fo d()c,yx)2
—([ Tyt f) <<f f - dxt”
dS 0 " !

Y €(Cniox

Nlm
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0 _awyn? 5t
[n ([t
M, 0 !

Y€(n)10x

and the right-hand side is an o(vol M,,) by Lemma 4.6.
Now we deal with T5; put:

110) +oo dt
E(s) = / f rlog(r)hf (L(r)) drt* —
o Jo

to +oo dt
Os) = [ / rh? ((r))drt* -
o Jo

It follows from (5.8) and Lemma 5.6 that &, ® extend to meromorphic functions
on C which are holomorphic at 0 and we get

(5.22)

hn

d ( (P dt dE d©
= . :2 n-— . n‘ lAn - .
dS( fo Tt t)szo mhn—- (0)+(Zf<,]vo( ,J)) (0

j=1

On the other hand we have seen that Z?”Zl kn,j VOI(Ay, ;) = o(vol M) in the proof
of Theorem 4.5, and &, = o(vol M) by Lemma 2.7, so that the right-hand side itself
is o(vol M,,), which concludes the proof.

6. The asymptotic Cheeger—Miiller equality: statement

In this section we recall the definition of absolute analytic torsion for manifolds with
boundary and we give the scheme of proof for the following theorem. The actual
work is done in Sections 7 and 8 below.

Theorem 6.1. Let V be a strongly acyclic representation of G and M,, = T',\H?
a sequence of finite-volume hyperbolic three-manifolds satisfying the conditions of
Theorem 5.1, with (4.19) replaced by the stronger condition that we have

hn

M)z vol(M,,)
; (az(/\j,n) < (log(vol Mn))ZO' (6.1)

Then for
1
vol(M,,) 10
17 = (i tna) e
Zj:l o1 (A j)?

the following limit holds:

log TR(M,: V) —log Tabs(MnYni V)
vol(M,,) n—00

0. 6.2)



504 J. Raimbault CMH

Once we accept this result we can deduce an asymptotic equality between
regularised torsion and a combinatorial absolute torsion that we will define in (6.5)
below. The other important ingredient for this is the generalisation by Briining and
Ma [11] of the Cheeger—Miiller equality to the case of flat bundles on manifolds with
boundary.

Theorem 6.2. Notations as above, we have the limit

log Tr(My; V) —log s (MY V)
VO](MH) n—>00

0. (6.3)

6.1. Absolute torsions.

6.1.1. Analytic torsion. Let X be a compact Riemannian manifold with boundary
and V a real flat vector bundle on X with a Euclidean metric. Then the space
QP(X; V) of smooth p-forms on X with coefficients in V is operated upon by the
Hodge Laplacian A?[X]. The restriction of A?[X] to the forms satisfying absolute
conditions on the boundary (i.e. the boundary restrictions of * f and xdf are zero,
where * is the Hodge star) admits an essentially autoadjoint extension AdbS to the space
L2QP(X; V) of square-integrable p-forms. We thus may form the associated heat
kernel e ~*2s!X1 which is the convolution by a smooth kernel e 1A X1 (-,-), is trace-
class and has an asymptotic expansion Tr(e™ tAah»[X]) = ast™ JERRT ap + O(t%)
as t — 0 (cf. [16, Theorem 1.11.4]). On the other hand the spectrum of A% [X] is
discrete and thus we have an estimate

abs

Tr (e_’A'ﬁ“[X]) dim ker (Aﬁ)s[X]) K e M
where A, is its smallest positive eigenvalue. Thus the zeta function

o[t —tAR X1\ _ g p s dt
Epans(s) = =—— (Tr (e7" !ty — dimker (AL [X]))* —
’ F(S) 0 !
is well-defined for Re(s) > 3/2 and may be extended to a meromorphic function
on C which is holomorphic at 0. One then defines det(A5 [X]) = exp() s (0))

and
dim X 1

Tuos (X V) = ( H det (A%, [x1)T"" ”)

6.1.2. Reidemeister torsion. We will use a definition of Reidemeister torsion der-
ived from that given in [11]. In this reference the authors define two norms on the

determinant line

D = ®d1mX bp HP(X,V)
(where b, = dim H?(X; V)): one, that we will denote by ||-|| 2, which is induced by
the L 2-norms obtained by identifying H 7 (X; V) = ker AZ _[X]and another, ||| combs

abs
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obtained from a smooth triangulation of X. The Reidemeister torsion is then the
positive real number defined by

1~ Heoms
a3 V) = S
L

which does not depend on the triangulation. In [11, (0.11)] the authors compute the
difference log 7, — log Ty in terms of the geometry of the boundary; we will only
use the special case of their result (cf. (0.14) in loc. cit.) which states that

log(2)

log Tuns (X3 V) — log Tans (X5 V) = dim(V) x (9X) (6.4)

when the metric is a product near the boundary.
Now suppose that ; (X) preserves a lattice 1z in V; we can then define the
integral homology H.(X; Vz) and we have a decomposition

Hp(X; VZ) — Hp(X; VZ)free 5P Hp(X; VZ)[()rs-

The free part H (X ; V7z)ree is a lattice in ker(AZ [X]) so we can define its covolume
vol(H ,(X; Vz)iree). We then have, more or less tautologically (see [13, Section 1]):

dim X —1)?
= ( |Hp(X;VZ)t()rs| )( .

abs (X3 V) =
Tabs (X5 V) ﬂ) VOl(H p (X ; V) free)

(6.5)

by evaluating the norms on a basis of D coming from bases of the free Z-module
HP(X; VZ)free-

6.2. Comparing analytic torsions. We give here the proof of Theorem 6.1 assum-
ing the content of Sections 7 and 8 (note that the condition (6.1) is not used until
Section 8). We have

log Tr(Mp; V) — log Ty (M, " V)

3 o "
= Z p(_])P i( : f (TI'R e_tAp[Mn] — Tl'e_tAgvs[Mny ])fs ﬁ)
1 ds \I'(s) Jo t ).y

+oco “+oc
+ f Trg e_':M[M"]ﬂ - f Tr e~ BamlMY "] o
) t to t

d 1 fo dt
S h, My )
+ds(r(s>fo ?\Mpi V) t)szo

The first line is an o(vol M) for any ¢y > 0 according to Proposition 7.1, the limit
superior of the second one goes to 0 as fp — +o0o according to Proposition 8.1
and (5.16). The third lines equals %, times a constant and thus it is also negligible
before vol(M,,). Thus the right-hand side is an o(vol M},).
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6.3. Applying Briining and Ma’s result. We now give the proof of Theorem 6.2.
For a finite-volume hyperbolic manifold M let go be the hyperbolic metric on MY
and g, a Riemannian metric on MY which equals go on MY/3 and is a product on a
neighbourhood of the boundary, for example we can take (in coordinates (z, y) in a
cusp):

g1(z,y) = (¥ Uog(Y/y)Y 2 + (1 — ¢ (log(Y/y))y ?)(dz” + dy?)

where v is a smooth function which is zero on [1, +0c0) and constant equal to 1 near
zero. we put g, = ugy + (1 —u)go which is a smooth family of Riemannian metrics
on MY . The following result is well known (see also [10, Section 4] which gives an
exact formula for the error term).

Lemma 6.3. There exists smooth functions c,(u) depending only on  such that we
have, for all M and Y € [1, +00)":
J 3
- (log Tup (MY, ) — log T (M ™', ) = vol(OMY) 3 7 p(—1)7ep(w).
p=0
Proof. This follows at once from [26, Theorem 2.22] (see also [13, Theorem 3.27])

since the isometry class of the germ of g, on the boundary BMnY does not depend
onnorY. []

On the other hand, by [11, Theorem 0.1] (see (6.4)) we get that 7T ( MY, ¢)) =
Tans(M Y, g1) so that
log Tuns (M) —log T (M ™) vol(3M ")
vol(M) ~ vol(M)

1 3
[ S e ©6
0 p=1

Now we apply this to the heights Y”"; we have:

hn
vol(@M,]") < Y (Y e (An,j)ta(An,j)
j=1
hy hp
_ Z a1(An,j) ) az2(An,j) < (051(/’\111,1')) ] Z a2(Ap,j)
= (YJ’.’)2 a1(An,j) ~ j=l,shn (Yj )? o o1(An,j)

and the right-hand side is an o(vol M,) since on the one hand we have

Z?": { z?&ﬁj ; = o(vol M,) by the hypothesis that (4.19) holds and on the other

.....

n — +o00. Thus it follows from (6.6) that
lOg Tabs(MnYn; V) - lOg Tabs(MnYn; V)
VOl(M,,) n—-o00
which finishes the proof of Theorem 6.2

0,
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7. The asymptotic Cheeger-Miiller equality: the small-time part
The aim of this section is to prove the following result, which is an immediate

consequence of Propositions 7.4 and 7.5 below.

Proposition 7.1. For the sequence Y" defined in Theorem 6.1 we have for any ty > 0
the limit

L (i J3 (Trp e A7 M) — Ty o #AGIMA 1)1 41)

i t J5=0 -0
n—00 vol(M,,) '

7.1. Heat kernels on truncated hyperbolic manifolds. Let M = I'\H> be a com-
plete hyperbolic manifold with cusps y1,. .., y, asetof I'-invariant height functions.
Then for ¥ €1, —l—oo[h the set

Y —fx el Vj=1,....h:y;(x) <Y;}

is the universal cover of MY . The following generalisation of Proposition 5.2 to this
context will be proved in Appendix A (as in Section 2 we use ¢ to denote the Margulis
constant of H?).

Proposition 7.2. Let M be a hyperbolic manifold with h cusps and Y € [1, -I-oo[h
such that for all peripheral subgroups A of wi(M) there is a vector in A which has
a displacement less than ¢/10 on the relevant horosphere at height Y. Then for all
to > 0 there is a C > 0 such that for all t €]0, ty] we have that

—tAP [ d(x.y)?

e AR (¢ )| < Cr3em T

This implies that the series in the following expansion for the heat kernel converges
uniformly on compact sets of MY :

AP Y AP AmqgY
e~ Bl y) = ) yreT BN, yy). (7.1)
yel

7.2. A useful estimate. The following proposition is the starting point for the proof of
Theorem 6.1; note that the fact that min;—;__p, (Y}‘ Ja1(Ay,j)) —— +oo implies
n—00

that for n large enough the heights Y" satisfy the assumption of Proposition 7.2.

Proposition 7.3. Let M, be as in the statement of Theorem 6.1 and put:

d(x yx)2
S(n,1,Y) _er Y e dx.

yely, y#1
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Then for all ty > 0 the function Q2 defined by Q(s) = t(’ S(n,t, Y)ts_'_ dt. i
holomorphic on C and there is a sequence Y" € [1, +o0[™ .such that

. n .
J:Tln,hn(yj /al (Af’l,j_)) m +OO

d [ 3 Sy di
(r( ') 2 ))s:() _,/() ' vol(M,,) 't n—ooo 0.

More precisely, we can take:

1
vol(M,,) v
an - (Ehn OEZ(AH.,/)Z) . al(An’j).

J=1 al(An.j)z

and we have:

Proof. Let Y € [1,4o0[?. Recall that By ; = By, ; and B{’j = BX{” were

defined in (4.8). Let R, ; be the union of pieces of horoballs y (B, ; — B,ijj) N By, j
for y & I'p,. Separating unipotent and loxodromic elements we obtain as in (4.9) the
equality:

S(n.1,Y) = Z f 3 s

s ’ neAp, j—{0}
hll

d(x nx) _dxyx)?
) D DR et AT D Di o gt ®
—_MY
Jj=1 "j UeAnj —{0} M=M YE(Tn)ox
and we put:
_d(x. yx)2 _d(x.yx)2
lef Z dx, TZ—Zf Z e 50 dx,
MY
M—MY (T Vox Rni nen, j—{0}
n
_d(x.nx)2
T3 = Z] Z e~ 5t dx.
B J
J=1 n.Jj neh, ; —{0}

The term 77 is dealt with exactly as the similar term 77 in 5.4.3. The term 73 is
dealt with similarly to /5 in (4.7) in the proof of Proposition 4.2 (taking into account
the integral over 1).

We deal with the more delicate term 75 cusp by cusp: put

_d(.r.nx)z
S —/ E e st dx,

. ] nEAn J —{0}
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then we have:

5 _vol(AnJ)/ [ e ANy (r)d—);
Ol](A y

n,)

1(A 2 d
_ Yolt ’”)/ f e Nn*j(ry)dr—);.
a1 (A )]y dr ’ y

By Lemma 2.2 we have N i) < Vul((r K) 5t zfgﬁ” 1) where the constant

does not depend on n, j. It follows that

2 d
S<<f f ”)dr—yzz
T

Y; A r d
+ vol(A, J)[ f OQ(A” ) 4 4 T3 ()
e (An )y @ ( ,J) y3

We deal with the first line now. We split the integration between r > 2 and
a1(An,j)/y < r < 2. When r > 2 it follows from Lemma 2.1 that £(r) > logr
and we obtain:

e E(r) dy _sdt 0 (1052)2
f f [ N r—yt_i— <<[ e_l%ﬁ't logY;t™
y l 0

<L logY;.

Nl\f'l

3 dt
¢ (13)

On the other hand, when r € [0, 2] we have £(r) > cr for some ¢ > 0 and thus:

o p¥s 2 en? dy _s5dt
f f f r2e” 5t dr _y 32
o Jo Jai(an )/ ¢

f [ (al(/\,,,)/v)zt_% ﬂ a’_y
ry
dt *d
[ / ~dry %#) @
A al(An,j) Yy
< 4 )5
Oll(A ,])

For the second line of (7.2) we have the majoration

A 2 d
VOl(A j_])[ [ a2(Aﬂ J) A t) dr _)3/'
(A )y 21( ,J) y

Y; +o0 50
< O‘Z(An,j)zf If 6_15(571) drd_y

3
a1 (Ay )]y y
az(An,j )2 (1 (A )/ Y )

< 2 ¢t
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and it follows as in (7.4) above that

A r)2 d dt
[ VOl(/\n j)[ / aZ( " ]) 6(53 dr —yt_7 —
0 a1 (An )y 9@1(An ,1) y3 f

C‘fz(/\-rz,j)2 ( Yj )3
: (15
< O51(/\n,j)2 . al(An,j) (7.2)

Putting (7.2), (7.3), (7.4), and (7.5) together and summing over the cusps we obtain:

RN P Y, \  aa(Aa)? ¥
8:— & (10gY-+(—J) + Ba x( ¢ ) )
]0 ]Z:; Tt ]Xz:l T \ai(An) a1 (An,)?  \ai(An,j)
(7.6)
We now define 1
( vol(M,) )m
an —
hy aZ(An,_')Z
Zi:l ozl(f\n,;')2
so that @, tends to infinity, and put
Y}g = C!](An,j) X ady (7.7)

$o that
min (aI(AnJ)/Y;’) =a,! — 0.
J

n—00

We let S}’ be S for Y = Y. From (7.6) above we finally get that:

to Z} S" dl
0 VOl(M ) t
hy

1 oz (Ay ')2
I 1 1 A, 5 3, 78V RS
< vol(M,) ]ZZI ( oga, + log(o( n,J)) +a, +a, Oll(An,j)z

hn  @2(An )\ &
_ log(vol M,,) N Z’;":l log a1 (Ay,;) N hy 5 N 2ty C!](An,,Jj)z h
~  vol(M,) vol(Mp,) vol(M,) vol(M,) '

The second summand is o(vol M,) because of the condition (4.18) on the height
functions, the third by Lemma 2.7 and the last one by condition (4.19). L]
7.3. Comparisons. In this subsection we will abbreviate:

TryK:/ tr K(x,x)dx
MY

for a continuous kernel K on a complete hyperbolic manifold M.
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Proposition 7.4. Letty > 0, p = 1,2,3 and Y" the sequence from Proposition 7.3.
We have

h—>00

(7.8)

1 i fm (Tr (e—IAP[Mn])_Tr( —tA;’:,;[MnY”]))tS ﬂ 0
vol(My) ds\T(s) J, 1 t ). '

Proof. From (7.1) it follows that
Tryn (e A7 Mnl) _ Tp (e~ AGIM )

= [ v tr (e*fA[]HIB](x’x) _ e—tAg,s[MnY ](x, x)) dx
D,

—tA”[]HI3]
+ anYN Z tr (e (x,yx))dx

yely—{1}
oG | MY”]
e Tl o)
yely—{1}
= FE1+ E; + E;.
In the case all M,, are covers of a glven orbifold M and all Yj'-’, j=1,...,hy

are equal the manifolds M ne are equal to M Yok , so that the first summand

d 4]
—(r(s)—1 f Byt dt)
dS 0 =0

vol(M,,) - (log TP (M; V) — log TOMY", V).

abs

is equal to

We will now use the method of Liick and Schick in [23] to study this. Note that
in loc. cit. these authors deal only with trivial coefficients. On the other hand, once
the estimates in their Theorem 2.26 are established the proof works in all cases. The
proof given in loc. cit. for this result likely adapts to unimodular coefficients; but
since we need the results only for manifolds of the form MY , in this case their result
can be deduced from (A.3) in the appendix. It is proven in [23, Section 2] that

log T@M; V) —log T® (MY ; V) — 0. (7.9)

abs allY ; —o0

In this case we finally get

d —1 ftu Et* i —> 0 (7.10)
_ _ 1 .
ds F(S) 0 ) I §=0 n—00

We can also adapt the argument of Liick and Schick to our general situation, as we
now explain. Their key result is Proposition 2.37, and to prove it they separate the left-
hand side of (7.10) into seven summands sy, ...,s7. Let ¥, = min; Y}'; fori # 4
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they get by straightforward arguments the bounds (caveat: their parametrisation of
the cusps is by arclength in the y direction, so their statements are different in form):

511 < vol(Mp)e (B o] <& vol (My, — M/™"),
s3] < vol (M, — MY"/?),
s5 =0, |sg| < vol (Mg —M,"), |s7] < vol (BMHYH),

and as ¥, — +oo0 and min; (Y} /a1 (Ap,j)) — +oo all the terms of the right-hand
sides above are o(vol M,,). The argument for s4 is more involved: they subdivide it
into 541, $42, S43 and they prove that

|sa1], [sa2] < vol (M — MY"12),  |sas| < e 28 Y% vol (3M,))
and the terms on the right in both majorations are o(vol M},), which finishes the proof

of (7.10).
To finish the proof we observe that Propositions 5.2 and 7.2 yield the bounds

tr (e_’Ap[H3](x, yx)), tr (e'mﬁ’s[ﬁy](x, yx)) < §O/2 g dlnpe)/5s

where the constant does not depend on (large enough, see the remark before
Proposition 7.3) Y, so that we have in the notation of Proposition 7.3 the inequality
E>, E3 < S(n,t, Y") and we get

d 1 1o
—(—[ E;#°1 dz) 50
ds\I'(s) Jo g N0

fori = 2,3, which finishes the proof of the proposition. []

Proposition 7.5. Let Y" be the sequence from Proposition 7.3, then we have

1 d 1 o dt
— f (TI‘R e tATIMn] _ Tryn e_tAp[M”])ls — — 0.
vol(M,) ds \ I"(s) Jo t ) g n00
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Proof. From the explicit expression of the o(1) terms in (4.15) and (4.9) we get for
any ¢ € A(R) and Y € [1, +o0):

hn +o0
Try ¢(AP[M,]) — Trr ¢ (AP [M,]) = ZanogY/ rhjy(L(r))dr

+o0

hn +o00 dp
+Y vol(An,j)fO rhg. p(£(r)) Ea, (p)p—3 dr
j=1

max(a1 (A ;)Y ;)

hn +oo | )
+ Zvol(An 1)/ ( Y )2 ———hg p(l(r))dr (7.11)

+ Z [ tr (y*e_’Al)[H3](x, yx)) dx

AJ yel'— A,

We want to study the right-hand side with Y = Y". The last line can be dealt with as
the term 77 in 5.4.3, using Lemma 2.4 instead of (2.9); we will not repeat the proof
here. We put:

hn +00
— Z 2 log Y/ f rh? (e(r)) dr,
=1 0
hn +oc F
Ty = Zvol(/\,, J)[ - yn)zj hf(L(r))dr,
j=1

+o00

hn +o0 d,O
= E V()](An,j)[ rh{’(f("))[ En, ;(p)— dr
=1 0 P

max(al(An_j),rY;I)

We deal first with 77; recall that ® was defined in (5.22) so that

d( 1 [  di < de
e 1) =3 27l0g Y75 (0
ds(l’(.s')j(; U )SZO ng TI0g T a’s( )

and by the definition (7.7) of the sequence Y" the right-hand side is an

hn
O ( log(vol M) + Z logal(An,j)),

Fe=1

which is itself an o(vol M,) by the assumption (4.18).
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Next we deal with 75. We have:

hn

d fo dt d i
— Tht' — = —
w7 s (R

1

OII(An )/Y dt
Jr/ U @y dr e —)
0

s=0

’ ”” YD) iy ar
f [I(A,,,)/Yn vol(A, ,])W ; (L(r)) rT. (7.12)

As in the proof of Proposition 7.3 we get that the second line is bounded by
h
n A 2 yn 3
3 (1 + L’”)z) x (_-J—) , (7.13)
=1 al(An,j) al(An,j)

which we sam there to be an o(vol M,,). The first line needs analytic continuation;
recall the asymptotic expansion (5.6):

—k

HOE Zb”w)e—“s— 7 4 0(

D=
N

~

The term associated to the O(t%) is easily seen to be bounded by /,: indeed,
s> [0 15712 dt is regular at s = 0 and we get that

d to hn ai(Ap /Y] dt hn A ) d )
—(/ Z[ (315 —) :Z—_—al( :’1)—(f zs—%dr)
ds 0 i=1 0 t =) - Yj ds 0

j=1
= o(hy)
(7.14)
since a1 (An,;)/ Y] = o(1).
Fork = 0,...,3 we have:
al(An,_i)/Y
/ bp(ﬁ(r))e dr
0
al(An,j)/Y
= [ hp(ﬁ(r))e 5 dr
v : (7.15)
=1 b (E(r))e 5 dr —[ bp(fé(r))e 5 dr.
0 1(A, j)/Y
We have:
1 (Mg /Y2
f bp(ﬁ(r))e . dr Le cr, (7.16)
al(An._j)/Y
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and moreover (5.8) yields the expansion

1 2 m
f b (E(r)e™ 5 dr =Y el (7.17)
0

=2

with coefficients ¢; not depending on n, j. It follows from (7.15), (7.16), and (7.17)
that:

fan(An,j)/Yj-’ 3 2 m o 1 (@1 (A )/ Y2
0

N bPre o dr=n Y e’ 4 o(e—T)

(7.18)
Gathering (7.12), (7.13), (7.14), and (7.18) we get:

d 1 fo dt
o (—m)/o > t)s=o &L hn +o( n)
3 hy ty (] (A, j)/y;'!)z k dt
3

+ZZ] o E

The third summand on the right is dealt with as in the proof of Proposition 7.3: for
k = 1,2,3 we have

o (A, )/YDE gy Yj" ko ptoo _1/Ct.—k dt
f g~ @t = f gl —=L [ T e
0 14 Cfl(An,j) 0 {

and fork =0

(7.19)

yh

o @ (A /YD ] e LY dt
/ e_ o’ J T _ / n,J e—I/Ct T << lOg(YJn/Cfl(An,j))
0 0

so that we finally obtain

to 3
ds(r‘(e)f Tt _)sz <<Z(a1(An,)) (7:20)

which is an o(vol M) asn — oo for ¥ = Y. We can finally conclude from (7.19)

and (7.20) that
P (F(s) / Tht* —) = o(vol My).

The summand T3 is dealt with in a similar manner. For any n > 1 and j =
., hy, we put

+00

dp
K’ = vol(Ap, ;) Ep, ;(p)—=
max(a;(AnJ),rY}’) Y
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We have seen in the proof of Theorem 4.5 that &, < (z?&” ’)) (uniformly in r)

and we get

+00 +o0 dp
vol(/\n,j)j(; rhtp(E(r))f Ep, ;(p) Edr

max (¢ | (An.,-),rYj’-’)

a1 (A )Y +o0
= K f rh? (€(r)) dr + K [ rh? (€(r)) dr
0 ()!](A,“j)/YJ’-?

1 @A YD (A )\
=« | rh{((r))dr + O(t_ge_“' (#) )
4 [0 ! al(An,j)

where to obtain the last line from the second we used the same arguments as to deal
with the term (7.15) for the first summand, and we applied arguments from the proof
of Proposition 7.3 to the second.

Thus, we have

d{ 1 [  di L A\
"__( [ T3ts _) <<Z(a2( ”l]))
ds \I'(s) Jo t Je—n e ar(An,j)
a2 (Ay ,)) ["‘0 T oy i
+ 2 e Ct 1
Z(al(/\n])

and we have already proved that the right-hand side is an o(vol M,,), which concludes
the proof. L]

N[a)

3 dt
t

8. The asymptotic Cheeger—Miiller equality: the large-time part

We will give here a proof of the following result.
Proposition 8.1. For the sequence Y" from Proposition 7.4 we have that

sup ¥/‘+OO(Tr( ’Aﬁ.s[M,f"]) dim ker A% [MY”])dt
vol(M},) — t

n
is finite and goes to 0 as ty — 0.
The main point in the proof of Proposition 8.1 is that for the sequence Y " of

Proposition 7.3 there is a uniform spectral gap for the manifolds MnY": the proof of
the following statement will take up most of this section.

Proposition 8.2. There is a A1 > 0 depending only on V such that for n large enough
and any p-form f € Q db,,(MnYn; V') which is orthogonal to harmonic forms we have

(AP](; f)Lz(M,fn)

> A1.
“f“LZ(MJ”)
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Proof of Proposition 8.1. We proceed as in 5.4.2 above, but have to check that both
properties of the heat kernel used there still hold for MY ". Namely we need to check
that:

(1) There is a A; > 0 such that for any n and any eigenvalue A > 0 of A% [MnY"]
we have A > A;.

(2) The sequence Tr e‘Ag’s[MﬂYn]) is bounded.
q

Point (1) is a direct consequence of Proposition 8.2 below, and we deduce (2) from
the following more precise result: for any given ¢ > 0 we have in fact the limit

n
Tr (e~ A M) "]

lim — Trp (e tA7H, 8.1
n—>00 V()l(Mn) r ( ) ( )
Indeed, we see that
T (et 2001 1) — T (o470
vol(Mp)
& 1T, L A B e L TR I 20
vol(M),) vol(My)

The proof of Proposition 7.3 yields that S(n,t,Y") = o(vol M) and that of
Proposition 7.4 that the first summand also goes to 0 as n — oo. 0

8.1. Preliminaries to the proof of Proposition 8.2.

8.1.1. Comparisons of eigenfunctions with the constant term. We will make
intensive use of the following inequality: there are constants C, ¢ such that for any
finite-volume manifold M with A cusps and height functions at each of them and
forall Y e [1,4oo[", if f € Qa’gs(MY; /) is an eigenform of eigenvalue A and

Y;/a1(Aj) > C+/Aforall j then

yjix)

| f(x) = fp,(x)] < |_f|L29p(My;V)e“’al<An,f> forallx e M — MY. (8.2

This is a refined version of [12, (6.2.1.3)], and it follows from the proof of the
latter: the only difference in our statement is in the explicit constant ¢ /a1 (A ;) in
the exponential which replaces the by in loc. cit.. This constant by comes from the
estimate of Fourier expansions and equals the systole of the dual lattice of A ;, which
is easily seen to be equal to a1 (A ;).
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8.1.2. Spectral gap of submanifolds. Let us set up notation for the next result:
we will denote by X, g a complete Riemannian manifold, by N an open subset
of X with smooth boundary and by £ a flat bundle on X. We suppose that the
I-neighbourhood W of dN in X is a collar neighbourhood which we parametrise as
W = [—1, 1] x dN; this is satisfied for X = M a finite-volume hyperbolic manifold
and N = MY,Y > 3.

Lemma 8.3. Suppose that the spectrum of AP[X ] is bounded below by some Ay > 0,
and let | € QF (N; E) be a co-closed form such that

abs

W Ragysy 1 )
—— 2 < —min(l,4q9), W~ =09dN x[-1,0].

1122y 10

Then the Rayleigh quotient

(ALJINTE £ 2w _ 14/ 1172y
LA 2 ) LANZ 2,

is bounded below by Ay /4.

Proof. Let h be a smooth function with value 0 on (=00, 0] and 1 on [1, +00), and
0 < h' < 2. Define a smooth p-form f on X by

f(x) xeN-W—;
F) = {h(d(x,0N) f(x) xeW™;
0 xe X —N.

Then, putting y(x) = d(x, dN), we get that df = W (y)dy A f+h(y)df, whence
it follows that

||df||iZ(X) = 2”d.f||iZ(N) + 4||f||iZ(W—)-

On the other hand, we have that
12 2 2 2 9
”f”LZ(X) i ”f“L2(N—W—) = ”f “L2(N) - ”f”LZ(Wf) =t E”f”Lz(N)

and it follows that

47 oy _ N7 W0y 1 oy
20— 20 gy 1 By

9 147113 2o _ 5
> MO 220 2, /4. 0
20 I £ 112 10 Z0
5 LZ(X)
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8.1.3. Eigenvalues don’t jump. We will need the following weak continuity result
for the spectrum which follows from [5, Lemma 9.9 and Proposition 9.10(2)] but
can also easily be proven using the min-max principle or more powerful continuity
properties of spectra for families of operators.

Lemma 8.4. Suppose that N is a compact smooth manifold and g,,u € [0,1] a
smooth family of Riemannian metrics on N. Let AP[gy,] be the Hodge Laplace
operator on forms with values in a flat Hermitian bundle over N (and absolute
boundary conditions) and suppose that there are 0 < a < b such that:

o forallu € [0, 1] there is no eigenvalue of AP[g,] in [a,b];
o for some uq € [0, 1] there is no eigenvalue of AP[g,,] in]0,b].

Then there is no eigenvalue of AP |[gy] in |0, b] for any u € [0, 1].
8.2. Proof of Proposition 8.2.

8.2.1. Outline. Recall that Ay > 0 denotes a lower bound for the spectrum of
AP[M,]; in the sequel we will suppose that n; > n, (the symmetric case can be
dealt with with similar arguments). We will prove that there is a 0 < A; < A¢/4
such that the two following claims hold:

(1) There are A; > & > 0 such that for n large enough there is no eigenvalue of
AP[MX]in]e, Aq[forall T € [1, +o0o[? such that V j, T; =Y/,

(2) For any n and Y large enough there is no eigenvalue of A;ﬁ)s[MnT] in ]0, A4¢].
The proposition then follows by application of lemma 8.4.

Here is a quick outline of the proof of both points before embarking on the formal
demonstration: the idea in both cases is that if we have an absolute eigenform which
violates the claim, then either (for (1)) it will also violate Lemma 8.3 or (for (2)) we
can modify it by an harmonic form to construct a function which violates the same
lemma. In both cases we compute norms of constant terms in the cusps and use (8.2)
to compare them to the norm of our eigenfunctions. Let us remark once more that

this proof is very much inspired from [12, Section 6.9].

8.2.2. Proof of (1). We will work in what follows with an hyperbolic manifold M
with / cusps and Y € [1, 4+o0[”, and apply our computations to M, and Y only at
the end.

Suppose that f isa p-eigenform with coeflicients in V' and eigenvalue in |0, A /4].
For notational ease we will suppose that there are s € R, integers [,k and
w, 0 € QYW i), @, € Q™ (W_;_x) such that

143 -5 1-§ _ 1+5 _
fp;=y; loj+y; oty Coj+y; o] (8.3)
(here is an outline as to how to adapt the arguments below to the case where the
constant terms of f are not purely of the form (8.3): then they are a linear combination
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of such, and since the components are pointwise orthogonal the computations of
L?-norms below carry over to this case; the reader will see that this is sufficient for
the whole proof to work with a very few cosmetic alterations). Moreover we may (by
symmetry) take s > 0, and since the Laplace eigenvalues are bounded away from O
on the imaginary line we may actually suppose that s is bounded away from 0 (by a
constant depending only on V). Now the idea is that because of absolute boundary
conditions, the dominant term in (8.3) far in the cusp will be yjl-_s/za);- + yjl._s/zéj
unless the eigenvalue is very small, and this is concentrated away from the boundary
of MY, contradicting Lemma 8.3.

Absolute boundary conditions have to be satisfied by all fp, as well as by [ we
can make them explicit by taking the differential of (8.3) using (3.3) and we get that

(s +1— k)Y;/za)j — (s =1+ k)YJ_‘S/zw;. — 1
=—(s+1-kY;"5; + (s -1 + bY@

since both the (1, 0)-part (on the left above) and the (0, 1)-part (on the right) of the
contraction of dfp with the normal vector d/dy; have to be zero. We can rewrite
this as

, s+1—k s—14+k

Now leta > 0 and Y’ < Y/2 be such that a1 (A ;)/ Y] < a for all j; we have

”f”iZ(MY) = ll,flliZ(MY_MY/)
. . . (8.5)
s E”'fP“LZ(My—MY,) o ”f - .fP ||L2(MY_MY’);

by (8.2) we have:

IF — Foll o —arsss, Sf e =m0 O AD g £l 2earry
MY_MY’

< e G/ D yor MY — MYy f 2y
and it follows from (8.5) that:

12 pgry = (1/2 = €M T/ O yol (M)~ - | 2| (8.6)

2
LZ(MY_MY’)'
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We now give a lower bound for the norm of the constant term on MY — MY "
This is computed as follows, using (8.4) to rewrite (8.3):

” .fP ”iZ(MY—MY')
h

2
_2 H’% s+l_ks12 12
- ]MY_MY’ (y] l+kYJ yJ lel
s—1+k 1+5 s 15\ 1o
+fMY_MY' (m yi Yy ;1

hooy, ‘ iy
— s S+I—k -3 ,
N Zf' (y z_myjy ) —5l@;|* vol(A ;)

J=1""
Yirs—1+k 148 L 2dy ,
+/I;j (Y—l—l——ky 2—!—YJ%“y 2) F"”H vol(A ;)
I s+1-k\*
=2\ o) Y Fiy= 8.7
S;(J (¥;) (s—l+k) J( — %) ) (8.7)
s+1—k
ey L ,)"”J'ZVOHAJ)
solvk ’ o ) NS
L e K ke g R R e 61
s—l-i—k
RS ) 2 _
+28S_|_l PR )I |“ vol(A ;)

and we finally deduce that when (Y, /Y}) > 1 we have:

1o s >>ZYS( ) (o712 + 1@, P) vol(A ), (8

where the constant depends only on V and s — [ 4+ k, s + [ — k (it is bounded away
from O when the latter two are).

It remains to give an upper bound for the norm near the boundary; we have:

”f”LZ(MY MY/3)y = 2||fP||L2(MY MY/3) - 2” f fP”Lz(MY_MY/B)
<2l fpllL2ay —mrr3)
+ 2¢7¢minj Wi/ (A3D) yo1 (M) - I/ N L2 arry-
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As in (8.7) we can compute the norm of the constant term:

h

1 s+1—k
/P ||7Lz(My_My') =3 Z (“Yf +bY; + 2me 10:‘%(3))|0)j|Z vol(A ;)
j=1
s —1+k _

s+l—k\2 s ’ = 2 ]
wherea = 1 — (2/3)%, b = (SH5)°((3/2)° — 1), @’ = (&) ((3/2)* — 1). In
the end we get the estimate:

h
I/ N2y —pvr3y K Z Yf(|a)j|2 + |@ %) vol(A )

J=1 —emin ; (Y, i
b e AN I | 7 2garry, (5.10)

where the constant stays bounded when s — [ + k, s + [ — k are both bounded away
from O.

Now we separate two cases: we will suppose first that (/,k) in the constant
term (8.3) is not equal to (—n 1, n7). Inthiscase, fors = k—I the eigenvalue computed
in (3.2) is bounded away from 0; thus there exists a 0 < A; < A(/2 depending
only on V such that if f is an eigenform of the Laplacian with absolute boundary
conditions on MY and the eigenvalue of f is less than A then |s +/ —k| > 8y, where
8o > 0 depends only on V. On the other hand we have k — [ = n; 4+ np > 0 and
thus s — / + k always stays bounded away from 0. Let W~ be the 1-neighbourhood
of IMY in MY. We have W~ C MY — MY/3 and for a form f as above (8.8)
together with (8.6) and (8.10) yield that:

1oy 1
T, <G ;i
5 LZ(M Y)
+ 7m0 yol (M) (8.11)
with a constant depending only on V.
Now we go back to our sequence M,,, Y ". First we observe that from the condition
in the statement of Theorem 6.1 that

hy 2
o1(A ) vol(M,)
2. (Olz(Aj,n)) < (log(vol My))>°

jr=l

and the definition of YV in Proposition 7.3 imply the lower bound Yy >
(log(vol M,))?a1(Ay, ;). Thus we can choose the ij so that for all j we have
Y!/Y] = (log(vol M, )2 and Yi/ai(An, ) > log(vol(M,))3/2, hence

lim sup (e—c min; (Y} /a1 (A j n)) VOl(Mn)) =0, limsup (min(yjf/yj{i)s) = 0.
J

n—-+o0o
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It follows that for n large enough we can use (8.11) and we obtain that for any & > 0,
for n large enough and for any eigenform f € LbeQI(MnY"; /) as above we have

./ Hsz(W—) -,
I l2mry —

which contradicts Lemma 8.3 for & small enough (depending on Ay).

For (I,k) = (—ny,n3) we get in the same way that there are no eigenvalues of
AP [MY"] in the interval [¢, A1], where & > 0 can be chose arbitrarily small for 7
large enough, and this is sufficient to finish the proof of claim (1).

8.2.3. Proof of (2). If f is a l-eigenform, its constant term given by (8.3), the
only case where the eigenvalue can be close to zero is when (I, k) = (—ny,n;). To
prove claim (2) it thus suffices to show that when an eigenfunction on M T has its
constant term equal to (8.3) with (/,k) = (—n1, ny) the eigenvalue cannot be too
small and nonzero when Y is large enough. Let s; = n; — n, (the value of s for
which a constant term (8.3) is harmonic), T > Y,§ > 0 and suppose that there is
an eigenform fo € QL (M T: V) with eigenvalue having parameter s = s; — 28
(by (3.2) the eigenvalue is =< §) and constant term (8.3) with w € SZJF(V_,I,,,Q). We
want to prove that for § small enough and Y large enough such a form cannot exist;
the scheme of proof above is not adaptable to this setting since the holomorphic part
of term which dominates the norm has a coeflicient that goes to 0 as the eigenvalue
does; however we can modify f by an harmonic form to make its holomorphic part
small near the boundary.

The proof will nevertheless be very similar to the one above, and there is one
notable simplification: since we can take T as large as we want for any n, there is no
need to consider the terms coming from the comparison of forms with their constant
terms (we shall thus ignore them in all computations below).

Lemma 8.5. For Y large enough and any w € QY (V_p, n,) there is an @ €
Q™ (Vu,,—n,) and a 1-form in ker(A;bS[MT]) whose constant term in the jth cusp

51 _S
1 2

equal.syjl-+2wj +y, *o;

Proof. First, the (1,0)-part of the constant term of a nonzero form f; in
i..L
ker(A;}bS[MT]) must be equal to yjl-Jr 2 w; for some w € Q1 (V_,, 1,), as satisfying
.\‘l

o . . . 1~
boundary conditions excludes that it contains a nonzero term in y y . a)}. Second,

it cannot be zero because of Lemma 8.3: indeed, if it were then we would have by
computations similar to those above

”.inZ(MT_MT/S) < (1’)51

194
T E
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which can be made as small as we want by taking Y/Y’ large enough. So we
get an injective map from ker(/_\db\[MT]) o QT(Vop, ) by f = (w). Now
these two spaces have the same dimension, for well known topological reasons (see
e.g. [25, Section 4.2]) and we can conclude that this map must be surjective. []

Write (f())pj. as in (8.3). By the lemma above we can pick a f; € ker Al [MT]

abs
such that o

sL 51
(for, =y 2 X wi+y) 6
for all j. We put /' = fo — f1. We will check that for Y large enough and §
small enough f satifies the conditions of Lemma 8.3, which yields a contradiction as
the spectrum of A![M] on square—integrable forms is bounded below by A¢. Since
fo, f1 are orthogonal we have

||f”iz MYy — ”fO”iz My T /1 “iz MY
(M) (M) (M)
h
> 1w, vol(A )
j=1

h
- 8 f— - _
+ YV (@, + Y w,,007) vol(A ),
j=1

(8.12)

where the lower bound follows from the same computation as in (8.8). On the other
hand:

2
”f”LZ(MT MT/”,)

2
1+7' —5 _8 ] -5\ 2 dy 3 |
Z[,/g,( f — T, )_ 251 _STj-yj 2) 7]a)J| vol(A )

1—f 151 8 s 145 _ |2dy
+L_/3 Y za)j Y ? 1,1—mTjsyj Za)j' TVOI(AJ')
&
h h
<Y YN P vol(A ) + Y (1@ 2+ 7@ 1) vol(A ).
i=l1 j=l1

According to (8.12) the right-hand side above is « 52|lf||iz(My)
max; (Y;/Y;)*t <4, so for § small enough (depending on A¢) and Y large enough

the 1-form f satisfies the assumptions of Lemma 8.3.

as soon as

9. Betti numbers

Here we prove Proposition C. Note that we could not deduce it immediately from the
convergence of the regularised trace because of the spectral terms coming from the
Eisenstein series.
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Proposition 9.1. Let M, be sequence of finite-volume hyperbolic three-manifolds
and suppose that M,, BS-converges to H3. Then we have for p = 1,2
bp(My)
vol(M,) n—oo

9.1

9.1. Firstproof. Forthis proof we need to assume that (4.19) holds. Let Y "€ [l, +oo[tn
be the sequence from Proposition 7.3; for all n and ¢ > 0 we have

dimker (A% [M)"]) < Tre AR
On the other hand b ,(M,) = dim ker(Abe[MnYn]) and it follows that for any ¢t > 0
we have:

limsup ———— < lim =Trre

bp(My) SN A I,
n—oo VOI(My) — n—oo  vol(M,)

The right-hand side goesto O as t — oo since bg) (H3) = 0 (cf. [22, Theorem 1.63]),
and (9.1) follows.

9.2. Second proof. Here we give a complete proof proof of (9.1). The idea is that
we can approximate the noncompact manifolds M,, by Dehn surgeries so that the
sequence of compact manifolds obtained be BS-convergent as well, and then the
results of [1] do the work for us.

Lemma 9.2. Suppose that M, is a sequence of finite-volume hyperbolic three-
manifolds which BS-converges to H>. Then there is a sequence M, of compact
hyperbolic manifolds such that:

(1) Foralln, M), is obtained by Dehn surgery on M;
(2) vol(M,)/ vol(M) —— 1;
n—+co

(3) The sequence M, is BS-convergent to H3.

We can conclude the proof using this lemma. According to (3) we can apply
[1, Theorem 1.8] to the sequence M, and we get that by (M,) = o(vol My). On
the other hand it is easy to see that because of (1) we have by (M) < b1 (M,) + h,
(where h,, is the number of cusps of M,). Thus we obtain:

bl(Mn) - VO](M;;) . bl(M;;) hn
vol(M,) ~ vol(M,) vol(M}) = vol(M,)

By Lemma 2.7 and (2) we finally get that the right-hand side is an o(1).
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Proof of Lemma 9.2. For (p,q) € N#n x NAn such that Pj.q; are coprime
for all j let M'% be the compact manifold obtained by (p.g)-Dehn surgery
on M,. Then M,f/q converges geometrically to M, as min;(p; + g;) goes to
infinity, and it follows that for a given R > 0 there exists a m, such that when
min;(|p;| + |q;|) > m, we have

vol(MP/9) g < vol(M},) <2r.

We can choose a sequence (p”, ¢g") € (N x N)#» such that (2) holds, and moreover
min; (|p%}| + [4%[) > my; it then follows from the inequality above that M, is
BS-convergent to 3. O

A. The heat kernel on truncated manifolds

A.l. Introduction. Let B be a collection of open horoballs in H? whose closures
are pairwise disjoint, and let X be the smooth manifold with boundary H?3—/ | peg B-
We will denote
§x = inf d(B,B")
B#B'eB

and we will always suppose that §x > 0 (this is obviously always the case when 8B
comes from a truncated manifold). The aim of this appendix is to show that the proof
of [36, Proposition 5.3] can be adapted to this setting to yield the following result:

Proposition A.1. Forany$ > 0,1y > O thereis a C > 0 such that for all X as above
which satisfy §x > 6 and every x,y € X and t €0, ty] we have

d(x )2
e~ A X (x y)| < C1732e= 5

Let us see how this statement implies Proposition 7.2: let M = '\H?3, Y be as
in its statement, X = MY . We need to prove that §x is bounded below by a constant
not depending on M . Let H, H' be horospheres in 0X such thatd(H, H') = §x. By
the hypothesis on Y there are elements 7, n" € I which stabilise H, H' respectively
and such that their displacement is smaller than £/10 where ¢ is the Margulis constant
of H?3; for § small enough (independent of X), if x < & then nn’ displaces of less
than £ on H ; but since it does not commute with 7 this is impossible by the Margulis
lemma. Thus 8y is uniformly bounded away from O for such an X.

A.2. The “single layer potentials” construction of the heat kernel. We recall here
the construction of the heat kernel on a manifold with boundary W given in [36,
Section 5], which starts from an isometric embedding W C W' into a complete
manifold such that the heat kernel on W satisfies Gaussian bounds. This reference
deals only with compact manifolds and thus we cannot apply its results directly to
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our situation; but on the other hand we will see in the next section that the integrals
on 0X which we need to converge are indeed absolutely convergent. The results are
also stated only for bundles with orthogonal monodromy but the arguments work for
all flat bundles with a euclidean metric.

The construction goes as follows: let Q@ (x, y,1) = g AW, y) and for
m > 1 define by induction:

t
Q(’")(x,y,t)sz (Q(O)(x,z,s)/\*dQ(”’_l)(z,y,t—s)
0 Jow
+809(x,z,5) A%Q™ V(z,y,1))dzds. (A1)

For W = X we will check that this integral is convergent for all m in Section A.3
below. The main result of Ray and Singer with regard to the Q™ is then stated as
follows ([36, Lemma 5.12]; the function D on X is the distance to the boundary d.X).

Proposition A.2. Under the hypotheses of Proposition A.l, for all m > 1 the
kernel Q" as well as its differential and co-differential in the variables x,y,
satisfy the Gaussian bounds:

m

_DW24+DW2 3 _d.y)?
57 t

10 (x, y.1)| < Tem s, (A.2)

= Tm/2)°

for some constant C > 0.

This is proven by induction on m, and to carry the induction step one needs (as is
obvious from the formula (A.1)) also the bounds on the derivatives.
It follows from Proposition A.2 that the kernel K/ given by

+00
K (x,y) =) (2" Q™ (x,y.1)

m=0

is the heat kernel on p-forms on X with coefficients in V' (see [36, Corollary 5.14]),
and thus that the latter satisfies the Gaussian bounds stated in Proposition A.l.
Moreover, we also have the bounds:

D24 Dw2 3 dx.y)?
a5 ¢ T

|K? (x,y) —e A"V « e 2™ Si (A.3)

(note that we can apply this to MY c H3, butalsoto MY ¢ MZ for Z > Y,
according to Proposition A.1).

A.3. Convergence of the integrals on the boundary. If one manages to show that
the integrals on the boundary in the definition (A.1) of Q™ are uniformly convergent
for all X then the original argument of Ray and Singer carries over to yield
Proposition A.1. Indeed, it rests only on local computations (which remain valid
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for unimodular instead of orthogonal coeflicients), and the hypothesis that 6x > &
gives uniform bounds on the local geometry (meaning that each point in X has a
neighbourhood whose isometry class does not depend on X') which Ray and Singer
use implicitly in their proof (in the cases they consider it follows immediately from
the compactness of the manifolds).

This uniform convergence can be proven by induction on m (recall that the
induction hypothesis carries bounds on both Q ™ and its differentials), which reduces
it to show that for k,/ > 0 the integral:

2)2

X.Z 2
dle2) +‘§((fi_n)dz (A.4)

1 :[ d(x,z)k-d(y,z)l-e_( 55
X

converge uniformly for all x,y € X. The polynomial terms may appear when
taking derivatives, there are also factors depending on s but these do not affect the
convergence of the integral and thus are dealt with in Ray—Singer’s argument. The
proof that (A.4) is convergent will be similar to the study of the term /5 in the proof
of Proposition 4.2. For w € X and B € 8 we denote by zj the projection of w
onto B. We observe first that the supremum

dz} )2 d(:';; 2)2

F(x,y,t) = sup {/ d(zﬁ,z)k . d(z%;,z)l -e_( 55 TT56-0 )dz :BeJt
z€0B

is finite and actually uniformly bounded in x, y. Indeed, for any horosphere H of H?
and any zo € H, we have fort < ty:

(51'(20.;’)2

[ d(zo,z)Xe” 0 dz < f 2| K emallos+1z0)* g7 g
H C

where a depends only on 7y, and the integral at the rightmost above is convergent for

any a > 0, since the function r > e~ (o2 N? g o(r~ L) forany L > 0. Since Z%s zz‘; €
_( d(zy )2 + d(zé ,z)2 )

dB the same arguments apply to the integrals fZEaB e 55 56=0"/) dz to give

a bound independent of x, y or B.

Now we remark that for a given B € 8 and all z € dB we have

d(x,zg) + d(zy,z)

d L]
(x,z) > 5

(A.5)

and similarly for y: indeed, for any z € 0B we have d(x,z) > d(zj,z) and
d(x,z) = d(x, z) (because the geodesic triangle xzzy, has an obtuse angle at z ).
Now we consider separately those z for which d(z,z3) < d(x,z%) and those for
which the reverse inequality holds, for both of which (A.5) holds trivially. In addition
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we have d(x,z)* < (d(x, Zkg) + d(z3, z))* and for large distances the right-hand
side is bounded by d(x,z3)"* - d(zp, z)k. 1t follows that

(dx.B)2 | d(y.B)?
I < E d(x, B)k-d(y,B)l .e ( 20s +2()(t—s))
Be®B
a!(z:fg.z)2 d(zi,;.z)2

‘/‘ d(Z%, Z)k : d(Zﬁ,Z)l . e_( 20s a5 20(s—1) )dZ
0B

2 2
B) _i_cé(y.B)

Z d(x, B)k . d(y, B)l . e_(d(/;(!)s 0t—s) ) F(x’ y,[)_
BeB

IA

It follows from Lemma 2.10 that the series on the last line is absolutely convergent,
finishing the proof that the integral (A.4) is absolutely convergent.
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