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Asymptotics of analytic torsion for hyperbolic three-manifolds

Jean Raimbault

Abstract. We prove that for certain sequences of hyperbolic three-manifolds with cusps which
converge to hyperbolic three-space in a weak ("Benjamini-Schramm") sense and certain
coefficient systems the regularised analytic torsion approximates the L2-torsion of the universal
cover.

We also prove an asymptotic equality between the former and the Reidemeister torsion of
the truncated manifolds.

Mathematics Subject Classification (2010). 58J52; 11F75, 11F72, 22E40, 57M10.

Keywords. Analytic torsion, hyperbolic manifolds with cusps, Selberg trace formula.

Contents

1 Introduction 459
2 Hyperbolic manifolds and Benjamini-Schramm convergence 467
3 Spectral analysis on manifolds with cusps 475

4 Selberg's trace formula and regularised traces 481

5 Analytic torsion and approximation 494
6 The asymptotic Cheeger-Müller equality: statement 503
7 The asymptotic Cheeger-Müller equality: the small-time part 507
8 The asymptotic Cheeger-Müller equality: the large-time part 516
9 Betti numbers 524

A The heat kernel on truncated manifolds 526
References 529

1. Introduction

1.1. Integral homology of congruence manifolds. In [4] Bergeron and Venkatesh
have shown that for odd m, in sequences of compact arithmetic hyperbolic /n-manifolds

which converge to Hm the homological torsion has an exponential growth
for certain focal systems. That is, there exists ©-representations of SO (m, 1) on a
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space V such that if T is a uniform arithmetic lattice in this Q-form of SO (m, 1),

preserving a lattice Vz in V and Tn a sequence of finite-index subgroups of T such

that the injectivity radius of the Mn r„\Hm goes to infinity we have that

liminf V logl//p(r„, VzVsl
>Q (11)

"^°° p=if,m-1 VOlM"

P=mf1 (mod 2)

In [1] it is essentially proven that the limit (1.1) holds for any sequence of torsion-free

congruence subgroups of a uniform arithmetic lattice (see [34, 6.1] for a detailed

argument). Moreover, when m 3 elementary arguments show that one can deduce

from Bergeron and Venkatesh's proof an actual limit for the left-hand side, that is

lim |//i(T„; Fz)|1/vo,M" c (1.2)
«-^-+00

where c > 1 depends only on V. The present paper, originating from the author's
Ph.D. thesis [34], aims at providing tools to prove an analogue of 1.2) for nonuniform
lattices in SO(3, 1) ~ SL2(C). Weaker results (generalisations of (1.1)) were

previously obtained by J. Pfaff in [32] and by the author in [34, Section 6.5]. We

refer to the introduction of [35] for more details and further questions, and to [4,12],
and [37] for information on the number-theoretical significance of torsion homology
of congruence subgroups.

1.2. Analytic torsion and Cheeger-Miiller equality. The main tools used in [4]
are the Ray-Singer analytic torsion T(Mn; V) and the Cheeger-Miiller theorem.

Bergeron and Venkatesh prove that the limit

lim
lo&T(Mn' t(2\v) (1.3)

n^oo vol Mn

holds, where the right-hand side ti2)(V) is the L2-torsion associated to the

representation (p, V). In the case m 3, we have that SO(3,1 is isogenous to
G SL2(C), and the real representations of the latter are given by its natural action

on the spaces

V(n\,«2) Sym"1 (C2) <g> Sym"2(C2), «i,n2 £ N

(where C2 means that the action of SL2(C) is by conjugate matrices). For V

V(n 1, n2) Bergeron and Venkatesh compute the numerical value of t(2) to be:

^(V) + «2 + 2)3 - |«i - «213
48tt

+ 3|«i - n2\(n1 + n2 + 2)(nx + n2 + 2 - \nx - n21)). (1.4)
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On the other hand, W. Midler's generalisation [26] of the Cheeger-Müller theorem

(a more general result was proven independently by J.M. Bismut and W. Zhang in [7 ])

yields that
m

T(Mn; V) f] \Hp(Tn, Vz)tors|(_1)P

p=0

from which (1.1) follows at once since the L2-torsion t^2\V) is positive for m 3

(mod 4) and negative for m 1 (mod 4); to deduce (1.2) when m 3 one needs

to study independently the torsion in Ho and H2- One of the issues in [1] is

then to prove that (1.3) holds under weaker conditions than those of [4] and that
these conditions are satisfied by sequences of congruence subgroups. Following the

work of I. Benjamini and O. Schramm on graphs the notion of Benjamini-Schramm
convergence of Riemannian manifolds is defined there (see 2.6 below) and it is then

a relatively easy matter to show that the proofs of [4] extend to this setting. Note that
the first step of the proof outlined above is purely differential-geometric and does not
use the arithmeticity of the manifolds.

1.3. Approximation for regularised analytic torsion. The first goal of the present

paper is to define an analytic torsion for non-compact, finite-volume hyperbolic three-
manifolds and to prove a generalisation of (1.3) in this context. The definition of the

regularised analytic torsion Tn(Mn\V) is based on the Selberg trace formula; it is

essentially the same torsion as that defined in [28] (but see 1.7.3 for some comments
on the differences). The definition depends on a choice of parametrisations (which
we call "height functions" on Mn\ see 2.2) for the cusps of Mn as Tj x [1, +oo[
where the Tj are flat tori. Let Mn be a sequence of finite-volume hyperbolic three-

manifolds; the conditions we need to prove approximation of the L2-torsion are as

follows:

• Geometric conditions:

(1) The sequence (Mn) is Benjamini-Schramm convergent to H3 (see 2.6);

(2) We suppose that there is a 8 > 0 such that sys(A/„) (the smallest length of a

closed geodesic on Mn) is larger than 8 for all n.

(3) Some kind of regularity for the cusps: in this introduction we will take this to
mean that the sequence be cusp-uniform (i.e. the cross-sections Tj of the cusps
of all lie in a fixed compact subset of the set of Euclidean tori up to similarity),
but this can be relaxed a little (see (4.19) in the statement of Theorem 4.5).

• Analytic assumptions:

(4) As in [4], we need to use coefficients systems that induce a uniform spectral gap
tor all hyperbolic manifolds (such coefficients systems are called strongly acyclic;
V(« i, «2) is so exactly whenni ^ «2: see Proposition 3.1 or [4, Lemma4.1]);
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(5) In addition, to deal with the continuous spectrum we need to assume that the

derivatives of the intertwining operators are well-behaved near the origin, namely
that their trace be an o(vol Mn) uniformly in a neighbourhood of 0.

• A normalisation condition for the height functions (we emphasise that this is really
not of the same nature as the other conditions and should be seen as specifying the

range of height functions for which we can expect approximation results):

(6) We suppose that | log(inj(7y))| «(vol M„).

• We need also to choose lifts to SL2(C) of the holonomies n\(Mn) -> PSL2(C);
while our results are valid without assumptions on these (see 1.7.1 in this paper we
will work under the following hypothesis

(7) The lifts of all peripheral elements (i.e. elements in the image of maps n\ (Tj)
ji\(M)) are unipotent (equivalently the image of n\(M) in SL2(C) does not
contain an element with trace —2).

Our first main result is Theorem 5.1, which can be stated as follows.

Theorem A. Let V be a strongly acyclic representation of G SL2(C) and Yn as

sequence of torsion-free lattices in G. We suppose that the manifolds M„ r„\H3
are endowed with height functions and satisfy (1), (2), (3), (5) and (6), and that Yn

satisfies (7). Then we have

log TR(Mn;V) mlim —-———-—'- t(2\V). (1.5)
n^-oo vol Mn

Note that it is easily shown that for any given finite-volume hyperbolic three-
orbifold there are sequences of finite covers which satisfy the assumptions (1) and (3)
above (see Proposition 2.3), but we will not check that (5) holds for them in the

present paper (it will be proven to hold for sequences of congruence covers of
arithmetic orbifolds in |35]). Conditions (5), (6) (unlike the others) depend on the

choice of height functions on the Mn ; however whether (5) holds or not does not

depend on this choice in the range of height functions such that (6) holds (see the

remark after Theorem 5.1). Finally, if we consider a sequence of finite covers Mn ofa
fixed orbifold M then the natural height functions to use on the Mn are the pull-back
of those on M, and it is very easily seen that they satisfy (6) (see Lemma 4.7).

Let us say a few more informal words about the necessity of these conditions:

(1) is necessary (there are sequences of covers where one can see that the torsion
has an exponential growth with a different rate); (3) may or may not be (there are

sequences of congruence covers which do not satisfy it, but we do not know whether

approximation for the analytic torsion holds in these); (2) is very likely necessary (one

can make the torsion vary arbitrarily by doing Dehn surgeries on a given manifold).
Condition (5) was shown by J. Pfaff and W. Müller to always hold for sequences of
covers (cf. [29], whose prepublication was posterior to the first submission of the
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present paper), but in general not much more is known; (4) is likely not necessary
for covers, but it is in general (see [9]). Of course (6) is necessary since for a given
manifold the regularised analytic torsion can take arbitrarily large values if one does

not put limitations on the height functions one wants to consider.

1.4. An asymptotic Cheeger-Miiller equality. The next step in adapting Bergeron
and Venkatesh's argument to the case of non-compact manifolds is to relate the

regularised analytic torsion to a combinatorial, or Reidemeister torsion (the latter is

named after K. Reidemeister who was one of the first to study this kind of invariants,
for somewhat different purposes). In this paper we do not define such a torsion in

an intrinsic way for a non-compact hyperbolic manifold M of finite volume (this is

carried out in [12], see also [35]); we will instead use the truncated manifold MY,
which are obtained by "cutting off the cusps" of M using a parameter Y (see (2.3) for
the definition). Thus MY is a compact manifold with boundary, for which analytic
and Reidemeister torsion are well-defined and the Cheeger-Miiller equality is known;
see 6.1. Our second main result is then the following (Theorem 6.2).

Theorem B. Suppose that Mn and V are as in the statement of the previous theorem

and that the sequence Mn satisfies the additional condition that

vol M„
«71 « log(vol Mn )20

(wherehn is the numberofcusps ofMn), then there exists a sequence Yn G [1, +oo[h"
such that we have

Hm
^TR{Mn-V)-\ogx.UMY" ^V)

0 (1 6)
n—>oo vol Mn

An explicit formula for Yn is given in the statement of Theorem 6.1. Note that
the sequences constructed in Proposition 2.3 satisfy also the stronger assumption in
this theorem.

1.5. Betti numbers. The behaviour of the characteristic 0 homology in BS-converg-
ent sequences of non-compact hyperbolic manifolds is not dealt with in [1]. For
three-manifolds we prove the following result.

Proposition C. Let Mn be a sequence offinite-volume hyperbolic three-manifolds
and suppose that Mn BS-converges to H3. Then we have for p 1,2

bp(Mn)
^ q

vol(M„) «—>-00

This limit is well known for exhaustive sequences of covers as follows for example
from M. Färber's generalisation [15] of Lück's theorem [21] (applied to the manifolds
truncated at 1).
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We will give two proofs of this: one which uses the techniques in this paper,
and which consequently needs the assumption that the sequence Mn satisfies the

condition (4.19), and then a proof in all generality using Thurston's hyperbolic Dehn

surgery and the results of [1, Section 9], The second proof does not generalise to

higher dimensions but the first one does (after modifying (4.19) adequately). We will
perhaps return to this in the broader setting of Q-rank one lattices of semisimple real

Lie groups in the future.

1.6. Outline of the proofs.

1.6.1. Convergence of finite-volume manifolds, regularised traces and Betti numbers.

In 11, Definition 1.1] the notion ofBenjamini-Schramm convergence of locally
symmetric spaces to their universal cover is introduced, and a good part of the paper
studies the implications of this notion for compact manifolds. In this work we extend

some of these results to nonuniform lattices in SL2OC) (see Section 2.6). Let us

remind the reader that Benjamini-Schramm convergence (to the universal cover H3)
is an interpolation between the weaker pointed Gromov -Hausdorff convergence
and the stronger condition that the global injectivity radius goes to infinity. It is

conveniently summarised by saying that "the injectivity radius goes to infinity at

almost all points"; formally, for a sequence Mn of finite-volume hyperbolic three-

manifolds to be convergent to H3 we require that for all R > 0 the sequence
vol{x 6 Mn : injx Mn < R} be an «(vol Mn).

The regularised trace 'Wr(K) of an automorphic kernel K on a finite-volume
manifold M is defined by taking either side of a very unrefined form of the trace
formula for K, of which we give a mostly self-contained proof— minus the theory
of Eisenstein series, which we review in 3.2 — in Section 4. The study of the

geometric side in Benjamini-Schramm convergent sequences is not very hard and

results in Theorem 4.5; note however that we need an additional condition on the

geometry of the cusps to prove the convergence of the unipotent part. We prove,
using comparisons of traces with the truncated manifolds, that the Betti numbers

in a BS-convergent sequence are sublinear in the volume in Proposition 9.1 (we
cannot deduce it directly from Theorem 4.5 since we did not manage to control the

non-discrete part of the spectral side of the trace formula in general). On the other

hand, to study Betti numbers in dimension three one can bypass all this by using
[1, Theorem 1.8] and hyperbolic Dehn surgery.

1.6.2. Analytic torsions. Our definition of analytic torsion for cusped manifolds is

the same as in [30] or [28] (we could have just quoted the results of the latter but we

use a slightly different method to prove the asymptotic expansion of the heat kernel
which is better suited to the rest of this paper). Let M be a finite-volume manifold
and Kf its heat kernel on /?-forms (we will suppose here that the coefficients are in

a strongly acyclic bundle, but with more work one can see that the definition carries
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over to the general case; see [28,30]). One defines the analytic torsion as in the

compact case, by putting:

3 // / I r'o ,it\ r+°° fit
Tr(M) J2P(-VpT\^ TW/V-) +/^ ds v r(.v) Jo t s=o JtQ t

which does not depend on t0 > 0. The justification of this definition uses

meromorphic continuation and is highly nontrivial, see 5 below or [28] for the details
needed to ensure the convergence of the integrals and their analytic continuation.
In a sequence of manifolds we study the first summand using the geometric side of
the trace formula and the second one using the spectral side, as in [4, Section 4].
The spectral side is dealt with using the uniform spectral gap property established

there; however the part coming from the continuous spectrum causes some additional

difficulty which explains the conditionality of our approximation on the hypothesis (5)

on intertwining operators which we were not able to check for general sequences. The

study of the geometric side is actually quite simple once the asymptotic expansion
for Kf at t -> 0 has been established (see Proposition 5.4) using our unrefined trace
formula. We remark that in [34] we dealt with these problems in the more general
context of finite-volume hyperbolic good orbifolds — the elliptic terms in the trace
formula do not cause any real additional difficulty.

We also show that under hypotheses (very) slightly more restrictive as for the

approximation of analytic torsion there is an asymptotic equality between absolute

analytic torsion for the truncated manifold MY and regularised analytic torsion for
the complete manifold, cf. Theorem 6.1 below. As in the proof of the approximation
result we separate into small and large times. We deal with the small-time part
in Section 7, where we use estimates on the integral of automorphic kernels over
the truncated manifolds and a result of W. Liick and T. Schick [23]; for this part we
also need to extend the well known Gaussian bound for the heat kernel (proven for
example in [36, Section 5|) to the case of the universal covers of truncated manifolds;
we explain how to adapt the arguments from loc. cit. in Appendix A. The large times

are taken care of in Section 8; the main point in the proof is to control the spectral gap
for the truncated manifolds (Proposition 8.2) and this is achieved using techniques
inspired from F. Calegari and A. Venkatesh [12, Chapter 6].

1.6.3. Asymptotic Cheeger-Miiller theorem and homology growth. In contrast
with the compact case, for our coefficient systems there is usually a nontrivial
homology in characteristic 0. Thus, to state and hopefully prove a Cheeger-Müller-
type equality one needs to define a suitable Reidemeister torsion. This is done by
F. Calegari and A. Venkatesh in [12], in a manner similar to the régularisation for
traces of integral operators. Thus a natural way to prove such an equality would be

to apply the Cheeger-Miiller equality for manifolds with boundary [11,20] to the

truncated manifolds and to compare both sides with their regularised analogue.
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Here we deal only with the first part of this program, we refer to [35] for the

applications of the results in the present paper to congruence subgroups and their
homology growth. From the asymptotic equality of analytic torsions (Theorem 6.1

it is not hard to deduce an asymptotic equality with the absolute Reidemeister torsion
of the truncated manifold using a recent generalisation by J. Brüning and X. Ma of
the Cheeger-Müller theorem; see Theorem 6.2.

1.7. Remarks.

1.7.1. Non-unipotent holonomies. In the case where condition (vii) on the holo-
nomies of peripheral subgroups is not satisfied both Theorem A and B still hold. To

prove this one must consider two cases depending on whether n2 — «i is even or
odd. In the first case the representation SL2(C) > SF( V(n \. n2)) factors through
PSL2(C) and it makes no difference whether or not (vii) holds. When n\ — n2 is

odd the heat kernels become integrable in the "bad" cusps whose fundamental group
has an holonomy containing elements of trace —2 (note that if all cusps are such, the

heat kernel is in fact trace-class). The parabolic summand for the trace formula in
Theorem 4.4 changes a bit (see [34, 3.5]), but the estimates used all along the proofs
in 5.4.3 and 7 can still be used. The proof of Proposition 8.2 still holds since in the

bad cusps the eigenfunctions decay exponentially.

1.7.2. Related recent results. In addition to the papers |4| and 11 ] from which this
work originates there have been other papers dealing with similar problems. There
has been a number of papers studying the asymptotic behaviour of analytic torsion of
a compact manifold as the coefficient systems varies. This was done independently
and concurrently, with different methods, on the one hand by W. Müller and J. Pfaff

(starting with 1271) and on the other, in a more general setting, by J.M. Bismut, X. Ma
and W.Zhang |6]. This has been extended to the noncompact setting (based on
the work of Müller-Pfaff) by P. Menal-Ferrer and J. Porti [25] and by W. Müller and

J. Pfaff [28],
Cheeger-Müller type equalities for manifolds with cusps (and more general

singularities) have attracted a lot of interest recently. Let use cite some papers
which are close to our topic here: [2,31,33].

1.7.3. Analytic torsion here and in [28]. Though we use the same definition of
analytic torsion as W.Müller and J.Pfaff do in [28], there is a slight difference in

setting between their paper and ours, which we will explain here. In the present work,
one starts from an hyperbolic manifold M and assign it an arbitrary parametrisation
of the cuspidal components of its thin part; if M has finite hyperbolic volume we use

these functions to derive a trace formula which is then used to define the regularised
analytic torsion. In [28], one starts from a lattice T in SL2(C), chooses representatives
for the conjugacy classes of parabolics and then defines height functions on the
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quotient by choosing a point in H3 (the fixed point of SU(2)) and assigning to it
height I for all the parabolics. Then [28] use existing forms of the trace formula to
define the regularised analytic torsion, which is the same as the one we define here

using these particular height functions.

1.7.4. About [34]. As noted above, in the Ph.D. thesis of the author some of the

problems here were tackled in greater generality, rendering assumption (vii)
unnecessary and also dealing with orbifolds. However, there are some very
embarrassing (to the author) and serious gaps in this manuscript (especially in a

previous version of Proposition 8.2), which nevertheless do not affect the validity of
the results we quote (and which are filled in the present work).

Acknowledgements. A first version of this paper was written while I benefited from
a doctoral grant from the Université Pierre et Marie Curie (Paris 6). The present
version was written while I was a post-doc at the Max-Planck Institut für Mathematik
in Bonn.

The reading of a preliminary version of [12] has been extremely profitable for
the writing of this paper and I want to thank the authors for allowing me to read

it. During the redaction 1 became more and more permeated by the point of
view of Benjamini-Schramm convergence introduced in the joint work (with Miklös
Abért, Nicolas Bergeron, Ian Biringer, Tsachik Geländer, Nikolay Nikolov and Iddo
Samet) [ 1 ]. I also benefited greatly from a week spent in Bonn with Werner Müller and

Jonathan Pfaff, whose comments on previous versions of this paper were especially
useful and thorough, and who pointed out a serious gap in a previous approach
to Proposition 8.1. A pair of anonymous referees provided helpful suggestions for
improving the presentation and spotted numerous mistakes. Last but not least I want
to thank my Ph.D. advisor, Nicolas Bergeron, under whose supervision this work was
conceived.

2. Hyperbolic manifolds and Benjamini-Schramm convergence

Let G SL2(C), so that K SU(2) is a maximal compact subgroup and the
Riemannian symmetric space G/K is isometric to hyperbolic three-space H3, which
we will identify here with the Poincaré half-space Cx]0, +oo[ endowed with the

Riemannian metric given by dzdz^dy jn coordinates (z, y).

2.1. Height functions on H3. Define the following subgroups of G :

P~ i(o ec*.i,<=cj, JVco { (i î).*ec).
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^oo (q û01),«eRî}. M°° \^ A)'0[
The proper parabolic subgroups of G are the conjugates of P00. Let P gPoo#-1
be such a subgroup and M T, M the conjugates of A^, /1M, by g. We call

any function that is conjugated by g to the function („ -1 a2 on A^ a norm
on/I. We have the Langlands decomposition P NAM MAN and the Iwasawa

decomposition G NAK. A height function on H 3 at P is then defined to be any
function of the form gK m>- \a\ where g — nak e NAK and | • | is any norm on A.

(as an illuminating example take P P00, then the height functions at P are of the

form (z, y ty for t £ ]R*

The level sets of a height function at P are called horospheres through P ; they
are isometric to the Euclidean plane C and are acted upon simply transitively by
the subgroup N. Let yp be a height function at P\ we may identify N with
{yp 1} C and we denote by \n\ the induced length function on N. If we
normalise the Haar measure dn on N so that it is the pullback of the Lebesgue

measure on C, then the volume form of H3 is equal to dndyp /y2p. For x £ H3 the

quotient \n\/yp(x) does not depend on the choice of yp and we have the following
estimate for the translation length of unipotent elements.

Lemma 2.1. There exists a function l\ [0, +oo) -> [0, +oo) such that

d(x,nx) l(—L!_^ (2.1)
\yp(x)J

for allparaholics P MAN, n G N and x £ H3. Moreover l(r) yt> log(l + r).

Proof. We give a very awkward but very explicit proof. Obviously it suffices to prove
the lemma for P Pœ-, for n (of) G ^oo we may take \n \ \z\. Let x e H3,

y Voojjt). The formula [3, Corollaire A.5.8] yields

dix. nx) 2( log 1 + - log (l - &2)

so that d(x, nx) t(\n\/y) where we put

l{r) 2( log (1 + (1 + (r/2)-2)-i) - fog 1 -(1 + (r/2)-2)-i)).

It remains to check that t(r) 2> log( 1 + r): the first summand is in [0, log(2)], and

besides for t e [0, +oo) one has (1 + f2)-1/2 > (1 + so that

- fog (i-(i +r2ri/2) >-iog(i-(1 Tf-'r1) iog(i + o-

from which the conclusion follows at once.
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2.2. Height functions on hyperbolic three-manifolds. Let T be a lattice in G

(i.e. F is discrete and T\G carries a finite right-G-invariant Borel measure). Given

a parabolic subgroup P we put T/> T n P and we say that P is T-rational if Fp
contains a subgroup isomorphic to Z2 (equivalently F fl iV is cocompact in N).
Then T is cocompact if and only if there are no T-rational parabolics (equivalently
if T contains no unipotent elements). In any case there are finitely many T-conjugacy
classes of T-rational parabolics. We may thus choose representatives P\ If for
these classes and height functions ypx yph at each one of then, and define a

function yj on H3 by

yj(x) max yPj(y~lx),
yer/Tpj

J

which we call a T-invariant height function (and which is, indeed, Y-invariant). If Y

is torsion-free let M be the manifold T\H3 and for Y G (0, +oo)h put:

My {x G M : V/ 1,.,.,/îwe have yj(x) < Yj}. (2.3)

Then for Y large enough (depending on the choice of the original height
functions ypj) MY is a compact manifold with boundary a union of flat tori Tj,
j 1The ends {x e M, yj (x) > Yj} are isometric to the warped products

Tj x (Yj, Too) with the metrics (dx2 T dyj)/yj where dx2 is the euclidean metric
on Tj. In this paper we will work under thefollowing convention: we always suppose
that the height functions are normalised so that the maps TPj \{y/>7 > 1} ~> M are

embeddings (in particular, the horospheres of height one are disjoint).
Finally, if F C T is a finite-index subgroup the Y-invariant height functions are

r'-invariant; when dealing with a sequence of finite covers of a given manifold (or
orbifold) we will always suppose that the height functions on the covers come from
those of the covered manifold.

2.3. Euclidean lattices. Let A be a lattice in C; we denote by vol(A) its covolume

(i.e. the volume of a fundamental parallelogram) and define

oq(A) min{|u| : v e A, v 7^ 0}

and for any rq G A such that |rq | oq(A)

og(A) min{|u| : v G A, v Ztq}.

Then the ratio a2 A)/a 1 A depends only on A up to similarity. We denote by Nj\ (r
the number of points in A of absolute value less than r and

WA*(r) WA(r) — I \{v e A \ {0} : |v| < r}|.

We will use JT* rather than -H further on; moreover we get a cleaner bound in the

lemma below. The following estimate for the counting function was proven by Gauss;
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we include a proof only for the reader's convenience and because we need a precise
statement with regard to the constants.

Lemma 2.2. Define:

EA(r) := WA*(r) -
2nrA

vol (A)

For any lattice A C C we have the estimate

\EA(r)\ « —J— + (2.4)
ai(A) oq(A)

where the constant does not depend on A.

Proof. First we consider r < ai(A) so that EA(r) nr2 / vol(A). By
Minkowski's First theorem, if nr2 > 4vol(A) then A contains a nonzero vector
of length < r, which implies that the quotient vol(A)/ûq(A)2 > 7r/4. Thus

E\(r) «; (r/ai(A))2 < r/ai(A).
Now suppose that r > ai(A). We can choose a fundamental parallelogram 14

for A whose diameter d is x a2(A) and by Minkowski's Second theorem we have

vol(A) x a2(A)ai(A). For r > d let zj zn be all the points in A such that

\zk\ —
then we have that B(0, r — d) C ijfc + 14 (7 B(0. r T r/) so that

jr(r — d)2 < vol(fl)« < tt(r + d)2. It follows that:

(r)
nr2 d2 2 rd ciiiE)

vol (A)

2

vol(A) vol(A) ^ vol(A) ai(A)
a2(A) r« —+ai(A) ai(A)'

which finishes the proof of (2.4).

We say that a set S of euclidean lattices is uniform if there exists a C > 0 such

that

VA S, vol(A) < Ca,(A)2. (2.5)

By Mahler's criterion this is equivalent to asking that when we normalise the lattices
in S so that they are unimodular they form a relatively compact set in SL2 (M)/SL2 (Z).
If A belongs to a uniform set S then the proof above yields that

\EA(r)\ « —J— (2.6)
a,(A)

with a constant depending only on S.
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2.4. Cusp-uniform sequences. If F is a parabolic subgroup and yp is a height
function at P then we may identify the unipotent radical N of P with the horosphere

yp 1 and the conformai structure on N thus obtained does not depend on the

chosen yp. Since the uniformity of a set only depends on the conformai structures
of its elements we may define a cusp-uniform sequence as a sequence of lattices

rnc G such that the set

{(rn)p, n > 1, P is a r„-rational parabolic}

is a uniform set of euclidean lattices. The following result gives a source of examples

satisfying some the geometrical conditions of our main results.

Proposition 2.3. Let T c G he a lattice, then there exists a cusp-uniform sequence
T„ C T which exhausts T and satisfies in addition that hn <53 (vol/l/(, )' s for
some S > 0.

Proof It is well known that up to conjugation we may assume T c SL2(F) for
some number field F. Let Op be the ring of integers of F; as T is finitely generated
there exists an a £ Of such that T c SL2(6>p[tf_1D- F°r an ideal 3 c Op
coprime to a we may define T (3) as the set of matrices in T congruent to the identity
modulo 3. Then the sequence of T («) for n e N coprime to a is clearly exhaustive
and we claim that it is cusp-uniform. Indeed, if P is a T-rational parabolic we have

Tp 1 + 7LX\ + Z3f2 for some X\, X2 in the Lie algebra sl2(0p[«-1]). Let 3 be

the ideal in Op[a~x\ generated by the entries of X \ and X2 and m the unique positive
rational integer such that 3 n Z mZ. Put A„ nTp] then the An are a uniform
family of lattices in N and we have A„ c F(«)p c m~l A„, so that {T(n)p,n} is

uniform as well. Since the subgroups V(n) are normal in T we need only consider a

finite number of P and the claim of cusp-uniformity follows.
For all T-rational parabolic P we have

[rP :r(n)P]>C[Al: An\>Cn2.

On the other hand, if Pi,..., Pf,n are représentants for the conjugacy classes of
F(«)-rational parabolics we have

hn

[r : r(«)] £[rPj r(n)Pj] > chnn2
7 1

We have finally [T : r(n)] < |SL2(0p/«)| < and it follows that n2 >
[T : r(n)]s for some 5 > 0 (depending on F) so that we get h„ « [T : T (« )]1—5.

2.5. Some counting lemmas in hyperbolic space. For this subsection we always
denote by s the Margulis constant for H3. If T is a finitely generated, discrete

subgroup of G we let sys(T) denote the systole of r\H3, i.e. the smallest translation

length of a loxodromic element in F.
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2.5.1. Orbits. The following lemma is well known in the case of groups containing
no unipotent isometries, but needs a slight modification to incorporate the general
situation.

Lemma 2.4. There is an absolute constant c > 0 such that thefollowing holds: let V

be a torsion-free discrete subgroup in G. Let x G H3 and let A be the subgroup

of T generated by the elements in T which commute with a unipotent r) e T such that
d(x, rjx) < ê (thus A is a free abelian group of rank < 2). Then there is a C > 0

depending only on sys(T) such thatfor all r > 0 we have:

\{y T - A : d(x, yx) < r}\ < Cecr. (2.7)

This implies in particular the following: for a discrete subgroup F in G we let T|ox

be the set of loxodromic elements in T and for any x e H3 and r > 0 put

Jfr(x,r) \{y e rk)X, d(x,yx) < r}|. (2.8)

Then there is a constant C depending only on the systole of M such that:

jVr(x,r) < Cecr. (2.9)

ProofofLemma 2.4. We define:

8 8(x, r) - min(<7(yx, y'x) : y, y' g Y — A, d(x, yx), d(x, y'x) < r).

The balls B(yx,8) for y G F — A, d(x, yx) < r are pairwise disjoint. Moreover
their union is contained in the ball B(x, r + 8). It follows that the right-hand side

in (2.7) is smaller than V(r + <5)F(3)-1 where V(R) denote the volume of a ball of
radius R in H3. We have rd < V(r) < eC()r for an absolute c0 and thus the lemma
follows from the claim that for any x G H3 we have 8 > Ce~r for some C > 0

depending only on sys(r).
To prove this we may suppose that Tx lies in a noncompact component of the

£-thin part M<e of M r\H3 (otherwise 8 > min(£, sys(T))). We let H be

the horosphere preserved by A (defined as in the statement) lifting the component
of 9M<e closest to Fx, and we claim that 8(x, r) +oo for all r < d(x, H) and

8(x,r) > e~dG,H) for ,• > (xt //)_ from which the original claim immediately
follows. To prove the newest claim we first observe that any y G F — A must move x
outside of the horoball bounded by H, hence the first part of the claim. Now the

Euclidean displacement of an element of A on the horosphere through x is at least
e-d(x,H)£ (sjnce jts displacement on H is at least £), hence injX(M) > C'se~d(-X,H^

for an absolute C' by Lemma 2.1. We have 8(x, r) > injx(M) for any r and the

second part of the claim follows.
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2.5.2. Horospheres. We let S be a collection of disjoint (closed) horoballs in H3
and M be the collections of horospheres {dB : b G S}. For a point w G H3 and a

radius R > 0 we denote by Nm(w, R) the number of horoballs in S which are at a

distance smaller than R from w.

Lemma 2.5. There are absolute constants C, c such that for any M as above and

any w G H3 we have:

R) := \{H G M : d(w, H) < /?}| < CecR. (2.10)

Proof Let K(Ä) denote the volume of a ball of radius R in H3. We claim that:

Nx{w,R)-V{\) < V(R + 2). (2.11)

Since V(R) < ecR for some c the lemma follows.
The proof of (2.11) is straightforward: let N Nj((w,R) and B\ Bjy G M

be the horoballs meeting the ball of radius R around w. For i 1,..., N take

a Xj e dBi such that d(xj,w) < R and let x[ be the point at distance 1 from x,
along the inwards normal to <)Bi at xt ; finally, et U[ be the ball of radius 1 around x\.
Then the balls (/, are disjoint (since £/, c £>, and the Bj themselves are disjoint) and

contained in the ball of radius R + 2 around w; it follows that we have

V(R + 2)>J2m) N-V(\),
i

which finishes the proof of (2.11

2.6. Benjamini-Schramm convergence for manifolds with cusps. Let M r\H3
be an hyperbolic three-manifold and let x G M. Pick an arbitrary lift x of x to H3
and define

tx min{J(x, yx), y e T, y ± 1G} 2injx(M).

For R > 0 we define the following subset of M :

M<r {x G Mn : £x < R/2}.

Recall from [1J that a sequence Mn is said to converge to H3 in the Benjamini-
Schramm topology (hereafter abreviated as Mn BS-converges to H3) if for any
R > 0 we have

vol((M„)<«)
w

" " >0. (2.12)
vol (Mn) n->oo

A source of examples is given by sequences where the injectivity radius goes to

infinity; for example Mn F„ \IHI3 where Tn is an exhaustive sequence of torsion-
free finite-index subgroups of a lattice T (a sequence Yn c F is said to exhaust F

if any y G F belongs to at most a finite number of the r„). Another is given by
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sequences of congruence lattices (see [1,35]). It follows from Proposition 2.3 that

every hyperbolic three-manifold has a sequence of finite covers that is BS-convergent
to H3 and cusp-uniform.

In the sequel we will always consider a sequence Mn r„\H3 of finite-volume
hyperbolic three-manifolds. We will denote by Knj, j 1,..., hn the Euclidean
lattices corresponding to the cusps of Mn, which are well-defined up to similarity.
Recall that we have defined the counting function in (2.8).

Lemma 2.6. The sequence Mn is BS-convergent to H3 ifand only if

Vr > 0, j Wr„ (x, r) dx o(vol Mn) (2.13)
Jm„

and

o(vol Mn). (2.14)

Proof. We won't use the "if" statement in the remainder of this paper, and its proof
is straightorward. Suppose now that the sequence Mn is BS-convergent to H3. If we

suppose in addition that the systole of the Mn is bounded away from 0 then (2.13)
follows immediately from (2.9): for any r > 0 we have

[ J^r„{x,r) dx f Wr„(x, r) dx < Cecr vol(M„)<r,

where C does not depend on n, and the right hand-side is an «(vol Mn) by the

definition of BS-convergence. In general, we obtain from this resoning the conclusion
that tor any 8 > 0 the part of the integral in (2.13) on the <5-thick part of Mn is an

«(vol Mn). The proof that (2.13) holds in general then depends on a fine analysis of
the orbits of points in H3 mapping to the <5-thin part of M (for 8 smaller than the

Margulis constant) which is carried out in [1, Section 7].
We finally establish (2.14) when Mn is BS-convergent to H3: let s > 0 be

the Margulis constant for H3, and let Ci,..., Q, be the noncompact components
of Mn )<h. The boundaries of the Cj are Euclidean tori 7) Tj and we have

e < cot] (Tj for some absolute c > 0; it follows that

vol (T'y) » a\(Tj)a2(Tj) » s

ice

defined). It follows that

2«2(A j)
<*i(A j)1

where Ay is the lattice in C corresponding to Ty (whose conformai class is well-

vol(M„)<e » vol(Ty) » e2 J2 "4t4
y=i j=ia"AJ>

hence the right-hand side must be an o(vol Mn) which is precisely the content
of (2.14).
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We record as a separate fact the following weaker consequence of (2.14).

Lemma 2.7. Let Mn be a sequence offinite-volume hyperbolic three-manifolds, hn
the number ofcusps of Mn. If Mn BS-converges to H3 then hn o(vol Mn).

When we assume cusp-uniformity we only need to look at the behaviour of closed

geodesies; we have the following criterion for a sequence of cusp-uniform hyperbolic
three-manifolds to BS-converge. The direct implication is contained in Lemma 2.6
above and the converse is proved in [34, Proposition 4.7].

Lemma 2.8. Let Mn be a cusp-uniform sequence offinite covers of a hyperbolic
three-manifold M. Then Mn BS-converges to H3 if and only if condition (2.13)
holds.

3. Spectral analysis on manifolds with cusps

3.1. Local systems on hyperbolic manifolds.

3.1.1. Definitions. Let T c G be a lattice and put M T\H3. The fiat real

vector bundles (a.k.a. "real focal systems") on M are obtained as follows: if a is

a representation of T on a finite-dimensional real vector space V we get a vector
bundle Fa on M whose total space is the quotient F\(H3 x V). For y e T and

a p-form / on HI3 with coefficients in V we denote y*f — <r(y)_1 o f o apTy.
Then the p-forms on M with coefficients in Fa correspond to T-equivariant sections

of aTI3 -> V i.e. to those / e ^(H3; V) such that y*f f for all y e T.

Particularly interesting among all flat bundles are those whose holonomy comes
from restricting a representation p of G on a real vector space V. The representation
a p|r is never orthogonal but the bundle Fa has an alternative description which
yields a natural euclidean product and which we will now describe. Up to scaling
there is a unique inner product on V which is preserved by K and such that p (the
orthogonal for the Killing form of the Lie subalgebra t c g of the group K) acts by

self-adjoint maps (see [24]). We have a vector bundle Ep on M whose total space is

(F\G x V)/K so that it has a natural metric | | coming from the K-invariant metric
on V. The square-integrable sections of Ep correspond to the subspace:

{/: T\G -, V, l/l e L2(T\G), Vg eG.keK, f(gk) p(k~l)f(g)}.v

More generally, identifying the tangent space ofH3 at the fixed point of K (which is an

irreducible real /^-representation) with p, the square-integrable p-forms correspond
to:

L2Llp(M; Ep) (L2(r\G) <g> F ® aV)*
(where we use the habitual notation HK for the fixed subspace of AT in a vector

space H). We have an isomorphism Ep —> Fa induced by the map

G x V G x V, (g, v) (g, p(g) • v).
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In the sequel we will denote by L2Q.P(M\ V) the space of square-integrable 77-forms

on M with coefficients in Ep.
The Hodge Laplacians AP[M] are essentially self-adjoint operators on the Hilbert

spaces L2£ip(M\ V)\ see |8] or [4, Section 3],

3.1.2. Strong acyclicity. The group G SL2(C) acts naturally on C2. As a real

Lie group it also has a representation on C2 given by g h-> g (where T denotes

the complex conjugate matrix). We will use the notation C2 to indicate that we
consider this conjugate action. For every pair of nonnegative integers we then have

a representation of G on the vector space V(n 1, n2) defined by:

V(nun2) Sym"1 (C2) <8> Sym"2 C2.

Standard representation theory tells us that these are all the irreducible finite-
dimensional representations of G.

The most important (for us) feature of the representations V{n\,n2) is the

following spectral gap property, which is proven in [4, Lemma 4.1 ] and also follows
from [8, Proposition 6.12 in Chapter II]; Bergeron and Venkatesh term this "strong
acyclicity" of the representation.

Proposition 3.1. Let n\ 7^ «2 and V V(n 1, «2). There exists A0 > 0 such that

for any lattice T in G, M T\H3, p 0, 1.2,3 and </> L2Q.P{M\ V) we have

(Ap[M](j), <P)L2qp(m-,V) — ^oII^IIl2Q/'(M;K)-

3.1.3. Unitary representations. Let om,y be defined by:

""Co y(o <0|)='2- <3I)

For .v G C and m Z we denote by jt(s, in) the representation of G induced by the

characterom <g> y 1+2 of Poo M^A^Noo. 'I'his is the representation ,fm s defined
in [19, (2.11)]; it is unitary if and only if .v iM.

3.1.4. Laplace eigenvalues and differentials. Let e\, e-\ be the canonical basis of
C2. For I —n,—n + 2,...,« put ei e((l+l^2e(fl l^2 e V(n, 0) and for
/ —«1,... ,n\,k —n2, • • «2 put eit/c e/ <g> ë-k e V(n\, n2). Thus we have

l—k
p(ma) - epic ai+k(m)y(a)~epk, m 6 a e 4oo-

Define Vpk Cekk, Vm Y.i+k=m vLk Let P goPooh'ö1 be a parabolic
subgroup, yp a height function at P, s e C, v e V and define a section of G x Vc

by the formula:

<ps,v(x) yp(g)1 + ^p(k~1) -V, g nak.
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If v G go Vm then <Ps,v belongs to the space of jt(.v, m). Its /(-type is contained in K<c,

and thus it yields a section of Ep over H3.

By computation of the Casimir eigenvalues in the induced representation (see |4,
5.7] who cite [19, Proposition 8.22 and Lemma 12.28 J) the functions cps,v, v e go Vm,

give rise to sections of Ep which are eigenvectors of A°[H3] with eigenvalue

|.v|2 - in2 + (»1 + «2 + 2)2 + («1 - n2)2.

Note that this bounded away from zero for all ti\,n2,m and .v e /R (since m e

[-ni - n2,n\ + n2]).

Now let W — V ® V(2,0). The G-equivariant bundle associated to Wc is

isomorphic to the bundle of 1-forms with coefficients in Vc- Using the same

construction as above we get an eigenform with coefficients in Ep and eigenvalue

- .v2 - (m + s)2 + (/?!+ n2 + 2)2 + (n i - n2)2, (3.2)

where e 0, ±2 according to whether v £ go fm ® L£; the eigenvalue is larger than

(ni — n2)2 for s e iM, in particular bounded away from 0 when ni ^ n2.
Now let us compute the differentials for sections and 1-forms. In both cases this

hastobedoneintheG-equivariantmodelforiip. Letv G then the G-equivariant
section corresponding to <ps>v is g i->- yp(g)1+(-s+l~k^2p(n) • v, g nak and thus:

d<ps,v(g) X-(s + I - k + 2)yP (g) "+2 *
(p(n) v) ® dyP -|

where indicates terms which are orthogonal to dyp. If v e ® V_2,o then the

corresponding G-equivariant 1 -form on H3 is given by yp (g)(-s+l~lc^2(p(n)-w)®dz
and we have:

d<ps,v<s,e2 -(>v + 1 - k)yP(g)s+l~k~l(p{n) v) ® dyP A dz-\ (3.3)

where the indicate terms in dz a dz, and a similar computation holds for forms
in dz. The forms in dyp are closed.

3.2. Spectral decomposition. From now on we fix a G-representation p on a vector

space V. It is a well known fact that one has the orthogonal sum

L2Q,p(M; V) L2iscS2p(M; V) © L2contttp(M-, V), (3.4)

where AP[M] has only discrete spectrum in L(2iscf2/'(M; V) and completely
continuous spectrum in L2imlQ.p(M: V). Here we briefly describe the proof of
this result through the theory of Eisenstein series developed by Seiberg, Langlands
and others which actually yields a complete description of the continuous part.
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3.2.1. Constant terms and cusp forms. Let P be any V-rational parabolic and

/ 6 L2QP{M?\ V) a V-equivariant /?-form. Its constant term at P is defined to be

the /?-form given by

C cl
fp(v)= n*f(v) (3-5)

JrP\N vo\(rP\N)

This descends a p-form on Tp\H3 (which depends only on the T-conjugacy class

of P) which is actually /V-equivariant. If h: T\G -> V ® A^p* is the K-equivariant
function corresponding to / (see 3.1.1) then the one corresponding to fP is given by

p i-> 1/2 fr y h(ng) dn. A /?-form / is said to be cuspidal when fP 0 for all

T-rational parabolics, and we denote by L2UiipÇip M ; V) the space of all such forms.

Theorem 4.4 below implies that we have L2usp C /.t2sc;.

3.2.2. Eisenstein series. If P is a T-rational parabolic there is a map Ep from the

subspace of /V-equivariant forms in L2QP(H3; V) to L2Flp(M\ V) given by

EPP(f)= E Y*f (3-6)

yer/Tp

If P, P' are two equivalent T-rational parabolics then the obvious map

9: L2{N\H3; V) -> L2(A'\H3; V)

intertwines Epp and Epr, i.e. Ep Epr o 9. We choose representatives P\ Ph

of the conjugacy classes of T-rational parabolics and put Ep ®y=1 Ep Then

we have the following facts:

• \m{Ep) L2uspQp(MV)2--,

• there is a finite-dimensional subspace L2es inside im(£') such that we have the

orthogonal sum im(£) L2)nt © L2S.

When V is strongly acyclic the subspace L2es is actually zero for all p\ when V is

trivial it is of dimension one for p 0 or p — 3 and zero for p 1,2. We will
now describe how the map allows to describe the continous part L2mlQ.p(M; V):
we begin by a general exposition and then specialise to sections and I -forms with
coefficients in a bundle Ep.

3.2.3. About references. Our main reference for this subsection is G. Warner's

disquisition [38]; the theory we expose here is developed there in greater generality
(for all real-rank-one locally symmetric spaces) with more details (though the author

frequently refers to [17] for complete proofs). The exposition in this reference

is not particularly user-friendly; for a more accessible one (only in the case of
Fuchsian groups and functions, but all the main ideas are already present) we refer
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to H. Iwaniec's textbook 18]. The case of arithmetic 3-manifolds is also treated in

detail in [34, Chapitre 5]; the book [14] contains a complete treatment of functions
on more general hyperbolic manifolds.

3.2.4. Eisenstein series with coefficients in a K-equivariant bundle. Let r be a

finite-dimensional representation of ^ on a complex vector space W, with highest
weight q G N. The space W decomposes as the orthogonal sum

w _ I®k=-q W2k <7 nx-n2 even;
"

(©L-, w2k+1 <7 »i±52zl, nx-n2 odd,

where IT/ is the subspace on which M acts by the character 07 defined in (3.1).
Let Ex be the bundle on Tp\H3 whose total space is given by (W x Fp\G)/K\
then the smooth sections of Ex are identified with the space (W <g> C°°(rp\G))k.
For s G C we identify the subset of such sections which are N-invariant on the right,
proportional to yl^~s and in the image of (4L/ 0 C°°(rp\G))K with VF/: we denote

this identification by w m>- ws. Then for w G W/ the Eisenstein series Ep(ws)
corresponds to the Eisenstein series denoted by E(P : w : s/2 : •) in [38]1, and

hence we have the following properties for it from loc. cit.:

• The series is convergent for Re(,v) > 0, and admits a meromorphic extension to C
with no poles on the imaginary axis [38, p. 9].

• The constant terms of Epi (u;iV are given by

Sijyp*2w + ylp, (3.7)

where is a meromorphic function with values in Homc(lL/, 1L_;) [38,

pp. 7,13], where © "I\j--i corresponds to Cpt \p (w, s)).

• Put4>/(.v) 0(- j <S>ij-i{s) e Hom((lL;)/!, (W-i)h). Then we have the functional

equations <3>/(—,v)d>/(.v) id, and <î>i(iu)* 0/(/m)_1 for m M [38, p. 8],

• The continuous part of L2 (M; Ex) is spanned by the functions \/r(u)E(wiU) du

for \fr G L2(M) and w G Wh, where E(ws) i E((wj)s) 138, p. 321.

For Y (Li,..., Yh) g [1, +oo[ one defines the truncation operator at height Y

by:

h

TYm f(g) - X]\[Yj,+00)(yj(x))fpj (g), f g C°°(M; Ex).
7 1

'Note that our parameter s differs from that used in this reference by a factor of 2, but this does not
affect any of the results we quote from there.
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For w £ (Wi)h we have the "Maass-Selberg relations":

h

\\TY E(ws)\\2l2(m.Ez) 2^2\og(Yj)\wj\w + (4>i(s)~l^i(s)'(w),w)Wh
7 1

*
1

+ ~(YJ ((®i(~s)w)j'wj)W - Yj s{(^i(s)w)j,Wj)w) (3.8)
7 1

'S

see [38, p. 83].

3.2.5. Sections. Let « e F4; we denote by E(s, v) the section of the bundle Ep
over r\H3 corresponding to E(vs) in the notation above. For I —q q we
let if;(.v) 0( &jti:i(s) £ Horn (Vf1, Vi) so that the constant terms of E(s, v) are

given by

E(s,v)Pj =y1j+sVj+y1j-s(Vl(s)v)j

for v £ V[. For v £ {Vif1 the sections E(s, v) are eigenfunctions of the laplacian

AP[M] with eigenvalue —s2 — I2 + Ay where Ay is the Casimir eigenvalue of V,
A v («1 + n2 + 2)2 + (ni - n2)2 if V V(nu n2) by (3.2).

For v e Vi the Maass-Selberg relations (3.8) are written:

h

\\Ty E(s,V)\\2l2(m.v) 2^2\og(Yj)\vj\l + {^i(sy1^i(s)'(v),v)Vh
7 1

I

+ E ; 07 (~s»j < - Yr vJ M (3-9)

7 1

S

3.2.6. 1-forms. We denote by V) (resp. £2J( V)) the space of 1 -forms on FPj\Nj
with coefficients in the restriction of Ex which are of the form dzj ® v (resp. dz <g> v)
for v £ V, and by i~( V/) the supspace of those for which v £ gjVi where gj
conjugates Pj to the parabolic at infinity P^ (and define ßy(F/) similarly). We put

^(Vi) ©7 ß±(F/),f2±(F) ©7 ß±(7).
On the other hand, the 1-forms in coefficients in Ep on T/>\H3 correspond to the

sections of the bundle Ex where r p\k <8> Ad| (where Ad is the adjoint representation

of G, which is isomosphic to V(2,0)). The representation r has two summands:

one isomorphic to p\k which corresponds (in the correspondance set in 3.2.4) to the

differential of sections, and its orthogonal which corresponds to co-closed 1 -forms,
whose constant terms are of the form co + m form ü2 + (F),ö> £2~(F): we denote

the latter by W, and by Wj the subspace Œ + (F/_2) © Œ~(F/+2). Then for a> £ Wi

the 1-fbrm E(s,co) corresponding to E(cos) is an eigenfbrm of the laplacian with
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eigenvalue —s2 — (/ T 2)2 + À y (again by (3.2)). The constant terms of E(s, co) are

given more precisely by

E(s,ü))Pj =yl+sü)j + y1_s(cb,(.v)m)y.

The Maass-Selberg relations are given by:

||T E{s,(Û)\\l2çiKm.v)
h

2j2^ê(Yj)\coj\l±(v) + (cb±(.s')-1cb±(.v)'(ru),ru)t2±(F). (3.10)
7 1

3.2.7. 2- and 3-forms. The Hodge * yields isometries

L2QP(M\ V) -> L2£23_P(M; V),

so that the spectral decomposition for L2il2. L2f23 spaces follows from that of L2Q1

and L2 respectively.

4. Selberg's trace formula and regularised traces

4.1. Automorphic kernels. As noted in 3.1.1 the Laplacians A77 [M3] on H3 with
coefficients in a flat bundle are essentially self-adjoint operators and the spectral
theorem thus allows, for a function </> e C°°([0,+oo)), to define an operator
0(A77[IHf3]) on L^^H3; V). Moreover, if cp is sufficiently decreasing at infinity
this operator is given by convolution with a kernel

A0;/> e C°°(H3 X H3; (aTH3 ® V) <g> (apTU3 ® V)*),

i.e. k^,tP{x, y) Hom(A/'r^H3(g)F, A^T^H3® K) and for a /r-form /e L2^lp{ß.3\V)
one has

(p(Ap[M3])f(y)= f k<t>tP(x,y)f(x)dx.
JH3

The kernels k#^ are invariant under the diagonal action of G on H3 x H3, meaning
that for g £ G, x, y e H3 we have

k*,p{x,y) (apTyg~x ® Idy) o k^p{gx,gy) o (apTxg ® fdF). (4.1)

The Plancherel formula for G allows to compute the k(j)p and with a lot more work
one can obtain the following lemma (essentially due to F. Sauvageot), an explanation
of which can be found in [1, Proposition 6.4] (by density of a subset S we mean that

any Radon measure is determined by its restriction to S).
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Lemma 4.1. The space tA(M) ofsmoothfunctions <p on R such thatfor any <p £ -A(R)
we have k,p,p(x, y) e~Acl(x'y\for all A > 0 is dense in the space S (M) of Schwartz

functions.

From now on we will always suppose that f £ <A(M). For g £ G we put:

g*h,p(x,y) Ap Ty g
1

(8) PO,')-1) o k^p{x, y)

£ Horn Ap T*H3 0 V, ApT*_, H3 0 V).\ a, g y '

By the above lemma we have |g*k(/>,p(x, v)| <§; e~AdG,y) so foat ^ follows from the

well known estimate

(where c is absolute and C depends on T, x; see also Lemma 2.4) that the following
series converges uniformly on compact sets of H3 x H3:

The kernel
p

is F-equivariant in each variable and hence can be seen as a section

of (apTM 0 V) <g> (apTM 0 V)*. On the other hand, since the operator AP[M]
(the Laplacian on p-forms on M with coefficients in Ep) is essentially self-adjoint
we can define the operator cj>(Ap[M]) on L2Q.P(M; V). Then is a kernel for

4>(AP[M]), in other words for f £ L2Q.P(M\ V) we have:

4.1.1. Truncation. In the sequel we will write Kf for the convolution of a section /
with a kernel K. Let F be a parabolic subgroup of G, we define the constant term
at P of k,/)^ to be the kernel given by

For a T-rational parabolic subgroup P we define the constant term
p p of

p
at P by

\{y £ T,d(x, yy) < r}| < Cecr

Kl,p(x< y) y*k<p,p(x> yy)-
yer

(4.2)

(k<t,,p)p(x,y) / n*k<t>tp(x,ny)dn.
Jn

i^,P)p(x,y) vo\(Vp\N)
Y*(k<l>,p)yPy-<(x>Yy)

yeT/Tp
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For / 6 L2ÇLp{M\ V) a routine calculation yields

(KiP)p(f) (KlpXfP). (4.3)

Recall that the truncated manifold Mr was defined in (2.3). One naturally defines
the truncated kernel on M by:

Tr ..I \Kl,p(x.y>-{Kl,p)r,(x,y> V,(VI >

and it follows from (4.3) that

TY K$>p(f) K$tP(Tr /). (4.4)

4.2. Geometric side. Let h^,!P be the function on [0, +oo[ defined by

h^pil) tr(n*k^p(x,nx)) (4.5)

for any unipotent isometry n e G such that I d(x,nx). This definition is

legitimate, i.e. the right-hand side depends only on t: indeed, if n,n' are two
unipotent elements of G and x, x' two points in H3 such that d(x, nx) d(x', n'x')
there exists a g e G such that gx x' and gng~l n' (this follows immediately
from Lemma 2.1 and the fact that the stabiliser of an horosphere in H3 acts transitively
on euclidean spheres — note that this is no longer true in symmetric spaces other
than the real hyperbolic spaces) and hence

tr (n*k^tP(x,nx)) tr {(gng~l)*k^tP(gx, gnx)) tr {(n')*k^p{x', n'x')).

Let T be a torsion-free lattice in G and let h be the number of cusps of the

manifold M r\H3, which we suppose endowed with an arbitrary height function

y maxy yj. Let A i,..., A/, be the Euclidean lattices associated to the cusps of M
and y; we associate to them the following quantity:

o f+0° 17 / ydP ^(1 — 2logoq(Ay))
Kj 2 Ea(p)— + —— ;

Ja,(Aj) P3 VOl (Ay)

note that only the second summand depends on the choice of y. We also define

Trr(k^p) vol(M) • tr (^jP(xo,x0)),

where x0 is any point of H3. For the statement and proof of the following proposition
we will suppose that T D P C N for all parabolic subgroups F of G with unipotent
radical N (we remark that a modified version of the proposition is true in all generality,
see [34, 3.5]).
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Proposition 4.2. Let (f) -A(K), p 0 3 and let KYt
p

be the associated

automorphic kernel on M. Then for any Y e [1, +oo [h the integral

[ TYKlp(x,x)dx
J M

is absolutely convergent, and as miny(Py) tends to infinity we have the following
asymptotic expansion:

(n+OO
\ 11

2nh / rh^p(f(r)) dr 1 ^ log Yj
7=1

+ Trrk<p,P + / V] tr(y*k<j>iP(x,yx)) dx
Jm ,,cryei I ox

r +oo

+ 27xh I r log(r)/î0!/7(£(r)) dr
Jo

+oo

rh<p,p(l(r))dr + o(l).
7 1

Proof. To make things more readable we will deal only with the case where M
has only one cusp (only notational alterations are necessary to deal with the general

case). We fix a T-rational parabolic P with unipotent radical N and denote by A the

Euclidean lattice associated to Tp rnA. We let D denote a fundamental domain

for T in H3 and /) Y
C I) the preimage of M Y

: we suppose that the only ideal vertex
of D is the fixed point of P, so that for Y large enough D — DY is contained in the

horoball of height Y at P. By the definition of the function h,ptP and Lemma 2.1 we
have

+ vol(D - Dy)I trk,ptP(xo,xo)\

J2 Kj VOl(Ay) /
Jo
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Now we prove that the for k 1 4 are finite and go to 0 as Y -> +oo. The

term /4 is trivial to deal with. Let us deal with /3: for any a > 0, since (j) e

we have |k(/>tp(x, j)| < e~ad(-x,y\ and it follows that:

h < f Y e~ad(x'vx) dx= [ [
JD-Dy JD-dy JO

*+oo
e~ardNx(r) dx

In n Y In
yer-r>

where Nx(r) \{y e T — Tp : d(x, yx) < r}|; integrating by parts we get:

p P +oo p +oo

h < I I ae~arNx(r) dr dx <^M,a vol(ß — DY) I e^c~a^r dr,
Jd-dy Jo ' Jo

where the last estimate follows from Lemma 2.4. Taking a > c it follows that /3

goes to 0 as Y —> +oo.
Now we deal with /2; the main point is that for any (large enough) a we have an

estimate

f \kt,p(x,y)\dy <Cae~ad^H) (4.6)
J H

for any horosphere H such that x doe not lie in the horoball that it bounds. Let us

prove this: let j0 be the projection of x on H \ we have

d(x,y) > X-(d(x, H) + r/(j0,j))

for all y e H (indeed, since d(y, x) > d(yo,x) d(x, H) it holds trivially if either

d(y, jo) > d(x, H) d(x, jo) or d(y, jo) 5 d(x, H)) and since we supposed that
(j> tA(E) (see Lemma 4.1 and the remark afterwards) for A 2a we get that

J)| «ö e-ad^e~ad^)

for all a > 0 and j 6 //; since the integral jf/ e~ad^y,y°^dy converges for a large
enough we obtain (4.6). It follows that

h S Ca f y e~ad{x'yH) dx (4.7)
Jd~dY

Yer/i>
y/rp

and by Lemma 2.5 the inner sum is finite and uniformly bounded for x e D — D1,
hence /2 is finite and goes to 0 as Y —> +oo.

Finally we deal with the first term, which is more subtle. The integrand is

N-invariant and hence it equals

veA-{0}

dy_

J3'
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Recall that ,NA is the counting function for the Euclidean lattice A, J\fT -N\ — 1

and EA(r) JV"* - «vo](A) ^ ai (A) Now we compute:

L L?,>(<''')) «01(A) ''•'W"1))
/•+OO I C-+00

/ / h*
Jy I do

dn
r/eA—{0}

dy

nr- d.,SfA(r) dr
vol(A)

<

/•-f-OO /•

Jy I Jo

/>+ oo />+oo

dy do

dh^pjUr/y))
dr

dh^,tP{l(r

•Atf(r)-
7rr

vol(A)
<ir

v3

y3

dr
EA(ry)dr%.

y

We have EA(ry) « (r + l)_y as y —> oo, uniformly in r (see Lemma 2.2) and it
follows that the right-hand side (hence 7i) is hnite and goes to 0 as Y —> +oo.

Fix(rP)

Figure 1. BA is in grey, with A in a darker shade.

It remains to prove the stated asympotic expansion: what we did above shows

that it suffices to prove that the integral fMy tr p(x, x) dx has such an expansion.
Let O be a fundamental parallelogram for A in N and BA the union of all geodesies
from the fixed point of N passing through O (for example if Noo is the

upper triangular unipotent group which fixes oo, identifying N with C we have

Ba {(z,t) : z G O,t e]0, +oo[}). Define:

Bya {x e Ba : yp(x) < Y}. (4.8)
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Let R be the union of the pieces of horoballs y(B\ — BYh n Ba for y ^ l"/J (see

Figure 1). Let MY be the universal cover of MY, which is naturally identified with a

subset of H3. The strip OA is a fundamental domain in H3 for A, and it follows that
Byk — R Ba H My is a fundamental domain in MY for A. On the other hand,

Uyer/r> yD¥ 's als° a fundamental domains in MY for A and it follows that we
have the following expression for the sum over the unipotent elements:

L £ £ h<l>,p(d(x, yr]y
1

x)) dx
JmY yeT/Fp j/eA-{0}

£ £ h<p,p(d(x, rjx)) dx
yeF/Fp yMY î?eA-{0}

LR. li<p,p(d(x, rjx)) dx — L R, h(/>,p(d(x, rjx)) dx.
A jjsA—{0} ?7eA-{0}

We can bound fR J2veA-{o] h<p,p(d(x, n]x))dx by using arguments similar to
those used for /2 above (see (4.7)) and this shows that it is o( 1) as Y —> +oo. The

integral JmY tr p(x, x) dx can be decomposed as a sum over the elements of T
and using the conclusion of (4.9) to modify the sum over unipotent elements we
obtain:

/ tr p(x, x) dx vol(M) tr (k<p,p(x0, x0))
JMy

/ tr (y*k<p,p(x,yx))dx
J m ,.~r'

+
ysrto

/ XI h</>tP(d(x,r]x))dx + o( 1).
J B\ (r>l

(4.10)

A IjeA—{0}

Hence we need to get an asymptotic expansion when Y -> cxd of:

f £ p(d(x, ijx)) dx f T hfjll 'I ))(/A. (4.11)
Ax,«rl01 A.-,efr{01 V \yp(x))J

The integrand is A-invariant so that the integral in (4.11) equals

and by substituting r |jj|/y in the right-hand side we obtain the following expression:
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p+oo Jr
vol(A) / h<t>.p(Ur))—^

\v\/y 1^1

/+0O ]

vol(A) / rh^pilir)) ^ Tl2dr" (4"12)
40 ncA_ml 1^1

î/eA-{0}
0<|?;|<rF

On the other hand, for any R > Owe get from integrating by parts (or Abel summation)
that:

1 fK d NT(p) NUR) /'« ^A*(p)

^ |W|2 4a,(A) P2 R2 /«,(A) P3

0<|u|<Ä

and since we have

we get that:

^ £a(A) 27r(log(/?) - loga^A)) +
fR dp

^ |u|2 vol(A) ß2 vol(A) JaI(a) A P
p3

0<|u|<A

_
TT £a(ä) 27T(log(7?) -log ai (A))

vol(A) R2 vol(A)
C+°° dp f+°° r/p

+ / ea(p)-j-I ea (p)—
4a! (A) P Jmi\(R,a\(A)) P

(4.13)

where the second line follows from the fact that the integral /j+°° EA(p) dp/p3 is

absolutely convergent by Lemma 2.2. Putting

"+°° dp tt(1 — 2 logai (A))r+°° dp
ka= Ea(P) — +

Jat(A) P4a, (A) P3 VOI(A)

we can rewrite (4.13) as:

v 1

I
[+°° eup^ + ^I^ |u|2 VOl(A) Jmax(Ä,a,

(A)) P3 #2

0<|«|<Ä

Plugging this into (4.12) we obtain:

r p +00

/ X! h$,P(d(x, rjx))dx / 2jtlog(rL)r/j0^(f(r))dr
JbA neA-W

Jo
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*+oor-t-oo

+ ka vol (A) / h^p(i(r)) dr
Jo

r+°° r+00 do
— vol(A) / rh^^ilir)) / EA(p)—dr (4.15)

JO Jmax(ct\(A),rY) P

+ vol(A)^ rh4>,p(t(r))E^Y)2^ dr'

The terms on the second and third lines are 0(Y 1 and plugging this expansion
in (4.10) finishes the proof.

4.3. Spectral side. The decomposition L2 Ljisc©L|is from (3.4) induces a splitt-
i n tn

<t>,ping of the operators TY Kx, into

TY(K^P)disc © TY(KXP)^.

It is well known that the operators (K^ p)disc are trace-class (see e.g. [38, Theorem

4.3]). All these operators have integrable kernels and we have

Tr(^0,p)disc [ (K^p)disc(x,x)dx.
J M

We will denote by Tr(TY p) the integral of the kernel TY on M. We have

computed it from the geometric expansion in Proposition 4.2, now we will use the

Maass-Selberg relations to compute it from the spectral decomposition. We note
that our computation is essentially the same as that of the "third parabolic term"
in [38, Section 4|; see especially p. 85 in loc. cit.

Proposition 4.3. For any Y e [I,+oo[h we have thefollowing asymptotic expansions
as miny(Ty) -> +oo (we put di — â\m(Wi)):

Tr (TY0) ~— [ ^(l2 + u2 + Xv) du
7 1

U J-°° l=—2q

— f (p(l2 + u2 + \y)tr (i(iu)~l 1 ^

du
2n J-oo L-J \ du

l=—2q

/+oo
/

4>(l2 + u2 + Xy) tr I

°° l=~2q Y

1
2<i

+ Tr (^,o)(iisc +
4

X] tr ih/(0) + o(l)
l -2q

(4.16)
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Tr {TYKlA) Tr (Tr (K^0)m)
J1 91 (1ct V p+oo 2+j~2

+ y; -/ ^ d/(p((l + 2)2 -4 + w2 +Ak)^/m +Tr(AT^1)
; i ^ 4-00

9 1 " " °° l=-2q-2
disc

- — J ^ </>((/ T 2)2 + m2 + Ay) tr ($>i(iu) 1—^ ^ du + o(l)
00 l=—2q—2

(4.17)

(/zere Tr(Ty (A^ 0)eîs) is //îé? trace of the restriction of T Y K^ 0 to t/ze suhspace L|is
spanned by Eisenstein series and it is given by (4.16) minus the term Tr(K^ 0)disc)-

Proof. We can compute the operation of automorphic kernels on the continuous part
of L2(M; V) in the following way. Let i// 6 L2(R) and v e W/, we have:

*+oo
/-TOO + 2)2 + u2 + Xv)tf(u)E(iu,co) du

-oo

Put d dim V, choose an orthonormal basis vk. k 1 dh for V where all

vk (Wik From the preceding identity and (4.4) it follows that

/+oo
dh

Y2<p(lk +u2 + XV)\\TY E(iu,vk)\\2 du.
°° k=l

Now expanding \\T¥E(iu, vk)\\2 using the Maass-Selberg reletions (3.9) yields:

Tr(rr4>0)=Tr(4>0)disc
+oo ^<7

+ —-—— f di(j)(l2 + u2 + \y) du
7 1

31 J-°° l=-2q

"2^ /+°° E 9^(/2 + w2 + tr (^/(zw)-1
00 l=—2q

1 j.ti2 2 X /•+°° Fj" tr ifz(—z'zz) - ^"'"^^(ziz)
+ E # + "2+v)^ du

j \l=-2q "~°° lU

+ 0(1).

To deduce (4.16) we must deal with the last line: but a classical computation (cf. [14,

Proposition 5.3 in Chapter 6]) shows that for any function £ e £(R) one has

a+oo
V2'" tr^(-zm) - Y~2iu trVi(iu) \ 1

£(m) — du -£(0) tr 41/(0)
-oo 2zzz / 4

and hence we are finished. The proof of (4.17) is exactly similar, using (3.10) in

addition.
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4.4. Trace formula. The output of the work done in the previous two subsections is

the following result, an avatar of the Selberg Trace Formula. We do not push further
the analysis of the loxodromic summands on the geometric side since we will not
need it.

Theorem 4.4. For any f £ ,A(R) the operators (^jdisc ore trace-class and we

have the equality for p 0:

Tr(^°)disc-i J + u2 + Xv) tr (»,(tmr1 d^l^U)) du
00 l=—2q

Trr ^0,0 + / V tr (y*^0,o(x, yx)),
J m ,.~r

J
2q

+
4

4>(l2 + kv)trVi(0)
l=—2q

I dx
yerio:

/-too J* f+oo
+ 2nh r\og(r)h^,^(l(r))dr+ y^Kj vol(Aj) rh^fi{t(r)) dr.

Jo j=l Jo

A similar equality holds for p 1, replacing the right-hand side above by the

appropriate spectral terms according to (4.17).

Proof Let B\ B denote respectively the right-hand side and the left-hand side of
the equality in the statement; the equality between B and B' follows from the fact
that we have written the expansion as min7 (T7) -» +oo of Tr(T¥p) as either
A log Y + ß+o(l) (Proposition 4.2) and A' log Y + B' + o(\) (Proposition4.3).

4.5. Asymptotics of regularised traces. Let M T\H3 be a finite-volume hyperbolic

three-manifold. For a function f £ ,A(M) we define Ttr(<P(Ap[M])), which
we will also denote by Tr/? to be either side of the equality in Theorem 4.4.
The convenient form in which we wrote the trace formula allows the following result
to be proven very easily.

Theorem 4.5. Let F„ be a sequence of torsion-free lattices in G which contain no
element with trace —2 and such that Mn T„\H3 is BS-convergent to H3. Suppose
that the heightfunctions on the Mn are chosen such that

h„

^ I log oq (Ay,/j)| o(vol Mn) (4.18)

7=1

(where the notation is as in Lemma 2.6).
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Suppose also that the following condition holds:

(4.19)

Then we have the limit

(4.20)

4.5.1. Remarks.

(1) For cusp-uniform sequences, the condition (4.19) reduces to hn «(vol Mn),
which always holds for BS-convergent sequences by Lemma 2.7.

(2) The hypothesis (4.18) on the height functions is satisfied if we take a sequence
of covers of some given orbifold M and the pull-back of the height functions on M
(see Lemma 4.7 below).

(3) If yn, y'n are two height functions on Mn which both satisfy (4.18) then we have

logOWjrt) «(vol Mn) (indeed, high enough in the / th cusp the function yn/y'n
is constant and equals ai(Anj)/a[(Anj)).

4.5.2. Proof of Theorem 4.5. Let hn be the number of cusps of Mn; we choose

representatives P\ Phn of the T„-classes of T-rational parabolic subgroups and

s before denote by Anj the Euclidean lattice (Tn)Pj inside Nj where Nj is the

unipotent radical of Pj, identified with the horosphere {ypf 1}.
For p 0, 1,2,3 we have 3d > dim V <g> A^p so that

For x gK,y g'K e H3 we put H(d(x,y)) 3d\p(g lg')\ \k^tP(x,y)\,
then we have H(r) <£ e~ar for all a > 0 as r —> oo. We first want to estimate:

which is done in the following lemma.

Lemma 4.6. If Mn BS-converges to H3 then Hn «(vol Mn

Proof For a large enough (so that all the integrals below are absolutely convergent)
we have

tr{y*k<f>>p(x,Yx)) <3d\p(y 1)\v\k<t>,p(x,yx)\. (4.21)
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p p +00 p +00 p
— a / / e~ar Wr„(x, r) dr dx — a / e~ar / «Afp,n(x,r) dx dr.

J Affi J0 J 0 JMn

If we add the hypothesis that sys(T„) > 8 > 0 for all n then the lemma
is a consequence of (2.9) (which imply that the sequence of functions r h>
e~ar fM (x, r)/ vol(Mn) dx is dominated), Lemma 2.6 and Lebesgue's theorem.

In general one needs to study in addition the integral on the Margulis tubes near
small closed geodesies; this is carried out in the proof of Theorem 7.14 in [ 11.

We have:

p+oo
Cn\=2jihn / r \og(r)h(t(r)) dr «(vol Mn) (4.22)

Jo

by Lemma 2.7. To conclude we need also the following asymptotic estimate:

hn p+oo
Un := y^Knj vol(A„j) / rh(l(r)) dr «(vol Mn) (4.23)

7 1
Jo

where we denote

f+°° c ,^dp i
tt(1 -21ogai(A„,;)

Kn,j — kAn j — / ^A,, / (p) 3 f sJ Ja
\ (An j) P3 VOl(A„ j)

We get from Lemma 2.2 the following estimate:

f+0° dp 1 f+co dp
/ £A„,y(p) — « —TT z (p + a2(Anj)) —
Ja\(Anj) P «l(Anj) Jai(A„j) P

1 (A/jj)
at (A;ij)2 ai(A„j)3

1 / "2(A,,j) O:2(A»../)2\

vol(A„j) Vai(A„j) ai(A„j)2/
with a constant that does not depend on n or /', and it follows that

OA W/ a2(A„j)2 •

vol(A„j) « —— — + log a, (A3).
öi(A„jf

so that by the hypothesis of the theorem,

hn

u" ^ XI loë®i(A«) + «(vol Mn)
7=1

and the right-hand side is an «(vol A/„) according to the assumption on the height
functions.
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p
Now the summands in Tr# K^lp given by the right-hand side of the trace

formula in Theorem 4.4 are, with the exception of Trr(^,p) vol(M„), majorised by
Un + Cn + Hn according to (4.21). So it follows from (4.22), (4.23), and Lemma 4.6

that
I Trr(K^"p) - Trr(k</,,p) vol(M„)| «(vol Mn)

which proves the theorem.

4.5.3. Height functions in coverings.

Lemma 4.7. Suppose that Mn is a sequence of finite covers of a finite-volume
orbifold M and that the height functions are pulled hack from those (chosen

arbitrarily) on M. Then
1 «I (Anj) «(vol Mn).

Proof We show that for all C >0 we have

Th/' oti(An j)
lim sup — < C^1. (4.24)

„ vol M„

We order the I'j so that cri(An,j) is increasing with j and denote by h„ the largest
index such thatai(A„j) < C for all j < h„. Then:

hn hn

^ai(A„j) <£Ch% + (ai(Anj))~1[Aj : Anj]
j 1 j=h% +1

hn

<$; Chn + (ai(An^c+1)) [Aj : Anj]
j=hn+1

< Chn + C~lh,[r : r„],

where h\ is the number of cusps of M. The conclusion (4.24) then follows at once
from Lemma 2.7.

5. Analytic torsion and approximation

From now on we fix a strongly acyclic representation p, V of G and all forms are

taken with coefficients in Ep. We will define the regularised torsions Tr(M; V) and

the L2-torsion f(2)( L) in Section 5.3 below, and prove the following result.

Theorem 5.1. Let Mn := r„\H3 be a sequence offinite-volume hyperbolic three-

manifolds (together with height functions) satisfying the assux of Theorem 4.5.

Suppose in addition that the systole of the Mn is bounded awayfrom 0, and that there
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exists s > 0 and a sequence an o (vol M„) such thatforall n > 1, / —2q,...,2q
and u e [—s, s] we have

j d<t>i (iu)ti(vi(iu) tr (<&i(iu)
\ du J \ du

Then we have
TR{Mn-V) _ (2)

< Cln.

Hm t^(V). (5.1)
«—>00 vol(M„)

Note that the condition on the intertwining operators holds (or not) independantly
of the choice of the height functions satisfying condition (4.18) (see Remark 3 after
the Theorem 4.5).

5.1. Heat kernels. For <p(u) e~tu the kernel k$tP (resp. p) is called the heat

kernel of H3 (resp. of M). We will use the bounds for the heat kernel given by the

following result (see for example [4, Lemma 3.8]).

Proposition 5.2. Let p he a finite-dimensional representation of SL2(C) and Ep
the associated Sh2(C)-equivariant Hermitian bundle on H3 (see 3.1.1). Let to > 0;
there exists a constant C depending only on to such thatfor all x, y G X and 1 g]0, to [

we have

\e-tAPlM3\x,y)\<Crd'2e-^.
We will also make use of the following fact about the heat kernel (see [5,

Theorem 2.30],

Proposition 5.3. There exists C 00 G, Fnd A p p V) such thatfor all x e H3

we have the asymptotic expansion at t —0
m+1 2

g*e~tA"[m3](x,gx) t~% ^2 a£(g)e~dU4'X) tk + 0(tm+i).
k—0

Moreover the term afi (g) equals X*rgx (x) where xy (x) denotes parallel transport
from x to y along the unique geodesic arc between them.

5.2. Asymptotic expansion of the heat kernel at t —> (I. We will need the following
result to define the regularised analytic torsion. Note that [28, Proposition 6.9] prove
a more precise result where all coefficients b£ are shown to vanish for odd k.

Proposition 5.4. For all p 0,1,2,3 and m > 1 there are coefficients

üq am, bm and a function Hp such that

m+2 m

Tr« (g-'A"[M]) /"I J2 aPkt% +bgr? log(t) + t~? Ylhkt2' lo§W + H*(0
k=0 k=2

(5.2)
_ m +1 ^and Hp(t) <§C f 2 as t -x 0.
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Proof. We fix p and put /if (i) tr(n*e~tA"^M\x,nx)) for a unipotent element

n e G and a x G H3 such that d(x, nx) f (cf. (4.5)). We choose a fundamental
domain D for T and define

ç +00

S\(t) 2nh I r \og(r)hf (l(r)) dr,
J 0

" r-
S2(t) YKi vol(Ai) /

/ —1
J()

»+00

rfif (f (r)) dr

S3(t) f Y tr(y*e-'AP[M](x,yx)),
yerlox

so that by Proposition 4.2 we have:

Tr« e-'A/W] Trr e-'A"[M'] + Sï(t) + S2(t) + .S3(f). (5-3)

Putting g lg in Proposition 5.3 and integrating over D we get an expansion

m

Trrc-tAP[Hl] vol(D) Y fk ^ (5.4)

k=-3

where the fp are absolute coefficients, which takes care of the first summand.

Now we deal with S3; if we put fo sys(T) we get:

Y tr (y*e-tAPlM\x,yx))< Y Crh~^
y^riox y^riox

* +00
.3

C f t 2e std,Ur(x,d)
h0 (5.5)
/+°° 5

C / r 2fc Nr(x,l)dl
h0

«; t~2e~h
,2s _io

so that S3(/) is actually an o(tm+3) for any m > 0.

To deal with Si and 52 we will use the following expansion at t —»• 0 (which
follows immediately from Proposition 5.3)

2

(C) J] bp(l)e~i>tk + 0(tm+5) (5.6)

k=0

together with an elementary lemma in real analysis.
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Lemma 5.5. Let co be smooth in a neighbourhood of [0,1], For every integer m > 1

there are constants ci, c', for I 1, m + 1 (depending on co) such that

fJo
r log(r)co(r)e-e{r)2/4tdr - tl/2(ci + c\ log t) < cm+1f(m+1)/2. (5.7)

1=2

Proof Since r l(r) is a smooth did'eomorphism of [0, +oo[ and the function
l\-> r log(r)/f (r) log(f (r)) is a smooth function near 0, by the change of variable
from r to t(r) we are reduced to showing that for a smooth function co0 on [0, 1] there

an expansion of the right form as t -» 0 of:

f I \og(t)coo(l)e T di —f (&>0(f 2f)e^ di
Jo J Jo

+ t / l\og(l)coo(th)e~e2 dl.
Jo

This is an immediate consequence of Taylor's formula applied to co0 at 0 and of the

following easy estimate:

_ i
r* 2

1 p-hoo

/ tke~l dl= I lke~e~dl + 0(r?e-T).
Jo Jo

\ t(r)2
Wegetanexpansionsimilarto(5.7)(withoutthelogtfactor)forf0 rco(r)e ïï~dr

using the same argument. We finally get that for all m > 1 there are coefficients

cf ,dF, e? such that we have at t -> 0' " k ' ck

-+00
r \og(r)hf (l(r)) dr ^ c£t 2 + ^ d£t 2 log t + 0[t "'2

k=-3 k=-1

L
+00 m

(5.8)

rhf (t{r)) dr ^ e^F1 + 0(t 2

k=—3

and from this, (5.3), (5.4), and (5.5), we get the following expansion for the regularised
trace:

m+2
TrR(etA"[M]) t *Y2akt2+t 2 logW + HP(t)- (5-9)

k=0 k=0

It remains to prove that the coefficient by in (5.9) is zero. Looking at the proof
of (5.7) we see that it comes from the degree-1 monomial in the Taylor expansion when

I —> 0 of the (variable) coefficient bfi (*/t£) from (5.6). According to Proposition 5.3

we have that b^(s) is equal to tr(n*r„xX(x)). The map s i-> n* is the inverse of
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the parallel transport along the horocycle in H3 associated to the unipotent one-

parameter group s i-> ns. To show the vanishing of hp we thus have to prove that

parallel transport is the same up to 0(s2) when done along a geodesic or horospheric
arc with the same endpoints.

Here is an explanation for why this is true. As .v -> 0 the tangent vectors between
the horosphere and the geodesic are 0(,v)-close (in any smooth metric near x). Taking
a smooth trivialisation of ilp(M; V) near x the parallel transports are thus solutions
of differential equations of the form x(w) A(u)x(u) (for the horosphere) and

y(u) (A(u) + es(u))y(u) (for the geodesic) where \ss(u)\ < s fort) < u < s. We

get using Taylor's formula that for x(0) y(0) we have :

x(t) — y(t) (x(0) — y(0))w + 0(u2) ues(0) • x(0) + 0(u2) <^u<s 'y2-

which finishes the proof.

5.3. Definition of analytic torsions.

5.3.1. Regularised torsion. We fix a nonuniform torsion-free lattice F in G. As
usual we also denote by T Euler's Gamma function defined for Refis) > 0 by the

formula T(.v) /0+°° e~'tsçj- and meromorphically continued to C. It has a simple
pole at each s —n for n e N and no zeroes, so that 1 / T is holomorphic on C. We

want to check that

tpis) := f+ JrR («rlA"lM])ts^ (5.10)
1 G) Jo I

defines a holomorphic function on the half-plane Re(,v) >3/2 which can be continued
to a meromorphic function on C which is holomorphic at 0. The large-time

convergence of the integral is ensured by the spectral gap for the Laplacian (when
there's no spectral gap the integral converges only in a half-plane Re(.v) < c < 0

and has also to be analytically continued, see [30] or [28]) as we now explain: the

spectral expansion (4.17) applied to the heat kernel yields, for example for p — 1,

the following estimate as t —oo:

Tr«e"'A'[M] Tr(e-'A'[M])c|jsc +g-'("'-"2)2r

where T is bounded as t —> +oo, whence it follows that Tr# e_îAlM] e~x<>t where
Ao > 0 is a lower bound for the whole spectrum of all AP[M] (see Proposition 3.1)
as t -> oo. Thus we get that for any f0 > 0 the integral TrR(e~tA"^M^)ts

converges for all s e C. An easy computation moreover yields that

t(fK rTrR {e~'AP[M]y — f+°° Tr*(e-<A (5.11)
ds\r(s)Jt0 t Js=o Jk) t
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To deal with the small-time part we use the following classical lemma.

Lemma 5.6. Let <p G C°(0, +oo) such that there are integers m, m' > 0,

coefficients Ufr, k —in' m and a continuous function H so that

m

^ =0 ^ {aktk/2 + hktk/2 log(0) + H(t)
k=—m'

with ho 0 and H(t) <$C (im+i)/2 near q Then for all to > 0 the integral

rfs) /o° <M0fs T converges on the half-plane Re(.v) > m'/2 and the holomorphic
function it defines may he meromorphically continued to a function on Re(.v) >1/2
which is regular at 0.

Proof. For a G C the integral /0'° ta+s~1 dt converges absolutely on Re(.v) > a
and defines a meromorphic function on C with a single simple pole at s —a,
and since 1/T has a zero at 0 and the integral /(|" H(t)ts dt/t converges for
Re(.v) > —m/2 we get the first part. The formula for the derivative at 0 follows
from a straightforward computation.

The proof for the terms /0'° ta+s~^ log(t) dt is the same except that we get a

double pole at s oc, thus we need to assume h0 0 for the continuation to be

holomorphic at 0 (see also [5, Lemma 9.35]).

It follows from Proposition 5.4 and Lemma 5.6 that we may define the regularised
determinant of the Laplacian by

detR AP[M] := exp(^(0)) (5.12)

and the analytic torsion by

3 —

Tr(M) fl det*(Ap[M])(-V"A2 (det«(A°[A/])-3det«(A1[A/]))i

(5.13)

5.3.2. L2-torsion. The natural candidate to be the limit of finite torsions is the
L2-torsion, cf. [22, Question 13.73], The following definition does not depend on
to > 0:

log r®W: V) IE rf-i>"(s(r!ö fTrr

+ [+°° Trr(,-'A/,[H3])-Y (5.14)
Jto I /

The convergence of the fist integral follows from the asymptotic expansion (5.4); the

large-time convergence is obvious here because the Laplacian on H3 with coefficients
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in V has a spectral gap. We see that log T(z) is a multiple of vol(D) and we denote

by t(2HV) the constant logV))/ vol(M). This has been computed in all

generality in [4] to yield (1.4).

5.4. Proof of Theorem 5.1.

5.4.1. Plan of proof. We naturally study small and large times separately. We want
first to prove that for any t0 > 0 the following limit holds:

1

—U > 0.
ln)ds\J0 J tJs=Qn-+oovol (Mn

(5.15)
The proof of this is more involved than that of the pointwise convergence of the

traces since we have to control the asymptotics as t -> 0 of the heat kernels of Mn
as n oo. We carry it out in 5.4.3 by going to go over the steps of the proof of
Theorem 4.5 with extra care for the dependency in t of the majorations.

We also have to deal with the convergence of the large-time integral as n varies.

What we need are the following limits, which we will prove right away in 5.4.2 below.

."+o°TrR(e~tA"[Mn]) dt\lim lim sup / 0, (5.16)
to~*~~\~oo y «—>00 Jto vol (Mn) t J

-+00
(5.17)

rI lim sup 1

V n-*-oo Jt( 1

lim (7+O°Trr(^A/'tH3])-)=0-

Assuming all these limits we can now conclude the proof of Theorem 5.1: the

limit (5.15) above yields for all t0 > 0

log TR(Mn) - fog T{2\Mn) ^ f+0° TrÄ (e~tAP^) dt
< lim sup /

Vol (Mn) n—>oo \Jt() VOl(M„) t

+ [ °°
Trr —

J t0
1

and by (5.16), (5.17) we get that the right-hand side goes to 0 as t0 —> +00, so that

the limit superior on the left must be 0.

5.4.2. Spectral gap and large times. Obviously (5.17) follows from the convergence

of the integral. Now we prove (5.16) using the uniform spectral gap. Let us first
deal with the continuous part. For u e [e, +00) the Maass-Selberg relations (3.9)
for Y 1 yield

~{*l(iUrl^Ê^~'V'V)v* \TlE{iU-V)\2LHMn-,Vc)

+ T-((Vl(iu)-v,v)vh - (Vi(-iu) v,v)vh).
tu c vc
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As 4*/ (iu) is unitary the right-hand side is bounded below by —2s 1 and it follows
I vh-^i(iu) 1that 2e 1

\vh — 4>/(tw)
1 is positive when \u\ > s; in particular.

^2e 11yhn£(w) := tr 2s 1

\vh„ -^i(iu) 1^j~^)>0

and since for t > 1 we have e tu < e u we get:

f e-»2<trUl(n
J\u\>s V du J

I f e~u2' du+ f
J\u\>£ J\l

'\u\>e

—2e~~:hn dim(K) I e~u"'du + I Ç(u)e~u~' du
'|«|>£ J\u\>£

< —2s~lhn dim(l/) f e~" ' du + f t-(u)e~" du
J\u\>s J\u\>E

(2s 1 dim(K) [ e "** du]hn — f e " trfty/O'w) t r/4r/(/ir) \ ^V 4|m|>£ J J\u>e V du J
(5.18)

We put

C (^e^dindV) f e~"2 du Y
V d|U|>£

recall from (3.2) that I2 + Xy > («1 — n2)2 for all / under consideration here, so

that e~^2+Xv^ < e-("i_,,2)2(r-i)e-('2+^r'); from the last line of (5.18) we get:

_ f e~(u2+l2+Xy)t tr fy )-l ^ < c/ (Bl_„2)2(
4l>£ V du -

^e-(n,-n2y-(t-l) f e-(u2+l2+Xy) tr (yl{iu)-l d^l^lU)\du. (5.19)
i|u>£ V du)

Since an > tr ^i{iu)~l we also have

f an lTf trff/O'w) \

and we obtain in the same way

f e-'-tr(4,
J\u\<e V du J

<Can— [ e~u~ tr(Vi(iuyl-—^ M du. (5.20)
J\u<£ V du J
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Since tr T/ (0) < d/hn for all I, we also have

Y^e-'V2+XvhrVi(0) < dim(V)hn + J^e~V2+lv) tr^/(0).
/ I

(5.21)
Now let Ao be the lower bound on the spectra of all A/? [ ] )disc given by Proposition

3.1 ; we may suppose Ao < (n i — /Î2)2. We have

Tr(e^A"[M"])disL. < c"Ao(,"1)Tr(e"A,'[M"])d.sc

and since Tr« £-'ATM"l js the sum of this with the terms on the right-hand side of
(5.19), (5.20), and (5.21) we finally obtain:

TrRe~tAP[M"] < e-^(t-])JrRe-A[M"] + 0(e~t{'"-n2)2 (an + hn))

from which follows:

"+OO

/to
SUP(^WA f+°°?rR(e-tAPlMn])y)

n Vv°l(M„) Jto ' '

^ f+0° -x()(t-\)dl Tr«c A/AM«1 0(an+hn)<1 e ou <>—. sup 1

Jto t n vol (M„) vol (M„)

By Theorem 4.5, Lemma 2.7 and the hypothesis on an we have the right-hand side

above is bounded in n and goes uniformly to 0 as to > 00.

5.4.3. Small times. To deal with the small-time part we analyse each of the terms
in (5.3). Recall that for j 1, hn we have put Anj (T„)«,. and

"+°° dp jt(1 + 21oga(A„j))
K-n. i — * ^r f /A_"•'~L £A">'p3" vol(A„j)

Then we get that

Tr« e-'AP^ - Trr„ e~tAP^ f £ try*e-'A«(x, yx) dx
Jd»

ys(r„),„x

p+00 r+oo
+ 2nhn I r\og(r)hf(l(r))dr + vol(A„j) / rh?(l(r))dr

Jo
/=1

do

=: A, + T2.

By the estimates from Theorem 5.2 we have

d f'° ^ dt \ f ^ _d(x yx)2 _5 dt
— I Tits — \ «. / / 7 c C2' dxt 2—
ds\J0 t 7i=0 do Jd„ Jr1, t

/ rtjlox



Vol. 94 (2019) Asymptotics of analytic torsion for hyperbolic three-manifolds 503

[ Y
M"y(r„)i0A 0

and the right-hand side is an «(vol Mn) by Lemma 4.6.

Now we deal with T2\ put:

fto r+oc dt
3 (,)=/ / r log(r)hf (i(r)) dr ts

Jo Jo
(5>22)

f'° f+oc dt
@(s) / rhf (£(r)) dr ts —.

do do '

It follows from (5.8) and Lemma 5.6 that 3,0 extend to meromorphic functions
on C which are holomorphic at 0 and we get

d r'° c dt \ da \d&
TsUo Tlt T)J=0 2jthn~dF^ + vol(A""/)j j7(0)'

On the other hand we have seen that Jfhj'Lt Kn,j vol(Anj) «(vol Mn) in the proof
of Theorem 4.5, and hn «(vol M„) by Lemma 2.7, so that the right-hand side itself
is o(vol Mn), which concludes the proof.

6. The asymptotic Cheeger-Miiller equality: statement

In this section we recall the definition of absolute analytic torsion for manifolds with
boundary and we give the scheme of proof for the following theorem. The actual

work is done in Sections 7 and 8 below.

Theorem 6.1. Let V be a strongly acyclic representation of G and Mn Yn \H3

a sequence offinite-volume hyperbolic three-manifolds satisfying the conditions of
Theorem 5.1, with (4.19) replaced by the stronger condition that we have

^/m(A j,n)\2 vol (Mn)
V«2(AJ.n)) (log(vol Mn))20 '

Then for

J 1 a\(An j)
the following limit holds:

i

_ vol(M„) ^ u,
/ a a

' «a(Anj)2) '0Cl{An'J)-

/ — 1 rv I A .• ^2

log Tr{Mh\ V) — log TabS(M„" ; V)
i/Ä/f \ ^

vol (Mn) n->oo
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Once we accept this result we can deduce an asymptotic equality between

regularised torsion and a combinatorial absolute torsion that we will define in (6.5)
below. The other important ingredient for this is the generalisation by Brüning and

Ma [11] of the Cheeger-Müller equality to the case of flat bundles on manifolds with
boundary.

Theorem 6.2. Notations as above, we have the limit

log TR(Mn; V) — log Tabs(M,f " ; V)
^ (g

vol(M„) «->oo

6.1. Absolute torsions.

6.1.1. Analytic torsion. Let A be a compact Riemannian manifold with boundary
and V a real flat vector bundle on X with a Euclidean metric. Then the space
Çip(X\ V) of smooth /?-forms on X with coefficients in V is operated upon by the

Hodge Laplacian AP[A], The restriction of XP[X] to the forms satisfying absolute

conditions on the boundary (i.e. the boundary restrictions of *f and *df are zero,
where * is the Hodge star) admits an essentially autoadjoint extension A',ls to the space
L2Q''(X: V) of square-integrable /»-forms. We thus may form the associated heat

kernel e~l AabSlM which is the convolution by a smooth kernel e~tX^x^ •), is trace-

class and has an asymptotic expansion Tr(e_?Aat*^) + • • • + ao + 0(t 2)

as t -> 0 (cf. [16, Theorem 1.11.4]). On the other hand the spectrum of Afbsm is

discrete and thus we have an estimate

Tr(e~*A£sixi) — dimker(Afbs[A]) < e~Xxt,

where X\ is its smallest positive eigenvalue. Thus the zeta function

1 /»+OO J f
WW (Tr (.-"W) - dim ker (AfJ*]))e £

1 O) Jo 1

is well-defined for Re(.v) >3/2 and may be extended to a meromorphic function

on C which is holomorphic at 0. One then defines det(Afbs[A]) exp(£^>abs(0))
and

sdimX x 1

T*»{X-,V) fi det(Afbs[A])(-1)"/')
p=1

6.1.2. Reidemeister torsion. We will use a definition of Reidemeister torsion
derived from that given in [11], In this reference the authors define two norms on the

determinant line
D Abp HP{X ; V)

(where/»p dim HP{X\ V)): one, that we will denote by ||-||L2, which is induced by
the L2-norms obtained by identifying Hp (X; V) ker A^bs[X] and another, ||-||comb,
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obtained from a smooth triangulation of X. The Reidemeister torsion is then the

positive real number defined by

W*: V)
II • 11/4

which does not depend on the triangulation. In [11, (0.11)J the authors compute the

difference log rabs — log 7'abs in terms of the geometry of the boundary; we will only
use the special case of their result (cf. (0.14) in loc. cit.) which states that

lograbs(A"; V) - log rabs(V; V) dim(V)X(dX) (6.4)

when the metric is a product near the boundary.
Now suppose that jti(X) preserves a lattice Vz in V; we can then define the

integral homology H*(X; V-£) and we have a decomposition

HP(X: VZ) HP(X: Vz)trcc © HP(X\ Vz)t0[S.

The free part HP(X ; Vz)iwc is a lattice in ker(Afbs[X]) so we can define its covolume

vol(HP(X; Viz)tree)- We then have, more or less tautologically (see [13, Section 1]):

nf <">
pj0 VVOl (Hp(X; V'Z free /

by evaluating the norms on a basis of D coming from bases of the free Z-module
HP(X- Tz)free-

6.2. Comparing analytic torsions. We give here the proof of Theorem 6.1 assuming

the content of Sections 7 and 8 (note that the condition (6.1 is not used until
Section 8). We have

log TR(Mn; V) - log rabs(Mj" ; V)

y p(-\yU4- r {TrRe-tAP^^
p=x ds\r(s)Jo t )s=0

+ f °°
TrRe-tAP[M"]—~ f+°° Tre-tA^[Mn"] —

Jto t Jto r

d \ f'<> dt\
+ T hn bp(Mn; V)t —

ds\T{s) Jo I )s_o

The first line is an «(vol Mn) for any t0 > 0 according to Proposition 7.1, the limit
superior of the second one goes to 0 as t0 —> +oo according to Proposition 8.1

and (5.16). The third lines equals hn times a constant and thus it is also negligible
before vol(A7,;). Thus the right-hand side is an «(vol Mn).
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6.3. Applying Brüning and Ma's result. We now give the proof of Theorem 6.2.

For a finite-volume hyperbolic manifold M let go be the hyperbolic metric on MY
and gi a Riemannian metric on MY which equals g0 on MY/3 and is a product on a

neighbourhood of the boundary, for example we can take (in coordinates (z, y in a

cusp):

gi(z,y) (f(\og(Y/y))Y~2 + (l - f(log(Y/y)))y~2)(dz2 + dy2)

where f is a smooth function which is zero on [1, +00) and constant equal to 1 near

zero, we put gu — ngi + (1 — w)g0 which is a smooth family of Riemannian metrics

on MY. The following result is well known (see also [10, Section 4] which gives an

exact formula for the error term).

Lemma 6.3. There exists smooth functions cp(u) depending only on xfr such that we

have, for all M and Y e [1, Too)'':

d
3

— {log Tdbtt(MY, gu) - log vdbli(MY. gu)) vol (9My) ^ p(-\)pcp{u).
p=0

Proof. This follows at once from [26, Theorem 2.22] (see also [13, Theorem 3.27])
since the isometry class of the germ of gu on the boundary dMY does not depend

on n or Y.

On the other hand, by [11, Theorem 0.1] (see (6.4)) we get that Tabs(MF, g 1)

W>WF,gi) so that

10« wW)-iog wW) voi(^) f(11)(h, (6.6)
vol(M) vol(M) Jo jp

v

Now we apply this to the heights Y"\ we have:

tin

vol(dMY") < J](T/)"20!i(A„j)a2(A«,7)
y'=i

_ y-v "l(A/ij) Q?2(An,j) ^ a2(Anj)
-

P, (Yj)2
'
OH(Anj) - jlhn \ (F/)2

'

P ai(A„j)
and the right-hand side is an «(vol Mn) since on the one hand we have

Pj'L 1 ai(A"'y) 'Avol M„) by the hypothesis that (4.19) holds and on the other

for the sequence Yn from Prop 7.3 we have maxy=l!...!/In(ai(A„!7)/(T")2) 0 as

n -» +00. Thus it follows from (6.6) that

log T.^{My" ; V) - log Tabs(A/F" : T) ^vol (M„) /i-»oo

which finishes the proof of Theorem 6.2
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7. The asymptotic Cheeger-Müller equality: the small-time part

The aim of this section is to prove the following result, which is an immediate

consequence of Propositions 7.4 and 7.5 below.

Proposition 7.1. For the sequence Y11 defined in Theorem 6.1 we havefor any to > 0

the limit

hm 0.
n-KX> vol (Mn)

7.1. Heat kernels on truncated hyperbolic manifolds. Let M r\H3 be a complete

hyperbolic manifold with cusps y i yh a set of T-invariant height functions.
Then for Y e [I. +co[Ä the set

My {x G H3, V/ I h : yj(x) < Yfa

is the universal cover of MY. The following generalisation of Proposition 5.2 to this

context will be proved in Appendix A (as in Section 2 we use s to denote the Margulis
constant of H3).

Proposition 7.2. Let M he a hyperbolic manifold with h cusps and Y G [1, +oo[
such that far all peripheral subgroups A of tc \ M there is a vector in A which has

a displacement less than s/10 on the relevant horosphere at height Y. Then for all
to > 0 there is a C > 0 such thatfor all t G ]0, fo] we have that

I ~tAp uwM'i/ xi ^ (jix.y)2
|e >^bdM J(x, y)\<Ct 2e st

This implies that the series in the following expansion for the heat kernel converges
uniformly on compact sets of MY:

e_<ASS[My](x, y) ^ ](Xi yyfi (7.])
ye r

7.2. A useful estimate. The following proposition is the starting point for the proofof
Theorem 6.1; note that the fact that miny=i;.. .;/,n (Yj1 /a i{An jj) > +00 implies

that for n large enough the heights Yn satisfy the assumption of Proposition 7.2.

Proposition 7.3. Let Mn be as in the statement of Theorem 6.1 and put:

i x—\ d(x,yx)^
S(n,t,Y)= Y e ^ dx.

Jmx cr41
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Then for all to > 0 the function £2 defined by £2(.v) S(n,t,Y)ts~i^ is

holomorphic on C and there is a sequence Yn [1, +oo[ " such that

min (Yf/ai(Anj)) > +oo
j l,..;hn 1

and we have:

~ 1 \ f'o 3 S(n,t, Yn) dt
— (TTTT^C5)) / / >0.

=0 Jods\r(s) Js=0 Jo vol (Mn) t n

More precisely, we can take:

vn_( vol (Mn) /A N

J «2(Anj)2 I

2-"j 1 a\ (A„ y)2

Proof. Let Y e [ 1, +oo\h". Recall that Bn B\n and b\' were
•>J n,j ri,j lxn,j

Y
defined in (4.8). Let Rnj be the union of pieces of horoballs y(Bnj — BnJj) D Bnj
for y f Yp.. Separating unipotent and loxodromic elements we obtain as in (4.9) the

equality:

n c

El x—> d(x,rix)A

Yj ^2 e 51 dx
7 1 BnJ t/AnJ--{0)

fj n OP 0

El X—> d(x,nx)^ I x—5 d(x,yx)^L^ * + L Mr ^ "
7 1 " j veAnJ-{0] JM M y6(r„)l0x

and we put:

hn

T,= f E e-'-^iR,r2E / E4m-A/> JT",. .JR.,: ^.ye(r„)lox 7 1 n-J rieAn j-
n r" U;. Ï

cUx.yx)2
e st dx.

n t
e st dx.

7 1 nj rjeAnj —{0}

The term T\ is dealt with exactly as the similar term T\ in 5.4.3. The term T2 is

dealt with similarly to /2 in (4.7) in the proof of Proposition 4.2 (taking into account
the integral over t).

We deal with the more delicate term T3 cusp by cusp: put

Sj=lv >' e-dA^dx,*=L
nJ r)&AnJ-{0}
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then we have:

f YJ /"+°° Hr/v)2 dv
Sj vol(A„,/) / / e—5T- d.NÏJr) —

Jo Jut (a„j y

vol(An,j) fYj f+°° dl _ar)l dyplj p-t-oo

JO Ja i(A„
e 5r K,(ry)dr —

Jo Ja i (An j )/y dr 'J y

By Lemma 2.2 we have ,M* (ry) vol^~where the constant

does not depend on n, j. It follows that

Yi r+oc dy ^51 dr — ' "

i(a„j)/v y
<§( / / r2e s/ dr —t 2/7Jl) Ja

pYj p+oo
V",j) / /

70 7ai (Anj
+ vol(Anj) I I (7-2)

)/vO!l(A„j) J3

We deal with the first line now. We split the integration between r > 2 and

ai(A«,y)/y < r < 2. When r > 2 it follows from Lemma 2.1 that f(r) logr
and we obtain:

/•'o frJ f+0° 9 _roV dy 5 t/t f?<) _(tag2^ 5 r/t
/ / / M s/ dr —t 2 — <^; / e sr log L, f 2 —

Jo Jo A y t J0 J t (7.3)

« logLy.

On the other hand, when r e [0,2] we have I(r) > cr for some c > 0 and thus:

f'o rYJ r2 etr)2 dy _s dt
rze s' dr ~1 2 —

i)b y 1

-Yj rto („i(AnJ)/y)2 5 dt dv
« / / e c< t 2 — —

Y.i r+°° j 5 dt v \5 dy
« / / « ci( 2- —-4 — (7.4)

to rO r-2

«/0 «/O Ja\(An

f" J
Jo Jo

Jo Jo f V®i(An,y)J y

MM5.
\al J

5
/ / r '

« ^ aI / A
}

For the second line of (7.2) we have the majoration

,/a \ fYj [+°° a2(A«,y)
V°1(Anj) / —t re 5' dr —

Jo Ja
\ (An j)/y al(An,j) y

Y, r+œ
< ot2{An,j)z I I e 7' dr-Jy

j)/y y

pi j p -rOO

^nj)2 /
JO Ja\(Anj

aAA„ wi<A«,/)/>'/)2
« Y; g
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and it follows as in (7.4) above that

f'° fYj f+°° a2(An i) «c)2 dy s dt
L L^lV,ïkfr-^ir7riT

« a2\A\j)V X
fA \) • (7"5)

Putting (7.2), (7.3), (7.4), and (7.5) together and summing over the cusps we obtain:

fits * <k U,o$Yj+(ä)5+&x (~)3)-
(7.6)

We now define

_
/ vol(M„)

" I sr^h„ "0(A,,j)2
1 «1 (A,,,/)2

so that an tends to infinity, and put

Yf =a1(AnJ)xa„ (7.7)

so that

min(a!(A„,/)/T") a~l 0.
j v J ' n->oo

We let S'j be S, for F Y". From (7.6) above we finally get that:

Ej snj dt
J0 vol(M„) t

« E(io8a"+««.(A..;))++«; • ^^2)
<

log(vol M„) Ey=i log«i(A«j) / h„ \ 2 /£fo i a,(A„j)2
vol(M„) vol(M„) \ vol(M„)/ vol(M„) j

The second summand is o(volM„) because of the condition (4.18) on the height
functions, the third by Lemma 2.7 and the last one by condition (4.19).

7.3. Comparisons. In this subsection we will abbreviate:

Try K — I tr K(x,x)dx
Jmy

for a continuous kernel K on a complete hyperbolic manifold M.
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Proposition 7.4. Let to > 0, p 1,2, 3 and Yn the sequence from Proposition 7.3.

We have

1 ±(_L f" (TrF„ (e~'AP^)-Tv (e-tA^Mn"hy ^ > 0.
\o\(Mn) ds \ r(.v) io V V ' V " t)s=0n^oc

(7.8)

Proof. From (7.1 it follows that

Try,, (e-tAP[M»]) -Tr(e~tA^[M""])

f tr (e~'A[H3](x, x) - e~tA^[M""](x, x)\ dx
Jof"

J2 tr (e-tA"lM3](x,yx))dx
" yer,,—{1}

y, tr (e"'AabSlMH J(x, yx)) dx
» yer„-{l}

=: E\ + E2 + Et,.

In the case all Mn are covers of a given orbifold M and all YJ, j 1 hn

y fl Vn
are equal the manifolds Mf are equal to M so that the first summand

frcs-r1 r Elts~1dt)
ds\ Jo Js=0

is equal to

vol(M„) • (log T^2\m; V) — log ; V)).

We will now use the method of Liick and Schick in [23] to study this. Note that

in loc. cit. these authors deal only with trivial coefficients. On the other hand, once
the estimates in their Theorem 2.26 are established the proof works in all cases. The

proof given in loc. cit. for this result likely adapts to unimodular coefficients; but
since we need the results only for manifolds of the form MY, in this case their result

can be deduced from (A.3) in the appendix. It is proven in [23, Section 2] that

log T(2)(M; V) ~ log T^(My: V) » 0. (7.9)
all Yj ->00

In this case we finally get

d 1 ft() dt \
— / Exts — >0. (7.10)
ds\T(s) J0 t)s=0n-+00

We can also adapt the argument of Liick and Schick to our general situation, as we

now explain. Their key result is Proposition 2.37, and to prove it they separate the left-
hand side of (7.10) into seven summands .sq, sj. Let Yn min7- Y"\ for i 4
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they get by straightforward arguments the bounds (caveat: their parametrisation of
the cusps is by arclength in the y direction, so their statements are different in form):

hi « vol(M„)e"°ogF")2, h| « vol (Mn - Mf").
h| « vol (Mn - MYn"12),

V5 o, |.v6| «; vol (Mn - Ml"), hi « vol (3Ml"),

and as Yn —> +oo and m\x\j(Y" /ai(knj)) -> +oo all the terms of the right-hand
sides above are «(vol Mn). The argument for ,v4 is more involved: they subdivide it
into s41, s42, .V43 and they prove that

I.V411.1^421 « vol (Mn - Ml"12), |.v431 « e~2k'gY" vol (3M*)

and the terms on the right in both majorations are «(vol Mn), which finishes the proof
of (7.10).

To finish the proof we observe that Propositions 5.2 and 7.2 yield the bounds

tr(c-'A"[H3](A-,yx)), tx(e~th^Y\x,yx)) « r3l2e-d(x'yx)2/5t,

where the constant does not depend on (large enough, see the remark before

Proposition 7.3) Y, so that we have in the notation of Proposition 7.3 the inequality
E2, £3 S(n, t, Yn) and we get

-7-
(-1— f °

Eits~l dt > 0
ds\Y(s) J0 )s=0 n^oo

for / 2, 3, which finishes the proof of the proposition.

Proposition 7.5. Let Y " be the sequence from Proposition 7.3, then we have

P (TrRe-'AP^-TrYn e~'^n}y^ > (J.
VOl(M„) ds V r(.v) J0 t)s=0n^oc
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Proof. From the explicit expression of the o(\) terms in (4.15) and (4.9) we get for

any cj> e <>4>(M) and Y e [1, +oo)hn :

hn r+OO

Try <p(Ap[Mn]) ~TrR(/)(Ap[Mn]) V 2?r log Fy / rhpAi(r)) dr
7 1 ^

h" c+°° c+°° do
+ Evol(Anj) rh<ptP(t(r)) EAnJ(p)—dr

j l JO Jmax (of i (A,,, ).rYj) P

h" f+°° Ea (rY
+ Evol(A-) /"'v .27 h<t>A^r))dr (7.11)

7 1
7o v*j)

+ ÉI y E ^(y^-^'^Hx.yx))^.
j=lJBAj-B/jyer_Aj

We want to study the right-hand side with Y Yn. The last line can be dealt with as

the term 74 in 5.4.3, using Lemma 2.4 instead of (2.9); we will not repeat the proof
here. We put:

/--Too

74 E2jrl°g*7 / rhf(l(r))dr,
7=1

;°

AtL /"+00 Aa (rTf)
t2 Ë vol (A „,7) /

2 ^(£(r)) dr'
7=1 j '

h" f+°° f+°° do
74 V vol(A„j) / rhf(£(r)) EAnJ(p) — dr.

j 1
Jo «/max(a;i (Anj),rYj) P

We deal first with 74 ; recall that 0 was defined in (5.22) so that

d 1 f'° „ .dt\ „</0^-^( —— / 74 f — y 27T log T, —^(0)r/.vVr(.v)7o lj(=0 ^ *JdsK>

and by the definition (7.7) of the sequence T" the right-hand side is an

o( log (vol M„) + Ë>°g«t(A«j))-

which is itself an «(vol Mn) by the assumption (4.18).
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Next we deal with T2. We have:

d f'' sdt\ d f'° ^ r«dAnJ)/Y>; dts
tAL n' tL *(/. £>/. ,(<r)) "L

+ /" É P (7.12)
do J^JadAnjHY? y> Yj t

As in the proof of Proposition 7.3 we get that the second line is bounded by

*» ' a2(AnJ)2\„( Yj Y (1A3)r(\\a2(Anj))yJ " V
a, (AnJ)2) \ai(Anj)J '

which we sam there to be an «(vol Mn). The first line needs analytic continuation;
recall the asymptotic expansion (5.6):

hf(l) YJhPk{Y)e~^t^ + 0(ti).
k=0

The term associated to the 0(t i) is easily seen to be bounded by h„: indeed,
>v I—t- /(|°Lh js regU]ar at s o and we get that

o(hn)
(7.14)

since a.\(A„ j)/ YJ «(1).
For k 0 3 we have:

1 j e(r)2
I (i{r))e st dr

Jo

/•«I (AnjMY'j 2
/ b£(l(r))e 51 dr

Jo

Mr)- Mr)~/ b?(t(r))e -7? dr— I b?{i(r))e sr~ dr.
Jo Jai(AnJ)/Y»

(7-15)

We have:

/ b?{l(r))e st dr e c (7.16)
Jcn(Anj)/Y?
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and moreover (5.8) yields the expansion

m

>//2 (7.17)
/» 1 o mI £(r)
/ b%(t(r))e ST" dr VV/f
J°

1 =2

with coefficients c; not depending on n, j. It follows from (7.15), (7.16), and (7.17)
that:

rai(Anj)/Y? 3
2 <«i(A„,/)/yf)2x[ Y, bf (£(r))e st dr n Cjt~ + o(e ct ^

"7° /=0 /—2
(7.18)

Gathering (7.12), (7.13), (7.14), and (7.18) we get:

d 1 f'° dt\
d~J — I T*r — I « h" + "(vo1
7 / 1 f° „ <dt\
T FTt / Tlt V <<C "fv v r (.v) Jo f Js=0

+mlI, /-to (a,(A„.y)/r7)2 _A, dt
e CT " f~2"—(7.19)

*=oy=i-
The third summand on the right is dealt with as in the proof of Proposition 7.3: for
k 1,2, 3 we have

to («i(AnJ)/Y}p k dt Y" \k r+ooft0 to,(A„j)/r?H _kdt<( Y" y r
Jo t \at(t^«,y)y 7o

é? 1/CG 2 —

and for k — 0

Yi
rk) tel (Anjl/Y?)2 df fomA„ j)'0 dt
/ É- rï — / '

«
7 — «log(f"/û!i(A„j))

7o t Jo t

so that we finally obtain

d( 1 /"" ,rff\ ^ / 17 \3d( 1 f'° dt \ >7 V
r T77 ^ t « E <1 t ' (7-20)

t/.V V T(.v) Jo ' A=0 ~^V«l(An,y)/

which is an «(vol Mn) as « —> oo for Y Yn. We can finally conclude from (7.19)
and (7.20) that

d 1 f'° r t/f \ü(fw/. r2' r), ="<voI"")-
5=0

The summand T3 is dealt with in a similar manner. For any n > 1 and j
1 hn we put

r+°° dp
Kj vol(AnJ) / EAnJ (p) —.

7max(of| {An J),rY'j) P
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We have seen in the proof of Theorem 4.5 that 4 « (Sfer)2 (uniformly in r)
and we get

f+°° r+°° do
vol(Anj) / rhf(l(r)) / EAnJ{p)—dr

Jo Jma.x(a\ (An j),rYj P

/»«l(An,j)/Yj r+oo
k': I rhf (l(r)) dr + k'- I rhf{i{r))dr

Jo Jax(Anj)/Y'j

where to obtain the last line from the second we used the same arguments as to deal

with the term (7.15) for the first summand, and we applied arguments from the proof
of Proposition 7.3 to the second.

Thus, we have

d ' i no ,h \ hn

di

* f °
T ts dt\ « V /a2(A,;j)\

s\r(s) Jo 3
t )s=o p^Vai(A„j)J

«2(AK,y)\2 f
\0Ci(\nj)J Jo

h" /„./A A\2 W() ta| (AnJ)/Y'j)2 3 Jt
Ct t 2

t
7 1

and we have already proved that the right-hand side is an o(vol M„), which concludes
the proof.

8. The asymptotic Cheeger-Miiller equality: the large-time part

We will give here a proof of the following result.

Proposition 8.1. For the sequence Y " from Proposition 7.4 we have that

(Trf"4"IMr')-dlm*erAJJiOiy)
is finite and goes to 0 as to -> oo.

The main point in the proof of Proposition 8.1 is that for the sequence K" of
Proposition 7.3 there is a uniform spectral gap for the manifolds Mff" : the proof of
the following statement will take up most of this section.

Proposition 8.2. There is a A i > 0 depending only on V such thatfor n large enough
and any p-form f G ; V which is orthogonal to harmonic forms we have

(AJ>/./W,n. A
WfWmMD ~ l'
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ProofofProposition 8.1. We proceed as in 5.4.2 above, but have to check that both

properties of the heat kernel used there still hold for Mj Namely we need to check
that:

(1) There is a Aj >0 such that for any n and any eigenvalue A > Oof Afbs[M,f]
we have A > Aj.

(2) The sequence
J is bounded.

Point (1) is a direct consequence of Proposition 8.2 below, and we deduce (2) from
the following more precise result: for any given t > 0 we have in fact the limit

Tr(e-,AWl)
vol (Mn)

v 'n —>oo

Indeed, we see that

rY"
I Xr (e-tAfbs[M,r ']) _ Trp (e-/A"[H3])|

vol(M„)

I Trr„ e-tA^[MY"] - Trr„ g-'A"[H3]| S(n,t, Yn)
vol(M„)

+
vol(M„)

The proof of Proposition 7.3 yields that S(n.t.Y'r) o(vol Mn) and that of
Proposition 7.4 that the first summand also goes to 0 as n -> oo.

8.1. Preliminaries to the proof of Proposition 8.2.

8.1.1. Comparisons of eigenfunctions with the constant term. We will make

intensive use of the following inequality: there are constants C, c such that for any
finite-volume manifold M with h cusps and height functions at each of them and

for all Y e [1, +oo[ if / e QphfM Y
; V) is an eigenform of eigenvalue A and

Yj Ia I (A j) > C JA for all j then

y j U)

\f(x)-fpJ(x)\<\f\L2QP{Mr.v)e~C^u^P for all x M — MY. (8.2)

This is a refined version of [12, (6.2.1.3)], and it follows from the proof of the

latter: the only difference in our statement is in the explicit constant c/ci\(hj) in
the exponential which replaces the b0 in loc. cit.. This constant k0 comes from the

estimate of Fourier expansions and equals the systole of the dual lattice of Ay, which
is easily seen to be equal to oq (Ay )-1.
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8.1.2. Spectral gap of submanifolds. Let us set up notation for the next result:

we will denote by X, g a complete Riemannian manifold, by N an open subset

of X with smooth boundary and by E a flat bundle on X. We suppose that the

1-neighbourhood W of dN in X is a collar neighbourhood which we parametrise as

W [— 1, 1] x dN; this is satisfied for X M a finite-volume hyperbolic manifold
and N MY, Y > 3.

Lemma 8.3. Suppose that the spectrum ofAp [X] is bounded below by some Xq > 0,

and let f 6 £2^bs(iY; E) be a co-closedform such that

H/IIW-) 1

<—min(l,A0), W =31V x[-l,0].
II f\I2 ~ 10

Then the Rayleigh quotient

(ALM/./W) _
Wdf\\2LHN)

WfWlHNi WfWlnm

is bounded below by Xq/4.

Proof. Let h be a smooth function with value 0 on (—oo, 0] and 1 on [1, +oo), and

0 <h'< 2. Define a smooth /?-form / on X by

/M
f{x) x e N — W~

h(d(x,dN))f{x) x e W~;
0 xeX-N.

Then, putting y(x) — d(x, dN), we get that df h'(y) dy A / + h(y) df, whence

it follows that

\\df\\2L2(x)<2\\df\\lHN) + 411/lli^-).
On the other hand, we have that

ll/IW) —
11-^ \\l2(N-W~) 11.^11

L2(A0 ^ - Y^II/lli2W

and it follows that

WdfWlnm
^ ll^/HW) JfWlnw-)

IIf II

L2(N)
^11f II

l2(N) II/IIl2w
9 \\df\\2L2(x) 2X0 5

> ~
W > —A0 Ao/4." 20 il f h2 10 ~ 20 '

I' ' I' L2(X)
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8.1.3. Eigenvalues don't jump. We will need the following weak continuity result

for the spectrum which follows from [5, Lemma 9.9 and Proposition 9.10(2)] but

can also easily be proven using the min-max principle or more powerful continuity
properties of spectra for families of operators.

Lemma 8.4. Suppose that N is a compact smooth manifold and gu, u G [0, 1] a

smooth family of Riemannian metrics on N. Let Ap[gu\ he the Hodge Laplace

operator on forms with values in a flat Hermitian bundle over N (and absolute

boundary conditions) and suppose that there are 0 < a < b such that:

• for all u £ [0, 1] there is no eigenvalue of Ap[gu] in [a, b];
• for some uo e [0, 1] there is no eigenvalue of Ap[gUo\ in ]0, b].

Then there is no eigenvalue of Ap[gu] in ]0, b]for any u G [0, 1].

8.2. Proof of Proposition 8.2.

8.2.1. Outline. Recall that A0 > 0 denotes a lower bound for the spectrum of
Ap[Mn]\ in the sequel we will suppose that n\ > n2 (the symmetric case can be

dealt with with similar arguments). We will prove that there is a 0 < A ; <A0/4
such that the two following claims hold:

(1) There are X\ > e > 0 such that for n large enough there is no eigenvalue of
Ap[Mj] in ]e, Ai [ for all T g [1,+oo[ä'! such that Vy, Yy > Y"\

(2) For any n and T large enough there is no eigenvalue of A^JM„] in ]0, A i [.

The proposition then follows by application of lemma 8.4.

Here is a quick outline of the proof of both points before embarking on the formal
demonstration: the idea in both cases is that if we have an absolute eigenform which
violates the claim, then either (for (1)) it will also violate Lemma 8.3 or (for (2)) we

can modify it by an harmonic form to construct a function which violates the same
lemma. In both cases we compute norms of constant terms in the cusps and use (8.2)
to compare them to the norm of our eigenfunctions. Let us remark once more that
this proof is very much inspired from [12, Section 6.9].

8.2.2. Proof of (1). We will work in what follows with an hyperbolic manifold M
with h cusps and f e[1, +oo[a, and apply our computations to Mn and Yn only at

the end.

Suppose that / is a p-eigenform with coefficients in V and eigenvalue in ]0, A0/4[.
For notational ease we will suppose that there are s M, integers /, k and

m,co' G £l+(Wpk), cö, &>' Q.~(W-i-k) such that

fpj y)+1o>j + y) 2u'j + y) Jd)j + y)+2û'j (8.3)

(here is an outline as to how to adapt the arguments below to the case where the

constant terms of / are not purely of the form (8.3): then they are a linear combination
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of such, and since the components are pointwise orthogonal the computations of
L2-norms below carry over to this case; the reader will see that this is sufficient for
the whole proof to work with a very few cosmetic alterations). Moreover we may (by

symmetry) take ,v > 0, and since the Laplace eigenvalues are bounded away from 0

on the imaginary line we may actually suppose that .v is bounded away from 0 (by a

constant depending only on V). Now the idea is that because of absolute boundary

conditions, the dominant term in (8.3) far in the cusp will be yj s^2co'j + yj i//2n>y

unless the eigenvalue is very small, and this is concentrated away from the boundary
of My, contradicting Lemma 8.3.

Absolute boundary conditions have to be satisfied by all fpj as well as by /; we

can make them explicit by taking the differential of (8.3) using (3.3) and we get that

(s + 1 - k)Yj,2ù)j - (,v - / + k)Y7s,2ù)'j 0

—(.y + / - k)Y~s'2ùjj + (,v - / + k)Yjl2û}j

since both the (1,0)-part (on the left above) and the (0, l )-part (on the right) of the

contraction of dfp with the normal vector 9/3yy have to be zero. We can rewrite
this as

"J y±7T \v>-B> 7<84)

Now let a > 0 and Y' < Y/2 be such that a\(Ay)/ Lj < a for all j ; we have

I/IIÎ >L2(MY) - » •/ "L2(MY -MY')

- 2
" "L2(MV-My') _ II f ~ fp ^L2(My-MY'y

(8.5)

by (8.2) we have:

/• " fp\\LHMY-MY'3) < f e-c^yj^a^dx ||/||LW)
J my —m1

< vo](a/f __ MY'). if\\L2(MY)

and it follows from (8.5) that:

ll/Hiw) > (1/2 — g_cminy(ir//ai(Ay)) vol(M))^1 • \\fp\\2LHMy_Myy (8-6)
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We now give a lower bound for the norm of the constant term on MY — MY'.
This Is computed as follows, using (8.4) to rewrite (8.3):

H fp ^L2(MY-MY')

î £ (o - of»' - (//;/)V(>7* - 07)-) (8-7)

7 1

+ lsjzr^jr)log I2 vo'(aj)

+ (-(ïr£ï)V(»r - 07>-) + >7 - <r;r

+ 2j4tt^i1'(i»^)i»;I2voha,)

and we finally deduce that when (Yj/ Yj) » 1 we have:

Wfp\\2LHMY-MY>) » E r/(v7)S(K I2 + K l2) vol(Ay), (8.8)
7=1 V JJ

where the constant depends only on V and s — I + k, s + / — k (it is bounded away
from 0 when the latter two are).

It remains to give an upper bound for the norm near the boundary; we have:

11/11 L2(My-My/3) - 2\\fp\\2L2 (My-My'2) + 2II.^ ~ -fpW L2(MY-MY/2)
< 2\\fp\\L2(MY-MY/l)

+ 2e~Cmmj(¥J/ai(Aj)) V0\(M) \\f\\L2(MYy
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As in (8.7) we can compute the norm of the constant term:

\\fp\\2L2{MY-MY>) \ E [aYJ + hYJ +2'llll+kk YJ l°g(3^) K I2 VOl(Aj')
7 1

+ + èr; + 2* ~ *
+_kk Y? log(3)j Wj I2 vol A 7>, (8.9)

where a 1 - (2/3)', b (|±^§)2((3/2:)' - 1), a' (p££)2((3/2)* - 1). In
the end we get the estimate:

h

II/IIl2(M>'-M>'/3) < XI ^(K'l2 + 1^7'I2) v°1(A7')

+ e-cmin^YJMA^vo\(M)-\\f\\L2(MY), (8.10)

where the constant stays bounded when s — I + k, s + I — k are both bounded away
from 0.

Now we separate two cases: we will suppose first that il.k) in the constant
term (8.3) is not equal to (—n\,n2)- In this case, for.v k—l the eigenvalue computed
in (3.2) is bounded away from 0; thus there exists aO < Ai < A0/2 depending

only on V such that if / is an eigenform of the Laplacian with absolute boundary
conditions on M Y and the eigenvalue of / is less than A i then |,v + / ~k\> So, where
S0 > 0 depends only on K. On the other hand we have k — l ni + «2 > 0 and

thus ,v — / + k always stays bounded away from 0. Let W~ be the 1-neighbourhood
of dMY in MY. We have W~ C My — Mr^ and for a form / as above (8.8)
together with (8.6) and (8.10) yield that:

H^ « f~ — e~cni^Yjvol(M)^1 min {Yj/Yj)s
"L2{MY)

V2 7 J=h >h

+ e~cmin7IXj/a \ (Ay)) voj(M) (g ] j)
with a constant depending only on V.

Now we go back to our sequence Mn, Yn. First we observe that from the condition
in the statement of Theorem 6.1 that

/m(Aj>n2 vol(Mn)

p; V«2(A j,n) J (log(vol A/,, ))20

and the definition of YN in Proposition 7.3 imply the lower bound 17 »
(log(vol Mn))2oii(Anj). Thus we can choose the Y'- so that for all j we have

Y"/Yj (log(vol M,,))1/2 and Yj/ai(A„j) » log(vol(M„))3/2, hence

lim sup (é?—cmin>/«i(Ay,«>) Vol(A/„)) 0, lim sup (min(Tj/Y"Y) 0.
n—>-Too J
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It follows that for n large enough we can use (8.11) and we obtain that for any s > 0,

for n large enough and for any eigenform / G L^bsf21 (Mj ; V) as above we have

which contradicts Lemma 8.3 tor s small enough (depending on Ao).

For (l,k) --« [, n2) we get in the same way that there are no eigenvalues of

^[Mf] in the interval [e. A1], where s > 0 can be chose arbitrarily small for n

large enough, and this is sufficient to finish the proof of claim (1).

8.2.3. Proof of (2). If / is a 1-eigenform, its constant term given by (8.3), the

only case where the eigenvalue can be close to zero is when (/, k) — (—n\.n2). To

prove claim (2) it thus suffices to show that when an eigenfunction on Mr has its
constant term equal to (8.3) with (l.k) (—n\,n2) the eigenvalue cannot be too
small and nonzero when T is large enough. Let Si n\ — n2 (the value of s for
which a constant term (8.3) is harmonic), T > Y, 8 > 0 and suppose that there is

an eigenform /o G Œ*bs(M V) with eigenvalue having parameter s .sq — 28

(by (3.2) the eigenvalue is x 8) and constant term (8.3) with to G f2+(L_„, t„2). We

want to prove that for 8 small enough and T large enough such a form cannot exist;
the scheme of proof above is not adaptable to this setting since the holomorphic part
of term which dominates the norm has a coefficient that goes to 0 as the eigenvalue
does; however we can modify / by an harmonic form to make its holomorphic part
small near the boundary.

The proof will nevertheless be very similar to the one above, and there is one
notable simplification: since we can take T as large as we want for any n, there is no
need to consider the terms coming from the comparison of forms with their constant
terms (we shall thus ignore them in all computations below).

Lemma 8.5. For T large enough and any to G £2+(L_„ there is an to G

Q~(Vn[-n2) and a I-form in ker( A.lihJA/r]) whose constant term in the jth cusp
1 _|_ iLL i_ £1 _equals y

2
tOj + y

2
tOj.

Proof. First, the (l,0)-part of the constant term of a nonzero form f\ in
1 T 1 + ^J-

ker(AjJbs[M ]) must be equal to jy ~ tOj forsomem G f2+(l/_„l,„2), as satisfying
1 ——1-

boundary conditions excludes that it contains a nonzero term in yj
2

co'j. Second,
it cannot be zero because of Lemma 8.3: indeed, if it were then we would have by

computations similar to those above

\\.f\\L2{MY)

II/IIW-)
——— 1 < £,
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which can be made as small as we want by taking t/T' large enough. So we

get an injective map from ker(A.'ihs[/VfT]) to Q + (V-nun2) by f r-> (&'/). Now
these two spaces have the same dimension, for well known topological reasons (see

e.g. 125, Section 4.2]) and we can conclude that this map must be surjective.

Write (/o)pj as in (8.3). By the lemma above we can pick a f\ e ker A^bs[Mr]
such that

(fi)Pj y)+ 2 TJSo>j + y)~ 2 ftjy.i

for all /. We put / f0 — j\. We will check that for T large enough and 8

small enough / satifies the conditions of Lemma 8.3, which yields a contradiction as

the spectrum of A1 [M] on square-integrable forms is bounded below by A0. Since

/o, fi are orthogonal we have

11/Hi*(A/T) - H/oIIl2(MT) + \\.h\\2L2(MT)

h

» I]Ty1_2SK I2vol(Ay)
j=i

h

r-Sl+28

(8.12)

+ E (M2 + Y~j~2S |2) vol(Aj),
j=i

where the lower bound follows from the same computation as in (8.8). On the other
hand:

II/IIL2(MTT_MT/3)

— |my|2vol(A7)

/4 T, /

T' „'"I-: 5 +
«7 "A/ «7,1 - o.; sT/ 3A «7 — vol(Ay)

2.V, -8 1+
7/3

h

« J] vol (A _,•) + ^ T7,1+2Â(|ûj7-|2 + TJ2S |2) vol(Ay).
7=1 7=1

According to (8.12) the right-hand side above is <?C ^II/HEmO as soon as

maxy Yj / Ty ),v 1 < 8, so for 8 small enough (depending on Ao) and T large enough
the 1-fbrm / satisfies the assumptions of Lemma 8.3.

y

9. Betti numbers

Here we prove Proposition C. Note that we could not deduce it immediately from the

convergence of the regularised trace because of the spectral terms coming from the
Eisenstein series.
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Proposition 9.1. Let Mn be sequence offinite-volume hyperbolic three-manifolds
and suppose that Mn BS-converges to H3. Then we have for p 1,2

hp(Mn)
> 0. (9.1)

VOl(M„) n^oo

9.1. First proof. For this proof we need to assume that (4.19) holds. Let Y"e [1, +oo[Ä"
be the sequence from Proposition 7.3; for all n and / > 0 we have

dimker(Afbs[M/"]) < Trr(Ai[tf''"l.

On the other hand bp(Mn) dimker(Afbs[Mray"]) and it follows that for any t > 0

we have:

bp(Mn) Tre~'AabJMn 1

iA'ue3ilim sup
p ' < lim Trr e~tK [H ].

n—>-oo VOl(M„) VOl(M„)

The right-hand side goes to 0 as t -> oo since (H3) 0 (cf. [22, Theorem 1.63]),
and (9.1) follows.

9.2. Second proof. Here we give a complete proof proof of (9.1 The idea is that

we can approximate the noncompact manifolds Mn by Dehn surgeries so that the

sequence of compact manifolds obtained be BS-convergent as well, and then the

results of [1] do the work for us.

Lemma 9.2. Suppose that Mn is a sequence of finite-volume hyperbolic three-

manifolds which BS-converges to H3. Then there is a sequence M'n of compact
hyperbolic manifolds such that:

(1) For all n, M'n is obtained by Dehn surgery on M„;

(2) vol(M/j)/ vol(M„) > 1;
«—>+00

(3) The sequence M'n is BS-convergent to H3.

We can conclude the proof using this lemma. According to (3) we can apply
[1, Theorem 1.8] to the sequence M'n and we get that b\ (M'n) «(vol Mn). On
the other hand it is easy to see that because of (1 we have b\(Mn) < b, (M'n + hn

(where hn is the number of cusps of Mn). Thus we obtain:

b\{Mn) ^ vol(M^) b\(Mf) hn

vol(Mn) ~ voI(M„)
'

vo\(Mf) vol(M„)'

By Lemma 2.7 and (2) we finally get that the right-hand side is an «(1
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ProofofLemma 9.2. For (p,q) G Nh" x Nh" such that Pj.qj are coprime

for all j let MfJq be the compact manifold obtained by (p.q)-Dehn surgery
on Mn. Then M^q converges geometrically to Mn as minj(pj + q;) goes to

infinity, and it follows that for a given R > 0 there exists a mn such that when

mmj{\pj \ + \qj\) > mn we have

vol(MP'q)sR < vol(Mn) <2R

We can choose a sequence (pn ,qn) G (N x N)'!" such that (2) holds, and moreover

min/(]/?"I + \q"\) > mn; it then follows from the inequality above that M'n is

BS-convergent to H3.

A. The heat kernel on truncated manifolds

A.l. Introduction. Let S be a collection of open horoballs in H3 whose closures

are pairwise disjoint, and let X be the smooth manifold with boundary H3—Uses •

We will denote

Sx inf d(B, B')
B=£B'e£

and we will always suppose that Sx > 0 (this is obviously always the case when .8

comes from a truncated manifold). The aim of this appendix is to show that the proof
of [36, Proposition 5.3] can be adapted to this setting to yield the following result:

Proposition A.l. For any S > 0. /<> > 0 there is aC > 0 such thatfor all X as above

which satisfy Sx > S and every x.y e X and t G ]0, to] we have

|g-'Apm[x,y)|<cr3/V^.
Let us see how this statement implies Proposition 7.2: let M T\H3, Y be as

in its statement, X MY. We need to prove that Sx is bounded below by a constant
not depending on M. Let H, H' be horospheres in dX suchthat d(H, H') Sx- By
the hypothesis on Y there are elements q, q' G T which stabilise H, H' respectively
and such that their displacement is smaller than e/10 where e is the Margulis constant
of H3; for S small enough (independent of A), if Sx < S then qq' displaces of less

than son//; but since it does not commute with q this is impossible by the Margulis
lemma. Thus Sx is uniformly bounded away from 0 for such an X.

A.2. The "single layer potentials" construction of the heat kernel. We recall here

the construction of the heat kernel on a manifold with boundary W given in [36,
Section 5], which starts from an isometric embedding W c W' into a complete
manifold such that the heat kernel on W satisfies Gaussian bounds. This reference

deals only with compact manifolds and thus we cannot apply its results directly to
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our situation; but on the other hand we will see in the next section that the integrals
on dX which we need to converge are indeed absolutely convergent. The results are

also stated only for bundles with orthogonal monodromy but the arguments work for
all flat bundles with a euclidean metric.

The construction goes as follows: let Q^°\x,y,t) e~tA"^w ^(x, y) and for
m > 1 define by induction:

Q{m\x,y,t) f [ (Q(0\x,z,s) A*dQ(m~1)(z,yJ - s)
Jo Jaw

+ 8Q(°\x, z, s) a *Q^m~1\z, y, t)) dz ds. (A.l)

For W X we will check that this integral is convergent for all m in Section A.3
below. The main result of Ray and Singer with regard to the <2 is then stated as

follows ([36, Lemma 5.12|; the function D on X is the distance to the boundary 9A).

Proposition A.2. Under the hypotheses of Proposition A. 1, for all m > 1 the

kernel (J<m', as well as its differential and co-differential in the variables x,y,
satisfy the Gaussian bounds:

I Cm fl(i)2+ fl(rt2 3 d(x,y)2
\Q(m\x,y,t)\ < r(ffl/2)g

51
' t 2e 5, ; (A.2)

for some constant C > 0.

This is proven by induction on m, and to carry the induction step one needs (as is

obvious from the formula (A.l)) also the bounds on the derivatives.
VP

+oo

It follows from Proposition A.2 that the kernel Kf given by

Kf(x,y) J2(-2)mQ(m)(xyd)
m=0

is the heat kernel on /»-forms on X with coefficients in V (see [36, Corollary 5.14]),
and thus that the latter satisfies the Gaussian bounds stated in Proposition A.l.
Moreover, we also have the bounds:

n „ —t\P\W'~\, D(x)2+D(v)2 3 d(x,y)2
I Kp (x, y — e ,A [w]\4de s' / 2e ?' (A.3)

(note that we can apply this to MY C H3, but also to My c Mz for Z > Y,
according to Proposition A.l).

A.3. Convergence of the integrals on the boundary. If one manages to show that
the integrals on the boundary in the definition (A. 1 of Q(m> are uniformly convergent
for all X then the original argument of Ray and Singer carries over to yield
Proposition A.l. Indeed, it rests only on focal computations (which remain valid
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for unimodular instead of orthogonal coefficients), and the hypothesis that Sx > S

gives uniform bounds on the local geometry (meaning that each point in X has a

neighbourhood whose isometry class does not depend on X) which Ray and Singer
use implicitly in their proof (in the cases they consider it follows immediately from
the compactness of the manifolds).

This uniform convergence can be proven by induction on m (recall that the

induction hypothesis carries bounds on both Q^m' and its differentials), which reduces

it to show that for k, I >0 the integral:

r 7 I d(.x,z)2 I d(y.z)21
/ / d(x,z) -d(y.z) -e v 5v so—o dz (A.4)

Jdx

converge uniformly for all x,y £ X. The polynomial terms may appear when

taking derivatives, there are also factors depending on s but these do not affect the

convergence of the integral and thus are dealt with in Ray-Singer's argument. The

proof that (A.4) is convergent will be similar to the study of the term /2 in the proof
of Proposition 4.2. For w £ X and Bel8 we denote by zB the projection of w
onto B. We observe first that the supremum

F(x.y, t) sup f d(zxB,z)k -d(zyB,z)1 'sf + dz : B e Jt\
JzedB

is finite and actually uniformly bounded in x, y. Indeed, for any horosphere H of H3
and any z0 e H, we have for t < to'.

[ r/(z0,z)^c"f^iWL dz < f |z|A:e_a(log(1 + |z|))2 dz dz
JH JC

where a depends only on t0, and the integral at the rightmost above is convergent for

any a > 0, since the function r isr>(r-L) for any L > 0. Since zB,zB £
/ iliZß.z)2 diz^.z)2 \

dB the same arguments apply to the integrals fzedB s* so—o dz to give
a bound independent of x, y or B.

Now we remark that for a given B £ IB and all z £ dB we have

d(x, Zp) + d(Zp,z)
d(x, z) > — B'

2
B (A.5)

and similarly for y: indeed, for any z £ dB we have d(x,z) > d(zB,z) and

d(x, z) > d(x. zB) (because the geodesic triangle xzzxH has an obtuse angle at zB).
Now we consider separately those z for which d(z,zB) < d(x, zxB) and those for
which the reverse inequality holds, for both of which (A.5) holds trivially. In addition
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we have d(x, z)k < (dfx, zL) + d(zxD, z))k and for large distances the right-hand
side is bounded by d(x, zxB)k • d(zB,z)k. It follows that

X—\ I I id(x.B)2 I rfU.fi)2 \

/< 22 d(x, B)k d(y, By e ^ 20* zou-s)

BeB
C Id(Zß ,z)2 d(zyg,;)2\

d(zxB,z)k -d(zyB,z)' -e
' 20* +200-0 dz

JdB
trfU.fi)2

1 rfU.fi)2\
< 22 B) • d(y, By e v 2fts 20<'~s) ' F(x, y,t).

BeB

It follows from Lemma 2.10 that the series on the last line is absolutely convergent,
finishing the proof that the integral (A.4) is absolutely convergent.
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