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Motives of isogenous K3 surfaces

Daniel Huybrechts*

Abstract. We prove that isogenous K3 surfaces have isomorphic Chow motives. This provides
a motivic interpretation of a long standing conjecture of Safarevi¢ which has been settled
only recently by Buskin. The main step consists of a new proof of Safarevi&’s conjecture that
circumvents the analytic parts in [2], avoiding twistor spaces and non-algebraic K3 surfaces.

Mathematics Subject Classification (2010). 14C15; 14C25 14C30 14F05 14J28.

Keywords. K3 surfaces, derived categories, motives, Hodge conjecture, Brauer groups, twisted
K3 surfaces.

Two complex projective K3 surface S and S’ are called isogenous if there exists
a Hodge isometry ¢: H?(S,Q)—= H?(S’,Q), i.e. an isomorphism of Q-vector
spaces compatible with the intersection pairing as well as the Hodge structure on
both sides. Via Poincaré duality and Kiinneth formula, ¢ corresponds to a Hodge
class [p] € H*2(S x S’, Q) on the product S x S’ of the two surfaces.

In [19] Safarevi¢ asked whether any such [¢] is algebraic, i.e. of the form
[@] = > ni[Z;] for certain surfaces Z; C S x S’ and rational numbers n;. Forty
years later this was answered affirmatively by Buskin [2]. The result confirms the
Hodge conjecture in a geometrically interesting situation and can be viewed as a
generalization of the global Torelli theorem for K3 surfaces.

Indeed, the global Torelli theorem for K3 surfaces asserts that any effective

integral Hodge isometry ¢: H2(S, Z) — H?(S’, Z) can be lifted to an isomorphism
f:S—58" and so [g] = [[s], which is algebraic. ~Note that the global
Torelli theorem not only answers Safarevi&’s question for (effective) integral Hodge
isometries, it also provides a motivic reason for the class [¢] being algebraic, namely
that it is induced by an isomorphism between S and S’.

Examples of rational Hodge isometries can be produced by means of moduli
spaces of sheaves, often leading to non-isomorphic but isogenous K3 surfaces.

*The author is supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic
Varicties’ of the DFG (German Research Foundation).
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Assume S” = M (v) is a fine moduli space of stable sheaves on S. Then the universal
family & on S x S, an analogue of the Poincaré bundle for abelian varieties, provides
aclassch, (&) € H%>2(S x S’, Q). As shown by Mukai [17], a minor modification of
this class yields indeed a Hodge isometry H2(S, Q) ~ H?2(S’, Q). In fact, it defines
an integral Hodge isometry T(S) 2~ T(S’) between the transcendental lattices of
the two surfaces and a rational isometry NS(S) ® Q@ ~ NS(S’) ® Q between their
algebraic parts. The motivic nature of the rational Hodge isometry, beyond being
induced by a universal sheaf, has been explained in [11]: For any fine moduli space
S’ = M(v), the induced Hodge isometry H?(S,Q) ~ H?(S’,Q) can be lifted to
an isomorphism h(S) ~ h(S’) between the Chow motives of S and S’.

Mukai also constructs in [17] further classes that yield non-integral Hodge
isometries between the transcendental parts 7(S) ® Q ~ T(S’) ® Q by allowing
coarse moduli spaces, i.e. moduli spaces for which only a quasi-universal or a twisted
universal family & exists. This approach has led to the verification of Safarevi®’s
conjecture for Picard rank p(S) > 5, see [17, 18] and Remark 1.5.

Our first main result provides a moduli interpretation of isogenies between K3
surfaces:

Theorem 0.1. Any Hodge isometry H?(S,Q) ~ H?(S’, Q) between two complex
projective K3 surfaces can be written as a composition of Hodge isometries between
projective K3 surfaces

H?*(S = 85, Q) >~ H*(81,Q) -+~ H*(Sy—1,Q) ~ H*(S, = §',Q),

with S; isomorphic to a coarse moduli space of complexes of twisted coherent sheaves
on S;_1 and the Hodge isometry H?(S;_1, Q) ~ H?(S;, Q) induced (up to sign) by
a twisted universal family & of complexes of twisted sheaves on S;_;.

In the language of derived categories, the result says that there exist Brauer classes
a € Br(S), ay, By € Br(S),...,as_1,Bn—1 € Br(S,_1), and &’ € Br(S’) and exact
linear equivalences between bounded derived categories of twisted coherent sheaves

DP(S, @) >~ DP(Sy, 1),
D°(S1, B1) = D*(Ss, a2),
: (0.1)

Db(Sn—2a ﬁn—2) = Db(Sn—la an—l),
DY(Sy_1, Bu_1) ~ DO(S", ).

This usually does not mean that D°(S,«) and DP(S’,«’) are equivalent for
appropriated choices of @ € Br(S) and «’ € Br(S’), see Remark 1.3. It should
not be too difficult to improve Theorem 0.1 such that the S; are moduli spaces of
twisted sheaves (and not complexes of those).

Combining Theorem 0.1 with the arguments in [11] generalized to the twisted
case, one deduces a motivic interpretation of the notion of isogeneous K3 surfaces:
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Theorem 0.2 (Motivic Safarevi¢ conjecture). Any Hodge isometry H?(S,Q) ~
H?(S',Q) between two complex projective K3 surfaces can be lifted to an
isomorphism of Chow motives H(S) =~ W(S’). In particular, two isogenous K3
surfaces have isomorphic Chow motives:

H?*(S,Q) ~ H?(S’, Q) (Hodge isometry) = h(S) ~ h(S").

Note that by Witt’s theorem, there exists a Hodge isometry H2(S, Q) ~ H?(S’, Q)
if and only if there exists a Hodge isometry 7(S) ® Q ~ T(S’) ® Q. For integral
coeflicients this fails, which results in two global Torelli theorems, the classical and
the derived,! see [8—10] for references.

The following strengthening of Theorem 0.2 is expected. It relaxes the assumption
from the existence of a Hodge isometry to the existence of a simple isomorphism
of Hodge structures, so one that is not necessarily compatible with the intersection
pairing (cf. Section 3):

Conjecture 0.3 (Motivic global Torelli theorem). For two complex projective K3
surfaces S and S’ the following conditions are equivalent:

(i) H?(S,Q) ~ H?(S',Q) (isomorphism of rational Hodge structures);
(i) h(S) == b(S’) (isomorphism of Chow motives).

Theorem 0.1 has the following immediate consequences first proved in [2], see
Proposition 1.2 and Remark 3.3.

Corollary 0.4 (Buskin). (i) Any Hodge isometry
01 H*(S.Q)—>H*(S'. Q)
between complex projective K3 surfaces yields an algebraic class

[p] € H**(S x S, Q).

(ii) If S is a complex projective K3 surface with complex multiplication, i.e.
Endyge (7(S) ® Q) is a CM-field, then the Hodge conjecture holds for S x S,
cf. Remark 3.3.

The approach to Safarevi¢’s conjecture presented here differs from the one in [2].
It is more algebraic in spirit, which allows for the motivic interpretation of the
conjecture as presented in Theorem 0.2. Central to his argument, Buskin proves
“twistor path connectedness” of the moduli space of pairs of K3 surfaces together
with an isogeny between them to reduce the situation to coarse moduli spaces of
untwisted bundles. In our proof, cyclic isogenies are lifted directly to the level of

(i) H2(S,Z) ~ H?*(S’, Z) (Hodge isometry) < S ~ S’ (isomorphism);
(i) T(S) =~ T(S’) (Hodge isometry) < D(.S) ~ DP(S’) (exact linear equivalence).
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derived categories of twisted K3 surfaces [ 13], thus avoiding analytic K3 surfaces and
global moduli considerations. The notion of Hodge structures of twisted K3 surfaces
introduced in [7, 12] provides an efficient tool to deal with the lattice theoretic parts
and, in particular, replaces Buskin’s x-classes.

Acknowledgements. I would like to heartily thank the participants of the inspiring
IC Geometry Seminar on Buskin’s paper and especially Lenny Taelman for his
energy in organizing it. I am grateful to Frangois Charles, Lenny Taelman, and
Andrey Soldatenkov for comments on a first version of this paper. Many thanks to
Rahul Pandharipande for an invitation to the ETH, Zurich, where the main idea took
shape. Hospitality and financial support of the Erwin Schrodinger Institute, where
the first version of this paper was completed, is gratefully acknowledged.

1. Derived equivalence of isogenous K3 surfaces

This section is the technical heart of the paper. We show how to lift rational Hodge
isometries to exact linear equivalences between bounded derived categories of twisted
sheaves and use this to prove Safarevi¢’s conjecture. The first reduction step to
cyclic Hodge isometries is taken from [2]. The rest of the argument uses twisted
Chern characters and the main result of [13], instead of k-classes and twistor space
deformations. A brief comparison of the two approaches is included.

1.1. Asin[2], we apply the classical Cartan—Dieudonné theorem to reduce Safarevic’s
conjecture to an easier case. Recall that for any lattice A and any rational isometry
¢: Ag—= Aq,thereexisth; € Ag,i = 1,...,k, with (b;)> # 0, such that ¢ equals
the composition

@ = 8p, O+ 0Sp,
(x.b;)
(b:i)?
bounded by £ < rk A. Clearly, we may assume that all »; € Ag are contained in the
lattice A and that they are actually primitive elements of A.2

Combining this with the surjectivity of the period map, one finds that any

of reflections s : x = x — g b;. Note that the number of reflections can be

Hodge isometry H?(S,Q)—= H?(S’, Q) can be written as a composition of Hodge
isometries

H?(S = So, Q)= H?*(51,Q)—--- = H?*(S, = §".Q), (1.1)

such that after choosing markings A ~ H?(S;,7Z) and A ~ H?(S; 1, 7Z) the Hodge
isometry H?(S;i, Q)—= H?(Si+1, Q) is of the form s5, . We call a Hodge isometry

2In |2], Buskin only uses the property of a reflection ¢ = s5 to be cyclic, i.e. to have the property
that e " "(A) N A C A and ¢(A) N A C A have cyclic quotients. We shall really have to work with
reflections.
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of this type reflective. Thus, Theorem 0.1 is a consequence of the following result
which will be proved in this section.

Theorem 1.1. Assume ¢: H2(S,Q)—= H?(S',Q) is a reflective Hodge isometry.
Then S’ is a coarse moduli space of complexes of twisted coherent sheaves on S
and @ is (up to sign) induced by a twisted universal family of complexes of twisted
sheaves.

In other words, we claim that ¢ (up to sign) is induced by the Fourier—Mukai

kernel & of an exact linear equivalence ®g:DP°(S, o) —D"(S’,a’) for suitable
Brauer classes @ € Br(S) and o’ € Br(S’). Here, & is an object in the bounded
derived category D°(S x §’, ™! M o) of @~! K a’-twisted coherent sheaves on
S x §’, see below for details on the action on cohomology.

1.2. We begin with a few explicit lattice computations. Let¢ = s5: Ag—= Ag bea
reflection with b € A primitive. Then, for x € A, the image ¢(x) € A is contained
in A if and only if (x.h) is divisible by n := (b)?/2. So, if we let B := %h € Ag,
then ¢ induces an isometry of Ap := {x € A | (x.B) € Z} C A. This is a finite
index sublattice with a cyclic quotient of order n. Note that ¢(z) = z — (z.B)b and,
hence, ¢(B) = —B. Next consider

exp(B): Ap—— A =AdU, x+>x+ (B.x) f. (1.2)

which is a primitive embedding of lattices. Here, U is the hyperbolic plane with
the standard isotropic basis e, f* with (e. f) = —1. The sign is inserted to make U
naturally isomorphic to H°(S,Z) @ H*(S,Z) ~ Z -e @ 7 - [ endowed with the
Mukai pairing. The orthogonal complement (exp(B)(Ag))t C A is the lattice
spanned by the isotropic vectors b +ne + f and — f, which is thus isomorphic to the

twisted hyperbolic plane U(n). The isometry ¢: A g — A p extends to an isometry
@: A "> A, i.e. there exists a commutative diagram of the form

T (1.3)

Lo

—~

«
A A

The extension can be given explicitly as
o(z+re+sf) =)+ (B.z)—s)b+n((B.z) — (r/n) —s)e —sf.

The compatibility with ¢ is easily shown using (B.z) = —(B.¢(z)). On (exp(B)(Ag))*
~ U(n), ¢ interchanges the two basis vectors b +ne + f and — f. This shows that ¢
is indeed an isometry. An explicit computation shows that indeed @(A) = A.
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Let us now apply this to a reflective Hodge isometry ¢: H?(S, Q) — H?(S’, Q).
The analogue of h € A and B € Ag in the above setting are now classes
be H*(S,Z)and B = (1/n)b € H*(S,Q). We set b’ := —@(b) € H?(S',7)
and B’ := —@(B) € H?*(S’,Q). Then the Hodge isometry ¢ of rational Hodge
structures induces a Hodge isometry of integral Hodge structures

¢:H*(S,7)p ={x € H*(S,Z) | (x.B) € Z}
S H(S', Z)p ={x" e HX(S',Z) | (x'.B") € 7.}.
Furthermore, (1.2) becomes the primitive embedding of lattices

exp(B): H2(S,Z)g—— H(S.7Z), x—x + x A B,

where ﬁ(S, 7,) is the Mukai lattice, i.e. the lattice H*(S, Z) with a sign change in
the pairing of /H° and H*. The analogue of (1.3) is the commutative diagram

exp(B)

H2(S,7) 5" H(S,7) (1.4)

- |-

HZ(S',Z)B,T H(S', 7).
exp

with @(r,z,s) = (n((B.z) — (r/n) — ), ¢(z) + ((B.z) — s)b’, —s).

The Hodge structure of H2(S, Z) g, inherited from H?(S, Z), induces a natural
Hodge structure of weight two on the Mukai lattice (S, Z). The lattice H (S, 7)
endowed with this Hodge structure is denoted H (S, B. Z). Explicitly, the (2, 0)-part
of ﬁ(S, B, 7)) is spanned by

o4+0ABeH?*S,C)e H*S,C)

for any 0 # o € H>°(S) C H?*(S,C) and the orthogonal complement
(exp(B)Y(H?(S.Z)g))- C H(S,B,Z) is of type (1,1). With the analogous
convention for S’, the isometry @ can be viewed as a Hodge isometry

G:H(S,B,Z)-—>H(S',B'.7Z) (1.5)

that commutes with ¢ via exp(B) and exp(B’).
If ¢ does not preserve the natural orientation of the four positive directions in the
Mukai lattice, then compose ¢ with the Hodge isometry

idgo @ (—idy2) ®idya: H(S', B, 2) > H(S',—B'. 7).

This amounts to changing ¢ by a sign which does not affect our problem.
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1.3. We are now ready to evoke the main result of [13] which asserts that any orien-
tation preserving Hodge isometry (1.5) can be lifted to an exact equivalence

®: D°(S, a) —D"(S’, ). (1.6)

Here, @ € Br(S) and o’ € Br(S’) are the Brauer classes induced by B and B’ via the
exponential sequence

H?*(S,Q)— H*(S,05)— H?*(S, 0%).

The order of both classes divides n. However, although H C H?(S,Z) and H’' C
H?(S’, Z) are subgroups of the same index n, in general ord(«) # ord(«’), e.g. for S’
a non-fine moduli space of untwisted sheaves one has @ = 1 and ord(¢’) > 1. Let
us briefly recall what it means that “® lifts ¢”” and what it implies for ¢.

One knows that any exact linear equivalence (1.6) is of Fourier—Mukai type [3],
i.e. of the form ® ~ ®g: E+— pi(¢*E ® &) for some & in the bounded derived
category DP(S x 8/, o~ M) of ™! X o'-twisted coherent sheaves on S x S’ and
p. g the two projections. The induced action

5B [ (S, B, 7))~ H(S', B, 7)

is the correspondence given by the class ch 58 /(8) -y/td(S x S’), where the twisted
Chern character is determined by the property ch™%-# ’(8’)” = exp(—h, b')-ch(&®").
Ash = nB and b’ = nB’ are both integral classes, &®" is naturally untwisted and
its Chern character is well defined.?

The fact that ® ~ dg lifts ¢ by definition simply means that (Dg’BI = @ and the
commutativity of (1.4) becomes

p(x) = (Veh(88m) - V(S x 81)), (%),

cf. Section 2.1. In other words,

[p] = (¥/ch(€®") - V(S x §1)), 5, € H*(S, Q) ® H*(S,Q),

which is clearly an algebraic class.
The discussion above is summarized by the following reformulation of Theo-
rem 1.1, also proving Corollary 0.4 (i).

Proposition 1.2. Assume ¢: H2(S, Q) —= H2(S’, Q) is a cyclic Hodge isometry.
Then there exists an exact equivalence ®:DP(S,a) —=DP(S’, a’) which induces ¢
(up to sign) in the above sense. In particular, [¢] is an algebraic class. (|

3We refer to [9, 12, 13] and Section 2.1 for the technical details. For example, one actually has to
choose cocyles b = {b;jx}, B = {Bijx ‘= (1/n)b;jk}, and a = {a;jx = exp(Bijx)} to make &
naturally untwisted.
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Remark 1.3. We do not a priori expect an arbitrary (non-cyclic) Hodge isometry
H?(S,Q) ~ H?*(S’, Q) to be induced by some equivalence D°(S, &) ~ D°(S’, &’).
Although we have not worked out a concrete example, this seems unlikely for
two reasons: First, although any equivalence DP(S) ~ DP(S’) yields a natural
isomorphism Br(S) ~ Br(S’) one should not expect that for a Brauer class @ € Br(S)
and its image o’ € Br(S”), there always exists an equivalence D°(S, o) ~ D°(S’, ')
(simply because for very general choices all two-dimensional moduli spaces of objects
in DP(S, @) should be isomorphic to S). Second, an equivalence D°(S, &) ~
D"(S’, ') only induces a natural isomorphism 7'(S,a) ~ T(S’,a’) but none
between the untwisted transcendental lattices and hence none between the Brauer
groups.

So, in order to turn Theorem 0.1 into an “if and only if”’-statement, one could
define S and S’ to be twisted derived equivalent if there exists a diagram as in (0.1).
Then one has

Corollary 1.4 (Twisted derived global Torelli theorem). Two complex projective K3
surfaces S and S' are isogenous if and only if they are twisted derived equivalent. [

1.4. We conclude this section with a comparison to the earlier approaches by Buskin [2]
and Mukai [ 17].

Remark 1.5. Mukai’s approach in [17] was rather similar. Instead of decomposing
a given Hodge isometry H?2(S,Q) ~ H?(S’,Q) into cyclic ones as in (1.1), he
suggested to only decompose the induced Hodge isometry 7(S)g =~ T(S")q into
cyclic ones:

T(S)o = T(So)g = T(S1)g =~ -+ = T(Sp)g = T(S)e. (1.7)

This reduces Safarevi¢’s conjecture to a Hodge isometry 7(S)g =~ T(S")q for which
the intersection 7' := T'(S) N T'(S’) has finite cyclic quotients in 7'(S) and in 7'(S”)
and, using Br(S) ~ Hom(7'(S), Q/Z), can then be written as

TS)DT(S,a) ~T ~T(S",a") C TS

for certain Brauer classes & € Br(S) and o’ € Br(S”). If, furthermore, T ~ T(S)
for some K3 surface S, then S and S’ can both be viewed as coarse moduli spaces of
sheaves on S and the inclusions 7'(S) D T/(S) C T(S) are both algebraic, induced
by the twisted universal sheaves. Unfortunately, the existence of the surface S cannot
be deduced from the surjectivity of period in general (in contrast to (1.1)) and, in fact,
5 may simply not exist. This limited Mukai’s approach [17] to the case p(S) > 11,
later improved to p(S) > 5 by Nikulin [18].
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The idea of the present approach is that S is not needed. Instead of viewing S
and S’ as coarse moduli spaces of untwisted sheaves on some auxiliary K3 surface S,
one realizes S’ directly as a coarse(!) moduli space of (complexes of) twisted(!)
sheaves on S. This accounts for the two additional Brauer classes at once: « € Br(S),
as the twist with respect to which one considers the twisted sheaves on §, and
o’ € Br(S’), as the obstruction to the existence of a universal family on S x S’
(of a-twisted sheaves in 5).

Buskin starts with the case of a coarse moduli space of vector bundles S = M (v)
with a twisted universal bundle & € Coh(S xS’, 1Ka’), where ¢’ is the obstruction to
the existence of a universal family. He then considers the graded(!) Hodge isometry

H(S, Q)= H(S',Q)

induced by the class k (€)-/td(S x S’), where k(€) = ¥/ch(E®" ® det(€*)) (up to
dualizing &). Here the crucial observation is that §®” ®det(&*) is naturally untwisted
for any representative of the Brauer classes. A straightforward computation shows
that « (&) differs from ch™8"8 (&) by the factor exp(—c,(£®")/n?) - exp(B, —B’)
and so the difference between the action of «(&) and ¢ is caused by an additional
factor exp(—c; (&®")/n?) on the product. Note that by construction ¢ preserves the
degree two part, which is not obvious from this comparison.
So, in the language of Remark 1.5, the starting point in [2] is of the form

T(S)~T ~T(S",a') C T(S").

In a next step, S and S’ are deformed along a twistor space to K3 surfaces S; and S;.
This is a topologically trivial operation, so yields isometries

H*(S;,Q) = H*(S,Q) ~ H*(S',Q) ~ H*(S;.Q)

and, for a suitable simultaneous choice of the twistor deformation, in fact a Hodge
isometry H?2(S;, Q) ~ H2(S],Q). However, on the transcendental part it leads to
a situation of the form

T(S) D T (S ) = T, =~ T(S;.0) C T(S)),

which provides more flexibility. Then Buskin argues that although 7; may not be the
transcendental part of a K3 surface, the correspondence is still algebraic. Indeed, the
(partially) twisted bundle & deforms to a (completely) twisted bundle &; on Sy x S,
which uses the existence of Hermite—Einstein metrics on stable bundles. At this point
it becomes important to work not with complexes of sheaves as in our approach but
with vector bundles.

To conclude, Buskin has to show that any cyclic Hodge isometry H 2(§ , Q) ~
H2(S’,Q) can be reached by this procedure, applying several twistor deformations
which requires to work with non-projective K3 surfaces.
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It should be possible to build upon Buskin’s work to prove Proposition 1.2. The
deformation of & to &;, along several twistor lines and involving non-projective K3
surface when changing from one to the next twistor line, should yield an equivalence.
The approach presented here is more direct and more suitable to deal with K3 surfaces
over other fields.

2. Motives of coarse moduli spaces of twisted sheaves

In this section we show the following result which generalizes [11] from the case
of fine moduli spaces of (complexes of) untwisted sheaves to the case of coarse(!)
moduli spaces of (complexes of) twisted(!) sheaves.

Theorem 2.1. Any exact linear equivalence DP(S, o) ~ DP(S’, &) between twisted
projective K3 surfaces (S,a) and (S',a’) over an arbitrary field k induces an
isomorphism between their Chow motives

h(S) = h(S").

2.1. We shall need a few facts on Chern character of twisted sheaves. The arguments
are all standard, but as there is no appropriate reference we sketch the relevant bits in
a rather ad hoc manner.

Let o« € Br(X) be a Brauer class on a smooth projective variety X with a Cech
representative (in the analytic or étale topology) & = {a;jx € O*(U;jr)}. We shall
assume that a;’jk = 1, which is stronger than just assuming a” = 1.

The abelian category of a-twisted coherent sheaves is incarnated by the category
of {o;jx j-twisted coherent sheaves Coh(X, {o;jx}), but we will use Coh(X, «) as a
shorthand (see [13] for comments on the dependence of the choice). Now, observe
that for any locally free {o;;xj-twisted sheaf £ = {E;,;;} the tensor product
E® — fBn, gafj.’”} is naturally untwisted, i.e. (plf?” o (p}e}f 0Bt = al = 1,50
that Chern classes of E®" are well defined in CH*(X) (or in cohomology). Now
define

ch(E) := y/ch(E®") € CH*(X)q.
The n-th root is obtained by the usual purely formal operation, using that rk( £®") #£ 0.4
We leave it to the reader to check the following facts:

(i) The definition is independent of 7 in the sense that

ch(E) = /ch(E®") = ™Y/ch(E®mn).

4For K3 surfaces with a rational point, Chern characters of untwisted sheaves are integral. This does
not hold for twisted sheaves, as taking the n-th root requires to work with rational coeflicients.
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(ii) For locally free {o; ;i }-twisted sheaves E and F we have
ch(E ® F) =ch(E)-ch(F) and ch(E @& F) = ch(E) + ch(F).

A similar formula holds for exact sequences.

(iii) As X is smooth projective, any twisted sheaf admits a locally free resolution
and, hence, the Chern character is well-defined for all £ € Coh(X, «) and even for
objects in the bounded derived category D®(X, «).5

(iv) For a morphism f:Y — X of smooth projective varieties, the Grothendieck—
Riemann—Roch formula holds:

ch(Rf«ch(E)) - td(X) = fi(ch(E) - td(Y))

in CH*(X)q for any E € D°(Y, f*«). (This is easily reduced to the usual formula
by tensoring both sides with f*G and G, respectively, for some locally free {ozl.;,lc }-
twisted sheaf G on X.)

Once these facts are established, the yoga of Fourier—Mukai kernels &, their action
on the Chow ring, induced by v(&) = ch(&)/td(S x S§’) € CH*(S x S')@, and
how they behave under convolutions, works as in the untwisted case, cf. [8]. The
next result is an example. For this, we assume that & = {ojjc} and @ = {o;; }
are Brauer classes on K3 surfaces S and S’, respectively, both satisfying a?jk = ]

Corollary 2.2. Let ®g:D"(S,a)—>DP(S’,a’) be an exact equivalence with
Fourier-Mukai kernel & € D*(S x S’ ™' & ). Then the induced action

v(€)4: CH*(S)g —CH*(S")o (2.1)
is an isomorphism of ungraded Q-vector spaces. L

2.2. The rest of the argument to prove Theorem 2.1 can be copied from [11]. Here
is a rough outline: First, the motive of a K3 surface is decomposed into its algebraic
and its transcendental part

h(S) = be(S) ® bu(S),

where hyg(S) ~ L° @ L®%) @ L2 and the transcendental part hZ(S), introduced
in [15], has the property that CH* (h2(S)) = CH?(S)o ® Q. Now, derived equivalent
K3 surfaces (S, «) and (S’, @) have clearly the same Picard number and, therefore,

halg(S) = halg(Sl)-

5This also explains how to interprete y/ch(€®7) in Section 1.3.
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Thus, it remains to find an isomorphism
hi(S) = bi(s").

As morphisms hZ(S) —=h2(S’) in Mot(k) require degree two classes on S x S’,
instead of v(&) € CH*(S x S’)@, which induces the isomorphism (2.1), one has to
consider the degree two component v,(8) € CH?(S x S")g. The induced action on
CH* (htzr(S)) = CH?(S)o®Q coincides with the action of the full Mukai vector v(&).
Hence,

v2(8)x: bh(S) —b(S") (2.2)

induces isomorphisms between the Chow groups of the motives. As this holds true
after any base change, a version of Manin’s identity principle then implies that (2.2)
is an isomorphism, for details see [11].

3. Further comments

Let us briefly indicate the evidence for the motivic global Torelli theorem as
formulated in Conjecture 0.3. According to the following remarks, Theorem 0.2,
which provides evidence for the equivalence of (i) and (ii) in Conjecture 0.3, may also
be seen as evidence for a much more general set of conservativity conjectures. Note
that the following arguments apply to arbitrary surfaces (with trivial irregularity).

Proposition 3.1. Assume the Hodge conjecture holds for the product S x S’ of two
complex projective K3 surfaces and assume that the motives H(S) and H(S") of both
surfaces are Kimura finite-dimensional. Then any isomorphism of Hodge structures
H2(S,Q)— H?(S’, Q) lifts to an isomorphism of motives h(S) ~ h(S").

Proof. The argument is similar to the proof of [4, Thm. 21]. If the Hodge conjecture
is assumed, the class [¢] € H?2(S x S’, Q) of any isomorphism of Hodge structures
@: H*(S,Q)—=> H?(S’,Q)isinduced by aclass y € CH?(S xS")q, which defines a
morphism yx: h2(S) —= h2(S’) of Chow motives. As Kimura finite-dimensionality
implies conservativity, cf. [1, Cor. 3.16], yx is an isomorphism if and only if its
numerical realization, which is nothing but ¢, is an isomorphism. O

Corollary 3.2. The two conditions (i) and (ii) in Conjecture 0.3 are equivalent if
the Hodge conjecture for S x S" and Kimura’s finite-dimensionality conjecture for S
and S’ hold true. H

In an earlier version of this paper, Conjecture 0.3 included a third statement
about the classes of [S] and [S’] being equal in an appropriate localization of the
Grothendieck ring of varieties Ko(Var(C)). For example, if S and S’ are isogenous,
then according to (0.1), they are linked via a sequence of equivalences

Db(Saa) =~ Db(Sl9 al)a e an(Sn—l’ ﬁn-l) = Db(S”a,)'
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We then speculated that maybe [16, Conj. 1.6] (with evidence provided by the
examples studied in [6, 14, 16]) could also hold in the twisted case, so that [S] — [S’]
in Ko(Var(C)) is annihilated by some power of the Lefschetz motive £ := [Al],
i.e. [S] = [S] in Ko(Var(C))[¢~!]. However, as shown by Efimov [5], this is false.
There exist derived equivalent twisted(!) K3 surfaces that are not L-equivalent.

Remark 3.3. According to [21], the endomorphism field Endyge(7(S) ® Q) of the
rational Hodge structure T'(S) ® Q is either totally real or has complex multiplication.
The two cases can be distinguished by checking whether there exists of a Hodge
isometry other than +id, see [10, Ch. 3]. The Hodge conjecture for K3 surfaces with
real multiplication has been verified in only very few cases, see [20].

In case of CM, the endomorphism field is spanned by Hodge isometries cf. [10,
Thm. 3.3.7], which is enough to prove Corollary 0.4 (ii) and can also be used to prove
the Hodge conjecture for products S x S’ of K3 surfaces with complex multiplication
for which there exists a Hodge isometry T (S)g ~ T(S')o.
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