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Counterexamples to the complement problem

Pierre-Marie Poloni

Abstract. We provide explicit counterexamples to the so-called Complement Problem in every
dimension n > 3, i.e. pairs of nonisomorphic irreducible algebraic hypersurfaces Hy, Hy C C"
whose complements C” \ H| and C" \ H» are isomorphic. Since we can arrange that one of
the hypersurfaces is singular whereas the other is smooth, we also have counterexamples in the
analytic setting.
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1. Introduction

The Complement Problem (in the affine n-space) is one of the “challenging problems”
considered by Hanspeter Kraft in his survey on affine algebraic geometry at the
Bourbaki seminar [5]. It is formulated as follows.

Given two irreducible hypersurfaces Hy, H, C C” and an isomorphism
of their complements, does it follow that H and H, are isomorphic?

Let us specify that we work here in the context of algebraic geometry. In particular,
the hypersurfaces considered above are algebraic, i.e. defined as the zero sets of
some polynomials fi, f> € C[xy,...,Xx,], and the isomorphisms are isomorphisms
of algebraic varieties. Moreover, we recall that the complement C” \ H of an
hypersurface H C C" is also an affine algebraic variety.

The Complement Problem is a very natural question: We want to retrieve some
information about a subvariety X C M from its complement M \ X. Such questions
make of course sense in various contexts (as e.g. in knot theory, see [3] and [4]).
Closer to our immediate interests, Jérémy Blanc [1] gave counterexamples to the
Complement Problem for curves in the projective plane P2. Actually, his main
motivation was to disprove another conjecture, due to Hisao Yoshihara [8], which
stated that if two irreducible curves I';, T, C P? have isomorphic complements
P2\ I'y ~ P2\ I'y, then they should be equivalent, i.e. there should exist an
automorphism of P2 sending I"y onto I's.
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The purpose of this note is to answer Kraft’s Complement Problem in the negative
for every n > 3. More precisely, we will give explicit counterexamples of several
different types, as described in the main theorem below.

Theorem 1.1. For every integer n > 3, there exist examples of:

(1) irreducible hypersurfaces Hy, Hy C C" with isomorphic complements C" \ H,
~ C" \ H, such that H, and H, are smooth and nonisomorphic;

(2) irreducible hypersurfaces Hy, Hy C C" with isomorphic complements C" \ H,
~ C"\ Hy such that Hy is smooth but H is singular;

(3) irreducible hypersurfaces Hy, Hy C C" with isomorphic complements C" \ H,
~ C" \ H, such that Hy and H, are isomorphic, although there is no auto-
morphism of C" mapping Hy onto H».

At the time that the first version of the present paper was being written, the case of
irreducible curves on C? was still wide open. But since then it has been solved, again
in the negative, by Blanc, Furter and Hemmig in a remarkable paper [2] in which they
make use of totally different methods to find counterexamples to the Complement
Problem in the case where n = 2.

We remark that the second kind of examples in above Theorem 1.1 provide
counterexamples to the Complement Problem in the analytic setting too. On the
other hand, the nonisomorphic algebraic varieties that we will produce in case (1) are
biholomorphic, and we do not get any examples of smooth affine algebraic varieties
Vi, Vo, C C” (i.e. of affine algebraic manifolds in C"), which are not biholomorphic,
although their complements C” \ V; and C” \ V, are. By contrast, it is shown in [2]
that if two nonisomorphic irreducible affine curves have isomorphic complements
in C2, then they are necessarily smooth and biholomorphic.

All our examples will be realized as hypersurfaces of C™ 12 defined by an equation
of the form xZ---x2,y + 2% + x1 -+ xm (22 — @)* = « for some integer k > 0 and
some constant @ € C. These varieties were first studied by Lucy Moser-Jauslin and
the author in [6] for the case where m = 1 and then in [7] for the general case. In
particular, it was observed that there exist such polynomials, say P and Q, whose
zero sets {P = 0} and {Q = 0} are not isomorphic, whereas their other fibers
{P = c} and {Q = c} are isomorphic for all ¢ € C*. The main ingredient of the
present paper will be to use the isomorphisms { P = ¢} ~ {(Q = c} to construct an
isomorphism between the complements C”*2\ {P = 0} and C"*2\ {Q = 0}.

Acknowledgements. The author thanks the referee for helpful comments and sugges-
tions, and for pointing out an error in a previous version of Proposition 3.4.
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2. Preliminaries

Let us start by recalling some notations and results from [7] that we will use in the
sequel.

Throughout this paper, we fix an integer m > 1 and a coordinate system
X1,...,Xm, ¥,z on the complex affine space C"* 2. If P € Clxy,...,Xm,V,Z],
then V(P) denotes the zero set of P in C™ "2,

Notation 2.1. Given a polynomial g(¢) € C[t], we denote by P, the polynomial of
Clx1,...,Xm, Y, z] defined by

Py = x%---x,%ly + 22 4+ x1++ xmq(2%).

It was shown in [7] that the algebraic varieties V(Py), V(Py — 1), V(P1), and
V(P —1) are pairwise nonisomorphic. Moreover, every fiber V (P, —c) = Pq_l(c) C
C™*2 is isomorphic to one of these four and we have the following classification
result.

Proposition 2.2 (|7, Lemma 2.2 and Proposition 2.5]). Lef g(t) € C[t] and ¢ € C.
Then, the variety V(P; — c) is isomorphic to V(P4 — c¢). Moreover, the latter is
isomorphic to:

e V(Py) ifand only if ¢ = 0 and q(c) = 0O;
s V(Py—1)ifandonly ifc # 0and q(c) = 0;
e V(Py) ifand only if c = 0 and g(c) # 0O;
e V(Py—1)ifandonly if ¢ # 0 and q(c) # 0.

Finally, we recall the classification of the hypersurfaces V(P, — ¢) C C™*2 up
to equivalence, i.e. up to automorphisms of the ambient space.

Proposition 2.3 ([7, Proposition 3.2]). Let q1(t), g2(t) € C[t] be two polynomials
and cy, ¢z € C be two constants. Then, the following are equivalent.

Cm+2

(1) There exists an algebraic automorphism of which maps the hypersurface

V(Pq, —c1) onto V(Py, — c2).
(2) There exist A, u € C* such that co = uw ¢y and g2(t) = Agq(ut).

3. Explicit examples

All our examples will consist in hypersurfaces H, j in C m+2 defined by an equation

of the form

x%---x;y+22—|—x1---xm(22—a)k =
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for some integer k > 0 and some constant « € C. By Proposition 2.2, the variety
Hy g, = V(P _yx — a) is isomorphic to:

V(Py) ifa =0and k > 1,
V(Pp—1) ifa#0andk > 1,
V(Py) ifa =0and k =0,
V(P —1) ifa#0andk = 0.

In particular, since V(Py), V(Py — 1), V(P1) and V(P — 1) are pairwise
nonisomorphic, we observe that H, y % Hg o if k # 0.

Lemma 3.1. The hypersurfaces Hy g and Hy g have isomorphic complements,
ie. CM"t2\ Hyp = C™T2\ Hy o foralla € C and all k, k' > 0.

Proof. Following the notation of the previous section, we have that H, =V (P, — a),
where g (1) = (t — a)* € C[t]. To prove that Hy x and H, g+ have isomorphic
complements, it suffices to prove that C™ 12\ Hy y ~ C"™*2\ Hy forall e € C
and all K > 1. We do this by giving an explicit isomorphism.

We set P = Py, —a and Q = Py, — a, so that the coordinate rings of

C™+2\ Hyy and C"™+2\ H, g are isomorphic to the rings C[x1, ..., Xm, ¥, Z, 5]
and Clxq,...,Xm, ¥, 2, é], respectively.
Next, we consider the morphisms
D : CPteN H,p > CoH2
k 2 k
X1 Q - (Z —Ol)
(X155 Xm, ¥, 2) > (—k,xz,-..,xm,yQZ"Jer ,2)
0 X1 Xm
and
(O C™+2\ Hyy — Cmt2
K 1 Pk — (22 —w)¥
(X1yee s Xmy ¥, 2) (P xl,xz,...,xm,—(y— )z)
PZk X1 Xm

We remark that the above morphisms are well defined, since

Qk o (22 —Ol)k Pk o (ZZ —Ol)k
and
X1 Xm X1 Xm

are both elements of C[xy,...,Xm, V, z].
One checks by a straightforward calculation that P o ® = Q and Q o W = P.
This shows that

B(C™2\ Hyo) C C™P2\ Hyy and W(C™2\ Hyp) C C™2\ Hyp.
Finally, one easily checks that

DoV = id(cm+2\Ha X and Wod = idC'""‘Z\Ha,()‘ [
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Combining Proposition 2.2 with Lemma 3.1, we obtain the following counter-
examples to the Complement Problem.

Proposition 3.2. Let m > 1 and let Hy and Hy be the irreducible hypersurfaces
of C™*2 that are defined by the equations

X3 xay 224 xy o xm(zZ2 - 1) =1
and xf---x,iy+22+x1---xm:1,

respectively. Then, H| and H, are smooth and not isomorphic, although they have
isomorphic complements C"12\ Hy ~ C™*2\ H,.

Proof. Onthe one hand, Proposition 2.2 implies that the hypersurfaces H1>~ V(Py—1)
and H, = V(P — 1) are not isomorphic. On the other hand, their complements are
isomorphic by Lemma 3.1. ]

Remark 3.3. Even if they are not isomorphic as algebraic varieties, the above
hypersurfaces Hy ~ V(Py — 1) and H, = V(P; — 1) are biholomorphic [7,
Remark 2.6].

We now give counterexamples in the analytic category. For this, we remark
that the hypersurface Hy, is smooth in the case where m = 1. Nevertheless,
by Lemma 3.1, its complement C* \ Hyo in C? is isomorphic to that of the
singular hypersurface Hy ;. Considering the cylinders over these two hypersurfaces,
we obtain nonbiholomorphic counterexamples to the Complement Problem in any
dimension n > 3.

Proposition 3.4. Let m = 1 and denote by Sy and S, the irreducible hypersurfaces
of C"*2 = C3 that are defined by the equations

xfy—l—22+x122 = 1

and xfy+22+x1 = ()

respectively. Let m" > 0 be any nonnegative integer and consider the hypersurfaces
H| = Sy xC™ and H, = S, x C™ in C™'+3,

Then, the complements cm'+3 \ H{ and cm'+3 \ H) are isomorphic. However,
since H{ is singular and H), is smooth, H{ and H, are not biholomorphic.

Proof. It is straightforward to check that §; is singular and that S, is smooth.
Hence, H| is singular and H, is smooth. Since S; = Hy,; and S; = Hy g, their
complements C* \ §; and C? \ S, are isomorphic by Lemma 3.1. This implies that
H{ and H have isomorphic complements in C™ *+3, O

Let us conclude by giving, thanks to Proposition 2.3, an example of two
smooth nonequivalent hypersurfaces which are isomorphic and have isomorphic
complements.
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Proposition 3.5. Let m > 1 and let H{' and H} be the hypersurfaces of C™? that
are defined by the equations

xlz---x,%?y—|—22+x1---xm(22—1):1

and x%“-xiy—|—Z2—|—x1---)€m(22—1)2:1,

respectively.  Then, H{ and H) are smooth irreducible varieties which are
isomorphic and have isomorphic complements in C™t2.  Nevertheless, no
automorphisms of C"™*2 map H{ onto H}.

Proof. Proposition 2.3 shows that the hypersurfaces H{ = V(Py—1y—1) = Hy,1 and
H} = V(P4_1y2 — 1) = H\ 5 are not equivalent. Nevertheless, their complements
are isomorphic by Lemma 3.1. ]
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