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The maximum number of systoles for genus two
Riemann surfaces with abelian differentials

Chris Judge* and Hugo Parlier**

Abstract. In this article, we provide bounds on systoles associated to a holomorphic 1-form @
on a Riemann surface X. In particular, we show that if X has genus two, then, up to homotopy,
there are at most 10 systolic loops on (X, @) and, moreover, that this bound is realized by a
unique translation surface up to homothety. For general genus ¢ and a holomorphic 1-form @
with one zero, we provide the optimal upper bound, 6g — 3, on the number of homotopy classes
of systoles. If, in addition, X is hyperelliptic, then we prove that the optimal upper bound
is 6g — 5.

Mathematics Subject Classification (2010). 32G15; 30F10, 53C22.

Keywords. Systoles, translation surfaces, abelian differentials.

1. Introduction

The systolic length of a length space (X, d) is the infimum of the lengths of non-
contractible loops in X. If a non-contractible loop y achieves this infimum, then
we will call y a systole. The systolic length and systoles have received a great deal
of attention beginning with work of Loewner who is credited [12] with proving that
among unit area Riemannian surfaces of genus one, the unit area hexagonal torus has

the largest systolic length,/2/ V3, and is the unique such surface that achieves this

The hexagonal torus has another extremal property: Among all Riemannian
surfaces of genus one, it has the maximum number of distinct homotopy classes
of systoles, three. With respect to this property, the hexagonal torus is not the
unique extremal among all genus one Riemannian surfaces, but it is the unique —
up to homothety — extremal among quotients of C by lattices A equipped with the
metric |dz|?.

The form dz on C/A is an example of a holomorphic 1-form on a Riemann
surface. More generally, given a holomorphic 1-form @ on a Riemann surface X,

*Research partially supported by a Simons collaboration grant.
**Research partially supported by Swiss National Science Foundation grant number PPOOP2_153024.
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one integrates |w| over arcs to obtain a length metric d,, on X. On the complement
of the zero set of w the metric is locally Euclidean, and each zero of order n is a
conical singularity with angle 2z - (n 4 1).

The length space (X, d,,) determined by (X, w) is a basic object of study in the
burgeoning field of Teichmiiller dynamics. See, for example, the recent surveys of [5]
and [16].

In this paper we prove the following.

Theorem 1.1. Let @ be a holomorphic [-form on a closed Riemann surface X of
genus two. The number of distinct homotopy classes of systolic minimizers on (X, d,,)
is at most 10. Moreover, up to homothety, there is a unique metric space of the
form (X, dy) for which there exist exactly 10 distinct homotopy classes of systoles.

In other words, among the unit area surfaces (X, d,) of genus two, there exists a
unique surface (X9, dw,,,) that achieves the maximum number of systolic homotopy

classes. The surface obtained by multiplying the unit area metric d,,,, by v/4+/3 is
described in Figure 1. The surface (X9, dw,,) has two conical singularities each of
angle 4 corresponding to the vertices of the polygon pictured in Figure 1. In other
words, the 1-form w1 has simple zeros corresponding to these vertices. Four of the
ten systolic homotopy classes consist of geodesics that lie in an embedded Euclidean
cylinders. Each of the other six systolic homotopy classes has a unique geodesic
representative that necessarily passes through one of the two zeros of wpg. It is
interesting to note that some of the latter systoles intersect twice. Both intersections
necessarily occur at zeros of wyg. Indeed, if two curves intersect twice and one of
the intersection points is a smooth point of the Riemannian metric, then a standard
perturbation argument produces a curve of shorter length.

e
C O
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o 0
a
e

Figure 1. A pair (X, @) that has ten systoles: By identifying parallel sides with the same letters,
we obtain a Riemann surface X. The one form dz in the plane defines a holomorphic 1-form
on X.
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Perhaps surprisingly, (X10, dw,,) does not maximize the systolic length among
all unit area, genus two surfaces of the form (X, d,). To discuss this, it will be
convenient to introduce the systolic ratio: the square of the systolic length divided
by the area of the surface. A surface maximizes the systolic length among unit area
surfaces if and only if it maximizes systolic ratio among all surfaces.

A genus two surface (X, d,) that has ten systoles has systolic ratio equal to
1/+/3 = .57735.... On the other hand, the surface described in Figure 2 has
systolic ratio equal to

2. (v/13 — 3)2
V3-(1-3(V/13-3)?)

We believe that this surface has maximal systolic ratio.

= 58404 ... (1.1)

Conjecture 1.2. The supremum of the systolic ratio over surfaces (X, dy) of genus
two equals the constant in (1.1). Moreover, up to homothety, the surface described
in Figure 2 is the unique surface that achieves this systolic ratio.

Figure 2. A surface (X, d, ) whose systolic ratio equals the constant in (1.1). The surface is
obtained from gluing parallel sides of two isometric cyclic hexagons in C. Each hexagon has a
rotational symmetry of order 3. The 1-form w corresponds to dz in the plane.

By the Riemann—Roch theorem, the total number of zeros, including multiplic-
ities, of a holomorphic 1-form on a Riemann surface of genus g equals 2g — 2. In
particular, a 1-form @ on a genus two Riemann surface X consists of either two
simple zeros or one double zero. Thus, we have a partition of the moduli space
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of pairs (X, w) into the stratum, # (1, 1), of those for which d, has two conical
singularities of angle 47t and the complementary stratum, J# (2), those for which d,
has a single conical singularity of angle 6.

In order to prove Theorem 1.1, we study each stratum separately. It turns out that
the stratum #(2) is considerably easier to analyse. Indeed, for ¢ (2) we are able to
prove sharp bounds on both the systolic ratio and on the number of systolic homotopy
classes. This is due to the fact that if there is only one zero, then each homotopy class
of systoles may be represented by a single saddle connection.

Theorem 1.3. If (X,w) € H(2), then (X,dy) has at most 7 homotopy classes
of systoles, and the systolic ratio of (X,dy) is at most 2/(3/3) = .3849...
Furthermore, either inequality is an equality if and only if (X, d) is tiled by an
equilateral triangle.!

The unique surface that attains both optimal bounds is illustrated in Figure 3.
d ¢ b

Figure 3. The genus two surface (X, d,,) that achieves the optimal bounds in 4 (2).

To prove the optimal systolic bounds for a holomorphic 1-form with one zero, we
adapt the argument that Fejes Toth used to prove that a hexagonal lattice gives the
optimal disc packing of the plane [4]. This method of proof extends to higher genus
surfaces equipped with holomorphic one forms that have exactly one zero.

Theorem 1.4. If (X,w) € H(2g — 2), then the systolic ratio of (X, dy) is at most
m. Equality is achieved if and only if the surface is tiled by equilateral
triangles whose vertices lie at the zero of w.

Theorem 1.4 has been independently observed by Boissy and Geninska [1].

As indicated above, when @ has only one zero, each systole is homotopic to a
saddle connection of the same length. Smillie and Weiss [14] provided an upper
bound on the length £, of the shortest saddle connection for surfaces (X, d,) of
genus g and area 1. In particular, they showed that £y < /1/7-(2g —2 + n)
where n is the number of zeros of w.

We also identify optimal bounds for the number of homotopy classes of systoles
of surfaces in #(2g — 2), and show that the optimal bounds are not attained by
hyperelliptic surfaces in these strata. A condensed version of these results is the
following (see Proposition 3.1 and Theorem 3.3):

IA surface (X, dy) is tiled by an equilateral triangle T if there exists a triangulation of X such that
each triangle is isometric to 7" and each vertex is a zero of @.
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Theorem 1.5. If @ is a holomorphic I-form on X that has exactly one zero,
then (X,d,) has at most 6g — 3 homotopy classes of systoles. If in addition
is hyperelliptic, then (X, d,) has at most 6g — 5 homotopy classes of systoles. Both
bounds are realized.

The bulk of the present paper verifies Theorem 1.1 for the stratum F (1, 1). The
proof begins in §4 where we show that each nonseparating systole is homotopic
to a systole that passes through exactly two Weierstrass points. Such a systole is
divided by the Weierstrass points into two geodesic arcs that are interchanged by the
hyperelliptic involution t. We regard each such “systolic Weierstrass arc’ as an arc
on X /(t) that joins the two corresponding angle 7 cone points. If a Weierstrass arc
misses the angle 47r cone point on X /(t) that corresponds to the zeros of w, then
we will call it “direct.” Otherwise, the arc will be called “indirect.” In §5 we show
that for each angle = cone point ¢ there are at most two direct systolic Weierstrass
arcs that have an endpoint at ¢, and hence there are at most six homotopy classes of
systoles that correspond to direct Weierstrass arcs.

The angle 47r cone point ¢* divides each indirect systolic Weierstrass arc into two
subarcs that we call “’prongs.” Observe that if some prong has length £ < sys(X)/4,
then each of the other prongs emanating from ¢* has length sys(X)/2 — £. In §6 we
show that if all of the prongs have the same length — necessarily sys(X)/4 — then
there are at most four prongs, and if there is a “short” prong of length £ < sys(X)/4,
then there are at most five prongs. In the former case, we obtain at most six indirect
systolic Weierstrass arcs and in the latter case, we obtain at most five indirect systolic
Weierstrass arcs.?

In §7 we show that there is at most one systole that is a separating curve. Moreover,
we show that if the surface has a systole which is a separating curve, then the surface
has either no prongs or exactly two prongs of equal length. It follows that a surface
with a separating systole has at most eight homotopy classes of separating systoles.

In §8, we show that if there are exactly four prongs of equal length, then the
surface has at most ten homotopy classes of systoles, and if there are ten, then the
surface is homothetic to the surface described in Figure 1. In §9, we show that if one
of the prongs is shorter than the others, then there are at most none homotopy classes
of systoles. This finishes the proof of Theorem 1.1 in the case of surfaces from the
stratum J€(1,1).

Although the questions that we address in this paper regarding systoles have not
been systematically studied previously in the context of translation surfaces, they have
been studied in the context of hyperbolic and general Riemannian surfaces. As hinted
at above, smooth surfaces have systoles that intersect at most once, and from this one
can deduce that there are at most 12 homotopy classes of systole in genus two (see for
instance [9]). This bound is sharp. Indeed, among hyperbolic surfaces of genus two,
there is a unique surface, called the Bolza surface, with exactly 12 systoles. It can be

2Note that a particular prong can lie in more than one systolic Weierstrass arc.
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obtained by gluing opposite edges of a regular hyperbolic octagon with all angles 7.
This same surface is also optimal (again among hyperbolic surfaces) for systolic
ratio, a result of Jenni [7]. There are bounds on these quantities in higher genus,
but these bounds are not optimal. Interestingly, Katz and Sabourau [8] showed that
among CAT(0) genus two surfaces, the optimal surface is an explicit flat surface with
cone point singularities, conformally equivalent to the Bolza surface. This singular
surface can not be optimal among all Riemannian surfaces however, as by a result
of Sabourau, the optimal surface in genus two necessarily has a region with positive
curvature [13]. The optimal systolic ratio among all Riemannian surfaces is still not
known.

Acknowledgements. We are grateful to the referee for a careful reading of the
paper and valuable comments. We thank Marston Condor for the examples in
Remark 3.2. We thank Carlos Matheus Santos and Gabriela Weitze-Schmithiisen
for kindly pointing out some mistakes as well as some missing references in earlier
versions. H. P. acknowledges support from U.S. National Science Foundation grants
DMS 1107452, 1107263, 1107367 RNMS: Geometric structures And Representation
varieties (the GEAR Network). C.J. acknowledges support from the Simons
Foundation.

2. Facts concerning the geometry of (X, d,)

We collect here some relevant facts about the geometry of the surface (X, dy)
sometimes called a “translation surface.” Much of this material can be found in,
for example, [2,6, 10].

2.1. Integrating the 1-form. By integrating the holomorphic 1-form @ along a
piecewise differentiable path «:[¢,h] — X, we obtain a path in «:[a,b] — C

defined by
a(t) :f . (2.1)
O‘f|[oz.r]

Since w is closed, if two paths «, B in X are homotopic rel endpoints, then o and E
are homotopic rel endpoints. Thus, if U C X is simply connected neighborhood of
a point x, then

pxw (y) = f w (2.2)

is independent of the path «,, joining x to y. Note that ;1 ¢y is a holomorphic map
from U into C. If x is not a zero of w, then it follows from the inverse function
theorem that there exists a neighborhood U so that px 7 is a biholomorphism onto
its image.
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2.2. The metric. The norm, |w|, of w defines an arc length element on X. We will
let £, () denote the length of a path on X, and we will let d,, denote the metric
obtained by taking the infimum of lengths of paths joining two points.

If x is not a zero of w and U is a simply connected neighborhood of x, then p . v
is a local isometry from U into C equipped with its usual Euclidean metric |dz|?. If,
in addition, U is star convex at x, then px ¢ is an isometry onto its image.

If x is a zero of w of order k, then there exists a neighborhood V' of x and a chart
v:V — C suchthatw = (k + 1)-v*(z¥dz)) = v*(d(zFt")) and v(x) = 0. If V is
sufficiently small, the map v is an isometry from (V, dy,) to (v(V'), d y(;x+1y). Inturn,

k+1 s a local isometry from (v(V) —{0}, d j(zk+1y) to a neighborhood
k+1

themapz — z

of the origin with the Euclidean metric |dz|?. Since the branched covering z > z
has degree k + 1, the arc length of the boundary of an e-neighborhood of x is
2n(k + 1) - €. Therefore, we refer to x as a cone point of angle 2w (k + 1), and the
set of zeros, denoted Z,,, will be regarded as the set of cone points of (X, d,,).

2.3. Universal cover, developing map and holonomy. Let p: X — X be the uni-
versal covering map, and let ® = p*(w). If we let dg be the associated metric on X,
then p is a local isometry from (X, dg) onto (X, d,). Since X is simply connected,
we may fix Xo € X and integrate @ as in (2.2) to obtain a map dev: X — C called
the developing map. The restriction of dev to X — Zz isalocal biholomorphism and
a local isometry. Each zero of @ is a branch point whose degree equals the order of
the zero. If C is the closure of a convex subset of X — Z &, then the restriction of dev
to C is injective.

Let xo = p(Xp), and consider loops « in x based at x¢. The assignment ¢« — o
defines a homomorphism, hol, from (X, x¢) to the additive group C. Moreover,
for each [a] € 71 (X, xo) and X € X we have

dev([e] - X) = dev(X) + hol([a]) (2.3)

where « - X denotes action by covering transformations. See, for example, [6].

2.4. Geodesics. If a geodesic y on (X, d,,) passes through a zero of w, then y will
be called indirect and otherwise direct. If y is a direct simple geodesic loop, then,
since Z,, is finite, for sufficiently small € > 0, the e-tubular neighborhood, N, of y
is disjoint from Z,,. Each lift N C X of N is convex and hence the restriction of the
developing map to N is an isometry onto dev(N ). Since N is stabilized by the cyclic
subgroup (y) of the deck group generated by v, it follows from (2.3) that dev(N)
is the convex hull of two parallel lines, and, moreover, the map dev determines an
isometry from N to dev(f\f )/ (hol(y)). In particular, N is isometric to a Euclidean
cylinder [0, w] x R /€Z where £ = |hol(y)| and w is the distance between the parallel
lines. If Z,, # 0, then the union of all Euclidean cylinders embedded in X — Z, that
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contain y is a cylinder called the maximal cylinder associated to y. Each component
of the frontier of a maximal cylinder consists of finitely many indirect geodesics.

Proposition 2.1. [If w has at least one zero, then each homotopy class of loops is
represented by a geodesic loop that passes through a zero of w.

Proof. Since X is compact, a homotopy class of simple loops has a geodesic
representative y. If y does not pass through a zero, then y lies in a maximal
cylinder. The boundary of the maximal cylinder contains a geodesic representative
that passes through a zero. [

Proposition 2.2. If two direct simple geodesic loops are homotopic, then they lie in
the closure of the same maximal cylinder.

Proof. Because the angle at each cone point Z € Zg is greater than 21, the length
space ()? ,dg) is CAT(0). If two geodesic loops y and y’ are homotopic, then they
have lifts that are asymptotic in (X, dg). By the flat strip theorem [3], the convex
hull of the two lifts is isometric to a strip [0, w] x R. Thus, since each cone point
has angle larger than 2, the interior / of the convex hull contains no cone points.
The developing map restricted to / is an isometry onto a strip in C, and, moreover, it
induces an isometry from 7/ /(g) to the cylinder dev(/)/(hol(g)) where g is the deck
transformation associated to the common homotopy class of y and y’. Since the lifts
are boundary components of 7, the loops y and y’ lie in the boundary of the cylinder
dev(/)/(hol(g)). ]

2.5. The Delaunay cell decemposition. The Delaunay decomposition is well-known
in the context of complete constant curvature geometries. Thurston observed that the
construction also applies to constant curvature metrics with conical singularities [ 15].

We will first describe the Delaunay decomposition of the universal cover K.
Given X € X — Zz, let Dz be the largest open disk centered at X that does not
intersect Zz. Since Dz is convex, the restriction of dev to the closure Dx is an
isometry onto a closed Euclidean disk in C. Since Zg is discrete, the intersection
Zz N Dy is finite. Let 'V be the set of ¥ € X — Zg such that Zz N Dy contains at
least three points. Because three points determine a circle, the set 'V is discrete.

For each ¥ € V, let Pz denote the convex hull of Zz N Dx. It is isometric to
a convex polygon in the plane. Again, because three points determine a circle, if
X, € Vand X # 7, then the set Zz N Dz N .5}7 consists of at most two points, and
hence Pz N Py is either empty, a point, or a geodesic arc lying in both the boundary
of Pz and the boundary of Pj. The interior of Pg is called a Delaunay 2-cell and
the boundary edges are called Delaunay edges. The vertex set of this decomposition
of X is the set of zeros of @.

The deck group of the universal covering map p permutes the cells of the Delaunay
decomposition, and so we obtain a decomposition of X. Note the restriction of p to
each 2-cell P is an isometry onto its image. Indeed, if not then there exists a covering
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transformation y, a lift P of P,and X € P such that y-X € P. Since P is convex,
it follows that for some vertex Z € P, we would have y -Z € P. But y maps Zz to
itself.

Our interest in the Delaunay decomposition stems from the following.

Proposition 2.3. If « is a shortest non-null homotopic arc with both endpoints in Z ,,,
then « is a Delaunay edge.

Proof. Since the universal covering map p preserves the length of arcs, it suffices
to prove that the analogous statement holds for the universal cover X. Because « is
a shortest arc, if m is the midpoint of «, then the largest disc D centered at m has
diameter equal to £(«) and D N Zz consists of exactly two points, the endpoints z
and z’ of @. The circle dev(dD) belongs to the pencil of circles containing dev(z)
and dev(z’). Since X is compact, by varying over this pencil, we find a disk D’ so
that D’ N Z contains z, z’, and at least one other point. The center ¢ of D’ belongs
to V and « is a boundary edge of the polygon P.. ]

Proposition 2.4. Let w be a holomorphic 1-form on a closed surface of genus g. If
has v zeros, then the Delaunay decomposition of X has at most 6g — 6 + 3 - v edges
and the number of 2-cells is at most 4g — 4 + 2 - v. Equality holds if and only if each
2-cell is a triangle.

Proof. By dividing the Delaunay 2-cells (convex polygons) into triangles, we obtain
a triangulation with v vertices. By Euler’s formula and the fact that there are 3
oriented edges for each triangle, we find that each triangulation has 6g — 6 + 3v
edges and 4g — 4 + 2 - v triangles. 0

3. Systoles of 1-forms in # (2g — 2)

In this section, we consider holomorphic 1-forms with a single zero. In the first
part of the section we give the optimal bound on the number of homotopy classes of
systoles of such surfaces as well as the optimal bound for the hyperelliptic surfaces
with one zero. In the second part, we provide the optimal estimate on the systolic
ratio of such surfaces.

3.1. Bounds on the number of systoles.

Proposition 3.1. If w is a holomorphic 1-form on X that has exactly one zero, then
(X, dy) has at most 6g — 3 homotopy classes of systoles.

Proof. By Proposition 2.1, each homotopy class of systoles contains a representative
that passes through the zero. Proposition 2.3 implies that each such systole is a
Delaunay edge. By Proposition 2.4, there are at most 6g — 3 Delaunay edges and
hence at most 6¢ — 3 homotopy classes of systoles. (]



408 C. Judge and H. Parlier CMH

The bound in Proposition 3.1 is sharp if the genus g of X is at least 3. For
example, it g = 3,4, 5, then consider the surfaces described in Figures 4, 5, and 6.

f e b d c

b c d e !
Figure 4. Genus 3 example that saturates bound in Proposition 3.1. Glue the edges of the
polygon according to the labels. Each edge is a systole, the 1-form @ has exactly one zero, and
no two Delaunay edges are homotopic.

Figure 5. Genus 4 example that saturates bound in Proposition 3.1.

e i h g b d j f c

b c d e ¥ g o E;

Figure 6. Genus 5 example that saturates bound in Proposition 3.1.

More generally, given a holomorphic I-form w, on a surface X, of genus g
with one zero that achieves the bound 6g — 3, one can construct a holomorphic
1-form wg 43 with one zero on a surface X4 3 of genus ¢ + 3 that achieves the bound
6(g + 3) — 3. Indeed, remove the interior of a Delaunay edge from (X, d,,) to
obtain a surface X é with “figure eight” boundary consisting of two segments F_, F
each corresponding to the Delaunay edge. Let (Y2, dz) be the genus two surface
with two boundary components G_, G 4 that is described in Figure 7. By gluing Fy
to G4, we obtain the desired (Xg 43, wg43).

& g b d (6 f

b c d e f g
Figure 7. Glue solid edges of the polygon that have the same label (o obtain the Delaunay
triangulation associated a holomorphic 1-form on a surface of genus two having two boundary
components.
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Remark 3.2. The problem of constructing surfaces that saturate the bound in
Proposition 3.1 is equivalent to the problem of constructing two fixed-point free
elements o, 7 in the symmetric group S,_; = Sym({1,...,2¢ — 1}) suchthato - 7
has no fixed points and the commutator [o, ] is a (2¢g — 1)-cycle. Indeed, let
Pi,... Pz be 2g — 1 disjoint copies of the convex hull of {0, 1,e™/3, 1 + ¢™i/3},
Given o, T € S»51, glue the left side of P; to the right side of P ;) and the top side
of P; to the bottom side of Pr(;) to obtain a surface with a holomorphic 1-form ®.
If [0, 7] is an n-cycle, then it follows that @ has one zero, and if o, 7, and o - T have
no fixed points, then it follows that (X, d,) has no cylinder with girth equal to the
systole. Thus, by Proposition 2.2, no two systolic edges are homotopic.

Conversely, suppose that a holomorphic 1-form surface saturates the bound, then
the necessarily equilateral Delaunay triangles can be paired to form parallelograms
as above that are glued according to permutations o and t. One verifies that o and
satisfy the desired properties.

The surface constructed in Figure 4 corresponds to the pair

o = (12345), 1 = (15243),
the surface constructed in Figure 5 corresponds to the pair
o = (1234567), 1 = (1364527),
and the surface in Figure 6 corresponds to
o = (123456789), 1 = (146379285).

We thank Marston Condor for finding these examples for us.

If the genus of the surface is two, then one can show that the maximum number
of homotopy classes of systoles is 7 = 6g — 5. More generally, the following is true.

Theorem 3.3. Let w be a holomorphic 1-form on a surface with a hyperelliptic
involution t. If w has exactly one zero, then (X, dy) has at most 6g — 5 homotopy
classes of systoles. Moreover, (X, d,) has exactly 6g —5 homotopy classes of systoles
if and only if each Delaunay edge is a systole and there exist exactly four Delaunay
2-cells each of which have two edges that are preserved by the hyperelliptic involution.

For each g > 2, the bound given in Theorem 3.3 is achieved by, for example, the
surface described in Figure 8.

Proof. Each homotopy class of systole is represented by at least one systolic Delaunay
edge. Since w has exactly one zero, zg, the number of Delaunay edges is at most
6g — 3. Thus, we wish to show that if there are 6g — 3 or 6g — 4 systolic Delaunay
edges, then there exist at least two homotopic pairs of systolic edges, and that, if there
are 6g — 5 systolic edges, then there is at least one pair of homotopic edges.
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C

Figure 8. Glue edges of the polygon that have the same label to obtain the Delaunay triangulation
associated to a holomorphic 1-form on a surface of genus g. The surface is hyperelliptic, the
1-form w has exactly one zero, and there are exactly 6¢ — 5 homotopy classes of systoles.

6g — 3 systolic edges: Suppose that there are exactly 6g — 3 systolic Delaunay edges.
Then each Delaunay 2-cell is an equilateral triangle and by Proposition 2.4 there are
4g — 2 such cells. Since t is an isometry, it preserves the Delaunay partition. In
particular, since zq is the unique 0-cell, we have 7(zg) = z(, and since an equilateral
triangle has no (orientation preserving) involutive isometry, the involution 7 has no
fixed points on the interior of each 2-cell. Thus, the remaining 2¢ + 1 fixed points
of 7 lie on 1-cells. In particular, 7 fixes exactly 2g + 1 Delaunay edges.

Suppose that 7" is a 2-cell with two fixed edges. Then 7" U ©(T') is a cylinder
whose boundary components are the “third” edges of T and t(T), and, in particular,
since the genus of X is at least two, these “third” edges are not fixed by 7. Thus, a
2-cell has either zero, one, or two fixed edges. Note that the number of 2-cells that
have two fixed edges is even.

We claim that there exist at least four 2-cells that each have two fixed edges.
Indeed, if, on the contrary, there are at most two such 2-cells, then there are at least
4g — 4 remaining 2-cells that each have at most one fixed edge. Thus, there are at
most 2g — 2 fixed Delaunay edges associated to these 2-cells, and at most 2 edges
associated to the 2-cells that have two fixed edges. But, there are2g+1 > (2g—2)+2
fixed edges, and so we have a contradiction.

The four 2-cells form two cylinders each bounded by two systolic edges. Thus,
there are at most 6¢ — 5 homotopy classes of systoles.

If there are exactly 6g — 5 homotopy classes of cylinders, then there are two
maximal cylinders each bounded by two systolic edges. The integral of @ over
the middle curve of each cylinder is nonzero, and hence the middle curve is not
null-homologous. The induced action of a hyperelliptic involution on H;(X) is the
antipodal map, and so t preserves each cylinder and has exactly two fixed points on
the interior of each cylinder. It follows that there are exactly four Delaunay 2-cells
each having two fixed edges.

6g — 4 systolic edges: Suppose that there are exactly 6g —4 systolic Delaunay edges.
It follows that exactly 4g — 4 Delaunay 2-cells are equilateral triangles. The
complement, K, of the union of these equilateral triangles is (the interior of) a
rhombus.
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Since 7 is an isometry, T preserves K, and hence the center ¢ of the rhombus is
a fixed point of . The other Delaunay 2-cells are equilateral triangles and hence
do not contain fixed points. Therefore, since t has exactly 2g — 2 fixed points and
7(z9) = z¢, exactly 2g systolic edges are fixed by 7.

If an edge e in dK is fixed by t, then e is equal to the opposing edge and in
particular K U e is a cylinder. Indeed, if ¢ were fixed by t, then the segment in K
joining the midpoint of e to ¢ would be “rotated” by t to a segment joining ¢ to
the midpoint of the edge ¢’ opposite to e. Hence the midpoint of ¢ would equal the
midpoint of ¢, and thus e = ¢’.

Since X is connected and of genus at least two, not all four edges of dK can be
fixed by 7. Thus either K is a rhombus with no fixed edges or a cylinder with no
fixed boundary edges.

Suppose that K is arhombus. Among the remaining 4g—4 two-cells — equilateral
triangles — there are exactly 2¢ fixed points. Hence there exist equilateral triangles
that have at least two fixed edges. If there were 4¢ — 6 equilateral triangles that each
had at most one fixed edge, then there would be only 2¢g — 3 4+ 2 = 2g — 1 fixed
points among the 4g — 4 equilateral triangles. It follows that there are at least four
equilateral triangles that each have two fixed edges, and thus there exist two distinct
maximal cylinders bounded by systoles.

Suppose that K is a cylinder. In this case, neither of the two equilateral triangles
that share edges with K can have two fixed edges. Indeed, using an argument as
above with a segment joining the center of the rhombus, we would see that the edges
would be identified in such a way to form a torus.

Consider the two equilateral triangles 7'y, 7 that have an edge in K. If an edge e
of T4 is fixed then 7, then using the symmetry about ¢, one shows as above that e
is identified with an edge of 7+. Because the X is connected and of genus at least
two, 7= has at most one edge fixed by t. It follows that among the remaining 4g — 6
triangles there are at least 2g +2 — 1 —3 = 2g¢ — 2 fixed points. It follows that there
exist at least one equilateral that has two fixed edges, and hence there exists another
maximal cylinder bounded by systoles.

In either case, we have two maximal cylinders bounded by systoles, and therefore
there are at most 6g — 6 homotopy classes of systoles.

6g — 5 systolic edges: Suppose that there are exactly 6g — 5 systolic edges. Then
there are 4g — 6 Delaunay 2-cells that are equilateral triangles. The complement, K,
of the union of these equilateral triangles consists of either an equilateral hexagon or
two disjoint rhombi.

Suppose that K is an equilateral hexagon. Then since t preserves the Delaunay
partition, we have t(K) = K. Hence K contains exactly one fixed point ¢ and K is
convex. Thus, arguing as above, we find that if a boundary edge of K is fixed by 7,
then the edge equals an opposite edge. Since X is connected with genus at least two,
all six edges can not be identified, and hence there are at most 3 fixed points in K.
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We claim that at least one pair of equilateral triangles each have exactly two fixed
edges. If not, then each of the 4¢ — 6 equilateral triangles contains at most one fixed
edge. Thus, there are at most 2g — 3 such edges, and hence (2¢g —3)+3+1 =2g + 1
fixed points in total. But the total number of fixed points is 2g + 2. Thus, we have a
pair of equilateral triangles that share a pair of fixed edges. The union is a cylinder
bounded by two systolic edges, and so we have at most 6g — 6 homotopy classes of
systoles in this case.

Finally suppose that K is the disjoint union of two rhombi R4 and R_. Since t
preserves the Delaunay partition, either t(R+) = Ry or t(R4+) = R=.

If 7(R4+) = R4, then each rhombus contains a fixed point. If an edge of Ky is
fixed, then R is a cylinder bounded by systolic edges and so there are at most 6g — 6
homotopy classes of systoles. If neither rhombus has boundary edges fixed by t,
then K contains exactly two fixed points. If there is not a pair of equilateral triangles
that share fixed boundary edges, then each of the 4¢g — 6 equilateral triangles would
have at most one fixed edge, and so there would be at most 2¢g —3 4+ 2 + 1 = 2¢
fixed points, a contradiction. Hence we have a systolic cylinder and at most 6¢g — 6
homotopy classes of systoles.

If 7(Ry) = R=, then the rhombi do not contain fixed points. If an edge in dR ¢
is fixed by 7, then Ry shares this edge with R+. It follows that there are at most
three fixed points in K, and one may argue as in the case of the hexagon, to find that
there are at most 6g — 6 homotopy classes of systoles.

If no edge in dRy is fixed by r, then among the 4g¢ — 6 equilateral triangles there
are 2¢ + 1 fixed points. It follows that there is an equlateral triangle that has two
ed-es fixed by 7, and hence there is a maximal cylinder bounded by systoles. []

Since each genus two surface is hyperelliptic, we have the following corollary.

Corollary 3.4. Let X be a surface of genus two. If w is a holomorphic I-form on X
that has exactly one zero, then the number of homotopy classes of systoles of (X, dg)
is at most 7.

3.2. Lengths of systoles. Although our main concern is the number of systoles, we
observe in this section that it is quite straightforward to find a sharp upper bound on
the length of systoles of translation surfaces provided they have a single cone point
singularity. One of the ingredients is the Delaunay triangulation described in §2.5.
The other ingredient is a result due to Fejes Toth which we state in the form of the
following lemma.

Lemma 3.5. Let T be a Euclidean triangle embedded in the plane and let r be the
maximal positive real number so that the open balls of radius r around the three
vertices are disjoint. Then

2 Area(T')
T3

with equality if and only if T is equilateral.
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This can be stated differently in terms of ratios of areas. Consider the area A, of a
triangle found at distance r from the vertices of 7" and so that the interior of the three
sectors do not overlap. Then the ratio A,/ T never exceeds that of the equilateral
triangle with r equal to half the length of a side.

Theorem 3.6. If (X,w) € H(2g — 2), then
sys?(X) _ 4
area(X) ~ (4g —2)- /3
with equality if and only if X is tiled by equilateral triangles.

3.1)

Proof. Let zy denote the zero of . By Proposition 2.3, each systole that passes
through zo lies in the 1-skeleton of the Delaunay cell decomposition of (X, dy).
Thus, if rq is the radius of the largest open Euclidean ball that can be embedded
in (X, d,) with center zg, then ro = sys(X)/2. Therefore

sys?(X) = 4-r2. (3.2)

Each open 2-cell P of the Delaunay cell-deomposition is isometric to a convex
Euclidean polygon. We may further subdivide each 2-cell into Euclidean triangles
to obtain a triangulation of X with one vertex, namely zy. By Proposition 2.4, there
are at exactly 4g — 2 such triangles. Thus, Lemma 3.5 implies that

area(X) = Zarea(T) > (4g —2) - V312
T

where the sum is over triangles in the triangulation. By combining this estimate
with (3.2), we obtain the desired inequality (3.1). Moreover, if equality holds in (3.1),
then equality holds in Lemma 3.5, and so each triangle is an equilateral triangle. [

We note that there is a unique surface (up to homothety) in J(2) tiled by
equilateral triangles (illustrated previously in Figure 3). This surface realizes the
maximum number of systoles and the maximum sytolic ratio over J¢(2). In contrast,
as indicated in the introduction, the maximum systolic ratio over J€(1,1) is not
realized by the unique surface that realizes the maximum number of homotopy
classes of systoles.

4. Geodesics on a surface in J(1, 1)

In this section, X will denote a J(1,1) surface of genus two equipped with a
translation structure with two cone points ¢4+ and c— each of angle 47r. The tangent
bundle of a translation surface is parallelizable. In particular, each oriented segment
has a direction. The hyperelliptic involution 7: X — X is an isometry that reverses
the direction of each oriented segment. The isometry t has exactly six fixed points,
the Weierstrass points.
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Lemma 4.1. The hyperellipic involution t interchanges cone points: t(cy) = cx

Proof. Since t is an isometry the set {c4, c—} is permuted. If t(c4+) = ¢4, then in
a neighborhood of ¢, the isometry t acts as a rotation of & radians. But the cone
angle is 47, and hence it is impossible for 72 to be the identity. Il

By Lemma 4.1, the quotient X /(r) is a sphere with one cone point ¢* with
angle 47 and six cone points {cy,...,ce} each of angle w. Let p: X — X/(1)
denote the degree 2 covering map branched at {cy, ..., ce}. If y is a simple geodesic
loop, then either y passes through two Weierstrass points in which case p maps y
onto a geodesic arc joining two distinct 7 cone points, or p o y is a simple geodesic
loop that misses the 7 cone points.

A flat torus is a closed translation surface (necessarily of genus one). A slit
torus is a flat torus with finitely many disjoint simple geodesic arcs removed. Each
removed arc is called a slit. The completion of a slit torus (with respect to the natural
length space structure) is obtained by adding exactly two geodesic segments for each
removed arc. The interior angle between each pair of segments is 2. This property
characterizes slit tori.

Lemma 4.2. Let Y be a topological torus with a closed disc removed. If Y is
equipped with a translation structure such that the boundary? component consists of
at most two geodesic segments, then Y is isometric to a slit torus.

Figure 9. Identify the edges with the same labels via elements of Isom(R?) to obtain a torus
with a disc removed equipped with a flat structure such that the boundary consists of exactly
two geodesics. The angles between the geodesics are not both 7 though they sum to 4.

3By boundary we mean the set of points added by taking the metric completion of the length structure
associated to the translation structure.



Vol. 94 (2019) The maximum number of systoles 415

Remark 4.3. Figure 9 shows that Lemma 4.2 is false if one replaces the assumption
of translation structure with the assumption of flat structure.

Proof of Lemma 4.2. Let Z be the boundary of Y. Let A be the intersection of the
maximal geodesic segments in Z. By assumption A4 is either empty, contains one
point, or contains two points. Let «: [0, 1] — Z be a parameterization of Z such that
if A is nonempty, then @(0) = (1) € A. Let @ be the development of « into the
plane C as discussed in §2.

Since [¢] € m;(Y) is a commutator and C is abelian, the holonomy of [«]
equals 0. Hence by (2.3), we have a(1) — a(0) = dev([a] - ®(0)) = 0, and therefore
a(l) = a(0).

If A is empty or consists of one point, then « is a line segment, but this is
impossible as line segments in C have distinct endpoints. If A consists of two points,
then the curve & consists of two line segments. Since «(1) = «/(0), the line segments
coincide. Removing this segment and its translates by hol(7r; (Y)) and quotienting it
by hol(x1(Y)) gives a surface isometric to Y. O]

As a corollary, we have the following sharpening of Theorem 1.7 in [11].

Corollary 4.4. If o is a separating simple closed geodesic on X, then X — « is
the disjoint union of two slit tori. Moreover, each slit torus contains exactly three
Weierstrass points, and the hyperelliptic involution t preserves o.

Proof. Since « is separating and X is closed of genus two, the complement of «
consists of two one-holed tori Y4 and Y_. Since « is geodesic, the boundaries of Y
and Y_ are piecewise geodesic. Since « is simple and there are only two cone points,
the number of geodesic pieces of Y4 is at most two. Lemma 4.2 implies that each
component is a slit torus.

The restriction of t to a slit torus component determines an elliptic involution t
of the torus. The endpoints of each slit correspond to the cone points ¢4 and ¢—, and
so the are preserved by the induced elliptic involution. Since t preserves the cone
points, the map t preserves the slit, and hence « is preserved by . In particular, the
midpoint of the slit is fixed by 7 and the three other fixed points of t are fixed points
of 7. []

A cylinder of girth £ and width w is an isometrically embedded copy of (R /£Z) x
[—w/2,w/2]. Each cylinder is foliated by geodesics indexed by 1 € [—w/2,w/2].
We will refer to the geodesic that corresponds to t = 0 as the middle geodesic. By
Corollary 4.4, if a simple closed geodesic lies in a cylinder, then it is nonseparating.

A cylinder C is said to be maximal if it is not properly contained in another
cylinder. If a closed translation surface has a cone point, then each geodesic that does
not pass through a cone point lies in a unique maximal cylinder.

Because the hyperelliptic involution 7 reverses the orientation of isotopy classes
of simple curves, the map t restricts to an orientation reversing isometry of each
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maximal cylinder C, and thus it restricts to an orientation reversing isometry of the
middle geodesic y C C. In particular, it contains two Weierstrass points.

Proposition 4.5. If y is a nonseparating simple closed geodesic, then y is homotopic
to a unique geodesic y' such that the restriction of T to y' is an isometric involution
of y'.
Proof. If y does not contain a cone point, then y belongs to a maximal cylinder.
If y belongs to a maximal cylinder C, then it is homotopic to the middle geodesic
W L

If y does not belong to a cylinder, then y is the unique geodesic in its homotopy
class. Since 7 reverses the orientation of the homotopy classes of simple loops, it
acts like an orientation reversing isometry on y. L]

Proposition 4.5 reduces the counting of homotopy classes of nonseparating
systoles to a count of nonseparating systoles that pass through exactly two Weierstrass
points. In the next two sections we analyse such geodesics.

5. Direct Weierstrass arcs

If y is a simple closed geodesic on X that passes through two Weierstrass points, then
the projection p(y) is an arc on X /({t) that joins one angle & cone point to another
angle w cone point. We will call each such an arc a Weierstrass arc. Note that
the p inverse image of a Weierstrass arc is a geodesic and so we obtain a one-to-one
correspondence between homotopy classes of nonseparating simple geodesic loops
on X and Weierstrass arcs on X /{(r). A Weierstrass arc that is the image of a systole
will be called a systolic Weierstrass arc. Note that each systolic Weierstrass arc has
length equal to sys(X)/2.

The Weierstrass arcs come in two flavors. We will say that a Weierstrass arc is
indirect if it passes through the angle 47 cone point, and otherwise we will call it
direct.

Lemma 5.1. There is at most one direct systolic Weierstrass arc joining two angle
cone points.

Proof. Suppose to the contrary that there exist two distinct direct systolic Weirestrass
arcs that both join the angle 7 cone point ¢ to the angle 7 cone point ¢’ # ¢. These
arcs lift to closed systoles y4 and y_ that interesect transversally at two Weierstrass
points corresponding to ¢ and ¢’. In particular, the Weierstrass points divide each
geodesic into two arcs. By concatenating a shorter# arc of y4 with a shorter arc of y_
we construct a piecewise geodesic closed curve « that has length at most the systole.
Since the angle between the arcs is strictly between 0 and 7, we can perturb « to

4If the arcs have the same length, then choose either arc.
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obtain a shorter curve whose length is strictly less than the systole. This contradicts
the assumption that y; and y_ are both systoles. [

Remark 5.2. The argument in the above lemma was that the concatenation of two
geodesic arcs that meet with an angle strictly less than 7 cannot be of minimal length
in their homotopy class. In particular, they can’t form a systole. This argument will
be used several times.

Proposition 5.3. Let vy and y— be distinct nonseparating systoles on X. If each
contains two Weierstrass points and neither contains a 4w cone point, then the
intersection y4 N y—_ is either empty or consists of a single Weierstrass point. In
particular, the geometric intersection number i (Y4, y—) equals either zero or one.

Proof. Each projection @y = p(y+)isadirect systolic Weierstrass arc. By Lemma 5.1,
at most one angle 7 cone point lies in the intersection @4 N «—, and hence y4+ N y_
contains at most one Weierstrass point.

Suppose (to the contrary) that the intersection y4+ N y_ were to contain a point
on X that is not a Weierstrass point. Then o4 No— would contain a point p that is not
an angle 7 cone point. Since, y4 is a systole, there would exist a subarc, B4, of a4
that joins p to an endpoint of o whose length is at most sys(X ') /4. By concatenating
B+ and B_ and perturbing, we would obtain an arc joining two angle m cone points
whose length would be strictly less than sys(X)/2. This arc would lift to a closed
curve on X whose length is less than sys(X')/2, a contradiction. U

The following result is central to the proof of Theorem 1.1.

Theorem 5.4. If ¢ is a cone point on X /(t) with angle rt, then at most two direct
systolic Weierstrass arcs have an endpoint at ¢. Thus, there are at most six direct
systolic Weierstrass arcs.

The remainder of this section is devoted to the proof of Theorem 5.4. The proof
is a complicated proof by contradiction that involves many cases. We suppose that
there exist three direct systolic Weierstrass arcs that end at c. We cut along these arcs
and we cut along the two (necessarily direct) minimal arcs that join the remaining
two angle 7 cone points to the angle 47 cone point on X /(r). The result of these
cuts is an annulus with piecewise geodesic boundary that contains the remnants of
the cone points. The various cases considered are based on the holonomy of the
translation structure of the annulus as well as the relative positions of the cone points
on the boundary of the annulus. To obtain a contradiction in each case, we use the
fact that the distance between any two cone points can be no less than sys(X)/2.

We now begin the proof of Theorem 5.4.

Proof. Suppose to the contrary that there exist three direct systolic Weierstrass arcs
each having ¢ as an endpoint. Let 6; < 6, < 5 denote the angles between the arcs
at ¢. Since c is an angle 7 cone point, we have 61 + 6, + 03 = m. Label the arcs «;,
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i € 7,/37, so that the angle between «; —; and «; equals 6;. By Lemma 5.1, the other
endpoints of the «; are all distinct. Label the other endpoint of «; with ¢;. Let ¢4
and cs denote the two remaining angle 7 cone points.

The lift, &;, of each «; to X is a non-separating direct simple closed geodesic
on X. The involution preserves G := &) U & U &3 and hence the complement
A:= X —G. Wehave y(A) = y(X)— y(G) = 2—2 = 0, and since A contains the
fixed points ¢4 and cs, it follows that A4 is connected and, moreover, is homeomorphic
to an annulus.

Let y be a shortest geodesic in X that represents the free homotopy class
corresponding to a generator of 1 (A) C m1(X). Because 6; < m and each q; is a
geodesic, the geometric intersection number of y and each «; is zero. In particular,
y can not coincide with some &; as the intersection number i (¢&;, & ;) = 1 fori # j
(see Proposition 5.3). Therefore, a; and y are disjoint for each i € 7 /37, and y lies
in A.

In the remainder of the proof, we will consider separately the two cases: (1) the
closed geodesic y is direct and (2) y passes through an angle 4 cone point.

y is direct: If y is direct, then it belongs to a maximal cylinder C. Without loss
of generality, y is the middle geodesic of this cylinder. Since y is nonseparating, ©
preserves C and y, and in particular, the fixed points ¢4 and c¢s lie on y. To obtain
the desired contradiction in this case, it suffices to show that the length of y is less
than sys(X).

Each component of dC consists of a direct geodesic segment 4 joining an
angle 47 cone point ¢} to itself. The geometric intersection number of B4 and
each &; equals zero, and hence B4 does not intersect any of the &;. Hence the
complement A — C consists of two topological annuli K4 and K_ with 1 C 0K 4.
Because t preserves each maximal cylinder as well as A, we have t(K4) = ©(K¥).
Thus, we will now limit our attention to only one of the two annuli, K := K.
One boundary component of K is the direct geodesic segment 8 := B4 joining an
angle 4w cone point, ¢* := ¢, to itself. The other boundary component, g’, of K
consists of three geodesic segments &1, @, and a3 corresponding respectively to &,
a5, and &3. Moreover, the interior angle between &, —; and @; is equal to 6;. See the
left hand side of Figure 10.

Since B and y are parallel geodesics in the same cylinder C, it suffices to show
that the length of B is less than sys(X). Since g is a direct geodesic segment, the
length of S equals the length of the holonomy vector associated to . Since 8 and g’
are homotopic, their holonomy vectors have the same length. Thus, it suffices to
show that the length of the holonomy vector associated to B’ is less than sys(X).

Since, by assumption, each &; is a systole, the length of 8" is b := 3-sys(X). Let
B':10,b] — 04 be a parameterization of 8 so that 8'(0) = a3z Na; = B'(1). The
development, ', consists of three line segments, each of length sys(X), joined end
to end with consecutive angles 6, and 03. See the right hand side of Figure 10.
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dev(ay) dev(as)

dev(ay)

Figure 10. On the left is the topological annulus K case when the closed geodesic y is direct.
The right side shows the development of f = &y U &2 U a3.

Since 27/3 < 6, + 63 < 7 and the three sides of B’ have the same length, an
elementary fact from Euclidean geometry applies to give that the distance between
dev(p’(0)) and dev(B’(1)) is less than sys(X). Thus the holonomy vector of §’ has
length less than sys(X') as desired.

y is indirect: In the remainder of the proof we consider the case in which m(A) is
not generated by a direct simple closed geodesic. In this case, the shortest geodesic y
that generates 1 (A) is unique in its homotopy class. In particular, since v induces
a nontrivial automorphism of 71 (A) = Z, the isometry t preserves y and reverses
its orientation. It follows that y is a union of two geodesic segments each joining
the two 47 angle cone points, and each segment contains as its midpoint one of the
remaining two Weierstrass points. Let o4 denote the segment containing c4, and
let o_ denote the segment containing cs.

The complement of y consists of two topological annuli K4 and K_ that are
isometric via r. We limit our attention to one of the annuli, K. One boundary
component of K consists of the geodesic segments o, &, and a3 with the interior
angle between «;—; and «; equal to 6;. The other boundary component consists
of o4 and o_. See Figure 11.

Let ¢ and c* denote the angle 47 cone points. Let 6+ denote the interior angle
between oy and o_ at ¢} . Because 7 interchanges the two components of 4 — y,
we have 0 4+ 06— = 4x. Since y is not direct, there is no direct geodesic segment
joining ¢4 and c5 inside K. Indeed, if there were such a segment &, then § U t(3)
would be a direct simple closed geodesic that generates m(A) contradicting our
assumption. It follows that 64 > .
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Figure 11. The topological annulus K.

We claim that ; < m/3. Indeed if not, then since 6; + 6, + 683 = x and
0y < 0, < 63, we would have 6; = /3 for each i and in particular, the holonomy
of B = &1 U d, U a3 would be zero. Thus, since o4 U o_ is homotopic to f, the
holonomy of o+ U o_ would be trivial. Since o4 is a geodesic segment, the angle
at ¢} would equal 27 and the lengths of o4 and o would be equal. It would follow
that the developing map would map K onto the an equilateral triangle 7" having
sidelength sys(X). Moreover, dev(oy) = dev(o-) would be a segment o in the
interior of 7 and the restriction of dev to K — (04 U o) would be injective. By
elementary Euclidean geometry, the distance from each interior point of 7" to the set
of midpoints of the sides of 7" is less than sys(X)/2. In particular, it would follow that
there would be a direct geodesic segment in K joining the set {c4, cs} and {c1, ¢2, c3}
having length less than sys(X')/2. This would contradict the definition of sys(X).

Thus, in the remainder of the proof of Theorem 5.4, we may assume that #; < 7 /3.
Our next goal is the show that this implies that there exists a direct geodesic that
joins vy to one of the two 4 cone points, ¢ .

Lemma 5.5. There exists a (direct) geodesic segment § C K that joins v, to either
¢l orck.

Proof of Lemma 5.5. Let V' be the set of points x € K such that there exists a direct
geodesic segment in K joining v to x. By lifting to X and applying the developing
map, the set V' is mapped injectively onto a subset of the Euclidean sector S of
angle 6. In particular, vy is mapped to the vertex v; of S. The bounding rays of S
contain the respective images, ¢; and c¢3, of the points ¢; and c3.

Let 7 be the convex hull of {vy, ¢y, c3} The set T is an isosceles triangle with
|vic1| = sys(X)/2 = |vyc3], and the angle / ¢;vc3 is less than 7 /3. In particular,
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the side of T that joins ¢ and c3 has length less than sys(X)/2, and the distance
from v7 to any other point of 7" is at most sys(X)/2.

Let x* € § — V be a point such that dist(x™*, v{) equals the distance between v;
and the S — V. We claim that x* is the image of an angle 47 cone point, and
hence that there exists a direct geodesic joining v; and this angle 4 cone point. See
Figure 12.

Figure 12. The point x* in the triangle 7.

To verify the claim, we first note that x™* lies in the interior of 7. Indeed if it did
not, then since the developing map is injective on V, the side of 7 that joins ¢; to ¢3
would be the image of a direct geodesic segment joining ¢; and c¢3 having length less
than sys(X)/2. This would contradict the definition of sys(X).

Because 67 < 6, < 83, the distance between vy and @ is at least sys(X)/2, and
hence the point x* can not belong to dev(&;). Thus, x* is the image of a point in o+
or o_. Thus to verify the claim, it suffices to show that x* is not the image of an
interior point of 0.

Suppose to the contrary that x* were the image of an interior point 6. Then
the segment dev(oy) would lie in S — V, and hence by the definition of x*, the
segment dev(oy) would be perpendicular to the segment joining v; and x*, and
hence parallel to the side of 7" that opposes v;. The segment dev(oy) does not
intersect either dev(a;) or dev(az), and hence the midpoint of dev(oy) would lie
in 7. The segment joining the midpoint and v; corresponds to a direct geodesic
segment joining vy to either ¢4 or ¢5. Since this segment has length less than
sys(X)/2, we would obtain a contradiction.

Thus, x* is the image of either ¢* or ¢ ]
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By relabeling if necessary, we may assume that dev(cy ) = x™. Let § denote the
direct geodesic joining vy and ¢ .

Let P denote the metric completion of K —§. The metric space P is a topological
disk bounded by seven geodesic segments. The “polygon” P has seven vertices:
the points v, and v3, two vertices, p4 and p_, corresponding to ci, one vertex, ¢,
corresponding to ¢*, and two vertices, vy and v_, corresponding to v;. See Figure 13.

v_

(% Co va

Figure 13. The polygon P.

Continuing with our proof of Theorem 5.4, our next goal is to prove that P may be
regarded as a polygon in the plane. In particular, we wish to show that the restriction
of the developing map to P is injective.>

First, note that since the geodesics &; all have the same length and the sum
of the angles 6, + 65 is strictly larger than x/3, the set dev(a; U @ U &3) is a
simple piecewise linear arc in the plane with endpoints v4 and v_ corresponding
to v+ and v— respectively. In particular, the convex hull of {vy,v,,v3,v_} is a
quadrilateral Q, and the line segments @; := dev(q;) constitute three of the sides
of Q.

Let 64 C P be the segment that joins vy and p4, and let 8y dev(61). Since
0, < m/3, the angle between & and 64 and the angle between a3 and 5_ are both
less than 7r/3. It follows that the segment 84 lies in Q and that the point py lies in
the interior of Q.

Let 6, denote the interior angle at a vertex z of P.

Lemma 5.6. We have m < 6, < 2m, Qpi < 2w, and 9P+ + 0, + 0, = 4m.

50One may regard P as a subset of X by lifting its interior and then taking the closure.
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Proof. Suppose to the contrary that 6; < 7. Since the angles 6, ,6,_, 6, 03 are
all less than 7, the shortest path from p to p_ and the shortest path from c4 to ¢s

are both direct. Because 6, + 63 < m, the Euclidean distance |p4p_| = |p+ p—|
is strictly less than |vv3| = sys(X). Since ¢4 and c¢s are midpoints, it follows that
|cacs| = |cacs| < sys(X)/2. This is a contradiction.

It follows that the point g := dev(g) lies in the closed half-plane bounded by the
line through p and p_ that does not contain v4 or v—. Hence, the angle 6, is at
most the angle between 84 and P+ P—, and this is less than 2. The angle 6, equals
2m —  where Y the angle opposite the segment p p_ in the (perhaps degenerate)
triangle prgp—.

As discussed in the analysis of Figure 11, we have 0 + 6_ = 4. It follows that
Op, + 04+ 0, =4m. ]

Proposition 5.7. The metric space P is isometric to a simply connected polygon in
the Euclidean plane.

Proof. It suffices to show that the developing map is injective. Let x, x" € P. Since P
is path connected and compact, there exists a minimal geodesic arc 7 that joins x
to x’. To prove the claim it suffices to show that the endpoints of dev o 1 are distinct.
If n is a direct geodesic segment, then dev o 7 is a single Euclidean line segment
and so dev(x) # dev(x’). If n is not direct, then 75 is a concatenation of a finite
number direct geodesic segments, 1, ..., ¥Ya, such that y; N y; 4 is a vertex v; and
the angle ¥; between y; and y;4; satisfies # < ¥; < 6, where 6, is the angle
between boundary segments at v. Since the angles at vy, v,, and v3 are less than 7,
the minimal geodesic n can only pass through the vertices py, p—, or ¢, and if n does
pass through one of these vertices, then it passes through the vertex at most once.

Each of the angles 6,, 8, is positive, and so if i passes through exactly one of
the points ¢q, p+, then the path dev o 7 is a simple arc. In particular, the endpoints
dev(x) and dev(x’) are distinct.

Suppose that 7 passes through exactly two vertices say vi,v2 € {p+, p—.q}.
Lemma 5.6 implies that ¥ + ¥» < 3w. We also have ¥; > m. An elementary
argument in Euclidean geometry shows that dev(n) is a simple arc.

Finally, suppose that n passes through each of p4, p_,q.

Hence ¥; + ¥, + Y3 < 4. We also have ¥; > . An elementary Euclidean
geometry argument shows that dev o n is a simple arc. L]

In what follows, we will identify the polygon P with its image in C. See Figure 13.
Lemma 5.8. The shortest geodesic joining ¢ (resp. ¢3) to p4 (resp. p—) is direct.

Proof. Recall the triangle 7" described in Figure 12. The point p4+ corresponds to
x* = cZ, and so if the shortest geodesic joining ¢; and p4 were not direct, then
the shortest geodesic in X joining ¢; to ¢} would also pass through ¢*. Hence ¢*

would also belong to the triangle 7" described above, and so either the image of o4
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or the image of o_ would lie in 7. But then the midpoint ¢4 of o4 or the midpoint c¢;
of o_ would belong to T. Hence |vic4| or |[vics| would be less than sys(X)/2, a
contradiction.

A similar argument shows that the shortest geodesic from c¢3 to p_ is direct. [

Because x* belongs to the interior of 7', we have Z vicix™* < Zvycics. Since T
is isosceles, we have 2 - Zv,¢;¢3 + 67 = m. Thus, it follows that

][—91
2

Zvgcipy < (5.1)
(A similar argument shows that Zv_c3 p— < (7 — 61)/2.)
We will use (5.1) to prove the following

Lemma 5.9. The minimal geodesic joining c3 to c5 is direct.

Proof. Let £; be the line parallel to p3 p= that passes through c¢3, and let £, be the
line parallel to v—v3 that passes through vy. Since 6, < 7/2 and |vyv2| = |vavs|,
the points v, and vs lie in distinct components of C — £,. Because p_ lies in the
component of C — m that contains v, and p3 p— is a translate of vyv—, the
point py lies in the component H, of C — ¢, that contains v,. See Figure 14.

S Ug

U2

Figure 14. The segment that joins ¢3 to ¢s belongs to P.

Let x be the point of intersection of £ and €5, and let £3 be the line passing through
¢y and x. Since |vyx| = |v—c3| = sys(X)/2 = |vycy], the triangle Acixvy is
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isosceles. Moreover, Z cjv4x = 61, and so Zvici1x = (w — 01)/2. Therefore, if
follows from (5.1) that p4 lies in the component H3 of C — €3 that contains v ..
Because 0, < 65 and 6, + 63 < m, the intersection H, N Hj lies in the
component H; of C — {; that contains v4+. Thus, p+ € H; and since pypZ is
parallel to €1, we have that p_ € H;. Hence, the angle Zc3p_p4 is less than 7.
By Lemma 5.6, the angle 6_ at g is greater than m, and therefore we find that
Zcip_qg < m. It follows that there is a direct segment from c3 to ¢5 as desired. [

Lemma 5.10. The shortest geodesic that joins cy to ¢4 is direct.

Proof. Let £1 be the line passing through c; that is parallel to vy v_. Let H; be the
the component C — ¢; that contains v4. It suffices to show that the point p lies
in Hy. For then, since p1 p_ is parallel to £; and the angle 6_ < , it will follow
that the minimal geodesic joining c; to c4 is direct.

O

V9 C2 U3

Figure 15. The segment that joins ¢y to ¢4 belongs to P.

Suppose then, to the contrary, that p belongs to C — H. Then then since p—p3
is parallel to £; = d(C — Hy), the point p_ also belongs to C — H{. Moreover,
since, by Lemma 5.6, the angle 6_ at ¢ is larger than 7, we also have ¢5 € C — H;.
See Figure 15.

Let £, be the line through v_ that is parallel to v3-p, and let x be the intersection
point of £ and £,. Let £3 be the line that passes through x and c¢3. The triangle
Axcsv— is isosceles, and in particular, Z xc3v_ equals (r — 0)/2. The argument
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analogous to that used to derive (5.1) gives the inequality Z p_c3v— < (w — 6)/2.
Therefore, p_ lies in the component H3 of C — {3 that contains v_.

If we let £ denote the line parallel to £3 that passes through ¢y, then, since p p—
is a translate of €7 x, the point p4 lies in the component H of C — ¢/ that contains v_.
Thus, to prove that there is a direct segment from ¢ to ¢4, it suffices to show that g
lies in C — Hj for then Z ¢y pycy < 7.

Let m be the midpoint of ¢x, and let ¢ be the line parallel to {3 that passes
through m. To show thatg € C — Hf, it suffices to show that c5 lies in the closure
of the component H} of C — ¢7 that contains v,. Indeed, ¢s is the midpoint of p—g
and we know that p_ lies in H3;.

Since there is a direct segment joining cs to c3, the point ¢5 lies outside the ball B
of radius sys(X)/2 with center at ¢3. We also know that c5 lies in Q, the convex
hull of {vy,v2,v3, v—}, and that ¢s5 belongs to C — H;. An elementary geometric
argument shows that (Q — B) N (C — H,) lies in Hj. Thus, ¢s € H3 and there
exists a direct segment joining ¢ to ¢4 as desired. []

Given that there are direct segments between ¢; and ¢4 and between c3 and cs,
we will now derive a contradiction and thus complete the proof of Theorem 5.4 as
follows.

Let £+ be the line that passes through vy and c4, let £_ denote the line that
passes through v_ and c¢s, and let x be the intersection of ¢4 and ¢_. See Figure 16.
Because vy py and v—p_ are parallel and of the same length and the points ¢4, ¢s
are the respective midpoints of p1q, p—¢q, the points ¢4, c5 are also the respective
midpoints of v x, v_x. Since ¢y is the midpoint of v v,, we have |xv,| = 2-|cyc4).
Since the geodesic from ¢ to ¢4 is direct, we have |c;cq| > sys(X)/2 and hence
|xva| > sys(X). Similarly, since the geodesic from c3 to c¢5 is direct, we find
that |xvs3| > sys(X).

In other words, if we let B4 (resp. B_) be the ball of radius sys(X) about v,
(resp. v3), then x lies outside B U B_. Since {v, v2, v3, v_}is contained By UB_,
the polygon P is contained in the convex hull of By UB._.

Let £,3 denote the line passing through v, and vs, and let y: C — R denote the
real affine 1-form such that |y(z)| = dist(z, £23) and such that y(vy) > 0. Because
0, < 03 < m, we have that y(z) > O foreach z € P.

Note that y(x) < y(g). Indeed, since Zcjvypy < 6y and 61 + 6, < =, it
follows that y(vy) > y(p4). The segment Xq is the reflection of v3 p3 about the
point ¢4, and hence y(x) < y(q).

Let x’ be the intersection point of €53 and the line passing through x and ¢g. The
point x’ lies in the line segment v,v3. Indeed, because 6, + 63 < m, the line through
v+ and v, and the line through v_ and vj intersect at a unique point z, and moreover,
the polygon P lies in the convex hull 77 of {z,v,,v3}. Because p—_v_ and pyvy
are parallel, p4 and p_ liein T’, vy lies in Zv;, and v_ lies in Zvs, any line parallel
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Figure 16. The points ¢4 and c¢s are the respective midpoints of vrx and v—x. Thus,
|lvax| = 2|cic4| and |v3x| = 2|c3cs].

to p4v4 that intersects 77 must intersect £,3 at a point in the segment v,v3. In
particular, the point x’ lies in v;v3.

We claim that y (x) > 0. Indeed, suppose not. Then x” would lie in the segment Xg.
Thus, |x'x| < |xq| = |v+p+| < sys(X)/2, and hence x would belong to the set, A,
of points whose distance from v, v3 is at most sys(X ) /2. Elementary geometry shows
that A C B U B4, but x lies in the complement of B_ U B, a contradiction.

Let Q be the convex hull of {vy, vy, v3,v_}. Wehave P C Q and hence g € Q.
Since 0 < y(x) < y(¢) and the line through x and ¢ meets {53 = ker(y) at
x" € 1,3, the point x also belongs to Q. The set Q is contained in the convex
hull of By U B_. Therefore, x lies inside the convex hull of B, U B_ and outside
B4+ U B_. Since x" € vyv3 it follows that 7/4 < Z vox’x < 37/4, and, therefore,
since y(q) > y(x), we find that g is also outside B4+ U B_. See Figure 17.

Since x and ¢ both lies inside the convex hull of B, U B_ but outside By U B_,
we have y(g) — y(x) < (1 — +/3/2) - sys(X). Since /4 < Zvox'x < 37/4, we
have |xg| < +/2- |y(g) — y(x)| and hence

sys(X)

3
|Uipi|5\/§‘(l_§)‘5ys(}()< I (3.2)
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v _ ') &, , i,‘%"U— .
P+ — q — - 6
b - Cq ™ : chH bj gq
N Tz :
C1 1’ j €3
¢ ¢ ¢
V2 ] | U3

Figure 17. The distances |xv>| and |xv3| are at least sys(X), and y(x) > 0.

Let £, be the line through py and p_ and let £, be the line through vy and v_.
Let ¢7 denote the line passing through vy and pi. By Lemma 5.6, the interior
angle 6_ at ¢ € P is greater than 7, and hence the point ¢ lies in the component
of C —£, that contains the segment v,v3, and hence ¢ lies in the component of C —¢,,
that contains v, v3. Since g lies outside By U B_, it follows that g lies in the bounded
component of C — (€23 U £, U €% U £¥).

Let £, be the line through g that it parallel to £,. Let A be the parallelogram that
is the bounded component of C — (€, U £, U £ U £_). Let b4 be the intersection
of {4 and £,. Then A is the convex hull of {h4,b_,v;,v_}. Because g lies in the
component of C — £, that contains X,x3, the point p4 lies in vihy.

The line £* through x and ¢ is parallel to the sides corresponding to £4 and £_.
Let x” be the intersection of £* with the side virv— of A corresponding to ¢,. Since
v+ € By U B_, the point x” lies in the convex hull of By U B_. By applying the
argument that led to (5.2) to this situation, we find that |x”¢q| < sys(X)/4.
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We have |hybh_| = |vyv—_| < sys(X) and hence either |hyg| < sys(X)/2
or |b_q| < sys(X)/2. Suppose that |h;g| < sys(X)/4. The midpoint, ¢4, of p3q
lies in A. Let a4 be the point of intersection of £ and the line through ¢4 that is
parallel to £,. Then a4 lies in the segment p1 b, .

By the triangle inequality, we have

sys(X) = sys(X)  sys(X)
4 tTy T

[v4 p+| + |p+cal < vpas| + lates| <

But v+ and ¢4 are both Weierstrass points, and hence we would have a curve of
length less than sys(X)/2. A similar contradiction is obtained in the case when
|b_q| < sys(X)/2. 1

The following is immediate.

Corollary 5.11. There are at most six homotopy classes of nonseparating systoles.

6. Indirect Weierstrass arcs

The angle 47 cone point ¢* divides each systolic indirect Weierstrass arc on X /()
into two subarcs. We will call each such subarc a prong.

Let C¢ be the set of points at distance € from ¢*. For € sufficiently small, the
set Ce is a topological circle, and each prong intersects C, exactly once. Thus, the
prongs divide the circle C¢ into disjoint arcs. Two prongs are said to be adjacent if
they are joined by one of these arcs, and the angle between two adjacent arcs is the
arclength divided by €.

If a systolic indirect Weierstrass arc is the union of two adjacent prongs then the
angle between the two prongs must be at least 7. Indeed, otherwise one can shorten
the arc by perturbing it near c*.

The sum of the lengths of any two prongs is at least sys(X)/2. Indeed, otherwise
the concatenation of the two prongs would lift to a geodesic loop on X that would
have length less than sys(X). On the other hand, for each prong, there is another
prong so that the sum of the lengths of the two prongs equals sys(X)/2.

In particular, the minimum, £, of the lengths of the prongs is at most sys(X)/4. If
¢ < sys(X)/4, then there is a unique shortest prong and the remaining prongs have
length sys(X)/2 — €.

If £ = sys(X)/4, then each prong has length sys(X)/4, and each pair of adjacent
prongs determines a systolic Weierstrass arc. Since the angle between each adjacent
pair is at least 7 and ¢* has total angle 47, there are at most four adjacent pairs and
if there are exactly four pairs, then each angle equals 7. In sum, we have

Proposition 6.1. If all of the prongs have the same length, then the number of prongs
is at most four. If there are exactly four such prongs, then the angle between each
pair of adjacent prongs is exactly 7.



430 C. Judge and H. Parlier CMH

We will show below that if one of the prongs is shorter than the others then there
are at most five prongs. To do this we will use the following lemma.

Lemma 6.2. Two distinct prongs can not end at the same angle w cone point, ¢’.

Proof. Suppose not. Then the concatenation, «, of the two prongs would be a closed
curve that divides the sphere X /() into two discs. Since there are five other cone
points, one of the discs, D, would contain at most two cone points. There are no
Euclidean bigons and so D would have to contain at least one cone point.

If D were to contain two angle m cone points, then o would be homotopic to
the concatenation of the two oriented minimal arcs joining the two cone points. The
length of the unoriented minimal arc is at least sys(X)/2, and hence, since the length
of each prong is less than sys(X)/2, we would have a contradiction.

If D were to contain one angle 7 cone point ¢, then @ would be homotopic to
the concatenation of the two oriented minimal arcs joining ¢ and ¢’. We would then
arrive at a contradiction as in the case of two cone points. L]

Since there are exactly six Weierstrass points, Lemma 6.2 implies that there are
at most six prongs. In fact, we have the following.

Proposition 6.3. There are at most five prongs.

Proof. Suppose to the contrary that there are six prongs. Let ¢; denote the unique

shortest prong, let £ be its length, and let ¢; denote its endpoint. Leteq,...,es be a
cyclic ordering of the remaining prongs, let L. = sys(X)/2 — ¢ denote their common
length, and let c;, ..., ce denote their respective endpoints.

Since £(e; + e2) = sys(X)/2 = €(e; + eg), the angles Zcic*cy and L cjc* ey
are each at least m. (Otherwise, by perturbation near the 4w cone point we
could construct a direct Weierstrass arc with length less than sys(X)/2.) Each
of the other four angles between adjacent prongs is greater than 7/3. Indeed,
otherwise, since L < sys(X)/2, we would have a segment joining two angle = cone
points having length less than sys(X)/2 which contradicts the definition of systole.
Since Z cic* ey + £ cyc*cg > 2 it follows that each of these four angles is less than 7.
Moreover, since the angle at ¢ * equals 47, the sum £ ¢ ¢ co+ £ ¢1c¥cg <8 /3 <3m
and individually Z ¢ic*ecp < 5n/3 and £ ¢cic*ce < 5m/3.

By cutting along the prongs and taking the length space completion, we obtain a
closed topological disc D whose boundary consists of a topological disc bounded by
six geodesic segments. The midpoint of each segment corresponds to an end point
of a prong. The developing map provides an immersion of D into the Euclidean
plane. Since £ épe*oppy + L30T e < 3m and Z 6:¢T6pqa < B o4 = 2, .44 5,
this immersion is an embedding. In other words, we may regard D as Euclidean
hexagon.

Let v; denote the vertex of D corresponding to ¢* that lies between ¢;—1 and ¢;.
The length of the side v 73 is 2¢, and the common length of the other sides is 2L.
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From above, the interior angles at v; and vg are between 7 and 57r/3, and the angles at
the other four vertices lie between 7 /3 and . Without loss of generality, ¢; = (0, 0),
v1 = (£,0), vs = (—£,0) and an H -neighborhood of c; lies in the upper half plane
(see Figure 18).

U4
U3
Vs Ve V1
Ouumm— v2
Figure 18. The points v;,i = 1,...,6.

Since the angle at v, (resp. vs) is greater than /3, and the edges v1v; and v,v3
(resp. v4v5 and U5Vg) have length 2L, the vertex vz (resp. vq) lies outside the ball of
radius 2L centered at vy (resp. vg). It follows that if both v4 and vs both lie in the
lower half plane then the shortest arc in H that joins v4 to v3 has distance at least
2L + 2¢. This contradicts the equality |v3vs| = 2L.

Since the angle at v; (resp. ve) is at least 7 and the angle at v, (resp. vs) is greater
than /3, if vs (resp. vq) lies in the upper half plane, then v3 (resp. v4) lies in the
half plane Vi = {(x1,x2) | x1 > €+ L} (resp. V_ = {(x1,x3) | x1 < — — L}).
Since the distance between U4 and U_ equals 2L + 2¢, if v3 and v4 both lie in U,
then we contradict |v3vg| = 2L.

If v3 lies in the upper half plane and that v4 lies in the lower half plane but not
in U_, then v4 lies in the half plane that is bounded by the line trough v3 and vg
and contains v;. In particular, the shortest path in D between v3 and v4 passes
through vg. But the distance from vg to U is equal to 2L + ¢, and the distance
from vg to v4 is greater than 2L. Thus, we contradict |[vyvs| = 2L.

A symmetric argument rules out the remaining case in which the rdles of v;
and v4 are reversed. [

Theorem 6.4. There are at most six systolic indirect Weierstrass arcs. Equality
occurs if and only if there are exactly four prongs and these four prongs have the
same length.

Proof. 1f the prongs are not all of the same length, then one prong has length less
than sys(X)/4 and hence the others have length greater than sys(X)/4. Therefore,
concatenations of none of the others constitute a systolic Weierstrass arcs. By
Proposition 6.3, there are at most five prongs and hence at most five systolic indirect
Weierstrass arcs.
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If the prongs all have the same length — namely sys(X)/4 — then by
Proposition 6.1 there are at n < 4 prongs. Each concatenation of a pair prongs
constitutes a systolic Weierstrass arc, and so there are exactly n - (n — 1)/2 prongs
and hence at most six. Six occurs if and only if n = 4. []

7. A separating systole

In this section we wish to prove the following:

Theorem 7.1. If X has a separating systole «, then X has at most nine homotopy
classes of closed curves with systolic representatives.

We will use the argument explained in Remark 5.2 in the three lemmas that follow.
We first observe:

Lemma 7.2. X has at most one separating systole.

Proof. Suppose there are two separating systoles. Each angle of intersection between
the two curves must be at least 7, otherwise one can find a shorter non-homotopically
trivial curve by a cut-and-paste argument. Hence intersection points between the
systoles occur at the 4 cone points. But as any two separating curves intersect at
least 4 times, this is impossible because there are only two angle 47 cone points. [

Lemma 7.3. If « is a separating systole and y is a direct systolic Weierstrass arc,
then y does not intersect the projection of o to X /(t).

Proof. Suppose not. The lift, ¥, of y to X is a systole that does not pass through
an angle 4 cone point. Since « is separating, the curve ¥ intesersects « at least
twice. Let p_ and p4 be two of the intersection points. The points py and p_
divides « (resp. ¥) into a pair of arcs. One of the arcs, a_ (resp. y_), has length at
most sys(X)/2. By concatenating @_ and y_, we obtain a non null homotopic closed
curve f of length at most sys(X). Since each intersection point is not a cone point
and the geodesics are distinct, the angle at each intersection point y_ is less than 7.
Thus, a perturbation of 8 near an intersection point produces a curve homotopic to f8
that has shorter length, a contradiction. 0

Lemma 7.4. If X has a separating systole «, then each prong of X has length equal
to sys(X)/4. Moreover, the angle between the projection p(«) and each prong is at
least 7.

Proof. 1f not, then by the discussion at the beginning of §6, there would exist a prong
of length strictly less than sys(X')/4. The preimage of a prong under p is an arc y
of length sys(X)/2 that joins one angle 4 cone point ¢* to the other angle 4
cone point ¢ . By Corollary 4.4, the separating systole o passes through both ¢*
and ¢¥, and the complement « \ {c*, ¢} consists of two arcs a4 and a— each of
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length sys(X)/2. By concatenating oy with y we would obtain a non-null homotopic
closed curve having length less than sys(X), a contradiction.

If the angle between the prong and p(«) were less than 7, then one could perturb
the concatenation of o+ and y to obtain a non-null homotopic closed curve whose
length would be less than sys(X)/2, a contradiction. 1

Proof of Theorem 7.1. Let «a denote the separating systole to X /(t) which is unique
by Lemma 7.2. By Lemma 7.4, each prong has length equal to sys(X)/4 and the
angle between p(a) and each prong is at least r. Thus, since the total angle at ¢*
is 4, there are at most two prongs. Hence there are at most two indirect systolic
Weierstrass arcs.

By Theorem 5.4, there are at most six direct systolic Weierstrass arcs. Thus, by
Proposition 4.5 and the discussion at the beginning of §5, there are at most eight
homotopy classes of non-separating closed curves that have systolic representatives.
Since « is the unique separating systole, the claim is proven. ]

As acorollary of the proof of Theorem 7.1 and Lemma 7.4, we have the following.

Corollary 7.5. If X has a separating systole, then X has either no prongs or exactly
two prongs of the same length.

8. Crossing systoles

In this section we prove the following:

Theorem 8.1. Suppose that X /(1) has exactly four prongs and each of these prongs
has length equal to sys(X)/4. Then at most ten homotopy classes of closed curves
are represented by systoles. Moreover, if X has exactly ten homotopy classes of
systoles, then X is homothetic to the surface described in Figure 1, and otherwise X
has at most eight homotopy classes of systoles.

Proof. By Corollary 7.5, the surface X has no separating systole. By Theorem 6.4,
there are exactly six indirect systolic Weierstrass arcs. Thus, by Proposition 4.5 and
the discussion at the beginning of §5, to prove the first claim it suffices to show that
there are at most four direct systolic Weierstrass arcs.

By Proposition 6.1, the angle between adjacent prongs equals 7. Thus, by cutting
along the four prongs we obtain a topological disc D bounded by a geodesic g with
no corners. The geodesic B has length 8 - (sys(X)/4) = 2 -sys(X) and contains
one point corresponding to each of the angle 7= cone points that are endpoints of the
four prongs. Label those cone points in cyclic order ¢y, 2, ¢3, and ¢4. For each i,
there is a unique point ¢ on B lying between ¢; and ¢; 4 that corresponds to c*.
The distances satisfy dist(c;, ¢/) = sys(X)/4 = dist(c/, c;+1). The interior angle
at each ¢;, ¢ is 7.
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The two remaining angle & cone points, ¢s and cg, lie in the interior of the disc D.
Because g is a geodesic (without corners), the disk is geodesically convex, and there
exists a direct Weierstrass arc y joining ¢5 and c¢g. By cutting along y we obtain a
topological annulus A with geodesic boundary components  and B’. Since X is a
translation surface, A is a Euclidean cylinder isometric to [0, 2] x (R/{ - Z) where
¢ = 2-sys(X) is the common length of 8 and p’.

The length of y equals (1/2) - £, and hence y is not systolic. The distance
between cs (resp. c¢g) and {c1,c2,c3,cq} is at least sys(X)/2. It follows that the
height / of the cylinder A is at least (v/3/4) - sys(X). As a consequence, there does
not exist a direct systolic Weierstrass arc joining two distinct points in {cy, ¢2, €3, ¢4}.

In sum, if § is a direct systolic Weierstrass arc, then § joins a point in {cs, ¢} to a
point in {cy, c2, c3,c4}. Since A4 is a Euclidean annulus, there are at most two direct
systolic Weierstrass arcs joining cs (resp. ¢g) to {c1,c2, c3, ¢4}, and hence at most
ten systolic Weierstrass arcs in total.

Moreover, since the points {c1, ¢3, 3, c4} are evenly spaced around B, and the
points {cs, ce} are evenly spaced about B, there are exactly four systolic arcs only
if the respective shortest segments, o5 and o, joining ¢s5 and c¢g to B bisect arcs
joining successive points in {c1, c2, C3, ¢4}, that is, only if 05 and o¢ have endpoints
infey, ¢y 05,65 b Inthisedse, & = (+/3/4)-sys(X). It follows that X is homothetic
to the surface described in Figure 1.

Finally, if there is only one direct systolic Weierstrass arc joining cs (resp. c¢g)
to {c1,ca, 3, ¢4}, then there is only one direct systolic Weierstrass arc joining cg
(resp. ¢s5). Hence, if X is not homothetic to the surface described in Figure 1,
then X has at most eight homotopy classes of simple closed curves with systolic
representatives. ]

9. One short prong

In this section we prove the following:

Theorem 9.1. If X/(t) has one short prong, then X has at most nine homotopy
classes of closed curves that are represented by systoles.

Proof. By Corollary 7.5, the surface X has no separating systole. By Proposition 6.3,
there are at most five prongs, and so by assumption there is one prong of length
¢ < sys(X)/4 and four prongs of length L = sys(X)/2 — €. Thus, there are at most
four indirect systolic Weierstrass arcs. Thus, it suffices to show that X has at most
five direct systolic Weierstrass arcs.

By cutting X /(t) along the five prongs, we obtain a topological disc D with
one angle 7 cone point in the interior. The boundary consists of five geodesic arcs
each of whose endpoints — vertices — corresponds to the angle 4 cone point. The
midpoint of each arc corresponds to an angle 7 cone point on X /{t). Choose an
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orientation of the boundary, and let ¢] and ¢ denote the endpoints of the oriented
arc that corresponding to the short prong. Label the other vertices ¢3, ¢}, and cZ
according to the orientation. Denote by ¢; the midpoint of the arc with endpoints
¢/ and ¢, ;. There remains one angle 7 cone point, ce, that belongs to the interior
of D.

By Theorem 5.4, for each angle 7 cone point c;, there are at most two direct
systolic Weierstrass arcs ending at ¢;. Thus, to prove the claim, it suffices to show
that c; is the endpoint of at most one direct systolic Weierstrass arc. We will show
that if ¢ is the endpoint of a direct systolic Weierstrass arc, then the other endpoint
must be cg.

Since systolic Weirstrass arcs can not intersect except at a cone point, a direct
Weierstrass arc joining ¢ to another angle 7 cone point can not pass through the
boundary of D. In particular, if « is a direct Weierstrass arc joining c; to either c5,
c3, C4, OF Cs, then the complement of « consists of two disks, one that contains cg
and one that does not.

Suppose that « is a direct geodesic segment that joins ¢; and ¢,. Consider the
component, D’, of D \ «, containing c}. If D’ does not contains cg, then D’ is a
flat surface bounded by three geodesic segments. Since the angle at c7 is at least x,
the Gauss—Bonnet formula implies that the angles at ¢; and ¢, are both zero, and
hence « is not direct.

If D’ contains ¢, then by cutting D’ along the geodesic segment joining cg
and c; we obtain a quadrilateral Q with a side corresponding to «. The endpoints
of a correspond to ¢; and ¢;. Let x_ and x4 denote the vertices of Q distinguished
by |x_ci1| = € and |x4c;| = L. If « is systolic, then, by the triangle inequality,
lcrx4| < L 4 sys(X)/2 with equality if and only if ¢y, ¢; and x are colinear. The
midpoint of X=X is c¢g, and thus by the triangle inequality

lerx—| - ferxy] sys(X)

ci1c6| < <L+ L=
lc1c6| < ) 5 = 5
with equality ¢y, ¢, and ¢ are colinear. Thus, either |cjcg| < sys(X)/2 or |cace| <
sys(X)/2, a contradiction. Therefore, there is no direct systolic Weierstrass arc
joining ¢; and c¢;. Similarly, there is no direct systolic Weierstrass arc joining ¢
and cs.

Suppose that « is a direct geodesic segment that joins ¢ to ¢3. Let D’ denote
the component of X \ « that contains ¢,. If D’ does not contain cg, then D’ is a
quadrilateral with vertices ¢, ¢, ¢5, and c3. Since |c2c5| = L = |c5c3|, the angle
Zcyepcy is less than /2, and thus £ c{cac3 > /2. Therefore |cfe3| > |cacs3| =
sys(X)/2. Because |cjcy| = 2L and |c;c3| = L, the angle (cacyc3 is acute. Thus,
since the interior angle at ¢} is at least m, the angle Z cicjcs greater than 7. In
particular, |cic3| > |c] 3], and so, in sum, the length of « is greater than sys(X)/2.
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If D’ contains cg, then the other component of D \ a, is a pentagon with vertices
c1, €3, 3, ¢y, and cZ. Using the triangle inequality, we have

L + |cscs| = |escs| + |e3¢3| = |c5ea| = 2|eqcs| = sys(X) =2£ + 2L,

and therefore |c3c| > 2¢ + L > £ + L = sys(X)/2.

Since [c5cZ| = sys(X) > 2L = |cjcy| = |cjel], the angle ZclcZes is less
than /3. Because |c3cs| > 2L = |cjc3|, we have Zc3ecics < m/6. Thus, since
the interior angle at ¢Z is at least r, the angle £ ¢y ¢ ¢3 is greater than 7 /2. Therefore,
lcicz| > |eze]. Insum, [cre3| > sys(X)/2, and hence « is not systolic. Therefore,
there is no direct systolic Weierstrass arc joining ¢y to ¢3. A similar argument shows
that there is no direct systolic Weierstrass arc joining ¢ to ¢4. U
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