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Hyperbolic components of rational maps:
Quantitative equidistribution and counting

Thomas Gauthier] Yasuke Okuyama** and Gabriel Vigny*

Abstract. Let A be a quasi-projective variety and assume that, either A is a subvariety of the
moduli space M, of degree d rational maps, or A parametrizes an algebraic family ( f3)xea
of degree d rational maps on P!. We prove the equidistribution of parameters having p distinct
neutral cycles towards the bifurcation current Tbﬁ- letting the periods of the cycles go to oo, with
an exponential speed of convergence. Several consequences of this result are:

— aprecise asymptotic of the number of hyperbolic components of parameters admitting 2d — 2
distinct attracting cycles of exact periods ny,...,n24—2 asmin; n; — oo in term of the mass
of the bifurcation measure and compute that mass in the case where d = 2. In particular, in M4,
the number of such components is asymptotic to d”1 T +72d 2, provided that min ; n ; is large
enough.

— in the moduli space £, of polynomials of degree d, among hyperbolic components such that
all (finite) critical points are in the immediate basins of (not necessarily distinct) attracting cycles
of respective exact periods n1,...,n4—1, the proportion of those components, counted with
multiplicity, having at least two critical points in the same basin of attraction is exponentially
small.

— in My, we prove the equidistribution of the centers of the hyperbolic components admitting
2d — 2 distinct attracting cycles of exact periods ny,...,n24—» towards the bifurcation
measure [pir With an exponential speed of convergence.

— we have equidistribution, up to extraction, of the parameters having p distinct cycles of given
multipliers towards the bifurcation current Tbﬁ outside a pluripolar set of multipliers as the
minimum of the periods of the cycles goes to co.

As a by-product, we also get the weak genericity of hyperbolic postcritically finiteness in the
moduli space of rational maps. A key step of the proof is a locally uniform version of the
quantitative approximation of the Lyapunov exponent of a rational map by the 10g+ of the moduli
of the multipliers of periodic points.
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1. Introduction

For a holomorphic family ( f3),ea of degree d > 1 rational maps on the Riemann
sphere P! parametrized by a quasi-projective variety A, the bifurcation locus
of (f3)irea on A is the J-unstability locus in the sense of Mafie-Sad—Sullivan,
i.e., the closure of the set of all parameters in A at which the Julia set ; of f}
does not move continuously. It is now classical that this set is nowhere dense in A
and admits several distinct topological descriptions, such as the closure of the set
of parameters for which f; admits a non-persistent neutral cycle or the existence
of an unstable critical dynamics (see e.g. [31,33,36]). From now on, pick any
integer d > 1.

On the other hand, any (individual) rational map / of degree d on P! admits
a unique maximal entropy measure puy, whose support coincides with the Julia
set g of f, and the Lyapunov exponent of f with respect to p r is defined by
L(f):= [pilog|f’|n s and satisfies L(f) > %logd > 0. For a family ( f3)ca,
the induced Lyapunov function L: A € A — L(f;) € R is p.s.h and continuous on
the parameter space A. We can define the bifurcation current of ( fy)iea on A as
the closed positive (1, 1)-current

Tbif — dd° L.,

By DeMarco [11], the support of dd¢L coincides with the bifurcation locus of
the family (f1)aea. For any integer 1 < p < dim A, Bassanelli and Berteloot
also defined the p-bifurcation current Tb‘?f as the p-th exterior product of Ti.
It is a positive closed current of bidegree (p, p) so the bifurcation measure
Wi := (dd€ L)%™ A g a positive measure on A. If p > 1, the current Tb‘?f detects,
in a certain sense, stronger bifurcations than 7y = Tblif [1]. Indeed, its topological
support admits several dynamical characterizations similar to that of the bifurcation
locus: for example, it is the closure of parameters admitting p distinct neutral cycles
or p critical points preperiodic to repelling cycles (see [14,24]).

The group PSL, (C) of Mobius transformations acts on the space Rat; of degree d
rational maps on P!, which is itself a holomorphic family of rational maps, by
conjugacy. The moduli space My of degree d rational maps on P! is the orbit
space of PSL,(C) in Raty, that is, the quotient of Rat; resulting from this action of
PSL,(C). Itis an irreducible affine variety of dimension 2d —2, and is singular if and
only if d > 3 (Silverman [44]). The Lyapunov function f +> L( ') on Rat,; descends
to a continuous and psh function &£: M; — R. For any integer | < p < 2d — 2, the
p-bifurcation current on My is thus given by 7,1 := (dd*£)?, and the bifurcation
measure on My is by

bif 1= szird—z _ (ddcf,)Zd_z,

which is a finite positive measure on M, of strictly positive total mass (see [1]).
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One of the features of the bifurcation currents is to give measurable statements
of the above density, or in general, accumulation properties. Let us be more precise.
Let A be a quasi-projective variety such that, either A C M, or parametrizing an
algebraic family ( f3)aea of degree d rational maps on P!. For any n € N* and any
w € C \ {1}, let Per,, (w) be the analytic hypersurface

Per,(w) := {A € A : f; has acycle of multiplier w and the exact period n}

in A and denote by [Per, (w)] the current of integration over Per, (w) on A. Since A
is quasi-projective, the hypersurfaces Per,(w) are actually algebraic hypersurfaces
of A (see e.g. [2]). By Bassanelli and Berteloot [2], the sequence (d " [Per, (w)])
weighted by the Lebesgue measure on the disk of center 0 and radius |w| converges
towards the bifurcation current 7y,;;. Similar dynamically significant equidistribution
properties towards the bifurcation current have been recently established in various
contexts, as general holomorphic families of rational maps [3,15,37] or moduli spaces
of polynomials [7,25].

The proofs developed in op. cit. do not allow establishing equidistribution
phenomena towards the bifurcation measure upr. Indeed, any of the above
convergences obtained is essentially LlloC convergence of the potentials of currents,
which does not guarantee continuity of the intersection.

One of the main purposes of the article is to prove the equidistribution of
parameters having p non-repelling cycles towards the bifurcation current Tb’i’f as
the minimum of the periods of those cycles goes to co, with an exponential speed
of convergence. We will then deduce several important consequences, notably in
counting hyperbolic components of disjoint types in .M ;. Notice that such counting
results are of combinatorial and algebraic nature and have a priori no relation to
bifurcation measures. Furthermore, they are the first general results in that direction
so far.

Notations. Let yu: N*— {—1, 0, 1} be the Mobius function. Define the sequence (d,,)

in N* by
n
dy = (—) o *,
ni=) u(-)@d" +1)€eN
m|n
or equivalently d” + 1 = }_ . dm for any n € N*, so that d,, = dp + 0(d"?)
asn — oco. Forany p € N* any n = (n1,...,np) € (N*)?, and any p =

(o1,...,pp) €]0,1]7, we set |n]| := Zle n;, sothat d'2l = Hle d"/ and, in a
similar way,
P
dip| i= 1_[ dj.
j=1

Foranyi € {0,1,2}and any n € N*, we also set 0; (n) := Zmln m', 50 in particular
00 < 01 < 0, on N* (beware that 02(n) < Cn? log log n for some constant C).
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Forany n = (ny,...,n24-2) € (N*)2¢72 and any w = (wy,...,Wa4_n) €
C24=2let Stab(n) (resp. Stab(n, w)) be the set of all permutations of the indices
{1,2,...,2d — 2} that do not change the ordered (2d — 2)-tuple (ny,...,n24-2) €
(N*)2472 (resp. ((n1, w1). ..., (N2g—2, Wrg—2)) € (N* x C)2¢72), 50 in particular
#Stab(n, w) < #Stab(n) < (2d —2)!.

Forr > 0,wesetD, = {|z| < r},sothat dD, = S, = {|z| = r}.

Statement of the main results. Let A be a quasi-projective variety either such that
A C My, or parametrizing an algebraic family ( f3)ca of degree d rational maps
on P!, We refer to [9] for basics on positive closed currents and intersection theory
on algebraic varieties.

For any integer | < p < min{dim A,2d —2},any n = (n1,...,np) € (N*)?,

and any p = (p1, ..., pp) € |0, 1]7, the following positive closed current
, I | i0..1d0; ---do,,
TP (p) i= —— I\ [Pers, (pje'®)]———"-F (1.1)

din) Ji0,2m17 §_]} (27)?
on A is well-defined, and coincides with A7_, Tnlj (p;) by the Fubini theorem (see
e.g. [2]). We say a form W on A is DSH if dd“W = T — T~ for some positive
closed currents 7% of finite masses on A. We refer to §2.1 for the precise definition
of the semi-norm || W[ {qy-

One of our principal results is the following.

Theorem 1.1. Let A be a quasi-projective variety which either is a subvariety in Mg
or parametrizes an algebraic family ( f)rea of degree d rational maps on P!.
Then for any compact subset K in A, there exists a constant C(K) > 0 such that
for any integer 1 < p < min{dimA,2d — 2§, anyn = (ny,...,np) € (N*)?,
any p = (p1,...,pp) € [0,1]7, and any continuous DSH-form WV of bidegree
(m — p,m — p) supported in K, we have

(72(” ) *
) - I B

(70 = Ty w)| < C(K) - max (14 [10g ;1)

We first prove this theorem in the case where p = 1. To do that, we show

in Section 3 a locally uniform version of the second author’s result [38] on the

quantitative approximation of the Lyapunov exponent of an (individual) f € Rat, by

the average of the logs of the moduli of the multipliers of all non-attracting n-periodic

points of f (Lemma 3.3). This leads to an error term on the proximity between " (c)

and ¢ for each critical point ¢ of f and an error term on how close to 0 the multipliers

of the periodic points of f are. To control those terms, we use a parametric version

of a lemma of Przytycki [42, Lemma 1] proved by the first and third authors in [28].
Intersection of currents and integrations by parts lead to the result for any p.
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Theorem 1.1 is proved in Section 4 and has the following consequence.

Corollary 1.2. Let A be a quasi-projective variety either such that A C My, or
parametrizing an algebraic family ( fy) e of degree d rational maps on P'. Pick
an integer 1 < p < min{dim A,2d — 2}. Then for any sequence (n;)gen* of

p-tuples ny = (N1, ... .npx) in (N*)? such that ), maxj(n;;c) < 00, there
exists a pluripolar subset & in C? such that for any w = (w1,...,wp) € C? \ &,
L. Pery, , (w;) is of pure codimension p in A for any k € N* and
p
TP = lim Per,. , (w;
= /:\ [Pera; ()]

in the weak sense of currents on A.

The techniques used in the proof of Corollary 1.2 also give that the current
equidistributed on the set of parameters having p cycles of respective exact periods
nig,....npk and multipliers wy, ..., w, distributed by a PB measure on (P!)?
converges towards the bifurcation current 75, when k — oo, with the best possible
order estimate O(max (n;l)) as minj(n;) — oo. (see Theorem 4.2 below).

Remark 1.3. Let us also observe that, as in [2], Theorem 1.1 gives another proof of
Shishikura’s upper bound 2d —2 of the number of distinct cycles of Fatou components
of a given rational map of degree d is sharp (see [43]). In fact, provided min; n;
is large enough, we can construct a rational map having 2d — 2 distinct attracting
periodic points of respective period n ; (we no longer need to take a subsequence and
have no arithmetic restrictions on the periods).

Now let us focus on the moduli spaces of rational maps and hyperbolic
components. Recall that the hyperbolic locus in M, is the set of all conjugacy
classes of hyperbolic maps that are uniformly expanding on their Julia sets. It is an
open subset of My and a connected component of this hyperbolic locus is called a
hyperbolic component in M.

Definition 1.4. A rational map f € Raty is said to be hyperbolic of type n =
(n1,....n24—2) € (N*)24=2if f has 2d — 2 distinct attracting cycles of respective
exact periods ny,...,n2g—2. A hyperbolic component € in M, is said to be of
type n € (N*)24=2 if, for any [f] € Q, f is hyperbolic of type n. A hyperbolic
component in My is of disjoint type if it is of type n for some n € (N*)24-2,
Definition 1.5. For any n = (ny.....n24-2) € (N*)2¢72 let N(n) denote the
number of hyperbolic components of type n in M.

A striking application of Theorem 1.1 is the following asymptotic on the global
counting of hyperbolic components of disjoint types.

Theorem 1.6. As min; n; — +o00,

#Stab(n) - ffﬂ) = fM pn -+ O max (202))).
d

In| JjoNdn
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In particular, N(n) > O if min; n; is large enough. Theorem 1.6 gives a
combinatorial interpretation of the mass of the bifurcation measure. Inthe case d =2,
as a consequence of Theorem 1.6 together with the precise estimates of N(ny,n»)
by Kiwi and Rees [30], we can determine the (total) mass of the bifurcation measure
on Mz.

Corollary 1.7. Let ¢ be the Euler totient function on N*. Then

¢ (n)
fmz =g Z 2 - 12

In the proof of Theorem 1.6, it is crucial that the estimate in Theorem 1.1 involves
only the DSH-semi-norm || - ||5gy of the observable. Notice also that the mass
of a limit of positive measures is not greater than the limit of the masses, so it
could be possible that a proportion of components is lost passing to the limit as they
would accumulate at the boundary of the moduli space. Theorem 1.6 says that it
is not the case. The proof of Theorem 1.6 also relies crucially on the fact that the
multipliers of attracting cycles parametrize the hyperbolic components of disjoint
type of My. Though this is essentially classical, there seems to be no available
proofs in the literature so we include a proof of it in Section 6.2. The proof relies
on the transversality of periodic critical orbit relations, which we show in Section 5,
following the argument of Epstein [6, 20].

It is comparable to the common situation in dynamical systems where the existence
of e.g. repelling periodic orbit of large period follows from an equidistribution
property, see [4, 5] for holomorphic endomorphisms on P*.

As a consequence of Theorem 1.6, we also establish the weak genericity of
hyperbolic postcritically finite maps in Mg (see Theorem 6.6 below), which is
stronger than the Zariski density of such maps in M.

We finally establish a quantitative equidistribution of parameters in hyperbolic
components in My of disjoint type, having given multipliers. For any n =
(n1,...,n2q-2) € (N*)29-2 and any w = (wq,..., Wag—p) € D24-2 Jet Cuw
denote the (finite) set of all conjugacy classes [ /] € My of hyperbolic rational maps
| € Raty of type n whose attracting cycle of exact period n; has the multiplier w ;
forany 1 < j <2d — 2, and set

#Stab(n, w)
Mnw -= — = Z 01 r1-
i f]ECn w

For simplicity, we denote C, (q,....,0) and p, (o,...,0) by Cp and p,, respectively, so

that any element in C,, is the center of a hyp_erbolic comp6nent in My of type n.
The following in particular implies the weak convergence ji, w —> foir On My,

which is even new and it was one of our motivations to give a proof of this convergence.
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Theorem 1.8. For any compact subset K in My, there exists Cg > 0 such that:
(1) for any test function ¥ € €2(My) with support in K and any n € (N*)2472,

| 02(nj)
[ — v W) < Coc - _max (555 ) W,

(2) for any test function ¥ € €' (My) with support in K, any n € (N*)242, and

any w = (w1, ..., Wag_p) € D242,
—1 Oz(i’tj) 1/2
— it YV < Cwr - max ( ; ) R g
|(M£’l—v o W) = Cx 1<j<2d—2\d"/ log|w;| d"/ Wl

Observe that an interpolation between Banach spaces gives a speed of convergence
for any €%*-observable with 0 < o < 2 in the case of centers and 0 < o < 1 in
general.

Even though Theorem 1.8 looks very close to known qualitative/quantitative
equidistribution results for holomorphic/anti-holomorphic polynomial families, e.g.,
[22,23,27,28,39], the compactness of the support of the bifurcation measure was
a crucial point in those earlier works. Such a compactness is not the case for M.
It might also be worth stressing that in [28], the first and third authors considered
the currents of bifurcation 7, of marked critical points ¢ so were looking at unstable
critical dynamics. Although it seems to be similar, here we study directly the
bifurcation current Ty so the unstability of cycles (see the introduction of [2]).
A feature of that approach is that we don’t need the n; to be distinct, which was
necessary in the above works.

Section 8 is devoted to the study of the moduli space ;™ of critically marked
degree d polynomials where we give various results similar to those previously
proved.

To finish, let us mention that, as an application of our approximation formula of
the Lyapunov exponent, we give a proof of the estimate of the degeneration of the
Lyapunov exponent of f as f — d Raty along a punctured analytic disk in the spirit
of [21] (see Theorem 3.6).

Acknowledgements. We would like to thank the anonymous referee for very careful
scrutiny and helpful comments and suggestions.

2. Preliminaries

2.1. Currents and DSH functions. We refer to [18, Appendix A] for more details
on currents and DSH functions. Pick any quasi-projective variety A. Let 8 be the
restriction of the ambient Fubini—Study form to A. For any positive closed current 7'
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of bidimension (k, k) defined on A and any Borel set A C A, we denote by || 7|
the number

1T 04 = [ T A B,
A

This is the mass of the current 7" in A. We simply write || 7'|| for ||T||a.
Let W be an (£, £)-form in A. We say that W is DSH if we can write dd“W =
T+ — T~ where T are positive closed currents of finite mass in A. We also set

Wl 5sy = i“f(”T_'_” + ||T_H)»
ik

where 7% ranges over all closed positive currents such that dd°W = T — T~ (note

that | 7| = || T~ since they are cohomologous).
This is not exactly the usual DSH norm but just a semi-norm. Nevertheless, one
has || W] 5sy < W lps, where [|[W||psy := | W 5sy + W 21. The interest of those

DSH-norms lies in the fact that they behave nicely under change of coordinates.
Furthermore, when W is €2 with support in a compact set K, there is a constant
C > 0 depending only on K such that || V| psy < C || ¥|| 2.

2.2. Resultant and the space Rat,;. We refer to [1] and [44] for the content of this
paragraph.

Notations. Let r: C2\ {0} — P! be the canonical projection, || - || be the Hermitian
norm on €2, and set (zg, 21) A (wg, w1) := zogw; — zywp on C2 x C2.

Pick an integer d > 1. A pair F = (Fy, F>) € C[x, y]qg x C[x, y]g ~ C?4+2 of
homogeneous degree d polynomials can be identified with a degree d homogeneous
polynomial endomorphism of C2. The homogeneous resultant Res = Resy is
the unique homogeneous degree 2d polynomial over Z in 2d + 2 variables such
that Res(F) = 0 if and only if F is degenerate, ie. F~1({0}) # {0}, and
Res((x?, y%)) = 1. We thus identify the space of all degree d non-degenerate
homogeneous polynomial endomorphisms of C? with C2¢+2\ {Res = 0}.

A rational map f on P! of degree d admits a (non-degenerate homogeneous
polynomial) lift, i.e. there exists a degree d homogeneous polynomial endomorphism
F:C? — C?such that Res(F) # Oand that 7 o F = f oz on C2\ {0}. Moreover,
any two homogeneous polynomial endomorphisms F, G of C? are lifts of the same f
if and only if there exists « € C* such that F = « - G. Let us denote by Rat, the
set of all degree d rational maps on P!. Since Res is homogeneous, we can also
identify Raty with P24+1\ {Res = 0}. In particular, it is a quasi-projective variety
of dimension 2d + 1.

2.3. The dynamical Green function of a rational map on P, In the whole text,
we denote by wgs the Fubini—Study form on P! normalized so that |Jwgs|| = 1 and



Vol. 94 (2019) Hyperbolic components of rational maps 355

by [+, ] the chordal metric on P! given by

[z, w] = |zow1 — wi1zol/ (V|20 + |12 v/ |wo|? + |w1]?)

for any z = [z : z1], w = [wo : w1] € P!, so that diam(P!) = 1 and for any w,
dd; lOg[Z, w] = 5w — WFS.
For any wgs-psh function g on P!, i.e. such that

wps +ddg =: v,
is a probability measure on P!, we define the g-kernel function ®, by setting

(2, w) = loglz, w] — g(z) — g(w) @.1)

on P! x P1. For a probability measure v’ on P!, set Uy, := [p1 @y (-, w)dv'(w)
on P!. Then ddfU,, = v' — vg, so in the particular case where v/ = vg, we
deduce that

— ¥ s 1
Ug v, = Ig 1= fplxpl Dg(vg Xxvg) onP .

Pick now f € Raty. For all (non-degenerate homogeneous polynomial) lift
F:C?% — C? of f, there exists a Holder continuous wgs-psh function gg: P! — R
such that

_log || F"|
lim ————

Jim 252 —log| - | = gr o

uniformly on C2 \ {0}, which is called the dynamical Green function of F on P1.
Since F is unique up to multiplicationby @ € C* and go.r = gF + (log|a|)/(d —1)
for any @ € C*, the positive measure

wps +dd g =: uy

is independent of the choice of F', and is in fact the unique maximal entropy measure
of f onP!. For later use, we point out the equality

1
Lop = —mlog |Res(F)],
which is (a reformulation of) DeMarco’s formula [10, Theorem 1.5] on the
homogeneous capacity of the filled-in Julia set of F in C2,

Definition 2.1. The dynamical Green function g y of f on P! is the unique wgs-psh
function on P! such that y, , = juy on P! and that I, . = 0.

Remark 2.2. In particular, Ug , ,, , = I, = 0 on Pl. Moreover, gp = gy for
some lift F of f, which is unique up to multiplication by a complex number of
modulus one.
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2.4. The dynatomic and multiplier polynomials. We refer to [45, §4.1] and to [2,
3,34] (see also [22, §6]) for the details on the dynatomic and multiplier polynomials
and the related topics.

Pick any f € Raty. For every n € N*, let

— Fix(f™) be the set of all fixed points of f” in P!, and
— Fix*( /™) the set of all periodic points of f in P! having exact period n.

The n-th dynatomic polynomial of a lift F' of f is a homogeneous polynomial

(D;(F, (20,.21)) b= H(Fk(zo,zl) A (ZO,ZI))M(”/]C)
k|n

in zg,z; of degree d,; there is a (finite) sequence (P;”))je{l,___,dn} in C2\ {0}

such that we have a factorization @} (F, (z9,21)) = ]_[?”:1((20, Z1) A P}")), and
setting 25-") ‘= Jr(P}")) € P! for each j € {1,...,d,}, the sequence (zg-"))‘;”:l

independent of the choice of (P }")) je{l,....d,y and that of F', up to permutation.

We recall that the set {Z;n) . j €{l,...,d,}} is the disjoint union of Fix™( f")
and the set of all periodic points z of f having exact period m < n and dividing n
and whose multiplier ( f™)'(z) is a n/m-th primitive root of unity. In particular,
(f™Y(z) = 1 for every z € {zﬁn) :j € {l,....da}} \ Fix*(f"), and for every

z € Fix*(f"), we have #{j € {I,....dn} : z\" =z} = Lif (f")(z) # 1. For
every n € N*, the n-th multiplier polynomial of f is the polynomial

is

dn

1/n
pulf,w) 1= (ﬂ (7Y E) - w)) 2.2)

=1

in w of degree d,,/n, which is unique up to multiplication in n-th roots of unity.

Let A be a quasi-projective variety parametrizing an algebraic family ( f3)iea of
degree d rational maps on P!. Then for any n € N*, the n-th multiplier polynomial
Pn: A x C — C of (fa)yen defined by

(A, w) := pup(fa, w)

is holomorphic, and since A is a quasi-projective variety, this p,: A x C — C
is actually a regular function with deg,, (p,(A,w)) = d,/n for all A € A and
with deg; (p,(A,w)) < Cd, for all w € C, where C > 0 depends only on the
family (f3)aea, see e.g. [3, §2.2]. Forany n € N* and any w € C, we set

Per,(w) :={A € A; pa(A,w) =0}

and denote by [Per, (w)] the current of integration defined by the zeros of p, (-, w)
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on A. Remark that for all w € C and all n € N*, since deg, (pn (A, w)) < Cdp,, we
have

1
I Pers )] < C. 23)

Beware also that, since the existence of a cycle of given period and multiplier is
invariant under Mobius conjugacy, the n-th multiplier polynomial p,: Rat; xC — C
of Raty also descends to a regular function p,: My x C — C, enjoying the same
properties.

2.5. A parametric version of Przytycki lemma. Fora €! map /: P! — P!, the
chordal derivative {* of f is the non-negative real valued continuous function

15y o tim VSO

y>z  z,y]
on P!, For any rational map f € Raty, we set

M(f) :=sup(f*)* €1, +ool.
]pl

We shall use the following, which is a direct consequence of [28, Lemma 3.1] and of
the fact that the spherical and the chordal distance are equivalent on PL.

Lemma 2.3. There exists a universal constant 0 < x < 1 such that for any
holomorphic family (fy)rean of degree d rational maps with a marked critical
point c: A — P! which does not lie persistently in a parabolic basin of f; and
is not persistently periodic, the following holds: for any n € N* and any A € A,
if [ (c(R)) # c(R), then:

— either [f"(c(A)),c(A)] = k- M(f)7",

— or c¢(A) lies in the immediate basin of an attracting periodic point z(A) of [; of

period dividing n, [c(X), 2] = kM (f1)™", and 2[ ]! (c(1)), c(M)] = [z(A), c(L)].

2.6. A length-area estimate. The modulus of an annulus 4 conformally equivalent
toA'={zeC;r<|z| < R}withO <r < R < 40 is defined by

1 R
mod(A) = mod(A") = — log(—).
2 r
We shall use the following classical estimate ([4, Appendix]).

Lemma 2.4 (Briend—Duval). There exists a universal constant Tt > 0 such that for
any quasi-projective variety A, any Kdhler metric @ on A and any pair of relatively
compact holomorphic disks D1 € D, in A, so that D, \ D is an annulus, we have

Area, (D7)
min(1, mod(D5 \ Dy))

(diam, (D1))* < 7
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3. Quantitative approximation of the Lyapunov exponent

Our precise result here can be stated as follows. This result relies on the combination
of the arguments used in [38] as developed in Lemma 3.4 below and of the lemma
“a la Przytycki” proved in [28]. The locally uniform speed of convergence obtained
here is not as fast as the pointwise one obtained in [38]. This is due to our need to
control the dependence of the constants on f € Raty in the right-hand side. Here
we obtain a continuous dependence.

Theorem 3.1. There exists A > 1 depending only on d such that for any r € 10, 1],
any [ € Raty, and any n € N*, we have

02(n)
dn -’

1 [*» .y d0
o [ el (fre®) 5~ L] = ACQD + Hogr)

where C([ f]) = inf{log(supp1 f]") + supp1 |g 1, |}, where the infimum is taken over
all fi € [f] and where gy, is the dynamical Green function of fi normalized as
in §2.3.

Of course, as the left-hand side of the inequality is invariant under Mobius
conjugacy, it is sufficient to prove that for any 0 < r < 1, any n € N* and any
f € Raty, we have

1 p== .0\ d0 oz(n)
‘—f log | pu( /. re“’)l——L(f)| < A(log (sup f*)+sup g sl+|logr|)——
dn 0 2n P! P! d

for some constant A which depends only on d.

So we pick f € Raty. In the following, the sums over subsets in Crit( /),
Fix(f™), or Fix*(f™") take into account the multiplicities of their elements. For
any n € N*, the cardinality of Fix( /") and that of Fix*( /™) are d" + 1 and d,,,
respectively, taking into account of the multiplicity of each element of them as a fixed
point of f".

A non-quantitative version of Theorem 3.1 can be shown using the equidistribution
of repelling cycles towards u, and Pesin theory (both arguments being non-
quantitative |3]). We instead use formula (3.1) to relate the multiplier of a n-periodic
point with the distance between its orbit and the critical set (Lemma 3.2). Summing
over all n-periodic points, we show we can control the left-hand side in Theorem 3.1,
using Lemma 3.3, with the difference between the logarithm of [ /" (c), ¢] for all
critical points ¢ and the logarithm of the multipliers. We then use Lemmas 2.3
and 3.5 to control that difference and Fatou’s inequality to bound the cardinality of
attracting periodic orbits.
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3.1. Relating multipliers with the distance between cycles and critical points.
Recall that, by [38, Lemma 2.4], we have

log(fY) = L(f)+ Y @, (-.c)+2(grof—gs) onP'.  (31)
ceCrit(f)

This formula plays a key role in the proofs of Lemma 3.2 and 3.3.

Lemma 3.2. Assume that [ has no super-attracting cycles. Then for any n € N*
and any z € Fix(f"), we have

n—1
1Y Yl @ -t @) < B,
ceCrit(f) j=0

where B1(f) := L(f) + 2(2d —2) supp1 |g 7|
Proof. By (3.1) applied to /™, we have

log (/™) = LM+ Y. P (D) +2(gmo f"—gsn)

ceCrit( )

n—1
=n-L(f)+ Y (Z fp Py, (-, w) ((ff')*Sc)(W))

ceCrit(f) “j=0
+2(grof"—gr)

on P1, By [40, Lemma 3.4], for every a € Pl,
fPl Py (- w) (f8a)(w) = Pg . (f(-),a) on Pl

In particular, for every z € Fix( f™), since (f™)*(z) = |(f")'(2)|, we have

n—1
Log (/M@ = LN+ Y Y 0, (FG)e),

ceCrit(f) j=0

which with the definition (2.1) of the g s-kernel function ®, , completes the proof.
t

3.2. Reduction to the critical dynamics. Foranyn € N*andany 0 <r < 1, we

set

Y 0y 40
Lihyi= o [ toglpa(fre )5
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If f has no super-attracting cycles, for any m,n € N* with m|n and any r € ]0, 1],
we set

wmn(fir) = ——( 3 tog[fm@e] = Y Slog|(/™ )]
dm + 1 m

ceCrit(f) zeFix(f™)
I(f") (2)]<r

= Ul J, rm/”).

Lemma 3.3. If [/ has no super-attracting cycles, then for any r € 10, 1] and any

nc N¥
1 ny/ o /
wlfir) = i Z(f) log |(/™Y(2)] = LUS) = wnn(fir) + €,(f),
IS (@)=

where (d" + 1), (/)| <2(2d —2) supp1 |g7].

Proof. Pick r € ]0,1] and n € N*, and set un := 3 cpy(sn) 8z, taking into
account the multiplicity of each z € Fix(f"). Since ( f")*(z) = |(f™)'(z)| for any
z € Fix(f"), integrating the equation (3.1) against i, gives

! [ tog [(/™Y | sn — (@" + DL(f) = f log( /") ttn — (d" + DL(S)
n Jpi 1

P
- Z _/I(Dg,/'(c")'“"'
cecrin(f) ¥

This may be rewritten
1
@ Deatfn = f el e @ L)

n
1
= 2 [1 CDg_f'(C")r“*n_f , ;l‘)g|(,f”)'|.un-
cecriv(f) ' F {1y l<ry

Using again that (f™)*(z) = |(f")(z)| for any z € Fix(f") and that, by [40,
LLemma 3.5],

- (Dgf(aa')ﬂn = q)gf(fn(“)ia)

for every a € P!, the definition (2.1) of the g r-kernel function ®, . completes the
proof. ]

Lemma 3.4. If [ has no super-attracting cycles, then for any n € N* and any
r €]0,1],

1
L) = LU === Y w(5 )@ + Duma(fir)| < B(Lr)

m|n

oo(n)
dy

where B(f,r) := (2d —2)(2supp1 |gr| + |logr]).
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Proof. Pick r € ]0, 1] and n € N*. By the definition of d,,, we have
1 n
1= u(=)@™+1).
7 22m(;,)@m+D
m|n

For any m € N* dividing n and any z € Fix( /™), we have (f")'(z) = (f™) (z)™
by the chain rule, and have

S gY@ = Y tegmax{I(/™Y ()], | <m(2d—2) logr
zeFix(f™) zeFix(f™)
(f™) (2)|zr

since the number of attracting periodic points of f of period dividing m is at most
(2d — 2)m. Recalling the definition (2.2) of p,, we have

do

Li(f) = " log | (1Y () e |5

T

= — Z log max {|(f")'(2)|.r}

™ eFix*(fn)

= (B X Ziogmax (I @)L

ndy mln " z€Fix(f ™M)
1 ny 1 / /
= ZZM(;); Z log max {|(/™)' ()], r™'"},
min zeFix(fm)

where the third equality is by the Mobius inversion. Hence recalling the definition
of og(n), by Lemma 3.3, we have

LN L — o Zu( )@™ 4 Dt (f:1)

(2d —2)[logr| - ao(n)
dp

< — Z(d'" + Dem(fr™™) = swmm (£, 7™ +

m|n

< (N2,

which completes the proof. ]

3.3. Proof of Theorem 3.1 using the parametric version of Przytycki’s lemma.

Lemma 3.5. For any n € N*, any z € Fix(f"), and any ¢ € Crit( f),

[/ (),c] =2-M(f)" e, z2].
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Proof. Let My := supp1 f* > 1. Itis clear that the map f is M;-Lipschitz in the
chordal metric [-,]. If f"(z) = z, we have

[/ (e).c] = [f"(e).z] +[e.2] = (MT + 1) - [c. 2]
and the conclusion follows since M; > 1. L]
Proof of Theorem 3.1. As there is no persistent parabolic and super-attracting cycle
in Ratg, the set X of all elements in Raty having neither super-attracting nor parabolic

cycles and no multiple critical points is the complement of a pluripolar subset in Rat,
so X is dense in Raty. Pick f € X,n € N* and r €]0,1].

(i) Forany m € N* dividing n, recalling the definition of u,, ,( f, r), we have

| 1
U (f0) = ma () + oy D gl @),
zeFix(fM)
r<l(f"Y (2)I<1
and recalling that / has at most (2d — 2)m attracting periodic points of period
dividing m and that [( /™)' (z)| = [(f") (z)]™" for any z € Fix( f™) by the chain
rule, we have

1
| >, logl(f"™Y @)
zeFix(f™M)
r<|(f")(z)l<1

Hence, recalling the definition of o (n), we have

1

Y r(5 )@+ Dtmalfr) = ma(£D)| < @d —2)[l0gr|

m|n

2d -2
< 2d=Dm ol < @d — )| logr].
n

oo (n)
dn

(ii) For any m € N* dividing n, we have

m—1
Z Z log [_fj(z), c] =m- Z log[z, c].

zeFix(f™) j=0 z€Fix(f™)
(S (2)]<1 (S (2)]<1

Recalling the definition of u,, ,(f, 1) and applying Lemma 3.2 to each z € Fix( /™)
such that |( f")'(z)| < 1, we have

Z (log [f"’ (¢), c] — Z log|z, c])‘

ceCrit(f) zeFix(f™)
(™Y (2)]<1

m—1
2 %( 2. Zlog[ff(z),c]—log|(f'")’(z)|)

z€Fix(f™) ceCrit( f) j=0 ‘
(S (2)l<1

< (2d —2)m - Bi(f),

‘(dm 2 l)um,n(.f» 1) —
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where the last inequality holds since f has at most (2d — 2)m attracting periodic
points of period dividing m. Hence recalling the definition of oy (n), we have

di 3 ,,,(%)(d'" + Dt (f, 1)
i mln
LR E (e 3 wea)
mn ceCrit(f) z€Fix(f™)
Y (Bl<1
< d-28(H Y,

We finally reduced the proof of Theorem 3.1 to estimating

> (loelrm@nd ¥ togtee

ceCrit( f) z€Fix(f™) )
(™Y (2)]<1

() =Ba(Fi = > ()
L mln

(iii) We claim that for any ¢ € Crit( /) and any m € N* dividing n,
y ¥ g

log[f™(c).c] =} loglz.c]
zeFix(fM)
1™ (2)l<1

< 2(2d —2)m*(log M(f) — log (%))

where ¥ € (0,1) is the absolute constant appearing in Lemma 2.3; recall that
sup, yept [z, w] < 1. Assume first that « - M(f)™™ < [f™(c),c]. Then by
Lemma 3.5, we deduce that for any z € Fix(f"),

27 M(N)T < 27T M) T e) ] < [z el

so that since f has at most (2d — 2)m attracting periodic points of period dividing m,
we have

—mlog M(f) + logk < log [f’"(c), c] — Z log[z, c],
zeFix(f™)
I(f™) (2)I<1
and
log [fm(c), c] = Z log[z,c] < (2d —2)m (2m log M(f)—log (g))
zeFix(f™)
(/™) (2)l<1

<22d — 2)m2(10g M(f)—log (g))

Assume next that k - M(f)™™ > [f™(c),c]. By Lemma 2.3 applied to the trivial
family ( /') and its (constant) marked critical point ¢ (recall that the constant ¥ given
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by Lemma 2.3 depends only on ), ¢ belongs to the immediate basin of an attracting
periodic point zg of f of period k dividing m, and we have

Z[f”’(c),c] > [zo,¢] and [c,df] = cM(f)".

Hence we have —log2 < log[ f™(¢), ¢] — log[zy, ¢], so that

—log2 < log|[ f™(c),c] — Z log|z, c].
z€Fix(f™)
I(F™) (2)I<1
Noting that any attracting z € Fix( ") \ {zo} lies in a Fatou component of f* which
does not contain zo, we also have 1 > [z,c] > [c, $r] = «M(f)™™ for every
such z € Fix(f™) \ {zo} that [(f™)(z)| < 1. Moreover, by Lemma 3.5, we have
[f™(c),c] < M(f)"|zo,c]. Hence, since f has at most (2d — 2)m attracting
periodic points of period dividing m, we have

log [f'"(c), c] — Z log[z,c] < (2d —2)m - (m log M(f) — log K)
zeFix(f™)
(™) (2)]<1

< (2d —2)m*(log M(f) —logk).

Hence the claim holds.
Since f has exactly 2d — 2 critical points taking into account their multiplicities,
letting Cs := 2(2d — 2)? max {1, | log(x/2)|}, we have

o2(n)

18, (/)] < Ca- (log M([f) + 1) AR

by the definition of o, (n).

(iv) Recall that logd < L(f) = [pilog(f") s < log(supp:i f™) and that by
definition of d,,,

dy =Y p(>)@"+ 1= Y p()dm = (1=d ) a".
min il '

Hence, all the above intermediate estimates yield

a2 (n)

dn

2
(3.2)
0

1 ¥ ion 40
- [ toslma(fre®)| S~ 10| < Bathin
for any / € X, where B3(f,r) = Cs(supp1 |gr| + log(supp: f*) + |logr|) for
some constant C3 > 0 depending only on d. Since both sides of (3.2) depend
continuously on f € Raty and X is dense in Rat;, the above estimate (3.2) still holds
for any f € Raty. ]
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3.4. Application: degeneration of the Lyapunov exponent. Consider a holomorphic
family ( f;);ep+ of degree d > 1 rational maps parametrized by the punctured unit
disk, and assume it extends to a meromorphic family over D, i.e. f; € O(D)[t~](z).

Theorem 3.6. There exists a non-negative « € R such that, as t — 0,
L(f;) =a-log|t|™! + ()(log |t|_1).

This is a special case of [21, Theorem C] and can also be obtained as the
combination of [12, Proposition 3.1] and [11, Theorem 1.4]. We provide here a
simple proof as an application of Theorem 3.1.

Proof. We can write p,(f;,w) = tMh,(t,w), where h,:ID x C — C is
holomorphic and N, € N. We rely on the following key lemma.

Lemma 3.7. There exist Cy, Cy > 0 such that for any t € Dl/z’

sup max{|gf, (z)|,log(_ft#(z))} < Cqlog 1t|_1 + Cs.

zePl

Once Lemma 3.7 is at our disposal, by Theorem 3.1, there is C > 0 such that for
any n € N* and any ¢ € Duz’
02(n)

dr -’

27
‘L(ﬂ)——f log | pn ( fr. "’)l— < C(Ciloglt|™ + C3) -

so that dividing both sides by log |#|~! and making ¢+ — 0, there is C’ > 0 such that
foralln € N*
L(f1) _ Nn ,02(n)

L(ft)
< Timinf —2_ < jim ALY
d, g SR T SR o a, T T g

Indeed, as p,(f;, w) = t~N7h,(t, w), where h,, is analytic, we get

1 o iy 40 2m log]hn(t,ei9)| do
ey ol Uy = [ R = Mo

as t — 0. Making n — oo, we get

o LU N
dy

=:a > 0.
£=0 Tog [¢|-1 *=

= hm
—>00

This concludes the proof. ]

Proof of Lemma 3.7. There is a meromorphic family (F;);ep of homogeneous
polynomial endomorphisms of C? such that for every t € D*, F, is a lift of f;
and that the holomorphic function ¢ +— Res(F;) on D may vanish only at ¢t = 0.
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According to [12, Lemma 3.3] (or [21, Proposition 4.4]), there exist constants C > 1
and 8 > 0 such that for any p € C2\ {0} and any ¢ € D*,

e < LD .
71

For any ¢t € D*, set u,(z) := log(||F,(p)|l/|p|¢) on P!, where p € n~1(z).
The function u, on P! is well-defined by the homogeneity of F,. Recalling the
definition of g, , we have gr, (z) = Y oo o(u; o f*(2))/d" ! uniformly on P!, so
that by (3.3),

sup [ ()] = ———(Blogli|™ +1og C).

sup [, (2)] < -
zeP1

zeP!
Recalling the definition of /g, and the formula /. = —(log [Res(F})[)/(d(d —1)),
we also have g5, = gF, + (log|Res(F;)|)/(2d(d — 1)) on P! for every t € D*.
Hence we obtain the desired upper bound of sup,p1 |g 7, (z)| since ¢ > Res(F}) is
a holomorphic function on ) vanishing only at r = 0.
To conclude the proof, we use the same strategy for giving an upper bound for
log sup,cp1 f;¥(2). Recall the following formula

IpII>
IE: ()17

on P!, where pE ! (z) (see, e.g., [29, Theorem 4.3]) and in particular, by (3.3),
we have

1) = = 1det DE (p)]

|det DF;(p)|

W 2(ﬁ ]Og|t|_1 +10g C)

log(f;1()) < log

Now write as
d ' . d _ -
Ft:(Ptht)v Pt(Zaw):Zaj(t)ijd_]’ Qt(Z,QU):ZI’)j([)Z]wd_J
= =

witha;(t)=t"Ya;(t) and b;(t) = t_"gj (z) for some y € N and some a, bhe O (D).
In particular, there exists a constant C > 1 such that for any ¢ € ID(0, 1/2) and any
0 < j <d, wehave max{|a;(¢)].|h;(t)|} < C’, so that

8 t
et DE ()| = | 5 (1) 22 () 72 ) "2 ()
d
<247 Y (@ (Obe()] - PPV
j.£=0

2 — -
<2d*. C”|p|P@V 7
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for any p € C2. This gives a constant C” > 1 so that
log(f;"(2)) <2(B + y)log|t|™' +1logC" on P,

which completes the proof. ]

4. Equidistribution towards the bifurcation currents

Fix an integer d > 1. Let A be a quasi-projective variety either such that A C My,
or parametrizing an algebraic family ( f3)ea of degree d rational maps on P!,

4.1. The proof of Theorem 1.1. Pick any compact subset K in A, and set Cy(K) :=
sup,ex C([fa]) = % logd, where C([ f1]) is given by Theorem 3.1. We remark that
for every n € N* and every p € 10, 1],

1 [ ;0v7 40 12" oy 46
T1(p) i= = P = = dd" —f 1 A, pel?)|— ).
4 () dﬂfo [Pern (pe®)]5 - (dn | log|pn(h, ) 5
Pick any 1 < p < min{m,2d — 2}, any n = (n1,...,np) € (N*)?, and any

p=(p1.--..pp) €10.117.

Assume first that p = 1,i.e.n = n € N* and p = p € ]0, 1], and pick any
continuous DSH (m — 1, m — 1)-form W on A supported in K. By definition, we can
write dd°W = T+ — T—, where T'* are positive measures of finite masses on A.
By Stokes’s formula and Theorem 3.1, we have

1 — T .. — L/Qﬂ 10 ﬂ_ ¢
(T, (p) — Toir, ¥)| = fK(dn ] log | pn (A, pe )|2n L(A) |dd“W¥
1 2" o df
sf —f loglpn(l,pe’g)lg——L(l)‘(T’L+T_)
K 0 I

d
< (4C1(K)(1 + | 1og p)

o2(n) _

AT+ 1),

which completes the proof of Theorem 1.1 in this case by the definition of [|W||{s-
We now assume that 2 < p < min{m,2d — 2}. Setting S; = S;(n,p) =

(A1<t<; Toit) A (/\j<k<p Tni (px)) for any 1 < j < p, which is a positive closed

current of bidegree (p — 1, p — 1) on A, we have

D
TP (0) — T = D Si A (T, (p;) — Tist). 4.1)
j=1

Pick any continuous DSH (m — p,m — p)-form W on A supported in K, and write
ddV = T+ — T~ where T are positive closed (m — p + 1,m — p + 1) currents
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of finite masses on A. Then by Stokes’s formula, we have

p
(T7(p) — T, W) = D (S A (T, (p)) — Tvir), W)

=
p 1 29 . de

= Z[ (—f 10g|pn(l,pe'9)]——L(A))Sj AddeW.
= K dy 0 2w

Since the masses can be computed in cohomology, by (2.3), there is C; > 0
independent of K, W and T'*, such that forevery 1 < j < p,

/A SiA(TH+T7) < GUITH N+ 1T7).
Then by Theorem 3.1, we have

/ (L fzn log | pn (2 pe”)\ﬂ—L(A))S- AddW
&k \dn Jo i 2w /

< (4ci(1 + 1ogp, ) 252) [ ;A 1)

Uz(nj)
A’

forany 1 < j < p, which completes the proof of Theorem 1.1. []

< AC{(K)C2(1 + |log p;) T+ 1771)

Remark 4.1. As in [2], we deduce from Theorem 1.1 the density in the support
of TZ. of parameters having p distinct neutral cycles. We can actually give a more
precise statement: taking any sequence of p-tuple of integers (nj) in (N*)? such
that min; n ; . — oo, we have that the set of parameters A such that f; has p distinct
neutral cycles of exact periods ny k., ..., n px forsome k € N* is dense in the support
of T5.

4.2. The proof of Corollary 1.2. Pick 1 < p < min{m,2d — 2}. We recall some
basics on PB measures. For each p > 0, let As, the Lebesgue probability measure on
the circle S,. Let 0: RT — R™ be a smooth function with compact support in 10, 1]

such that [0] f(x)dx = 1. We consider the smooth measure v defined as

p i
ﬁ::@f Xs, 0(p;)dp;.
j=1"0

We say that a probability measure v on (P1)? is PB (or has bounded potential) if
there exists a constant C > 0 such that

(v =7, 9)| < Cllelpsy
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for all ¢ which is DSH on (P!)?, and then let C, > 0 be the minimal C > 0
satisfying the above inequality for every ¢. For example, ¥ is PB on (P1)?, and Ag B
is PB on P!. We claim that the positive closed (p, p)-current

1 p
TEP(U) = Wm ](Pl)p j/:\1 [Per,,j (wj)]v(wl, vueq Wip)

on A is well-defined for any PB measure von (P')? andany n = (n1, ..., n,) € (N*)2.
Indeed, the setofallw = (wy, ..., w,) € C? suchthat ﬂle Per,; (w;) is not of pure

codimension p in A is analytic. Hence for any w = (wy,...,w,) € C? except fora

pluripolar subset and any n = (n1,...,n,) € (N*)?, the current A7_, [Per,, (w;)]

on A is well defined. In particular, since PB measures on (P1)? give no mass to

pluripolar sets, the current Tﬂp (v) is also well defined.

Observe that TifJ (V) give no mass to pluripolar sets (hence to analytic sets) since
it has bounded potentials. So for any PB measures on (P!)?, 7,7 (v) gives no mass
to analytic sets. -

Here is another description of (dj,))~" AL_, [Pery, (w;)] and 7,7 (v); let T, be the
analytic set of dimension m in A x (IP1)? defined as

[y = {(A,(zl,...,zp)) e A x (PH?: Zj EFix*(fAn'i)foreveryl < J = p}.

Let F,: I, — (P1)? be a holomorphic map defined by

Fa,z1,. ., 2p) = (7 @0, (] 7) (25)),

and #: ', — A be the restriction to I', of the projection A x (P1)? — A. Consider

7. 'y — 'y a desingularization of I',,. The map ﬁ,; := F o 7 is holomorphic and
the map P = Porxisan analytic map. If v is a smooth PB measure in (IP1)?, then:

1
Hj njd”.f

Indeed, observe that, when testing against a smooth form, there is always one term
that is smooth when computing the pull-back and push-forward.

T () = Pu((Fulz,)" (1) on A. 42)

Theorem 4.2. Let A be a quasi-projective variety either such that A C My, or
parametrizing an algebraic family ( f3)aca of degree d rational maps on P'. Then
for any compact subset K in A, there exists C(K) > 0 such that for any 1 < p <
min{m,2d — 2}, anyn = (n1,...,np) € (N*)?, any PB measure v in (P')?, and
any continuous DSH-form W of bidegree (m — p,m — p) on A supported in K, we
have

1
(@)= T w)] < - (4 € max () 1Whos
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Proof. Pick 1 < p < min{m,2d — 2} and a PB measure v on (P1)?. Consider
first the case where v is smooth. Pick n = (n1,...,n,) € (N*)? and a smooth
DSH form W of bidegree (m — p,m — p) on A with compact support in K. By
Theorem 1.1 and our choice of v, there is C(K) > 0 depending only on K such that

o2(n;)
danrs

(7 () — Ty W) < C(K) max ( )1 losi.

and we will show that

- 1
(T7®) = T2 0), W)| = C(KICy max (=) Wliosk.
- - 1<j<p \n;
By the above description of Tﬂp (v) and the definition of PB measures, we have

*

(7 @) =T ), ¥)| = Gy Fa) (P* (D))

DSH

_
l_[j njd”j

As taking d d ¢ commutes with taking pull-pack or push-forward, writing as dd“W =
T+ — T, where T* are smooth (because W is smooth) positive closed currents of
bidegree (m — p + 1,m — p + 1) of finite masses on A, one simply has to estimate
the mass ||(ﬁn)*(e5*(Ti)) |. Computing those masses can be done in cohomology
testing agains_t /\i#j w; forall 1 < j < p, where w; is the Fubini Study form on the

i-th factor of (P')?. Set S,,; = ([1}_, nydn,) " Pu ((Fg)*(/\i# w;)).
By duality, this computation is the same as controlling (S, ;, T%) for any j.
Finally, for any j, one has to control the mass ||S, ;||. By symmetry, consider the

case where j = p. Letn’ = (n1,...,np—1) and consider the associated map 1::,_;/.
Now take a generic point (z{,...z) ;) € (P')?~" and consider the line

= {z:(zl,...,zp)E(IP’l)p, Yi<p-1,z :ZO}.

i
s s ]
Then the degree of F, (L) equals d,, times the degree of Fyr (z{,...29_))).

So pushing-forward, we see that

1
S < G—,
ISyl -

for some constant C > 0 that does not depend on n.
In particular, we deduce that

p
= a8 Dk * 1
jl:[l(njdn_,-) 1H(FLI)*(3—) (‘p))”DSH <C- lrsnjaé(p (n_j)”\p”DSH’

where C > 0 is (another) constant that does not depend on n, which implies the
wanted result for W and v smooth. By a regularization argument [17], the result
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follows for W continuous, replacing C(K) by a constant given by a (small) larger
neighborhood of K. Finally, we extend the result to any PB measure v using again
an approximation of v. ]

Corollary 1.2 follows from Theorem 4.2 using classical pluripotential techniques
as in [16] or [28].
Remark 4.3. The order O(max; (nj_»l)) as min;(n;) — oo in the right-hand side
is sharp. Indeed, for the quadratic polynomials family (z2 + A);ec, it has been
shown in [7] that the sequence (27" ![Per(n, ¢2")]), (recall 2, ~ 2" as n — o0) of
measures on C converges to dd“ max{g, 4 —2log2}, where g is the Green function
of the Mandelbrot set. Since 4 —21log2 > 0, this measure is not proportional to ppjs.
On the other hand, if v, = )LgeZn we have C,, = O(n) as n — oo, where /1862”
is the probability Lebesgue measure on the circle of center 0 and radius ¢?” in C,
which is PB. So one cannot improve the order O(n~!) as n — oo in the right-hand
side for this family; otherwise, 27" [Per(n, ¢2")] would tend to iy as n — oo.

5. Transversality of periodic critical orbit relations

5.1. Infinitesimal deformations of rational maps. Pick f/ € Rat,. The orbit

O(f):={¢p "o fog¢ cRaty : ¢ € PSL,(C)}

of f under the conjugacy action of PSL,(C) on Rat, is a 3 dimensional complex
analytic submanifold in Rat,;.

A tangent vector to Raty; at f is an equivalence class of holomorphic maps
¢:ID — Raty such that ¢(0) = f under the relation ¢ ~ v iff ¢’(0) = ¥'(0). The
vector space of all tangent vectors at f is denoted by 7y Raty. A tangent vector
¢ € T Raty can be identified to a section of the line bundle f*(TP'), where TP!
denotes the holomorphic tangent bundle on P!'. Moreover, to any tangent vector
¢ € Ty Raty, we attach a rational vector field n; on P! whose poles are in Crit( /)
by letting

ne(z) = — D.f 'tz eT,P!, zePl.

If f has only simple critical points, then 7, also has only simple poles (see [6] for
more details).
If f is postcritically finite, i.e., the postcritical set

P(f) = |J rrcrie(sy

neN*

of [ is a finite subset in P!, then we denote by 7 (£ ( f)) the vector field on P ( f),
and a vector field T € T (P (f)) is said to be guided by { € Ty Raty if

t=f"t+nonP(f) and tvo [ = onCrit(f).
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For the sequel, we will rely on the following crucial result (see [6,22]).
Proposition 5.1 (Buff-Epstein). If f € Raty is postcritically finite and neither is
conjugate to z+? nor is a Lattés map, then a tangent vector { € Ty Raty is tangent
to O(f) if and only if there is a vector field t € T (P (f)) guided by C.

5.2. A transversality of periodic critical orbit relations. Let / € Rat; be post-
critically finite and hyperbolic of disjoint type, and let cy,...,c2q—2 be 2d — 2
distinct critical points of f. For any 1 < i < 2d — 2, there is p; € N* such
that ¢; € Fix™(f?), and there is an open neighborhood U of f in Raty small
enough so that ¢y, ..., ¢ca4—> can be followed holomorphically on U, that is for any
1 <i <2d — 2, there is a holomorphic map ¢;: U — P! such that ¢; ( f) = ¢; and
that ¢; (g) € Crit(g) forevery g € U.

We can choose an atlas of P! such that there is an affine chart of P! containing
c1(g), ..., caq—2(g) forevery g € U, and define amap V: U —> C2472 py

V(g) := (g7 (c1(g)) —c1(g), ..., 87292 (c2a—2(8)) — c2a—2(8)), g€ U.
We will need the following.

Theorem 5.2. Ler f € Raty be posteritically finite and hyperbolic of disjoint type.
If { is not conjugate to z*2, then the linear map DyV:.TyRaty — ToC2472 jy
surjective and ker(D ¢ V) = TrO(f).

Though this result seems folklore, we could not find it in the above form in the
literature. We provide here a proof for the sake of completeness, which is very much
inspired by [6,20] (see also [22]).

5.3. The proof of Theorem 5.2. From now on, we write
. duy
~ dt li=o
for any holomorphic map ¢ +— u; defined on a disk D.

Proof of Theorem 5.2. Under our assumption, the postcritically finite map f is
neither a Lattés map, nor conjugate to z+2. Let us pick ¢ € ker(D #V), and choose

a holomorphic disc # > f; € Raty with fy = f and such that f = . We shall use
Proposition 5.1 and build a vector field T € 7 (#(f)) which is guided by ¢. Then
counting dimensions will complete the proof.

Foranyn € N andany | <i <2d —2,wesetc;(t) = ci(fr),

vn,i(t) := f"(ci (1)),

¢i = ¢i(0), and v, ; := v, ;(0). Itis clear that for any n > 0, we have

i)n+l,i = K(Un,i) + DU”‘,‘,f g i)n,i . (2. 1)

We shall deduce the following from this equation.
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Lemma5.3. Fix 1 <i <2d—2. Foralln,m € N*, if v, ; =VUm.i, then Uy i = U ;.

Taking this result for granted, we continue to define a vector field  on P ( f) that
is guided by . For any x € P(f), we set t(x) := 0, forsome 1 <i <2d —2
and some » € N such that x = v, ;. Since f is of disjoint type, the previous lemma
shows that 7 is well-defined at x. It remains to check that t is guided by {. The
equality 7( f(c;)) = &(c;) follows from the definition of v and (5.1). When x = v, ;
is not a critical point, then multiplying (5.1) by D, /! gives T = f*1 + Ne at x.

When x = ¢; is a critical point, since x is a simple critical point, we may choose
coordinates z at ¢; and w at f(c¢;) such that

w = fi(2) = 2% + t(a + 0(z)) + O(?).

Since we may follow the critical point for |#| small, we may also suppose thatc; (1) = 0
for all 1 so that
fi(z) = 2% + t(a + O(z%)) + O(t?).

We thus obtain {(z) = (a + 0(2))%, and ¢ (z) = (—5; + O(Z))a%‘ Observe that
in our coordinates we have t(¢;) = ¢; = 0,and t(P(c;)) = %hzoft (e;(2) =4 a%-
We may thus extend t locally at ¢; and P(c;) holomorphically by setting 7(z) = 0

and t(w) = a. It follows that

fre@) +ne(2) —1(2) =

a o0 a 0 0
= a_z+(_2+0(z))a7_0: @) -

It follows that /™t + n¢ = t at any critical point, which concludes the proof. [
Proof of Lemma 5.3. To simplify notation we write vg,c, p instead of vy ;,c;, pi
respectively. For any [ > 1, p is really the exact period iterating the assertion (5.1)

and using the fact that D( f7) is vanishing at all points of the cycle containing ¢, so
in particular Dy, f? = 0, and that vg4 , = vy for all k > 0, give

Op = Lip—1) + Dy f - Eip—2) + -+ + Doy S P - L(0G-1)p)
+ Dvu-l)pfp “U(I-1)p
= L (ip—1) + Dy, S C@ip=2) + -+ Doy J 7 E0u=1)p)
=L(p-1) + Dy, [ - C(0p—2) + -+ Dy, [P - L(vg) = ¥p

Since { € ker(D s'V), we also have vg — v, = ¢ —v, = DsV-{ = 0, whence
vip, = Vg forall/ > 1. Again by (5.1) we get

Vip+1 = {(vig) + Dv[,,f “Vip = §(vo) + Dy, [ -vo = V1.

An immediate induction on k > 0 then proves v;,4x = Uy forall / > 0. This proves
the lemma. L]
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5.4. Application to the space Ratg. Denote by Ratg the space of degree d rational
maps on P! fixing 0, 1 and oo. To be more precise, let us parametrize Rat; by

z t] |:Zazld’ sztd } [z :t] e P,

with [ag : -+ 1 @ag : bg i -+ : bg] € PZ4F1\ {Res = 0}. The space Rat} is then
determined by the equations by = 0,a9 = 0,)_; a; = > _; b; and is thus clearly a
smooth subvariety of Rat, of pure dimension 2d — 2.

Lemma 5.4. The complex submanifolds Ratg and O(f) in Raty intersect trans-
versely at any f € Ratg.

Proof. LeteTrO(f )ﬂTfRatg. Then there exists a holomorphic germ m; € Aut(IP!)
centered at my = id such that f; = m; o fom, and ¢ = £ . Moreover, since (fo):
is tangent to Ratg, we can assume there are fixed points of f; satisfying x; = 0,
v = 1l and z; = 0.

Writing m,(z) = (a;z + by)/(¢c;z + d;) with a;dy — ¢;by = 1, we get

xy = —=bifas, yi=(by—dy)/(ct —a;) and z;, = —d;/c;.
As my = id, we have
a4 =1 +at + 0%, b = Bt + 03,
¢ =yt +O0@?) and d; =1+ 68t + O(?).
We thus get
—Bt+0(>) =0, —yt+ 0> =0,
l+@+8)t+0¢H)=1 and 1+0E-B+y—a)+0@?) =1,

whence « = 8 = y = § = 0. As a consequence, m; = id + O(t?) and m;! =
id+ O(t?). Finally, differentiating f; = m;, o f om, with respect to ¢ and evaluating
att = 0 gives

E=Df vin=Df :0=10,

This proves T, O(f) N Ty Ratg = {0k, ]

As above, we pick f € Ratg which is hyperbolic and postcritically finite with
simple critical points c¢1,...,c2q_2. We also assume that for | < i < 2d — 2,
there exists p; > 1 such that ¢; € Fix*(f?)). Let U C Ratg be a neighborhood
of f in which ¢; can be followed holomorphically as a critical point ¢;(g) of g for
all i. We can choose an atlas of P! such that there is an affine chart containing
c1(g), ..., Ccaq—2(g) forevery g € U. We let

V(g) = (g7 (c1(8) — c1(g) - ... 8729 2(c20—2(8)) — c2a—2(8)), g€ U.

From Theorem 5.2 and Lemma 5.4, we directly get the following.
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Corollary 5.5. Pick any postcritically finite and hyperbolic [ € Ratg of disjoint
type. The map Vy:U — C 2d=2 s q local biholomorphism at f .

6. Counting the centers of hyperbolic components of disjoint type in A( 4

6.1. The marked spaces Ratg’fm and Ratg’ml and M. We follow closely [35,
Section 9].

A fixed marked degree d rational map on P! is a (d + 2)-tuple (£, X1, ..., Xg+1)
where f/ € Ratg, and (x1,...,xg41) € (PH)?+! is a (d + 1)-tuple of all the
fixed points of f, taking into account their multiplicities. A fotally marked
degree d rational map on P! is a 3d-tuple (£, x1,...,Xg41,C1,...,Caqd—2) Where
(f.X1,...,Xg41) is a fixed marked rational map and (ci, ..., c29—2) € (P1)*42 s
a (2d — 2)-tuples of all critical points of f, taking into account their multiplicities.

Let Ratg’fm be the space of all fixed marked degree  rational maps ( f, x1, ...,

Xg441) such that x; = 0, xo = 1 and x3 = oo. Let also Rat”™ be the space of
+ y p

all totally marked degree d rational maps (f, x1,...,Xg41.€1,...,C2q—2) such that
x1 =0, x, = 1 and x3 = oo. It is clear that both Ratg’tm and Ratg’lm are smooth
and quasi-projective of dimension 2d — 2.

In both fixed marked spaces, the action by conjugation of PSL,(C) extends
naturally, by respecting the marking. Note that, in both cases where x; = 0, x, = 1
and x3 = oo, two tuples which are distinct cannot be conjugated, since an element
in PSL,(C) fixes three distinct points if and only if it is the identity. Moreover,
the conjugacy class of any marked tuple ( f, x) where f has no multiple fixed point
admits a representative in with x; = 0, xo = 1 and x3 = o0.

We finally let Mfim be the quotient of this action on the space of fixed marked
rational maps. The space M{i‘“ is an irreducible quasi-projective variety of dimension
2d — 2 and its singular points are contained in the subvariety of CML,‘“ consisting of
all classes [( f, x1,...,Xg+1)] such that #{x{,...,x741} < 2. In particular, ,Mg,m is
smooth at any class [(f,X1,...,Xg41)] such that f is hyperbolic. By the above, it
is clear that the natural projection Ratg,’fm \ Pery (1) — CM:}“ \ Per; (1) is actually a
bijection.

We note that the same construction of &£, pys, Per, (w), and TQP (p) works on all
the spaces introduced above (and even more generally) exactly as in the case of M.

6.2. Parameterizing hyperbolic components of Rat?‘,’fm of disjoint type. Let Q2 be
a hyperbolic component in Ratg’[m. If 7 is connected forany (/. x1,...,x441) € 2,

then €2 is simply connected and contains a center, which is by definition the unique
point (f, x1,...,Xg+1) € Q such that #2( f) < oo, by [35, Theorem 9.3].
Forany n = (ny,....n24_2) € (N*)2¢=2 and any hyperbolic component 2

in Ratg,’fm of type n, ¢ r is connected for any (f,x1,....xg41) € 2, since all Fatou



376 T. Gauthier, Y. Okuyama and G. Vigny CMH

components of f are then topological disks by [41, Proposition, p. 231]. In particular,
2 has a center. We will also use the following in the sequel.

Lemma6.1. Foranyn=(n....,nq_2)€ (N*)24=2 any hyperbolic component 2
in Ratg"m of type n is simply connected and the fixed points and critical points
are marked throughout 2.  More precisely, there are a holomorphic maps
X1seees Xdg1sClonnerCogn: 2 — P such that Fix(f3) = {x1(A), ..., xg41(A)}
and Crit( f3) = (c1(A),...,c2q4-2(R)) forany A € Q.

Proof. We have already seen that €2 is simply connected. Let t: Ratg’"n — Ratg’rm be

the natural finite branched cover. For any component Qoft71(Q), Qisa hyperbolic
component of disjoint type in Ratg’tm and 7|g: €2 — £ is an unramified cover, so is
a biholomorphism, since €2 is simply connected.

In particular, we have a holomorphic map

(tlg) 23 A > (fi, x1(), ..  Xar1 (M), c1(A), .., c2a—2(R)) € ©

and the holomorphic maps xy,...,Xg41, C1,...,C2q4—> follow all the fixed points
and critical points of fj, respectively. (]
Pick any hyperbolic component €2 in Ratg’fm of typen = (ny,...,n24—2) €
(N*)24=2and let x1,...,X441.Cl,...,C2q—2:2 — P! be the marking of all
the fixed points and critical points of (f3)icq given by Lemma 6.1. For any
ie{l,...2d —2} and any A € Q, let w;(A) € D be the multiplier of the
attracting cycle €; (1) of f) of exact period n; and whose immediate attractive
basin contains ¢;(A). The multiplier map Wg: Q2 — D?¢~2 on Q is defined by

Wa(A) := (Wi (L), ..., waa0(X)), A€ Q.

Let Ag be the center in €. Noting also that #(f3) < oo for any A € Wg'{0}, we
have Wg'{0} = {Aq}.

Theorem 6.2. The map Wgq: Q — D472 iy a biholomorphism.

Proof. Write 'W for Wq. First, we prove that ‘W is surjective and finite. According
to [26, §3, p. 179], this implies that ‘W is a finite and possibly ramified covering. Next,
we show that ‘W is locally invertible at Ag. Since W 1{0} = {1q}, this implies 'W
has degree 1, i.e. is a biholomorphism.

Let us first prove that ‘W is surjective. We proceed using the classical surgery
argument: forany 0 < & < 1, we construct a continuous map o: D (0, 1 —£)?¢2 — Q
such that ‘W o o = id. We sketch the construction referring to [8, Theorem VIIL.2.1]
or [13] for detail.

Choose A = (f,x1,....Xq41) € Q and for any 1 < i < 2d — 2, let
Uti,..., Uy, ;i be all the components of the immediate basin of the attracting
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cycle €;(A) such that ¢;(A) € Uy;. Since c;j(A) is a simple critical point of f,
U, is simply connected and there exists a conformal map ¢;: U; ; — ID such that
; + w;
% nl o) _1 — = E—l, < 1,
gio fMogl®) =k T
where w; := w;(1). Fixe € (0,1). Forany p = (p1, ..., paa—2) € D(0,1—£)*472,
we can define a continuous map f, by setting f, = f outside the union of all U;;,

and such that -
i -1 — B Pi
wio fpioe ®) =8 12
on the open disk |§] < 1 — r containing the critical point of the Blashke product
in the right hand side. Notice that (f,), is a continuous family of quasiregular
maps of P1. We now solve the Beltrami equation for the unique Beltrami form
which is 0 on the complement the U;;’s and invariant under f,: there is a
continuous family of quasiconformal homeomorphism v,: P! — P! such that
fop = Ypo f; o w;l is a rational map and depends again continuously on p and
that ¥,(x1(1)) = 0, ¥,(x2(A2)) = 1, and ¥,(x3(A)) = oo. Then the d + 2 tuple
(Y, © f; o w;l, Yo(x1(A)), ..., ¥p(xg+1(4))) lies in € by the above continuous
dependence and is mapped to p by ‘W by the chain rule.

Let us show that ‘W is finite, i.e., #W ™1 (w) < coforany w = (wy,...,Wag_») €
D24-2 Suppose to the contrary that for some w € D272 #W~(w) = oo.
Then there is an infinite set contained in [ ); Per,, (w;) N . In particular, the
quasi-projective subvariety A := (); Pery, (w;) has dimension > 0 and any A € A
has 2d — 2 distinct attracting cycles of respecting periods ny,...,n24-». The
holomorphic family (f3)sea thus has no bifurcations. Since ¢, # P! for some
A € A, (f3)ren isnotafamily of Lattes maps. Hence by [32, Theorem 2.2], (f3)aea
is trivial. Since the natural projection Ratg,’fm — My has finite fibers, this implies
that the quasi-projective variety A is a finite set. This is a contradiction.

Let us finally see the local invertibility of ‘W at Ag. Since p is a biholomorphism
on 2, the map W is locally invertible at Agq if and only if W is locally invertible
atag == (fla); x1(Aq)s s« s Xg11(Ag)) € Ratg’fm. The conclusion follows from
Lemma 6.3 below by the inverse function theorem. (]

Lemma 6.3. The linear map D, W is invertible.

Proof. Let n:Ratg’ﬁ" — Ratg C Ratg; be the natural branched cover, and

set Q = w(§2), which is the hyperbolic component in Ratg containing f with
Aqg = [(f, x1,...,xq+1)]. Let us remark that, since f has only simple fixed points,
the restriction 7g: Q2 — Q of 7 to Q is an (unramified) cover. We can choose an
atlas of P! such that there is an affine chart of P! containing {c1(g), ..., c2q_2(g)}

for every g € €, and define V: ©Q — C242 py

V(g) == (gnl(Cl(g)) —c1(g)s ..., 8" 2(c2a—2(8)) —Czd—z(é’))s g & Q.
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According to Corollary 5.5, we have ker(D ¢ V') = {0}. Beware that W:=Wor !
is a holomorphic map from an open neighborhood of f in Q to C24~2
sufficient to prove that ker(D W) C ker(D s V).

Letv € Ty Ratg,, and pick a holomorphic disk ( f;);ep in Ratg such that fo = f

and f = v. Foranyt € Dandany 1 <i <2d — 2, set

, SO it is

wi (1) ;= wi(f), @) :=ci(f), W) =W(f) and V() =V(f).

Foranyt € D andany 1 <i < 2d — 2, let €;(¢t) be the attracting cycle of f; whose
immediate attractive basin contains c; (1), so that there is a holomorphic function z;
on ID such that z; () € €;(¢) forany t € D (so w;(t) = (/") (z;(t))) and that
z; (0) = ¢;(0). Then for any 1 <i <2d — 2, we find

B — d(fy
: dt

Ay
Y,

@ O) + ()= (0) - 2

@) + (") (e (0)) - £,
and since ( ;") (c;(t)) = 0 for any ¢ € D, we also have

Ay
0= ot

(i (0)) + (f™)"(ci (0)) - ¢ (0).

Hence forany 1 <i < 2d — 2,
wi = (f")"(ci(0) - (2 — &),

and we also note that ( /)" (c;(0)) # 0 since [ is hyperbolic of disjoint type. If in
addition v € ker(D W), then for any 1 <i < 2d — 2, w; = 0 (and by definition
z;(0) = ¢; (0)) hence we have z; () — ¢; (t) = O(t?). Forany 1 <i < 2d — 2, the
i -th component of V(¢) is

S ) = eit) = £ G0) + UMY @) e @) - zi0)

+0((ei (1) = zi(1))*) — ci(t)
= (1= wi())(z:(1) =i (1)) + O(*) = O(t?)

ast — 0,sothatv € ker(D V). [

6.3. Counting hyperbolic components: the mass of pp;r in Myz. We now prove
Theorem 1.6 and Corollary 1.7. To avoid confusions, for any p and any n, denote

T24=2(p) and pups¢ on Ratg’ﬁ" by Tﬂzd el (p) and {1, respectively.
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Observe first the following.
Lemma 6.4. Fix any p € ]0, 12972 and any n € (N*)2¢72, Then

2d—2 fm

(1) the measure T, (p) has full mass on the union of all hyperbolic components

in Ratg’fm of type n, and for any such component Q™,
e : #Stab(n, p)
(T;d Z,fm(B)) (Qfm) — di | =
L

(2) the measure T,2*=2(p) has full mass on the union of all hyperbolic components
in Mg of type n, and for any such component 2,
_ #Stab(n, p)
(72 (@)(Q) = —
N |n|

Proof. Consider the case Ratg’fm first. Pick p € ]0, 1[2972, and observe that

T;d —2,fm (B)
2d-2

1 f 6,
T (2n)224d, Per, . (p;je’® )] do; ---dbry_s,
(zn)zd_zdlﬂl [0,2]‘[]2d—2,Vl.?(=j, 0’:,&9-/ jél |: n; ( J )] 2 9.

m

§ 0,f § 5
as finite measures on Rat; ", since we only remove a set of Lebesgue measure

zero in [0,27]?9~2. Hence Té"d—z’fm(g)—almost every point has 2d — 2 distinct

attracting cycles. For the second part, let £2 be a hyperbolic component in Ratg’fm
of type n = (n1,...,n24—2). By Theorem 6.2, we know that the multiplier map
W = (Wi,..., Waq_):Q — D242 is a biholomorphism. In particular, the

intersection ﬂ?i;z Per,, ; (w;) is smooth and transverse in § for all w € D2¢2,
This implies

2d—2
d|,_,|T;d_2’fm(£)) = Z /\ dd® log max {le(i)l, pa(,-)} (6.1)

o €Stab(n,p) i=1

on €2, which has mass #Stab(n, p) on €. This concludes the proof for the case
of Raty™. )

Let p: Ratg’rm — M, be the natural finite branched cover of degree (d + 1)!.
Observe that the restriction

~

P-= p'Ratg-“’“ \ Pery (1)
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of p to Ratg.’f"' \ Pery (1) is a finite unbranched cover of M, \ Per(1). Indeed, p
can only branch at parameters ( f, x1, ..., xgz4+1) where at least two of x,..., xz41
coincide, and those parameters are contained in Per; (1).

Let 2 C My be a hyperbolic component of type n and let 2 be a connected
component of p~!(£2). Then the restriction Pls: Q — Q is an unbranched cover.
Since multipliers do not depend on the marking of critical points, the multiplier map
Wg:Q — D242 descends to a biholomorphism © — D242, We now observe

that T,_,Zd_z’fm (p) = (p)*(Tnz‘i‘z(B)) and the conclusion follows as above. (]
Fix any p € 10, 1[??~2 and any n € (N*)2¢~2. Note that by construction,

L) = (T ) and g = ()" (o).

: 0,fm . : A :
Since Rat,"™ is an affine variety, we can assume Ratg ™ CN for some N.

Consider the function logt |Z|, defined on C¥, and let (p:Ratg,fm — R be its

restriction to Ratg".m. The function ¢ is psh, continuous, non-negative and d d “ ¢ has

finite mass in Ratg’m‘. We have the lemma:

Lemma 6.5. There exist constants Cy, Cy > 0 that depend only on d such that, for
any compact subset K of Ratg,’rm, if C(K) is the constant in Theorem 1.1, then we

have the following inequality:
C(K) = Cy - [[@lloo,x + Ca.

Proof. We follow closely the proof of [12, Proposition 3.1] (see also [2I,
Proposition 4.4]) and adapt it to the present situation. Since H;(Raty;,R) = 0,
by [1, Lemma 4.9], there exists a family of non-degenerate homogeneous polynomial
lifts to €2 of the family Raty. We thus may choose a family F of non-degenerate
homogeneous polynomial lifts to C? of the family Ratg’ﬂn. Set V := Ratg’r‘m.
We may regard this family F as a homogeneous non-degenerate polynomial maps
with coefficients in the ring C[V]. Note that Res(/) € C[V] and, in particular,
‘log | Res(F)H < ap(f) + B for some constants «, 8 > 0 independent of f € V.

We now want to prove that there exists m > 1 and C' > 0 such that for any
/ € Rat)™ and any (x, y) € C2\ {0},

2
l mo(f) - ||F(X,y)” . Cemqo(f)'

¢ I (C52] S

We work with the maximum norm ||(x, y)|| = max{|x/|, |¥|} on C2. The upper bound
follows easily from the fact that Fy, I, € C[V][x, y] and the triangle inequality. By
the homogeneity of F; and F>, it is sufficient to verify the lower bound whenever

[, I = 1.
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By the item (c) of [45, Proposition 2.13], there exists homogeneous polynomials
21,82, h1, hy € C[V][x, y]a—1 such that

g10x, Y)F1(x, ¥) + g2(x, y) Fa(x, y) = Res(F#)x??7! (6.2)
and hi(x, Y)Fi(x, y) + ha(x, y) Fa(x, y) = Res(F)y>?~". (6.3)

Again, since g1, g2, h1, ha € C[V][x, y], there are constants A, B > 0 independent
of f € V such that

max {|g1(x, »)|, [g2(x, )|, [h1(x, p), [h2(x, »)|} < 4eB9D) it || (x, y)]| < L.

When x = 1, equation (6.2) gives

[Res(F)| < 4max {|g1(x. »)|, [g2(x, W)} - [1F(x, y)|| < 445D F(x, y)|.

We proceed similarly with equation (6.3) when y = 1 and the conclusion follows.
Following exactly the proof of Lemma 3.7 gives C;, C> > 0 such that

max{ sup log f*(z), sup |gf(z)|} <Cio(f)+ C

zeP! zePl
0,fm
forany f € Rat; . ]
Recall that we picked n € (N*)24=2_ Lete > 0, and set p = (1/2,...,1/2),

so in particular that Stab(n, p) = Stab(n). Take R > 0 large enough so that

supp(T;24~%m

ball in CV of radius R and centered at 0. Observe that this is possible since there
are at most finitely many of type n and for a hyperbolic component €2 of type n,
W (foz_z) C Q is relatively compact in V (for d = 2, this is known to be true
for the whole component €2 [19]).

For any A > 0, we pick the following test function

(p)) is contained in the intersection B(0, R) between V' and the open

1
Wy = " min { max(g, A) —24,0} onV.

Then, W 4 is continuous and DSH on V and dd“W¥ 4 = T; — T for some positive
closed currents of finite masses, where ||TAi|| < C’/A and for some C' > 0
depending neither on A nor on Tj: (e.g. [17, Lemma 2.2.6]). Then observe that W 4
is equal to —1 in B(0, e?), and 0 outside B(0, e>4). Applying Theorem 1.1 with the
control of Lemma 6.5 implies:

(7242 (p), W 1) — (i, W)

Ug(nj))g

< (1 +1log2)(Cig(e*?) + C)  max (d"j A

1<j<2d-—2
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Taking A = log R so that p(e?>4) = 2A4, there is a constant C; > 0 depending
only on d, such that |||Tﬂ2d_2’tm(£))|| — (um —W )| < Cg max;(oa(n;)/d"i). As
R — oo, we have (u™ —W4) — ||ui™| and in turn

2d—2,fm — |, fm 02(n;)
7, Ol = lemill] < Ca 15}2%):1—2( dni )

Let us go back to M;. Since the measures TnZd_z(E) and Ly (resp. TEZd_Z’fm(B)

and ;4{™) give no mass to algebraic subvarieties of My (resp. of Rat;™), we have

1 : _
T2d—2 _ = T2d—2,1m _ fm ’
72472 = N wil] deg(ﬁ)“' n O = Nl il
together with ||T£2d_2(£))|| = #Stab(n)N(n)/d), (by Lemma 6.4) completes the
proof of Theorem 1.6. ]

Proof of Corollary 1.7. Let us begin with describing [30, Theorem 1.1] by Kiwi and
Rees. Taking m > n > 2, they computed, in the critically marked moduli space M5™,
the number n 7y (n,m) of all hyperbolic components €2 in M5™ of type (n,m) such
that any [(f,c1,c2)] € @ has two distinct attracting cycles of exact periods j, k
with j|n and k|m, respectively and their immediate attractive basins contain ¢y, ¢z,
respectively. They prove

n

- L 1T og)vg(n)

Bmi= (2 s —— A 2™ 4 gq(n,m),

npy(n.m) (3 b =g} S +e1(n.m)
qg=2

where |1 (n,m)| < 2" + 226400 and |u,(n) — 2"/(2(29 — 1))| < 1/2. Their

computation in particular yields that for any m > n > 2,

I I~ 6@ \ouim
nIV(n,m) = (g— g; W)z + +82(n7m),

where |ex(n,m)| < C - 2™ for some C > 1 independent of n,m. We now note
that the natural projection 7: M5™ — M is of degree 2 and is unramified over any
hyperbolic [ f] € M, of disjoint type, and for any [( £, cq,c2)] € MS™, w~H[ f]} =
[ f.e.¢': [ Foe'se]}- In particular,

npv(n,n+1) =Y N(.k).

Jln,kl(n+1)

Since we have N(j, k) < C -2/ % by Bézout’s theoremand d,, - dy41 =221 +0(2")
as n — oo, the above gives

+o0(l1), asn — oo.

+oo
1 1 1 1
Na,n+1)  nry(nn+ )+0(1) _ ___ZL")
dy - dyrt 22n+1 3 8q=1 (2‘1—])2

The conclusion follows from Theorem 1.6, since #Stab(n,n + 1) = 1. L]
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6.4. Weak genericity of postcritically finite hyperbolic rational maps. The mod-
uli space M  of degree d rational maps is known to be an irreducible affine variety of
dimension 2d — 2 which is defined over Q (see [34,44]); and all non-flexible Lattes
postcritically finite degree d rational maps are known to be defined over Q (see
e.g. [45]). These properties are, for the moduli space of critically marked degree d
polynomials, the starting point of the work [22]. The idea developed there is to apply
Yuan’s equidistribution theorem [46] to get the equidistribution of pcf maps towards
the bifurcation measure.
The use of this equidistribution result requires:

(1) defining an adelic semi-positive metric on an ample line bundle L — Mz, where
the associated height function £ satisfies A([ f]) = 0 for all non-Lattes pcf map f,
and where the induced Monge—Ampere measure is proportional to fipgs.

(2) showing that any sequence (Xg) of Galois invariant finite sets of postcritically
finite parameters is weakly generic in My in that Card(X; N C) = o (Card(Xy)) as
Card(Xj) — oo for any proper affine subvariety C in My defined over Q. This is
stronger than the Zariski density of | J, Xy in M.

Contrary to the case of polynomials, item (1) seems very difficult to establish and
could even be wrong as stated. Here we focus on item (2).
Foranyn = (n1,...,n24-») € (N*)?472 we set

Xp 1= {[f] € My : f has 2d — 2 periodic critical points ¢y, ..., C2q_»

of respective exact periods ny, .. ., nzdﬁz},

so that C, C Xj. A consequence of our counting of hyperbolic components is that
any sequences of sets of centers of hyperbolic components of disjoint type is weakly
generic.

Theorem 6.6. Forany sequence (n(k))i of (2d —2)-tuplesn(k) = (n1k,....h2d—2.k)
in (N*)29-2 satisfying min;(nj(k)) — oo as k — oo, the sequence (Xuk))k is
Galois-invariant and weakly generic in My.

Remark 6.7. This result in particular implies that |_J; X, ) is Zariski dense in Mg,
which refines [12, Theorem A].

For proving this weak genericity property, we prove a stronger result in the
moduli space MG" of critically marked degree d rational maps on P!, i.e., the orbit
space of PSL;(C) in the space Rat;" of critically marked degree d rational maps
(fic1,...,¢24-2), where f € Raty and (cy,...,c34-2) is a (2d — 2)-tuple of all
critical points of f, counted with multiplicity. This is also an irreducible affine
variety of dimension 2d — 2 which is defined over Q and the natural finite branched
cover p: M7" — My is of degree (2d — 2)! and also defined over Q.

Foranyn € N*andany 1 < j <2d —2, let Per;(n) be the analytic hypersurface

Per;(n) := {[(f.c1,...,c2d—2)] € MT" : D} (F,C;) =0}
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in M3", where F and C; are lifts of / and c;, respectively (see Section 2.4 for
the dehmtion of ®7); the degree of the hypersurface Per;(n) is bounded from above
by Cd" for some constant C > 1 depending only on d (see e.g. [45] for more details),
and since M " is quasi-projective, Per;(n) is actually an algebraic hypersurface
of M".

Forany n = (n1,...,n24-—2) € (N*)2472 set Y, = ﬂz-d ZPerj(nj) C M.
We prove here the following as an application of our counting result.

Theorem 6.8. For any proper algebraic subvariety V in MY", there exists a constant
C > 0 such that for all n € (N*)2972 we have

Card(Y, N V)/Card(Y,) < C -d—™nn)/2,

For the proof, we follow the strategy of [22, Theorem 5.3] and we rely on the
following, which is just an adaptation of [22, Lemma 5.4].
Lemma6.9. Let V be any irreducible algebraic subvariety of dimension q in M 3" and
let p be a smooth point in M3". Assume that V' is also smoothat p. Pick hypersurfaces
Hy, ..., Hyy_5 intersecting transversely at p. Then there is [ C {1,...,2d —2} of
cardinality 2d — 2 — g such that p is an isolated point of V N [ jer Hj-

Proof of Theorem 6.8. The case dimV = 0 is an immediate consequence of
Theorem 1.6, since V is a finite set in that case. We thus assume ¢ := dimV ¢
{1,...,2d —3}.

Pick n = (n1....,n24-2) € (N*)24=2_ Let Z, be the subset in Y, consisting
of all [(f,c1,...,¢24-2)] € Mg such that the orbits of ClyeearCod—2 of f are also
disjoint. We claim that there is a constant C’ > 0 depending only on d such that

Card (Yn \ Zn) = Cfd|2|—(min,- n,—)/z;

for, since Y, \ Z, consists of all [ /] € M" such that f has a super-attracting cycles
of exact period n; and containing at least two distinct critical points for some i, we

have
2d—2 [n;/2]
Ya\Zs C | ( U U (e =ciyn [ Pefe(nz))

i=1 JFE = LAH#i

II[—HJ

Since also deg({ f*(c;) = ¢;}) < Cd* for some C > 0 independent of i, j and k,
by Bézout’s theorem, there exists constant Cy, C’ depending only on d such that

2d—2 [n;/2]

Card(Y,\ Zy) < Y > > cd* J] ca™

i=1 j#i k=0 Ll#iQ

nj=n;

2d—-2

Z Z Codlr_il—ni/2 Sc’d'm—(mi"ini)/z‘
i=1  j#i

=y

A
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Set N = N, :=2d —2—q € N* and recall that N = dim V. Let V., be the
regular locus of V. We also claim that there is a constant C” > 0 depending only
on d such that

N ;
Card(Vieg N Zy) < C"deg(V)H AL I=1miy

I
where here and below the sums ), range over all N-tuples / = (i1,...,iy) of
distinct indices in {1,...,2d — 2}; indeed, for any such choice 7, we set ¥Y; :=

ﬂj\’:] Per;, (n;;), and let Fy be the set of all isolated points of V' N Y. By Bézout’s
theorem, we have

N
N o
Card(Fy) < deg(V) [ ] deg (Per; (n;,)) = Cs deg(V)d>7=1"" (6.4)
j=1

for some constant C, > 0 depending only on d. Since Card (Vreg N Z,_,) i
> ; Card(Fr) by Lemma 6.9, the claim holds. According to Theorem 1.6, there
is a constant C4 > 0 depending only on d such that Card(Y;) > Card(Z,) > Csd?!
provided min; n; is large enough. ) )

Hence, the above two claims imply

Card(Vieg N Zg) < Cs ¥ d ™~ /%1 ") Card(¥y)
I

and Card(Yy \ Z,) < Csd ™" n)/2Card(¥,),

where Cs > 0 depends only on V, d and q. Since Vg 1= V \ Vi, is an algebraic
subset in MG" of codimension 2d — 2 — g + 1, the proof is complete by a finite
induction. L]

Proof of Theorem 6.6. Pick any n = (ny....,n2q—) € (N*)2972 and for any
permutation 0 € &,4_, seto(n) := (ng(1), ..., No(2d—2))- Let us first remark that
(X n) = U 0€6ay_n Yo(n)- The Galois-invariance of X, follows from the Galois-
invariance of Yy(,) for any 0 € G,4_,. Similarly, for any irreducible subvariety
Z C My defined over Q, we can apply Theorem 6.8 to any irreducible component
of the algebraic subset V = p~1(Z) in M7". The fact that p is a finite branched
cover together with the assumption min;(n;(k)) — 400 as k — oo completes the
proof. ]

7. Distribution of hyperbolic maps with given multipliers in {4

This section is devoted to the proof of Theorem 1.8. Pick anyn = (ny,...,n2q9—2) €
(N*)24=2 and any w = (w1, ..., Wag_p) € D242,
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7.1. A reduction to work on ,Mflm, Let mim: Mg“ — My be the natural quotient
map. It is a finite branched cover of degree deg(mm) = (d + 1)! and recall the
definition of C, ,, from the introduction. Again, for any p and any n, denote 7,74~ (p)
and fupir on M by T2d e (p) and pyi, respectively (though we already used those

notations on Rat0 ™ this is not an issue since the projection Ratg ™\ Pery (1) —

,M““ \ Per;(1)isa bljectlon and none of the considered objects give mass to Pery (1)).
Set Cﬂfm = Wi o)
#Stab(_ w)

b )
n,w d|n| Z [(fox1sesxq 41010

m
Ci'w

and g = i o Then uit, = (rim)* (n ) and p" = (m)* (1) In par-
ticular, for any DSH and continuous function W on M ; with compact support,

~ 1
(Mg,l_v — [bifs ‘1’) = m

1
_(d+1)!(

Hence, it is sufficient to prove the desired estimates in the fixed marked moduli
space M. So, pick any compact set K in M, and any either €' or € function W
on M with support in K. Set

p=(p1.- ... p2a—2):=(max (Jwi],1/2), ..., max (lwaq—2|, 1/2)) € ([1/2, 1]

sothat pj € [|w;|, 1[forany 1 < j <2d —2. By Theorem 1.1 and the upper bound
of the DSH-norm by the €2-norm, there is C(K) > 0 depending only on K such that

(pen,w — tovits (Tim)w (im) * \TJ)

Milr?lf B Mgﬂ" (”fm)*\p)'

)Zd-z

b

Uz("j)

d"i

and then, by interpolation between Banach spaces, that

(72472 (p) — ppyp, W) < C(K)  max (

V] if Wis @2
max )1 9le

Uz(”j)

dni

Whence the proof of Theorem 1.8 reduces to showing

2d—2,fm 1/2 e ol
(7, (p) — iyyp- V)| < C(K)  max ( [Wller ifWisC!.

1<j<2d-2

(i — T2 (p), W) < € max (1)-||x11||€2 ifwise?, (1)

1<j<2d—2 \d"/
and
[ty — 1220 0 <€ max ()Wl WS,
L = T 1<j<2d-2\d" logp;

(7.2)
where C > 0 depends only on d.
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7.2. A reduction to work on algebraic curves. Observe that the measure
M;r?w o THZd_Z,fm(B) on ‘-‘M:im

has its support contained in the union of all hyperbolic components of type n. Let 2
be such a component, and

W= (Wi,..., Wag_s):Q — D?¢72

the multiplier map on 2. Letting A, be the normalized Lebesgue measure on dD,,
by (6.1) we have on €2,

d (T3 72(p) = )
2d—2
= #Stab(n, w)W*(Ap, ® -+ ® Ap,,_,) — #Stab(n, w) /\ [ Per, (w;)]
i=1
Z (1)(/\9‘) Acrs AW o(2d— 2)(1924 2) (1)(5w|) A

o €Stab(n,w)

/\W*(zd 2)(wry_5)
2d—2

= 2 So

oeStab(n,w) Jj=1

where for any o € Stab(n) and any 1 < j < 2d — 2, the measure S, ; is defined as

Sa,j ‘=(/\ o) (Ao )) (W5 () Ro,) = Ws () Bw,)) (/\ (k)(‘swa))

l=i<j k>j
/ Watoy Gur) A (W5 iy (Ros) = Wo(jy Bw)))
J l1<l<j
N /\ W;(k)(‘sw)d)tg,_,(ul ..... uj_l)
k>j '
on $2, settingl~j = )LPI @...@)ij . ongj j = 3Dm X“‘Xa]Dpj_l itj > 1

and Sg.1 = ('W*(l)()tpl) (1)(8w1)) A Ng>1 :(k)(ka). Recall that a wedge-
product over the empty set is equal to 1 and that an intersection over the empty set is
the whole space.

For any o € Stab(n,w), any 1 < j < 2d — 2, and any u € gj_l (if j > 1),
let Ag,j(u) or Ag,; be the set of all [(fxy,....xz41)] € M having a cycle of
exact period n4(;y and multiplier u; € 9D, for any 1 <i < j and a cycle of exact
period n4 (k) and multiplier wy for any k > J - Hence

Ag’j (u) C ﬂ Per,l!. (ua(,-)) N ﬂ Per,,k (wg(k))

1<i<j k>j
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is an algebraic curve and, by Bézout's theorem, its area is < C - d 217"/ for some
constant C depending only ond. Set Wp ) := pj o (Wlana, ;@) or Wa,, =
1o (Wlgna, ). where p;: D2¢=2 — D is the projection on the j-th coordinate.
Then the measure

/\ Weiy (Gu;) A (W;(j)(lpj) - W;(j)(gwf')) N /\ W2 ) Buy)

I<i<j k>j

is equal to
Wiy Gos = 8u)). (7.3)

on QN Ag, j(u)if j > 1, and the measure S, is itself equal to W (Ap, — 6y,)
on 2 NAg;.

7.3. Proof of (7.2): the case of arbitrary multipliers in D29-2, Agsume that ¥
is C! and test (7.3) against W. Pick any o € Stab(n, w), any 1 < j < 2d — 2, and
any u = (U4;)i<j € §j_1 (if j > 1). We continue to fix €2 as in Subsection (7.2)
and let O := W,! +o(w;)- Then

W.-Wwy (A, — 8 ‘):f (W — W(0))- W . (A,.),
/1‘\”“/_ W)NS Ag ju)\"™P w; Ao NS Ag j()\*Pj

so that by the mean value inequality:

[ YW ey~ 8))| < [ W= W)W Ohp)
Ay j(W)NQ ’ Ay j ()N

< C - [ Wlerdiam(Wy! () (D(0.p)))).

where the diameter is computed with respect to the distance induced by f and the
constant C > 0 only depends on the choice of the €!-norm. By the length-area
estimate (Lemma 2.4), we have

Area(2 N Ag,j(u)) Area(2 N Ay, j(u))
T- =71

min{1, 5 log(1/p;)} |log pj|/(2m)

diam('WX(lw an (DO, /Oj)))2 <

since WX(I,.J-(u)(D(O’ p;l)) € 'ng.j(u)(]D(O, 1)) = QN Agj(u) in Ag j(u) are
holomorphic disks and p; > 1/2. Using the Cauchy—Schwarz inequality gives

%: /Aa,j(u)nsz v err.j(u) (Ao, —8p;)

Area(2 N Ag,j (1)) 12
SC-H‘JJ”f"%:(T' llog p;|/ () )
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1/2

. 1/2
< C(ZQ: [logpjl/(Zﬂ)) (;Area(fz N Ag,j(u))) |¥]ler

1/2

1/2
SC( : ) Nim()""2 (Area(A g, ) V2| Wller.

|log pj|/(2)

so that recalling that Ny,(n) = N M{jm@) < C;d"" by Bézout’s theorem and
Area(Ag,j(u)) < C,d™="i where C;, C, > 0 depend only on d, we have

d—nj_c 1/2
g ‘/;\a,j WNe Ag j (u)( pj Pj) — 3 (I l()g 1y |/(27T)) || ”*61

where C3 > 0 depends only on d. Similarly,

d ™t 172
<C dwler.
<O(lmpam) 19

S W, (=)
Q o.1

Since the right-hand sides are independent of u and o, recalling (7.3), we have

_ 1 1/2
fm 2d—2,fm
— a2ty Wil < €y, max | ——— Wl
{ttmp — T (). ¥)| = 41§j52d—2(d"-f|10gpj|) W]l

where C4 > 0 depends only on d (and actually not on K). Hence (7.2) holds.
7.4. Proof of (7.1): the center of components. Assume that ¥ is €2 and test (7.3)
against W. Pick any o € Stab(n), any 1 < j < 2d —2, and any (4;)i<; € Sj—

(if j > 1). We continue to fix £2 as in Subsection (7.2) for a while and let O :=
w,! (0, .., 0) be the center of the disk € N A, (). Then we have
a,J

W-wr (A, — o
[Aw P Agj (u)( P )
= f (qj - "IJ(O)) : WX(,J- (u)()’ﬂj)
Ay j(W)NQ
= [ ((2) = DoW)(z — 0) = W (O)((Wa, ;) (Ap,)) (2),
Ay j()NQ
the latter equality holding by the mean value theorem for harmonic functions, that is:

f (DoW) (z — 0) - (Wa, ) (hp,)(2) = (Do) (O — 0) = 0.
Ao—‘j )N
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By the mean value inequality, we have

Ay j ()N Ao

< f W(2) — DoW)(z — 0) — W(O)| - (Wa, ) (Rp,)(2)
o ()N
< C - [ W]lea - diam(W3! ) (D(0.p))))°

where the diameter is again computed with respect to the distance induced by B
and the constant C > 0 depends only on the choice of the €2-norm. Again by the
length-area estimate (Lemma 2.4), we have

Area(2 N Ag,j (u)))

v W Ay, — 0
[Ag__,-(u)ﬂﬂ An s (Ae; = 00) |log(1/2)|/(27)

since W' w (D0, p;)) € Wy ! L. D) = Q0N Agj(u) in Ag,j(u) are
ho]omorphlc dlqkq (here, p; =1 / 2 by definition). Hence

SC-II‘I’Hfz'(T'

W Wi (Ao, —80)| < € Wl - Area(Q N A ; (1),

Ag.j ()N

where C’ > 0 depends only on d, so recalling that

ZArea(Q N Ag,j (1)) < Area(Aq,;(u)) < CypdP1=1i
Q

where C; > 0 depends only on d,

< C'Cy - |¥|e2d™"

ll} & W* ] l o 50
An,j(u)ﬂQ A”J (u)( P )

and similarly,

v W‘X{T,l (lpl o 50) < C,CI . ||lll”€2dlﬂl_”] )

Ay N2
Since the right-hand sides are independent of u and o, recalling (7.3), we have

" = 772" (p). W[ < C"Wlle2 | _max d™"
- <2ad—2

where C” > 0 depends only on d. Hence (7.1) holds. O

Remark 7.1. One cannot hope the (even qualitative) convergence jt, — pir for all
bounded DSH observables:; indeed, consider the DSH function

¢4 = min {0, max{log | Z|, —A4}/A}
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on C2472 for some A > 0, which is identically equal to O outside the ball
B(0,exp(—A)) and equal to —1 at 0. Furthermore, it is DSH and its DSH norm
can be taken arbitrarily small for A > 1. By a change of coordinates, one
can then construct a DSH function in M, which is equal to —1 at the center
of a given hyperbolic component and 0 outside that component, with arbitrarily
small DSH norm. Summing this constructions over sufficiently many hyperbolic
components, we can construct an observable ¥4 which is bounded and DSH with
{tn> W4y 7 (uvit, W4). Nevertheless, it would be interesting to find a space of test
functions independent of the choice of coordinates for which a similar statement as
Theorem 1.8 holds.

8. Distribution of hyperbolic maps in ;™

8.1. A good parametrization of !P;m. We refer to [15, §5] and [28, §2] for the
material of this section. Recall that the critically marked moduli space P;"
of degree d polynomials is the space of affine conjugacy classes of degree d
polynomials with d — 1 marked critical points in C. We define a finite branched
cover of C4—1 — PS™ as follows. For ¢ = (c1....,c4-2) € C9 2 and q € C, let

d—1
1 O )
P slE) 1= Ezd + E (—1)4~7 Udf{((:)zf +a?, zeC,
j=2 -

where o (c) is the monic elementary degree k& symmetric polynomial in the ¢;’s.
This family is known to be a finite branched cover of ;™. Remark also that
the (finite) critical points of P, , are exactly cy,c1,...,cq—p, taking into account
their multiplicity, where we set ¢y := 0, and that they depend algebraically
on (¢c,a) € C4~'. From now on, we work on the parameter space C¢~! of the
family (Pe q)(c.q)ece—1 rather than P5™ itself, without loss of generality.

The dynamical Green function of P, 4 is the continuous psh function g, ,: C —>R
defined by g¢ 4(2) := limy_oo d " log™ | P2, (2)], z € C, where the convergence
is locally uniform in (c,a,z) € C%. For any 0 < j < d — 2, the function
gj(c,a) := g¢alcj) is psh and continuous on C9-1 and, setting T; == dd*°g;,
wehave dd“L =} ; Tjand T; AT; = 0.

In this family it is now classical to define the bifurcation measure on Cd-1
as a probability measure fLyi := /\‘;‘:ﬁ T; = ﬁ(dch)d—l on C?=1. Then
supp Mwir i8 compact and coincides with the Shilov boundary of the connectedness
locus

€1 :={(c,a) € a1 g p.., is connected} = {(c.a) € e max g;(c,a) = 0}.
J



392 T. Gauthier, Y. Okuyama and G. Vigny CMH

For any n € N*, we set

n
Dy = (—)dk;
n qu k
kln
d" = Y yn Dk by Mobius inversion, and D, = d, — 1if n = 1 and D, = dy
ifn > 2.
For any n € N*, the n-th dynatomic polynomial of P, , is defined as

B ( Py 2) = l_[(Pck,a(Z) o Z)M("/k),
kln

and forany 0 < j <d — 1 and any n € N*, we set
Per; (n) := {(c,a) eE—l . @ (Pra.Ci) = O}

(cf. Subsection 6.4 for M3"). The variety Per;(n) is an algebraic hypersurface
of C4=1 of degree D, (and of degree d, for n > 2) and is contained
in {(c,a) e C41; g..(cj) =0}. Moreover, the following holds (see [22,
Theorem 6.1]).

Theorem 8.1. Foranyn = (ny,...,ng_2) € (N1 satisfying min; n; > 1 and

any (c,a) € ﬂ?;(l) Per(n ;) such that P. 4 has only simple critical points in C, the
(d — 1) hypersurfaces Per j(n ;) are smooth and intersect transversely at (c, a).

Pick any n = (ny,...,ng—s) € (N*)¥~1. We say a hyperbolic component F
in C4=1 (or the family (Pe.a)(c.a)eca—1) to be of (disjoint) type n if for every
(c,a) € H, P., admits d — 1 distinct attracting cycles of respective exact periods
ng,...,nqg— inC. Then all critical points of P, 4 in C for (¢, a) € J¢ are simple. For
each(0 <i <d —2,weletw;(c,a) € D be the multiplier of the attracting cycle that
has exact period n;. In this way we get a holomorphic map W = Wy: # — D41
defined by

W(c,a) = (wo(c,a), .. .,wd_z(c,a)), (c,a) € Jt.

The following (see [22, Theorem 6.8]) will also be useful in the sequel.
Theorem 8.2. The map W: H — D=1 is a biholomorphism.

8.2. Counting hyperbolic components of disjoint type. As in the case of rational
maps, we denote by Ng(n) the number of hyperbolic components of type n =
(no,...,ng—2) in the family (Pc o) gyeca—1- When nj # ng for all j # € and
nj > 1 for all j, we have Np(n) = (d — 1)! - d},|. This result is an immediate
consequence of Theorem 8.2. Indeed, all such comp(_)nents contain one postcritically
finite parameter, counted with multiplicity, and all of them are contained in C4. The
result follows from Bézout’s theorem and the fact that deg(Per; (n;)) = dp ;.
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Our aim here is to give a good generalization of the above statement, including
the case when n; = ny for all j,£. The first observation is that any hyperbolic
component # in C4~" of type n is contained in the compact set €;. We rely on the
following lemma, which is an immediate adaptation of Lemma 6.4 (hence we omit
the proof).

Lemma 8.3. For any p € 10,1[7! and any n = (ny, ....ng—p) € (N*)41 with
minj n; > 2, the measure Tnd_l(p) has full mass on the union of all hyperbolic
components Q. C €y such that for all (c,a) € £, P. 4 has d — 1 distinct attracting
cycles in C of respective exact periods ng,...,ng—o. Furthermore, it gives mass
#Stab(n)/d,,| to each of those components.

Here is the precise statement.

Theorem 8.4. There exists a constant C > 1 depending only on d, such that for any

n=(ng,...,H4—3) € (N"‘)“L1 with min; n; > 2, we have
o<1 HSEDE) Nol) _ o 0an)
(d—l)!-dw 02 f=zd—g "
Proof. Pick any n = (ng,....nq—2) € (N*)4~! with min; n; > 2. Set p =

(1/2,...,1/2), and pick a smooth cut-off function W on C4~! such that ¥ = 1
on €;. Applying Theorem 1.1 yields

- _ " oa(n;)
(T8 (p). W) — ((dd° L)', w)| = Cl[Wlpsu | max_ o

where C > 0 only depends on supp(W) and d. As seen in the previous Subsection,
we have ((dd€L)?~1, W) = (d —1)!, and by Lemma 8.3 and supp(7,4~! (p)) C €y,

_ #Stab(n)
(T4 (p), W) = B W No(n).
- |n|
Now the proof is complete also by Ngp(n) < dj, /#Stab(n). ]

Remark 8.5. This result is coherent with the above remark concerning the case
nj # ng for all j # £, since in that case, Stab(n) = {id}. The above statement can
also be interpreted as follows; the number of posicritically finite parameters for which
all critical points are periodic with prescribed exact periods ny, ... ,n4_» > 2 and at
least 2 critical points lie in the same super-attracting cycle, counted with multiplicity
of intersection of the Per jy(n;) for all T € S4_y, is bounded from above by
Cmaxj<g_(o2(nj;)/d")- d'"!. This is a much better estimate than the one we can
obtain by naive arguments. Indeed, without taking the multiplicity into account we
can naively get a bound from above of the form Cd!2=™% %i/2 max ;.4 5 n;, see
e.g. the proof of the upper bound on Card(Y, \ Z,) in the proof of Theorem 6.8.
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An immediate application of this theorem is the following:

Corollary 8.6. For any integer n > 2, we have

Np(n,...,n)
0<l———=
B (dn)?1

where C > 1 is given by Theorem 8.4. In particular,

02(7’1))’

SC( dn

Npn,...,n) o2(n)
e ¥1+0( T

Proof. In the present case, we have #Stab(n,....n) = (d — 1)! and d|,, .. n) =
(d.)?~". Since py; is a probability measure, the result follows from Theorem 8.4
above. L1

), as n — oo.

Remark 8.7. In fact, we have proved that, counted with multiplicity, the number of
intersection points of the Per; (n) for which at least two critical points lie in the same
periodic orbit is bounded from above by a constant times o, (n)d ¢ =2

8.3. Distribution of polynomials with (d — 1) attracting cycles. Pick n =
(no. ..., ng—z) € (N*)4=1 with min; n; > 2 and w := (wy, ..., wy_s) € D41,
As in the case of rational maps, we let C, 4y be the (finite) set of parameters
(c,a) € C4~1 such that P. 4 has d — 1 distinct attracting cycles in C of respective
exact periods nyg, ..., nz_» and multipliers wy, ..., wz_». We also let

#Stab(n, w) Z

nw = ——— S(c.a)-
T @D, o

a)eCp w

The only modification from the case of rational maps is the multiplication by 1/(d—1)!.
From the normalization ppir = (dd€L)?~1/(d — 1)!, we see easily that this factor
should also appear in the definition of v, ,,. An argument similar to that in the proof
of Theorem 1.8 gives the following. o

Theorem 8.8. There exists a constant C > 0 depending only on d such that
(1) forany We€X(C9 Yy and anyn = (ny, ..., ng—p) € (N*)4~1 with min, n; >2,

‘[ Vo —f W pepif
Ccd—1 Ccd—1

(2) for any ¥ € ‘661(((3‘1_1), any w = (wo,...,wg_3) € D4 and any n =
(s -+ ng—3) € (N*)¥~1 with min; n; > 2,

‘f W, —] W g
cd-1 - cd—1

<C max {(‘—II)”Z,(”2(”"))”2}||wue'-

o<j<d—2 (\d" log|w, dri

(290 ez,

<C max
0<j<d-—-2

IS
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Remark 8.9. The key difference with the case of the moduli space M, of degree d
rational maps is the existence of a universal constant C > 0. This is a consequence of
the fact that C, 4, U supp(upir) C €4z, which is compact in C41 for all n and all w.
This compactﬁe_ss property implies the existence of a universal constant C; > 0 in
the conclusion of Theorem 1.1 in the family (Pe,q) (¢ g)ecd—1-

We now come to our last result in the spirit of Theorem B of [28]: forany n € N*,
we want to prove the measure equidistributed on parameters (c, a) € C¢~1 satisfying
cj € Fix*(P?,) forany 0 < j < d — 2 converges towards the bifurcation measure,
with an exponential speed of convergence.

Corollary 8.10. There exists a constant C > 0 depending only on d such that for
any integer n > 2 and any W € €2(C4™"), we have

d—2

1
'W ,/([jd] \I’j/:\0 [Perj(”)] — [Cd—l W iy

a2(n)
d"

<C- N¥lez.

Proof. For any integer n > 2, we have /\f;(z)[Perj (n)] = (d,,)d_lu,,,(g,.__,o), so that
we can directly apply Theorem 8.8. ]
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