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Hyperbolic components of rational maps:
Quantitative equidistribution and counting

Thomas Gauthier,* Yûsuke Okuyama** and Gabriel Vigny*

Abstract. Let A be a quasi-projective variety and assume that, either A is a subvariety of the
moduli space Md of degree d rational maps, or A parametrizes an algebraic family (fx)xe a
of degree d rational maps on P1. We prove the equidistribution of parameters having p distinct
neutral cycles towards the bifurcation current T^f letting the periods of the cycles go to oo, with
an exponential speed of convergence. Several consequences of this result are:

- a precise asymptotic of the number of hyperbolic components of parameters admitting 2d —2

distinct attracting cycles of exact periods n \ n2d-2 as min/ n / —»• oo in term of the mass
of the bifurcation measure and compute that mass in the case where d 2. In particular, in M(/,
the number of such components is asymptotic to d"1 f"2^-2

; provided that miny n j is large
enough.

- in the moduli space !P(i of polynomials of degree d, among hyperbolic components such that
all (finite) critical points are in the immediate basins of (not necessarily distinct) attracting cycles
of respective exact periods n 1,..., np—\, the proportion of those components, counted with
multiplicity, having at least two critical points in the same basin of attraction is exponentially
small.

- in M(i, we prove the equidistribution of the centers of the hyperbolic components admitting
2d — 2 distinct attracting cycles of exact periods n\,...,ti2d—2 towards the bifurcation
measure //.bit with an exponential speed of convergence.

- we have equidistribution, up to extraction, of the parameters having p distinct cycles of given
multipliers towards the bifurcation current Tbr'f outside a pluripolar set of multipliers as the
minimum of the periods of the cycles goes to 00.

As a by-product, we also get the weak genericity of hyperbolic postcritically finiteness in the
moduli space of rational maps. A key step of the proof is a locally uniform version of the

quantitative approximation of the Lyapunov exponent of a rational map by the log' of the moduli
of the multipliers of periodic points.
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î. Introduction

For a holomorphic family (/a)asA of degree d > 1 rational maps on the Riemann

sphere P1 parametrized by a quasi-projective variety A, the bifurcation locus
of (/a)aea on A is the J-unstability locus in the sense of Mane-Sad-Sullivan,
i.e., the closure of the set of all parameters in A at which the Julia set of fx
does not move continuously. It is now classical that this set is nowhere dense in A
and admits several distinct topological descriptions, such as the closure of the set

of parameters for which fx admits a non-persistent neutral cycle or the existence
of an unstable critical dynamics (see e.g. 131, 33,36]). From now on, pick any
integer d > 1.

On the other hand, any (individual) rational map / of degree d on P1 admits
a unique maximal entropy measure ///, whose support coincides with the Julia
set f,f of /, and the Lyapunov exponent of / with respect to /iy is defined by

L{f) := /pl log I and satisfies L{f > | log d > 0. For a family (fx)xeA,
the induced Lyapunov function L: X G A —^ L(fx) e M is p.s.h and continuous on
the parameter space A. We can define the bifurcation current of fx)XeA on A as

the closed positive (1, l)-current

Tbif i d t/' L.

By DeMarco [11], the support of ddcL coincides with the bifurcation locus of
the family (fx)xeA- For any integer 1 < p < dim A, Bassanelli and Berteloot
also defined the p-bifurcation current T£{ as the p-th exterior product of Wbif.

It is a positive closed current of bidegree (p, p) so the bifurcation measure

ptbit := (ddcL)d'mA is a positive measure on A. If p > 1, the current T^f detects,
in a certain sense, stronger bifurcations than T^t '/*/ [1 ]. Indeed, its topological
support admits several dynamical characterizations similar to that of the bifurcation
locus: for example, it is the closure of parameters admitting p distinct neutral cycles
or p critical points preperiodic to repelling cycles (see 114,24|).

The group PSL2(C ofMöbius transformations acts on the space Rat(/ of degree d
rational maps on P1, which is itself a holomorphic family of rational maps, by

conjugacy. The moduli space Mci of degree d rational maps on P! is the orbit
space of PSL2(C) in Rafi/, that is, the quotient of Rat^ resulting from this action of
PSL2(C). It is an irreducible affine variety of dimension 2d —2, and is singular if and

only if d > 3 (Silverman |44|). The Lyapunov function / i->- L(/)onRat^ descends

to a continuous and psh function X: Mj -» ®L For any integer 1 < p < 2d — 2, the

/»-bifurcation current on Mj is thus given by T^f := [ddcX,)p, and the bifurcation
measure on is by

Abif := T^~2 (ddcX)2d~2,

which is a finite positive measure on Mj of strictly positive total mass (see [ 11).
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One of the features of the bifurcation currents is to give measurable statements

of the above density, or in general, accumulation properties. Let us be more precise.
Let A be a quasi-projective variety such that, either A c M.ci, or parametrizing an

algebraic family (/a)asa of degree d rational maps on P1. For any ne N* and any
w e C \ {1}, let Per,, (w) be the analytic hypersurface

Pern(w) := {A e A : /a has a cycle of multiplier w and the exact period n}

in A and denote by [Per„(u>)] the current of integration over Pcr„(i/;) on A. Since A
is quasi-projective, the hypersurfaces Per„ (w are actually algebraic hypersurfaces
of A (see e.g. [2]). By Bassanelli and Berteloot [2], the sequence (d~n\?txn(w)])
weighted by the Lebesgue measure on the disk of center 0 and radius | w | converges
towards the bifurcation current 7^. Similar dynamically significant equidistribution
properties towards the bifurcation current have been recently established in various

contexts, as general holomorphic families of rational maps [3,15,37] or moduli spaces
of polynomials 17,25],

The proofs developed in op. cit. do not allow establishing equidistribution
phenomena towards the bifurcation measure /xbif. Indeed, any of the above

convergences obtained is essentially L'()C convergence of the potentials of currents,
which does not guarantee continuity of the intersection.

One of the main purposes of the article is to prove the equidistribution of
parameters having p non-repelling cycles towards the bifurcation current Tbff as

the minimum of the periods of those cycles goes to oo, with an exponential speed

of convergence. We will then deduce several important consequences, notably in

counting hyperbolic components of disjoint types in Mj. Notice that such counting
results are of combinatorial and algebraic nature and have a priori no relation to
bifurcation measures. Furthermore, they are the first general results in that direction
so far.

Notations. Let//,: N*—>• {— 1,0,1} be the Möbius function. Define the sequence (dn
in N* by

dn := + 1) G N*,
m\n

or equivalently dn + 1 Ylm\„ dm for any n e N*, so that dn dn + 0(dn'2)
as n -> oo. For any p e N*, any n {n\,... ,np) e (N*)^, and any p

(pi, pp) e ]0, 1]^, we set \n\ := J2j=i nj> so lhat FIy i d"J ar"f. in a

similar way,
p

d\n I •= I I dj.
7 1

For any i e {0, 1,2} and any n N*, we also set a; («) := m' ' so 'n particular

a0 <oi < a2 on N* (beware that (r2(n) < Cn2 log log« for some constant C).
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For any n (n\ n2d-i) £ (N*)2rf~2 and any w (uq w2d-2) e
C2d~2, let Stab(«) (resp. Stab(«, w)) be the set of all permutations of the indices

{1,2,... ,2d —2} that do not change the ordered (2d — 2)-tuple (n\ «2^-2) e

(N*)2^2 (resp. (Xni,Wi),...,(n2d-2,w2d-2)) e (N* x <C)2d~2), so in particular
#Stab(n, w) < #Stab(«) < (2d — 2)1.

For r > 0, we set Dr {|z| < r}, so that 3Dr §r {\z\ r}.

Statement of the main results. Let A be a quasi-projective variety either such that
A C Md, or parametrizing an algebraic family (fx)xeA of degree d rational maps
on P1. We refer to [9] for basics on positive closed currents and intersection theory
on algebraic varieties.

For any integer 1 < p < min{dim A, 2d — 2}, any n (n 1,..., np) 6 (N*)'p,
and any p (p\ pp) ]0, \}p, the following positive closed current

T»(p) := 7" / A [peT»Mei6j)f6l2"vP 0-D
" «|«| J[0,2jt]p j=\ (27t)P

on A is well-defined, and coincides with A/=i A/, 7,/) by the Fubini theorem (see

e.g. [2]). We say a form on A is DSH if ddCx\> T+ — T~ for some positive
closed currents T± of finite masses on A. We refer to §2.1 for the precise definition
of the semi-norm H^H^h-

One of our principal results is the following.

Theorem 1.1. Let A be a quasi-projective variety which either is a subvariety in Md
or parametrizes an algebraic family fx)AeA of degree d rational maps on P1.

Then for any compact subset K in A, there exists a constant C(K) > 0 such that

for any integer 1 < p < min{dim K,2d — 2}, any n (n\, np) (N*)^,
any p --- (p\,..., pp) ]0, l]^, and any continuous DSH-form of bidegree
(m — p, m — p) supported in K, we have

I{Tf(p) ~ Kfi>)| < C(K) max^ ((l + | logpj 1)^^) ' II^IIdsh-

We first prove this theorem in the case where p 1. To do that, we show
in Section 3 a locally uniform version of the second author's result [38] on the

quantitative approximation of the Lyapunov exponent of an (individual) / e Rafi/ by
the average of the logs of the moduli of the multipliers of all non-attracting «-periodic
points of / (Lemma 3.3). This leads to an error term on the proximity between fn (c)
and c for each critical point c of / and an error term on how close to 0 the multipliers
of the periodic points of / are. To control those terms, we use a parametric version

of a lemma of Przytycki [42, Lemma 1] proved by the first and third authors in [28].
Intersection of currents and integrations by parts lead to the result for any p.
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Theorem 1.1 is proved in Section 4 and has the following consequence.

Corollary 1.2. Let A be a quasi-projective variety either such that A C Md, or
parametrizing an algebraic family (fx)xeA of degree d rational maps on P1. Pick

an integer 1 < p < min jdim A, 2d — 2}. Then for any sequence («k)keN* °f
p-tuples nk («i jt- Hp x) in (N*)^ such that f2k max/(nj\) < oo, there

exists a pluripolar subset 8 in Cp such that for any w (w \ wp) G <CP \ 8,
nf=1 Per«, k (tu,) is ofpure codimension p in A for any k £ N* and

in the weak sense ofcurrents on A.

The techniques used in the proof of Corollary 1.2 also give that the current
equidistributed on the set of parameters having p cycles of respective exact periods
n np£ and multipliers w\,... ,wp distributed by a PB measure on (P1)1'

converges towards the bifurcation current Tj^f when k —> oo, with the best possible
order estimate 0(m&Xj(n~j1)) as min/(«_/) —»• oo. (see Theorem 4.2 below).

Remark 1.3. Let us also observe that, as in [2], Theorem 1.1 gives another proof of
Shishikura's upper bound 2d —2 of the number of distinct cycles of Fatou components
of a given rational map of degree d is sharp (see [431). In fact, provided min, n j
is large enough, we can construct a rational map having 2d — 2 distinct attracting
periodic points of respective period nj (we no longer need to take a subsequence and

have no arithmetic restrictions on the periods).

Now let us focus on the moduli spaces of rational maps and hyperbolic
components. Recall that the hyperbolic locus in Md is the set of all conjugacy
classes of hyperbolic maps that are uniformly expanding on their Julia sets. It is an

open subset of Md and a connected component of this hyperbolic locus is called a

hyperbolic component in Mj.
Definition 1.4. A rational map / G Rat,/ is said to be hyperbolic of type n

(n i,..., n2d-2) £ (N*)2rf-2 if / has 2d — 2 distinct attracting cycles of respective
exact periods n\,... ,n2d-2 A hyperbolic component in Md is said to be of
type n G (N*)2^-2 if, for any [/] e £2, / is hyperbolic of type n. A hyperbolic
component in Md is of disjoint type if it is of type n for some n e (N*)2</_2.

Definition 1.5. For any n {n\ n2d-2) G (N*)2^-2, let N(n) denote the

number of hyperbolic components of type n in Md.
A striking application of Theorem 1.1 is the following asymptotic on the global

counting of hyperbolic components of disjoint types.

Theorem 1.6. As min7 nj -> +oo,

#Stab(n) • f /ibif+ o(max(°^"^)).
d\n\ Jmj \ j \ dnJ JJ
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In particular, N(n) > 0 if minjUj is large enough. Theorem 1.6 gives a

combinatorial interpretation of the mass of the bifurcation measure. In the case d 2,

as a consequence of Theorem 1.6 together with the precise estimates of N(n i, n2)
by Kiwi and Rees [30], we can determine the (total) mass of the bifurcation measure

on M2.

Corollary 1.7. Let <p be the Euler totient function on N*. Then

In the proof of Theorem 1.6, it is crucial that the estimate in Theorem 1.1 involves

only the DSH-semi-norm || • ||pSH of the observable. Notice also that the mass

of a limit of positive measures is not greater than the limit of the masses, so it
could be possible that a proportion of components is lost passing to the limit as they
would accumulate at the boundary of the moduli space. Theorem 1.6 says that it
is not the case. The proof of Theorem 1.6 also relies crucially on the fact that the

multipliers of attracting cycles parametrize the hyperbolic components of disjoint
type of Mj. Though this is essentially classical, there seems to be no available

proofs in the literature so we include a proof of it in Section 6.2. The proof relies

on the transversality of periodic critical orbit relations, which we show in Section 5,

following the argument of Epstein [6,20].
It is comparable to the common situation in dynamical systems where the existence

of e.g. repelling periodic orbit of large period follows from an equidistribution
property, see [4,5] for holomorphic endomorphisms on Pfe.

As a consequence of Theorem 1.6, we also establish the weak genericity of
hyperbolic postcritically finite maps in Mj (see Theorem 6.6 below), which is

stronger than the Zariski density of such maps in Mj
We finally establish a quantitative equidistribution of parameters in hyperbolic

components in of disjoint type, having given multipliers. For any n —

(«1,... ,n2d-2) e (N*)2</~2 and any w (wi w2ä~2) D2(/~2, let
denote the (finite) set of all conjugacy classes [ /'] of hyperbolic rational maps

/ e Ratrf of type n whose attracting cycle of exact period n j has the multiplier wj
tor any 1 < j < 2d — 2, and set

For simplicity, we denote Crti(0;...;o) and /x„;(0,...,o) by Cn and /in, respectively, so

that any element in Cn is the center of a hyperbolic component in Mj of type n.
The following in particular implies the weak convergence nn,w —>• yu-bif on Mj,

which is even new and it was one of our motivations to give a proofof this convergence.
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Theorem 1.8. For any compact subset K in Mj, there exists Ck > 0 such that:

(1) for any test function 4* '2(M(i) with support in K and any n (N*)2''-2,

\{fin - Mbif, *>| < CK •

x jnax_2 11^11^2,

(2) for any test function 4* G 'C1 (-Mj) with support in K, any n e (N*)2rf-2, and

any w (un w2d-i) e ID'2''-2,

I I / — 1 o~2(n j) \ '/2
\{Fn,w ~ Mbit, 4/ < CK max (——— -, —— • 4>ei-
1 - - 1

l<j<2d-2 \dnJ log |u>y| dnJ /

Observe that an interpolation between Banach spaces gives a speed ofconvergence
for any f?" -observable with 0 < a < 2 in the case of centers and 0 < a < 1 in

general.
Even though Theorem 1.8 looks very close to known qualitative/quantitative

equidistribution results for holomorphic/anti-holomorphic polynomial families, e.g.,
[22,23,27,28,39], the compactness of the support of the bifurcation measure was

a crucial point in those earlier works. Such a compactness is not the case for Mj.
It might also be worth stressing that in [28], the first and third authors considered
the currents of bifurcation Tc of marked critical points c so were looking at unstable

critical dynamics. Although it seems to be similar, here we study directly the

bifurcation current 7bif so the unstability of cycles (see the introduction of [2]).
A feature of that approach is that we don't need the nj to be distinct, which was

necessary in the above works.
Section 8 is devoted to the study of the moduli space -Ff" of critically marked

degree d polynomials where we give various results similar to those previously
proved.

To finish, let us mention that, as an application of our approximation formula of
the Lyapunov exponent, we give a proof of the estimate of the degeneration of the

Lyapunov exponent of / as / —9 Rat,/ along a punctured analytic disk in the spirit
of [21] (see Theorem 3.6).

Acknowledgements. We would like to thank the anonymous referee for very careful

scrutiny and helpful comments and suggestions.

2. Preliminaries

2.1. Currents and DSH functions. We refer to [ 18, Appendix A] for more details

on currents and DSH functions. Pick any quasi-projective variety A. Let ß be the

restriction of the ambient Fubini-Study form to A. For any positive closed current T
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of bidimension (k,k) defined on A and any Borel set A C A, we denote by ||r||^
the number

This is the mass of the current T in A. We simply write |T|| for || T || a •

Let 4/ be an (f, ()-form in A. We say that 4* is DSH if we can write ddc4*
T+ — T~ where T± are positive closed currents of finite mass in A. We also set

where T± ranges over all closed positive currents such that ddcA> 7'1 — 7" (note
that ||T+|| ||7"~|| since they are cohomologous).

This is not exactly the usual DSH norm but just a semi-norm. Nevertheless, one
has IMIdsh < II^IIdsh, where ||4>||DSH := ||4^||*SH + H^ll/P- The interest of those

DSH-norms lies in the fact that they behave nicely under change of coordinates.

Furthermore, when 4> is G2 with support in a compact set K, there is a constant
C > 0 depending only on K suchthat ||4>||Dsh < C||4r||e2.

2.2. Resultant and the space Rat,/. We refer to [1] and [44J for the content of this

paragraph.

Notations. Letjr:C2\{0} -> P1 be the canonical projection, || • || be the Hermitian

norm on C2, and set (z0, z\) A (w0, w\) := z0w\ — ziw0 on C2 x C2.

Pick an integer d > 1. A pair F (7q, F2) e C[x, y\d x C[x, y]d ~ C2d+2 of
homogeneous degree d polynomials can be identified with a degree d homogeneous

polynomial endomorphism of C2. The homogeneous resultant Res Resj is

the unique homogeneous degree 2d polynomial over Z in 2d + 2 variables such

that Res(A) 0 if and only if F is degenerate, i.e. F_1({0}) 7^ {0}, and

Res((xrf, yd)) 1. We thus identify the space of all degree d non-degenerate

homogeneous polynomial endomorphisms of C2 with <C2d+2 \ {Res 0}.

A rational map / on P1 of degree d admits a (non-degenerate homogeneous

polynomial) lift, i.e. there exists a degree d homogeneous polynomial endomorphism
F: C2 -» C2 such that Res(F) ^ 0 and that n o F / o n on C2 \ {0}. Moreover,

any two homogeneous polynomial endomorphisms F, G of C2 are lifts of the same /
if and only if there exists a e C* such that F a G. Let us denote by Ratj the

set of all degree d rational maps on P1. Since Res is homogeneous, we can also

identify Rat,/ with IP2rf+1 \ {Res 0}. In particular, it is a quasi-projective variety
of dimension 2d + 1.

II4/IIoSH := inf(l|7T+|| + ||T"||),

2.3. The dynamical Green function of a rational map on P1. In the whole text,

we denote by cups the Fubini-Study form on P1 normalized so that ||û>fsII 1 and
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by [•, •] the chordal metric on P1 given by

[z,w] |z0h>i - wiz0|/(v/|zo|2 + |^iI2 V|u;oI2 + |wi|2)

for any z [z0 : z\], w [it>o : if i] G P1, so that diamCP1) 1 and for any w,
ddcz log[z, if] Sw - ct>pS.

For any cups-psh function g on P1, i.e. such that

£dfs + ddcg =: vg

is a probability measure on P1, we define the g-kernelfunction 9>g by setting

0>g(z, w) := log[z, w] - g(z) - g(w) (2.1)

onP1 xP1. For a probability measure v' on P1, set Ugy := fpl <S>g •, w)dv'(w)
on P1. Then ddzUgy v' — vg, so in the particular case where v' vg, we
deduce that

fJg,vg Ig I ®g(vg x vg) on P •

Jp'xpl
Pick now / G Ratrf. For all (non-degenerate homogeneous polynomial) lift

F: C2 —C2 of /, there exists a Flölder continuous cups-psh function gp'- P1 —* K
such that

logHFnll „ „hrn — log || • || gf o n
n->oo an

uniformly on C2 \ {0}, which is called the dynamical Green function of F on P
Since F is unique up to multiplication by cr G C * and#œ.,F gF + (log M)/(r/ — 1)

for any a G C*, the positive measure

tups + ddcgF =: il f
is independent of the choice of F, and is in fact the unique maximal entropy measure
of / on P1. For later use, we point out the equality

1

d(d~- 1)
he ~~77j 77 loS lRes(F)|,

which is (a reformulation of) DeMarco's formula [10, Theorem 1.5] on the

homogeneous capacity of the filled-in Julia set of F in C2.

Definition 2.1. The dynamical Green function g/ of / on P1 is the unique cups-psh

function on P1 such that fig/- /r/ on P1 and that Igf =0.
Remark 2.2. In particular, Ug f4lf Igf 0 on P1. Moreover, gp gf for
some lift F of /, which is unique up to multiplication by a complex number of
modulus one.
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2.4. The dynatomic and multiplier polynomials. We refer to [45, §4.1 ] and to [2,

3,34] (see also [22, §6]) for the details on the dynatomic and multiplier polynomials
and the related topics.

Pick any / G Rat,/. For every » G N*, let

- Fix( fn) be the set of all fixed points off in P1, and

- Fix*(/") the set of all periodic points of / in P1 having exact period ».

The n-th dynatomic polynomial of a lift F of / is a homogeneous polynomial

0*(F. (z0,z0) := Yl(F*(z0,z1)A(z0,z1))Mn/k)
k\n

in z0,zi of degree dn\ there is a (finite) sequence (Pj"^) je{i,...,dn} in \ W
such that we have a factorization 4>*(F, (zo,zi)) FIy=i((zo,fo) A pjn)), and

setting z'"^ : - n{P^) G P1 for each j G {1,, dn}, the sequence {z^)d"=l is

independent of the choice of { P(jn">)je{\,...,dn} and that of F, up to permutation.

We recall that the set {z^ : j e {1, ,dn}} is the disjoint union of Fix*(/")
and the set of all periodic points z of / having exact period m < n and dividing n

and whose multiplier (/m)'(z) is a n/m-th primitive root of unity. In particular,

(fnY(z) 1 for every z G {z^n) : j g {1 dn}} \ Fix*(/'!), and for every

z G Fix*(/"), we have #{/' G {1 dn} : z("^ z} 1 if (fn)'(z) ^ 1- F°r
every n G N*. the »-th multiplier polynomial of / is the polynomial

Pn(I IV) := (n ((/")'(4n)) - w))
'

(2-2)

in w of degree d„/n, which is unique up to multiplication in n-th roots of unity.
Let A be a quasi-projective variety parametrizing an algebraic family (/a)asA of

degree d rational maps on P1. Then for any n G N*, the n-th multiplier polynomial
pn: A x C —> C of (fx)xeA defined by

pn(X,w) := p„(fx,w)

is holomorphic, and since A is a quasi-projective variety, this pn: A x C -g- C

is actually a regular function with degw(pn(\, w)) dn/n for all A G A and

with degA(/>„(À, w)) < Cdn for all in G C, where C > 0 depends only on the

family fx)xeA, see e.g. [3, §2.2]. For any » G N* and any w G C, we set

Per„(j») := {A G A ; pn(X,w) 0}

and denote by [Per„(u;)] the current of integration defined by the zeros of pn( w)
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on A. Remark that for all w £ C and all n £ N*, since deg^(/?„(A, w)) < Cdn, we
have

-L||[Per„(u;)]|| < C. (2.3)
dn

Beware also that, since the existence of a cycle of given period and multiplier is

invariant under Möbius conjugacy, the n-th multiplier polynomial pn\ Rat^ xC —* C
of Rat^ also descends to a regular function pn : Mj x C —> C, enjoying the same

properties.

2.5. A parametric version of Przytycki lemma. For a "C1 map / : P1 - -> P1, the

chordal derivative f# of / is the non-negative real valued continuous function

/ 00 := hm
[z,y\

on P1. For any rational map f £ Rafo, we set

M(f) := sup{f*)2 £ ]l,+oo[.
pi

We shall use the following, which is a direct consequence of [28, Lemma 3.11 and of
the fact that the spherical and the chordal distance are equivalent on P1.

Lemma 2.3. There exists a universal constant 0 < k < 1 such that for any
holomorphic family (fx)xea °.f degree d rational maps with a marked critical
point c: A —> P1 which does not lie persistently in a parabolic basin of f\ and
is not persistently periodic, the following holds: for any n £ N* and any X £ A,

if f"(c(A)) f c(A), then:

- either [f£(c(X)), c(A)] > k M{ff)~n,

- or c(A) lies in the immediate basin of an attracting periodic point z(X) of fx of
period dividing n, [c(A), $x\ > KM(fx)~n, and2[ff(c(X)),c(X)] > [z(A),c(A)].

2.6. A length-area estimate. The modulus of an annulus A conformally equivalent
to A! {z £ C ; r < \z\ < R} with 0 < r < R < +oo is defined by

1 / R \
mod(A) mod(A') — log^—j.2tt

We shall use the following classical estimate ([4, Appendix]).

Lemma 2.4 (Briend-Duval). There exists a universal constant r > 0 such that for
any quasi-projective variety A, any Kahler metric co on A and any pair of relatively
compact holomorphic disks If <ê D2 in A, so that D2 \ D\ is an annulus, we have

<a- trsw2^ AreaM(D2)
(diamtù{Dx)Y < r •

min(l, mod(£>2 \ Di))
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3. Quantitative approximation of the Lyapunov exponent

Our precise result here can be stated as follows. This result relies on the combination
of the arguments used in [38] as developed in Lemma 3.4 below and of the lemma
"à la Przytycki" proved in [28]. The locally uniform speed of convergence obtained
here is not as fast as the pointwise one obtained in [38]. This is due to our need to
control the dependence of the constants on f e Rat,/ in the right-hand side. Here

we obtain a continuous dependence.

Theorem 3.1. There exists A > 1 depending only on d such that for any r G ](), 1],

any f G Rat,;, and any n e N*, we have

I r^n do
— / \og\pn(freW)\— -L(f) < A(C([f}) + I logr|)
an Jo ^

g2Q)
d"

''

where C([ /']) inf{log(supPi /*) + supPi |g/, |}, where the infimum is taken over
all f\ G [/] and where gy, is the dynamical Green function of f\ normalized as

in §2.3.

Of course, as the left-hand side of the inequality is invariant under Möbius

conjugacy, it is sufficient to prove that for any 0 < r < 1, any n G N* and any

/ G Rat,/, we have

1 C^n d0
loë \Pn(frei6)\- L(f) < /I (log (sup /#)+sup |g/| + | log r |)

an Jo zn pi pi

n2(n)
dn

for some constant A which depends only on d.

So we pick / G Rat,/. In the following, the sums over subsets in Crit(/),
Fix(/"), or Fix*(/") take into account the multiplicities of their elements. For

any n G N*, the cardinality of Fix(/n) and that of Fix*(/") are dn + 1 and dn,

respectively, taking into account of the multiplicity of each element of them as a fixed

point of /".
A non-quantitative version ofTheorem 3.1 can be shown using the equidistribution

of repelling cycles towards /z/ and Pesin theory (both arguments being non-

quantitative [3]). We instead use formula (3.1) to relate the multiplier of a «-periodic
point with the distance between its orbit and the critical set (Lemma 3.2). Summing
over all «-periodic points, we show we can control the left-hand side in Theorem 3.1,

using Lemma 3.3, with the difference between the logarithm of [/"(c), c\ for all

critical points c and the logarithm of the multipliers. We then use Lemmas 2.3

and 3.5 to control that difference and Fatou's inequality to bound the cardinality of
attracting periodic orbits.
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3.1. Relating multipliers with the distance between cycles and critical points.
Recall that, by [38, Lemma 2.4], we have

log(/#) L(/)+ ^ +2(gf o f - gf) on P1 (3.1)

ceCrit(/)

This formula plays a key role in the proofs of Lemma 3.2 and 3.3.

Lemma 3.2. Assume that f has no super-attracting cycles. Then for any n e N*
and any z 6 Fix(/"), we have

1
«—I

-j E 5^i°g[/',(z)'c]-iog|(/,,),(z)|
ceCrit(/) j=0

where B\{f) := L(f) + 2(2d -2)supPi \gf\.

Proof. By (3.1) applied to /", we have

log((/")#) L(/") + ^/n(-,c) + 2(g/« of" -gfn)
csCrit(/")

« • L(f) + £ (I] /, • mj) ((/7')^c)(tc))
c6Crit(/) y=0 '

+ 2(g/ o /" - g/)

on P1. By [40, Lemma 3.4], for every a P1,

[ <S>gf(.,w)(f*8a)(w) Qgf(f(-),a) on P1.
dp1

In particular, for every z 6 Fix(/"), since (/")#(z) |(/")'(z)|, we have

—log I cfny(z)\ L(f)+ J2
ceCrit(/) " y=0

which with the definition (2.1) of the gy-kernel function 4>„ f completes the proof.

3.2. Reduction to the critical dynamics. For any ne N* and any 0 < r < 1, we
set

L,.„. - _ ,-<K,de1 c

Z(f)-=T / l°s\Pn(f,rei9)\
an JO 2TT
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If / has no super-attracting cycles, for any m,n G N* with m\n and any r G ]0, 1],

we set

tt/n,« (f '
dm + 1 E l"8[/"(0,c] - E il°8|(/")'W|)

ceCrit(f) zeFix(/m)
|(/")'(z)|<r

um,m(f,rm'n).

Lemma 3.3. If f has no super-attracting cycles, then for any r G ]0, 1] and any
n G N*,

«*(/> r) := - J Y loê \(fn)'W\ ~ L(.f) unA.f r) + <(/),
' zeFix(/")

l(/'!)'(z)|>r
where (dn + 1)|<^(/)| < 2(2uf - 2) supPi |^/|.

Proof Pick r G ]0, 1] and n G N*, and set fin := zEzeFixt/") ^z, taking into

account the multiplicity of each z e Fix(/"). Since fn)#(z) \(fn)'(z)\ for any
z Fix(/'!), integrating the equation (3.1) against fin gives

- f log\(fny\nn-(dn + 1 )L(f) [ log(f«)iin-(dn + l)L(f)
n Jpi Jpi

Yj / ®gf(c> ' pn
ceCrit(/) P

This may be rewritten

(dn + 1 )„(./» - f log I(fH)'\fin-(dn + l)L(f
n J{\(f"Y\>r}

Y f - I — log I (fny\pn.

Using again that (fn)#(z) |(/")'(z)| for any z Fix(/") and that, by [40,
Lemma 3.5],

/ <$gf(a,-)tin <&g, (fn(a),a)
Jp1

for every a G P1, the definition (2.1) of the g/-kernel function <i>g f completes the

proof.

Lemma 3.4. If f has no super-attracting cycles, then for any n G N * and any
r G ]0. I],

CTo (n)
K(f) ~ L(f) - + 1 r)

Clfi ^ TYl '
m\n

where B(fr) := (2d -2)(2supPi \gf\ + | logr |).

< B(fr)-
dn

'
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Proof. Pick r 6 ]0, 1] and n G N*. By the definition of dn, we have

m\n

For any me N* dividing n and any z e Fix(/m), we have (fn)'(z) (fm)'(z)n^m
by the chain rule, and have

E ^g\(fm)'(z)\- E logmax{|(/"I)/(z)|,
zFix(/m) zeFix(/"!)
l(/")'(z)|>r

<m(2r/—2)| log r |

since the number of attracting periodic points of / of period dividing m is at most

(2d — 2)m. Recalling the definition (2.2) of pn, we have

d" r2n m,d6i _ rzn

J 0
7 1

-*- E log max {|(/")'(z)|, r}
tï Un

zeFix*(/")
1 v a / n

2tx

m|n zGFix(/m)

E i»gdl(/")'mi.ym/ m
m\n zGFix(/w)

where the third equality is by the Möbius inversion. Hence recalling the definition
of CTo(/t), by Lemma 3.3, we have

Lrnif) ~ L(f) - ± YJp(-)(dm + 1 )um,n(L r)
u/j v YYl /

m\n

< j-E(jm + 1)|e'»(/',"m/4-"m,m(/,r'"/")|+
{2d WI-oOO

o0(n)

» /\I '/|vm V./ ' / > • '\ J
Un

m\n

5 ß(/,r)-
Un

which completes the proof.

3.3. Proof of Theorem 3.1 using the parametric version of Przytycki's lemma.

Lemma 3.5. For any n e N*, any z G Fix(/"), and any c Crit(/),

[fn(c),c]<2-M(f)n-[c,z].
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Proof. Let M\ := supPi /# > 1. It is clear that the map / is A/i-Lipschitz in the

chordal metric [•, •]. If fn(z) z, we have

[fn(c).c] < [/"(c),z] + [c,z] < (M" + 1) • [c,z]

and the conclusion follows since Mi > 1.

Proofof Theorem 3.1. As there is no persistent parabolic and super-attracting cycle
in Rat</, the set X of all elements in Ratj having neither super-attracting nor parabolic
cycles and no multiple critical points is the complement of a pluripolar subset in Rat^,
so X is dense in Rat^. Pick / e X, n e N*, and r 6 ]0,1],

(i) For any m N* dividing n, recalling the definition of um n(f r). we have

um,n(f,r) um,„(f 1) +
1

Y — logl(/m)'(z)l'
dm + 1 m

zeFix(/m)
r<l(/n)'(z)l<l

and recalling that / has at most (2r/ — 2)w attracting periodic points of period
dividing m and that \(fm)'(z)\ |(/")'(z)|m/'" for any z e Fix(/m) by the chain

rule, we have

(2 d — 2)mY -log|(/m)'(z)|i—J m
zGFix(/'")

r<l(/")'(z)|<l

log r I < (2<i — 2) I log r |.

Hence, recalling the definition of ao(«), we have

7~ E/x(~)^'" + 1)(M'»-«(/'r) -um,n(f 1))
Ctfi ^ A/7 '

m|/z

(ii) For any m e N* dividing n, we have

< {2d — 2) I log r I •
_

"n

E E log[/y(z),c] m • E log[z,c].
zSFix(/m) 7=0 zeFix(/m)
|(/")'(z)|<l l(/m)'(z)|<l

Recalling the definition of um,„ (/, 1 and applying Lemma 3.2 to each z Fix(/m)
such that |(/n)'(z)| < 1, we have

{dm+ \)um,n{f^)-
c&

l(/m)'(z)l<l
m-1

X! ('og[/m(c),c] - J] log[z,c]^
Crit(/) zeFix(/m)

'
|(/)'(z)|< 1

1 / m_1 \E -( E Elog[/7(z)'c]-logi(/m)'(z)i
jivC mi V-ervi.r ri I=n 'zeFix(/m) csCrit(/) 7=0

l(/")'(z)l<l
< (2c/ — 2)m Bi(f),
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where the last inequality holds since / has at most (2d — 2)m attracting periodic
points of period dividing m. Hence recalling the definition of oy («), we have

Y EKm)^ + 1 )"»">»(/' 0
m\n

1

d,
m\n ceCrit(/) zsFix(/"!)

|(/m)'(z)|<l

dn

We finally reduced the proof of Theorem 3.1 to estimating

W) := flog[/m(c),c]- J] log[z,c]Y
" m\n ceCrit(/) zGFix(/m)

l(/'")'(z)l<l

(iii) We claim that for any c e Crit(/) and any me N* dividing »,

log[/m(c),c] - E log[z'cl < 2(2<f-2)m2(logM(/)-log(^)),
z6Fix(/m)

|(/'»)'(z)|<l

where k e (0,1) is the absolute constant appearing in Lemma 2.3; recall that

suPz,u)6Pi \z'w] - 1- Assume first that k • M(f)~m < [fm(c),c\. Then by
Lemma 3.5, we deduce that for any z e Fix(/m),

k • 2~x M(f)~2m <2-1M(f)~m[fm(c),c] < [z,c],

so that since / has at most (2d — 2)rn attracting periodic points of period dividing m,
we have

-m log M(f) + log k < fog [fm(c), c] - ^2 k)g[z' cl<

zeFix(/m)
|(/"!)'(z)|<l

and

log[/m(c),c] - E \og[z,c]<(2d-2)m(2m\ogM(f)-\og(^j^
zsFix(/m)

|(/m)'(z)l<l

2(2d -2)m2( logM(/)-log(^)).

Assume next that k M(f m > [fm(c), c]. By Lemma 2.3 applied to the trivial
family (/) and its (constant) marked critical point c (recall that the constant k given



364 T. Gauthier, Y. Okuyama and G. Vigny CMH

by Lemma 2.3 depends only on d), c belongs to the immediate basin of an attracting
periodic point zo of / of period k dividing m, and we have

2[fm(c),c]>[z0,c\ and [c, $f] >

Hence we have — log 2 < log[fm(c), c] — log[z0, c], so that

— log 2 < log c] — log lz<c]-

z6Fix(/m)
|(/'")'(z)|<l

Noting that any attracting z Fix(/m) \ {z0} lies in a Fatou component of / which
does not contain z0, we also have 1 > [z,c] > [c, fj,j \ > KM(f)~m for every
such z £ Fix(/m) \ {z0} that |(/m)(z)| < 1. Moreover, by Lemma 3.5, we have

[fm(c),c] < M(f)m[z0,c]. Hence, since f has at most (2d — 2)m attracting
periodic points of period dividing m, we have

log [/"(c), 4- E log[z, c] < (2d — 2)m (m log M( f — log/e)

< (2d — 2)m2(logM(/) — log/c).

z6Fix(/m)
l(/ra)'(z)l<l

Hence the claim holds.
Since / has exactly 2d —2 critical points taking into account their multiplicities,

letting Ci := 2(2d — 2)2 max {1, | log(/c/2)|}, we have

\Sn(f)\ <C2.(logA/(/) + l)^,"n

by the definition of a2(n).

(iv) Recall that \ logd < L(f) fpl log(/#) /// < log(supPi /#) and that by
definition of dn,

dit — +1) > E"0'r - (' -J-')""-
m\n m\n

Hence, all the above intermediate estimates yield

I {*2 JT

— Bj,(f, (3.2)

for any / £ X, where ß3(/,r) C3(supPi |g/| + log(supPi /#) + | logr|) for
some constant C3 > 0 depending only on d. Since both sides of (3.2) depend
continuously on / £ Rat,/ and X is dense in Rat,/, the above estimate (3.2) still holds
for any / £ Rat,/.
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3.4. Application: degeneration of the Lyapunov exponent. Consider a holomorphic
family (/f)fgB* of degree d > 1 rational maps parametrized by the punctured unit
disk, and assume it extends to a meromorphic family over B, i.e. ft G 0(B)[/_1](z).

Theorem 3.6. There exists a non-negative a G M such that, as t 0,

Gift) « • log |t|-1 +o(log|f|_1).

This is a special case of [21, Theorem C] and can also be obtained as the

combination of [12, Proposition 3.1] and [11, Theorem 1.4], We provide here a

simple proof as an application of Theorem 3.1.

Proof. We can write pn( ft,w) t Nnhn(t,w), where hn: B x C

holomorphic and Nn G N. We rely on the following key lemma.
is

Lemma 3.7. There exist G i. C2 > 0 such that for any t G 1/2'

sup max{|g/;(z)|,log(//(z))} < Ci log |?|
1 + C2.

zeP'

Once Lemma 3.7 is at our disposal, by Theorem 3.1, there is C > 0 such that for

any n G N* and any t G B*^2,

i p2n r\f)
Gift)-— \og\pn(f,,el9)\ —

dn J0 27T
<c(c, log it r1 + c2)

<72 (»)
dn '

so that dividing both sides by log \t \
1 and making t -> 0, there is C' > 0 such that

for all n G N*

Nn ^/02(«) _ G{ft) Lift) ^ Nn ,02{h)
—, C —;— < lim inf —— < lim sup —— < — + C —-—.
dn d" o log |rI 1

t->-o log |t| 1 dn dn

Indeed, as pnift, w) / N"hn(l, w), where hn is analytic, we get

log \hn(t,eld) \ d01 f2n I / ,'flx I d0 f2lT
17F/. 108W/..* % A," + i0 Af»+o(l)

log I? I
1 Jo 27T "" '

y0 log |f I
1 2jz

as t 0. Making n —> oo, we get

lim —— lim — =: a > 0.
/->o log |tI 1 «^oo

This concludes the proof.

Proofof Lemma 3.7. There is a meromorphic family (T))?eD of homogeneous
polynomial endomorphisms of C2 such that for every t G B*, Ft is a lift of ft
and that the holomorphic function t h* Res(Ff) on B may vanish only at t 0.
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According to [12, Lemma 3.3] (or [21, Proposition 4.4]), there exist constants C > 1

and ß > 0 such that tor any p C2 \ {0} and any t G D*,

~\t\ß < 5 C. (3.3)
c \\p\\

For any 1 G D*, set ut{z) := log(||Ft{p)\\/\\p\\d) on P1, where p G jr~'(z).
The function ut on P1 is well-defined by the homogeneity of Ft. Recalling the
definition of gpt, we have gF,{z) (u> ° ftn(z))/(^" + X

uniformly on P1, so
that by (3.3),

sup \gF,{z)\ < - sup \ut(z)\ < —(jßloglfp1 + logC).
zsP1 " 1 zeP1 " 1

Recalling the definition of IgF and the formula IgFt — (log |Res(Ft)|)/(r/(r/ — 1)),

we also have gft gp, + (log |Res(F()|)/(2r/(<i — 1)) on P1 for every t G D*.
Hence we obtain the desired upper bound ofsupzePi \gft{z)\ since t r-> Res(Ft) is

a holomorphic function on D vanishing only at t — 0.

To conclude the proof, we use the same strategy for giving an upper bound for
logsupz6Pi /#(z). Recall the following formula

ft#(z) \ |det DFt(p)\
\Ft{p)f

on P1, where pen !(z) (see, e.g., [29, Theorem 4.3]) and in particular, by (3.3),
we have

log(/f#(z)) < log
^ ^ \\p\\2d-2

+ log l?l
1

+ log C)'

Now write as

d d

Ft (Pt,Qt), Ptiz,w) ^2,Uj(t)zJ wd~J, Qt(z,w) ^2,bj(t)z
7=0 7=0

Jwd-j

with cij (t t~yäj (t) and bj (t) t~Ybj (t) for some y e N and some a, b G 0(D).
In particular, there exists a constant C' > 1 such that for any t e D(0, 1 /2) and any
0 < j < d, we have max{|«y (f)|, \hj(t)\} < C', so that

I det DFt(p)\
3Pt 3Qt 3Pt 9 Qt
-z-(p)-z—(p) - n— (p)^~(p)dz dw dw dz

< 2d2\t\~2y Y, \äj(t)bdt)\-\\p\\2(d-l)
j,l=o

<2d4 -C^WpfV-V -\t\-2y
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for any p G C2. This gives a constant C" > 1 so that

log(//00) < 2(ß + y) log |t r1 + log C" on P1,

which completes the proof.

4. Equidistribution towards the bifurcation currents

Fix an integer d > 1. Let A be a quasi-projective variety either such that A c Mc/,
or parametrizing an algebraic family (/a)aca of degree d rational maps on P1.

4.1. The proofofTheorem 1.1. Pick any compact subset K in A, and set C\(K) :=
suPasa C([/a]) > \ logt/, where C([fx\) is given by Theorem 3.1. We remark that
for every n G N* and every p G ]0,1],

r>):=H [Per"(pe'#C=JJC(i.(

Pick any 1 < p < mm{m,2d —2}, any« (n\,...,np) G (N*)^, and any
P ]0,\}p.

Assume first that p 1, i.e. n n G N* and p p E ]0,1], and pick any
continuous DSH (m — 1, «? — l)-form 4> on A supported in K. By definition, we can
write ddc^ T+ — T~, where T± are positive measures of finite masses on A.
By Stokes's formula and Theorem 3.1, we have

P2jtI C 1 C d0 \\{T^(p)-Tm, vp)I loglp^A.pc'0)]— -L{X)\ddcV

-L\ iL
< (ac^/oO + |iogp|)^)(||r+|| + II7"—11),

which completes the proof of Theorem 1.1 in this case by the definition of II ^ II dSh •

We now assume that 2 < p < mm{m,2d — 2}. Setting Sj Sj(n,p)
(Al<i<j Ait) a (Aj<k<p Tnk (Pk)) for any 1 < j < p, which is a positive closed

current of bidegree (p — 1, p — 1 on A, we have

p

TnP(P) " Tm E SJ A (Pj) ~ Ait)- (4.1

y=t

Pick any continuous DSH (m — p, m — /?)-form on A supported in K, and write
ddCxP T+ — T~ where T± are positive closed («1. — p + 1 ,m — p + 1) currents
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of finite masses on A. Then by Stokes's formula, we have

COP) - *) it(SJ A (TnJ (Pv) - *)
7 1

P n / 1 />2?r j/1 \

£JLU I \°i\p«(Kpe»)\-~U\)yi,,dd'*.

Since the masses can be computed in cohomology, by (2.3), there is C2 > 0

independent of A", 4* and such that for every 1 <j<P,
f Sj A(r+ + r-)<c2(||r+|| + ||r-||).

J A

Then by Theorem 3.1, we have

C 1 d0 \
Jk\~d J(

pel0)\— - L(X)jSj A ddc^>

< (AC^K^l + \\ogPl\f-j^) J^ Sj A (T+ + T-)

< ac!(/:)C2(I + |iogp7.|)^il(||r+|| + ||7—||)

for any 1 < ./' < P, which completes the proof of Theorem 1.1.

Remark 4.1. As in |2|, we deduce from Theorem 1.1 the density in the support
of T^f of parameters having p distinct neutral cycles. We can actually give a more
precise statement: taking any sequence of /?-tuple of integers (nk) in (N*)^ such

that min7 njtk -a- 00, we have that the set of parameters A such that fx has p distinct
neutral cycles of exact periods n \ k np k for some k N* is dense in the support
of 'C.

"

4.2. The proof of Corollary 1.2. Pick 1 < p < min{m, 2d — 2}. We recall some
basics on PB measures. For each p > 0, let A§p the Lebesgue probability measure on
the circle Sp. Let 8: M+ —> M+ be a smooth function with compact support in ]0, 1 [

such that f0 8(x)dx 1. We consider the smooth measure v defined as

We say that a probability measure u on (P!)p is PB (or has bounded potential) if
there exists a constant C > 0 such that

\{v — v,<p)\ < C||<p||dSH
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for all (p which is DSH on (P*)A and then let Cv > 0 be the minimal C > 0

satisfying the above inequality for every (p. For example, v is PB on (P1 )/;, and Asp
is PB on P1. We claim that the positive closed (p, p)-current

\f p

Tn(y) := T~ / A [Per«y (wj)]v(.wi Wp)
d\n\ J(P1)" j=\

on A is well-defined for any PB measure v on (P1 )r> and any« (n \ np) e (N*)^.
Indeed, the set ofall w (i/'i wp) e Cp such that fjf-i Pcrn, (wj) is not of pure
codimension p in A is analytic. Hence for any w (id\,..., wp) e Cp except for a

pluripolar subset and any n (n i,..., np) e (N*)A the current Af=i tPer«; (wi )]

on A is well defined. In particular, since PB measures on (P1 )p give no mass to

pluripolar sets, the current Tp{v) is also well defined.

Observe that Tp(v) give no mass to pluripolar sets (hence to analytic sets) since

it has bounded potentials. So for any PB measures on (P ] )p, Tp(v) gives no mass

to analytic sets.

Here is another description of (d\n\)~l Af=i [Pcrn, ("';)] and Tp(v)\ let be the

analytic set of dimension m in A x P ' )p defined as

:= {(A, (zi,... ,zp)) e A x (P1)^ : zy e Fix*(/"' for every 1 < j < p}.

Let Fn: Tn —(P1)77 be a holomorphic map defined by

F„(A,z1;..., zp) ((/^/(zj),..., (f"p)'(zp)),

and tP\ -> A be the restriction to F„ of the projection A x IP1 )p - A. Consider

n: Tn Vn a desingularization of Vn. The map Fn := Fn ° n is holomorphic and

the map P := P o jr is an analytic map. If v is a smooth PB measure in (P1 )p, then:

T"(v) n I <i
on A- ^4-2)

1 ly rl j un j
Indeed, observe that, when testing against a smooth form, there is always one term
that is smooth when computing the pull-back and push-forward.

Theorem 4.2. Let A be a quasi-projective variety either such that A c Mtj, or
parametrizing an algebraic family A ofdegree d rational maps on P1. Then

for any compact subset K in A, there exists C(K) > 0 such that for any 1 < p <
mm{m,2d — 2}, any n (n \ np) 6 A *)p, any PB measure v in (P1 )p, and

any continuous DSH-form T ofbidegree (m — p,m — p) on A supported in K, we
have

I(7/(v) " Tpt- vp)| < C{K) (1 + Cv) max^ ||^||DSh.
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Proof. Pick 1 < p < mm{m,2d — 2} and a PB measure v on P1 )p. Consider
first the case where v is smooth. Pick n (ni, np) G (N*)/' and a smooth

DSH form *P of bidegree (m — p, m — p) on A with compact support in K. By
Theorem 1.1 and our choice of v, there is C(K) > 0 depending only on K such that

IC/W - TZ.*)|S C(K) max DSH;
~J<P

and we will show that

I{Tnp(v)-Tf(v),*)\<C(K)Cv max (—)\Mdsh-
- - isjsp xnj /

By the above description of Tf (v) and the definition of PB measures, we have

\[T>(y)-T>{v),*)\<Cv (FnU?*(*))
I 1 j " / "n j DSH

As taking ddc commutes with taking pull-pack or push-forward, writing as ddc<\>

T+ — T~, where 7-± are smooth (because T is smooth) positive closed currents of
bidegree (m — p + 1, m — p + 1 of finite masses on A, one simply has to estimate
the mass ||(/rn)*(^>*(7'±))||. Computing those masses can be done in cohomology
testing against ("i '(,r a" 1 < j < P, where <y, is the Fubini Study form on the

z-th factor of (P1)/\ Set ,S„:7 := (fl^i Mi))-

By duality, this computation is the same as controlling (Snj, 7'1 for any j.
Finally, for any j, one has to control the mass ||.S„j ||. By symmetry, consider the

case where j p. Let n' (//,] np-1) and consider the associated map Fry.
Now take a generic point (z® z°p_l G (P1)7'-1 and consider the line

L := {z (zi zp) g (P1)7', Vz < p- 1, Zi 2;0}.

Then the degree of F„
'

(L) equals dnp times the degree of F„> (.z®,...
So pushing-forward, we see that

\\Sn,p\\<C —
np

for some constant C > 0 that does not depend on n.
In particular, we deduce that

nc-)''.;)"1 II(S),P*W)|Ikh - C (^)ii*IIm».
7 1

where C > 0 is (another) constant that does not depend on n, which implies the

wanted result for ip and v smooth. By a regularization argument [17], the result
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follows for 4> continuous, replacing C(K) by a constant given by a (small) larger
neighborhood of K. Finally, we extend the result to any PB measure v using again
an approximation of v.

Corollary 1.2 follows from Theorem 4.2 using classical pluripotential techniques
as in [16] or [28].

Remark 4.3. The order 0(msx,j(n~j1)) as min_/(«_/) —> oo in the right-hand side

is sharp. Indeed, for the quadratic polynomials family (z2 + X)xec> it has been

shown in [7] that the sequence (2~n+1 [Per(n,e2n)])n (recall 2„ ~ 2" as n -> oo) of
measures on C converges to ddc max]#, 4 — 2 log 2}, where g is the Green function
of the Mandelbrot set. Since 4 — 2 log 2 > 0, this measure is not proportional to /rbif.
On the other hand, if vn X§ 2n we have CVn 0(n) as n —>• oo, where A§ 2n

is the probability Lebesgue measure on the circle of center 0 and radius e2n in C,
which is PB. So one cannot improve the order 0(n~l) as n -> oo in the right-hand
side for this family; otherwise, 2~n [Per(n, e2n)\ would tend to /rbif as n —? oo.

5. Transversality of periodic critical orbit relations

5.1. Infinitesimal deformations of rational maps. Pick f G Rat^. The orbit

0(f) {4>~l ofofe Ratd : </> e PSL2(C)}

of / under the conjugacy action of PSL2(C) on RaG is a 3 dimensional complex
analytic submanifold in Rat^.

A tangent vector to RaG at / is an equivalence class of holomorphic maps
<p\D -> Rat^ such that (p(0) / under the relation (j) ~ x[r iff (p'(0) \j/'(0). The

vector space of all tangent vectors at / is denoted by 7'/ Rat^/. A tangent vector
£ G Tf RaG can be identified to a section of the line bundle f*(TP1), where TP1
denotes the holomorphic tangent bundle on P1. Moreover, to any tangent vector
£ G Tf Ratj, we attach a rational vector field r/ç on P1 whose poles are in Crit(/)
by letting

r)!;(z):= - Dzf~l-t;(z) TzP1, :gP'.
If f has only simple critical points, then rjç also has only simple poles (see [6] for
more details).

If / is postcritically finite, i.e., the postcritical set

W) := U /"(Crit(/))
«6N*

of / is a finite subset in P1, then we denote by T(<P(/)) the vector field on P(f),
and a vector field r G T(Ti f)) is said to be guided by £ G Tf Rafi/ if

r /* t + on 3*(f) and to / ^ on Crit(/').
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For the sequel, we will rely on the following crucial result (see [6,22]).

Proposition 5.1 (Buff-Epstein). If f G Rat,/ is postcritically finite and neither is

conjugate to z±2 nor is a Lattès map, then a tangent vector ij G Tf Rat,/ is tangent
to (9(f) ifand only if there is a vectorfield r G T (fP(f guided by f
5.2. A transversality of periodic critical orbit relations. Let / G Rat,/ be post-
critically finite and hyperbolic of disjoint type, and let c\,..., c2d-2 be Id — 2

distinct critical points of /. For any 1 < i < 2d — 2, there is /?,• e N* such

that Ci e Fix*( fp< and there is an open neighborhood U of / in Rat,/ small

enough so that ci,..., c2d-2 can be followed holomorphically on U, that is for any
1 < i < 2d — 2, there is a holomorphic map cp. U -» P1 such that c, (/) q and

that Ci(g) G Crit(^) for every g G U.
We can choose an atlas of P1 such that there is an affine chart of P1 containing

c\(g) Cid-iig) for every g G U, and define a map V: U —> C2d~2 by

V(g) := (gPi (ci(g)) - ci(g),..., gP2d~2(c2d-2(g)) ~ c2d-2(g)), g e V.

We will need the following.

Theorem 5.2. Let f G Rat,/ be postcritically finite and hyperbolic ofdisjoint type.

If f is not conjugate to z±2, then the linear map DfV: by Rat,/ —> T()C2d~2 is

surjective and ker(D/ 'V) TfO(f).
Though this result seems folklore, we could not find it in the above form in the

literature. We provide here a proof for the sake of completeness, which is very much

inspired by |6,20] (see also [22]).

5.3. The proof of Theorem 5.2. From now on, we write

dut
u := ——

dt t=0

for any holomorphic map t h» ut defined on a disk D.

Proofof Theorem 5.2. Under our assumption, the postcritically finite map / is

neither a Lattès map, nor conjugate to z±2. Let us pick Ç G ker(D/V), and choose

a holomorphic disc t i-> ft G Rat,/ with /0 / and such that / (j. We shall use

Proposition 5.1 and build a vector field r G T(P(ff) which is guided by Ç. Then

counting dimensions will complete the proof.
For any ne N and any 1 < i < 2d — 2, we set c,(f) c/ (ft).

vn,i(t) f,n(ci(t)).

Ci := Ci(0), and vnj := i,',M (0). It is clear that for any n > 0, we have

Wn + l,; £(t>n,() + DVnif ên.i (5.1)

We shall deduce the following from this equation.
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Lemma 5.3. Fix 1 <i < 2d — 2. For all n, m G N *, if vnj — vmj, then vnd vmj.

Taking this result for granted, we continue to define a vector field r on IP (/) that
is guided by f. For any x e IP(f), we set r(x) := vnj for some 1 < i < 2d — 2

and some n G N such that x vnj. Since f is of disjoint type, the previous lemma
shows that r is well-defined at x. It remains to check that r is guided by £. The

equality r (/(c,)) f(ct) follows from the definition of r and (5.1 When x vnj
is not a critical point, then multiplying (5.1) by Dx /_1 gives r f*x + r]ç at x.

When x Cj is a critical point, since x is a simple critical point, we may choose

coordinates z at c,- and w at f (c, such that

w — ft(z) z2 + t (a + 0(z)) + 0(t2).

Since we may follow the critical point for |f | small, we may also suppose that c, 0

for all so that

ft(z) z2 + (a + 0(z2)) + 0(t2).

We thus obtain 'Ç(z) (a + 0(z)) g|y, and rjc(z) (—^ + 0(z))Jk. Observe that

in our coordinates we have x(cf) c, 0, and t(P(c,)) ^|r=o/r(o(0) a

We may thus extend r locally at c, and P(o) holomorphically by setting r(z) 0

and r(w) a. It follows that

/'r(z) + ,t(z) - z(z) T + _ iL + 0(z))| _ 0 0(z)A

It follows that f*x + r)ç x at any critical point, which concludes the proof.

ProofofLemma 5.3. To simplify notation we write v^.c.p instead of U/t,,, cl.
respectively. For any / > 1, p is really the exact period iterating the assertion (5.1)
and using the fact that D(fp) is vanishing at all points of the cycle containing c, so

in particular DVu_l)p.fp 0, and that Vk+p vk for all k > 0, give

Ô/> KiVlp-1) + f ' Ç(vlp-2) + • • • + DV(l_l)p+x fp 1
• £(v(?-i)/>)

+ DV{i-l)pfp • t>(/-i)p

£(u/p-l) + DVlp-i f ' Ç(vlp-2) + • • • + öi;(/_n/,+ 1 /p 1
• t(w(/-l)/>)

— t(up-l) + / • Ç(vp-2) + • • • + Öd, fP 1
• t(wo) r>p

Since £ G ker(ö/V), we also have vq — vp — c — vp DfV Ç 0, whence

ï>lp f>o for all 1 > 1 Again by (5.1) we get

û/p+i + Dvipf vip f(v0) + DW0/ • u0 ûi

An immediate induction on k > 0 then proves i>ip+k 'A for all I > 0. This proves
the lemma.
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5.4. Application to the space Rat". Denote by Rat'; the space of degree d rational

maps on P1 fixing 0, 1 and oo. To be more precise, let us parametrize Rat^ by

/([*:']) 11 d — i [z :t)e
" i=0 i=0

with [ad : • • ' : ao hd : : b0\ e f2d+l \ {Res 0}. The space Rat^ is then
determined by the equations hd 0,a0 0, J2i ai 12j bj ant' is thus clearly a

smooth subvariety of Rat^ of pure dimension 2d — 2.

Lemma 5.4. The complex suhmanifolds Rafj, and (9(f) in Rat(/ intersect
transversely at any f e Rat".

Proof. Let£e Tf(9(f)C\T/Rat". Then thereexists aholomorphic germ mte Aut(P1
centered at m0 - id such that ft o f o mt and / /. Moreover, since (f)t
is tangent to Rat", we can assume there are fixed points of f satisfying x, 0,

yt 1 and zt oo.

Writing mt(z) (atz + ht)/(ctz + dt) with atd, - ctht — 1, we get

xt -bt/at, yt (ht - dt)/(ct - at) and zt -dt/ct.
As m0 id, we have

at — 1 + at + 0(t2). ht ßt + 0(t2),

ct — yt + 0(t2) and dt 1 + 8t + 0(t2).

We thus get

-ßt + 0(t2) 0, -yt + Of2) 0,

1 + (a + S)t + 0(t2) 1 and 1 + (8 — ß + y — a)t + 0(t2) 1,

whence a ß y 8 0. As a consequence, mt id + 0(t2) and mfl
id+ ()(t2). Finally, differentiating ft mfxof orn, with respect to t and evaluating
at t 0 gives

£ Df m Df -0 0.

This proves T/ (9(f) fl '/'/ Rat" {0}.

As above, we pick / 6 Rat" which is hyperbolic and postcritically finite with
simple critical points C\,... ,c2d-2- We also assume that for 1 < i < 2d — 2,

there exists pt > 1 such that Cj e F\x*( fp< Let U c Rat" be a neighborhood
of / in which c(- can be followed holomorphically as a critical point c; (g) of g for
all i. We can choose an atlas of P1 such that there is an affine chart containing
cl (g) c2d-2(g) for every g eU. We let

V(A') := (gPl (ci(g)) - Ci(g),..., gP2d-2(c2d-2(g)) - c2d-2(g)), g e U.

From Theorem 5.2 and Lemma 5.4, we directly get the following.
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Corollary 5.5. Pick any postcritically finite and hyperbolic f 6 Rat^ of disjoint
type. The map Vf\U —C2d~~2 is a local biholomorphism at f.

6. Counting the centers of hyperbolic components of disjoint type in Md

6.1. The marked spaces Rat"'fm and Rat"'lm and We follow closely [35,
Section 9].

A fixed marked degree d rational map on IP1 is a (d + 2)-tuple (/, x\ Xd+1)
where / e Rat^, and (x\ ,x^+1) £ (IP1)^"1"1 is a (d + l)-tuple of all the

fixed points of /, taking into account their multiplicities. A totally marked

degree d rational map on P1 is a 3d-tuple (f x\,..., Xd+1, c\,..., c2d-2) where

(/, x\,..., Xd+\) is a fixed marked rational map and (ci c2d-2) £ (ip1)2^-2 js

a (2d — 2)-tuples of all critical points of /, taking into account their multiplicities.

Let Rat^'lm be the space of all fixed marked degree d rational maps (/, xi
Xd+\) such that x\ 0, x2 1 and x3 00. Let also Rat^'"11 be the space of
all totally marked degree d rational maps (fix1,..., Xd+1, c\ c2d-2) such that

x\ 0, x2 1 and x3 00. It is clear that both Rat"'11,1 and Rat"'tm are smooth
and quasi-projective of dimension 2d — 2.

In both fixed marked spaces, the action by conjugation of PSL2(C) extends

naturally, by respecting the marking. Note that, in both cases where xi — 0, x2 1

and x3 00, two tuples which are distinct cannot be conjugated, since an element
in PSL2(C) fixes three distinct points if and only if it is the identity. Moreover,
the conjugacy class of any marked tuple (/, *) where f has no multiple fixed point
admits a representative in with x\ 0, x2 1 and x3 00.

We finally let be the quotient of this action on the space of fixed marked
rational maps. The space is an irreducible quasi-projective variety of dimension
2d —2 and its singular points are contained in the subvariety of consisting of
all classes [(/,x1,... ,X(/+i)] such that#{x! Xd+\} < 2. In particular, Mffi is

smooth at any class [(/, x1,... ,Xd+\j\ such that f is hyperbolic. By the above, it
is clear that the natural projection Rat"'1"1 \Peri(l) -> -Af'j" \ Peri(l) is actually a

bijection.
We note that the same construction of £, pbi{, Per„(u/), and Tfi(p) works on all

the spaces introduced above (and even more generally) exactly as in the case of Md-

6.2. Parameterizing hyperbolic components of Rat"'1"1 ofdisjoint type. Let £2 be

a hyperbolic component in Rat^'m. If is connected for any (/, x\,..., x</+1) £2,

then £2 is simply connected and contains a center, which is by definition the unique
point (/, x1,... ,Xd+1) e £2 such thatfLP(/) < 00, by [35, Theorem 9.3J.

For any n (n\,... ,n2d-fi) ^ (N*)2^-2 and any hyperbolic component £2

in Rat"'tm of type n, $/ is connected for any (/, x\ Xd+1) e £2, since all Fatou
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components of / are then topological disks by [41, Proposition, p. 2311. In particular,
£2 has a center. We will also use the following in the sequel.

Lemma 6.1. For any n (n\ n2d - 2) G (N*)2</~2, any hyperbolic component £2

in Rat/m of type n is simply connected and the fixed points and critical points
are marked throughout £2. More precisely, there are a holomorphic maps

X\,..., Xd+i, Ci, C2d-2-& P1 such that F\x(fx) {xi (A),..., x</+] (A)}
and Cr\t(fx) (c 1 (A) c2d~2(X)) for any A G £2.

Proof. We have already seen that £2 is simply connected. Let r : Rat^'"11 -» Rat^'lm be

the natural finite branched cover. For any component £2 of r-1 (£2), £2 is a hyperbolic
component of disjoint type in Rat"'"" and t|^: £2 -»• £2 is an un ram illcd cover, so is

a biholomorphism, since £2 is simply connected.

In particular, we have a holomorphic map

!:£2 b A i-»- (/a.xi(A), Xd+\(A), c'i(A),... ,c2d-2(k)) e £2

and the holomorphic maps X\,... ,Xd + \, c 1 c2d-2 follow all the fixed points
and critical points of fx, respectively.

Pick any hyperbolic component £2 in Rat^'fm of type n (n 1,... ,n2d-2) £

(N*)2^-2, and let x\,... ,Xd+\,c\ c2d-2'.ii —> P1 be the marking of all
the fixed points and critical points of (fx)xen given by Lemma 6.1. For any
i e {1,... 2d — 2} and any A e ß, let iu, (A) E D be the multiplier of the

attracting cycle £,(A) of fx of exact period nL and whose immediate attractive
basin contains c, (A). The multiplier map 'Wc> : £2 T$2d~2 on £2 is defined by

'Wq(X) := (jui(A),..., w2d~2(k)), A G £2.

Let Aq be the center in £2. Noting also that #fP(fx) < 00 for any A G 'W^1 {()}, we
have TV^'{0} {Afi}.

Theorem 6.2. The map TVq : £2 D2d~2 is a biholomorphism.

Proof. Write TV for TV^. First, we prove that TV is surjective and finite. According
to [26, §3, p. 179|, this implies that TV is a finite and possibly ramified covering. Next,
we show that TV is locally invertible at A^. Since TV_1{0} {A^}, this implies TV

has degree 1, i.e. is a biholomorphism.
Let us first prove that TV is surjective. We proceed using the classical surgery

argument: for any 0 < e < 1, we construct a continuous map a: D(0, 1—e)2 2 -> £2

such that TV o rr id. We sketch the construction referring to [8, Theorem VIII.2.1]
or 113] for detail.

Choose A (fx 1, Xd+1) e ^ and for any 1 < i < 2d — 2, let

U\j,..., U„hi be all the components of the immediate basin of the attracting
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cycle £)(A) such that c,-(A) G t/. Since c,(A) is a simple critical point of /,
U] d is simply connected and there exists a conformai map <pi : (7j—> D such that

<Pi o /"' o yr1 (£) £ w't > l£l < /1 +

where u/, := w,-(A). Fix e G (0,1). For any p (p\,..., p2d~2) e ®(0> 1 —s)2d~2,

we can dehne a continuous map fp by setting fp / outside the union of all Ujj,
and such that

'rrl ; —I ^ T~ Pi«0//0 (t)=GT—|
on the open disk |£| < 1 — r containing the critical point of the Blashke product
in the right hand side. Notice that fp)p is a continuous family of quasiregular

maps of P1. We now solve the Beltrami equation for the unique Beltrami form
which is 0 on the complement the t/7/s and invariant under fp: there is a

continuous family of quasiconformal homeomorphism fp: IP1 -»• P1 such that

fp := fp o fp o f~ 1

is a rational map and depends again continuously on p and

that fp(xi(A)) 0, fp(x2(A)) 1, and fp(x3(X)) oo. Then the d + 2 tuple

(fp o fp o V"1. fP{xi(A))...., fp(xd+\ (A))) lies in £2 by the above continuous

dependence and is mapped to p by W by the chain rule.
Let us show that "W ishnite, i.e., #'W~1(w) < ooforanyw (itq ,w2d-2) G

p2d~2 sUpp0se to the contrary that for some w G B2rf~2, #"W~l(w) 00.
Then there is an infinite set contained in f/: Pern/ (u;,- n £2. In particular, the

quasi-projective subvariety A := fj,- Persic, has dimension > 0 and any A G A
has 2d — 2 distinct attracting cycles of respecting periods n\ n2d-2- The

holomorphic family (fx)As A thus has no bifurcations. Since fjx / P1 for some
A G A, (/a)aA is not a family of Lattès maps. Hence by [32, 'fhcorem 2.21, (/a)asA
is trivial. Since the natural projection Rat"'1"1 —> Md has finite fibers, this implies
that the quasi-projective variety A is a hnite set. This is a contradiction.

Let us finally see the local invertibility of W at Aft. Since p is a biholomorphism
on £2, the map TV is locally invertible at Aft if and only if W is locally invertible
at« := (/(Aft), xi (Aft) xd+i(Xçi)) g Rat"'tm. The conclusion follows from
Lemma 6.3 below by the inverse function theorem.

Lemma 6.3. The linear map Da W is invertible.

Proof. Let n : Rat^'fm -> Rat^ c Rat,/ be the natural branched cover, and

set f2 := tc(Q), which is the hyperbolic component in Rat'y containing / with
Aft [(/, x\ xd+1)]. Let us remark that, since / has only simple fixed points,
the restriction jiçi'.Q, -> Û of' jt to £2 is an (unramihed) cover. We can choose an
atlas of P1 such that there is an affine chart of P1 containing {c 1 (g)...., c2(i 2(g)}
for every g e £2, and dehne V: £2 -> C2d~2 by

V(g) {g"1 (c\(g)) ~ ci(g),..., gn2d~2(c2d-2(g)) - c2d-2(g)). g G £2.
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-1According to Corollary 5.5, we have ker(Z)/ V) {0}. Beware that W := TV o n
is a holomorphic map from an open neighborhood of / in £2 to C2d~2, so it is

sufficient to prove that ker(Z) fW) c ker(ö/ V).
Let v e Tf Rat^, and pick a holomorphic disk (ft) ten in Rat® such that f0 /

and / v. For any te D and any \ < i < 2d — 2, set

Wi(t) := Wi(ft), eft) := ^(ft), IV(t) W (ft) and V(t) V(ft).

For any (eD and any 1 < i <2d —2, let ¥?, be the attracting cycle of ft whose
immediate attractive basin contains eft), so that there is a holomorphic function z,-

on D such that z,(t) e ~i(t) for any t e D (so wi(t) )'(z,-(t))) and that

z, (0) c, (0). Then for any 1 < I < 2d — 2, we find

d(ftniy
Wi

dt t=o

3? t=o

(^«(0)) + (/"'r(zi(0))-ii

(G(0)) + (/"')"(G(0))-i/,

and since (/f ' )'(<-,• 0 for any e P, we also have

3(/;<y
o

3t ?=o
(g(0)) + (/"' )"(G(0)) • Cj(0).

ffence for any 1 < i < 2d — 2,

u'« (/"i)"(ei(0))-(zi-ci),

and we also note that fn< )"(c, ^ 0 since / is hyperbolic of disjoint type. If in
addition v e ker(D/IT), then for any 1 < i < 2d — 2, Wj 0 (and by definition

z, (0) q(0)) hence we have z,- — cy 0(t2). For any 1 < i < 2d — 2, the

i-th component of V(t) is

f?l(Ci(t))-Ci(t) ftni(Zi(t)) + YiZi (0) (Ci (t) -Zi(t))
+ 0((ci(t) - Zi(t))2) -Ci(t)

(1 - «;,(?)) (z,(?) - eft)) + 0(t4) 0(t2)

as t -» 0, so that v e ker (D/ F).

6.3. Counting hyperbolic components: the mass of /ibjf in Mj. We now prove
Theorem 1.6 and Corollary 1.7. To avoid confusions, for any p and any n, denote

Tld~2(p) and /xbir on Rat®1'" by T,jd~2'im(p) and /i^1, respectively.
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Observe first the following.

Lemma 6.4. Fix any p G ]0,1 [2d~2 and any n G (N*)2</_2. Then

1 the measure T2d~2'im{p) hasfull mass on the union ofall hyperbolic components

in Rat^'fm of type n, andfor any such component £2fm,

#Stab(n, p)
(T2d~2'tm{p))(^m)

d\n\

(2) the measure T2d 2(p) has full mass on the union ofall hyperbolic components
in Md of type n, andfor any such component f2,

#Stab(ra,p)
(T2d~2(p))^)

d\n\

Proof Consider the case Rat®'1"1 first. Pick p e ]0, 1 [2rf_2, and observe that

T2d-2Am(p)

j „ 2d—2

/ A [Per"i (PjelBj)]dh ^2d-2,*2d 2d\n\ J[0,2n¥'l-1yi+j, di^di

as finite measures on Rat^'tm, since we only remove a set of Lebesgue measure

(27T)2" 2d\n\ J[0,2n\2d-2yi^j,Oi^ej
y

since wi

zero in [0,2n]2d~2. Hence T„d_2'fm(p)-almost every point has 2d — 2 distinct

attracting cycles. For the second part, let £2 be a hyperbolic component in Rat^'fm

of type n (n, n2d-2)- By Theorem 6.2, we know that the multiplier map
"W (Wj "VV2^_2):£2 V>2d~2 is a biholomorphism. In particular, the

intersection Dylo2Pernj(wi) is smooth and transverse in £2 for all w G D2^-2.
This implies

2d-2
d\n\Tnd~2M(P) A ^Cl°gmax{|^(0|,Pa(l)} (6-1 >

<xeStab(«,p) i l

on £2, which has mass #Stab(«,p) on £2. This concludes the proof for the case

of Rat"'1"1.

Let p\ Rat"'lm Md be the natural finite branched cover of degree (d + 1)!.
Observe that the restriction

P" ^ ^Rat"'1"1 \ Per! (1)
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of p to Rat^'111 \ Per, (1 is a finite unbranched cover of Mj \ Peri (1 Indeed, p
can only branch at parameters (/, x\,..., x^+i) where at least two of x\ x^+i
coincide, and those parameters are contained in Peri I

-

Let Ü2 c M(j be a hyperbolic component of type n and let £2 be a connected

component of />_1(£2). Then the restriction p|^: £2 -> £2 is an unbranched cover.
Since multipliers do not depend on the marking of critical points, the multiplier map

£2 -> D2d~2 descends to a biholomorphism £2 —>• 02t?~2. We now observe

that T„d~2,tm(p) (p)*(T2d~2(p)) and the conclusion follows as above.

Fix any p £ ](), 1 [2d~2 and any n e (N*)2rf_2. Note that by construction,

T2d'2M{p) (p)*(T2d~2(p)) and (p)*(,iw).

Since Rat"'1"1 is an affine variety, we can assume Rat'}'1"1 c for some N.
Consider the function log+ |Z|, defined on CN, and let <p:Rat^'lm -> R be its

restriction to Rat|}'lm. The function ip is psh, continuous, non-negative and ddccp has

finite mass in Rat"'lm. We have the lemma:

Lemma 6.5. There exist constants Ci, C2 > 0 that depend only on d such that, for
any compact subset K of Rat'}'1"1, if'C(K) is the constant in Theorem 1.1, then we
have the following inequality:

C(K) < Cj • Mloo,* + C2.

Proof. We follow closely the proof of [12, Proposition 3.1] (see also [21,

Proposition 4.4]) and adapt it to the present situation. Since //i(Rat^,R) 0,

by [ 1, Lemma 4.9], there exists a family of non-degenerate homogeneous polynomial
lifts to C2 of the family Rafi/. We thus may choose a family F of non-degenerate
homogeneous polynomial lifts to C2 of the family Rat"'1"1. Set V := Rat"'lm.

We may regard this family F as a homogeneous non-degenerate polynomial maps
with coefficients in the ring C[K]. Note that Res(F) £ C[L] and, in particular,
I log I Res(F)| I < onp(f) + ß for some constants a, ß > 0 independent of / £ V.

We now want to prove that there exists m > 1 and C > 0 such that for any

/ £ Rat^'tm and any (x, y) £ C2 \ {0},

J_< II Y)!!
< ç

C ~ ||(.x,y)\\2d -
We work with the maximum norm ||(x, v)|| max{|x|, |y|} on C2. The upperbound
follows easily from the fact that F\, F2 £ C[L][x, y] and the triangle inequality. By
the homogeneity of F\ and F2, it is sufficient to verify the lower bound whenever

IIC*- j) II 1.
'



Vol. 94 (2019) Hyperbolic components of rational maps 381

By the item (c) of [45, Proposition 2.13], there exists homogeneous polynomials
gi,g2,hl,h2 e <C[V][x,y]d-x suchthat

gi{x,y)Fl{x,y) + g2{x,y)F2(x,y) Res(F)x2d~1 (6.2)

and hl(x,y)Fl(x,y) + h2(x,y)F2(x,y) Res(F)y2d~l. (6.3)

Again, since g\, g2,h\,h2 e C [F] [x, y], there are constants A, B > 0 independent
of / G V such that

max{|gi(x,y)|, \g2(x,y)\,\hi(x,y)\, \h2(x,y)\] < AeB(p(f) if ||(x,y)|| < 1.

When x 1, equation (6.2) gives

|Res(F)| < 4max {|g"i(x, y)|, |^2(^, v)|} • ||F(jc,30|| < AAB<p(f)\\F{x, y)\\.

We proceed similarly with equation (6.3) when y 1 and the conclusion follows.
Following exactly the proof of Lemma 3.7 gives C\, C2 > 0 such that

max { sup log/#(z), sup \gf(z)\} < Ci<p(f) + C2
ZSP1 Z6P1

for any f GRat"'Recall that we picked n e (N*)2rf-2. Let £ > 0, and set p (1 /2,.... 1/2),
so in particular that Stab(n,p) Stab(n). Take R > 0 large enough so that

supp(7/2rf_2'fm(p)) is contained in the intersection B(0, R) between V and the open

ball in of radius R and centered at 0. Observe that this is possible since there

are at most finitely many of type n and for a hyperbolic component Q of type n,
Wq

1

(D)2^-2) C £2 is relatively compact in V (for d 2, this is known to be true
for the whole component Q 119]).

For any A > 0, we pick the following test function

:= — min {max((p, A) — 2A, ()} on V.
A

Then, 4*^ is continuous and DSF1 on V and ddcA>A for some positive
closed currents of finite masses, where ||7^|| < C'/A and for some C' > 0

depending neither on A nor on (e.g. [17, Lemma 2.2.6]). Then observe that A>a

is equal to —1 in B(0,eA), and 0 outside B(0, e2A). Applying Theorem 1.1 with the

control of Lemma 6.5 implies:

P2d-2M{E)^A)-[^A)\
< (1 + \ogl)(Cx<p{e2A) + C2) max

l<j<2d-2\ dnJ t A
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Taking A log R so that (p(e 2A, there is a constant Cj > 0 depending

only on d. such that |||7^d 2'tm(p)|| — (/x[, —4f4)| < Cj maxy(rr2(nj)/dni). As

R -> oo, we have (/x£, —A>a) -> 11/4,!! and in turn

\T.2d-2,fm (p)ll - ll/4ll| < cd max (n2<j!'l j})-
\<j<2d-2 V dnJ /

Let us go back to Mj. Since the measures T2d 2(p) and pbi( (resp. T„d 2'tm(p)

and /4) give no mass to algebraic subvarieties of Mj (resp. of Rat^'lm), we have

W\T2_d~2(p)\\ - Ii/Xbifiil ^^l\\Tnd~2'fm(p)\\ -
together with \\T2d~2{p)\\ #Stab(n)N(n)/d\n\ (by Lemma 6.4) completes the

proof of Theorem 1.6.

ProofofCorollary 1.7. Let us begin with describing [30, Theorem 1.11 by Kiwi and

Rees. Taking m > n > 2, they computed, in the critically marked moduli space Mf\
the number n[y(n,m) of all hyperbolic components £2 in M of type (n,m) such

that any [(/, ci,c2)] e £2 has two distinct attracting cycles of exact periods j,k
with j In and k\m, respectively and their immediate attractive basins contain ci, c2,

respectively. They prove

f5 ^n—3
1 1 <P(dl)vq(n)\

nIV(n,m) 1-2 + — - - ^ J2 +sx(n.m).
q=2 2

where |£i(w,m)| < 2" + 22gcd(»,m) and _ 2»/{2(2« - 1))| < 1/2. Their
computation in particular yields that for any m > n > 2,

v \3 8 ^ (2<? -I)2/<7=1

n/v(n.m) | - — - / — 777 )2"+m + s2(n,m),
<7 1

where |£2(«,J«)| < C 2m for some C > 1 independent of n,m. We now note
that the natural projection n: Mf —> ,Af 2 is of degree 2 and is unramified over any
hyperbolic [/] M2 of disjoint type, and for any [( f. cx, c2)\ e Mf", jt~l {[/]}
{[/, c, c'], [/, c', c]}. In particular,

n/vin.n + 1) E N(j,k).
j\n,k\(n + l)

Since we have N(j, k) <C-2'+k by Bézout's theorem and dn d„+1 =22n+' + 0(2")
as n -» 00, the above gives

+OO
(7)1/7

:+o(l), as n —>• 00.
N(n,n + 1) h/v(«,« + 1) 1 I v-= f(q)+»<') r;Ld„dn+, 22«+< 3 8^(2»-l)2
The conclusion follows from Theorem 1.6, since #Stab(n, n + 1 1.
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6.4. Weak genericity ofpostcritically finite hyperbolic rational maps. The moduli

space M(i of degree d rational maps is known to be an irreducible affine variety of
dimension 2d — 2 which is defined over Q (see [34,44]); and all non-flexible Lattès

postcritically finite degree d rational maps are known to be defined over Q (see

e.g. [45]). These properties are, for the moduli space of critically marked degree d

polynomials, the starting point of the work [22]. The idea developed there is to apply
Yuan's equidistribution theorem [46] to get the equidistribution of pcf maps towards
the bifurcation measure.

The use of this equidistribution result requires:
1 defining an adelic semi-positive metric on an ample line bundle L -> where

the associated height function h satisfies /;([ /]) 0 for all non-Lattès pcf map /,
and where the induced Monge-Ampère measure is proportional to /rbit-

(2) showing that any sequence (Xk) of Galois invariant finite sets of postcritically
finite parameters is weakly generic in Mj in that Card(n C) o (Card(Z^)) as

Card(Xyt) —> oo for any proper affine subvariety C in defined over C|. This is

stronger than the Zariski density of (_)k in Md.

Contrary to the case of polynomials, item 1 seems very difficult to establish and

could even be wrong as stated. Here we focus on item (2).
For any« (n\ n2d-2) e (N*)2rf_2, we set

Xn := {[/] e Md : / has 2d —2 periodic critical points ci,..., c2d-2

of respective exact periods n\ n2d 2}-

so that C„ C Xn. A consequence of our counting of hyperbolic components is that

any sequences of sets of centers of hyperbolic components of disjoint type is weakly
generic.

Theorem 6.6. Forany sequence {n(k))k of{2d—2)-tuples n(k) («!,&, • •, n2d~2,k)
in (N*)2^-2 satisfying m'mj (nj (k)) —> 00 as k -> 00, the sequence {Xn(k))k ,s

Galois-invariant and weakly generic in Mq.
Remark 6.7. This result in particular implies that (J^. Xn^) is Zariski dense in Mq,
which refines [12, Theorem A],

For proving this weak genericity property, we prove a stronger result in the

moduli space M of critically marked degree d rational maps on P1, i.e., the orbit

space of PSL2(C) in the space Rat of critically marked degree d rational maps
(/, c\,..., c2d-2). where f Rafo and (ci,..., c2(j~2) is a (2d — 2)-tuple of all
critical points of /, counted with multiplicity. This is also an irreducible affine

variety of dimension 2d —2 which is defined over Q and the natural finite branched

cover p\ M » Mj is of degree (2d — 2)! and also defined over Q.
For any ne N* and any 1 < / < 2d —2, let Per, (n) be the analytic hypersurface

Per7(n) := {[(/,Cl c2d.2)] e M : Q*n(F,Cj) 0}
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in MCJ", where F and Cj are lifts of / and Cj, respectively (see Section 2.4 for
the definition of $*); the degree of the hypersurface Per7 («) is bounded from above

by Cd" for some constant C > 1 depending only on d (see e.g. [45 ] for more details),
and since MCJ" is quasi-projective, Perj(n) is actually an algebraic hypersurface
of

For any n (nu...,n2d-2) e (N*)2rf 2, set T„ := Ç^f=l2 V&xj (n j) c Mc.
We prove here the following as an application of our counting result.

Theorem 6.8. For any proper algebraic subvariety V in ddLJ", there exista a constant
C > 0 such that for all n G (N*)2rf~2, we have

Card(Y„ n F)/Card(T„) < C "')/2.

For the proof, we follow the strategy of [22, Theorem 5.3] and we rely on the

following, which is just an adaptation of [22, Lemma 5.4].

Lemma 6.9. Let V be any irreducible algebraic subvariety ofdimension q in Mf" and
let p be a smooth point in M. Assume that V is also smooth at p. Pick hypersurfaces

Hi,..., H2d—2 intersecting transversely at p. Then there is I C {1,..., 2d — 2} of
cardinality 2d — 2 — q such that p is an isolated point of V D H/e/ Hj-

Proofof Theorem 6.8. The case dim F 0 is an immediate consequence of
Theorem 1.6, since F is a finite set in that case. We thus assume q := dim F G

{1 2d — 3}.
Pick n («1 e (N*)2rf-2. Let Z„ be the subset in Yn consisting

of all [(/, tq c2d-2)] ^ Jdd such that the orbits of cq c2d~2 of / are also

disjoint. We claim that there is a constant C' > 0 depending only on d such that

Card (Yn \ Z„) < C'^|-(min< "')/2;

for, since Yn \ Zn consists of all [/] G Mf" such that / has a super-attracting cycles
of exact period nt and containing at least two distinct critical points for some i, we
have

2d-2 [nil2]

Yn\Zn C U U Ü ifk(ci) cj} n P) Per^(n^)^
i 1 j¥=i k=0 t.l^i

Since also deg({/fe(c,) cj}) < Cdk for some C > 0 independent of i. j and k,
by Bézout's theorem, there exists constant C0, C' depending only on d such that

2d—2 [«//2]

Card(T„ \ Z„) < ZEE Cdk |~[ Cd"e
i=1 j^i k=0

ni —n j
2d—2

s E E
1 1 jFi

«,;=« ;
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Set N Nq := 2d — 2 — <7 e N* and recall that N dim V. Let Vreg be the

regular locus of V. We also claim that there is a constant C" > 0 depending only
on d such that

Card(VKg n Z„) < C"deg(L) £
i

where here and below the sums Yh range over all N-tuples / (/],..., /v) of
distinct indices in {1 2d — 2}; indeed, for any such choice /, we set Yj :=
HyLi Perly (tijj), and let Fj be the set of all isolated points of V n Yj. By Bézout's

theorem, we have

Card(F/) < deg(L) Y\ de8 (Per0 Ky)) c2 deg(V)d^J~l (6.4)
7 1

for some constant C2 > 0 depending only on d. Since Card (VTCg n Z„) <
Card(Fi) by Lemma 6.9, the claim holds. According to Theorem 1.6, there

is a constant C4 > 0 depending only on d such that Card(T„) > Card(Z„) > C4J'-'
provided min, nj is large enough.

Hence, the above two claims imply

Card(Lreg n Z„) <C5^ d~EjiI Card(T„)
/

and Card(T„ \ Z„) < CSûT(min<' n')/2Card(T„),

where C5 > 0 depends only on V, d and q. Since K,m,. := V \ Lreg is an algebraic
subset in Mc of codimension 2d — 2 — q + 1, the proof is complete by a finite
induction.

Proofof Theorem 6.6. Pick any n («1,... ,n2d-i) e (N*)2rf_2, and for any
permutation a e &2d-2, set a(n) := (nCT(i) w<r(24-2))- Let us first remark that
p~1(Xn) Ua662(/-9 The Galois-invariance of X„ follows from the Galois-
invariance of TCT(„) for any a 6 &2d-2- Similarly, for any irreducible subvariety
Z c M(i defined over Q, we can apply Theorem 6.8 to any irreducible component
of the algebraic subset V p~l(Z) in M.c. The fact that p is a finite branched

cover together with the assumption miny (ny (k)) —> +00 as k 00 completes the

proof.

7. Distribution of hyperbolic maps with given multipliers in Ma

This section is devoted to the proof of Theorem 1.8. Pick any« (n 1 «2^-2) G

(N*)2rf_2 and any w (w \,..., w2d-2) e 02d~2.
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7.1. A reduction to work on AtJ"'. Let nfm: -> Mj be the natural quotient

map. It is a finite branched cover of degree deg(jrfm) (d + 1)! and recall the

definition of Cn_w from the introduction. Again, for any p and any n, denote T2d~2 (p)

and /Zbif on Mf by T„d~2'fm(p) and pj"j, respectively (though we already used those

notations on Rat"'lm, this is not an issue since the projection Rat|)'fm \Perj(l) -»
M* \Peri (1) is a bijection and none of the considered objects give mass to Peri (1

Set :=7v^(C„,m),

fm #Stab(n, w) ^^n,u> := V 6Uf>xl.-Jtrf+l)]'
d\n\ ^̂n,w

and nf := p//)(0 0).
Then (nfm)*and /4"1 (7rfm)*(/x„). In

particular, for any DSH and continuous function T on Mj with compact support,

(f-n.u; — Mbif> ^ ^ j ^j
(l-^n,w f-bif> (rîïm)* (jTfm) *P)

Hence, it is sufficient to prove the desired estimates in the fixed marked moduli

space So, pick any compact set K in and any either t?1 or Ï?2 function vf

on with support in K. Set

p (pi,..., p2d-2) := (max (|w! |, 1/2) max (\w2d-2\, I/2)) e (D/2-12>
so that pj e [| Wj |, 1 [ for any 1 < j < 2d — 2. By Theorem 1.1 and the upper bound

of the DSH-norm by the 'C'2-norm. there is C( K) > 0 depending only on K such that

|(7^-2,fm(p)_Mfm y)\<c(K) max if ^ is t?2
- ~~ 1 <j <2d—2 \ u J /

and then, by interpolation between Banach spaces, that

\{T2d-2>fm(p)-n§,*)\ < C(K) if VI/ is e1.

Whence the proof of Theorem 1.8 reduces to showing

\^_T2d-2M(p)^)| < C max_2 (^) • |M|c2 if VI/ is -^2 (71)

and

/ — 1 \ 1/2

!(Ä-7-r2Äw.*>!^isS_2(^^) |*|C. »»w,
(7.2)

where C > 0 depends only on d.
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7.2. A reduction to work on algebraic curves. Observe that the measure

,,fm T2d— i/fm
Pn,w ~ ln (P) on Md

has its support contained in the union of all hyperbolic components of type n. Let £2

be such a component, and

-w (wx,...^id-iy.n ^^2d~2

the multiplier map on £2. Letting Ar be the normalized Lebesgue measure on 3D,.,

by (6.1) we have on £2,

d\,\(r5M-2Ä(£)-<s)
2d-2

#Stab(n,w)'W*(Xp1 0 ••• <g> APM_2)-#Stab(«, w) /\ [Per„(.(u;,)]
i=i

E ^(D^Pl) A ••• A K(2d-2)(XP2ä-2) " Ktt)^.) A
ff6Stab(n,u))

" ' A ^o(2d-2)^w2d-2)
2d—2

E E s°'j'
<r6Stab(n,Uj) 7 1

where for any tr G Stab(n) and any 1 < j < 2d — 2, the measure Saj is defined as

=/. A
•/S7-i 1 <i < y

A /\ ^(Ä^dAg^ M7-1)

k>j

on £2, setting Ag := APl <g> • • • <g) APj._, on Sy-x := 3DPl x • • • x 3DP/._, if j > 1

and SaA := CW;(1)(APl - 'W*(1)(5io1 A /\k>1 'W*(k)(SWk). Recall that a wedge-

product over the empty set is equal to 1 and that an intersection over the empty set is

the whole space.
For any a G Stab(n, w), any 1 < j < 2d — 2, and any u G Sy_i (if j > 1),

let Aaj(u) or be the set of all [(/,x\ x-d+\)\ having a cycle of
exact period «„(,) and multiplier m, g 3DP;. for any 1 < i < j and a cycle of exact

period na(t) and multiplier for any k > j. Hence

Act,7(11) C Pernj (uaQ^ n Vevnk (wa(£))
l</<7 k>j
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is an algebraic curve and, by Bézout's theorem, its area is < C d for some
constant C depending only on d. Set WA(t7.(„) := pj o CWjj2nA(T j(u)) or TVA(t:=
P\ ° CWI^nAff i

where Pj : D2"-2 -> D is the projection on the / -th coordinate.
Then the measure

A a (w;0l(A„,) - A A »«w
t<i<y k>j

is equal to

(7-3)

on f2 fi Aaj(u) if j > 1, and the measure Sap is itself equal to YVA(T (APl — 8Wl

on D ACT;i.

7.3. Proof of (7.2): the case of arbitrary multipliers in D2d~2. Assume that T
is and test (7.3) against Pick any a Stab(n,w), any 1 < j < 2d — 2, and

any u := (w,)i<./ e Sy-i (if / > 1). We continue to fix ß as in Subsection (7.2)
and let O := YV"1 ^(Wj). Then

/ -*«;)= I W-*(0))-nojwQpj).
Ja„j(u)C\Q. "~j JAaj(u)r\Si a'J

so that by the mean value inequality:

I f V-WArjtoihj-tvj) ± f |4> - 4>(0)| • WA (M)(Ap.)
|JA(Xj(«)n£2 1 JAaj(u)m •1

<C.||vp||e,diamCW~i .(M)(P(0,Pi))),

where the diameter is computed with respect to the distance induced by ß and the

constant C > 0 only depends on the choice of the C'-norm. By the length-area
estimate (Lemma 2.4), we have

/-i Arwn G\2 ^ Area(ß n AaJ(w)) Area(£2 n AaJ(u))«») i *
minjl. l0g(1 /*pj,,

=*•
I log Pj 1/(2»)

since ^(u)(D(0, pj)) <ë "W^V(a)(lD>(0, 1)) ß H Aaj(u) in AaJ(u) are

holomorphic disks and pj > 1/2. Using the Cauchy-Schwarz inequality gives

Y.f jM

1/2

^ Jaa.j(u)nfifi

< c y, / Area(f2 n ActJ(m))\
' llï? Vi I log Pj 1/(2*) /
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1/2 \ 1/2
< (X>a(S2nA„,,W,) ,„B1

/ \ 1/2

HliogJl/pJ W'J(A»(W«))),/1l*fc..

so that recalling that Afm(n) NMtm{n) < C\dby Bézout's theorem and

Area(ACTj(u)) < C2d, where Ci, C2 >0 depend only on d, we have

£2
^ y (w)n£2

where C3 > 0 depends only on d. Similarly,

Aff)i nß VI

d~n'r \
log Pi 1 / (2jt) /

1/2
rfWlliplU-i.

Since the right-hand sides are independent of u and o, recalling (7.3), we have

1/2/ I \ >

Mi - *11A S
where C4 > 0 depends only on d (and actually not on K). Hence (7.2) holds.

7.4. Proof of (7.1): the center of components. Assume that *1» is If2 and test (7.3)
against *. Pick any a e Stab(n), any 1 < j < 2d — 2, and any (Uj ),<7 e S/_i
(if j > 1). We continue to fix £2 as in Subsection (7.2) for a while and let O :=
W. 1 (0,.... 0) be the center of the disk £2 D Aaj (u). Then we have

JAaJ(.u)nn J

f (*(z) - (D0*)(z - O) - *(0))(CWAff .(h))*(Ap,.))(z),
JAvjWna

the latter equality holding by the mean value theorem for harmonic functions, that is:

I (Do*) (z - O) (WAaj(u))*^Pj)(z) (Do*) (O - O) 0.
A„j (u)nS2
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By the mean value inequality, we have

IL *y -M
AaJ(u)na •'

< f |vf(2) - (DoV)(z - O) - V(0)| • (3VAo i(u)y(XPjKz)
JAaJ(u)nSi

<C.||*||c2.diam(^jM(m,Pj)))2,
where the diameter is again computed with respect to the distance induced by ß

and the constant C > 0 depends only on the choice of the ü2-norm. Again by the

length-area estimate (Lemma 2.4), we have

I f il, * m _ ^ (_ Area(^nAoJ(u))\
\L.,<.uW ' W"-''->{X" " S,,) S C • ' V •

1108(1/2)1/(2,) j
since (u)(D(0, p;)) m 1)) Œ n Actj(m) in AaJ(u) are

holomorphic disks (here, pj 1/2 by definition). Hence

IL
AaJ(u)r\Q. a-jy

< C' || 4*||C2 • Area(£2 n Aaj{u)),

where C' > 0 depends only on d, so recalling that

Area(f2 n Aaj(u)) < Area(ACTj (u)) < C\d^~n',
Q

where C\ > 0 depends only on d,

Q

and similarly,

E,( *-n,J<»)(v,-4>)
Q ^(w)nß

< C'C, • ||8'||E2(/|5h*'

Ef *-n,,(V,-«o)
f* " ^<7, 1

< C'Ci • II11^2 J1-1-"1

ß '"«m

Since the right-hand sides are independent of u and rr, recalling (7.3), we have

\{^n-Tnd~2M(p)^)\<C"\m-e2 max d~»J,
- - \<j<2d-2

where C" > 0 depends only on d. Hence (7.1) holds.

Remark 7.1. One cannot hope the (even qualitative) convergence /x„ —> /xhn for all
bounded DSH observables; indeed, consider the DSH function

<Pa min {0, max{log |Z|, —A}/A)
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on C2d~2 for some A > 0, which is identically equal to 0 outside the ball

B(0, exp(—A)) and equal to —1 at 0. Furthermore, it is DSH and its DSH norm
can be taken arbitrarily small for A 3> 1. By a change of coordinates, one
can then construct a DSH function in Mj which is equal to —1 at the center

of a given hyperbolic component and 0 outside that component, with arbitrarily
small DSH norm. Summing this constructions over sufficiently many hyperbolic
components, we can construct an observable xjrA which is bounded and DSH with
{/xn, fA 74 (/Xbif, if?a)- Nevertheless, it would be interesting to find a space of test
functions independent of the choice of coordinates for which a similar statement as

Theorem 1.8 holds.

8. Distribution of hyperbolic maps in P^m

8.1. A good parametrization of P- We refer to [15, §5] and [28, §2] for the

material of this section. Recall that the critically marked moduli space P
of degree d polynomials is the space of affine conjugacy classes of degree d

polynomials with d — 1 marked critical points in C. We define a finite branched

cover of Cd~l -> P as follows. For c (ci,..., Cd-2) e Cd~2 and a G C, let

Pc,a 00 := \zd + YS-l)"-'- "d~J^ zJ + ad z eC
d U j

where a^(c) is the monic elementary degree k symmetric polynomial in the c,-'s.

This family is known to be a finite branched cover of P. Remark also that
the (finite) critical points of Pc>a are exactly c0,ci Cd-2, taking into account
their multiplicity, where we set c0 := 0, and that they depend algebraically
on (c,a) G Cd~l. From now on, we work on the parameter space Cd~l of the

family (Pc,a)(c,a)eCd~x rather than P itself, without loss of generality.
The dynamical Green function of Pc,a is the continuous psh function gCM : C —> E+

defined by gc,a(") '= lim,, >0O d~" log+ \P"a(z)\, z e C, where the convergence
is locally uniform in (c,a,z) G Cd. For any 0 < j < d — 2, the function

gj(c,a) := gc,a(Cj) is psh and continuous on Crf_1 and, setting Tj : ddcgj,
we have ddcL JV Tj and Tj A Tj 0.

In this family it is now classical to define the bifurcation measure on C'/_1

as a probability measure /ihn := A7=0 Tj jjzz{y (ddcL)d~l on <Cd~l. Then

supp /Xbif is compact and coincides with the Shilov boundary of the connectedness

locus

Y?d •= {(c,a) G <Cd 1
: $pc a

is connected} {(c,a) G Cd 1
: max gj(c,a) 0}.
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For any n e N*,we set

». :=
k\n

dn J2k\n Dk by Möbius inversion, and Dn — dn — I if n 1 and Dn dn

if n > 2.

For any n G N*, the n-th dynatomicpolynomial of Pc_a is defined as

z) :=nC«W-9"<"")-
k\n

and for any 0 < j < d — 1 and any « e N*, we set

Perj(n) := {(c,o) e C^1 ; <t>*(Pc,a,Cj) 0}

(cf. Subsection 6.4 for M). The variety Per/(n) is an algebraic hypersurface

of Cd~1 of degree Dn (and of degree dn for n > 2) and is contained
in {(c,a) e Cd~l ; gc,a(Çj) 0}- Moreover, the following holds (see [22,
Theorem 6.1]).

Theorem 8.1. For any n (n0, rid-2) e (N*)rf_1 satisfying min7 nj > 1 and

any (c, a) G f]y=o I,er / (" / such that PCM has only simple critical points in C, the

(d — 1 hypersurfaces Perj (11 j are smooth and intersect transversely at (c, a).

Pick any n (n0,..., nj-2) G (N*) We say a hyperbolic component M
in C'~l (or the family (Pc,a)(CM)^cti-i to be of (disjoint) type n if for every
(c. a G M, P/ m admits d — 1 distinct attracting cycles of respective exact periods

n0,..., nd-2 in C. Then all critical points of Pc,a in C for (c, a) G M are simple. For
each 0 < i < d — 2, we let Wi (c, a) G D be the multiplier of the attracting cycle that
has exact period In this way we get a holomorphic map "W 'VV,^: M
defined by

W(c, a) := (w0(c, a) wj^ic, a)), (c, a) G M.

The following (see [22, Theorem 6.8]) will also be useful in the sequel.

Theorem 8.2. The map 'VV: .'K —> Drf_1 is a hiholomorphism.

8.2. Counting hyperbolic components of disjoint type. As in the case of rational

maps, we denote by N<p(n) the number of hyperbolic components of type n

(n0, tid-2) in the family (Pc,a)(c,a)eC~l When nj / ni for all j yf I and

iij > 1 for all j, we have Np(n) (d — 1)! • d\n\. This result is an immediate

consequence of Theorem 8.2. Indeed, all such components contain one postcritically
finite parameter, counted with multiplicity, and all of them are contained in C(/. The
result follows from Bézout's theorem and the fact that deg(Pery (n7 dnj.
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Our aim here is to give a good generalization of the above statement, including
the case when nj m for all j, I. The first observation is that any hyperbolic
component M in C</_1 of type n is contained in the compact set TV We rely on the

following lemma, which is an immediate adaptation of Lemma 6.4 (hence we omit
the proof).

Lemma 8.3. For any p G ]0, lf^-1 and any n (n0 2) G (N*)rf_1 with

miny nj > 2, the measure Td~x(p) has full mass on the union of all hyperbolic
components £2 C '(fi such that for all (c,a) f2, Pca has d — 1 distinct attracting
cycles in C of respective exact periods no,, Hd-2- Furthermore, it gives mass

#Stab(n)/n?|„| to each of those components.

Here is the precise statement.

Theorem 8.4. There exists a constant C > 1 depending only on d, such thatfor any
n («o Hd-2) e (N*)flf_1 with miny nj > 2, we have

#Stab(n)-Np(n) ^ ^ o2(nj)
0 < 1 < C max —.

(d — \)\ d\n\ o<j<d-2 dnJ

Proof. Pick any n (no «</-2) G (N*)rf_1 with minjnj > 2. Set p :=
(1/2 1/2), and pick a smooth cut-off function on <Cd~x such that 1

on'Gd- Applying Theorem 1.1 yields

\{Td-x(p),V)-((ddcL)d-\*)\ <C||vk||*SHo<max_2^l,

where C > 0 only depends on supp(fi') and d. As seen in the previous Subsection,

we have ((ddcL)d~x, 4>) (d — 1 and by Lemma 8.3 and supp(T/-1 (p)) c Cj,

It? I

Now the proof is complete also by Np(n) < c/|„|/#Stab(n).

Remark 8.5. This result is coherent with the above remark concerning the case

nj f n^ for all j f I, since in that case, Stab(u) {id}. The above statement can
also be interpreted as follows; the number ofpostcriticallyfinite parametersfor which
all critical points are periodic with prescribed exact periods no > 2 and at
least 2 critical points lie in the same super-attracting cycle, counted with multiplicity
of intersection of the Perr(y)(n;) for all x G &d-1. is bounded from above by
C maxjSci-2((T2(nj)/dnj')-d\-\. This is a much better estimate than the one we can
obtain by naive arguments. Indeed, without taking the multiplicity into account we
can naively get a bound from above of the form n>/2 maxy<^_2 nj, see

e.g. the proof of the upper bound on Card(Yn \Zn) in the proof of Theorem 6.8.
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An immediate application of this theorem is the following:

Corollary 8.6. For any integer n > 2, we have

where C > 1 is given by Theorem 8.4. In particular,

Proof. In the present case, we have #Stab(/7,...,«) (d — 1)1 and

(dn)d~l. Since /i^,( is a probability measure, the result follows from Theorem 8.4

Remark 8.7. In fact, we have proved that, counted with multiplicity, the number of
intersection points of the Pery (n) for which at least two critical points lie in the same

periodic orbit is bounded from above by a constant times o2(n)d(<l~2)n.

8.3. Distribution of polynomials with (d — 1) attracting cycles. Pick n

(«o,.. •, «rf-2) £ (N*)^-1 with minjUj > 2 and w := (wo Wd-2) e
As in the case of rational maps, we let Cn,w be the (finite) set of parameters

(.c,a) <Cd~x such that PCt(J has d — 1 distinct attracting cycles in C of respective
exact periods n0 nd-2 and multipliers w0 Wd-2- We also let

The only modification from the case of rational maps is the multiplication by 1 / (d— 1

From the normalization /Xbif (ddc L)d~l/(d — 1)1, we see easily that this factor
should also appear in the definition of vn vj. An argument similar to that in the proof
of Theorem 1.8 gives the following.

Theorem 8.8. There exists a constant C > 0 depending only on d such that

(1) for any "F G ~2{Cd~x and any n (n0,..., ttd-2) £ (N*)rf~1 with miny n y > 2,

(2) for any G ~^(Cd '), any w (wo,. Wd-2) e E)d ' and any n

(no, nd~2) e (N*)rf_1 with miny nj > 2.

above.

f Vvn,o- f f Pbif < C max IM|c2.Jet-' ~~ Jc-1 0<j<d-2\ dnJ /0<j<d-2v d

< C max < —
0<j<d-2 (\dn J log I lUy

-1 r.^riwe
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Remark 8.9. The key difference with the case of the moduli space Md of degree d
rational maps is the existence of a universal constant C > 0. This is a consequence of
the fact that Cn,w U supp(/xbif) c Cy, which is compact in Cd 1, for all n and all w.
This compactness property implies the existence of a universal constant C\ > 0 in
the conclusion of Theorem 1.1 in the family (Pc,a)(c,a)eCd~]

We now come to our last result in the spirit of Theorem B of [28]: for any n 6 N*,
we want to prove the measure equidistributed on parameters (c, a) e Cd~1 satisfying

Cj 6 Fix*(Pfa) for any 0 < j < d —2 converges towards the bifurcation measure,
with an exponential speed of convergence.

Corollary 8.10. There exists a constant C > 0 depending only on d such that for
any integer n >2 and any T e 'C^(Cd~1), we have

w_! f * f\ [Perf(")] ~ f ^Mbii
0dnY 1 Jc-1 j=Q JC-1

Proof. For any integer n > 2, we have Ay =o[Per7 (n)J (dn)ä~1 vn,(o,...,o)> so that

we can directly apply Theorem 8.8.

References

11 ] G. Bassanelli and F. Berteloot, Bifurcation currents in holomorphic dynamics on P*, J.

Reine Angew. Math., 608 (2007), 201-235. Zbl 1136.37025 MR 2339474

|2] G. Bassanelli and F. Berteloot, Lyapunov exponents, bifurcation currents and laminations
in bifurcation loci, Math. Ann., 345 (2009), no. 1, 1-23. Zbl 1179.37067 MR 2520048

131 G. Bassanelli and F. Berteloot, Distribution of polynomials with cycles of a given
multiplier, Nagoya Math. J., 201 (2011), 23^13. Zbl 1267.37049 MR 2772169

[4| J.-Y. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques
d'un endomorphisme de CP*\ Acta Math., 182 (1999), no. 2, 143-157. Zbl 1144.37436
MR 1710180

151 J.-Y. Briend and J. Duval, Deux caractérisations de la mesure d'équilibre d'un
endomorphisme de Pfc(C), Puhl. Math. Inst. Hautes Études Sei., (2001), no. 93, 145—

159. Zbl 1010.37004 MR 1863737

16] X. Buff and A. L. Epstein, Bifurcation measure and postcritically finite rational maps, in

Complex dynamics: families and friends, Dierk Schleicher (ed.), 491-512, A K Peters,

Ltd., Wellesley, Massachusetts, 2009. Zbl 1180.37056 MR 2508266

|71 X. Buff and T. Gauthier, Quadratic polynomials, multipliers and equidistribution, Proc.
Amer. Math. Soc., 143 (2015), no. 7, 3011-3017. Zbl 1334.37038 MR 3336625

18] L. Carleson and T. W. Gamelin, Complex dynamics, Universitext, Tracts in Mathematics,
Springer-Verlag, New York, 1993. Zbl 0782.30022 MR 1230383

|9| J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés

algébriques affines, Mém. Soc. Math. France (N.S.), (1985), no. 19, 124pp. Zbl 0579.32012
MR 813252

< C
ff2(w)

dn \m&-



396 T. Gauthier, Y. Okuyama and G. Vigny CMH

110] L. DeMarco, Dynamics of rational maps: a current on the bifurcation locus, Math. Res.

Lett., 8 (2001), no. 1-2, 57-66. Zbl 0991.37030 MR 1825260

[ 111 L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity,
Math. Ann., 326 (2003), no. 1, 43-73. Zbl 1032.37029 MR 1981611

[12] L. DeMarco, Bifurcations, intersections, and heights, Algebra Number Theory, 10 (2016),
no. 5, 1031-1056. Zbl 1391.37076 MR 3531361

[13] A. Douady, Systèmes dynamiques holomorphes, in Bourbaki seminar, Vol. 1982/83, 39-
63, Astérisque, 105, Soc. Math. France, Paris, 1983. Zbl 0532.30019 MR 728980

1141 R. Du jardin. The supports of higher bifurcation currents, Ann. Fac. Sei. Toulouse Math.
(6), 22 (2013), no. 3, 445^164. Zbl 1314.37032 MR 3113022

[ 151 R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical point,
Amer. J. Math., 130 (2008), no. 4, 979-1032. Zbl 1246.37071 MR 2427006

[16] T.-C. Dinh and N. Sibony, Distribution des valeurs de transformations méromorphes
et applications, Comment. Math. Helv., 81 (2006), no. 1, 221-258. Zbl 1094.32005
MR 2208805

[ 17[ T.-C. Dinh and N. Sibony, Super-potentials of positive closed currents, intersection theory
and dynamics, Acta Math., 203 (2009), no. 1, 1-82. Zbl 1227.32024 MR 2545825

[18] T.-C. Dinh and N. Sibony, Dynamics in several complex variables: endomorphisms of
projective spaces and polynomial-like mappings, in Holomorphic dynamical systems, 165-
294, Lecture Notes in Math., 1998, Springer, Berlin, 2010. Zbl 1218.37055 MR 2648690

1191 A. L. Epstein, Bounded hyperbolic components of quadratic rational maps, Ergodic Theory
Dynam. Systems, 20 (2000), no. 3, 727-748. Zbl 0963.37041 MR 1764925

1201 A. Epstein, Transversality principles in holomorphic dynamics, preprint, 2009.

1211 C. Favre, Degeneration of endomorphisms of the complex projective space in the hybrid
space, arXiv: 1611.08490

122] C. Favre and T. Gauthier, Distribution of postcritically finite polynomials, Israel Journal
ofMathematics, 209 (2015), no. 1, 235-292. Zbl 1352.37202 MR 3430241

1231 C. Favre and J. Rivera-Letelier, Equidistribution quantitative des points de petite hauteur

sur la droite projective, Math. Ann., 335 (2006), no. 2, 311-361. Zbl 1175.11029
MR 2221116

1241 T. Gauthier, Higher bifurcation currents, neutral cycles, and the Mandelbrot set, Indiana
Univ. Math. J., 63 (2014), no. 4, 917-937. Zbl 1325.37027 MR 3263916

125] T. Gauthier, Equidistribution towards the bifurcation current I: multipliers and degree d
polynomials, Math. Ann., 366 (2016), no. 1-2, 1-30. Zbl 1380.37098 MR 3552230

1261 H. Grauert and R. Remmert, Coherent analytic sheaves, Grundlehren der Mathemalischen
Wissenschaften | Fundamental Principles of Mathematical Sciences!, 265, Springer-Verlag,
Berlin, 1984. Zbl 0537.32001 MR 755331

[27] T. Gauthier and G. Vigny, Distribution of postcritically finite polynomials III:
Combinatorial continuity, Fund. Math., 244 (2019), no. 1, 17—48. Zbl 07010856
MR 3874664

1281 T. Gauthier and G. Vigny, Distribution of postcritically finite polynomials II: Speed of
convergence, J. Mod. Dyn., 11 (2017), no. 3, 57-98. Zbl 06991095 MR 3627118



Vol. 94(2019) Hyperbolic components of rational maps 397

[291 M. Jonsson, Sums of Lyapunv exponents for some polynomial maps of C2, Ergodic Theory
Dynam. Systems, 18 (1998), no. 3, 613-630. Zbl 0924.58044 MR 1631728

[30| J. Kiwi and M. Rees, Counting hyperbolic components, J. Lond. Math. Soc. (2), 88 (2013),
no. 3, 669-698. Zbl 1350.37056 MR 3145126

[311 M. Yu. Lyubich, Some typical properties of the dynamics of rational mappings, Uspekhi
Mat. Nauk, 38 (1983), no. 5(233), 197-198. Zbl 0598.58028 MR 718838

[321 C. McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of
Math. (2), 125 (1987), no. 3, 467^193. Zbl 0634.30028 MR 890160

[ 331 C. T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies,
135, Princeton University Press, Princeton, NJ, 1994. Zbl 0822.30002 MR 1312365

|34] J. Milnor, Geometry and dynamics of quadratic rational maps. With an appendix by
the author and Lei Tan, Experiment. Math., 2 (1993), no. 1, 37-83. Zbl 0922.58062
MR 1246482

1351 J. Milnor, Hyperbolic components. With an appendix by A. Poirier, in Conformai dynamics
and hyperbolic geometry, 183-232, Contemp. Math., 573, Amer. Math. Soc., Providence,
Rl, 2012. Zbl 1333.37037 MR 2964079

|36| R. Marié, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sei. École Norm.
Sup. (4), 16 (1983), no. 2, 193-217. Zbl 0524.58025 MR 732343

[371 Y. Okuyama, Equidistribution of rational functions having a superattracting periodic point
towards the activity current and the bifurcation current, Conform. Geom. Dyn., 18 (2014),
217-228. Zbl 1370.37095 MR 3276585

[ 38 ] Y. Okuyama, Quantitative approximations of the Lyapunov exponent of a rational function
over valued fields, Math. Z, 280 (2015), no. 3-4, 691-706. Zbl 1332.37068 MR 3369346

[391 Y. Okuyama, Nevanlina theory and equidistribution in the unicritical polynomials family,
Riv. Math. Univ. Parma (N.S.), 9 (2018), no. I, 1-19. MR 3863905

[40] Y. Okuyama and M. Stawiska, A characterization of polynomials among rational functions
in non-archimedean and complex dynamics, 2015. arXiv:1508.01589

[41 ] F. Przytycki, Remarks on the simple connectedness of basins of sinks for iterations of
rational maps, in Dynamical systems and ergodic theory (Warsaw, 1986), 229-235, Banach
Center Publ., 23, PWN, Warsaw, 1989. Zbl 0703.58033 MR 1102717

1421 F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc.,

119(1993), no. 1,309-317. Zbl 0787.58037 MR 1186141

143 ] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sei. École Norm.
Sup. (4), 20 (1987), no. 1, 1-29. Zbl 0621.58030 MR 892140

[44] J. H. Silverman, The space of rational maps on P1, Duke Math. J., 94 (1998), no. 1, 41-77,
07. Zbl 0966.14031 MR 1635900

[45] J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics,
241, Springer, New York, 2007. Zbl 1130.37001 MR 2316407

[46| X. Yuan, Big line bundles over arithmetic varieties. Invent. Math., 173 (2008), no. 3,
603-649. Zbl 1146.14016 MR 2425137



398 T. Gauthier, Y. Okuyama and G. Vigny CMH

Received May 21, 2017

T. Gauthier, LAMFA, UPJV, 33 rue Saint-Leu, 80039 AMIENS Cedex 1 ; and

CMLS, École Polytechnique, 91128 Palaiseau Cedex, France

E-mail: thomas.gauthier@u-picardie.fr

Y. Okuyama, Division of Mathematics, Kyoto Institute of Technology,
Sakyo-ku, Kyoto 606-8585, Japan

E-mail: okuyama@kil.ac.jp

G. Vigny, LAMFA, UPJV,
33 rue Saint-Leu, 80039 Amiens Cedex 1, France

E-mail: gabriel.vigny@u-picardic.fr


	Hyperbolic components of rational maps : quantative equidistribution and counting

