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Abstract. Let S be a closed orientable surface of genus at least 2 and let G be a semisimplc
real algebraic group of non-compact type. We consider a class of representations from the
fundamental group of S to G called positively ratioed representations. These are Anosov
representations with the additional condition that certain associated cross ratios satisfy a

positivity property. Examples of such representations include Hitchin representations and
maximal representations. Using geodesic currents, we show that the corresponding length
functions for these positively ratioed representations are well-behaved. In particular, we prove a

systolic inequality that holds for all such positively ratioed representations.
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1. Introduction

Let S be a closed, oriented, connected surface of genus at least 2 with fundamental

group T. The Teichmüller space of S, denoted T(S), is the deformation space of
hyperbolic structures on S. Via the holonomy, one can also think of T(S) as a

connected component of the space

X(T,PSL(2,M)) := Hom(T, PSL(2, M))/PGL(2, M).

The representations in T(S) can be characterized as the ones that are [P]-Anosov,
where P is the unique (up to conjugation) parabolic subgroup of PSL(2,M).
Let ~CS(S) denote the set of free homotopy classes of closed curves (see also

Definition 2.1). Every hyperbolic structure p e T(S) induces a length function

lp\''§{S) -> M which associates to c e ~1/(S) the hyperbolic length, with respect
to p, of the geodesic representative of c.

A geodesic current on S is a locally finite, T-invariant, Borel measure on the set

of geodesies in the universal cover of S. Observe that the space of geodesic currents
on S, denoted *G(S), is an open convex cone in an infinite dimensional vector space.
Furthermore, *Ci/(S) can be identified with a subset of £?(S) (see Section 2.2).
Bonahon [1] showed that ~(S) is naturally equipped with a continuous, bilinear
intersection pairing

i:C(S)xC(S)->R+U{0}
which generalizes the geometric intersection number between free homotopy classes

of closed curves in X'fj(S). Also, he proved that for every hyperbolic structure
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p e T(S), there is a unique geodesic current ptp e G(S) with the property that for

any c e G~§(S),
i(HP,c) ip(c).

The geodesic current pp is known as the intersection current associated to p.
In this paper, we investigate the extent to which we can generalize this intersection

current to the setting of [f]-Anosov representations p: T -> G, where G is a non-

compact semisimple, real algebraic group and [P] is the conjugacy class of a parabolic
subgroup P C G. Every conjugacy class of parabolic subgroups of G determines a

subset 9 of the set of restricted simple roots À of G. We will assume, without loss of
generality, that 9 i(9), where t is the opposition involution on À (see Sections 2.3

and 2.4).
For each a e 9, the corresponding restricted fundamental weight a>a allows us to

define a length function
dp:G~§(S) -» M+ U {0}

for p, which generalizes the length function associated to a hyperbolic structure
in T(S). However, it is not true in general that there is a geodesic current v so that

i(v,c) f«(c) for every c e Gf/(S).
As such, we introduce the notion of a [P]-positively ratioed representation. These

are [P]-Anosov representations with the additional property that certain cross ratios
associated to a>a for all a e 9 are always positive (see Section 2.2 for more
details). Examples include PSL(n,R)-Hitchin representations and PSp(2n,R)-
maximal representations. Combining the work of Harrienstädt [14, 15], Otal 128],

and Tits [34], we have the following theorem.

Theorem 1.1. Ifp: T-> G is a [P]-positively ratioed representation, thenforany a 9,

there is a unique geodesic current so that i(p,„, c) ipa(c) for all c e Gi/(S).
By Theorem 1.1, to prove statements about f„, one needs only to prove the

analogous statements in the setting of geodesic currents. Using this strategy, we prove
the remaining results in this paper. In fact, all the results in this introduction can be

stated in the more technical language of period minimizing geodesic currents with
full support. These are geodesic currents with full support that satisfy the property
that the number of closed geodesies c e Gi/(S) so that tv{c) := z(c, v) < T is

finite for all T e P. + However, to emphasize the application we are interested in, we
will state most of our results for positively ratioed representations in the introduction,
and indicate the numbering of the analogous statement about geodesic currents in

parenthesis.
We will need the following notation. For an essential subsurface S' c S, i.e. an

incompressible subsurface with negative Euler characteristic, denote by G^(S') the

set of free homotopy classes of unoriented closed curves in Sf. Notice that S' is an

orientable surface of genus g' with n' boundary components so that 2g1 — 2 + n' > 0.

The main point of this paper is that Theorem 1.1 can be exploited to study the

length functions of positively ratioed representations. As a first example, we have
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the following corollary about the asymptotic behavior of length functions along a

sequence of positively ratioed representations. This was motivated by the work of
B urger-Pozzetti [5].

Corollary 1.2 (Proposition 4.7). Let [pj\ V Gj}JLl be a sequence of[Pj]-
positively ratioed representations, let 6j be a subset of the restricted simple roots

of Gj determined by Pj, and let aj £ 9j. Fix an auxiliary hyperbolic structure
on S. Then there is:

• a subsequence of {pj}JLv also denoted {pj}'jLl,
• a (possibly disconnected, possibly empty) essential subsurface S' c S,

• a (possibly empty) collection ofpairwise non-intersecting, non-peripheral simple
closed curves ji'i <'k } hi G S S \ S')

so that A := S' U ljf=1 c,- is non-empty, and the following holds. Let c £ T'fi(S) be

a closed curve so that c <jt C ~§ S \ A) and c is not a multiple of Ci for i I k.

(1) Ifd £ GS(S \ A) or d is a multiple of c, for some i \..... k, then

Cf
C,(c)
Cj{d)

lim —f 0.

(2) Ifd £ 'C 8 S is a closed curve so that d f Gf/(S \ A) and d is not a multiple
of Ci for i 1,..., k, then

C- (d)
lim — £ M

i'aj(c)

In the case when G j PSp(2«, M) and pj is maximal for all j, Corollary 1.2 is a

result of Burger-Pozzetti [5, Theorem 1.1]. More informally, this corollary states that
the closed curves in S whose lengths are growing at the fastest rate along a sequence
of positively ratioed representations are exactly those that intersect a particular union
of a subsurface of S with a collection of pairwise non-intersecting simple closed

curves in S.

A second important consequence of Theorem 1.1 is that the length functions

coming from positively ratioed representations behave as if they were the length
functions of a negatively curved metric on S when we perform surgery (see
Section 4.3).

Corollary 1.3 (Proposition 4.5). Let p\V —> G be Pß -positively ratioed for some
9 C A. For c £ G8(S) with i(c,c) > 0, let ci,C2,Cj £ 'Cfj(S) be obtained via

surgery at a point ofself-intersection ofc as in Proposition 4.5. Then for any a G 9,

we have

lPa(Cl) < lpa(c) and ip(c2) + £p(c3) < lp(c).
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For any period minimizing geodesic current v G U(S), let —> M+U{0}
be the function defined by £v(c) := i(v, c). Using this, we can define the following
three quantities associated to connected essential subsurfaces S' c S. The first is

the entropy of S', which is defined to be

hv(S') h(£v,S') := limsup^log#{c G U^(S') : lv{c) < T),
T^oo T

and the second is the systole length, which is defined as

LV(S') L(lv, S') := min {£v(c) : c G G^(S')}.

To define the third, one chooses a minimal pants decomposition lPv,s' of »V,

i.e. a maximal collection in G~§(S') of pairwise non-intersecting simple closed

geodesies {c\,..., C3g'-3+2n'} so that c3g'-2+n' ^3^-3+2«' are the boundary
components and for all j 0 3g' — 4 + n', Cj+1 is a non-peripheral systole
in \ U/=i ci)• These exists because of Corollary 1.3 (see Section 4.5). The
panted systole length is then the quantity

KV(S') K(iv, S')

:= min (fy(c) : c G "Ci/(S') is not a multiple of a curve in lPv,s'}-

It turns out that the panted systole length does not depend on the choice of a minimal
pants decomposition (see Lemma 6.2), and hence is an invariant of the geodesic
current v.

In this setting, our main theorem is the following.

Theorem 1.4. There is a constant C G M+ depending only on the topology ofS', so
thatfor any period minimizing v e 'C(S), we have the inequalities

^ log(2) < hv(S')Kv(S') < C ^log(4) + 1 + log (l +

V Ky(S')
where Xq is the unique positive solution to the equation (1 + x)1 r-v(s') \x 1.

Together, Theorem 1.1 and Theorem 1.4 give a systolic inequality that holds for
all positively ratioed representations.

Let ha := /?(f„, S) and Lpa := L(tpa, 5"). As a first corollary to Theorem 1.4, we
have the following.

Corollary 1.5 (Corollary 7.6). There is a constant C depending only on the topology
ofS, so thatfor any [PQ]-positively ratioed representation p: F G, and any a £ 9,

we have the inequality

KK < c.
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We emphasize that C does not depend on G. In particular, if {pj \ T —> Gj }/e=./

is a collection of [P7]-positively ratioed representations on F so that {haJj}jej
is uniformly bounded below by a positive number, then Corollary 1.5 implies
that {La'j }jej is uniformly bounded from above.

Similarly, given a negatively curved Riemannian metric m on S' with totally
geodesic (possibly empty) boundary, one can also dehne a length function

tm\GH(S') -> M+ which assigns to each free homotopy class of closed curves
the length of the geodesic representative in that free homotopy class. Theorem 1.4

also implies the following.

Corollary 1.6. There is a constant C depending only on the topology of S', so that

for any negatively curved Riemannian metric m on S' with totally geodesic boundary,

h(lm,S')L(lm,S') < C.

Corollary 1.6 is a consequence of the work of Sabourau [33] in the case when S'
is a closed surface. The constants in the statements of Theorem 1.4, Corollary 1.5

and Corollary 1.6 are explicit but not sharp, and depend exponentially on the Euler
characteristic of the surface.

Another corollary of Theorem 1.4 is the following criterion for when the entropy
along a sequence of "thick" positively ratioed representations converges to 0.

Corollary 1.7 (Corollary 7.8). Let {/07:T -> Gj}°°=1 be a sequence of \Pj]-
positively ratioed representations, let 6j be a subset of the positive roots of Gj
determined by [P/]. Also, let aj G dj so that inl'y Lp0fj > 0. Then lim7^oo /z„7 0

ifand only iffor any subsequence of{pj }yLj, there is

• a further subsequence, which we also denote by {pjjjLi>
• a sequence {fj}Jfl of elements in the mapping class group of S,

• a (possibly empty) collection 'D C C S S of pairwise non-intersecting simple
closed curves,

so that

lim min {il'. Pj (c) : c G 'CS(S \ ,D) is non-peripheral to

and

sup max {l'l'i Pj (c) : c G £)} < oo.
j

Here, fj pj := pj o (fj)*, where (fj)*: F —>• T is the group homomorphism
induced by the mapping class fj : S —> S.

Nie [26, 27] and the second author [36, 37] previously studied sequences of
Hitchin representations whose entropy goes to zero. Corollary 1.7 includes all such

sequences.
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The rest of this article is organized as follows. In Section 2, we define positively
ratioed representations and prove Theorem 1.1. Then, we show that Hitchin
and maximal representations are examples of positively ratioed representations in
Section 3. In Section 4, we prove Corollary 1.2 and some facts regarding geodesic
currents and the intersection pairing, and Sections 5 and 6 are devoted to the proof
of Theorem 1.4. Finally, in Section 7, we prove Corollary 1.5, Corollary 1.6, and

Corollary 1.7.

Acknowledgements. This work has benefitted from conversations with Ursula
Hamenstädt, Beatrice Pozzetti, Francis Bonahon, Marc Burger, Fanny Kassel and
Richard Canary. The authors are grateful for their input. The authors also would
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2. Positively ratioed representations

The goal of this section is to describe a class of surface group representations, which
we call positively ratioed representations. The main property these representations
have is that certain length functions associated to them "arise from geodesic currents".
This forces the length functions associated to these representations to satisfy some

strong properties that are explained in Section 4.

2.1. Topological geodesies. We begin by carefully specifying what we mean by a

geodesic and a closed geodesic on a topological surface. The notation developed in
this section will be used in the rest of the paper.

First, we will define closed geodesies. Let [F] denote the set of conjugacy classes

in T, and let ~ be an equivalence relation on [T] given by [y] ~ [y-1].

Definition 2.1. A closed geodesic in S is a non-identity equivalence class in [T] / ~.
Also, we say that a closed geodesic is primitive if it has a primitive representative
in T (equivalently, all of its representatives in V are primitive).

We will denote the set of all closed geodesies in S by Uf?(S), and denote the

equivalence class in *C~§(S) containing y e V \ {id} by [y]. Observe that 'Clz(S) is

naturally in bijection with the free homotopy classes of closed curves on S. Hence, if
we choose a hyperbolic structure S on 5, then the closed geodesies in S are identified
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with the closed hyperbolic geodesies in £ since every free homotopy class of closed

curves in £ contains a unique closed hyperbolic geodesic.
Next, we will define geodesies. It is well known that T is a hyperbolic group, so

it admits a Gromov boundary 9T, which is topologically a circle.

Definition 2.2. A (unoriented) geodesic in S is an element of the topological space

g(S) := {(jc.jO g 9r x 9r : x ^ y] / ~,

where ~ is the equivalence relation defined by (x, y) ~ (y, x). Also, & geodesic in S

is an element in ~8(S) := 8(S)/T.
Denote the equivalence classes in 8(S) and 8(S) containing (x, y) by {x, y} and

[x, y] respectively. Observe that if we choose a hyperbolic structure £ on S, then

this induces a hyperbolic structure £ on S. The natural identification of 9T with the

visual boundary 9£ of £ then realizes geodesies in S (or S) as hyperbolic geodesies
in £ (or £).

Of course, closed geodesies in S and geodesies in S can be explicitly related in
the following way. Any y e T \ {id} has an attracting and a repelling fixed point
in 9T, which we denote by y+ and y~ respectively. This allows us to define the map
F:F8(S) -x 8(S) by F: [y] i-> [y~,y+]. More informally, this sends every closed

geodesic to the bi-infinite geodesic that "wraps around" it. Note that the map F is

not injective; if y G F is primitive, then /^—1 (/^ dy]) {[[y"]j : n G Z \ {0}}.
Finally, we have a notion for when two geodesies intersect transversely.

Definition 2.3. We say that {a, b}, {c, d G 8(S) intersect transversely if a, c, h. d
lie in 9T in that (strict) cyclic order. Similarly, two geodesies in 8(S intersect

transversely if they have representatives in S(S) that intersect transversely, and two
closed geodesies in 'C 8 (S intersect transversely if their images under the map F
described above intersect transversely in 8(S).

If we equip S with a hyperbolic structure £, then a pair of geodesies or closed

geodesies in S intersect transversely if and only if they intersect transversely as

geodesies or closed geodesies for the metric on £.

2.2. Cross ratios and geodesic currents. The reader should be cautioned that
there are many non-equivalent definitions of cross ratios in the literature, even in the

restricted setting of Anosov representations. The definition we use here is one given
by Ledrappier [24, Definition l.f]. Consider the set

9T[4] := {(a, b, c, d) G 9T4: {a, b} n {c, d) 0}.

Definition 2.4.

• A cross ratio is a continuous function B: 9T'4' ^ R that is invariant under the

diagonal action of T and satisfies the following:

(1) (Symmetry) B(x, y, z, w) B(z, w, x, y);
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(2) (Additivity) B(x, y, z, w) + B(x, y, w, u) B(x, y, z, u)

for all x, y, z,w,ue df such that (x, y, z, w), (x, y, w, u) e 3r^.
• For any fyj c G X!13(S), the B-period of c is fß(c) := B(y y+, y a, a) for

some a £ dr — {y~, y+}.
One easily shows that the B-period of c does not depend on the choice of a

or y. The following theorem of Otal [28, Theorem 2.2], (see also Ledrappier [24,
Theorem 1 .f]) states that any cross ratio B is determined by the Z?-periods.

Theorem 2.5 (Otal). If By, B2: 3T[4] -> E are cross ratios so that Ibx (e) I b2 (c)
for alle X3I3(S), then By B2-

Cross ratios are intimately related with geodesic currents, which we will now
define. The notion of a geodesic current was first introduced by Bonahon [1], who
used them to study Teichmüller space.

Definition 2.6. A geodesic current on S is a T-invariant, locally finite (non-signed)
Borel measure on

Denote the space of geodesic currents on S by 'C(S). It can be naturally realized

as an open cone in an infinite dimensional vector space equipped with the weak*

topology (see Bonahon [2, Section 1]). The T-invariance in the above definition
ensures that every geodesic current v e ~(S) descends to a finite measure v on the

compact space S(S). However, the T-action on S(S) is not proper, so -§(S) is not
Hausdorff. As such, it is often more convenient to work with v instead of v.

An important example of geodesic currents are the ones associated to closed

geodesies. Given any closed geodesic c — [y] Ç^(S), let ptc G IS (S1) be the

geodesic current defined by

where 8{x,y} is the Dirac measure supported at the point {x, y} G 13(S). When c is

primitive, ßc is the Dirac measure on F(c). This realizes ~~§(S) asasubsetofï?(S).
Henceforth, we will blur the distinction between Xi fj(S) and the subset of'C(S) it is

identified with, by using c to denote pc-
On the space of geodesic currents, Bonahon 11, Section 4.2] defined an important

function that we will now describe.

Let £)I3(S) c H(S) x I3(S) be the open subset defined by

£)13(S) := {(ly,l2) G ê(S) xH(S) : ly,l2 intersect transversely}.

Note that 3)13(S) is stabilized by the diagonal T action on 13(S) x 13(S), so we
can define 3)~§(S) := S)i3(S)/ T. In this case, the T action on 3)i3(S) is proper,
so 3)13 (S) is a Hausdorff space. For any p,, v e X3(S), the T-invariant measure pxv
on 3)~§(S) descends to a measure ffxv on 3)D(S).

V(Y)er/{y)
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Definition 2.7. The intersection form on Xi(S) is the map i: 'C(S) x '£(S) —> M

given by i(pt, v) ft~x~v(IDI/(S)).

Bonahon proved that the intersection form is well-defined and continuous, and it
is easy to verify that it is symmetric and bilinear. He also proves that if c, c' e XÜ1/(S)

then i(c,c') gives the geometric intersection number between c and c'. More
properties of the intersection form are later explained in Section 4.2.

There are several ways one can relate geodesic currents to cross ratios. One

way to do so is to associate to every Holder continuous cross ratio a Gibbs current
(Harrienstädt [14], see also Ledrappier [24]). However, this is not useful for the

purposes of this paper because it is not easy to read off the periods of the cross ratio
from the Gibbs current. Instead, given a cross ratio B, we would like to find an

intersection current, which we now define.

Definition 2.8. Let B be a cross ratio. A geodesic current p is an intersection current
for B if fß(c) i(fi,c) for all c e Xii/(S).

Unfortunately, it turns out that there are cross ratios for which the intersection
current does not exist. On the other hand, Hamenstädt observed [15, pp. 103-104]
that one can always find intersection currents for cross ratios that satisfy the following
positivity condition.

Definition 2.9. A cross ratio B is positive if for all x, y,z,w e 9T in this cyclic
order, one has B(x, y,z,w) > 0.

Theorem 2.10 (Hamenstädt). If B : 3T^ —> M is a positive cross ratio, then it has a

unique intersection current.

The proof of Theorem 2.10 is a standard argument from analysis. However, for
lack of a good reference for the proof, we give the full proof in Appendix A.

2.3. Background on semisimple Lie groups. We would like to exploit the existence

of intersection currents for positive cross ratios to study the length functions of
a certain class of Anosov representations. To define Anosov representations, we
need to recall some basic facts regarding non-compact, semisimple, real algebraic

groups and their real representations. See Eberlein [8, Chapter 2], Helgason 116,

Chapter VI.3], Humphreys [18, Chapters T—III], and Guéritaud-Guichard-Kassel-
Wienhard [ 10, Section 4] for more details.

Let G be a non-compact, semisimple, Lie group with Lie algebra g. We will also

assume that G is a finite union of connected components (for the real topology) of the

real points G(R) of some algebraic group G, and that the adjoint action of G on its

Lie algebra is by inner automorphisms, i.e. Ad(G) C Aut(g)o- It is well known that

there is a unique non-positively curved Riemannian symmetric space X on which G

acts transitively by isometries, so that for any point p e X, the stabilizer in G of p
is a maximal compact Lie subgroup K C G. The transitivity of the G-action on X
implies that X zz G/K as G-spaces.



Vol. 94(2019) Positively ratioed representations 283

Let £ c be the Lie subalgebra of K C G. One can prove that ï C g is a maximal
subspace on which the Killing form on g is negative definite. Since g is semisimple,
the Killing form on g is non-degenerate. This gives an orthogonal decomposition
g t + p.

Definition 2.11. The Cartan involution %k' g -» g is the involution so that tk\î id
and xk\p —id.

Geometrically, via the canonical identification TPX ~ g/E ~ p, the involution
Oclp: TpX -> TPX is the derivative of the geodesic involution of X at p.

A useful way to study G is to consider its linear representations. To do so, we
will consider its restricted weights, which we now define. Let a be a maximal abelian

subspace in p, then a C p ~ TpX is the tangent space to a maximal flat F in A
containing p, i.e. exp/,(a) F. Given an irreducible, real, finite dimensional, linear
representation r.G -> GL(L) and a e a*, define

Definition 2.12. We call a a restricted weight of the representation (r, V) if a ^ 0

and Va is non-empty. If a is a restricted weight, then Va is a restricted weight space.

Let <J>(r, V) denote the set of restricted weights of (r, V). Since r(exp(a)) is

simultaneously diagonalizable over M, we can decompose

into its restricted weight spaces. If we specialize to the adjoint representation (r, V)
(Ad, g), then the restricted weights of this representation are called the restricted roots,
and the restricted weight spaces are called the restricted root spaces. In this case, we
use the notation E := <J>(Ad, g) and ga := Va.

Let 0 := U(r v) where the union is taken over all irreducible, real, finite
dimensional, linear representations of G. It turns out that there is an easy description
of O in terms of E:

where (•, •) is the Killing form on a*. In particular, {0} U 0 C a* is a lattice. One
would then like to find a base for the lattice {0} U 0.

To do so, choose any v0 e a so that a(v0) ^ 0 for all a e E, and let

E+ := {a G E : a(v0) > 0}.

It is a standard fact that a e E if and only if —a e S, so S E+ U {—a : a e S+}.
Definition 2.13. A restricted root in E+ is simple if it cannot be written as a non-
trivial linear combination of the roots in S+ with positive coefficients.

Kt '= {w V : r(exp(u))u; ea^w for all v e a}.

v yo+ J2 V"

ae$>(r,V)
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It turns out that the set of simple restricted roots, denoted A, is a basis tor a*.

However, A is not a base for the lattice {0} U <t>. To convert A into a base, we perform
an additional "orthogonalization procedure" to every simple restricted root a. This

gives the following definition.

Definition 2.14. For any a G A, the restricted fundamental weight associated to a
is the linear functional toa G a* defined by

277rJr Sa'f> for a" PG a,
(p.p)

where à'.,, is the Kronecker symbol.

It is well known that {u>a : a G A} is a base for the lattice {()} U O. The choice
of u0 induces a natural partial ordering < on {0} U 4> defined as follows. For any

ü)\ u>2 {0} U <I>, a>i < an2 if 0)2 — o)\ is a non-negative linear combination of the

simple roots in A. For any irreducible representation (r, V) of G, the set of weights
{0} U <F(r, V) has a unique maximal element in the partial ordering <. This is called
the highest restricted weight of (r, V), and is a non-negative linear combination of
the restricted fundamental weights.

With this, we can state the following theorem of Tits [34] that will play an

important role later. Also, see Quint [30, Proposition 3.2] or Guéritaud-Guichard-
Kassel-Wienhard [10, Lemma 4.5],

Theorem 2.15 (Tits). For any a G A, there is an irreducible linear representation

ra: G - > SL(w, R) ,vo that highest restricted weight / of(ra, M") is a positive integer
multiple of the restricted fundamental weight o)a, and the weight space (M")^ is

one-dimensional.

We will refer to the representation ra guaranteed by Theorem 2.15 as an a-Tits
representation.

The choice of Vo also picks out a (closed) positive Weyl chamber

a+ := {u G o : a(v) > 0 for all a e S+|.

One can show that a+ C TPX c TA is a fundamental domain of the G-action on TA,
i.e. for any (p', v') G TA, there is a unique v g a+ so that g (//, v') (p, v) for
some g G G. Since A is complete, this means that for any pair of points x, y G A,
there is a unique vector vx^y G a+ so that g • x p and g • y expp(uX)3,) for
some g G G. This allows us to define the Weyl chamber valued distance as follows.

Definition 2.16. The Weyl chamber valued distance is the function c/—p: A x A —>• a+

given by d~y{p, q) := vx,y.

It is easy to see that the Weyl chamber valued distance descends to an injective
map G\(A x A) -> a+, and is thus a complete invariant of the G-orbits of pairs of
points in A. Furthermore, ||rf—(p, <?)|| d(p,q), where || • || is the norm on a+
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induced by the Riemannian metric on X and d is the distance on X. The classification
of isometries on G also implies that for any g e G, either

inf {d(q, g • q) : q e X) 0

or there is some p e X so that

inf {d(q,g-q) : q e X) d(p,g-p).

Furthermore, if

inf {d(q, g q) : q e X} d(p, g p) d(pg p'),

then d^p(p, g- p) — d—p(p\ g p'). Using this, one can define the Jordan projection
geometrically.

Definition 2.17. The Jordan projection (sometimes also known as the Lyapunov
projection) is the map Ac : A: G —> ci+ defined by

• A: g I-* 0 if inf{d(q, g q) : q £ X} 0,

• A: g r-» d-yr(p, g p) if there is some p e X so that inf{d(q, g q) : q e X}
d(p, g p).

More algebraically, the Jordan projection can also be described as follows. The
Jordan decomposition theorem (see Eberlein [8, Theorem 2.19.24]) ensures that

any g e G can be written uniquely as a commuting product g ghgegu, with
gh hyperbolic, ge elliptic, and gu unipotent. Furthermore, the fact that a+ is a

fundamental domain of the G action on FI implies that there is a unique vector

vg e a+ so that exp(u^) is conjugate to gh Then the Jordan projection is the map
A: G -> a+ that sends g e G to vg.

Since X is non-positively curved, it has a visual boundary dX that is topologically
a sphere, and the G-action on X extends to a G-action on dX. One can then consider
the stabilizers in G of points in dX.

Definition 2.18. A parabolic subgroup of G is the stabilizer of a point in dX. We

say that two parabolic subgroups P\, P2 C G are opposite if there is a geodesic in X
with endpoints x\, x2 e dX so that Pi Stabe (-G for i 1,2.

If P\ and P[ are both parabolic subgroups that are opposite to P2, then P\
and P[ must be conjugate in G. As such, we can say that two conjugacy classes \P\ |

and I /'a l are opposite if for any representative I'\ of [/'1] every opposite of P\ lies in
the conjugacy class [Gl¬

üsing parabolic subgroups, we can define flag spaces.

Definition2.19. Let x 6 <)X and let P := Stabe (x). The [P |-11 ag space, denoted '/j p\,
is the G-orbit of x.
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Observe that the [Pj-flag space is a G-homogeneous space, so JF[/>] ~ G/P as G-

spaces. In particular, as an abstract space, does not depend on x. Furthermore,
if P' gPg~x for some g e G, then there is canonical isomorphism between the

G-spaces G/P and G/P'. As such, !F[p} is well-defined, and depends only on the

conjugacy class of [F].
The decomposition of g into its restricted root spaces can also be used to

understand the parabolic subgroups of G. For any non-empty subset 9 C A, the
standard 6-parabolic subgroup is the parabolic subgroup l'y C G with Lie algebra

P0 := 00 © 0« © 0—or-

aeE+ aeE+nSpanR(A-0)

Using this, we can define a map from non-empty subsets of A to conjugacy classes

of parabolic subgroups in G by 6 i-> [Pe\- It turns out that this map is in fact a

bijection.
It is also well known that there is some g e G so that g a+ —a+. In fact,

for any g' e G so that g' a+ —a+, we know that g' • a a and g'Ja g|a.
Using this, we can define the opposition involution i := —g: a+ —»• a+. This

gives an involution i: A —> À defined by i(ct) a o /, which in turn induces an

involution, also denoted by t, on conjugacy classes of parabolic subgroups defined

by l[Pq] [F((0)]. Geometrically, this involution sends the conjugacy class of any
parabolic subgroup to the conjugacy class of its opposite.

From the algebraic description of the Jordan projection A, one can verify that for
all g e G and for all a e A, we have a oA(#) i(a) o A(#-1), which in turn implies
that coa o A (g) tol(a) o AC?-1).

We finish this section by describing some of the objects defined above explicitly
in the case when G SL(n, R), as this will be of particular importance to us. We

can choose K to be the maximal compact subgroup

SO(n) := {k e SL(n,R) : kTk id} C SL(n,R).

Inthatcase, l=so(n) {A 6 sf(«,R) : A ~AT) andp {A e sl(n,R) : A Ar},
so the Cartan involution Tx'-sl(n, R) -> s((«, R) is given by r: A — AT. We can
choose the maximal abelian subspace a C p to be the vector space of traceless

diagonal matrices in sl(n, R). This allows us to naturally identify

n

a |(xi,x2, xn) G R" -^2xi oj.
;=i

With this identification, S {a, j e o* : i / j}, where a,-j: a R is given by

aij: (xi,..., xn) i-> x, — Xj. By making an appropriate choice of v0 e a, we can
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also ensure that

£+ {atj a* : i < ./},
A {aiti+i e a* : i 1 —n — 1}.

a+ {(xi,... ,x„) a : xi > ••• > x„}.

With these choices, the restricted fundamental weight coai .+1 corresponding to a,-,,+!
is given by the formula coai ;+1 (xi xn) x\ + • • • + x*, and the involution t

can also explicitly be given by 1) an-i,n-i -h • Also, the Jordan projection
evaluated on g e SL(n. IB) is

A: g i-> log#

where g £ SL(«,M) is the diagonal matrix whose diagonal entries are the absolute
values of the generalized eigenvalues of g, listed in descreasing order down the

diagonal. The group element g is a conjugate of gh-
Finally, if 9 {aq,2. <*«-!,«}> then

Pe

*
0

0 *
\0 0

*

* *
0 *

£ sl(n,M)

and %o] {(L, H) £ n-1 x (MP" l)* : L £ H}. As such, we refer to the

conjugacy class [Po\ as the line-hyperplane stabilizer of SL(«,

2.4. Anosov representations and positively ratioed representations. The notion
of Anosov representations was first introduced by Labourie [21 ], and later refined

by Guichard-Wienhard [12], Several other characterizations have been provided by
Kapovich-Leeb-Porti [19,20] and Guéritaud-Guichard-Kassel-Wienhard [10], In
this article, we will only consider Anosov representations from the surface group T

to a non-compact, semisimple, real algebraic group, G.
Given a representation p: T —> G, a p-equivariant map £:t)F is

dynamics-preserving if for any y £ T \ {id}, £(y+) is the attracting fixed point
for the action of p(y) on Jqpp (In particular, p(y) has to have an attracting fixed

point in !F[p].) A pair of maps Ç: 3F -> iF[p\ and rj: 9T —> IFgp] is transverse if for
all x 7^ y, (^(x), rj(y)) lies in the unique open G-orbit of !F{/>] x With this, we

can define Anosov representations using a characterization by Guéritaud-Guichard
Kassel-Wienhard (see 110, Theorem 1.7 and Proposition 2.2]).

Definition 2.20. A representation p: T G is \P]~Anosov if
• there exist continuous, p-equivariant, dynamics-preserving and transverse maps

£:9r^%] and^gr^^p],
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• there exist C, c > 0 such that a o A o p(y) > Cir(y) — c for all a e 9 and y e T,

where fp(y) is the translation distance of y T in the Cayley graph of T with

respect to some finite generating set. (Recall that X denotes the Jordan projection.)
The maps £ and rj are called the limit curves of p.

Since the set of fixed points of group elements in T is dense in 3T, the maps £

and p are unique. In particular, % rj necessarily when 9 i(9). Also, it is a result
of Guichard-Wienhard 112, Lemma 3.18] that for any non-empty 9 C À, p: V —> G

is [P^j-Anosov if and only if it is [Peni(0)]-Anosov. Hence, we do not lose any
generality by only considering parabolic subgroups of P C G so that [P] t[P],
i.e. non-empty subsets 9 C A so that 9 t(9). We will do so far the rest of this
article. Under this assumption, we can associate to any [/J]-Anosov representation
some natural length functions.

Definition 2.21. Let p: F -> G be a [P^]-Anosov representation.

• For any a e 9, the a - length function of p is the function

tpa-XV(S) -> E given by £p(c) := (coa + col(a)) oXop(y),

where [y] c e *ü(S).
• The entropy of tpa is the quantity

h{tpa) := Mm sup log#{c e G^(S) : lp(c) < T).
T^-oo '

One can verify that is well-defined and lpa ip^ay It is also a well known

consequence of the Anosovness of p that /z(f£) e M+ (for example, see Sambarino

[31, Theorem B]). When G PSL(2,M), one can choose n to be the diagonal
matrices in sl(2, M). If p: T —> PSL(2, R) is a Fuchsian representation, then it is an

easy exercise to verify that A {a}, where a: a —> M is defined by

a:
t 0

0 -t m* 21,

and p is [RAj-Anosov. In this case, for any c e Gü(S), tpa(c) is the hyperbolic length
of the geodesic c measured in the hyperbolic structure S on S corresponding to p,
and it is well known that h Ha) '•

For a general Anosov representation however, the length functions are so named

purely by analogy as there is no natural metric on the surface that gives rise to these

length functions.
As another example, we will consider projective Anosov representations.

Definition 2.22. Let [P] be the line-hyperplane stabilizer ofSL(n, R). A [P]-Anosov
representation p: T ^ SL(«, R) is a projective Anosov representation.
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For any g e SL(w,R), let A (g) (Ai (g),..., An(g)) G a+ denote the Jordan

projection of g. Recall that if \Po] is the line-hyperplane stabilizer of SL(n, M), then

0 {a12, OLn-\,n}- Hence, there is only one length function of p, which we will
abbreviate by tp: 'Üb (S) IR. By the definition of ip, we see that

ep(c) ((0ai 2 + COan_l n) O A O p(y)
n—1

Ai(p(y))+ ^A,-(p(y)) (2.1)
1 1

A1(p(y))-A„(p(y)).

If p: T — SL(/t. R) is projective Anosov, then the limit curve

£:3r -* XFi[Ph]

corresponding to p can be thought of as a pair of continuous, p-equivariant, maps

£(1): 3r MP""1 and £(,!-1): 9r -» (MP"-1)* ~ Gr(n - 1, n)

so that ^\x) C ^n~l\y) if and only if x y. Since £ is dynamics preserving,
we see that for any y G T \ {id}, if y+, y- G 9r denote the attractor and repeller
of y, then £^(y+) and are the attracting line and repelling hyperplane
of p(y) respectively.

In this case, Labourie [22] defined a function Lp: 9T141 -> M given by

X, y, Z, W
^(l)(u;))(^(«-l)(z), ÇW(y))

'

Here, for any p,q x,y,z,w, we choose a covector representative in (!/')* for
£ ~1 >

p and a vector representative in M" for^^(^) toevaluate (£(" 1^(p), ^l\q)}-
One can verify that Lp(x, y, z, w does not depend on any of the choices made.

We will refer to the function Lp as the Labourie cross ratio, even though it is not
a cross ratio in the sense of Definition 2.4. It is easy to see that

Lp(x, y, z. w) Lp(x, w, z, t) Lp(x. y, z, t). (2.2)

Furthermore, an easy computation proves that for all y G r \ {id} and for all

a G 9T \ {y+, y-}, we have

Lp(y~, y a, y+,a)
gA/>(p(y))

Lp(y a,y~,a,y+). (2.3)

Using (2.2), one can verify that the function

Bp(x, y, z, w) := - log (Lp(x, z, y, w) Lp(z, x, w, y))
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is indeed across ratio. Furthermore, for any c |y] G (S), (2.1) and (2.3) imply
that

*tp(c) ^ log (Lp(y~, y a, y+,a) Lp{y a, y~,a, y +

t' bp(C).

In particular, when f P] is the line-hyperplane stabilizer of SL(«, R the length
function of [P]-Anosov representations are the periods of a unique cross ratio
(the uniqueness is a consequence of Theorem 2.5). This is in fact true for any
restricted simple root a e 6 for any [Pg]-Anosov representation p: T —> G. To prove
this, we need the following proposition, which is a special case of Proposition 4.3

of Guichard-Wienhard [12] (see also S uéritaud-Gu ichard-Kassel-Wienh a rd [10,

Proposition 4.6]).

Proposition 2.23 (Guichard-Wienhard). Let 6 C A, let p\F -* G be a [Pg\-
Anosov representation, and let a e 6. Also, let ra: G -a SL(«,R) be an a-Tits
representation. Then ra o p: F —> SL(n,R) is [P]-Anosov, where [P] is the line-
hyperplane stabilizer o/'SL(«, R). Furthermore, the limit curve corresponding to p
is fa o £: 3T —> w^ere fa'- -P\pHI > j~\P] is the unique ra-equivariant map.

More explicitly, if P C SL(w, R) is the representative in the conjugacy class [P]
so that r~l(P) Pg, then fa: lF[pH] G/Pg SL(«,R)/P Pjpj is given by

fa-g • Pe ^ ra(g) P- Proposition 2.23 allows us to reduce the study of length
functions of a general Anosov representation to the length function of a projective
Anosov representations. In particular, we can prove the following.

Proposition 2.24. Let 6 c A and let p\F —> G he [Pg\-Anosov. For all a e 6,

there is a unique cross ratio Ba so thatfor all c G 'CS (S),

%(c) tBS(c).

Proof. Let ra:G —SL(n,R) be an «-Tits representation of G. Since ra op is

Anosov with respect to the line-hyperplane stabilizer in SL(n,R), ra o p(y) has a

largest eigenvalue of multiplicity 1 for all y G F \ {id}. By Theorem 2.15, we have

<A*1,2 ° ^-SL(n.K) °ra o p(y) k-(Oa o XG o p(y)

for some k e Z+. Similarly, we have that

l.n ° ^SL(«,R) ° ra ° p(v) <A*i,2 ° ^SL(/i,R) ° ra ° Pi.Y

k - coaoXG o p(y~1

k -ù)qa) oXG op(y).
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Together, these imply that for any c [y] e 'Cfj(S),

lr"°P(c) (o)ai 2 + o)an_l n) o Asl(„;M) orao p(y)
(k Ma + k col(a)) o AG o p(y)

k-lpa(c).

Define Bp := Since lr<*op lBra°e, it immediately follows that tpa Ibp.
The uniqueness of Bf is a consequence of Theorem 2.5.

Using Proposition 2.24, we can define positively ratioed representations.

Definition 2.25. A [PgJ-Anosov representation p: F —G is [Pß]-positively ratioed
if the cross ratio b£ is positive for all a e 9 (see Proposition 2.24 and Definition 2.9).

As a consequence of Theorem 2.10 and Proposition 2.24, we see that for any
9 C A, any [/^[-positively ratioed representation p: F —^ G, and any a G 9, there is

a unique geodesic current pfa G G(S) so that i(p-a.c) tpa{c) for every c G G~§(S).
This is stated as Theorem 1.1 in the introduction.

Let 9' c 9 be subsets of A. Guichard-Wienhard [12, Lemma 3.181 proved that

if p: T G is [PflJ-Anosov, then it is also [/V]-Anosov. It then follows from this
definition that if p is [Pq]-positively ratioed, then it is also [ /V|-positivcly ratioed.

The intersection currents arising from positively ratioed representations satisfy
some basic properties that we will now explain.

Note that in the definition of a positive cross ratio, we used the weak inequality
instead of the strict inequality. However, in the definition of positively ratioed

representations, we can replace the weak inequality with a strict inequality without
changing the definition. This is the content of the next proposition.

Notation 2.26. For any x,y,z e 3T, let (x,y]z denote the half-open subsegment
of 3T that does not contain z and has x and y as its open and closed endpoints
respectively. We will also use (x,y)z, [x,y)z and [x,y]z to denote the
interval (x, y]z, but with the appropriate closed and open endpoints.

Proposition 2.27. Let 9 C A, let p: T -» G be a [Pß]-positively ratioed
representation, and let a e 9. Then B£(x, y, z,w) > 0 for all x, y,z,w G 3T
in this cyclic order.

Proof. Recall that ra op: F —>• SL(n, M) is projective Anosov, and that B£ p Bra°p
for some k e Z+. Therefore, we can assume that p is projective Anosov. Let

£ (£(D, 3T MP""1 x (MP""1)*

denote the limit curve of p. By assumption, Bp(x, y, z, w) > 0 for all x, y, z, w G 3T
in this cyclic order. Suppose for contradiction that there is some x,y,z, we 3T
in this cyclic order so that Bp(x, y, z, w) 0. This means that for all t G [z, w]x,
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Bp(x, y, t, w) 0. It then follows from the definition of Bp that £^([z, w]x) lies
in the proper subspace (^n_1)(x) fl + £^(iu) C M".

Let V C M" be the minimal subspace containing £Hi([z, w]x), and let y G r \ {id}
so that its repellor y~ lies in (z, w)x. Since £^([z, w]x) C p(y) £^([z, w]x), we
see that V C p(y) V, so V is p(y)-invariant. At the same time, observe that

OO

(J y" [z,w]x ar\ {y+},
n=0

so the continuity and p-equivariance of implies that £0(3r) C V. However,
V C (Ç("~1>(x) n which means that

£(1)Or) n f(n_1)(x) c £(n_1)(x) n

In particular, £^(x) G ^"_1'(>'), but this violates the transversality of £.

Definition 2.28. Let v G ~C( S be a geodesic current. We say that v is period
minimizing if

\{c g £&(S) : i(v,c) < L}| < oo

for all T G M + Also, v has/w// support if v(U) > 0 for any open set U c'C(S).
It is well known that |{[y] G [r] : tr(y) < T}\ < oo for all T G R+. As such,

an immediate consequence of the Anosovness of p that p,„ is period minimizing. In

particular, measured laminations are not intersection currents coming from Anosov

representations, because they are not period minimizing.
Let x, y,z,w G 3T in this cyclic order, and let ~&[x,y]z,[w,z]v C ~§(S) be the set

of geodesies in S with one endpoint in [x, y]z and one endpoint in [w, z\y. By the

construction of /x„ from B„ (see Appendix A), we see that

tâfàx,y]z,lw,ziy) B£(x, y,z, w). (2.4)

In the degenerate case when x y ^ z w, this implies that //„({x, z}) 0, so
the p-a-measure of every point in fJ(S) is zero. As a consequence, the intersection
current arising from an Anosov representation has no atoms.

Finally, the intersection currents arising from Anosov representations have full
support. To see this, observe that

{&(x,v)-,(w,z)v c : x> y>z<w G 3T in this cyclic order}

generates the topology on S{S). Since Pa(^[x,y\-,[w,z]v) ßa(ß(x,y)z,(w,z)y),
Equation (2.4) and Proposition 2.27 immediately imply that ppa has full support.

3. Examples of positively ratioed representations

In this section, we provide several important examples of positively ratioed representations

to motivate the definition.
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3.1. Hitchin representations. The Teichmüller space of S can be defined to be

T(S) := {discrete, faithful /o: T > PSL(2, R)}/PGL(2, R).

This is the space of holonomy representations of hyperbolic structures on S. If
we equip T (S) with the compact-open topology, it is well known that T (S) is

topologically a cell of dimension 6g — 6. Let

i„:PSL(2,R) -» PSL(n,R)

be the projectivization of the unique (up to post-composing by an automorphism of
SL(«,R)) «-dimensional irreducible representation of SL(2,R) into SL(n,R). If
we equip

X(S,PSL(n,R)) := Hom(r,PSL(«,M))/PGL(«,M)

with the compact-open topology, this gives us an embedding

in: T(S) -> X(S, PSL(«, R))

defined by in [p] [in op]. In particular, in(T(S)) c X(5,PSL(«,M)) is connected.

Definition 3.1. The PSL(n,R)-Hitchin component Hit„(S) is the connected

component of X(S, PSL(n, R)) that contains in(T(S)). The representations in

Hit„(S) are known as PSL(n,M)-Hitchin representations.

Often, we will simply use a representative p in the conjugacy class [p] to denote

an element in Hit„(S). It is classically known that T(S) is a connected component
of X(S, PSL(2, R)), so Hit2(S) T(S). As such, one can think of Hit„(S) as a

generalization of T (S).
The Hitchin component was first studied by Hitchin [17], who used Higgs bundle

techniques to parameterize Hit„(S) using certain holomorphic differentials on a

Riemann surface homeomorphic to S. In particular, he showed that Hifi^S) is

topologically a cell of dimension (n2 — l)(2g — 2), where g is the genus of S.

With this, the global topology of IIitn(.S) is completely understood. However, the

geometric properties of the representations in IIit„(,V) remained a mystery until a

seminal theorem of Labourie.
To explain this theorem, we first need the notion of a Frenet curve. Let IF (M")

denote the space of complete flags in M", i.e. F e .'F (LR") is a properly nested

sequence F^ c ••• C F^n^ of linear subspaces in M", where each F^ has

dimension i. When G PSL(n, M), it is easy to verify that F (M") .FjpA],

Definition 3.2. A continuous map £: S1 —>• F (R" is Frenet if the following hold:

• For all x\,..., e Sl pairwise distinct and m \ m^ G Z+ such that k < n

and m\ + • • • + m^ n, we have that

k

0 £(*,.)(«.> R".
1 1
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Let rn\ mk e Z+ such that k < n and m\ + • • • + — m < n, and let

{{x{,..., xJk )}°°=1 be a sequence a k-tuples of pairwise distinct points. If there is

some x e S1 so that lim/^oo xf x for all i 1,.... k, then

lim 0ÇU/)(m') £(*)
1 —^(Yl

(m)

J^oo
1 1

Labourie [21, Theorem 4.1] proved that PSL(n,K)-Hitchin representations

preserve a p-equivariant Frenet curve. Later, Guichard [11, Theorem 1] proved
the converse to this, thus giving us the following theorem.

Theorem 3.3 (Labourie, Guichard). Let p G X(S, PSL(«, R)). Then p G Hit„(5)
ifand only if there is a p-equivariant Frenet curve 3T —> 5tpa].

As a consequence of this, we know that every p G Hit„(S) is [PA]-Anosov. In
particular, for all p G Hit„(<S) and a G A, we can define ipa and the corresponding
cross ratios as per Section 2.4 and Section 2.2 respectively. In fact, we have the

following theorem.

Theorem 3.4. Ifp g Hit„(>S), then p is \P&\-positively ratioed.

To prove Theorem 3.4, we will use Theorem 3.3 to construct positive cross ratios
ßP. 3p[4] ]R for / 1 n — 1 in the following way.

Notation 3.5. Given flags F\. If,, Fs) for every / 1 .v choose vectors

fi,h fn-i,l et" so that

SpanR{fi,i,...,f,i}
for all i 1— 1. Fix once and for all an identification f\" IR" M. For any

integers ?'/ > 0 with U >T denote by p[l 1 ' a • • • a Fs('v) the real number

/l,l A ••• A fiui A ••• A fUs A ••• A fiSjS.

This notation involves some choices, but none of the quantities we define using this
notation will depend on them.

Let II'': 9r^ M be the function

Bf(x,y,z,w) := log
ç(je)*»-1') a £(z)^ Hy)(n~° a £(u>)(0

£(*)("-«') a i(w)V Ç(y)(n~° A £(z)(0

and set Bp := + Bpn_t).

Lemma 3.6. For i 1 n — 1, Bp is a positive cross ratio.
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Proof. Additivity and symmetry of Bp are easy to check thanks to the explicit formula
above. Continuity of Bp follows from the continuity of £. Hence Bp is a cross ratio
for every i 1 n — 1. To show positivity of Bp. we will write it as a sum of
functions on that are positive when evaluated on points x.y.z.w lying in this

cyclic order along 3T.

Fix / e {1,— 1}. For (x,y,z,w) £ dr'4l, k 1,— i and j
I,... ,i, define

(x.y.z, w)ij t := log
Ç(x)("-i~*+1) A f(_y)(fc~" A Ç(z)(i~J + l) A Ç(w)(j~l)

+ log

^x)(n-i~k+1) A £(j,)(*-l) AIA £(uj)C)

ç(x){n-i-k) A £(_,,)(*) A A

A Ç(y)&) A ^(z)9'-f+ 1) A f(lü)O--l)

and observe that for all (x, y.z.w) £ 3rl4l

n—i i

Bp{x.y.z.w) J2
k=17=1

The functions (x, y, z, w)ij^ were studied by the second author, who proved [36,

Proposition 2.12], that each (x, y, z,w)ij^ is positive on quadruples of points
x, y. z. w in this cyclic order along 3F. This shows the positivity of Bp.

Proofof Theorem 3.4. By Lemma 3.6, it is sufficient to show that B^ i+] Bp.

For any element g £ PSL(«,R), let X(g) (X\(g),..., Xn(g)) £ ci+ be its

Jordan projection. An easy computation, using the explicit formula for the restricted
fundamental weights, shows that for all y £ T \ {id},

i n

%u+1 M Ku+1 + (oan-Ln_i+1)oXop(y) J2xk(p(y)) - J2 h(p(y))-
k= 1 k=n—i +1

By Theorem 2.5, it is thus sufficient to show that tBp ipaj

Choose a basis e\..... en cl" such that e(- spans the line

Then for this basis we have

lÉGO01-0 a -x)(,)| |eAl-+A/(p(y))^(y-)("-/) A £(*)(*) |.

|^(y+)("-;) A £(y x)(0| Iekn-, + iWY))+-+k„Wy))^Y+^n-i) A £(x)(0|
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Hence,

£(y-)(«-0 A x)(0 Ç(y + )(»-0 A Ç(x)(i)
2Bf(y ,y+,yx,x) log

log

£(y )(" £(y+)(" ')A^(y-x)6)
£(y")(î) A f (y • £(y+)(f) A

f(y )W A^(x)(" ') £ (y+)6) a £(y • jc)(" ')
i n

YlXk(p(y^ ~ X xk(p(y^
k=1 k—n—i +1

n—i

+ XA*My)) ~ X! mpoo)
/r=l fe=! + l

2^Afc(p(y)) - £ A*(p(y))) 2^,;+1
&=1 k=n—i +1

M-

3.2. Maximal representations. Another important feature of PSL(2, M) is that it
is a Lie group of Hermitian type.

Definition 3.7. A connected semisimple Lie group G is of Hermitian type if it
has finite center, has no compact factors and the associated Riemannian symmetric
space X admits a G-invariant complex structure.

For our purposes, the main example of Lie group of Hermitian type will be

G PSp(2«,R). Let g be the Riemannian metric on the symmetric space X
and J the G-invariant complex structure. This allows us to define a non-degenerate
two-form a>x by

cox(V, W) := g(JV, W)

for any two vector fields V, W on X. One can show (Burger-Iozzi-Labourie-
Wienhard [3, Lemma 2.1 ]) that (X, <»x) is a Kähler manifold. For any representation

p: F —> G, the symplectic form cox defines an important invariant for p as follows.
Consider the bundle S xp X := (S x X)/T over S, where T acts on S via deck

transformations and on X via p. The fiber of this bundle is X, which is contractible, so

5 xr X admits a smooth section. Equivalently, there exists a smooth F-equivariant
map f:S -> X. The pull back f*(a>x) is a T-invariant two-form on S, which

descends to the two-form f*(a>x) on the compact surface S. We can define the

Toledo invariant of p as

T{p)

Since any two p-equivariant maps /, / ': S —» X are homotopic, T(p) is well-defined.

If rank« X is the real rank of the symmetric space X, the Toledo invariant satisfies
the inequality

IT (p) I < -/(S')rankRA
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(seeTuraev [35], Dominic-Toledo [7],Clerc-0rsted [6]). InthecaseG PSL(2,M),
this is the classical Milnor-Wood inequality [25]. Goldman [13] showed that T(S)
is the unique connected component of X(T, PSL(2, M)) with Toledo invariant 2g — 2

(the real rank in this case is 1). This motivated Burger-Iozzi-Wienhard [4] to define
the following class of representations.

Definition 3.8. A representation p: T —> G, with G a Lie group of Hermitian type
is maximal if |T(p)\ — /(5)rank]ßX.
For the rest of this section, fix the target group to be G PS p (2/7, R). We will show
that in this case, maximal representations are also positively ratioed with respect
to a particular parabolic subgroup. Recall that the maximal compact subgroup of
PSp(2«,M) is isomorphic to U(n). At the level of Lie algebras, we can write
sp(2n,M) £ + p with

u(n) ^ Î {(_abba):A, B e M„(R), A' —A, B' B}
P {{b-A):A>b* A' A,B' B}

where A/„(R) is the set of n x n matrices. The maximal abelian subspace a C p

can therefore be identified with diagonal, traceless matrices in sp(2»,M). With this
identification, the restricted simple roots can be chosen to be

<*;,; + i(xi, xn,-xn -xi) Xi - xi + \ for / 1 ,n.

Moreover, the opposition involution is the identity.
Burger-Iozzi-Labourie-Wienhard [3, Theorem 6.11 proved that maximal

representations are Anosov.

Theorem 3.9 (Burger-Iozzi-Labourie-Wienhard). If p\V G is a maximal
representation, then p is [Pa„ ]-Anosov.

The quotient 3r[pctn n+1] is the Grassmannian of Lagrangian subspaces in M2".
Consider four Lagrangian subspaces L\, L2, L3, L4 ^[Pan n+x\ so lhat

and L2,L4 are transverse pairs of Lagrangians, and let (cj,..., e") be a basis

for Lj. For any i, / 1,..., 4, let Aij be the matrix whose (k,m)-th entry is

(Aij)k^m Q(e^eJ),

where is the symplectic form on R2" preserved by the Sp(2//, IR) action. Using
this, define

B<L,.L2,L,.L4):=^<RAR*RR.
det(4i;4) • det(y43j2)

Labourie [23, Section 4.2] proved the following.

Theorem 3.10 (Labourie). Ifp: T —> G is a maximal representation with flag curve
£:3T -> F[pan n+l], then

B(x, y,z,w) := log |B(|(x), ^(z), ^(j), ^(u/))|
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is a cross ratio. Also, tg(c) 2(Ài(p(y)) + À2(p(y)) + ••• + Xn(p(y))) for ail
c M e X£8(S). Moreover, for any four distinct points x, y, z,w in this cyclic
order along 9T, we have that B(x, y, z, w) > 0.

Combining Theorem 3.9 and Theorem 3.10, we obtain the following corollary.

Corollary 3.11. If p: F > G is a maximal representation, then p is [Pœ„„+1]-
positively ratioed.

Proof. The restricted fundamental weight u>an n+1 corresponding to ocn,n+i is given
by C0an n_i, (xi xn,-xn,..., —xi) x\ H F xn and therefore

C,.«+1 M 2(xt(p(y)) + A2(p(y)) + ••• + A„(p(y))).

Theorem 2.5 then implies that B^n ,I+1 is the cross ratio B defined in Theorem 3.10,
which is a positive cross ratio.

4. Background on geodesic currents

In this section, we will introduce some notation, terminology and basic lemmas to
study length functions on subsurfaces of S induced by geodesic currents on S.

4.1. Extension to subsurfaces. We begin by a definition tor the kind of subsurfaces

of S that we consider.

Definition 4.1. Let S) be a (possibly empty) collection of pairwise non-intersecting,
pairwise non-homotopic, non-contractible, simple, closed curves on S. An essential

subsurface S' of S is a union of connected components of S \ £).

If S' is connected, let T' be the fundamental group of S' and let S' denote the

universal cover of S1. By choosing appropriate base points in S and 5 the inclusion
5" c S induces inclusions T'c T and S' c S. Also, the inclusion T'cT realizes
the Gromov boundary 9T' of F' as a subset of 9F.

If we choose a hyperbolic structure £ on S, then any connected essential

subsurface Sf of S is homotopic to a connected subsurface £' c £ with totally
geodesic boundary. Also, denote the universal cover of £' by £', then the inclusion
S' C S gives an inclusion £' c £ as the convex hull in £ of 9r' C 9T ~ 9£.

Previously (see Definitions 2.1 and 2.2), we defined a topological notion of
geodesies in S and S, as well as closed geodesies in S using only F. Note that we

can define oriented geodesies and geodesies in S' and S', as well as closed geodesies
in S' in the same way, using T' in place of T. We will denote the set of geodesies
in S', the set of geodesies in S\ and the set of closed geodesies in S' by ~§(Sr), ~§(S')
and respectively.

Since the closed geodesies in S' are in a natural bijection with the free homotopy
classes of closed curves on S', we say that a closed geodesic in S' is simple if its
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corresponding free homotopy class contains a simple curve, and we say that it is

peripheral if its corresponding free homotopy class is peripheral.

If S' Uf=t 's a disconnected union, then we define XIS(S') :=
Uf=, VS(Si) and S(S') := U?=i S (Si).

For the rest of this paper, we will use the notations S' C S, S' C S, f c T,

9r' C ar, T£«(S") C GS{S), ${S') C «(5) and^(S') C £(S) as above. Also,
whenever we choose a hyperbolic structure on S, we will identify E', E, E' und E
with S', S, S' and S respectively without any further comment.

4.2. Properties of the intersection form. Although the intersection form (see

Definition 2.7) was defined purely topologically as the measure of the set <D f/{S), it
is often convenient to choose a hyperbolic structure E on S. This choice allows us

to use the following description of S)~§(S), which will be useful for computing the

intersection form.
The tangent bundle of the Poincaré disc TD is a vector bundle over D, so we can

projectivize its fibers to obtain a fiber bundle over D, which we denote by P(7'B).
Let P(TD) © P(TD) be the fiber bundle over D obtained by taking the fiber-wise

product of P(TD) with itself. An element of P (TO) © P(7D) is thus a triple
(p, l\, I2), where p eD and l\, l2 are lines through the origin in TpO. Clearly, the

PGL(2, M) Isom(D) action on P(7TD) © P(T'D) leaves invariant the subset

Trans(P(TD) ©P(TD)) := {(p,h,l2) e P(TD) ©P(TD) : h ^ h}-

A choice of a hyperbolic metric E on S induces a unique (up to post composition
by PGL(2,P)) isometry between S and D. The action of T on S by deck
transformations then conjugates to a free and proper T action on D, which in
turn induces a free and proper action of T on P(7'ID)) © P(7'B) that stabilizes

Trans(P(TB) © P(TB)). This allows us to define the Hausdorff space

0(E) := Trans(P(TD) © P(7D))/T.

The isometry between S and D also induces an obvious T-equivariant
homeomorphism between 1)77(.S") and Trans(P(7'D) © P(TD)), which descends

to a homeomorphism between 1)77(S) and 0(E). This identification allows us to

prove Lemma 4.4 below. However, to state Lemma 4.4, we first need to develop some
notation.

Notation 4.2. For any q, p e D, let (q, p] denote the half-open geodesic in D with
open endpoint q and closed endpoint p. Similarly, (q, p), [q, p) and [<7, p] will
denote the interval (q, p], but with the appropriate open and closed endpoints.

Notation 4.3. For any q, p e D, let / be one of the four geodesic segments in D
described in Notation 4.2 with endpoints p and q. Then let G (I denote the set of
geodesies in D that intersect / transversely. Similarly, for any x,y,z,w e 9D in that
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cyclic order, let L be the geodesic in D with endpoints x, w and let J be either of the

following four subsegments of 3T:

(y,z)x (y,z)u>, [y-z)x [y,z)w (y,z]x (y,z]w or \y,z]x [y,z]w.

Then let G{XiW}(J) denote the set of geodesies in D that intersect L and have one

endpoint in J.

Lemma 4.4. Let v e 'C(S) and let c [y] £ 'Cfs(S). Let {x, y] be the set offixed
points of y. Also, choose any hyperbolic structure on S and let L be the axis of y in
S D. Finally, let q £ D and let z £ 3D \ {x, y}. Then the following hold:

(1) Ifq £ L, then

i(c,v) v(G(q,y-q]) v(G{x,y}{z, y z}).

(2) Ifq £ L, then

i(c,v) < v(G{q,y-q])
and the inequality holds strictly ifv has full support.

Proof. Note that {x, y} is the set of endpoints for L in 3D.

(1) Let q G F be the primitive element so that y qk for some positive integer k,
and let c' := [[77] e Gi/(S). By definition, i(c, v) is the mass of a fundamental
domain of the T-action on £)~§(S) Trans(P(TD) ©P(TD)) in the measurer x v.
Since the support of c x u lies in the set

{(p, I1J2) e Trans(P(TID>) © P(TD)): expp(l\) is a lift of c to D>},

this means that

i(c,v) (c x v)({(p,h,l2):p 6 (q,q-q] and exp^/O L})
k(c' x v)({(p,li,l2): p e (q,q-q] and expp(h) L})
(P x v)({(p,li,l2): p e (q,y q] and exp^^O L})

v(G(q,y-q]).

Next, we will prove that v(G(q, y q]) v(G{X;V}(z, y z]). For any k £ TL, let
Gk(q, y-q] C G(q, y-q] be the subset of geodesies with one endpoint in yk-(z, y-z]x.
It is clear that G(q, y q] can be written as the disjoint union

G(q,y-q] U Gk(q,y q].
keZ

Also, for any k £ Z, let Gkx v^(z, y z] c G{x,y}(z, y z] be the subset of geodesies

that intersect yk (q,y q]. As before, G{x,y}(z, y z] can be written as the disjoint
union

G{x,y}(z, Y z] (J Gk{x y}(z, y z].
kcZ
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Finally, observe that Gk(q, y q] yk G^ky^(z, y z]. Hence,

v(G{q,yq]) YJv{Gk(.<l,Y-q])
k<=Z

1)

keZ

I]v(G{i}(z'K-z])
ktzZ

v(G{x,y}(z,Y -Z]).

(2) Let p be the foot of the perpendicular from q to L and let L' be the bi-infinite
geodesic through q and y q. Observe that y p is also the foot of the perpendicular
from y q to L, and L O L' is empty. Let z, w e 3D be the endpoints of L' so

that z, x,y,w e 3D in that order (see Figure 1). By (1), we know that i(c, v)
v(G(p, y /?]), so it is sufficient to show that v(G(q, y q]) > v(G(p, y p}), and

that this inequality is strict when v(U) > 0 for all open sets U C ~§(S).

Figure 1. Proof of (2) of Lemma 4.4.

For any k e Z, let Gk(p, y • p] C G(p, y • p] be the subset of geodesies that
intersect yk (q,y q]. Then G(p, y p] can be written as the disjoint union

G{p,y p] 1J Gk{p, y-p],
k gZ

Similarly, for any k e Z, let Gk(q, y q] C G(q, y q] be the subset of geodesies
that intersect yk (p, y • p]. Also, let A c G(q,y q] be the subset of geodesies
with one endpoint in (z, x]y and let B C G(q, y q] be the subset of geodesies with
one endpoint in [y, w)x. Observe that G(q,y q] can again be written as the disjoint
union

G(q, y-q] AUBö\<j Gk(q, y q}.

keZ



302 G. Martone and T. Zhang CMH

Since Gk(p, y p] yk G-k(q, y q] for all k £ Z, we have

v(G(q, y -q}) v(A) + v(B) + v(Gk(q, y q])
keZ

v(A) + v(B) + Y2 v(yk G-k(q,y •<?])

keZ

v(A) + v(B) + ^2, v{Gk(p, y p])
keZ

v{A) + v(B) + v(G(p,y- p])

> v(G(p,y p]).

It is clear that A and B contain open subsets of geodesies in ~§(S), so the strictness

statement holds.

4.3. Surgery and lengths. Let c e G^(S') be a primitive closed geodesic of S'
with positive geometric self-intersection number. Choose a representative c in the

free homotopy class of closed curves corresponding to c, so that c has only transverse
self-intersections and minimal self-intersection number. We can also assume that c

only has simple self-intersection points, i.e. if we choose a parameterization of c

by S1, then c(t\) c(t2) c(t3) implies that t\ e U2J3}. Let p be a point of
self-intersection for c.

There is a well known procedure one can apply to c known as surgery at p to
obtain new closed curves in S'. To do so, choose a small topological disc in G C S'
so that c IT dU is four points x, y, z, w that lie along 3U in that order, and c IT U
is the union of two simple paths that intersect at p, one with endpoints x and z, and

the other with endpoints y and w. We can then modify the curve c by replacing the

two simple paths c fi U that intersect at p with two simple paths in U that do not
intersect. There are two ways to do so; we can either replace c IT U with two simple,
non-intersecting paths in U with endpoints x, y and z, w, or we can replace c IT U
with two simple, non-intersecting paths in U with endpoints y, z and x, w.

These two different ways of performing surgery to c at p yield either one closed

curve ci in S' or two closed curves c2 and c3 in S'. For i 1,2,3, let q G G^(S')
correspond to the free homotopy class of closed curves in S' that contains q (see

Figure 2). It is easy to see that c\, c2 and c3 do not depend on the choice of U.
Moreover, an easy homotopy argument shows that c \, c2 and c3 also do not depend

on c in the following sense. If c' is another closed curve in the free homotopy
class corresponding to c with minimal geometric self-intersection number and only
simple, transverse self-intersection points, then the homotopy between c and c' gives
a bijection

hc,d'' {self-intersection points of c} — {self-intersection points of c'}.
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If we perform surgery to c' at the self-intersection point hc,c'(p) in both ways, then
the closed geodesies corresponding to the free homotopy classes of closed curves we
obtain are exactly a, c2 and c3.

The following proposition gives useful inequalities involving i(c\,v), i(c2,v),
z(c3, v) and i(c, v).

Proposition 4.5. Let v e G(S) and let c e Gi/(S) be a primitive closed geodesic

so that i(c, c) > 0. By performing surgery to c at a point ofself-intersection in two

different ways (see discussion above), we obtain either a single geodesic C\ or a pair
ofgeodesies c2, c3. Then

Furthermore, these inequalities are strict when v has full support.

Proof. Let y e T be a group element so that [y] c Gi)(S). Choose a hyperbolic
structure on S, and let c be a closed curve homotopic to c with transverse, minimal
self-intersection and only simple self-intersection points. The homotopy between c
and c gives a surjection

hc,c'- {self-intersection points of c} -> {self-intersection points of c}.

Let q be the self-intersection point of c where the surgeries to obtain ci, c2 and c3

are performed, and let p h<:j{q).
Let L c S D be the axis of y, and observe that Lisa lift of the geodesic c.

Let p be a point in L whose image under the covering map n : S —S is p. Then y • p
also lies in L and n(y • p) p as well. Let y2, y3 e T be the group elements so

that [y2] c2, [y3] c3, y y3y2 and y2 • p e (p, y • p ] (see Notation 4.2). It is

clear that fl(y2 • p) p and \y\ := y^y^ Ci.
We will first prove the inequality i(c2,v) + /(c3,v) < i(c,v). By (2) of

Lemma 4.4, we have

Figure 2. Surgery.

i(c\,v) < i(c,v) and i(c2,v) + i(c2,v) < i(c,v).

i(c2, v) + i(c3, v) < v(G(p,y2 p}) + v(G(y2 p, y3y2 • /?])

v{G(p,y /?])

i (c, v).
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To prove the inequality i(c\, v) < i(c, v), first make the following observation. For

any ^eD, let L' be the geodesic in S containing [q, y3 • q]. If v{{L'}) 0, then

v(y3 {L'}) 0 as well, so the u-measure of the set of geodesies through y3 • q that

are transverse to L', is equal to the u-measure of the set of geodesies through y3 • q,
which is again equal to the v-measure of the set of geodesies through y3 -^transverse
to y3 L'. This is in turn equal to the u-measure of the set of geodesies through q
transverse to L'. Hence, we may conclude that if v({L'}) 0, then

v(G(q,y3-1 -q}) v{G[q,y3-q)) v(G(q, y3 q]).

Now, observe that the geodesic containing [y2 p, y3y2 • p] is L. Hence, the

previous observation, together with (2) Lemma 4.4, allows us to conclude that if
v({L}) 0, then

/(A, v) < v(G(p,yx p])
< v(G(p, y2 p]) + v(G(y2 p, y^y2 p])

v(G(p, y2 p]) + v(G(y2 p, y3y2 p))
v(G{p,y -p})
i (c, v).

With this, we can prove i(c\, v) < i(c, v) for general v. Since c 1 is obtained
from c by performing surgery, it is clear that i (ci, c) < i{c,c). Also, since L is a lift
of c, we can write v p + kc for some /x G G(S) so that /x({L}) 0. This means
that

i{c\, v) i(c 1, /x) + ki(c\,c) < i(c, /x) + ki(c, c) i(c, v).

Finally, we argue that these inequalities are strict when v has full support. By the

strictness statement in (2) of Lemma 4.4, it is sufficient to show that p does not lie
along the axes of y\, y2 and y3. This is obvious, since the axes of y, yi, y2 and y3

are pairwise disjoint.

As a consequence of Theorem 1.1, Proposition 2.27 and Proposition 4.5, we have

Corollary 1.3.

4.4. Asymptotics of lengths. In [5], Burger and Pozzetti consider a metric com-
pactification of the space of Sp(2n, R)-maximal representations. The limit points
correspond to actions via isometries of T on certain asymptotic cones. They prove
[5, Theorem 1.1] that a boundary point determines a decomposition of S into essential

subsurfaces. This decomposition is defined in terms of the asymptotic behavior of
the length function.

In this section, we obtain an analogous result for sequences of positively ratioed

representations as a consequence of Theorem 1.1. Here, we use the compactness of
the space of projectivized geodesic currents fPG(S) := 'C(,S')/R+ [2, Corollary 5]
to describe the limit points. First, we need the following lemma.
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Lemma 4.6. Let v 6 'C (S) and e £ 'CS(S') be a primitive non-simple curve. Then

there is some geodesic pair ofpants P C S' and e £ 'C 8 P so that:

• i (e, u) < /(ë, v);
• e is primitive and has a unique self-intersection point p;
• the three closed geodesies e\, C2 and e3 obtained by performing surgery toe at p in

the two different ways specified in Section 4.3 are the three boundary components

of P.

• ifa curve c £ 'CS(S') intersects e transversely, then c intersects e transversely.

Proof. Let q be any self intersection point of ë and let ë\, ë2 and ë3 be the three

closed geodesies obtained by performing surgery to ë at q. It is clear that the self-
intersection numbers of ë\, ë2 and ë3 are less than that of ë. Also, Proposition 4.5

implies that i(ëj,v) < i(ë, v) for all j 1,2,3. Suppose that there is some

jo 1.2,3 so that ëJO is not a multiple of a simple curve. Then let ë be the closed

geodesic so that ë |yj for some primitive y £ T with the property that [y"| ëj0
for some k e TL. Then ë is primitive, non-simple, has fewer self-intersection points
than ë, and /'(ë, v) < i(ë7o, v) < / (ë, v). Replace ë with ë.

Iterate the replacement procedure above. This iteration will terminate to give
a non-simple e £ CS(S') so that i(e,v) < i(ë,v), and for any self-intersection

point p of e, the three closed geodesies e\, e2 and e3 obtained by performing surgery
to e at p are multiples of simple curves in S'. This then implies that e must have a

unique self-intersection point. In particular, e\, e2 and e3 are simple and are pairwise
non-intersecting. The homotopy from e\, e2 and c3 to e is a pair of pants P that

contains e, and has e\ e2 and c3 as its boundary components.

Proposition 4.7. Fix an auxiliary hyperbolic structure on S. Let {vj }yLj c C(S)
be a sequence ofnon-zero geodesic currents. There is

• a subsequence of {vj }JL,, also denoted {vj j,
• a (possibly disconnected, possibly empty) essential subsurface S' C S,

• a (possibly empty) collection ofpairwise non-intersecting, simple closed geodesies

{c,,...,ck}C^(S\S')
so that A := S' U Uf=i ci T S is non-empty, and the following property holds. Let
c e T'§(S) be a closed curve so that c f. 'C ß S \ A) and c is not a multiple of (q for
i 1,..., k.

1 Ifd is a multiple ofci for some i 1 ,...,k or d £ C 8 (S \ A), then

i(vj,d)lim 7 0.
j^oo i(Vj,c)

(2) If d £ 'CS(S) is a closed curve so that d <j 'CS(S \ A) and d is not a multiple
of ci for i 1,..., k, then

iÀvhdll, +lim -r ^j-+ 00 l(Vj,C)
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Proof. Since the weak* topology on t?(S) is metrizable and ,PC(S) is compact,
there exist

• a subsequence of {vyjylj, also denoted

• a sequence of positive real numbers {Ay

• a non-zero geodesic current v,

such that limy^oo Xjvj v. Dehne

supp v : {g G £(S): v(Ug) > 0 for all neighborhoods Ug of #},

and consider B := (supp u)/F C H(S).
For our choice of an auxiliary hyperbolic metric on S, let {c[, c'2,..., c;'} be

a maximal (possibly empty) collection of pairwise non-intersecting simple closed

geodesies that do not have transverse intersections with any geodesic in B. Then let

{Si Sm} be the list of connected components of S \ {c\, c'2 c'{} and dehne

s' := U S"

If B H {c\. c'2 c'} 0, set k to be 0. Otherwise, let c\ be the closed

geodesies in B (T {c[,..., c;'}.
Notice that A is non-empty because supp v is non-empty. Since the intersection

pairing is continuous, for any a G "Ci/(S) and for any h intersecting transversely a

geodesic in B, up to passing to a further subsequence, we have

i(vj,a) i(XjVj,a) i(v,a)
lim — lim — — ———.

j-^oo i(vj, b) j-+oo i(Xj Vj, b) i(v,b)

Also, i (v, a) > 0 if and only if a intersects some geodesic in B transversely. It is thus

sufficient to show that for any a G 'CS(S), a intersects a geodesic in B transversely
if and only if a is not a multiple of c, for i 1 k and a £ (S \ A).

Clearly, if a is a multiple of c, for some i 1 k or a e "C£(S \ A), then a
does not intersect any geodesic in supp v transversely. To prove the converse, suppose
that a is not a multiple of c/ for i 1,..., k, and a 0 "1/(S \ A). If a intersects c;-

transversely for some i 1 k, we are done. Hence, for the rest of the proof, we
will assume that a intersects the interior of S'. The proof proceeds in two cases.

Case 1: Suppose a e Cü(S'). By the way S' is constructed, if a is simple,
then it must intersect a geodesic in B (otherwise the maximality of {c[,..., c^}
is contradicted). Hence, we may assume that a is non-simple. By Lemma 4.6, we

may also assume that a is contained in a geodesic pair of pants P C S'. Since a

is a non-peripheral geodesic in P, it has transverse intersections with every non-
peripheral geodesic in ~S{P) and every geodesic segment in P with endpoints in dP.

Also, because P c Sr, there is some geodesic in B that intersects the interior of P.
Hence, a intersects some geodesic in B transversely.



Vol. 94 (2019) Positively ratioed representations 307

Case 2: Suppose a is not entirely contained in S'. Let S'Q be a connected component
of S' so that a intersects the interior of S'Q, and let B'0 be the set of geodesies in B

that lie in S'0. Let x\ and x2 be a pair of points where a intersects the boundary of Sq

in S, so that there is a subsegment e of a with endpoints X\ and x2 that is entirely
contained in S'0. Let b\ and b2 be the boundary components of S'0 containing x\
and x2, respectively.

For s 1,2, choose a parameterization fs : [0, 1 ] —> hs so that fs (0) fs 1 xs
and choose a parameterization g: [0, 1] > e so that g(0) x\ and g(l) x2.
Consider, the closed curve y g-1 * /22 * g * /2, where * is the symbol for
concatenation. Observe that y is freely homotopic to a non-peripheral geodesic d
in Sq. By the previous case, we know that d intersects a geodesic in B'0, so y
also intersects a geodesic in B'0. Since h\ and h2 are boundary geodesies, they do
not intersect any geodesies in B'(). This means that e intersects a geodesic in B'0.

Moreover, since e is a geodesic segment, this intersection is transverse. Hence, a
intersects a geodesic in B transversely in this case as well.

As a consequence of Theorem 1.1 and Proposition 4.7, we have Corollary 1.2.

4.5. Systoles and minimal pants decompositions. We will now explore the

consequences of Proposition 4.5 on systole lengths of any essential subsurface S' c S.

If v gU(S) is period minimizing, then the function given by c\->i(c, v)
is minimized at some c e CS(S). The same idea gives us a notion of systoles for
essential subsurfaces, which we will now define.

Definition 4.8. Let S' c S be an essential subsurface, and let v G C(S) be period
minimizing. The v-systole length of S' is

LV(S') := min {i(c, v) : c G CS(S')},

and a v-systole of S' is a closed geodesic c e CS(S') so that i(c, v) LV(S').
Also, define the v-interior systole length of S' to be

min {/(c, v) : c e is non-peripheral},

and a v-interior systole of S' is a non-peripheral closed geodesic c G 'CS(S') so that

i(c,v) ^"'(5"). Inthecase when S S1, we will denote Lv := LV(S) L"n(S).

Using Proposition 4.5, we can prove the following corollary.

Corollary 4.9. Let S' C S he a connected essential subsurface and let v G 'C(S) be

period minimizing. Suppose that S' is not a pair ofpants. Then the following hold.

(1) There is a v-interior systole of S' that is simple.

(2) Ifv has full support, then every v-interior systole of S' is simple.
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Proof. Let c be a u-interior systole of S'. We may assume without loss of generality
that c is primitive. Suppose that c [y] has k > 1 self-intersections. Then we

can perform surgery to c at some point of self-intersection to obtain cj [yi],
c2 [T2I and c3 [y3] with y y3y2 and y\ yf1y2. If £'1, c2 and c3 are all

peripheral, then the relation y 1 yfly2 implies that S' is a pair of pants, which
contradicts the hypothesis of the corollary. Hence, for some jo 1,2,3, ch is a

non-peripheral closed geodesic whose self-intersection number is strictly less than
the self-intersection number of c.

1) By Proposition 4.5, we know that c/0 is also a u-interior systole of S', so we

can iterate the above procedure with c/(| in place of c. This will eventually terminate
after at most k steps to give a u-interior systole that is simple.

(2) In the case when u has full support, Proposition 4.5 tells us that z (c/0, u) <
i(c, u). This contradicts the fact that c is a u-interior systole.

In particular, if we have a period minimizing u e ~(S), we can build a v-minimal

pants decomposition, denoted IPV(S'), on any essential subsurface S' C S. Let

c\ cn be the n boundary components of S'. If S' is a disjoint union of pairs
of pants, then n is three times the number of components of S' and .PV(S')

{c\,..., cn}. Otherwise, Corollary 4.9 implies that there is a u-interior systole of S'
that is simple. Let cn+\ be such a u-interior systole of S', then S' \ c„+1 is again an

essential subsurface of S. Hence, we can iterate this procedure until we have a pants

decomposition PV(S'). Denote PV(S) simply by Pv.

5. Combinatorial description of "Ci* (S')

In this section, fix some u 'C(S) that is period minimizing. An important ingredient
in the proof of Theorem 1.4 is a finite combinatorial description, defined below, for
each conjugacy class in f that is adapted to u. The methods in this section and the

following one are inspired by work of the second author 137].

5.1. Minimal pants decompositions and related structures. First, we need to

equip S with an ideal triangulation which depends on S' and u.

Definition 5.1. An ideal triangulation of S is a maximal T-invariant subset Td§(S)
such that the following hold:

(1) Any two pairs of geodesies {x, y}, {z, u>} T do not intersect transversely.

(2) For any geodesic {x, y} e T, one of the following must hold:

• There is some z in 9T such that {x, z}, {y, z} e T.

• There is some y e T such that {x, y} is the set of fixed points of y.
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An ideal triangulation of S is then the quotient T := T/ F for some ideal

triangulation of T of S. A triangle is an unordered triple of geodesies in T of
the form {{x, y}, {y, z}, {z, x}}.

Ifwe choose a hyperbolic structure on S, then every ideal triangulation T of S can
be realized as an ideal triangulation of S B (in the classical sense) by assigning to
each pair {x,y} e T the unique hyperbolic geodesic in B> with endpoints x, y G 3D.
Moreover, this ideal triangulation is F-invariant, so T can be thought of as an ideal

triangulation (in the classical sense) of S.

For our purposes, we will consider a particular ideal triangulation TVts' of S,
defined as follows. Choose an orientation on S. Recall that we previously constructed

a v-minimal pants decomposition PV(S') of S' as a consequence of Corollary 4.9.

Extend this to a pants decomposition Pv,s' of 5, and let Pi,..., Pig-2 be the pairs
of pants given by Pv,s' where g is the genus of S. For each j 1,..., 2g — 2, orient
each component of 3Pj so that Pj lies on the left of the boundary component. Let

YiJ > Y2,j, Y3J ^ T be primitive group elements corresponding to the three boundary
components of Pj equipped with their orientations, so that Y3,jYijY\J id- F°r
each i 1,2,3 and j 1,..., 2g — 2, let y(+y, y~. e 3F denote the attracting and

repelling fixed points of y,-j respectively.

Let Q.j and -P7 be the subsets of §{S) defined by

&j '= U ^Kj-Yij}-Y {Y2,j>Y3j}> Y {y3"y Kïj}}>
j/eT

pj U & y {yïj>yîj}> y te
ysr

and note that both Öy and fPj do not depend on the choice of yij, Yij and y3j.
They are also F-invariant, so we can define Q.j := Q.j/ T and IPj := Pj/F. With
this, define

Ô.

2g—2

u
1=1

2g—2 2g—2

U à/. ëu A- u
l=i l=i

2g—2

ö:= U
l=i

and observe that Tv,s' := ö U and Tv,s' '= Ö U P are ideal triangulations of S

and S respectively.

It is clear that P F(Pv,s') (recall that F:C1/(S) —> £(S) sends [y]
to [y~, y+]). Also, if we choose a hyperbolic structure on S, then for all

j 1 2g — 2, the three geodesies in S7 correspond to three simple, pairwise
non-intersecting geodesies in the hyperbolic pair of pants Pj that each "spiral"
towards two different boundary components of Pj (see Figure 3).
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The ideal triangulation by itself is insufficient to give a finite combinatorial
description for the geodesies in We need to make some additional choices,
which we will now specify. Choose:

• an orientation on each simple closed geodesic in >Pv,s'-

• a hyperbolic structure E on S.

Since we have chosen orientations on every c tPv,s'> c can be viewed as a

conjugacy class in [T], For any such c, let yc e T be a primitive group element so

that [yc] c e [T]. Then let

V(y+) : {iear\{y-, y+} : {x, y±} Tv,s>}

and dehne

Ü(y^) {{x,y} e %,s> -x,y e V(y±)}.

Observe that V(y^) and Wfy^ are both invariant under the cyclic subgroup

(yc) C T. Also, the geodesies in W(y~) U .Sf(y(f are realized as hyperbolic
geodesies in S ~ D, and their union bounds a simply connected, convex domain

C S that contains the axis of yc. Let Pi and P2 be the two pairs of pants given
by tPv,s' that have c as a common boundary component, so that P\ and P2 lie on the

left and right of c respectively. (It is possible that P\ P2).

Choose a point r± on a hyperbolic geodesic in ST (y^P), and let p^ £ (yc) r± be a

point so that

v(G[P%< PyJ) min {v(G[P+> P~\) ' P± G (Yc) r±}-

Observe that this minimum exists because

lim v(G[y" r~, y r+]) oo.
n—m—^zLoo
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Also, let X*, ypc G 3T be the points so that {xyc y^} e i/(S) correspond to the

hyperbolic geodesies in J4 (yf) that contain (see Figure 4).

Figure 4. {xyc, }, {yyc, y + } and {pyc, /7+ }.

By reversing the labeling of xy< and _y+ if necessary, we can assume without loss

of generality that the hyperbolic geodesies corresponding to {x+ xyi} and {y + y~ }

do not intersect. Then define

^i(rc) := U {rck-{Xyc,x~},y^{y+,y~}} c £(S), äl (c) := [J r]-äx{yc),
/c.Z t/GT

and

^2(yc) := {yc • PyJ :^Z}, ä2(c) := (J p ,ft2(yc).
ver

Note that yc induces orderings on Sl\(yc) and !R2(yc)- Also, for i 1,2,
fki(yc)l{yc) <j?i(c)/ T, which consists of two geodesies in ~§(S) when / 1 and

one geodesic in ~§(S) when i 2.

5.2. Binodal edges and winding. Let [y] e [T'] be the conjugacy class of any non-

identity element. We can now define (given all the choices made above) a finite
combinatorial description for each conjugacy class [y] e [T'], which is adapted to v.

Recall that we have already chosen a hyperbolic structure on S.

Definition 5.2. Let / C S be either a geodesic or geodesic subsegment. Also, for
any y G F \ {id}, let Ly C B> be the axis of y.
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• Let A(l) be the set of geodesies in Ö that intersect / transversely. A point in 3T
is a node of / if it is the common endpoint of two distinct geodesies in A(I). We

call a geodesic in A(I) binodal if both of its endpoints in 3D are nodes. Denote
the set of binodal edges in A(I) by 33(7).

• In the case when / Ly, observe that A(y) := A(LY) and 33(y) := 33(Lr) are

both (y)-invariant, so we can define A[y\ := A(y)/(y) and 33 [y] := 33(y)/(y).

Observe that we can think of <A[y] and ,B[yJ as cyclic sequences of geodesies
in S. In that case, they depend only on the conjugacy class of y, and not on y itself.
Also, 33[y] is finite, and is empty if and only if Ly e IP. For the rest of this section,
we will assume that <33 [y] is non-empty unless stated otherwise.

The orientation on Ly induces a natural ordering -< on A(y). Also, since *A(y)
does not contain any of its accumulation points, we can define a bijective successor

map sue: A(y) A(y). Moreover, the ordering -< induces a cyclic order

on A[y], and the successor map suc:,A(y) —> A(y) descends to a successor map
sue: A[y] —> A[y).

The orientation on S induces an orientation on 3D 3T. Let .s'o(y) and .vj(y)
be the two connected components of 3F \ {y~, y + }, oriented from y~ to y+, so that
the orientation on .v0(y) agrees with the orientation on 3T.

yc \

/ Ci

/ suc '(<-/) /
sucfiy 2) \

\ /\ /
J

\ / ei + \ H /\ / suc(^/)i
\ e'+2 À(y)

r)

Figure 5. e, is of S-type. + i and |_2 are of Z-type. Notice suc(e,-) sue-1 (e/+i
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Definition 5.3 (See Figure 5). Let {x, y} be an edge in 'B(y) and assume without
loss of generality that x lies in .s'o(y) and y lies in ,V| (y). We say {x, y} is

• Z-type if (suc{x\ y}) fl {x, y} {y} and (suc_1{x, y}) n {x, y} {x},
• S-type if (suc{x, y}) D {x, y} {x} and (suc_1{x, y}) H {x, y} {y}.

Let Z(y) be the edges in <S(y) that are Z-type and S(y) be the edges in S(y) that

are S-type. Since Z(y) and S (y) are (y)-invariant, we can dehne Z[y] := Z(y)/(y)
and S[y] := S(y)/{y).

Again, S[y] and Z[y], when viewed as a sequence of geodesies in S, depend only
on the conjugacy class of y. Also, note that Z[y] US[y] S [y], and the cyclic order

on A[y] induces cyclic orders on Z[y], S[y] and <S[y]. Let e and e' be consecutive

geodesies in £[y] so that e precedes e'. Then the following must hold:

(1) If e and e' are not of the same type, then there are representatives ë, e' G .8{y)
of e, e' respectively so that ë and ë' share a common endpoint in 3D, and ë < ë'.

(2) If e and e' are of the same type, then there are representatives ë, ë' G '8 (y) of e,
e' respectively so that there is a geodesic in .8 that has a common endpoint with
each of ë and ë', and ë < ë'.

If (1) holds, let y(ë, ë') e T be the primitive group element that has the common
vertex ofê and ë' as a fixed point, and so that the conjugacy class [y (ë, ë')] corresponds
to an oriented closed geodesic in IPv,s'- On the other hand, if (2) holds, let y(ë, ë')
be the element in T whose axis is the geodesic in 8 that has common endpoints with
ë and ë', and so that the conjugacy class [y(ë, ë')] corresponds to an oriented closed

geodesic in Pv,s'- If y e r', the closed geodesic in 8v,s' corresponding to y(ë, ë')
is in PV(S').
Notation 5.4. For i 1,2, let /, (e, e') l^y (e, e') be the signed number of edges

in -8j (y(ë, ë')) that intersect I.y. Here, the sign is positive if the orderings on these

edges induced by y(ë. ë') and by y agree, and is negative otherwise.

The quantities ti(e.e') for i 1,2 do not depend on the choice of ë and ë'.

Also, they do not depend on the choice of y G [y] in the following sense: if
y ï]yrj~l for some rj G T', then i] e and r] • e' are consecutive elements in <S[y],
and h,y(e, e') Uyip -e,r\- e').

Notation 5.5. Let [p, q] C be a geodesic segment that intersects the geodesies

in !Ri(yc) U 8.2(yc) transversely. For i 1,2, let w, [p, q] denote the number of
edges in i?j(yc) that intersect [p,q] respectively.

It is clear that [suc_1(ë) Fl Ly, suc(c') FI Ly] c (ë,ë'), and that \ti(e,e')\
Wj [suc1 (ë) n Ly, suc(F) n Ly\.

Cyclically enumerate [y] {em+\ e\, e2,.. em}, and for each / 1 m,
let Ti be the type (Z or S) of e,. Then define the cyclic sequence of tuples

ts>v.s'\y] := {(suc"1(é'î),ei-,suc(e(),7),/1(c;,c( + i))}"=1.

This is the combinatorial description of [y] G [F] mentioned at the start of the section.
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Let 4* be the collection of cyclic sequences of the form J (a,, h,, c;, 7), t, }=,,
where a,, h,, Cj are the three distinct edges in (Q j for some j, 7) is the symbol S or Z,
and ti G Z. For any term {a,, hi, ci, //} of the sequence {(a,, hi, 7/, /,)}"l=1 e 4>,

let

T*=\S if7^=Z<
' ' jz if Ti S.

Also, let h, and c, be lifts of h, and c, respectively that share a common endpoint
in 9T, and let ^ T be the group element whose repelling fixed point is this common
endpoint. Then there are exactly two geodesies b* and c* in Q. with lifts b* and c*
in D respectively that have r]+ as a common endpoint. Let a* be the edge in Ö so

that {a*,b*,c*} (3/ for some j (see Figure 6).

Definition 5.6. We say a sequence !(«,. /),, r,. 7/, ti)}"l=l in T is admissible if for
all / 1 m, (a/+i, bi+i, Ci+i, Ti+i) is one of the following:

{bucuauT?), {cubuauT?), (b*,c*,a*, 7)), (c*,b*,a*, 7\).

(Notice that the last two cases correspond to y crossing the pants curve Jrç].) Let T'
denote the set of admissible sequences in T.

Observe that xjr can be viewed as a map from [F| to T'. The most important
property of x/r is its injectivity, which was previously proven by the second author

(37, Proposition 4.5],

Proposition 5.7. Let yo,yi be elements in F'. Then xjr[y0] i//[yi] if and only

if fro] frt]-
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Notation 5.8.

• For any cyclic sequence a {(Ui,bi,Ci, e 4*, let B(cr) := m and let

Wi(a) := ET= i Vil
• Ifc JyJ e Te$(S% let

P(c) ^2 i(c,d), b{c) := |£[y]|.
dePv(S')

and for z 1,2, let

m m

Wi(c) := ^ |f,•(£,', ey+i)| ^ [sue"1 (cy) n Ly, suc(ey + t) n Ly],
7=1 7=1

Note that /?(c), /t(c), icq (c) and w.'2(c) are well-defined as they do not depend

on the orientation on c induced by [y]. Also, note that b{c) B(ij/[y]) and

u>i(c) W\{^r[y]). Informally, p{c) is the number of times c cuts across pants

curves, b(c) is the number of times c crosses a binodal edge in Ö, and wi (c)
and u>2(c) are two different ways of measuring how many times c "winds around"
collar neighborhoods of the curves in Pv{Sr).

The advantage of w i (c) over is that vi\ (c) can be read off the combinatorial
description ijr(y). On the other hand, we will later obtain a lower bound for i(c, v)
in terms of W2(c). In the following lemma, we make the relationship between w\ (c)
and w2(c) explicit.

Lemma 5.9. Let y e T' and let c — [y] e *61/(S'). Then

^wi(c)-b(c) < w2(c) < -iui(c) + b(c).

Proof. First, observe that for any consecutive pair e.e' e S [y] with e preceding e',
we have

X-\tx(e.e')\ - 1 < \t2(e,e')\ < X-\h(e,e')\ + 1.

Summing the above inequality over all consecutive pairs in lB[y] yields the required
inequality.

6. Lengths and geodesic currents

In this section, we will prove some inequalities about lengths of closed geodesies
which depend on their intersections with a v-minimal pants decomposition !PV(S')
and the corresponding ideal triangulation Tv^' as defined in Section 5. For the rest

of this section, fix a period minimizing geodesic current v 'CS(S), a hyperbolic
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structure S on S, and an essential subsurface S' of S. The goal of this section is to

prove Theorem 6.8. For any c G dS(S'), this theorem gives a lower bound of i(y, c)
in terms of the u-panted systole length, the y-systole length, and the combinatorial
description b(c) and w2(c) defined in Section 5.

6.1. Length lower bounds: intersection with pants curves. We begin first by finding

a lower bound for i (c, y) in terms of the number of times c G "Gl?(S') intersects

PV(S'). To do so, we define the following quantity.

Definition 6.1. Let IPV(S') be a u-minimal pants decomposition of Sf. Define the

v-panted systole length to be

KV(S') := min {i (c, y) : c G *61/(S') is not a multiple of a geodesic in ^(S")}.

Lemma 6.2. The v-panted systole length does not depend on the choice ofa minimal
pants decomposition -fv(S'). Namely,

KV(S') min {i(c, v) : c G CS (S') is not a multiple ofa geodesic in ,!P„(S')}.

for any minimal pants decomposition iPv(S').

Proof. Assume there exists a minimal pants decomposition fPv(S') such that

KV(S') := min {i(c, v) : c G CS(S') is not a multiple of a geodesic in PV(S')}

is greater or equal to KV(S'). We claim that this implies KV(S') KV(S'). Let
Go [yo] £ CS(S') so that Co is not a multiple of a geodesic in IPV(S'), and

i(c0, v) KV(S'). The minimality of KV(S') implies that Co is primitive.
If Co is not a simple closed geodesic in ,PV(S'), then we are done because

W < / (Co, V) KV(S') < Wj.
On the other hand, if Co G IPV(S'), then the fact that c0 is simple implies that there

are closed geodesies c G PV(S') so that /(c,c0) 7^ 0. Let c 1 G IPV(S') be such a

closed geodesic so that i(c\, y) is minimal, and observe that i(c\, y) < /(co, v) by
the definition of a y-minimal pants decomposition. Also, since /(c0,ci) 7^ 0, we
have Ci PV(S'), so KV(S') < i (ci, v). Therefore,

KV(S') < i(ci,v) < /(co, y) KV(S') < KV(S').

One finishes the proof by reversing the roles of Pv{Sr) and fPv(S') if KV(S') <
KV(S').
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With the notion of a panted systole length, we have the following lemma.

Lemma 6.3. Let c be a simple v-interior systole of S', and let p. q e S' C D be

points such that the interval (p. q] intersects FI ' (c) transversely. Then

v{G(p,q}) > (\[p,q] n n_1(c)| -2) • Kv^ ^,

where G(p. q] C S(S) is the set ofgeodesies defined in Notation 4.3.

Proof. First, observe that since [p.q] C S' C B is compact, [p.q\ n n '(c) is

finite. Also, if [p, q] n n_1 (c) 0, 1 or 2, then the desired inequality clearly holds.

Thus, we will assume for the rest of this proof that |[p.q] fl n_1(c)| > 3. Let

P\,p2 Pk be the points in [p,q] n n_1(c) in that order along [p,q], where
k \\p. qJ n Id

1

(c)I. For any j 1 k, let e T' denote a group element

so that

• lyy] C G G-§(S'f

• the axis Lj of gj contains pj.

Figure 7. Case 1 of proof of Lemma 6.3.

The proof will proceed in two cases from here.

Case 1: i(c.v) > 2Kv(S')/5. Then for j 1, k — 2, let Yj.j+2 £ T' be a

group element so that

* Yj.j+2 Lj Lj+2,

* v(G(gjj+2- Pj.Pj+i]) mm{v(G(y Pj.Pj+2]) Y £ F, y Lj Lj+2),
and let Cjj+2 £ CS(,S) be the closed geodesic such that [y7\/+2l cj,j+2 (see

Figure 7). Note that Cjj+2 is not a multiple of a curve in .PV(S') because it has

positive geometric intersection number with c, so i(cjj+2, v) > i(c. v). By (1) of
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Lemma 4.4, we have v(G(yy+2 • r, r]) ?(c, v) for all r e Lj+2. The definition
of Yj,j+2 implies that

v{GlYj.j+ 2 Pj-Pj+2)) < X-i(c, u)

for all j 1 k —2. Then by (2) of Lemma 4.4, we have that

j k-2
v(G(p,q]) viG(Pj<Pj+2])

2
7 =1

j
yfc-2

- 2
' (v(G(ff • YjJ+2 • Pj]) - v(G[yjJ+2 Pj,pj+2)))
7=1

1 v
2

1

- 2
' 0"(c7.y+2' v) ~~ v))

' 4 ' 10

Case 2: i(c,v) < 2Kv(S')/5. Let tPv{S') be a v-minimal pants decomposition
of 5' that contains c. For any j 1 k — 1, let y/j+i := Yj ' Yj+1 e I '

and let c/j+i G Ciï(S') be the closed geodesic such that [y/j+i] +1. Note
that C/j+i is not a multiple of a curve in jPv(S') because yj / Yj+i and cj,j+1
has positive geometric self-intersection number, so z'(c/j+i, v) > KV(S'). Thus, by
Lemma 4.4,

v(G(p,q])

> \ {v{G(Pi-Pk\) + v(G(pk, />i]))

k—1

2
' Z) (v(G(^Tl • Pj' Pj]) + v(G(/G' Py + i]) - • Pj' ff]))

7 1

J
fc—1

+
9

' 5Z (V(G<>7+1> ^7 + 1 • P7+1]) + l;(G<y/ + i • Py + 1. JO'+i • Z3/])

7 1

-u(G(/7y+1,y7 + 1 -/G + i]))

9
• I] O^Oo71 • Pj-yj+I ff]) ~ 2/(c-v))
yt-l

1

>
2

7=1

j
k—1

2
' I] HGOG-W+i •/>/]) -2i(c,v))

7 1
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j
k—1

>
2

• (i(CJ'j + !' V) ~ 2/(C' V))

J
10

As a consequence of the above lemma, we obtain the following corollary.

Corollary 6.4. Let c be a simple v-interior systole of S'. For any d G LIS (S'),

KV(S')
i(d, v) > (i(d, c) — l)

10

Proof. If i(d, c) 0 or 1, the corollary clearly holds. For the rest of this proof, we
will assume that i(d, c) > 2. Choose a hyperbolic structure X on S. Then c and d
are realized as closed geodesies in S'. Choose a point p e c Fl d and a point p G S

so that fl(/M p. Let yd e F be a group element so that \yd\ d and p lies in
the axis Ld of y4. Then |[p. yd p] fl TfoMMI i(d,c) + 1. Hence, by (1) of
Lemma 4.4 and Lemma 6.3, we have

i(d,v) v(G(p,yd p}) > (i(d,c) - l) • K]^.
By applying Lemma 6.3 to all the curves in a v-minimal pants decomposition

on S', we can also obtain the following lower bound on i (c, v) in terms of the number
of times c intersects the curves in a v-minimal pants decomposition IPV(S').

Lemma 6.5. Suppose that S' C S is a connected essential subsurface of genus g
with n boundary components. Let ,PV(S') {c\,.... 03^-3+2«} so that the

boundary components of S' are c^g-^+n+i C3g-3+2n> and let c LS(S').
Then

' 3g~3+/1 -r /Ç-/\
•/ ^ I V* •/ Nl(c,V) - - -

jg-j-rii s

v 7=1 7 10 - 33^—3+«•
7=1

Proof. Assume without loss of generality that i(v.Cj) < i(v,Cj+\) for all j
1 3g — 3 + n — 1. If

3g~3+n

^ i(c,Cj) 0

7=1

(this has to happen when S' is a pair of pants), the desired inequality holds, so we
assume that Y^f=\+n ' (fo cj) > 0 in the rest of this proof.

Let ye T' so that [y] c e LS(S') and let p e S' c B> so that

p e II Men
3g-3+n

U <,))•
7 1 7 7
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Then let m 33g 3+n and let p po, Pi, Pk Ym ' P be the points in

3g—3+n

[p,vm-p] n( U n-1^))'
^

7 1

enumerated so that pj e (pj-i, p7+1] for ail / 1 k — 1. Observe that

k m Y?j8J\3+n i{c,cj).
js o/\

Choose any j e {0 k — m). If we can show that v(G(pj, Pj+m]) > "10

then by 1 of Lemma 4.4,

i(c\v) v(G(p,y p])

— v(G(p,ym p])
m

1

j m

y ] v(G(pj-m, P(j+l)-m])
m

./=()

>
1 k Ky(S')

~ m m 10

which proves the lemma.

We will now show that v(G(pj, pJ+m]) > ^ for all j {0 k — m}. If
the interval (pj, Pj+m\ intersects n_1(ci) at least thrice, then Lemma 6.3 implies
that

lr(~ ~ lW KV(S')
v{G(pj,pj+m\) >

1Q

and we are done. (This is necessarily the case if 3g — 3 + n 1.) On the other hand,

if (pj, Pj+m] intersects n_1(c] at most twice, then by the pigeon hole principle,
there is some j\ e {j,...,/ + yp} so that (pjl, p -n +m] does not intersect n-1 (ci).
In other words, there is a component Si of S' \ c'i so that the interval (pJI, pJi + m]

lies in some lift Si C S of the subsurface S] C S. Since y ^s^+n-i > 1, it
follows that Si cannot be a pair of pants.

If (pj,, Pjl + w.\ intersects n_1(c2) at least thrice, then Lemma 6.3 again implies
that

- 1W KV(S!) ^ KV(S')
v(G(pj,Pj+m}) > v(G(ph,pj]+m]) >

1()
>

]0
(This is necessarily the case if 3g — 3 + n 2.) Otherwise, (pjt, pj] + m] intersects

n~\c2) at most twice, so there must be some /2 G {j\, •,./1 + 2"1
C {/,..., j + yp}

with the property that (Pj2, pJ2+] does not intersect II"1 (ci U c2). Hence, there is

a component S2 of S' \ (c+ U c2) so that (pj2, pj2+f] l'es in some lift S2 C D
of the subsurface S2 c S. As before, S2 cannot be a pair of pants because
m _ 33g—3+n—2 > j
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By iterating this procedure, 3g—3+n — 1 times, we will have either already proven
that v(G(pj,pj+m]) > K\(p, or have some y3g-3+n-i e + m- 3} and

some component S,3£_3+„_i of 5" \ (ci U • • • U c3g~3+n~i) so that:

• S3g-3+n-i is not a pair of pants;

• (Pj3g-3+n-l, Pj3K-3+n-1+3] lies in some lift £3^-3+«-1 C D of the subsurface

53g-3+«-l C S.

In this case, the unique simple closed geodesic in S3g_3+„_i is c-ig-j,+n, and

(Vhg-3+n-i' Phg-2,+n-i+-i] necessarily intersects n_1(c3^-3+n) at

P]3g—3+n — \ +1 ' Pj3g-3+n-l+2' anfl Pj2g-3+n-1+3*

Lemma 6.3 then implies that

v(G(pj,pj +m ]) > v(G(phg-3+n-\ ' PJ3g-3+n-\ +3])

>
Kv(S3g-3+n—l)

>
KV(S')

10 - 10

6.2. Length lower bounds: winding and intersection with binodal edges. In this

section, fix a v-minimal pants decomposition !PV(S'). Next, we want a lower bound
of i(c, v) in terms of b(c) and 102(c)- To do so, we need the following two technical
lemmas. Informally, Lemma 6.6 tells us how much length c has to pick up if it
crosses sufficiently many binodal edges. On the other hand, Lemma 6.7 tells us how
much length c has to pick up if it "winds around" a lot between binodal edges.

Lemma 6.6. Let P C S' be a pair of pants given by ,PV(S') and let P C S' be

the universal cover of P. Also, let p,q e P be points so that [p, q] intersects the

geodesies in S transversely (ifat all). Then

v(G(p,q]) > max{\S[p,q]\-8,0} •

(See Definition 5.2 for definition of lB[p. q].)

Proof Ifk := 123[/?, <7]| 1 8, the desired inequality holds, so we will assume
for the rest of this proof that k > 9. Let p\ pk be the points along [p. q\ that
also lie in the geodesies in .53[p. q], enumerated so that they lie along [/;, q] in that
order. Suppose that for all j 1 k — 8, we have v(G(pj, py +s]) > \KV(P).
Then

v(G(p,q]) > v(G(pi,pk])
k-8

5 1

KAP)>{k-8) 16
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It is thus sufficient to show that v (G (pj, pj+8]) >\KV(P) for all /' 1,... ,k — 8.

Fix any j 1 k — 8. For all i 0 8. let := Pj+i and let L, be

the geodesic in <2 that contains q\. Observe that L, and L,-+i share a common
endpoint in 9T, which is the repelling fixed point of some primitive y, e F so that

[y, J C&(S) is a boundary component of S'. Denote this common endpoint by y~.
We will first prove the following claim: there exist ii,i2 {1 6} so that ii ^ i2
and

(vi, (<7o,<7s]) n (<7o,<7s] ^ 0 ^ (n2 (qo,q&]) n (<7o,<?8]-

This will be done in the following cases.

Case J: There is some k\,k2 {1,....6} ,vo that k\ ^ k2 and suc(Lfc,) ^ Tk, + i
for t 1,2. In this case, let it kt. By replacing y,-f with y"1 if necessary, we can

assume that suc2(Li;) y,-f • L/(. Observe that y,-f • suc_1(L,() is an edge in <2 that
forms a triangle with sue(L,f) and suc2(Lj( On the other hand, y,, • suc(L,(+i) is

an edge in (2 whose endpoints in 9D both lie in (y~, yf )yr (see Notation 2.26).
t t+2 If J

Thus, (yit (qo, q^]) D (q0,q%] is non-empty (see Figure 8).

Case 2: There is a unique k {1 6} ,so that suc(L&) 7^ Tk+i- 'n this case,
let /1 k, let i2 5 if i\ <3 and let i2 2 if i\ > 4. The same argument as

Case 1 will show that (y/, • (qo,qs]) O (qo, <?s] is non-empty. We will now prove that

(yh (qo, r/s]) O (<70, qs] is non-empty when i\ <3; the case when /'1 > 4 is similar.

By replacing y5 by y^1 if necessary, we can assume that y5 • yf yf. Observe
then that y5 • yf y6", y5 • L8 c [yf, yf]y-, and y5 • sue"1 (L4) {yf, y^} (see

Figure 9). In particular, (yh (q0, q8]) O (q0, q«] is non-empty.
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Case 3: For all k G {1,...,6}, suc(L^) L^+i- In this case, let i\ 2 and

let i2 5. The argument given in Case 2 proves that (yq (<?o.<?8]) H (q0,qs] is

non-empty for / 1,2. This concludes the proof of the claim.
Next, we will use the claim to prove the lemma. Assume without loss of generality

that i i < i2. Let x\,x2 G (qo.q«] be points so that yh x, g (<y0 - V« J - (They exist
because of the claim.) By replacing each y,-, with yg 1 if necessary, we can assume
that xt, Yi, xt lie along (qo, q%] in that order. Observe then that xi has to lie in

(qh-i,qh+l), Yii X! has to lie in (qh,qh+2), x2 has to lie in (qh-i, qi2+i) and

Yi2 x2 has to lie in (qi2,qi2+2). In particular, x\, y,2 • x2 lie along (<?o-<?s] in
that order, and y,-, • x\, x2 G (x\, y,2 x2]. It is clear that [y,-2 • yM |j G 'C I' is

non-peripheral. Hence, Lemma 4.4 implies that

2v(G(q0,qs]) > v(G(xi, yh • x2]) + v(G(x2, yh - Xi])
v(G(xi,Yi2 x2\) + n(G(y;2 • x2, (YhVh) " A'i])

> v(G(xu(Yi2Yi1) xi])
> i{lYi2-YiJ.")
> KV(P).

Lemma 6.7. Let c G IPV(S'), let yc g T' so that [yc] c, and let p,q G Yc c D
so that [/?, q\ intersects

(J YÎ -[PÏc'Pyc]
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transversely. Then

v(G[p,q]) > (w2[p,q] - l) —

(See Section 5.1 far the definition of ppc and Notation 5.5 for the definition of
w2[p,q\.)

Figure 10. Proof of Lemma 6.7 when j 2.

Proof. Let k w2[p, q] and note that ifk 0, 1 there is nothing to prove. Therefore,

assume k > 2 and let p\ pk be the points in

[/>.<?] n U
y'eZ 7

in that order along [p, q]. Fix any j 1,..., k — 1, let rj := y"1 • Pj+\ and assume

without loss of generality that pj e [Py - Pyc]• Also, assume that /?+ pj, rj, pf
lie along [/?+ p~c] in that order; the other case is similar. Then

v(G[pj, rj)) v(G[/>+ ,p~c])-v(G[p+ ,Pj))-v(G[rj, p~c])

< v(G[p+,Yc Pyc]) - v{G[Pyc, Pj)) - v(G[pj+1, yc Pyc])

< v(G[pj,pj+1)),

where the first inequality above is a consequence of the way /?+ and p~, are defined.
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By (2) of Lemma 4.4, we have

i(c, v) < v(G[pj+\, rj))
< v(G[pj+1,pj)) + v(G[pj,rj))
< v(G[pj+i,pj)) + v(G[pj,pj+i)).

Hence,

v(G[p,q]) > ^(n(G[/?i,/?fc)) + v(G(pt, pk}))

j
k—1

j XI (v(GkV'/V+i)) + v(G(/V</V + i]))
7 1

6.3. Length lower bounds: the combinatorial description. Combining the previous

lemmas in this section, we can obtain the following lower bound for i(c, v) in
terms of the v-panted systole length and the u-systole length.

Theorem 6.8. Let S' C S be a connected essential subsurface of genus g with n

boundary components, let

Ky(S')
400 • 3Vr-3+" + 96

and let
LAS')

400 • 33£-3+" + 96'

Then

i(c, v) > b(c) KAS') + wAc) • LAS').

KAS') :

LAS') :=

Proof. By Lemma 6.5, we know that

5 • 33g—3+" i(c, v) > p(c) • Kv^ ^. (6.1)

Let y G r" so that [y] c e let q e S' C D so that

- 3g—3+n

îÉn"1|cn| (J CjJJ
7 1

(recall PAS') {cu..., c3g-3+2n}, where c3g-3+n+x,..., c3g-3+2n are the

boundary components of S') and let q qo,q\ <7>(c) Y ' d be the points
in

3g—3+n

[iq.y-q] n
/Jg-JTK x

U n_1<c/))-
V 7=1 y

7 1

enumerated so that qj e Cqj-\, qj+1) for all j I..... /c - I.
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Note that for any pair of pants P given by PV(S'), KV(P) > KV(S'). Hence, by
Lemma 6.6, we have

p(c)-\
i(c, v) Y v(G(Vj>Vj+il)

7=0

p{c)~l
~ K IP)

> Y max ,qj + i] \ — 8,0} " (6.2)
16

KV(S')
16

7=0

p(c)~ 1

> J] (\S[qj,qJ+i]\ -8)
7=0

u ^v(S0 ATv(S0
(C)-—Ï6 P(C)

2
'

Adding the inequalities (6.1) and (6.2) then gives

(5 • 33g_3+" + l)/(c, v) > b(c) Kv^S\ (6.3)
16

Let kj := \3\qj ,cjj+\\\. For each interval [qj,qj + i\, let èjj ^j.k, be

the edges in 3[qj,qj+i], enumerated so that pjj e (Pj,i-i> Pj,i+i) for all i

2, kj — l, where pjj := ëjjn[qj ,qJ+j]. We previously observed (see discussion
after Notation 5.4) that the interval

(sucn [qj,qj+i],suc(ßj,i+i) n [qj,qj+1]]

lies in £lY(ej i,êj ,+1)- Also, it is clear that for every point r G [qj, qj+i], there are at

most four different values of i so that

r e [sac~l(ëjti)r\[qj,qj+1],suc(ëj>i+l)n[qj,qj+l]\.

Thus, by Lemma 6.7,

p(c)~ l

4i(c,v)= Y 4v(G{qj,qj +1])
7=0

/<(c)-l kj

-E E u(G[sue
1

(?/,/) n [^,^+i],suc(ê7;(+i) n [^,^+i]])
7=0 i 1

p(c)~ 1 kj

- E E (n>2[suc (e/,i) n [^y,^7-+i],suc(ey-(i+i) n [<7/,<7/+i]] l) •

7=0 i l

r M h,K LviS']
(w2(c)-b(c)) —.
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We finish the proof by combining the above inequalities to obtain a positive lower
bound for i (c, v). To ensure positivity of this lower bound, we need to add the above

inequality to a multiple (strictly greater than 16) of inequality (6.3). We choose this

multiple to be 20 to improve readability.

(100 • 33£_3+" + 24)i(c, v) > (w2(c) — b(c)) ^^ ^
+ b(c)

4

n 3-Kv(S')
> W2(c) h b{c)

2 4

f1 ^ U, s\ L^5') u,
3 -Kv(S')

> ^-uq(c) — b(c)J — + h(c)

Kv(S')
> Wi(c) — + b(c) —,

where the third inequality follows from Lemma 5.9. Dividing both sides by

100 • 33£-3+" +24

yields the required inequality.

7. Vanishing of entropy and a systolic inequality

For the rest of this section, let S' C S be a connected essential subsurface ofgenus g
with n boundary components. If we choose a period minimizing v e *(S), we can

associate to S' a quantity which we call the topological entropy.

Definition 7.1. Let v e 'C (S be a period minimizing geodesic current. The v-topo-
logical entropy of S' is

hv(Sr) := lim sup — log |{c *ü(S') : i(c, v) < T}|.
r-9-oo T

When S' S, we will use the notation hv := hv(S).

7.1. A systolic inequality. The goal of this section is to prove Theorem 1.4. The

constant C that arises from our proof is 400 • 33s~3+n _|_ % ^e wjp divide the proof
of Theorem 1.4 into three lemmas. The first two lemmas give us the first inequality.

Lemma 7.2. Let v e ~(S) be a period minimizing geodesic current and fv(S') be

a v-minimal pants decompositions of S'. Then there exists a pair ofpants P C S'
and a closed geodesic e e 'C S P so that

• e has a unique self-intersection point p,

• i(e,v) <4KV(S'),
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• the three closed geodesies obtained by performing surgery to e at p are the three

boundary components of P.

Proof By Lemma 4.6, it is sufficient to construct a primitive, non-simple ë e

so that/(ë, v) <4KV(S').
Let d e G^(S') be a closed geodesic that is not a multiple of a curve in !PV(S'),

and so that i(d, r>) KV(S'). Note that d is primitive. If d is non-simple, set ë to
be d and we are done. If d is simple, then there is some c e ,PV(S') that intersects d

transversely, so that i (c i(d, v). Choose a hyperbolic structure £ on S. There
exists y,î) e T' so that [y]| c, [rj d, and the axes Lz and Ly of r and y
respectively intersect transversely. Let p e S be the intersection point of Lz and Ly.

By Lemma 4.4, we have that

i(\xyxy~% v) < v(G(y p,xyxy~l (y p)])
< v(G(y p, p]) + v(G(p, x- p}) + v(G(x p,xy p))

+ v(G{xy p, xyx p])

v(G(y p, p]) + v(G(p, x •/?]) + v(G(p, y p])

+ v(G{p, x p})

2i(c, v) + 2i(d, u)

< 4i(d,v)
4 KV(S').

It is easy to see that |/ryry_1] is non-simple, so we can set ë to be [tyry-1].

Lemma 7.3. Let v e 'G(S) be a period minimizing geodesic current. Then

l°g (2)
,(S') >

4KV(S'Y

Proof Let !PV(S'), P, e and p be as in Lemma 7.2. Let y1.y2.y3 £ ^i(P) be

primitive elements so that y3 • y2 • yi id, and so that the closed geodesies Jyi],
Iy2J, |y3j are the boundary components of P. Then e has to be either

lbs-1-72]], Ibb'-nl °r br'-ysl-

Assume without loss of generality that e [yfl yJ. Then

i(e,v) v(G(p,yf1yi p])

v(G(y2 p,y\ p])

v(G(y2 p, p]) + v(G(p, yx p])

v(G(p, yf1 p}) + v(G(p, yf1 • p\),
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so i(e. v) > v(G(Y2 P, p]). v(G(p, y, • p]), v(G(p, yf1 • p}) and v(G(p, yf1 • p}).
Since tï\{P) C T' is a free group of rank 2 generated by yi and y2, no two distinct
elements of the form

YVY2 Y1Y2Y1

are conjugate, where e, ± 1.

By Lemma 4.4, we have that for any / [yf' yf yf yf Yii e "~S(S'),

i(f v) < v{G(p, yf yf yf yS2> yf • />])

< v(G(p, yf:1 • />]) + v(G(yf • p, yf yf •/?]) + •••

• • • + v (G(yf yf yf yf • p, yf yf yf yf yf • />])

— v(G(f, yf •/»]) +v(G(p,yf •/>]) + ••• + v(G(p,yf p])
+ 2v(G(p, yi •/?])

< (2t + 2)i(e, v)

< 8(t + 1)ATV(S")-

This means that

|{[y]e[r'\{id}]:i([yl,v)<T}|
> {[yfyf ---yf yfyf]eki(^) \ {id}] : <,«<{-1,1} and t < - i}

>4[s^7(s7)J1i

so MS0>43Ä- D

Now, we hnish the proof of Theorem 1.4 by proving the second inequality.

Lemma 7.4. There is a constant C £ R+ which depends only on the topology of S',

so thatfor any period minimizing v e 'C(S), we have

hv{S')Kv(S') < C • (fog(4) + 1 + log (l + ^-)),

r/ri.(s') C
where A'o is the unique positive solution to the equation (1 + a) I cvcs') \x — j

Proof Simplify notation by denoting KV(S') and LV(S') defined in the statement
of Theorem 6.8 simply by K and L respectively. Choose a v-minimal pants
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decomposition !PV(S'). By Theorem 6.8 and Proposition 5.7, we have

\{c e^(S') :i(c,v) < T}|<|{c e^(S') : b(c) K + w\(c) • L < T}|

< - |{cr vp' : B(o) K + Wt(a) L <T)\

L

T, J g vh' : B(cr) i, PPT (rr) <
T ^ |

i 1

(See Definition 5.6 for the definition of VP'.)

If a {(u;, i>;, U)i, Ti, ti)}f=l, let n' be the cyclic sequence

a' := {(ut, Vi, Wi, Ti)}^=l.

For any e e Q, let e', e" e Ö be the geodesies so that {e, e', e"} Ö7- for some /.
If Vj e, then there are four possibilities for (n,-, Vi, Wi, '// namely

(e', e, e", S), (e', e, e", Z), (e", e, e', S), (<?", e, e', Z).

Since |{ee0:rc S'}\ 6g — 6 + 3/7, we see from the definition of that

(24# — 24 + 12«) • 4,_1
I {a : a e vp', B(a) /} | < -—-

Hence,

T-Ki I (24#-24 + 12«) • 4i_1 (\L=rjL\ + A
|rr : B(cj) i, fF^cr) <

L

which implies that for T K,

<

IP eS(S') : He. < 7-}| < i £ (Ms-24+12,,). 4- + 'j
< 1(24^-24 + I2„) • 4LtrJ-' |

L L J +

where Q Q(T, K, L) e {0,..., } is the integer so that for all / G {0,..., },

Xi=P\ + q\>(Vi=F\ +
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As a consequence, we have

K /l T-KQ I q\
hv(S') K < log(4) + lim sup — log I L J

T^oo 1 \ V. /

< log(4) + 1 + log (l + —
V X<\>X0'

where the last inequality is a computation that we do in Appendix B (see Proposi-
Ktion B.l). Since K 400.33y-3+H+96^ we have proven the lemma.

7.2. Corollaries of the systolic inequality. Theorem 1.4 has several interesting
corollaries, which we will now explain. The first is a slight simplification of the inequality
in Theorem 1.4 from which we can deduce all our other corollaries.

Corollary 7.5. There is a constant C R+ which depends only on the topology
of S', so thatfor any period minimizing v e 'C(S), we have

\ log(2) < hv{S')Kv(S') < C • ^log(4) + 1 + log (l +

Proof. Let a \ \ — l], and consider the function fa \ [0, oo) M defined by

fa (x (1 +x)a-x. Observe that fa is increasing, fa(0) 0, andlimx-xx, fa(x) oo.

Also, let x0 xo(a) be the unique point in [0, 1) so that fa(xo) 1. It is sufficient
to show that for all a > 0,

1

<
+ 1 KV(S')

x0(a) 2 LV(S')

K
First, consider the case when a 0. Then 1 and xo(0) 1. We see

immediately that in this case, the required inequality holds.

Next, consider the case when a > 1. The equation fa(xf) 1 can be rearranged
as

x0 log(xo)
a x0

log(l + Xo)
'

Since the function g: (0,1) -> R given by g(x) — ^ is positive and strictly
decreasing, we see that a-x0(a) is minimized over all a > 1 when xfoa) is maximized.
From the definition of fa, it is clear that xo(a) is strictly decreasing with a, soa-xo(a)
is minimized over all a > 1 when a 1. It is easy to compute that x0(l) ^~1,
so a • xo(«) > "*%

1 for all a > 1. Hence,

xo (a)

s/5+\
<

Ky(S')
-

LV(S')

V5+ 1 ^„(50
2 LV(S')'
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Using Corollary 7.5, we have the following universal upper bound on the systole
length renormalized by the entropy.

Corollary 7.6. There is a constant C G R+ which depends only on the topology
of S', so thatfor any period minimizing v e ~G(S), we have

hv(S')Lv(S') < C.

Proof By Corollary 7.5, we see that there is a constant C' depending only on the

topology of S', so that for any period minimizing v G T'(S),

hv(S')Lv(S')

' (^(Io8(4) + •

YjJs7) lijjp) ' g
v 2 TÄs7)))

<C'.(log(4)+ l + =:C,

where the last inequality holds because x log(l + ~) <k for all x > 0 and k > 0.

Corollary 7.6 together with Theorem l.l proves Corollary 1.5. Also, given any
negatively curved Riemannian metric m' on S' with geodesic boundary, one can

always find a negatively curved Riemannian metric m on S whose restriction to S'
is m'. It is then known (see Otal [29, Proposition 3]) that the Lebesgue-Liouville
current vm of m has the property that i(vm,c) lm(c), where tm: 'CS(S) -> IR is

the length function induced by m. This fact combined with Corollary 7.6 then gives
us Corollary 1.6.

Corollary 7.5 also gives us a criterion that determines when the topological
entropy of a sequence of geodesic currents in the "e-thick" part of 'C(S) converges
to 0. Before we state the corollary, we first define what the "e-thick" part of U(5') is.

Definition 7.7. Let U(S)mm C U(.S") be the set of period minimizing geodesic
currents and let e > 0. Define

U(S')fn := {v G U(S)min : LV(S') > e}

and M(S')e := *(S')fn/MCG(S').
Observe that if p, v G U(5',)in lie in the same equivalence class in M(S')e, then

hß(S') hv(S'). Thus, we can think of h-(S') as a function from M(S')e to M.

Corollary 7.8. Let e he any positive number and let {[ut]}]^ he a sequence
in M(S')e. Then lim^^ h

V/. (S') 0 ifand only if the following condition holds:

for each k, there is a (possibly empty) collection 30^ ofpairwise non-intersecting
simple closed geodesies in S' so that

• supmax{/(c, v^) : c G 33g} < oo, and
k
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• lim min{/(c, Vk) : c G ~1r(S' \ Dk) is non-peripheral} oo.
k-f-oo

Proof. Let us choose an appropriate collection 0& of closed geodesies. For
each Vk, let PVk (5") {ci^,..., c3g-3+2n,k} be a minimal pants decomposition,
where c\^, c3g-3+n^ are non-peripheral and enumerated so that i(cjVk) —

i(cj+itk, Vk). Let jo G {0,..., 3g — 3 + n} be the number so that

• lim supk^œ i (cLk, vk) < oo for all j < j0,

• lim sup^^ i (Cj,k, vk) oo for all /" G {j0 + 1 3g-3+ n}.

(We use the convention j0 0 if lim sup^^/(tffifc, Vk) oo and /o 3g — 3 + n

iflimsupfe_>00/(c3g-3+«>/t,^) < oo.) Let

{ci.k---,cjiUk} if,/o > 0,

0 if /o 0.

First, we show that if the condition does not hold, then lim sup^^ hVk (S')> 0.

Since the condition does not hold, there is a constant C so that for each k, there
is a component of S' \ Dk and a non-peripheral primitive closed geodesic
dk G ~i/(Sk) satisfying i(dk,Vk) < C. Notice that when j0 3g — 3 + n,
S'k is a pair of pants which implies that dk is primitive and non-simple. Likewise,
if jo < 3g — 3 + n, for sutficiently large k, dk is primitive and non-simple because

lim^oo i(cjtk, Vk) oo for all j > j0. In either case, KVk (S'k) < i{dk. vk) < C

for all k. Thus, hVk(S'k) > by Corollary 7.5. Since hVk(S') > hVk (S'k), we
see that lim sup^^ hVk (S') > 0.

Next, we suppose that the condition holds and we prove that lim^oo hVk (5')=o.
Observe that for k big enough, the curves in 'Dk are part of a minimal pants
decomposition PVk(S'). Let dk G *G1/(S0 be a closed geodesic that is not a multiple of an

element in DVk(S') so that i(dk, Vk) KVk (S'). By Corollary 7.5, it is sufficient to
show that lim^oo i(dk, Vk) oo. Choose a hyperbolic structure X on S, set

A := sup max }/(c, Vk) : c e 0/t},
k

and set

Bk := min }/(c, Vk) : c G ~~§(S' \ <0k) is non-peripheral}.

Since the condition holds, 0 < A < oo and lim^oo Bk oo.

If dk G \ £>k), then it is non-peripheral, so

i(dk-Vk) > Bk.

On the other hand, if dk does not lie in )f^(S" \ 0^), let S'k be a component of
S' \ Dk that intersects dk- Let Yk £ T' be the group element so that [y^]] dk
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and let LYk be the axis of yk in S'. Choose distinct points pk,qk £ Lyk so that

U(pk), Tl(qk) G 3and n(r) ^ 3S£ for all r G [pk,qk)• It is clear that

v(G(pk,qk]),v(G(qk, Pk]) < i(dk,vk).

Letqk^k e (S'k) be the group elements so that |%], G £)k, and pk and qk
lie in the axes of t]k and xk respectively. Observe that /([%]], vk), vk) < A.

Hence, by Lemma 4.4,

i (bkqkj, Vk) < vk(G(r)k] pk,Tkrik • ^ • Pk)])

< vk(G(r)kl pk,pk]) + vk(G(pk,qk]) + vk{G(qk,xk qk])

+ Vk{G(zk • qk > Tk Pk])

i(lVkj,Vk) +i(ltkl>vk) + vk(G(pk,qk]) + vk(G[pk,qk))
<2A + 2i(dk, vk).

Similarly,/([r^1^], vk) < 2A + 2i(dk,vk). Since 1^%], [r~V]| e G~§(S'£)
cannot both be peripheral, either i{\xkqk\, vk) > Bk or vk) > /?^. Thus,

i(dk,vk) > - /I.

This implies that lim^oo / (dk, v*) > | lim^oo Bk — A oo.

Consider the case when S' S. In the above theorem, each £)k can be completed
to a pants decomposition of S. Since there are only finitely many mapping class group
orbits of pants decompositions of S, we can apply Corollary 7.8 and Theorem 1.1 to
deduce Corollary 1.7.

A. From positive cross ratios to geodesic currents

In this appendix, we give a proof Theorem 2.10 (which was previously observed by
Harrienstädt [15]) for the convenience of the reader. Recall that an algebra A on a

set X is a family of subsets of X so that

(1) for all A in A, the complement Ac of A is in A,

(2) for all Ai, A2 G A, the union A\ U A2 G A.

Also, a premeasure v on A, is a function

v: A -> [0, oo]

such that

(1) v(0) 0;
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(2) if {A, is a countable family of pairwise disjoint sets in A whose union lies

in A, then

v( UAi) J2v(Ai)-
V! sN ' ieN

Choose an orientation on 3T. For the rest of this appendix, we will assume that

all intervals in 3T are of the form [x. y)z (see Notation 2.26) unless otherwise stated,

where x, y, z lie in 3T in the order specified by the orientation. We will start by

defining a particular algebra in ~§(S).

Definition A.l. Let £ {{/i, J\}, {I2, Ji} {foi, •/«}} be a finite list of pairs of
proper subintervals of 3T.

• £ is an admissible list if for all k 1..... n, either fo or and are

disjoint.
• For any admissible list £, let 8% denote the set of geodesies {a.b} e 8(S) such

that there exists a k G {1,...,«} with /^ and each containing one endpoint
of {a, b}.

For the rest of this appendix, let A := {§z : £ is an admissible list}. Note that

every 8% e A can be written as a finite disjoint union

n

U fi£kJk\-
k— 1

Lemma A.2. A is an algebra.

Proof. For all foe. 8x> e A, note that foe U iff foeu/e' £ A. To prove closure
under complements, it is sufficient to show that e A andfo/l;/2}nfo/1;/2} e A
because of De Morgan's laws.

First, we will show that bfj /} g A. If / and J have disjoint interiors, let x, y
be the endpoints of / and z, w be the endpoints of J. Also, let K := [_y. z)x and

L := [w, x)y, and observe that 3T A'ULU/UJisa disjoint union. It is then

easy to see that (fo/,/})c foe, where

£ := {{/, /},{/, K}, {/, L}, {K, K}, {K. J}, {K, L), {/, /}, {J, L}, {L, L}}.

On the other hand, if / J, let K := 3T — I. Then (fo/,./})'' foe where

£:={{I,K},{K,K}}.
Next, we will show that fo/,,/2} 0 G A. Let fo./.i,..., K^htj be

intervals so that U n Jj UÎt=i is a disjoint union. (Note that foy is either
0, 1 or 2.) Then observe that fo/,./2} Fl fo/,,./2} foe, where

£ '= {{#1,1,1, #2,2,l}, {#1.1.0,1 ' #2,2,l}, {#1,1,1, #2,2,/2,2 } ' {#1,1,0,1 ' ^2,2,t2,2}>

{#1,2,1, #2,1,1 }> {#1,2,0.2* #2,1,1 }> {#1,2,1, #2,1,12,I }' {#1,2,0.2' ^-2,U2i| }}•
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Next, we will use the positive cross ratio B to define a premeasure on A. Let

\'b- A [0, oo] be a function defined as follows:

(1) vB(0) 0.

(2) vb(~S{i,j}) oo when / J or / and J share a common endpoint.

(3) If the intervals / and J are non-empty and have disjoint closures, let x and y be

the endpoints of / and z and w the endpoints of J, so that x, y, z, w lie in this

cyclic order along 3T. Then define

(%,./}) := B(x, y,z, w).

(4) If Bx ULi h'Jk>'s a disjoint union, define

vb(BX):= Y l'ßC %/„./,,-;
1 <k<n

Since B(x, y, z, w) B(z, w, x, y), vB(ß{i,j}) is well-defined. Also, if
n m

U fJ,'ik-jk) U
k 1 k=1

are two ways to write Bx as disjoint unions, then by taking intersections, we can

write Bx as the disjoint union

I

(J
k= 1

so that for all k 1 /, is a connected component of Brtsjs > D B{j>tj>}
for some s G {1} and t G {1,,m}. By the additive property of the cross
ratio, if /1, /2, /, J are subintervals of 3T so that I\ U /2 /, then

VßC%,,/}) + VB{B{J2J}) Vß(^{/,/})-

This implies that

n l m

Y vB{B{IkJk}) Y vB(ß{i'>,j>>}) Y
fe=l £=1 k—1

so vg is well-defined.
It is also clear from the definition that vB is finitely additive, i.e. ifBx,

are pairwise disjoint, then

/ n n

VB U Y Vß(%e,-)•
1

J i 1

Furthermore, the positivity of B, ensures that vB takes values in [0, oo].
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Proposition A.3. For any positive cross ratio R, vg is a premeasure on A.

Proof. Set v := vb to simplify the notation. By definition, v(0) 0, so we need

only to prove countable additivity. Let {Szk I^Li be a family of disjoint sets in A with
Uifc°=t f°r some admissible list Z. Up to repartitioning and renumbering,
we can assume the following:

• For all k, fLk {Ik. Jk} for some intervals Ik. Jk.

• There is some admissible list {{/(, J[} {//, 7/}} so that ~§% U*=i ^{i's,J's}
is a disjoint union.

By finite additivity, we have that for all n G Z+,

v(§x) v( §zk "j + vf&x \ [J §xk)
k=l ' ^ k=\

'

> (J v&Xk)-
k=l ' k=1

Thus, v{ßz) > Er=i v(S£k).
To finish the proof, we need to show that v{ß£) < E/tli v^zk)- F'rst consider

the case where vif§£) < oo, then vlfëy j>j), v(ßxk) < oo for all s 1

k G Z+. Since B is continuous, for any e > 0 and any s 1 t, we can find
compact subintervals If c I's and ./" c J's such that

~ v(ß{l's',J's'}) < (A-l)

Similarly, for any k e N we can find open intervals Ik and .If D Jk such that

v(3{rfJf\) ~ v(^zk) < (A.2)

Observe that the open sets [~§{iis an open cover of the compact set

5=1 ^{l's',J's'}. SO ''
and (A.2), we have

'k k 1

Us=i I",J's'}> so it has a finite subcover {^{i*.j*}}k=\- By using inequalities (A.l)

v{ßz) <£ + \>(
- 8 + ^ v^',!k../k\)

^s=1 '
k=1

tV oo

- e + I] (VC^*) + ^) < 2£ + I] u(^).
fc=i

Since e was arbitrary, this proves that v{ßx) < E^=i V(^XA) when v(5^) < oo.

Next, consider the case where v{~§£) oo. This means that y,' }) oo

for some s0 1 t, so either /s'() and T/0 are disjoint and share an endpoint,
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or /s'() ,/s'(|. In either case, we can find subintervals 1 c /s'(| and J c ,/s'0 that are

disjoint and share an endpoint. Let p be the common endpoint of / and /, let pj be

the endpoint of J that is not p, and for any q £ J let Jq be the subinterval of J with
endpoints q and pj. Since

lim vCê,j f x) — 0, lim v(ü,j fx) — oo,
q^Pj V<Jqr q^p \LJq)'

we know that for every t £ R, there exists qt in the interior of J such that

v(§{j j j) t. Using the previous case, we know that for all q £ J,

OO

k=i

Thus, Er=i v($xk) oo v(ßz).

We will now recall a standard procedure to obtain a unique measure extending
a premeasure. See for example Chapter 1 of Folland |9| for more details. Given a

premeasure v on A and E C 8(S), define the outer measure

iOO
OO v

E v{Ak)\ Ak £ A, E C [J A/À.

k=1 k=1
'

A premeasure v: A —>• [0, oo] is a-finite if can be written as a union of countably
many sets with finite outer measure. The following theorem [9, Theorem 1.14] relates

rr-finite premeasures and measures.

Theorem A.4. Let M be the n-algebra generated by A. Then, p := v* is a measure
I rM.

on M and the restriction of p, to A is v. Ifv is a-finite, then p is unique.

Lemma A.5. If B is a positive cross ratio, then the premeasure Vß is a-finite.

Proof. Let A be a countable dense subset of 3T. For any me N and p £ A, let Im
be the open interval in 3T centered at p of width I /m. Define

Am := {(/L<?) e A2 : If^ and have disjoint closures and p precedes q}.

Clearly
OO

*(S) (J (J (A.3)
m~1 (P^)eAfn

Observe that the right hand side of Equation A.3 is a countable union of sets, each

with finite measure.
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ProofofTheorem 2.10. Since the premeasure vb is a-finite, Theorem A.4 ensures
that there is a unique measure pb on the rr-algebra M generated by A. The
T-invariance of B ensures that pg is also T-invariant. It is easy to see that the

topology on §(S) lies in M. Thus, pb is a geodesic current.

Next, we show that for all c G *C~§{S), i(c, pb) ^b(c). By (1) of Lemma 4.4,

we know that

/(c,/Xb) jXß fë{[y+ ,y~):,[z,y-z)y— })

— vB(^{[y+,y-)z,[z,yz)r-})

B(y~, y+, y z, z)

Ib(C).

Then

B. Computation for proof of Theorem 1.4

The goal of this appendix is to prove the following statement, which we need to finish
the proof of Theorem 1.4.

Proposition B.l. Let T, K, L he positive numbers so that K > L. Also, let Q
Q(T, K, L) G {0,..., } he an integer so thatfor alt i G {0 }, we have

+ /L^J+A

K 1 + Q\ t 1 \limsup — log
L L J I < 1 + log 1 H

t^oo T y Q J V x0l

where is the unique positive solution to the equation (1 + x) Tt-11 x I.

The proof of Proposition B.l is a refinement of the argument given in Appendix B

of [36]. However, we will make this appendix self-contained for the convenience of
the reader. The main tool in this computation is an old result known as Stirling's
formula, which we state here.

n\
Theorem B.2 (Stirling's formula), lim — 1.

(f )"
In order to use Stirling's formula, we need to prove the following lemma. For the

rest of this appendix, let

F F(T, K,L) := T-KQ
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Lemma B.3. Let K > L > 0 be fixed numbers, a := \j- — 1 ] and h : \_j- — 1J.

Then the following hold:

(1) lim F oo.
T —>oo

(2) lim Q oo.
oo

/ Q\a Q
(3) 1 < (1 + liminf — -liminf —

V JT-»oo F ' T^-oo F
/ Q\b i

(4) 1 > I 1 + limsup —) lim sup -
T—F ' T—l

Proof. From the definition of Q, we see that

\i=P\ + Q\ //Li=üj^J + ö + r
i <,~ V Q )/ \ Q +1

(L^J + g)(L^J + g - ') (Lr-(g,+1)"J + g + 2)(g + d

L^Jd^J-0---(LI=^J + i)
(B.l)

which can be rearranged to be

g + i
^ (L^j-oa^j-^-q^^^j + o

F " (L^J + Q){L^J + Q - d • • • d7MgL+1)*] + g + 2)'
(B.2)

Similarly, the definition of 0 also tells us that

1 > -"VJ,+ ô-')/(L^J + e)

r-(g-0*j + g_ ^(^-(g-DüTj + g_2)...^Z^j + g + i)g

L^^jd^^j-d-d^J + i)
(B.3)

which implies

e (L"^J)-(L^J+2)
F+\ ~ (LIH£=l«j + e fll^j + ß + l)

< I. (B.4)

(1) Suppose for contradiction that liminf F < oo. By the definition of F, we see
T —>oo

that lim sup Q — oo. Thus,
T —>-00

Q
hm sup oo,
T^oc F + 1

which contradicts (B.4).
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(2) Suppose again for contradiction that lim inf Q < oo. By taking an appropriate
T —>oo

subsequence, we can assume that lim Q < oo. Hence, lim F oo, so we have
T->-oo Too

F
lim oo.

T —>oo Q + 1

On the other hand, if lim Q < oo and lim F oo, then the right hand side of
T —>oo T —>-oo

the inequality (B.2) converges to 1 as T -* oo, which implies that

Q + 1

lim > I.
T ->oo F

This is a contradiction.

(3) Since (1) and (2) hold, taking the limit infimum of (B.l) as T -> oo gives

1 - (' +
I T-QK |)(! +

I T-QK I

_ j
Q \ Ô + 1

l +
[_r-(e+i)gj+2; [^r-ce+DA-j + ]

/ Q\a Q
<11+lim inf— -lim inf—.

V T ->oo F / T ->oo F

(4) Similarly, by taking limit supremum of (B.3) as T —> oo, we get

1 ä ('+ (Ops]) ('+ A

i + Q-1 \ 0(' L^j+2; Lr^J +

—^ - lim sup
^

T —>oo ^ T —>00

i Q\h Q
>(l+limsup— -limsup—.

V T^ ' TF
By (3) and (4) of Lemma B.3, we see that lim sup is a positive real number,

T —>oo

which we will denote by D in the sequel. We now use (3) of Lemma B.3 to find an

inequality relating D to a := [~ * — 1~|.

Lemma B.4. For any positive numbers K > L > 0, let a := - l]. Then

1

D < —,
x0

where xo fv the unique positive solution to the equation (1 + x)ax 1.
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Proof. Consider the function fa: [0, oo) -> M defined by fa(x) (1 + x)a jc,
and observe that fa is increasing, fa(0) 0, and lim^oo f(x) oo. By (3) of
Lemma B.3, we know that fa (-^) > 1, so F > f~x 1 x0.

With Lemma B.3 and Lemma B.4, we are now ready to prove Proposition B. 1.

ProofofProposition B.l. Since (1) and (2) of Lemma B.3 hold, we can apply
Stirling's formula to obtain

lim
T—>00

((F + Q\ /2txQF (_Q_\Q t F

V\ Q j V F + Q VF + Q) \F + Q> J

Taking the logarithm and multiplying by y then gives an expression that can be

rearranged to yield

108 ("a6)
F 1 1 \ FQ F\limsup- log (- + -) + linkup — log (l + -)

KQ F / Q\ K / 1 x

+ 'im slip — • — log 1 + — + lim sup — log — (B.5)
T-+oo ' Q V r ' 7"->oo 2/ \2n/

KQ / F \ KQ F t Q\
Hm sup —- log 1 + — + limsup—- • — logll + —
T->-oo ' ^ C ' < V x r /

By the definition of F, we have

Q L 1

lim sup — — lim sup —=
T -xoo F K j—>.<30 — 1

which implies that

K lim sup %
FQ t^JF

hm sup g- < 1.

r^oo F ]_, -\-K -limsupF̂
T^oo

Applying this to the inequality (B.5) then gives

F (F + Q\ / F\ F / Q\
Q j < limsup log (l + -) + limsup

g
log (l + -)

< logd I III I I

< log 1 + — + 1,

where the second inequality is a consequence of the fact that x logfl + F) < 1 for
all x > 0, and the final inequality is Lemma B.4.



Vol. 94 (2019) Positively ratioed representations 343

References

[11 F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986),
no. 1, 71-158. Zbl 0671.57008 MR 847953

[21 F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math., 92

(1988), no. 1, 139-162 Zbl 0653.32022 MR 931208

[31 M. Burger, A. Iozzi, F. Labourie, and A. Wienhard, Maximal representations of surface

groups: Symplectic Anosov structures, PureAppl. Math. Q., 1 (2005), no. 3, Special Issue:

In memory of Armand Borel. Part 2, 543-590. Zbl 1157.53025 MR 2201327

|4] M. Burger, A. Iozzi, and A. Wienhard, Surface group representations with maximal Toledo

invariant, Ann. ofMath. (2), 172 (2010), no. 1, 517-566. Zbl 1208.32014 MR 2680425

151 M. Burger and M. Pozzetti, Maximal representations, non Archimedean Siegel spaces,
and buildings, Geom. Topol., 21 (2017), no. 6, 3539-3599. Zbl 1402.22010 MR 3692972

[6] J. L. Clerc and B. 0rsted The Gromov norm of the Kaehler class and the Maslov index,
Asian J. Math., 7 (2003), no. 2, 269-295. Zbl 1079.53120 MR 2014967

[71 A. Dominic and D. Toledo, The Gromov norm of the Kahler class of symmetric domains,
Math. Ann., 276 (1987), no. 3, 425^132. Zbl 0595.53061 MR 875338

[81 P. Eberlein, Geometry ofnonpositively curved manifolds, Chicago Lectures in Math., Univ.
of Chicago Press, Chicago, IL, 1996. Zbl 0883.53003 MR 1441541

[91 G. B. Folland, Real analysis. Modern techniques and their applications. Second edition,
Pure and Applied Mathematics (New York), A Wiley-Interscience Publication. John Wiley
& Sons, Inc., New York, 1999. Zbl 0924.28001 MR 1681462

1101 F. Guéritaud, O. Guichard, F. Kassel, and A. Wienhard, Anosov representations and proper
actions, Geom. Topol., 21 (2017), no. 1, 485-584. Zbl 1373.37095 MR 3608719

1111 O. Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de

surface, J. Differential Geom., 80 (2008), no. 3, 391-431. Zbl 1223.57015 MR 2472478

1121 O. Guichard and A. Wienhard, Anosov representations: domains of discontinuity and

applications, Invent. Math., 190 (2012), no. 2, 357-438. Zbl 1270.20049 MR 2981818

1131 W. M. Goldman, Topological components of spaces of representations, Invent. Math., 93

(1988), no. 3, 557-607. Zbl 0655.57019 MR 952283

[14| U. Hamenstädt, Cocycles, Hausdorff measures and cross ratios, Ergodic Theory Dynam.
Systems, 17 (1997), no. 5, 1061-1081. Zbl 0906.58035 MR 1477033

115] U. Hamenstädt, Cocycles, symplectic structures and intersection, Geom. Funct. Anal., 9

(1999). no. 1, 90-140. Zbl 0951.37007 MR 1675892

116] S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Corrected reprint of
the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society,
Providence, RI, 2001. Zbl 0993.53002 MR 1834454

117] N. J. Hitchin, Lie groups and Teichmüller space, Topology, 31 (1992), no. 3, 449^173.
Zbl 0769.32008 MR 1174252

118] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in

Mathematics, 9, Springer-Verlag, New York-Berlin, 1972. Zbl 0254.17004 MR 323842

[ 19] M. Kapovich, B. Leeb, and J. Porti, Morse actions of discrete groups on symmetric space.
arXiv: 1403.7671



344 G. Marione and T. Zhang CMH

1201 M. Kapovich, B. Leeb, and J. Porti, A Morse Lemma lor quasigeodesics in symmetric
spaces and euclidean buildings, Geom. Topol., 22 (2018), no. 7, 3827-3923. Zbl 06997379
MR 3890767

121 ] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math.,
165 (2006), no. 1,51-114. Zbl 1 103.32007 MR 2221137

[22] F. Labourie, Cross ratios, surface groups, PSL(n, R) and diffeomorphisms of the

circle, Puhl. Math. Inst. Hautes Études Sei., (2007), no. 106, 139-213. Zbl 1203.30044
MR 2373231

[23] F. Labourie, Cross Ratios, Anosov representations and the Energy Functional on
Teichmüller space, Ann. Sei. École Norm. Sup. (4), 41 (2008), no. 3, 439—171.

Zbl 1160.37021 MR 2482204

124] F. Ledrappier, Structure au bord des variétés à courbure négative, in Séminaire de

théorie spectrale et géométrie de Grenoble. No. 13, Année 1994?1995, 97-122, Sémin.
Théor. Spcctr. Géom., 13, Univ. Grenoble I, Saint-Marlin-d'Hères, 1995. Zbl 0931.53005
MR 1715960

[25] J. Milnor, On the existence of a connection with curvature zero, Comm. Math. Helv., 32

1958), 215-223. Zbl 0196.25101 MR 95518

[26] X. Nie, Entropy degeneration of convex projective surfaces, Conform. Geom. Dyn., 19

(2015), 318-322. Zbl 1335.52004 MR 3432325

[27] X. Nie, On the Hilbert geometry of simplicial Tits sets, Ann. Inst. Fourier (Grenoble), 65

(2014), no. 3, 1005-1030. Zbl 1341.37018 MR 3449173

[28] J-P. Otal, Sur la géométrie symplectique de l'espace des géodésiques d'une variété à

courbure négative, Rev. Math. Iberoam., 8 (1992), no. 3, 441-456. Zbl 0777.53042
MR 1202417

[29] J-P. Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math.

(2), 131 (1990), no. 1, 151-162. Zbl 0699.58018 MR 1038361

130] J.F. Quint, Mesures de Patterson-Sullivan en rang supérieur, Geom. Funct. Anal, 12

(2002), no. 4, 776-809. Zbl 1169.22300 MR 1935549

131 ] A. Sambarino, Quantitative properties of convex representations, Comm. Math. Helv., 89

(2014), no. 2, 443^-88. Zbl 1295.22016 MR 3229035

132] A. Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory
Dynam. Systems, 34 (2014), no. 3, 986-1010. Zbl 1308.37014 MR 3199802

133 ] S. Sabourau, Entropy and systoles on surfaces, Ergodic Theory Dynam. Systems, 26 (2006),
no. 5, 1653-1669. Zbl 1112.53031 MR 2266377

134] J. Tits, Représentations linéaires irréductibles d'un group réductif sur un corp quelconque,
J. Reine Angew. Math., 247 (1971), 196-220. Zbl 0227.20015 MR 277536

1351 V. Turaev, A cocycle for the symplectic first Chern class and the Maslov index, Funktsional.
Anal, i Prilozhen., 18 (1984), no. 1, 43-48. Zbl 0556.55012 MR 739088

136] T. Zhang, The degeneration of convex KP2 structures on surfaces, Proc. London Math.
Soc. (3), 111 (2015), no. 5, 967-1012. Zbl 1351.30029 MR 3477227

1371 T. Zhang, Degeneration of Hitchin representations along internal sequences, Geom. Funct.

Anal., 25 (2015), no. 5, 1588-1645. Zbl 1327.30054 MR 3426063



Vol. 94 (2019) Positively ratioed representations 345

Received May 08, 2017

G. Martone, Department of Mathematics, University of Michigan,
Ann Arbor, MI 48109-1043, USA

E-mail: martone@umich.edu

T. Zhang, Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge Road, 119076, Singapore

E-mail: matzt@nus.edu.sg




	Positively ratioed representations

