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Positively ratioed representations
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Abstract. Let S be a closed orientable surface of genus at least 2 and let G be a semisimple
real algebraic group of non-compact type. We consider a class of representations from the
fundamental group of S to G called positively ratioed representations. These are Anosov
representations with the additional condition that certain associated cross ratios satisfy a
positivity property. Examples of such representations include Hitchin representations and
maximal representations. Using geodesic currents, we show that the corresponding length
functions for these positively ratioed representations are well-behaved. In particular, we prove a
systolic inequality that holds for all such positively ratioed representations.
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1. Introduction

Let S be a closed, oriented, connected surface of genus at least 2 with fundamental
group [". The Teichmiiller space of S, denoted 7 (.5), is the deformation space of
hyperbolic structures on S. Via the holonomy, one can also think of 7(S) as a
connected component of the space

X (I, PSL(2, R)) := Hom(T', PSL(2, R))/PGL(2, R).

The representations in 7 (S') can be characterized as the ones that are [ P]-Anosov,
where P is the unique (up to conjugation) parabolic subgroup of PSL(2,R).
Let €5(S) denote the set of free homotopy classes of closed curves (see also
Definition 2.1). Every hyperbolic structure p € 7 (S) induces a length function
P €5 (S) — R which associates to ¢ € € (S) the hyperbolic length, with respect
to p, of the geodesic representative of c.

A geodesic current on S is a locally finite, I'-invariant, Borel measure on the set
of geodesics in the universal cover of §. Observe that the space of geodesic currents
on S, denoted €(S), is an open convex cone in an infinite dimensional vector space.
Furthermore, €%(S) can be identified with a subset of €(S) (see Section 2.2).
Bonahon [1] showed that €(S) is naturally equipped with a continuous, bilinear
intersection pairing

i1E(S) x €(S) — R* U {0}

which generalizes the geometric intersection number between free homotopy classes
of closed curves in €9(S). Also, he proved that for every hyperbolic structure
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p € T(S), there is a unique geodesic current pu” € €(S§) with the property that for
any ¢ € €5(S),

i(uP,c) =L°(c).
The geodesic current u” is known as the intersection current associated to p.

In this paper, we investigate the extent to which we can generalize this intersection
current to the setting of [ P]-Anosov representations p: I' — G, where G is a non-
compact semisimple, real algebraic group and [ P] is the conjugacy class of a parabolic
subgroup P C G. Every conjugacy class of parabolic subgroups of G determines a
subset 6 of the set of restricted simple roots A of G. We will assume, without loss of
generality, that 6 = (), where ¢ is the opposition involution on A (see Sections 2.3
and 2.4).

For each « € 6, the corresponding restricted fundamental weight w, allows us to
define a length function

€2:e8(S) — RT U {0}

for p, which generalizes the length function associated to a hyperbolic structure
in 7 (S). However, it is not true in general that there is a geodesic current v so that
i(v,c) = t5(c) forevery c € €4(S).

As such, we introduce the notion of a [ P |-positively ratioed representation. These
are [ P]-Anosov representations with the additional property that certain cross ratios
associated to w, for all @ € 6 are always positive (see Section 2.2 for more
details). Examples include PSL(n, R)-Hitchin representations and PSp(2n,R)-
maximal representations. Combining the work of Hamenstidt [14, 15], Otal [28],
and Tits [34], we have the following theorem.

Theorem 1.1. If p:I'— G isa | P]-positively ratioed representation, then for any o« €0,
there is a unique geodesic current jub so that i (b, c) = €5(c) for all ¢ € €§(S).

By Theorem 1.1, to prove statements about £5, one needs only to prove the
analogous statements in the setting of geodesic currents. Using this strategy, we prove
the remaining results in this paper. In fact, all the results in this introduction can be
stated in the more technical language of period minimizing geodesic currents with
full support. These are geodesic currents with full support that satisfy the property
that the number of closed geodesics ¢ € €§(S) so that £,(¢c) := i(c,v) < T is
finite for all T € R*. However, to emphasize the application we are interested in, we
will state most of our results for positively ratioed representations in the introduction,
and indicate the numbering of the analogous statement about geodesic currents in
parenthesis.

We will need the following notation. For an essential subsurface S C S, i.e. an
incompressible subsurface with negative Euler characteristic, denote by €% (S”) the
set of free homotopy classes of unoriented closed curves in S’. Notice that S’ is an
orientable surface of genus g’ with n” boundary components so that 2¢g" —2 +n’ > 0.

The main point of this paper is that Theorem 1.1 can be exploited to study the
length functions of positively ratioed representations. As a first example, we have
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the following corollary about the asymptotic behavior of length functions along a
sequence of positively ratioed representations. This was motivated by the work of
Burger—Pozzetti [5].

Corollary 1.2 (Proposition 4.7). Let {p;:I" — G}, be a sequence of [P;]-
positively ratioed representations, let 0; be a subset of the restricted simple roots
of G; determined by P, and let o € 0;. Fix an auxiliary hyperbolic structure
on S. Then there is:

* asubsequence of {p;}72,, also denoted {p;}7. |,
* a (possibly disconnected, possibly empty) essential subsurface 8" C S,

e a (possibly empty) collection of pairwise non-intersecting, non-peripheral simple
closed curves {cy,...,ck} in €§(S\ ')

sothat A := S"U Ule ¢; is non-empty, and the following holds. Let ¢ € €©G(S) be
a closed curve so that ¢ ¢ €§(S \ A) and c is not a multiple of ¢; fori = 1,.... k.

(1) Ifd € €5(S \ A) ord is a multiple of c¢; for some i =1, ...k, then
o’ (d
@

j=o0 Ly’ (c)

(2) If d € €5(S) is a closed curve so that d ¢ €5(S \ A) and d is not a multiple
ofci fori = 1,...,k, then
la'y (d)

S eRT.
j=oo £y (c)

In the case when G; = PSp(2n,R) and p; is maximal for all j, Corollary 1.2 is a
result of Burger—Pozzetti |5, Theorem 1.1]. More informally, this corollary states that
the closed curves in S whose lengths are growing at the fastest rate along a sequence
of positively ratioed representations are exactly those that intersect a particular union
of a subsurface of S with a collection of pairwise non-intersecting simple closed
curves in S.

A second important consequence of Theorem 1.1 is that the length functions
coming from positively ratioed representations behave as if they were the length
functions of a negatively curved metric on S when we perform surgery (see
Section 4.3).

Corollary 1.3 (Proposition 4.5). Let p:I" — G be Py-positively ratioed for some
0 C A. Forc € €§(S) withi(c,c) > 0, let cy,ca,c3 € CG(S) be obtained via
surgery at a point of self-intersection of ¢ as in Proposition 4.5. Then for any o € 0,
we have

P (c1) <th(c) and {€5(c2) + €h(c3) < th(c).
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For any period minimizing geodesic currentv € €(S),let£,: €§(S) — RTU{0}
be the function defined by £, (c¢) := i(v, ¢). Using this, we can define the following
three quantities associated to connected essential subsurfaces S C S. The first is
the entropy of S’, which is defined to be

1
hy(SH = kL, S := limsup? log#{c € €§(S") : y(c) < T},

T—o00

and the second is the systole length, which is defined as
Ly(S") = L(£y,8") :=min {£,(c) : c € €E(S")}.

To define the third, one chooses a minimal pants decomposition P, s+ of S’,
i.e. a maximal collection in €§(S’) of pairwise non-intersecting simple closed
geodesics {ci,..., 35734247} SO that ¢347_24p/,...,C3g—342, are the boundary
components and for all j = 0,...,3¢" —4 + n', ¢;41 is a non-peripheral systole
in €g(S’\ U,'j:l ¢;). These exists because of Corollary 1.3 (see Section 4.5). The
panted systole length is then the quantity

K,(8') = K(¢,,S")
:=min {£,(c) : ¢ € €F(S’) is not a multiple of a curve in P, g}.

It turns out that the panted systole length does not depend on the choice of a minimal
pants decomposition (see Lemma 6.2), and hence is an invariant of the geodesic
current v.

In this setting, our main theorem is the following.

Theorem 1.4. There is a constant C € R™ depending only on the topology of S', so
that for any period minimizing v € €(S), we have the inequalities

%l"g(z) < hy(S)Ku(S") = C - (Tog(4) + 1 + log (1 + xlo))

Ky (S
where x is the unique positive solution to the equation (1 + x) [ Ly (S%) ﬂ x =1

Together, Theorem 1.1 and Theorem 1.4 give a systolic inequality that holds for
all positively ratioed representations.

Let hy := h(£5,S) and LY := L({5.S). As afirst corollary to Theorem 1.4, we
have the following.

Corollary 1.5 (Corollary 7.6). There is a constant C depending only on the topology
of S, so that for any [ Pg|-positively ratioed representation p: 1" — G, and any o € 0,
we have the inequality

hPLE < C.
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We emphasize that C does not depend on G. In particular, if {p;:I" = G;}jes
is a collection of [P;]-positively ratioed representations on I" so that {hgi. Yies
is uniformly bounded below by a positive number, then Corollary 1.5 implies
that {Lg'j } jes is uniformly bounded from above.

Similarly, given a negatively curved Riemannian metric m on S’ with totally
geodesic (possibly empty) boundary, one can also define a length function
(€9 (S’) — RT which assigns to each free homotopy class of closed curves
the length of the geodesic representative in that free homotopy class. Theorem 1.4
also implies the following,.

Corollary 1.6. There is a constant C depending only on the topology of S’, so that
for any negatively curved Riemannian metric m on S’ with totally geodesic boundary,

h(l, SVL(Ep, S') < C.

Corollary 1.6 is a consequence of the work of Sabourau [33] in the case when S’
is a closed surface. The constants in the statements of Theorem 1.4, Corollary 1.5
and Corollary 1.6 are explicit but not sharp, and depend exponentially on the Euler
characteristic of the surface.

Another corollary of Theorem 1.4 is the following criterion for when the entropy
along a sequence of “thick” positively ratioed representations converges to 0.

Corollary 1.7 (Corollary 7.8). Let {p;:I" — G j};?":] be a sequence of [P;]-
positively ratioed representations, let 0; be a subset of the positive roots of Gj
determined by [P;]. Also, let aj € 0; so that inf Lf;j. > 0. Then lim;j hzj =0
if and only if for any subsequence of {p; {72, there is
* a further subsequence, which we also denote by {p; }?O:I,
* asequence { f;}72 | of elements in the mapping class group of S,
* a (possibly empty) collection D C C&(S) of pairwise non-intersecting simple

closed curves,
so that

lim min {Z,{j P (c):c € CH(S\ D) is non-peripheral § = 0o

j—>oo

and
sup max {E({j ()1 c e D} < oo
; ;
Here, fj-pj = p;j o (fj)« where (f;)«:I" — T is the group homomorphism
induced by the mapping class f;: S — S.
Nie [26, 27] and the second author [36, 37] previously studied sequences of

Hitchin representations whose entropy goes to zero. Corollary 1.7 includes all such
sequences.
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The rest of this article is organized as follows. In Section 2, we define positively
ratioed representations and prove Theorem 1.1. Then, we show that Hitchin
and maximal representations are examples of positively ratioed representations in
Section 3. In Section 4, we prove Corollary 1.2 and some facts regarding geodesic
currents and the intersection pairing, and Sections 5 and 6 are devoted to the proof
of Theorem 1.4. Finally, in Section 7, we prove Corollary 1.5, Corollary 1.6, and
Corollary 1.7.

Acknowledgements. This work has benefitted from conversations with Ursula
Hamenstidt, Beatrice Pozzetti, Francis Bonahon, Marc Burger, Fanny Kassel and
Richard Canary. The authors are grateful for their input. The authors also would
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on surface group representations”. The authors thank the organizers of these programs
for their hospitality. The authors also thank the referees of this paper for their valuable
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2. Positively ratioed representations

The goal of this section is to describe a class of surface group representations, which
we call positively ratioed representations. The main property these representations
have is that certain length functions associated to them “arise from geodesic currents”.
This forces the length functions associated to these representations to satisfy some
strong properties that are explained in Section 4.

2.1. Topological geodesics. We begin by carefully specifying what we mean by a
geodesic and a closed geodesic on a topological surface. The notation developed in
this section will be used in the rest of the paper.

First, we will define closed geodesics. Let [I'] denote the set of conjugacy classes
in I", and let ~ be an equivalence relation on [I'] given by [y] ~ [y !].

Definition 2.1. A closed geodesic in S is a non-identity equivalence class in [I"] / ~.
Also, we say that a closed geodesic is primitive if it has a primitive representative
in I' (equivalently, all of its representatives in I" are primitive).

We will denote the set of all closed geodesics in S by €§(S), and denote the
equivalence class in € (S) containing y € I" \ {id} by [y]. Observe that €&(S) is
naturally in bijection with the free homotopy classes of closed curves on S. Hence, if
we choose a hyperbolic structure X on S, then the closed geodesics in S are identified
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with the closed hyperbolic geodesics in X since every free homotopy class of closed
curves in ¥ contains a unique closed hyperbolic geodesic.

Next, we will define geodesics. It is well known that I" is a hyperbolic group, so
it admits a Gromov boundary dT", which is topologically a circle.

Definition 2.2. A (unoriented) geodesic in S is an element of the topological space

9(S5) = {(x,y) €l x 0T 1 x # y}/ ~,

where ~ is the equivalence relation defined by (x, y) ~ (v, x). Also, a geodesic in S
is an element in §(S) := &(S)/T.

Denote the equivalence classes in €(S) and §(S) containing (x, y) by {x, y} and
[x, y] respectively. Observe that if we choose a hyperbolic structure X on S, then
this induces a hyperbolic structure ¥ on §. The natural identification of 9" with the
visual boundary 9T of £ then realizes geodesics in S (or §) as hyperbolic geodesics
in % (or ).

Of course, closed geodesics in S and geodesics in S can be explicitly related in
the following way. Any y e I" \ {id} has an attracting and a repelling fixed point
in aI", which we denote by y* and y— respectively. This allows us to define the map
F:€5(S) — G(S)by F:[y] = [y~,y™]. More informally, this sends every closed
geodesic to the bi-infinite geodesic that “wraps around” it. Note that the map F is
not injective; if y € I is primitive, then F~1(F[y]) = {[y"] : n € Z \ {0}}.

Finally, we have a notion for when two geodesics intersect transversely.
Definition 2.3. We say that {a, h},{c,d} € §(§ ) intersect transversely if a,c, b, d
lie in OI" in that (strict) cyclic order. Similarly, two geodesics in §(S) intersect
transversely if they have representatives in ﬁ(g) that intersect transversely, and two
closed geodesics in €& (S) intersect transversely if their images under the map F
described above intersect transversely in ¥ (.5).

If we equip S with a hyperbolic structure X, then a pair of geodesics or closed
geodesics in S intersect transversely if and only if they intersect transversely as
geodesics or closed geodesics for the metric on .

2.2. Cross ratios and geodesic currents. The reader should be cautioned that
there are many non-equivalent definitions of cross ratios in the literature, even in the
restricted setting of Anosov representations. The definition we use here is one given
by Ledrappier [24, Definition 1.f]. Consider the set

ar¥ .= {(a,b,c,d) € aT*: {a, b} N {c,d} = B}.

Definition 2.4.

e A cross ratio is a continuous function B:9I'¥l — R that is invariant under the
diagonal action of I' and satisfies the following:

(1) (Symmetry) B(x,y,z,w) = B(z,w, x, y);
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(2) (Additivity) B(x,y,z,w) + B(x,y,w,u) = B(x,y,z,u)
forall x, y,z,w,u € 3 such that (x, y,z, w), (x, y, w,u) € T,

e Forany [y] = ¢ € €§(S), the B-period of ¢ is Lg(c) := B(y",y*,y -a,a) for
somea € A" —{y—,ytL.

One easily shows that the B-period of ¢ does not depend on the choice of «
or y. The following theorem of Otal [28, Theorem 2.2], (see also Ledrappier [24,
Theorem 1.f]) states that any cross ratio B is determined by the B-periods.

Theorem 2.5 (Otal). If By, By: 9T'*l — R are cross ratios so that ¢ B, (¢c) = £p,(c)
forallc € €5(S), then By = Bs.

Cross ratios are intimately related with geodesic currents, which we will now
define. The notion of a geodesic current was first introduced by Bonahon [1], who
used them to study Teichmiiller space.

Definition 2.6. A geodesic current on S is a I'-invariant, locally finite (non-signed)
Borel measure on (5).

Denote the space of geodesic currents on S by € (). It can be naturally realized
as an open cone in an infinite dimensional vector space equipped with the weak*
topology (see Bonahon [2, Section 1]). The I'-invariance in the above definition
ensures that every geodesic current v € €(S) descends to a finite measure v on the
compact space §(S). However, the I'-action on ﬁ(g ) is not proper, so §(.S) is not
Hausdorff. As such, it is often more convenient to work with v instead of V.

An important example of geodesic currents are the ones associated to closed
geodesics. Given any closed geodesic ¢ = [y] € €4(S), let u. € €(S) be the
geodesic current defined by

He = Z 8{n-y+,n'y_}*
n{y)el'/{y)

where d¢, , is the Dirac measure supported at the point {x, y} € §(§ ). When c¢ is
primitive, [i. is the Dirac measure on F(c). This realizes €©§(S) as a subset of €(S).
Henceforth, we will blur the distinction between €§(S) and the subset of €(S) it is
identified with, by using c to denote L.

On the space of geodesic currents, Bonahon [1, Section 4.2] defined an important
function that we will now describe.

Let DE(S) C €(S) x §(S) be the open subset defined by

DE(S) = {(ll, 1) € 8(S) x 8(S) : I, I, intersect transversely}.

Note that D& (S) is stabilized by the diagonal I' action on (S) x §(S), so we
can define DG (S) := DG (5)/ I". In this case, the " action on D§ (5) is proper,
so DE(S) is a Hausdorff space. Forany p, v € €(S), the I'-invariant measure p X v
on DE(S) descends to a measure jz X v on DE(S).
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Definition 2.7. The intersection form on €(S) is the map i: €(S) x €(§) — R
givenby i (p,v) = L x v(DG(S)).

Bonahon proved that the intersection form is well-defined and continuous, and it
is easy to verify that it is symmetric and bilinear. He also proves thatif ¢, ¢’ € €§(S)
then i(c,c") gives the geometric intersection number between ¢ and ¢’. More
properties of the intersection form are later explained in Section 4.2.

There are several ways one can relate geodesic currents to cross ratios. One
way to do so is to associate to every Holder continuous cross ratio a Gibbs current
(Hamenstiddt [14], see also Ledrappier [24]). However, this is not useful for the
purposes of this paper because it is not easy to read off the periods of the cross ratio
from the Gibbs current. Instead, given a cross ratio B, we would like to find an
intersection current, which we now define.

Definition 2.8. Let B be a cross ratio. A geodesic current p is an intersection current
for B if {p(c) = i(u,c) forallc € €©&(S).

Unfortunately, it turns out that there are cross ratios for which the intersection
current does not exist. On the other hand, Hamenstiddt observed [15, pp. 103-104]
that one can always find intersection currents for cross ratios that satisfy the following
positivity condition.

Definition 2.9. A cross ratio B is positive if for all x, y,z, w € dI" in this cyclic
order, one has B(x,y,z,w) > 0.

Theorem 2.10 (Hamenstidt). If B: arl — R is a positive cross ratio, then it has a
unique intersection current.

The proof of Theorem 2.10 is a standard argument from analysis. However, for
lack of a good reference for the proof, we give the full proof in Appendix A.

2.3. Background on semisimple Lie groups. We would like to exploit the existence
of intersection currents for positive cross ratios to study the length functions of
a certain class of Anosov representations. To define Anosov representations, we
need to recall some basic facts regarding non-compact, semisimple, real algebraic
groups and their real representations. See Eberlein [8, Chapter 2], Helgason [16,
Chapter VI.3], Humphreys [18, Chapters I-III], and Guéritaud—Guichard—Kassel—
Wienhard [ 10, Section 4] for more details.

Let G be a non-compact, semisimple, Lie group with Lie algebra g. We will also
assume that G is a finite union of connected components (for the real topology) of the
real points G(IR) of some algebraic group G, and that the adjoint action of G on its
Lie algebra is by inner automorphisms, i.e. Ad(G) C Aut(g)g. It is well known that
there is a unique non-positively curved Riemannian symmetric space X on which G
acts transitively by isometries, so that for any point p € X, the stabilizer in G of p
is a maximal compact Lie subgroup K C G. The transitivity of the G-action on X
implies that X >~ G/K as G-spaces.
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Let € C gbe the Lie subalgebra of K C G. One can prove that £ C g is a maximal
subspace on which the Killing form on g is negative definite. Since g is semisimple,
the Killing form on g is non-degenerate. This gives an orthogonal decomposition
g=%t+p.

Definition 2.11. The Cartan involution tx: g — gis the involution so that tx | = id
and tg|p, = —id.

Geometrically, via the canonical identification 7, X =~ g/€ ~ p, the involution
Tk |p: Tp X — Tp X is the derivative of the geodesic involution of X at p.

A useful way to study G is to consider its linear representations. To do so, we
will consider its restricted weights, which we now define. Let a be a maximal abelian
subspace in p, then a C p =~ T, X is the tangent space to a maximal flat F" in X
containing p, i.e. exp,(a) = F. Given an irreducible, real, finite dimensional, linear
representation r: G — GL(V') and @ € a*, define

Vo i={w eV :r(exp)w = e*w forall v € a}.

Definition 2.12. We call « a restricted weight of the representation (r, V') if @ # 0
and V, is non-empty. If « is a restricted weight, then V,, is a restricted weight space.

Let ®(r, V') denote the set of restricted weights of (r, V). Since r(exp(a)) is
simultaneously diagonalizable over R, we can decompose

V = VO e Z VO:
aed(r,V)

into its restricted weight spaces. If we specialize to the adjoint representation (r, V') =
(Ad, g), then the restricted weights of this representation are called the restricted roots,
and the restricted weight spaces are called the restricted root spaces. In this case, we
use the notation ¥ := ®(Ad, g) and gy := V.

Letd := U(r’V) ®(r, V'), where the union is taken over all irreducible, real, finite
dimensional, linear representations of G. It turns out that there is an easy description
of ® in terms of X:

(. p)
B.B)
where (-, -) is the Killing form on a*. In particular, {0} U ® C a* is a lattice. One

would then like to find a base for the lattice {0} U &.
To do so, choose any vy € a so that «(vg) # 0 for all @ € X, and let

{O}UCD:{ozea*:Z EZforallﬁeE}.

=t = {a € X :a(vy) > 0}.

Itis a standard fact that @ € X ifandonly if —@ € ¥,50 % = ST U{—a :a € T}

Definition 2.13. A restricted root in XV is simple if it cannot be written as a non-
trivial linear combination of the roots in © with positive coefficients.
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It turns out that the set of simple restricted roots, denoted A, is a basis for a*.
However, A is not a base for the lattice {0} U ®. To convert A into a base, we perform
an additional “orthogonalization procedure” to every simple restricted root «. This
gives the following definition.

Definition 2.14. For any o € A, the restricted fundamental weight associated to «
is the linear functional wy € a* defined by

(@a: B) _
(8. P)

where §.. is the Kronecker symbol.

It is well known that {wy : @ € A} is a base for the lattice {0} U ®@. The choice
of vy induces a natural partial ordering < on {0} U ® defined as follows. For any
wi,wy € {0} U P, w; < w,y if wy — w; is a non-negative linear combination of the
simple roots in A. For any irreducible representation (r, V') of G, the set of weights
{0} U ®(r, V') has a unique maximal element in the partial ordering <. This is called
the highest restricted weight of (r, V'), and is a non-negative linear combination of
the restricted fundamental weights.

With this, we can state the following theorem of Tits [34] that will play an
important role later. Also, see Quint [30, Proposition 3.2] or Guéritaud—Guichard—
Kassel-Wienhard [10, Lemma 4.5].

Theorem 2.15 (Tits). For any a € A, there is an irreducible linear representation
ro: G — SL(n, R) so that highest restricted weight x of (ro, R™) is a positive integer
multiple of the restricted fundamental weight wy, and the weight space (R"), is
one-dimensional.

2

So,p forall B € A,

We will refer to the representation r, guaranteed by Theorem 2.15 as an «-Tits
representation.
The choice of vg also picks out a (closed) positive Weyl chamber

at:={vea:a@) >0foralla € Tt}

One can show thatat C T, X C TX is afundamental domain of the G -action on 7'X,
i.e. for any (p’,v’) € TX, there is a unique v € at so that g - (p’,v’) = (p, v) for
some g € G. Since X is complete, this means that for any pair of points x, y € X,
there is a unique vector vy, € at sothat g-x = pand g-y = exp,(vy,y) for
some ¢ € G. This allows us to define the Weyl chamber valued distance as follows.

Definition 2.16. The Weyl chamber valued distance is the functiond_1-: X x X — at
given by d_1-(p.q) 1= vx,y.
It is easy to see that the Weyl chamber valued distance descends to an injective

map G\(X x X) — a™, and is thus a complete invariant of the G -orbits of pairs of
points in X. Furthermore, ||d_1(p.q)| = d(p,q), where || - || is the norm on at
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induced by the Riemannian metric on X and d is the distance on X . The classification
of isometries on G also implies that for any g € G, either

inf {d(q,8-9):qge X} =0
or there is some p € X so that
inf{d(¢,g-q):q € X} =d(p,g-p).

Furthermore, if

inf {d(q.g-q):qe X} =d(p,g-p)=d(p'.g-p),

thend_(p,g-p) = d_x(p'. g p'). Using this, one can define the Jordan projection
geometrically.

Definition 2.17. The Jordan projection (sometimes also known as the Lyapunov
projection) is the map Ag = A: G — a™ defined by

e Ag> 0ifinf{d(q,g-q):q € X} =0,
* Aig > d_(p.g- p) if there is some p € X so thatinf{d(q.g-q) : ¢ € X} =
d(p.g - p).

More algebraically, the Jordan projection can also be described as follows. The
Jordan decomposition theorem (see Eberlein [8, Theorem 2.19.24]) ensures that
any g € G can be written uniquely as a commuting product ¢ = gpgegu, With
g hyperbolic, g. elliptic, and g, unipotent. Furthermore, the fact that a¥ is a
fundamental domain of the G action on 7TX implies that there is a unique vector
Vg € a+t so that exp(vg) is conjugate to g5. Then the Jordan projection is the map
A:G — a* that sends g € G to v.

Since X is non-positively curved, it has a visual boundary 0.X that is topologically
a sphere, and the G -action on X extends to a G -action on dX. One can then consider
the stabilizers in G of points in 0X .

Definition 2.18. A parabolic subgroup of G is the stabilizer of a point in dX. We
say that two parabolic subgroups Py, P, C G are opposite if there is a geodesic in X
with endpoints x, xo € dX so that P; = Stabg(x;) fori =1, 2.

If Py and P{ are both parabolic subgroups that are opposite to P, then P;
and P must be conjugate in G. As such, we can say that two conjugacy classes [P ]
and [ P,] are opposite if for any representative P; of [ P1] every opposite of P; lies in
the conjugacy class [ P;].

Using parabolic subgroups, we can define flag spaces.

Definition 2.19. Let x €9X andlet P := Stabg (x). The [ P]-flag space, denoted F{p1.
is the G-orbit of x.
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Observe that the [ P]-flag space is a G-homogeneous space, so F{p] >~ G/ P as G-
spaces. In particular, as an abstract space, #[pj does not depend on x. Furthermore,
if P’ = gPg™! for some g € G, then there is canonical isomorphism between the
G-spaces G/ P and G/P'. As such, ¥p) is well-defined, and depends only on the
conjugacy class of [P].

The decomposition of g into its restricted root spaces can also be used to
understand the parabolic subgroups of GG. For any non-empty subset & C A, the
standard 0-parabolic subgroup is the parabolic subgroup Py C G with Lie algebra

po=g0® P gt ® & B

acxt aeX T NSpanp (A—6)

Using this, we can define a map from non-empty subsets of A to conjugacy classes
of parabolic subgroups in G by 6 + [Pg]. It turns out that this map is in fact a
bijection.

It is also well known that there is some g € G so that g - at = —at. In fact,
for any g’ € G so that ¢’ - a* = —a*, we know that ¢’ -a = a and g'|a = gla.
Using this, we can define the opposition involution i = —g:at — at. This

gives an involution t: A — A defined by ((«¢) = « o i, which in turn induces an
involution, also denoted by ¢, on conjugacy classes of parabolic subgroups defined
by ([Py] > [Py)]. Geometrically, this involution sends the conjugacy class of any
parabolic subgroup to the conjugacy class of its opposite.

From the algebraic description of the Jordan projection A, one can verify that for
allg € Gandforalla € A, wehave o oA(g) = t(a) oA(g™ 1), which in turn implies
that wy 0 A(g) = Wy(a) © A(g_l)-

We finish this section by describing some of the objects defined above explicitly
in the case when G = SL(n,R), as this will be of particular importance to us. We
can choose K to be the maximal compact subgroup

SO(n) := {k € SL(n,R) : kTk = id} C SL(n,R).

Inthatcase, E=so(n) ={A € sl(n,R) : A=—AT}andp=1{A € sl(n,R) : A= AT},
so the Cartan involution tg: sl(n, R) — sl(n,R) is given by t: A — —AT. We can
choose the maximal abelian subspace a C p to be the vector space of traceless
diagonal matrices in sl(n, R). This allows us to naturally identify

n
a= {(xl,xz,...,xn) e R": Zx[ = O}.
i=1

With this identification, £ = {o;,; € a* : i # j}, where ; ;:a — R is given by
a; ;:(x1,...,x,) > x; —x;. By making an appropriate choice of vy € a, we can
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also ensure that
Yt ={a;; €a*:i < j},
A={ajjpy1€a”:i=1...,n—1},

a—+:{(x]q---,xn)6a:x1 Z-..zxn}.

With these choices, the restricted fundamental weight wy, ; , | corresponding to «; ;41
is given by the formula wy, ; , (x1,...,Xs) = X1 + --- + x;, and the involution ¢
can also explicitly be given by t(a; ;+1) = &p—in—i+1. Also, the Jordan projection
evaluated on g € SL(n,R) is

Agrlogg

where g € SL(n, R) is the diagonal matrix whose diagonal entries are the absolute
values of the generalized eigenvalues of g, listed in descreasing order down the
diagonal. The group element g is a conjugate of gy.

Finally, if 0 = {&; 2, ®p—1,}, then

* *
0 *
0 x ... =x
0O 0 ... 0

and Fip,] = {(L,H) € RP" ! x (RP""')* : L € H}. As such, we refer to the
conjugacy class [ Pg] as the line-hyperplane stabilizer of SL(n, R).

2.4. Anosov representations and positively ratioed representations. The notion
of Anosov representations was first introduced by Labourie [21], and later refined
by Guichard—Wienhard [12]. Several other characterizations have been provided by
Kapovich—Leeb—Porti [19,20] and Guéritaud—Guichard—Kassel-Wienhard [10]. In
this article, we will only consider Anosov representations from the surface group I
to a non-compact, semisimple, real algebraic group, G.

Given a representation p:I" — G, a p-equivariant map £:0I" — F[py is
dynamics-preserving if for any y € I' \ {id}, £(y™) is the attracting fixed point
for the action of p(y) on F{p. (In particular, p(y) has to have an attracting fixed
point in F[p).) A pair of maps £: 9" — Fpj and n: dI" — F,p is transverse if for
all x # y, (§(x), n(y)) lies in the unique open G-orbit of F[p; x ¥, pj. With this, we
can define Anosov representations using a characterization by Guéritaud—Guichard—
Kassel-Wienhard (see [10, Theorem 1.7 and Proposition 2.2]).

Definition 2.20. A representation p: ' — G is [P]-Anosov if

* there exist continuous, p-equivariant, dynamics-preserving and transverse maps
§:0I' = Frpyand n: 0" — F1py,
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* there exist C,c > Osuchthata oA op(y) > Clr(y)—ctoralla € andy € T,

where £r(y) is the translation distance of y € I' in the Cayley graph of I with
respect to some finite generating set. (Recall that A denotes the Jordan projection.)
The maps £ and 7 are called the limit curves of p.

Since the set of fixed points of group elements in I" is dense in 91", the maps &
and 7 are unique. In particular, § = n necessarily when 6 = ¢(0). Also, it is a result
of Guichard—Wienhard [12, Lemma 3.18] that for any non-empty 8 C A, p: ' — G
is [Pg]-Anosov if and only if it is [Pgpn,e)]-Anosov. Hence, we do not lose any
generality by only considering parabolic subgroups of P C G so that [P] = ([ P],
i.e. non-empty subsets & C A so that 6 = ((0). We will do so for the rest of this
article. Under this assumption, we can associate to any [ P]-Anosov representation
some natural length functions.

Definition 2.21. Let p: " — G be a [ Pg]-Anosov representation.

* Forany a € 0, the a-length function of p is the function
€h:€g(S) > R givenby £4(c) 1= (wy + W) © A 0 p(¥),

where [y] = ¢ € €§(S).
* The entropy of €4 is the quantity

1
h(¢f) := limsup = log#{c € €G(S) : t4(c) < T}.

T —00

One can verify that €4 is well-defined and ¢4 = Ef’(a). It is also a well known
consequence of the Anosovness of p that #(£5) € RT (for example, see Sambarino
[31, Theorem B]). When G = PSL(2,R), one can choose a to be the diagonal
matrices in s[(2, R). If p: I' — PSL(2, R) is a Fuchsian representation, then it is an
easy exercise to verify that A = {a}, where a: a — R is defined by

t 0
a'|:0 _t:||—>2t,

and p is [ Pa]-Anosov. In this case, for any ¢ € €4(S), £5(c) is the hyperbolic length
of the geodesic ¢ measured in the hyperbolic structure £ on S corresponding to p,
and it is well known that A (¢5) = 1.

For a general Anosov representation however, the length functions are so named
purely by analogy as there is no natural metric on the surface that gives rise to these
length functions.

As another example, we will consider projective Anosov representations.

Definition 2.22. Let [ P] be the line-hyperplane stabilizer of SL.(r, R). A [P]-Anosov
representation p: I' — SL(n, R) is a projective Anosov representation.
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For any g € SL(n,R), let A(g) = (A1(g),...,Ax(g)) € at denote the Jordan
projection of g. Recall that if [ Pg] is the line-hyperplane stabilizer of SL(n, R), then
0 = {a1,2,2,—1,,}. Hence, there is only one length function of p, which we will
abbreviate by £7: €©§(S) — R. By the definition of £°, we see that

°(c) = (@ay » + @ay_y,,) © A 0 p(¥)

n—1

= L1(p(») + Y _ Xi(p()) (2.1)

i=1
= A1(p(¥)) — An(p()).

If p: T' — SL(n, R) is projective Anosov, then the limit curve
§:0' = Frp,) = Furpy)
corresponding to p can be thought of as a pair of continuous, p-equivariant, maps
gD:9r > RP"! and £07D:0I > (RP"Y)* ~ Gr(n — 1,n)

so that £ (x) ¢ £®=V(y) if and only if x = y. Since £ is dynamics preserving,
we see that for any y € '\ {id}, if y ™, y~ € 9I" denote the attractor and repeller
of y, then £M(yT) and £@~V(y™) are the attracting line and repelling hyperplane
of p(y) respectively.

In this case, Labourie [22] defined a function LP: 3T — R given by

NV ), EDNET D (2). W (w))
(ECD(x), ED ) {EED(2), D (y))

Here, for any p,q = x, y,z,w, we choose a covector representative in (R?)* for
£=1(p) and a vector representative in R™ for £V (g) to evaluate (£~ (p), £ (q)).
One can verify that L?(x, y, z, w) does not depend on any of the choices made.

We will refer to the function L.° as the Labourie cross ratio, even though it is not
a cross ratio in the sense of Definition 2.4. It is easy to see that

LA, .5, W) =

LP(x,y,z,w)- L°(x,w,z,t) = L°(x, y,z,1). (2.2)

Furthermore, an easy computation proves that for all y € I" \ {id} and for all
a € ol \ {yT,y }, we have

p_ N A1 (p(¥)) ) B N
Ly y-ayt.a) = Foay =LPG-ay ey (2.3)

Using (2.2), one can verify that the function

1
BP(x,y,z,w) := 5 log (LP(x,z,y,w) - L*(z,x,w, y))
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is indeed a cross ratio. Furthermore, forany ¢ = [y] € €§(S), (2.1) and (2.3) imply
that

1
EP) = ilog(LP(yM,V~a,y+,a)'Lf(y-a,y‘,a,y+n
- ﬁBp (C)

In particular, when [P] is the line-hyperplane stabilizer of SL(n,RR), the length
function of [P]-Anosov representations are the periods of a unique cross ratio
(the uniqueness is a consequence of Theorem 2.5). This is in fact true for any
restricted simple root @ € 6 for any [ Pg]-Anosov representation p: I' — G. To prove
this, we need the following proposition, which is a special case of Proposition 4.3
of Guichard—Wienhard [12] (see also Guéritaud—Guichard—Kassel-Wienhard [10,
Proposition 4.6]).

Proposition 2.23 (Guichard—Wienhard). Let 8 C A, let p:I" — G be a [Py]-
Anosov representation, and let « € 6. Also, let rq: G — SL(n,R) be an a-Tits
representation. Then ry o p:I" — SL(n, R) is [P]-Anosov, where [P] is the line-
hyperplane stabilizer of SL(n, R). Furthermore, the limit curve corresponding to p
is fo 0 &0 — Fip), where fo: Fip,) — Fip] is the unique ry-equivariant map.

More explicitly, if P C SL(n, R) is the representative in the conjugacy class [P]
so that r, ' (P) = Py, then fy: Fip,) = G/ Py — SL(n,R)/P = F{pj is given by
faig - Pg v+ rq(g) - P. Proposition 2.23 allows us to reduce the study of length
functions of a general Anosov representation to the length function of a projective
Anosov representations. In particular, we can prove the following.

Proposition 2.24. Ler 0 C A and let p:I" — G be [Pyl-Anosov. For all a € 0,
there is a unique cross ratio B so that for all ¢ € €©§(S),

th(c) = EB@(C)-

Proof. Let ry: G — SL(n,R) be an «-Tits representation of G. Since ry o p is
Anosov with respect to the line-hyperplane stabilizer in SL(n, R), r4 o p(y) has a
largest eigenvalue of multiplicity 1 for all y € I" \ {id}. By Theorem 2.15, we have

Way » © Asi(n,R) © Ta © P(¥) =k - @y 0 AG 0 p(¥)
for some k € Z*. Similarly, we have that
WDay yp © ASL(’LR) Org© p(y) = Wq; , © )LSL(R,R) OFy © p(y—l)

=k-wyohgop(y™)
=k- Wi(a) © Ag o p(y).
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Together, these imply that for any ¢ = [y] € €§(S),

e (c) = (a1 5 + Day_1.,) © AsiiaR) © Ta © p(¥)
= (k-wa + k- 0y4)) 0 A 0 p(y)
= k . eg(C)

Define Bf := %B’ac’p. Since £7*°P = { praop, it immediately follows that £5 = Epp.
The uniqueness of B is a consequence of Theorem 2.5. [

Using Proposition 2.24, we can define positively ratioed representations.

Definition 2.25. A [Pg]-Anosov representation p: ' — G is [ Py|-positively ratioed
if the cross ratio BY is positive for all & € 0 (see Proposition 2.24 and Definition 2.9).

As a consequence of Theorem 2.10 and Proposition 2.24, we see that for any
0 C A, any [ Pg]-positively ratioed representation p: I' — G, and any « € 0, there is
a unique geodesic current 5, € €(S) sothati(uy,c) = €5 (c) forevery c € €4(S).
This is stated as Theorem 1.1 in the introduction.

Let 8’ C 6 be subsets of A. Guichard—Wienhard [12, Lemma 3.18] proved that
if p: ' — G is [ Pg]-Anosov, then it is also [ Pgs]-Anosov. It then follows from this
definition that if p is [ Pg]-positively ratioed, then it is also [ Pg]-positively ratioed.

The intersection currents arising from positively ratioed representations satisfy
some basic properties that we will now explain.

Note that in the definition of a positive cross ratio, we used the weak inequality
instead of the strict inequality. However, in the definition of positively ratioed
representations, we can replace the weak inequality with a strict inequality without
changing the definition. This is the content of the next proposition.

Notation 2.26. For any x, y,z € dI", let (x, y]; denote the half-open subsegment
of dI' that does not contain z and has x and y as its open and closed endpoints
respectively.  We will also use (x,y);, [x,y); and [x,y]; to denote the
interval (x, y];, but with the appropriate closed and open endpoints.

Proposition 2.27. Let 0 C A, let p:I' — G be a [Py]-positively ratioed
representation, and let & € 0. Then B (x,y.z,w) > O for all x,y,z,w € oT
in this cyclic order.

Proof. Recall thatrqop: I' — SL(n, R) is projective Anosov, and that BY = %B’“""
for some k € Z*. Therefore, we can assume that p is projective Anosov. Let

£=(EW D) 90 —» RP"! x (RP"1)*

denote the limit curve of p. By assumption, B”(x, y,z,w) > Oforallx, y,z, w € oI
in this cyclic order. Suppose for contradiction that there is some x, y,z,w € dI"
in this cyclic order so that B”(x, y,z,w) = 0. This means that for all ¢ € [z, w]y,
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B?(x,y.t,w) = 0. It then follows from the definition of B” that £ ([z, w]y) lies
in the proper subspace (E# D (x) N £ (y)) + eD(w) c R™.

Let V C IR” be the minimal subspace containing £V ([z, w],), and lety € '\ {id}
so that its repellor y~ lies in (z, w),. Since £V ([z, w]c) C p(y) - ED([z, w]y), we
see that V C p(y) -V, so V is p(y)-invariant. At the same time, observe that

| y" [z wle = a0\ {y T},

n=0
so the continuity and p-equivariance of £€(!) implies that £ (dT") C V. However,
V c (E@ D (x) N gD (y)) 4+ £D(w), which means that
§DEM NE" V() c 4P NV ().
In particular, £V (x) € £~V (y), but this violates the transversality of £. 1

Definition 2.28. Let v € €(S) be a geodesic current. We say that v is period
minimizing if

|{c e €4(S):i(v,0) < T}| < 00
forall T € R*. Also, v has full support if v(U) > 0 for any open set U C €(S).

It is well known that |{[y] € [I"] : {r(y) < T}| < oo forall T € R™. As such,
an immediate consequence of the Anosovness of p that uf is period minimizing. In
particular, measured laminations are not intersection currents coming from Anosov
representations, because they are not period minimizing.

Let x, y,z,w € dI" in this cyclic order, and let G|, y). [w,z], C 5(S) be the set
of geodesics in S with one endpoint in [x, y], and one endpoint in [w, z],. By the
construction of ! from B (see Appendix A), we see that

1Y (Eir.yz.lw.21,) = Be(x. ¥, 2, w). (2.4)

In the degenerate case when x = y # z = w, this implies that uf({x,z}) = 0, so
the j5-measure of every point in §(§ ) is zero. As a consequence, the intersection
current arising from an Anosov representation has no atoms.

Finally, the intersection currents arising from Anosov representations have full
support. To see this, observe that

{5, 9)..aw,2), C %(S) : x,y,z,w € T in this cyclic order}

generates the topology on ‘5(§). Since uﬁ(ﬁ[x,y]z,[wiz]_v) —; ,uf,’ (5(x,y)z,(w,z)y),
Equation (2.4) and Proposition 2.27 immediately imply that % has full support.

3. Examples of positively ratioed representations

In this section, we provide several important examples of positively ratioed represent-
ations to motivate the definition.
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3.1. Hitchin representations. The Teichmiiller space of S can be defined to be
d(8) = {discrete, faithful p: ' — PSL(2, R)}/PGL(Z, R).

This is the space of holonomy representations of hyperbolic structures on S. If
we equip 7 (S) with the compact-open topology, it is well known that 7 (S) is
topologically a cell of dimension 6g — 6. Let

tn: PSL(2,R) — PSL(n, R)

be the projectivization of the unique (up to post-composing by an automorphism of
SL(n,R)) n-dimensional irreducible representation of SL(2,R) into SL(n, R). If
we equip

X (S,PSL(n,R)) := Hom(I", PSL(n, R))/PGL(n, R)

with the compact-open topology, this gives us an embedding
in:T(S) — X(S,PSL(n,R))

defined by i,[p] = [tn o p]. In particular, i,,(7(S)) C X (S, PSL(n, R)) is connected.

Definition 3.1. The PSL(n,R)-Hitchin component Hit,(S) is the connected
component of X (S,PSL(n,R)) that contains i,(7(S)). The representations in
Hit,, (S) are known as PSL(n, R)-Hitchin representations.

Often, we will simply use a representative p in the conjugacy class [p] to denote
an element in Hit, (5). It is classically known that 7 (S) is a connected component
of X (S,PSL(2,R)), so Hitz(S) = 7 (S). As such, one can think of Hit,(S) as a
generalization of 7 (.S).

The Hitchin component was first studied by Hitchin [17], who used Higgs bundle
techniques to parameterize Hit,(S) using certain holomorphic differentials on a
Riemann surface homeomorphic to S. In particular, he showed that Hit,(S) is
topologically a cell of dimension (n? — 1)(2g — 2), where g is the genus of S.
With this, the global topology of Hit, (S) is completely understood. However, the
geometric properties of the representations in Hit,(S) remained a mystery until a
seminal theorem of Labourie.

To explain this theorem, we first need the notion of a Frenet curve. Let ¥ (R")
denote the space of complete flags in R”, i.e. F € F(R") is a properly nested
sequence F(V' c ... ¢ F®=D of linear subspaces in R”, where each F® has
dimension i. When G = PSL(n, R), it is easy to verify that ¥ (R") = Fp,;.

Definition 3.2. A continuous map £: S! — F (R") is Frenet if the following hold:

e Forall x{,...,x; € g1 pairwise distinct and my, ..., mg € 7% such thatk < n
and my + --- + my = n, we have that

k
69 E(xi)(mi) — R".

i=1
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e Letmy,...,mg € Z" such that k < n and my + --- + mp = m < n, and let
{(xf, . x))5 bea sequence a k-tuples of pairwise distinct points. If there is
some x € S sothatlimj oo x] = x foralli = 1,...,k, then

k
lim @ &)™) =g@x)™.

| —00
# i=1

Labourie [21, Theorem 4.1] proved that PSL(#n,R)-Hitchin representations
preserve a p-equivariant Frenet curve. Later, Guichard [11, Theorem 1] proved
the converse to this, thus giving us the following theorem.

Theorem 3.3 (Labourie, Guichard). Let p € X (S, PSL(n,R)). Then p € Hit,(S)
if and only if there is a p-equivariant Frenet curve §: 0" — F[p,].

As a consequence of this, we know that every p € Hit, (S) is [Pa]-Anosov. In
particular, for all p € Hit,(S) and o € A, we can define ¢4 and the corresponding
cross ratios By as per Section 2.4 and Section 2.2 respectively. In fact, we have the
following theorem.

Theorem 3.4. If p € Hit, (S), then p is [ PA]-positively ratioed.

To prove Theorem 3.4, we will use Theorem 3.3 to construct positive cross ratios
Bl 9T — R fori = 1,...,n — 1 in the following way.

Notation 3.5. Given flags (Fy, F>, ..., Fy) forevery [ = 1,...,s choose vectors
fl,l: o 5 iy fnfl’l € R” so that

Spang { fis,---» fis} = FY

foralli = 1,...,n — 1. Fix once and for all an identification A" R" =~ R. For any
integers i; > 0 with ), i; = n, denote by Fl(l‘) A= A FS("") the real number

fl,l /\"'/\_f;f],l /\"'/\fl,s/\"'/\.ﬁs,s-

This notation involves some choices, but none of the quantities we define using this
notation will depend on them.

Let 5{’ :ar''4l 5 R be the function

@D AE@D EMTTD AEw)®
E(x)m=D) A E(w)D E(y)—D A E(2)D

Bf(x,y,z,w) = log

and set B := %(Ef + E,f_i).

Lemma 3.6. Fori =1,...,n—1, Blfo is a positive cross ratio.
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Proof. Additivity and symmetry of Bip are easy to check thanks to the explicit formula
above. Continuity of Bf follows from the continuity of &. Hence Bf is a cross ratio
foreveryi = 1,...,n — 1. To show positivity of Bip, we will write it as a sum of
functions on 3T that are positive when evaluated on points x, y, z, w lying in this
cyclic order along dI".

Fixi € {1,...,n—1}. For (x,y,z,w) € T k =1,....n—iand j =
l,...,1,define

£ A £ () *D A £(2)IHD A g ()Y
) THED AE()ED AEER)T D AEw) D
£ A E® A EE@) I A E W)Y

£ A (B AEE)TITD A §(w)TD

(x,y,z,w); jk = log

+ log

-

and observe that for all (x, y, z, w) € T[4l
n—i i
B,z w) = 3 365z Wl
k=1 j=1

The functions (x, y,z, w); ;x were studied by the second author, who proved [36,
Proposition 2.12], that each (x,y,z, w); jx is positive on quadruples of points

X, v, z,w in this cyclic order along dI". This shows the positivity of Bip. L]
Proof of Theorem 3.4. By Lemma 3.6, it is sufficient to show that Bf, .. = = Bf.

For any element g € PSL(n,R), let A(g) = (A1(g),...,Ax(g)) € at be its
Jordan projection. An easy computation, using the explicit formula for the restricted
fundamental weights, shows that for all y € I\ {id},

i n
egi,H-l Ih}]] = (wai.i+l + wanfi,an»l) oA Op(]/) - Z )Lk (p(y)) a Z Ak(p(y))
k=1 k=n—i+1
0
®iit1°
Choose a basis ey, ...,e, C R” such that e; spans the line

By Theorem 2.5, it is thus sufficient to show that £ o = £

ENY neg@E)e T,
Then for this basis we have

|E(}/_)(n_i) NE(y -x)(i)| = |e)”(p(y))"'""“)tf(P()’))i_-(y—)(n—i) A E(x)(i)|;
|§(V+)(”“i) A E(]/ # x)(l)| = |g)‘n—i+1(P(}’))+"'+ln(p(y))g__(y+)(n_i) A E(x)(l) ‘ ‘
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Hence,

2Byt ) — log |EXE D AEY 0O EGHTD AEX© '

EGID MDD EGHED Ay 0D
Er) ALY 0D £ (DD Ag)ED
EYID AL E( O AE(y - x)ED

=Y e — D Aklp())

+ log

k=1 k=n—i+1 ; ;
+ ) Alo@) — Y Aklp))
k=1 k=i+1
= 2(Zxk(p(y)> - Z Ak(p(y») =265 I¥]. O
k=n—i+1

3.2. Maximal representations. Another important feature of PSL(2, R) is that it
is a Lie group of Hermitian type.
Definition 3.7. A connected semisimple Lie group G is of Hermitian type if it

has finite center, has no compact factors and the associated Riemannian symmetric
space X admits a G-invariant complex structure.

For our purposes, the main example of Lie group of Hermitian type will be
G = PSp(2n,R). Let g be the Riemannian metric on the symmetric space X
and J the G-invariant complex structure. This allows us to define a non-degenerate

two-form wy by
wx(V,W):=g(JV,W)

for any two vector fields V, W on X. One can show (Burger-lozzi—Labourie—
Wienhard [3, Lemma 2.1]) that (X, wy) is a Kdhler manifold. For any representation
p:I" — G, the symplectic form wy defines an important invariant for p as follows.
Consider the bundle S xr X := (§ x X)/T over S, where I" acts on S via deck
transformations and on X via p. The fiber of this bundle is X', which is contractible, so
S xr X admits a smooth section. Equivalently, there exists a smooth I'- -equivariant
map f:S — X. The pull back f*(wy) is a I-invariant two-form on S, which
descends to the two-form m on the compact surface S. We can define the
Toledo invariant of p as

T() = 5= e,

Since any two p-equivariant maps f, f”: S — X are homotopic, T (p) is well-defined.
If rankg X is the real rank of the symmetric space X, the Toledo invariant satisfies
the inequality
[T ()| = —x(S)rankg X
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(see Turaev [35], Dominic—Toledo [ 7], Clerc—@rsted [6]). Inthe case G = PSL(2, R),
this is the classical Milnor—Wood inequality [25]. Goldman [13] showed that 7 (S)
is the unique connected component of X (I', PSL(2, R)) with Toledo invariant 2g —2
(the real rank in this case is 1). This motivated Burger—lozzi—Wienhard [4] to define
the following class of representations.

Definition 3.8. A representation p: ' — G, with G a Lie group of Hermitian type
is maximal if |T (p)| = —x(S)rankg X .

For the rest of this section, fix the target group to be G = PSp(2n, R). We will show
that in this case, maximal representations are also positively ratioed with respect
to a particular parabolic subgroup. Recall that the maximal compact subgroup of
PSp(2n,R) is isomorphic to U(n). At the level of Lie algebras, we can write
sp(2n,R) = €+ p with

u(n) = €= {(_AB ﬁ):A,B € My(R), A" = —A, B' = B}
p=1{(43):A4,B¢ecM(R), A =4, B' =B}
where M, (R) is the set of n x n matrices. The maximal abelian subspace a C p

can therefore be identified with diagonal, traceless matrices in sp(2n, R). With this
identification, the restricted simple roots can be chosen to be

Ot,',H_]()C],...,)Cn,_xn,...,—xl) = X; — Xi+1 fori = 1,...,n.

Moreover, the opposition involution is the identity.
Burger-lozzi—Labourie-Wienhard [3, Theorem 6.1] proved that maximal repre-
sentations are Anosov.

Theorem 3.9 (Burger-lozzi—Labourie—Wienhard). If p:I" — G is a maximal
representation, then p is [Py, , . ]-Anosov.

The quotient J"f[pan ] is the Grassmannian of Lagrangian subspaces in R?".
Consider four Lagrangian subspaces L, Lo, L3, L4 € .’F[pan 1] SO that L4, L3

and L,, L4 are transverse pairs of Lagrangians, and let (ejl., .. .,e;?) be a basis
for L. Foranyi,j = 1,...,4,let A; ; be the matrix whose (k, m)-th entry is

(Ai,iem = ek, €M),

where € is the symplectic form on R?” preserved by the Sp(2n, R) action. Using

this, define
det(Al,z) . det(A3,4)

det(A 1,4) . de[(Ag,z) .
Labourie [23, Section 4.2] proved the following.

B(Ly, Lz, L3, Lg) :=

Theorem 3.10 (Labourie). If p: I' — G is a maximal representation with flag curve
§:0T —> Fip,, it then

B(x,y,z,w) = log [B(£(x),£(2), £(»), £ (w))]
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is a cross ratio. Also, £p(c) = 2(A1(p(y)) + A2(p(¥)) + -+ + An(p(y))) for all
c = [y] € €8(S). Moreover, for any four distinct points x,y,z,w in this cyclic
order along d1", we have that B(x, y,z,w) > 0.

Combining Theorem 3.9 and Theorem 3.10, we obtain the following corollary.

Corollary 3.11. If p:I" — G is a maximal representation, then p is [Py, , . ]-
positively ratioed.

Proof. The restricted fundamental weight @y, , ., corresponding to &, ,+1 is given
bY Wa,, i (215 - =« s Xy =Xy 625 4 —x1) = X1 + --+ + x5, and therefore

¢ ] =20 () + A2(p(y) + -+ 4 An(p(¥)))-

Theorem 2.5 then implies that Ban A the cross ratio B defined in Theorem 3.10,
which is a positive cross ratio. L]

4. Background on geodesic currents

In this section, we will introduce some notation, terminology and basic lemmas to
study length functions on subsurfaces of § induced by geodesic currents on .

4.1. Extension to subsurfaces. We begin by a definition for the kind of subsurfaces
of S that we consider.

Definition 4.1. Let D be a (possibly empty) collection of pairwise non-intersecting,
pairwise non-homotopic, non-contractible, simple, closed curves on S. An essential
subsurface S" of S is a union of connected components of S \ D.

If S’ is connected, let I'" be the fundamental group of S’ and let S’ denote the
universal cover of S”. By choosing appropriate base points in S and §”, the inclusion
S’ C § induces inclusions I € T"and S’ € §. Also, the inclusion I' C T realizes
the Gromov boundary I of I’ as a subset of dT".

If we choose a hyperbolic structure ¥ on §, then any connected essential
subsurface S’ of S is homotopic to a connected subsurface ¥’ C X with totally
geodesic boundary. Also, denote the universal cover of X' by 5, then the inclusion
S'cS§ gives an inclusion 3/ C ¥ as the convex hull in £ of 37 € 9" ~ 9.

Previously (see Definitions 2.1 and 2.2), we defined a topological notion of
geodesics in S and S, as well as closed geodesics in S using only I'. Note that we
can define oriented geodesics and geodesics in S” and S’ as well as closed geodesics
in S’ in the same way, using I' in place of I". We will denote the set of geodesics
in S”, the set of geodesics in S’, and the set of closed geodesics in S’ by §(S"), §(S’)
and €% (S’) respectively.

Since the closed geodesics in S’ are in a natural bijection with the free homotopy
classes of closed curves on S’, we say that a closed geodesic in S’ is simple if its
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corresponding free homotopy class contains a simple curve, and we say that it is
peripheral if its corresponding free homotopy class is peripheral.

If § = Ule S; is a disconnected union, then we define €E(S’)
Ur_, €9(S) and €(87) := Ur_, 6(S)).
For the rest of this paper, we will use the notations S’ C S, 8 §, I cr,
dT' C AT, €E(S") C €5(S), 8(5") C §(5) and £(S") C €(S) as above. Also,
whenever we choose a hyperbolic structure on S, we will identify ¥, X, > and =
with S', S, S" and § respectively without any further comment.

4.2. Properties of the intersection form. Although the intersection form (see
Definition 2.7) was defined purely topologically as the measure of the set DE(S), it
is often convenient to choose a hyperbolic structure 3 on S. This choice allows us
to use the following description of D% (S), which will be useful for computing the
intersection form.

The tangent bundle of the Poincaré disc T'ID is a vector bundle over D, so we can
projectivize its fibers to obtain a fiber bundle over D, which we denote by P(7T'D).
Let P(TID) @ P(TDD) be the fiber bundle over ) obtained by taking the fiber-wise
product of P(7TD) with itself. An element of P(7TD) & P(TD) is thus a triple
(p,11,12), where p € D and /1, /5 are lines through the origin in 7),[D. Clearly, the
PGL(2,R) = Isom(ID) action on P(7'D) & IP(T'D) leaves invariant the subset

Trans(P(TD) @ P(TD)) := {(p.l1,2) € P(TD) & P(TD) : [; # L}.

A choice of a hyperbolic metric X on S induces a unique (up to post composition
by PGL(2,R)) isometry between S and D. The action of T on § by deck
transformations then conjugates to a free and proper I' action on [D, which in
turn induces a free and proper action of I on P(7TD) & P(TD) that stabilizes
Trans(]P’ (TD) & ]P(T]D))). This allows us to define the Hausdorft space

Q(X) := Trans(P(TD) & P(TD))/T.

The isometry between S and D also induces an obvious I"-equivariant
homeomorphism between D (S) and Trans(IP’ (TD) & IP’(T]D)), which descends
to a homeomorphism between D (S) and @(X). This identification allows us to
prove Lemma 4.4 below. However, to state Lemma 4.4, we first need to develop some
notation.

Notation 4.2. For any ¢, p € D, let (¢, p|] denote the half-open geodesic in ID with
open endpoint ¢ and closed endpoint p. Similarly, (g, p), [¢, p) and [q, p] will
denote the interval (g, p], but with the appropriate open and closed endpoints.

Notation 4.3. For any g, p € D, let / be one of the four geodesic segments in D
described in Notation 4.2 with endpoints p and ¢. Then let G(/) denote the set of
geodesics in D that intersect / transversely. Similarly, for any x, y, z, w € dD in that
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cyclic order, let . be the geodesic in ) with endpoints x, w and let J be either of the
following four subsegments of I

0. 2)x =00 2Dw, :Dx=0:Dw, . zlx =0 zlw or [y,z]x =, z]w-
Then let Gy ,,y(J) denote the set of geodesics in D that intersect L and have one
endpoint in J .

Lemma 4.4. Ler v € €(S) and let ¢ = [[y] € €G(S). Let {x, y} be the set of fixed
points of y. Also, choose any hyperbolic structure on S and let L be the axis of y in
S = D. Finally, let g € D and let z € D \ {x, y}. Then the following hold:

(1) Ifg € L, then
i(c,v) =v(G(q,y-q]) = v(Gixyy(z, ¥ - 2]).
(2) If g ¢ L, then

i(c,v) <v(G(g.y-q])
and the inequality holds strictly if v has full support.

Proof. Note that {x, y} is the set of endpoints for L in dD.

(1) Let n € T be the primitive element so that y = n* for some positive integer k,
and let ¢’ := [n] € €&(S). By definition, i(c,v) is the mass of a fundamental
domain of the I"-action on DG (S) = Trans(P(7D) ® P(7T'D)) in the measure ¢ X v.
Since the support of ¢ x v lies in the set

{(p.11.1>) € Trans(P(TD) & P(TD)):exp, (/1) is a lift of ¢ to D},
this means that

i(c,v) = (¢ x)({(p.l1.12): p € (g, 7~ q] and exp, (1) = L})
= k(¢ xv)({(p.lh.12): p € (g, n-q] and exp,(I1) = L})
= (¢ xv)({(p.l1.12): p € (q.y - q] and exp (1) = L})
= v(G(g.y - q]).
Next, we will prove that v(G(q. ¥ - q]) = v(Gx,yy(z,y - 2]). Forany k € Z, let

G*(q,v-q] C G(q, y-q] be the subset of geodesics with one endpoint in v (z,y-z],.
It is clear that G (g, y - ¢] can be written as the disjoint union

Gg.v-q1= | G*(g.7-ql.
keZ

Also, for any k € Z, let G{kx y}(z, Y -z] C Gyx, y)(z, ¥ - 2] be the subset of geodesics

that intersect y* - (¢, y - ¢]. As before, Gx,yy(z,y - 2] can be written as the disjoint
union

G iz, yoz] = U Gfx,y}(z, y - z].
keZ
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Finally, observe that G¥(q,y - ¢] = y* - G{_ky}(z, y - z]. Hence,

X,

v(G(g.y-ql) = Y _v(G*@g.y -q])

keZ

=Y v(* -Gy -2)
keZ

=D _v(Giy Gy -2))
keZ

= v(G{x,y}(z, y - z]).

(2) Let p be the foot of the perpendicular from ¢ to L and let L’ be the bi-infinite
geodesic through ¢ and y - g. Observe that y - p is also the foot of the perpendicular
from y -g to L, and L N L’ is empty. Let z,w € dD be the endpoints of L’ so
that z, x, y, w € dD in that order (see Figure 1). By (1), we know that i(c,v) =
v(G(p,y - p]), so it is sufficient to show that v(G(q,y - q]) = v(G(p,y - p]), and
that this inequality is strict when v(U) > 0 for all open sets U C g(9).

[\N]
4+
-
Lh,
. B
/S
o~
- @
E
=

14 y-p

Figure 1. Proof of (2) of Lemma 4.4.

For any k € Z, let Gx(p,y - p] C G(p,y - p] be the subset of geodesics that
intersect X - (¢, ¥ - g]. Then G(p, y - p] can be written as the disjoint union

G(p.y-pl =] Ge(p.y - pl.
keZ
Similarly, for any k € Z, let G¢(q,y - q] C G(g,y - q] be the subset of geodesics
that intersect Y% - (p,y - p]. Also, let A C G(q.y - ¢] be the subset of geodesics
with one endpoint in (z, x], and let B C G(q, y - g] be the subset of geodesics with
one endpoint in [y, w),. Observe that G(q, y - g] can again be written as the disjoint
union
Gg.y-ql=AUBU| ] Ge(g.y-q].
keZ
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Since Gi(p.y - p] = v* - G_ik(q.y - q] for all k € 7, we have

v(G(g. v -q]) = v(A) +v(B) + Y v(Gklg. 7 - q))
keZ

= v(A) +v(B)+ Y _v(y* - Gk(q.y-q))
keZ

= v(A) +v(B) + Y _ v(Gk(p.y - pl)
keZ

= v(A) + v(B) +v(G(p,y - p))
>v(G(p,y - pl).

It is clear that A and B contain open subsets of geodesics in §(S), so the strictness
statement holds. [

4.3. Surgery and lengths. Let ¢ € €©§(S’) be a primitive closed geodesic of S’
with positive geometric self-intersection number. Choose a representative ¢ in the
free homotopy class of closed curves corresponding to ¢, so that ¢ has only transverse
self-intersections and minimal self-intersection number. We can also assume that ¢
only has simple self-intersection points, i.e. if we choose a parameterization of ¢
by S, then ¢(t1) = c(t2) = c(t3) implies that t; € {f5,13}. Let p be a point of
self-intersection for c.

There is a well known procedure one can apply to ¢ known as surgery at p to
obtain new closed curves in S’. To do so, choose a small topological disc in U C S’
so that ¢ N AU is four points x, y, z, w that lie along dU in that order, and ¢ N U
is the union of two simple paths that intersect at p, one with endpoints x and z, and
the other with endpoints y and w. We can then modify the curve ¢ by replacing the
two simple paths ¢ N U that intersect at p with two simple paths in U that do not
intersect. There are two ways to do so; we can either replace ¢ N U with two simple,
non-intersecting paths in U with endpoints x, y and z, w, or we can replace ¢ N U
with two simple, non-intersecting paths in U with endpoints y, z and x, w.

These two different ways of performing surgery to ¢ at p yield either one closed
curve ¢ in S’ or two closed curves ¢, and ¢3 in . Fori = 1,2,3,let¢; € €4(S’)
correspond to the free homotopy class of closed curves in S’ that contains ¢; (see
Figure 2). It is easy to see that ¢y, ¢2 and c¢3 do not depend on the choice of U.
Moreover, an easy homotopy argument shows that ¢, ¢, and ¢3 also do not depend
on ¢ in the following sense. If ¢’ is another closed curve in the free homotopy
class corresponding to ¢ with minimal geometric self-intersection number and only
simple, transverse self-intersection points, then the homotopy between ¢ and ¢’ gives
a bijection

h¢ ¢ {self-intersection points of ¢} — {self-intersection points of ¢'}.
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If we perform surgery to ¢’ at the self-intersection point sz &/ (p) in both ways, then
the closed geodesics corresponding to the free homotopy classes of closed curves we
obtain are exactly ¢y, ¢, and cs.

C1

Figure 2. Surgery.

The following proposition gives useful inequalities involving i(cy, v), i(c2, v),
i(c3,v)andi(c,v).
Proposition 4.5. Let v € €(S) and let ¢ € €©G(S) be a primitive closed geodesic
so that i(c,c) > 0. By performing surgery to ¢ at a point of self-intersection in two
different ways (see discussion above), we obtain either a single geodesic ¢y or a pair
of geodesics c3, c3. Then

i(c1,v) <i(c,v) and i(cy,v)+i(c3,v) <i(c,v).
Furthermore, these inequalities are strict when v has full support.

Proof. Lety € I" beagroupelementsothat [y] = ¢ € €4(S). Choose a hyperbolic
structure on S, and let ¢ be a closed curve homotopic to ¢ with transverse, minimal
self-intersection and only simple self-intersection points. The homotopy between ¢
and ¢ gives a surjection

hz . {self-intersection points of ¢} — {self-intersection points of c}.

Let g be the self-intersection point of ¢ where the surgeries to obtain ¢y, ¢, and c3
are performed, and let p = hz (q).

Let L ¢ § = D be the axis of ¥, and observe that L is a lift of the geodesic c.
Let p be a pointin L whose image under the covering map [I1: S — Sis p. Then v-D
also lies in L and T1(y - p) = p as well. Let y,,y3 € I' be the group elements so
that [y2] = c2, [y3] = c¢3, ¥y = yayaand y2- p € (p,y - p] (see Notation 4.2). It is
clear that T1(y2 - p) = p and [y; := }/3_1)/2]] = Cj.

We will first prove the inequality i(cz,v) + i(c3,v) < i(c,v). By (2) of
Lemma 4.4, we have

i(c2,v) +i(c3,v) <v(G(P.y2-Pl) +v(G(y2- P.yay2-Pl)
=v(G(P.y-Pl)

= I, ¥l
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To prove the inequality i (cy, v) < i(c, v), first make the following observation. For
any g € D, let L’ be the geodesic in S containing [¢,y3 - g ]. If v({L"}) = 0, then
v(ys - {L'}) = 0 as well, so the v-measure of the set of geodesics through y3 - g that
are transverse to L', is equal to the v-measure of the set of geodesics through y3 - 7,
which is again equal to the v-measure of the set of geodesics through y5 - g transverse
to y3 - L’. This is in turn equal to the v-measure of the set of geodesics through g
transverse to L’. Hence, we may conclude that if v({L'}) = 0, then

U(G(ﬁ, )/3_1 '5]) = U(G[Zi, V3 '5)) = V(G@, Y3 '67])-

Now, observe that the geodesic containing [y2 - p, v3Y2 - p] is L. Hence, the
previous observation, together with (2) Lemma 4.4, allows us to conclude that if
v({L}) = 0, then

i(er,v) <v(G(p,y1-p
=< V(G(ﬁa Va2 - ﬁ
P

]

) +v(Gly2-P.vi'v2- P
= v(G(P,y2-Pl) + v(G(y2- P.ysy2- Pl)
=v(G(p,y- Pl
= i{e,v).

With this, we can prove i(cy,v) < i(c,v) for general v. Since ¢y is obtained
from ¢ by performing surgery, it is clear that i (cy, ¢) < i(c, c). Also, since L is a lift
of ¢, we can write v =  + k¢ for some € €(S) so that u({L}) = 0. This means
that

i(cr,v) =i(cr, ) +ki(er,c) <i(c,pu) +ki(e,c) =i(c,v).

Finally, we argue that these inequalities are strict when v has full support. By the
strictness statement in (2) of Lemma 4.4, it is sufficient to show that p does not lie
along the axes of y1, y» and y3. This is obvious, since the axes of y, y1, 2 and y3
are pairwise disjoint. ]

As a consequence of Theorem 1.1, Proposition 2.27 and Proposition 4.5, we have
Corollary 1.3.

4.4. Asymptotics of lengths. In [5], Burger and Pozzetti consider a metric com-
pactification of the space of Sp(2n, R)-maximal representations. The limit points
correspond to actions via isometries of I" on certain asymptotic cones. They prove
[5, Theorem 1.1] that a boundary point determines a decomposition of S into essential
subsurfaces. This decomposition is defined in terms of the asymptotic behavior of
the length function.

In this section, we obtain an analogous result for sequences of positively ratioed
representations as a consequence of Theorem 1.1. Here, we use the compactness of
the space of projectivized geodesic currents PE(S) := €(S)/R* [2, Corollary 5]
to describe the limit points. First, we need the following lemma.
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Lemma 4.6. Ler v € €(S) and e € €§(S’) be a primitive non-simple curve. Then
there is some geodesic pair of pants P C S’ and e € €G(P) so that:

e i(e,v) <i(e,v);

* e is primitive and has a unique self-intersection point p;

* the three closed geodesics e1, e; and e3 obtained by performing surgeryto e at p in
the two different ways specified in Section 4.3 are the three boundary components
of P.

* ifacurve c € €G(S’) intersects e transversely, then c intersects e transversely.

Proof. Let g be any self intersection point of e and let 1, e; and e3 be the three
closed geodesics obtained by performing surgery to e at g. It is clear that the self-
intersection numbers of e, e; and e3 are less than that of e. Also, Proposition 4.5
implies that i(ej,v) < i(e,v) for all j = 1,2,3. Suppose that there is some
Jo = 1,2,3 so that ¢, is not a multiple of a simple curve. Then let e be the closed
geodesic so that € = [[y] for some primitive y € I" with the property that [y*] = &,
for some k € Z. Then e is primitive, non-simple, has fewer self-intersection points
than e, and i (e, v) < i(ej,,v) < i(e,v). Replace ¢ with e.

Iterate the replacement procedure above. This iteration will terminate to give
a non-simple ¢ € €&(S’) so that i(e,v) < i(e,v), and for any self-intersection
point p of e, the three closed geodesics e, ¢, and e3 obtained by performing surgery
to e at p are multiples of simple curves in S’. This then implies that ¢ must have a
unique self-intersection point. In particular, €1, ¢> and e3 are simple and are pairwise
non-intersecting. The homotopy from e;, ¢, and e3 to e is a pair of pants P that
contains e, and has e, e2 and e3 as its boundary components. O

Propesition 4.7. Fix an auxiliary hyperbolic structure on S. Let {v;}72, C €(S)
be a sequence of non-zero geodesic currents. There is

* a subsequence of {v; }3"21, also denoted {v ; 3021,

 a (possibly disconnected, possibly empty) essential subsurface S’ C S,

* a(possibly empty) collection of pairwise non-intersecting, simple closed geodesics
{c1,....ck} CEE(S\ S

sothat A= S U Ule c;i C S is non-empty, and the following property holds. Let

¢ € €9(S) be a closed curve so that ¢ ¢ €5(S \ A) and c is not a multiple of ¢; for

i=1,...,k.

(1) If d is a multiple of c; for somei = 1,..., kord € €§(S \ A), then

. i(vy,d)
lim ———— =
j—o0 i(vj,c)

0.

(2) Ifd € €5(S) is a closed curve so that d ¢ C§(S \ A) and d is not a multiple
of ci fori = 1,....,k, then
i, d) _

R
j—=oo i(vj,c)



306 G. Martone and T. Zhang CMH

Proof. Since the weak™ topology on €(S) is metrizable and € (S) is compact,
there exist
* asubsequence of {v; }?":1, also denoted {v;§72 |,

(0 .0]

e a sequence of positive real numbers {1 ;1 |
JSj=l1

e anon-zero geodesic current v,

such that lim; .o, A;v; = v. Define
supp v := {g € §(5): v(U,) > 0 for all neighborhoods U, of g},

and consider B := (supp v)/I" C §(S).

For our choice of an auxiliary hyperbolic metric on S, let {c{,c5, ..., ¢} be
a maximal (possibly empty) collection of pairwise non-intersecting simple closed
geodesics that do not have transverse intersections with any geodesic in B. Then let
{S1, ..., Sm} be the list of connected components of S\ {c],c;,..., ¢/} and define

5 1= U St.

{tefl,...m}:S; N B+0}

If BNi{c,cs,.. .,cl’} = @, set k to be 0. Otherwise, let ¢y, ..., ¢, be the closed
geodesics in B N {c,....cp}.

Notice that A is non-empty because supp v is non-empty. Since the intersection
pairing is continuous, for any ¢ € €§(S) and for any b intersecting transversely a
geodesic in B, up to passing to a further subsequence, we have

. i(vj,a) . I(A,vj,a) i(v,a)
lim ———— = lim - = - ;
j=oo i(vj,b)  joooi(Ajvi,b) (v, D)

Also, i(v,a) > 0ifand only if a intersects some geodesic in B transversely. It is thus
sufficient to show that for any a € €§(S), a intersects a geodesic in B transversely
it and only if ¢ is not a multiple of ¢; fori = 1,... .,k anda ¢ €G(S \ A).

Clearly, if a is a multiple of ¢; forsomei = 1,...,k ora € €§(S \ A), thena
does not intersect any geodesic in supp v transversely. To prove the converse, suppose
that @ is not a multiple of ¢; fori = 1,...,k,anda ¢ €G(S \ A). If a intersects ¢;
transversely for some i = 1,..., k, we are done. Hence, for the rest of the proof, we
will assume that ¢ intersects the interior of S”. The proof proceeds in two cases.

Case I: Suppose a € €§(S’). By the way S’ is constructed, if a is simple,
then it must intersect a geodesic in B (otherwise the maximality of {c{,...,c;}
is contradicted). Hence, we may assume that a is non-simple. By Lemma 4.6, we
may also assume that @ is contained in a geodesic pair of pants P C S’. Since a
is a non-peripheral geodesic in P, it has transverse intersections with every non-
peripheral geodesic in ¥ (P ) and every geodesic segment in P with endpoints in dP.
Also, because P C S, there is some geodesic in B that intersects the interior of P.
Hence, a intersects some geodesic in B transversely.
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Case 2: Suppose a is not entirely contained in S’. Let S be a connected component
of §’ so that a intersects the interior of S, and let B, be the set of geodesics in B
that lie in S;). Let x; and x, be a pair of points where a intersects the boundary of S
in §, so that there is a subsegment e of a with endpoints x; and x> that is entirely
contained in Sj. Let by and b, be the boundary components of S, containing x;
and x,, respectively.

Fors = 1,2, choose aparameterization f: [0, 1] — by sothat f;(0) = fi(1) = x;
and choose a parameterization g:[0,1] — e so that g(0) = x; and g(1) = x»,.
Consider, the closed curve y = g~ x f.2 x ¢ x f2, where * is the symbol for
concatenation. Observe that y is freely homotopic to a non-peripheral geodesic d
in S). By the previous case, we know that d intersects a geodesic in B, so y
also intersects a geodesic in B;,. Since b; and b, are boundary geodesics, they do
not intersect any geodesics in B(). This means that e intersects a geodesic in By.
Moreover, since e is a geodesic segment, this intersection is transverse. Hence, a
intersects a geodesic in B transversely in this case as well. 0

As a consequence of Theorem 1.1 and Proposition 4.7, we have Corollary 1.2.

4.5. Systoles and minimal pants decompositions. We will now explore the con-
sequences of Proposition 4.5 on systole lengths of any essential subsurface S C S.
If v€€(S) is period minimizing, then the function €& (S) — R given by c+—i(c, v)
is minimized at some ¢ € €§(S). The same idea gives us a notion of systoles for
essential subsurfaces, which we will now define.

Definition 4.8. Let S’ C S be an essential subsurface, and let v € €(S) be period
minimizing. The v-systole length of S’ is

Ly(S") :=min{i(c,v) : c € €E(S")}.

and a v-systole of S’ is a closed geodesic ¢ € €§(S’) so that i(c,v) = L,(S’).
Also, define the v-interior systole length of S’ to be

LY(S") :=min {i(c,v) : ¢ € €5(S’) is non-peripheral},
and a v-interior systole of S’ is a non-peripheral closed geodesic ¢ € €©§(S’) so that
i(c,v) = L™(S"). Inthecase when S = S’, we willdenote L, := L,(S) = LI"(S).
Using Proposition 4.5, we can prove the following corollary.

Corollary 4.9. Let S C S be a connected essential subsurface and let v € €(S) be
period minimizing. Suppose that S’ is not a pair of pants. Then the following hold.

(1) There is a v-interior systole of S’ that is simple.

2) If v has full support, then every v-interior systole of S’ is simple.
Pp y y P
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Proof. Let ¢ be a v-interior systole of S’. We may assume without loss of generality
that ¢ is primitive. Suppose that ¢ = [y] has k > 1 self-intersections. Then we
can perform surgery to ¢ at some point of self-intersection to obtain ¢; = [y1],
c2 = [y2] and ¢3 = [ys] with y = y3y2 and y1 = y; 'y2. If ¢1, ¢2 and c3 are all
peripheral, then the relation y; = y3 'y, implies that S’ is a pair of pants, which
contradicts the hypothesis of the corollary. Hence, for some jo = 1,2,3, ¢j, is a
non-peripheral closed geodesic whose self-intersection number is strictly less than
the self-intersection number of ¢.

(1) By Proposition 4.5, we know that ¢}, is also a v-interior systole of S’, so we
can iterate the above procedure with ¢, in place of ¢. This will eventually terminate
after at most k steps to give a v-interior systole that is simple.

(2) In the case when v has full support, Proposition 4.5 tells us that i(cj,,v) <
i(c,v). This contradicts the fact that ¢ is a v-interior systole. L]

In particular, if we have a period minimizing v € €(S), we can build a v-minimal
pants decomposition, denoted P, (S’), on any essential subsurface S’ C S. Let

C1,...,cn be the n boundary components of S’. If S’ is a disjoint union of pairs
of pants, then n is three times the number of components of S’ and P,(S’) =
{c1,...,cp}. Otherwise, Corollary 4.9 implies that there is a v-interior systole of S’

that is simple. Let ¢, be such a v-interior systole of S’, then S’ \ ¢, 41 is again an
essential subsurface of S. Hence, we can iterate this procedure until we have a pants
decomposition P, (S’). Denote P, (S) simply by P,.

5. Combinatorial description of €©§ (S")

In this section, fix some v € C(S) that is period minimizing. Animportant ingredient
in the proof of Theorem 1.4 is a finite combinatorial description, defined below, for
each conjugacy class in I’ that is adapted to v. The methods in this section and the
following one are inspired by work of the second author [37].

5.1. Minimal pants decompositions and related structures. First, we need to
equip S with an ideal triangulation which depends on S’ and v.

Definition 5.1. An ideal triangulation of S is a maximal ['-invariant subset 7C §(S)
such that the following hold:

(1) Any two pairs of geodesics {x, v}, {z,w} € T do not intersect transversely.
(2) For any geodesic {x, y} € T, one of the following must hold:
e There is some z in oI" such that {x,z},{y,z} € 7.

e There is some y € I" such that {x, y} is the set of fixed points of y.
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An ideal triangulation_of S is then the quotient T := / [ for some ideal
triangulation of 7 of S. A triangle is an unordered triple of geodesics in T of

the form {{x, y},{y,z},{z, x}}.

If we choose a hyperbolic structure on S, then every ideal triangulation T of § can
be realized as an ideal triangulation of S = D (in the classical sense) by assigning to
each pair {x, y} € T the unique hyperbolic geodesic in D with endpoints x, y € JD.
Moreover, this ideal triangulation is ['-invariant, so 7 can be thought of as an ideal
triangulation (in the classical sense) of S.

For our purposes, we will consider a particular ideal triangulation 7, s» of S,
defined as follows. Choose an orientation on S . Recall that we previously constructed
a v-minimal pants decomposition #,(S”) of S’ as a consequence of Corollary 4.9.
Extend this to a pants decomposition &, s» of §, and let Py, ..., P>z > be the pairs
of pants given by &, s where g is the genus of S. Foreach j = 1 .,2g —2, orient
each component of 9P; so that P; lies on the left of the boundary component. Let
Y1, Y2, v3,; € I' be primitive group elements corresponding to the three boundary
components of P; equipped with their orientations, so that y3 jy2 jy1,; = id. For
eachi =1,2,3and j = 1,...,2g — 2, let y;rj, y;j € dI" denote the attracting and
repelling fixed points of y;,j respectively.

Let Q‘l and J; be the subsets of 6(S) defined by

Q= {v-triy v by lva s vishy - v vith
yell

Pr=\MHy-tvivisby - lvg v by - {va,. v}
yel

and note that both C‘Z and P i do not depend on the choice of y1 5 yz, j and y3 ;.

They are also I'-invariant, so we can define @ ; := =Q; i/ and P P;/T. With
this, define

2g-2 2g-—2

2g—2 2g—2
9 = LJ éﬁj, j;::: L_J j%, P = L‘J jv, 6= LdJ(Qj’
=1 =1 I=1

~

and observe that S‘tv,sf = QU P and Ty.s50 = Q U P are ideal triangulations of 5
and S respectively.

It is clear that P = F(£,,s/) (recall that F:€§(S) — §(S) sends [y]
to [y",y*]). Also, if we choose a hyperbolic structure on S, then for all
J =1,...,2g — 2, the three geodesics in @; correspond to three simple, pairwise
non-intersecting geodesics in the hyperbolic pair of pants P; that each “spiral”
towards two different boundary components of P; (see Figure 3).
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Figure 3. Curves in @ ;.

The ideal triangulation by itself is insufficient to give a finite combinatorial
description for the geodesics in €©§(S’). We need to make some additional choices,
which we will now specifty. Choose:

* an orientation on each simple closed geodesic in P, s.
* a hyperbolic structure % on S.
Since we have chosen orientations on every ¢ € %, s/, ¢ can be viewed as a

conjugacy class in [I']. For any such c, let y, € I" be a primitive group element so
that [y.] = ¢ € [I']. Then let

ViyE) = {x e ar \{y_, v} {x.yEy e Toosr)

and define ~ ~
NyE) = {{x.y} e Tos 1 x,y € V(yD)}.

Observe that V(yF) and N (yci) are both invariant under the cyclic subgroup
(ye) € T. Also, the geodesics in N (y,) U N (y.h) are realized as hyperbolic
geodesics in S ~ D, and their union bounds a simply connected, convex domain
Q. C S that contains the axis of Ye. Let Py and P be the two pairs of pants given
by &, s/ that have ¢ as a common boundary component, so that P; and P lie on the
left and right of ¢ respectively. (It is possible that P; = P5).

Choose a point r on a hyperbolic geodesic in N (vE), and let pf,i € (ye)-rtbea
point so that

v(GIp, . p,.]) = min{u(G[p*.p7]) : p* € (ye) - r¥}.
Observe that this minimum exists because

. n, .— .m_ .+ —
n_nlllinioov(G[yc ro, Yl erT]) = oo.
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Also, let x)f yyi(_ € dI" be the points so that {x,,f_, yi} € 1-9(§ ) correspond to the
hyperbolic geodesics in N (yci) that contain p:_ (see Figure 4).

+
Yye Ye * X )-/l:

> ' Ye Yy,
y]/z' Ye xy(,

Figure 4. {x; X, 4, 4y, vy b and {p5, pyk b

By reversing the labeling of x]‘,t ~and y),t _if necessary, we can assume without loss
of generality that the hyperbolic geodesics corresponding to {x;: X, +and y;: 3 Vet
do not intersect. Then define

Rie) = | {re* k. x  vE Ao v € 8(8). Rile) = | nRi(re)
keZ nel’

and

Ra(ye) = k- Ip). pyl ik € 2}, Rale) == | n- Ralye)-
nel’

_ Note that y. induces orderings on ﬁl(yc) and ﬁz(yc). Also, fori = 1,2,
Ri(ye)/{ye) = Ri(c)/ T, which consists of two geodesics in §(S) wheni = | and
one geodesic in §(S) wheni = 2.

5.2. Binodal edges and winding. Let [y] € [["'] be the conjugacy class of any non-

identity element. We can now define (given all the choices made above) a finite

combinatorial description for each conjugacy class [y] € [I''], which is adapted to v.
Recall that we have already chosen a hyperbolic structure on §.

Definition 5.2. Let / C S be either a geodesic or geodesic subsegment. Also, for
any y € I\ {id}, let L,, C ID be the axis of y.
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e Let efftt(] ) be the set of geodesics in @ that intersect / transversely. A point in "
is a node of I if it is the common endpoint of two distinct geodesics in A(/). We
call a geodesic in ;{(1 ) binodal it both of its endpoints in D are nodes. Denote
the set of binodal edges in c%(l) by ﬁ(!).

* In the case when I = L, observe that o:((y) = a:\;(Ly) and ﬁ(y) = ﬁ(Ly) are
both (y)-invariant, so we can define A[y] := A(y)/(y) and B[y] := B(y)/{y).

Observe that we can think of »A[y] and B[y] as cyclic sequences of geodesics
in S. In that case, they depend only on the conjugacy class of y, and not on y itself.
Also, B[y] is finite, and is empty if and only if L, € P. For the rest of this section,
we will assume that B[y] is non-empty unless stated otherwise.

The orientation on L, induces a natural ordering < on EE()/). Also, since aZ(y)
does not contain any of its accumulation points, we can define a bijective successor
map suc: aZ(y) e (;t?(y). Moreover, the ordering < induces a cyclic order
on #A[y], and the successor map suc: e;4;()/) — g?((y) descends to a successor map
suc: Aly] — Aly].

The orientation on S induces an orientation on JD = dI". Let so(y) and s1(y)
be the two connected components of 01"\ {y~, y T}, oriented from ¥~ to ™, so that
the orientation on s¢(y) agrees with the orientation on dI".

n+

SUC(€j+2)‘;

n

Figure 5. e; is of S-type. e; 41 and e; 4 are of Z-type. Notice suc(e;) = suc™ 1 (e;41).
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Definition 5.3 (See Figure 5). Let {x, y} be an edge in B (y) and assume without
loss of generality that x lies in so(y) and y lies in s, (y). We say {x, y} is

« Zetypeif (suctx, y3) N {x. v} = {y}and (suc™ x, y}) 0 fx, y} = {x,
e S-type if (suc{x, y}) N{x,y} = {x}and (suc_l{x, y}) N{x,y} =1{y}
Let 2()/) be the edges in B (y) that are Z-type and 5 (y) be the edges in @(y) that
are S-type. Since Z(y) and $(y) are (y)-invariant, we can define Z[y] := Z(y)/(y)

and 8[y] := 8(y)/ (7).

Again, 8[y] and Z[y], when viewed as a sequence of geodesics in S, depend only
on the conjugacy class of y. Also, note that Z[y|U&[y] = B[y], and the cyclic order
on #A[y] induces cyclic orders on Z[y], §[y] and B[y]. Let ¢ and ¢’ be consecutive
geodesics in B[y] so that e precedes ¢’. Then the following must hold:

(1) If e and ¢’ are not of the same type, then there are representatives €, ¢’ € B (y)
of e, e’ respectively so that & and €’ share a common endpoint in 0D, and € < €.

(2) If e and ¢’ are of the same type, then there are representatives ¢, & € B(y) of e,
¢’ respectively so that there is a geodesic in & that has a common endpoint with
eachof gand ¢’,and & < €'

If (1) holds, let y (¢, €’) € I be the primitive group element that has the common
vertex of € and &’ as a fixed point, and so that the conjugacy class [y (€, €’)] corresponds
to an oriented closed geodesic in P, s/. On the other hand, if (2) holds, let y(¢,e")
be the element in ' whose axis is the geodesic in # that has common endpoints with
¢ and €', and so that the conjugacy class [y (¢, €")] corresponds to an oriented closed
geodesic in P, 5. If y € I/, the closed geodesic in P, s’ corresponding to y (e, e’)
is in P, (S7).

Notation 5.4. Fori = 1,2, let t;(e,e’) = t;,,,(e, ¢’) be the signed number of edges
in R; (y (e, E’)) that intersect L,,. Here, the sign is positive if the orderings on these
edges induced by y(¢,¢") and by y agree, and is negative otherwise.

The quantities f; (e, e’) for i = 1,2 do not depend on the choice of € and &’.
Also, they do not depend on the choice of y € [y] in the following sense: if
¥ = nyn ! for some n € I'/, then 5 - ¢ and 7 - ¢’ are consecutive elements in B[y],
and t; (e, €¢’) = t;5(n-e,n-e€).

Notation 5.5. Let [p,q] C Q,, be a geodesic segment that intersects the geodesics
in ﬁl(yc) U ﬁg(yc) transversely. Fori = 1,2, let w;[p, ¢] denote the number of
edges in R; (yc) that intersect [p, ] respectively.

It is clear that [suc™'(€) N L,,suc(e’) N L,] C ﬁy(g!g/), and that |t; (e, e’)| =
w; [suc™ (@) N Ly, suc(@) N Ly].

Cyclically enumerate B[y]|={em+1 = €1,€2,...,em},andforeachi =1,...,m,
let 7; be the type (Z or S) of e;. Then define the cyclic sequence of tuples

Vo, o[yl = vlyl := {(suc™" (&;). i, sucle;), Ty, tr(es. e 41)) .-

This is the combinatorial description of [y] € [I'] mentioned at the start of the section.
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,7+

n

Figure 6. bi, G, El* and .

Let W be the collection of cyclic sequences of the form {(a;,b;,c;, T;, ;) {7,
where a;, b;, ¢; are the three distinct edges in & ; for some j, T; is the symbol S or Z,
andt; € Z. Forany term {a;, b;, c;, T;, t;} ofthe sequence {(a;, b, c;, T;, t;)}2, €W,
let

S ifT, =7,
o)z it T =S,

*

Also, let Ei and ¢; be lifts of b; and ¢; respectively that share a common endpoint
in dI", and let n € I" be the group element whose repelling fixed point is this common
endpoint. Then there are exact]y two geodesics b1 and ¢ in @ with lifts El* and ¢
inDD respectively that have ™ as a common endpoint. Let ¢ be the edge in @ so
that {a},b],c’} = @; for some j (see Figure 6).

Definition 5.6. We say a sequence {(a;,b;.c;, T;,1;)}/-, in W is admissible if for
alli = 1,...,m, (@j+1,bi+1,Ci+1, Ti+1) is one of the following:

(bi,civai, T, (ci,biyai, T, (b 5T, (¢f, b al, Ty).

l’l’l’ i Y %o

(Notice that the last two cases correspond to y crossing the pants curve [n].) Let W’
denote the set of admissible sequences in W.

Observe that ¥ can be viewed as a map from [['] to V. The most important
property of ¥ is its injectivity, which was previously proven by the second author
[37, Proposition 4.5].

Proposition 5.7. Let yo, y1 be elements in T'. Then ¥[yo] = ¥y1] if and only
if [yol = [r1l-
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Notation 5.8.

* For any cyclic sequence 0 = {(a;,b;,c;, T;,t;)}7-, € W, let B(o) := m and let
Wi(o) == 300, [,
o Ifc = [[y] € €8(S’), let

p(c):= ) i(e.d), b(c):=|B[]

deP,(S')
and fori = 1,2, let
m m
w;(c) := Z ti(ej ej+1)| = Z w;i[suc™ (e;) N Ly, suc(ej1) N Ly |.
= j=1

Note that p(c), b(c), wi(c) and wa(c) are well-defined as they do not depend
on the orientation on ¢ induced by [y]. Also, note that h(c¢) = B(y[y]) and
wi(c) = Wi(y[y]). Informally, p(c) is the number of times ¢ cuts across pants
curves, b(c) is the number of times ¢ crosses a binodal edge in @, and w;(c)
and ws(c) are two different ways of measuring how many times ¢ “winds around”
collar neighborhoods of the curves in P, (S”).

The advantage of w; (¢) over w»(c) is that w; (¢) can be read off the combinatorial
description ¥ (y). On the other hand, we will later obtain a lower bound for i (c, v)
in terms of w»(c). In the following lemma, we make the relationship between w1 (¢)
and w;(c) explicit.

Lemma 5.9. Lety € I and let ¢ = [y] € €8§(S’). Then

%w](c) —b(c) < walc) < %wl(c) +b(c).

Proof. First, observe that for any consecutive pair e, ¢’ € B[y] with e preceding ¢’,
we have

1 1
§|tl(e,e’)| —1 < |tz(e, €] < 5|t1(e,e’)| + 1.

Summing the above inequality over all consecutive pairs in 8[y] yields the required
inequality. O]

6. Lengths and geodesic currents

In this section, we will prove some inequalities about lengths of closed geodesics
which depend on their intersections with a v-minimal pants decomposition 2, (S’)
and the corresponding ideal triangulation 7;, s/ as defined in Section 5. For the rest
of this section, fix a period minimizing geodesic current v € €5(S), a hyperbolic
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structure X on S, and an essential subsurface S’ of S. The goal of this section is to
prove Theorem 6.8. For any ¢ € €§(S’), this theorem gives a lower bound of i (v, ¢)
in terms of the v-panted systole length, the v-systole length, and the combinatorial
description h(c¢) and w, (c) defined in Section 5.

6.1. Length lower bounds: intersection with pants curves. We begin first by find-
ing a lower bound for i (¢, v) in terms of the number of times ¢ € €g(S’) intersects
P, (S"). To do so, we define the following quantity.

Definition 6.1. Let #,(S’) be a v-minimal pants decomposition of S’. Define the
v-panted systole length to be

Ky(S") := min {i(c,v) : ¢ € €§(S8") is not a multiple of a geodesic in £, (S")}.

Lemma 6.2. The v-panted systole length does not depend on the choice of a minimal
pants decomposition P, (S"). Namely,

Ky (S") = min{i(c,v) : ¢ € €G(S’) is not a multiple of a geodesic in P,(S")}.

for any minimal pants decomposition P, (S’).

Proof. Assume there exists a minimal pants decomposition &, (S’) such that

K, (S’) := min {i(c, V) : ¢ € €F(S") is not a multiple of a geodesic in ?,,(S’)}

is greater or equal to K,(S’). We claim that this implies K,(S") = K,(S5’). Let
co = [yo] € €4(S’) so that ¢q is not a multiple of a geodesic in £,(S’), and
i(co,v) = K,(S’). The minimality of K,(S”) implies that cq is primitive.

If ¢¢ is not a simple closed geodesic in &, (S’), then we are done because

Ku(S') <ifeo,v) = Ku(S') < Ku(S").

On the other hand, if ¢y € #,(S’), then the fact that ¢¢ is simple implies that there
are closed geodesics ¢ € £, (S’) so that i(c,cp) # 0. Let c; € £,(S’) be such a
closed geodesic so that i (c;, v) is minimal, and observe that i (¢, v) < i(cp,v) by
the definition of a v-minimal pants decomposition. Also, since i(cg,c1) # 0, we
have ¢ € P, (S’), so K,(S8”) <i(cy,v). Therefore,

K (S") <i(er,v) <i(co.v) = Ku(S) < Ky (S).

One finishes the proof by reversing the roles of #,(S’) and P,(S’) if K,(S’) <
K, (S). m
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With the notion of a panted systole length, we have the following lemma.
Lemma 6.3. Let ¢ be a simple v-interior systole of S’, and let p,q € S’ C D be
points such that the interval (p, q) intersects T171(c) transversely. Then

Ky (S')
10

k

v(G(p.al) = (|lp.ql N 7 ()] —2) -
where G(p,q] C §(S) is the set of geodesics defined in Notation 4.3.

Proof. First, observe that since [p,q] C S’ cDis compact, [p,q] N IT71(c) is
finite. Also, if [p,g] N T171(c) = 0, 1 or 2, then the desired inequality clearly holds.
Thus, we will assume for the rest of this proof that [[p,g] N TI7!(c)| > 3. Let
P1, P2, .-, Pr be the points in [p,g] N T171(c) in that order along [p,g], where
k = |[p.ql N TI7(c)|. Forany j = 1,...,k, let y; € " denote a group element
so that

e [yi]l =ce€g(S),

* the axis L; of y; contains p;.

Figure 7. Case 1 of proof of Lemma 6.3.

The proof will proceed in two cases from here.

Case I: i(c,v) > 2K,(S")/5. Thenfor j = 1,...,k —2,let y; ;42 € I be a
group element so that

* Vij+2-Lj=Lj,

* V(G2 pjspi+2]) = min{v(G(y - pj. pj+2]) 1y €T,y - Lj = Ljsaf,
and let ¢; j4+2 € €F(S) be the closed geodesic such that [y ;2] = ¢ j42 (see

Figure 7). Note that ¢; ;42 is not a multiple of a curve in $,(S”) because it has
positive geometric intersection number with ¢, so i(c;j j42,v) > i(c,v). By (1) of
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Lemma 4.4, we have v(G(yj42 -1, r]) = i(c,v) forall r € L; 5. The definition
of ¥, j+2 implies that

i,
V(G[Vj,j+2 . Pj»f’j+2)) = El(C,V)

forall j = 1,...,k —2. Then by (2) of Lemma 4.4, we have that

k—2
v(G(p.ql) > % . Z V(G (pj. pj+2])
j=1
| k2
> 5 Z ((G(pj.vij+2-pil) — V(Glyjj+2- PjsPi+2)))
j=
| k=2 1
> 5" Z (i (cj,j42,v) — Ei(c’ v))
j=1
> (k _2). i(C,U) > (k _2)' K‘U(S,).

4 10

Case 2: i(c,v) < 2K,(S")/5. Let £,(S’) be a v-minimal pants decomposition
of S’ that contains ¢. Forany j = 1,....k — 1, let y; 41 := yj - yj+1 € I
and let ¢; ;11 € €F(S’) be the closed geodesic such that [[y; j+1] = ¢ j+1. Note
that ¢; j+1 is not a multiple of a curve in P,(S’) because y; # yj+1 and ¢ j41
has positive geometric self-intersection number, so i(c; j+1,v) = K,(S’). Thus, by
Lemma 4.4,

v(G(p.q)
> % -(v(G(p1. pl) + v(G(pk. p1l))
k-1
- % Y (Gt i pil) +(Gps. pivi]) —v(GG - pjapi]))
j=1
k-1
+ f;" >3 (U(G(Pj—i—l: vit1:pi+1l) + v(G(jv1 - Piv1, Vi1 pjl)
j=1
—v(G(pj+1.Vi+1 - Pj+1]))
k-1
> % Z (u(G()/j_1 “PjsVi+1 'Pj]) — 2ife, V))
j=1
..
=5 Y ((G(pj.¥iviv1- pil) —2i(c,v))

J=1
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| kel
= 5 2 (i, v) = 2ie.v))
Jj=1
> (k —2) K(5) .

As a consequence of the above lemma, we obtain the following corollary.

Corollary 6.4. Let ¢ be a simple v-interior systole of S'. Forany d € €§(S’),

/
i(d,v) > (i(d,c)—1)- K5)
10
Proof. 1fi(d,c) = 0 or 1, the corollary clearly holds. For the rest of this proof, we
will assume that i (d, ¢) > 2. Choose a hyperbolic structure ¥ on S. Then ¢ and d
are realized as closed geodesics in S’. Choose a point p € ¢ N d and a point § € S
so that T1(p) = p. Let y; € IV be a group element so that [y;] = d and p lies in
the axis Ly of y4. Then |[p,yq - ] N 171 (c)| = i(d.c) + 1. Hence, by (1) of
Lemma 4.4 and Lemma 6.3, we have

K, (S")
10

i(d.v) = v(G(F.va Fl) = (i(d.c)—1)- 0

By applying Lemma 6.3 to all the curves in a v-minimal pants decomposition
on §’, we can also obtain the following lower bound on i (¢, v) in terms of the number
of times ¢ intersects the curves in a v-minimal pants decomposition £, (S").

Lemma 6.5. Suppose that S C S is a connected essential subsurface of genus g

with n boundary components. Let $,(S') = {ci1,...,¢35-312n} S0 that the
boundary components of S" are c3g_34n+t1....,C3g—342n, and let ¢ € €E(S’).
Then s
g=3+n
_ . Ky (S")
I(C’U)z( JZ] I(C’C"))W-

Proof. Assume without loss of generality that i(v,c;) < i(v,cj41) for all j =

1,...,3g—3+n—-1.1f
3g—3+n

Z ife,e;1=1
=1
(this has to happen when S’ is a pair of pants), the desired inequality holds, so we

assume that 3 3% 317 i(c,c;) > 0in the rest of this proof.
j=1 J P

Lety € I sothat [y] = c € €§(S") and let 5 € §' C I so that

ren(en("U"e))

j=1
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Then let m = 333" and let p = py, p1...., px = y™ - p be the points in

3g—3+n
[ﬁ,ym-ﬁm( U n—l(m),

i=1

enumerated so that p; € (pj—1,pj4+1] forall j = 1,...,k — 1. Observe that
k=m- Zi‘;”” i(c,cj).

Choose any j € {0,...,k —m}. If we can show that v(G(p;, pj+m]) > %(f),
then by (1) of Lemma 4.4,

i(c,v) =v(G(p,y - Pl)

1 - <
= —-v(G(p,y" - p))

m

k_

1 m
= g Z_: G(ij’p(j—H)mD
| 1EK(S)
“mm 10

which proves the lemma.
We will now show that v(G (P, Pj+m]) = % forall j € {0,...,k —m}. If
the interval (P}, Pj+m] intersects IT17!(c;) at least thrice, then Lemma 6.3 implies

that
K, (S

10
and we are done. (This is necessarily the case if 3g —3 4+ n = 1.) On the other hand,
if (P, Pj+m] intersects I~ !(cy) at most twice, then by the pigeon hole principle,
there is some j; € {j,..., ] + 2’"} sothat (pj, . p”+m] does not intersect IT7!(¢y).
In other words, there is a component S; of "\ ¢; so that the interval (7}, , f}, +]
lies in some lift S; C S of the subsurface S; C S. Since B = 3leivrl » 1, it
follows that S cannot be a pair of pants.

If (p;,.p; +%r] intersects 17! (c;) at least thrice, then Lemma 6.3 again implies
that

[}

U(G(ﬁj, ﬁj+m]) 2

Kv(Sl) > Kv(S,.)
10 — 10
(This is necessarily the case if 3g —3 +n = 2.) Otherwise, (P, . p;, =] intersects

v(G(Pjs Piml) = v(G(Pjys Pjiam]) =

1~ !(c,) at most twice, so there must be some j, € {jy, ..., J1+ 27'"} Clj,....J+ 87'"}
with the property that (pj,, p jz+%] does not intersect 17! (¢ U ¢;). Hence, there is

a component S, of S"\ (¢; U ¢z) so that (p,, ﬁjz+%’] lies in some lift S, c D

of the subsurface S, C §. As before, S, cannot be a pair of pants because
m _ 33g—3+n-2 -5 |
5 > 1.
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By iterating this procedure, 3g —3+4n—1 times, we will have either already proven

that v(G(pi, Pi+m]) > K”(S,),or have some j3o—34+n—1 € {J,...,j +m —3} and
TRV 10 g

some component S3g—34,—1 0f "\ (¢1 U--- U ¢c3g_34,—1) so that:

* S3g—34+n—1 is not a pair of pants;
* (Pjsg—sin_1> Pjzg—ssn_1+3) lies in some lift §3g_3+n_1 C I of the subsurface
S3g—34n—1 C S.
In this case, the unique simple closed geodesic in S3g—34n—1 IS €3g—34n, and
(Pise—sin1+ Pisg—sin+3] necessarily intersects I1~" (c3g—315) at

ﬁj3g—3—|—n—l+1’ ﬁj3g—3+n—1+2’ and ﬁj3g—3+n—~l+3‘
LLemma 6.3 then implies that
v(G(ﬁj ’ ﬁj+m]) = U(G(ﬁng—3+n—l ) ﬁf3g—3+n—1 +3])

/
= Kv(S3g—3+n—1) - KV(S).

= > tl
10 10

6.2. Length lower bounds: winding and intersection with binodal edges. In this
section, fix a v-minimal pants decomposition 2, (S’). Next, we want a lower bound
of i(c, v) in terms of b(c) and w,(c). To do so, we need the following two technical
lemmas. Informally, Lemma 6.6 tells us how much length ¢ has to pick up if it
crosses sufficiently many binodal edges. On the other hand, LLemma 6.7 tells us how
much length ¢ has to pick up if it “winds around” a lot between binodal edges.

Lemma 6.6. Let P C S’ be a pair of pants given by P,(S’) and let P C § be
the universal cover of P. Also, let p,q € P be points so that [p, q] intersects the
geodesics in @ transversely (if at all). Then

K,(P)

v(G(p,q]) > max {|B[p,q]| — 8,0} - T

(See Definition 5.2 for definition ofﬁé[p, ql-)

Proof. Itk := |£~[p, qll = 1,...,8, the desired inequality holds, so we will assume
for the rest of this proof that k > 9. Let py,..., px be the points along [p, ¢] that
also lie in the geodesics in ﬁ[p, ¢q|, enumerated so that they lie along [p, ¢] in that
order. Suppose that forall j = 1,...,k — 8, we have v(G(p;, pj+s]) > %Kv(P).
Then

v(G(p.q]) > v(G(p1. pi])
k—8

1
3 > v(G(pj. pjtsl)
j=1
K, (P)

(k —8)- =

v
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Itis thus sufficient to show that v(G(p;, pj+s]) > %K,,(P)forallj =1,...,k—8.
Fix any j =1,...,k—8. Foralli = 0,...,8, letg; := p;4; and let L; be
the geodesic in @ that contains gi. Observe that L; and L;; share a common
endpoint in dI", which is the repelling fixed point of some primitive y; € I" so that
lyi] € €%(S) is a boundary component of S’. Denote this common endpoint by y;”.
We will first prove the following claim: there exist i1,i, € {1,...,6} sothati; # i,
and

(i, - (@0.48]) N (qo. 98] # D # (vis - (Go. 4s]) N (go. gs).

This will be done in the following cases.

q0
4142 43 44 g5

Lo\ [L, Lo L3 L

Figure 8. Case 1 of proof of Lemma 6.6, with k; = 5 and k» = 6.

Case I: There is some ki, ko € {1,...,6} so that ky # ky and suc(Lg,) # Li,+1
fort = 1,2. In this case, let i; = k;. By replacing y;, with yf if necessary, we can
assume that suc>(L;,) = y;, - Li,. Observe that y;, - suc™1(L;,) is an edge in @ that
forms a triangle with suc(Z;,) and suc®(L;,). On the other hand, y;, - suc(L;, +1) is
an edge in @ whose endpoints in 9D both lie in (y; ", yi;rz),,l;r[ (see Notation 2.26).

Thus, (yi, - (g0, gs]) N (qo, gs] is non-empty (see Figure 8).

Case 2: There is a unique k € {1,...,6} so that suc(Ly) # Lg+1. In this case,
letiy, = k,leti, = 5ifi; <3 andleti, = 2 if iy > 4. The same argument as
Case 1 will show that (y;, - (go. gs]) N (g0, gs] is non-empty. We will now prove that
(%i5 - (qo.4qs]) N (qo, gs] is non-empty when i; < 3; the case when i1 > 4 is similar.
By replacing y5 by y5_1 if necessary, we can assume that y5 -y, = y; . Observe
then that ys - y3 = g, ¥s - Lg C [y5.y7 ]y and ys -suc™ (L) = {yg . v5 } (see
Figure 9). In particular, (yi, - (o, ¢s]) N (qo, gs] is non-empty.
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Y345 Vs  ys5-qs

Ls

p lao] a2\ a3]  x \ga/ q
q1 P qs 46 q7 qs8
Lo\ [LiL2\ Lyf = A

Va Ve

Figure 9. Case 2 of proof of Lemma 6.6, with i1 = 3 and i = 5.

Case 3: For all k € {1,...,6}, suc(Lg) = Lgy1- In this case, let iy = 2 and
let i = 5. The argument given in Case 2 proves that (y;, - (o.qs]) N (qo.gs] is
non-empty for ¢t = 1, 2. This concludes the proof of the claim.

Next, we will use the claim to prove the lemma. Assume without loss of generality
that iy < ip. Let x1,x2 € (qo.gsg] be points so that y;, - x; € (go.gs]. (They exist
because of the claim.) By replacing each y;, with y;l if necessary, we can assume
that x;, y;, - x; lie along (qo, gs] in that order. Observe then that x; has to lie in
(9iy—1Giy +1)» Viy - X1 has to lie in (gi,, gi;+2), x2 has to lie in (gi,—1,gi,+1) and
Yi, * X2 has to lie in (gi,,qi,+2). In particular, x,y;, - x5 lie along (go, gg] in
that order, and y;, - x1, X2 € (X1, Vi, - X2]. It is clear that [y, - yi,] € €&(P) is
non-peripheral. Hence, Lemma 4.4 implies that

2v(G (g0, gs)

A%

v(G(x1, ¥iy - x2]) + v(G(x2, %4, - x1])

V(G (x1, ¥iy - X2]) + (G iy - X2, (Vin¥iy) - X1])

V(G(-’Cl» (Via Vi) - xl])

i([[yiz ) Vil]]’ U)

K,(P). L]

vV IV 1V

Lemma 6.7. Let ¢ € P,(S"), let y. € T’ so that [y.] = ¢, and let p,q € Qy, CD
so that [p, q] intersects

U 7 - [ps. Py
JEZ
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transversely. Then

i(c,v)

2

v(G[p.q]) = (walp.q] = 1) -

(See Section 5.1 for the definition of pyic and Notation 5.5 for the definition of
wa[p.q].)

Figure 10. Proof of Lemma 6.7 when j = 2.

Proof. Letk = w,[p, q] and note thatif & = 0, 1 there is nothing to prove. Therefore,

assume k£ > 2 and let py, ..., px be the points in
r.aln (U i)
JEZ
in that order along [p, ¢]. Fixany j = 1,...,k—1,letr; := y. '+ p; 4+ and assume

without loss of generality that p; € [p.f . p; 1. Also, assume that p.}, p;,7;, p,.
lie along [p:,f ., ;] in that order; the other case is similar. Then

v(GIp}t. p; 1) —v(Glp) . pj)) —v(Glrj. py,])
v(Glpy . ve - py.]) —v(Glp,.. ) —v(GIpj+1.ve - py))
v(Glpj.pj+1)):

v(Glpj.rj))

IA

[A

where the first inequality above is a consequence of the way p;t -and p.. are defined.
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By (2) of Lemma 4.4, we have

i(c,v) <v(G[pjs1.7))
<v(Glpj+1.p;)) +v(Glpj.r)))
< v(Glpjr1.2)) +v(Glps. pj+)).

Hence,

v(Glp.q]) > %(v(G[pl, pr)) +v(G(p1. pil))
k—1

- % Y (v(Glpj. pi+1) + v(G(pj. pj+1]))
j=1
i(c,v)
> (k= 1) ——. =

6.3. Length lower bounds: the combinatorial description. Combining the prev-
ious lemmas in this section, we can obtain the following lower bound for i (c, v) in
terms of the v-panted systole length and the v-systole length.

Theorem 6.8. Ler S' C S be a connected essential subsurface of genus g with n
boundary components, let

- K,(S")
A v

K} e= 400 - 338=3+n 4 96
and let

- L,(S"

Ly(8) = . :

v(5) 400 - 338=3+n 4 96

Then

i(c,v) = b(c) - Ku(S) + wi(c) - Lu(S").

Proof. By Lemma 6.5, we know that
K, (S’
5.3%73t" i(c,v) = p(c)- “; ). (6.1)

Lety € I sothat [y] = ¢ € €9(S"), let§ € §’ C D so that

3g—3+n
g€ H_l(cﬂ( U cj)),

i=1

(recall ,(S") = {c1,...,C3g—3+2n}, Where C3g_34n+1,...,C3g—342n are the
boundary components of S’) and let § = §o.41,....4p) = ¥ - be the points
in
3g—3+n
@y -1n ( U H‘l(c,-)),
j=1
enumerated so that §; € (§j—1.4;+1) forall j =1,... .k —1.
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Note that for any pair of pants P given by P, (S’), K,,(P) > K,(S’). Hence, by
Lemma 6.6, we have

plc)—1
i(c,v)y= Y v(G(@G; G+
j=0
plc)—1
T K,(P)
> ; . —
> Z max {|B[7;.G;+1]| — 8.0} T (6.2)
J=0
ple)—1
~ K,(S")
= Z (|£[4j761j+1]‘—8)' Um
j=0
K, (S") Ky(S')
> b(c) - — . :
= ble) —¢ ple) —
Adding the inequalities (6.1) and (6.2) then gives
K, (S’
(53373 L Di(e,v) = b(c) - "1(6 ). (6.3)
Let k; := |B[d;.;+1]|. For each interval [F;,7;+1], let &1,....Ejx, be
the edges in ﬁ[i]’,—,ijﬁl], enumerated so that p;; € (pji—1,pji+1) foralli =
) ¥ ek 3 kj—1,where p;; :=¢€;iN[G;.qj+1]. Wepreviously observed (see discussion

after Notation 5.4) that the interval
(suc™'(€;i) N [Gj. G +1].suc(@i41) NG, G j+1]]

liesin Qyc, ;2,4 1) Also, itis clear that for every point r € [§;,§;+1], there are at
most four different values of i so that

r € [suc™'(€;) N [G;.dj+1].5uc@)i1) N[G;.4;11]]-
Thus, by Lemma 6.7,

ple)—1

di(cv) = Y 4(G@G;.3;+1])

j=0

==

J

v(G[suc ' (€) NG, Gj+1), suc(@i41) NG, G +11])
1

|V
~
Il M\;
) [
s

~.

Y

i

—_
(2}

~
ik
>~

[

1 e - . - Ly (S
(wa[suc™ (@) N [G;.Gj41).suc@iv1) N [Gj. G 41]] — 1) - v2
=1

L8
= (w20~ h(e)) - 75

i
o
i

J
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We finish the proof by combining the above inequalities to obtain a positive lower
bound for i (¢, v). To ensure positivity of this lower bound, we need to add the above
inequality to a multiple (strictly greater than 16) of inequality (6.3). We choose this
multiple to be 20 to improve readability.

(100 - 338731 L 24)i(c,v) = (wa(c) — b(c)) - LV;S,) + b(c) -

L,(S") 3-Ky(S')
> + b(c) - —x

> (2 - 5@) - 25 1 ey

Ly {5 K, (S
4 4

5. Ky(S")
4

> wa(c) -

3. K, (S)

> wy(c) -

+ b(c) -

where the third inequality follows from Lemma 5.9. Dividing both sides by
100 - 337347 4 24

yields the required inequality. ]

7. Vanishing of entropy and a systolic inequality

For the rest of this section, let 8" C S be a connected essential subsurface of genus g
with n boundary components. If we choose a period minimizing v € €(S5), we can
associate to S’ a quantity which we call the topological entropy.

Definition 7.1. Let v € €(S) be a period minimizing geodesic current. The v-topo-
logical entropy of S’ is

1
hy(S') := lim Sup log |[{c € €8(S") :i(c,v) < T}|.

T—o00

When S’ = S, we will use the notation A, := h,(S).

7.1. A systolic inequality. The goal of this section is to prove Theorem 1.4. The
constant C that arises from our proof is 400-33¢ 737 4 96, We will divide the proof
of Theorem 1.4 into three lemmas. The first two lemmas give us the first inequality.

Lemma 7.2. Let v € €(S) be a period minimizing geodesic current and P,(S’) be
a v-minimal pants decompositions of S'. Then there exists a pair of pants P C S’
and a closed geodesic e € €5 (P) so that

* ¢ has a unique self-intersection point p,

e i(e,v) <4K,(S"),
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* the three closed geodesics obtained by performing surgery to e at p are the three
boundary components of P.

Proof. By Lemma4.6, itis sufficient to construct a primitive, non-simplee € €4(S”)
so thati(e,v) < 4K,(S’).

Let d € €8(S’) be a closed geodesic that is not a multiple of a curve in £, (S”),
and so that i (d,v) = K, (S"). Note that d is primitive. If d is non-simple, set ¢ to
be d and we are done. If d is simple, then there is some ¢ € P, (S’) that intersects d
transversely, so that i (¢, v) < i(d, v). Choose a hyperbolic structure ¥ on §S. There
exists y,n € I'" so that [y] = ¢, [r] = d, and the axes L, and L, of v and y
respectively intersect transversely. Let p € S be the intersection pointof L and L,,.

By Lemma 4.4, we have that

i([ryry'ov) = v(G(y - poryry ™ - (v - p)])

<v(G(y-p.p)) +v(G(p.t-pl) +v(G(r- p.ty - pl)
+v(G(xy - p.tyT- pl)

=v(G(y - p, pl) +v(G(p.T- pl) +v(G(p.y - pl)

+v(G(p, - pl)

= 2i(c,v) + 2i(d,v)

<4i(d,v)

= 4K, (S).

It is easy to see that [tyTy~!] is non-simple, so we can set e to be [tyry~']. O

Lemma 7.3. Let v € €(S) be a period minimizing geodesic current. Then

log(2)

hy(S") = m

Proof. Let #,(S’), P, e and p be as in Lemma 7.2. Let yy,y2,v3 € m1(P) be
primitive elements so that y3 - y» - y1 = id, and so that the closed geodesics [y1],
[y2]. [[y3] are the boundary components of P. Then e has to be either

[vs' vl Dt -wml or [yi"-ysl
Assume without loss of generality that e = [y ' y1]. Then
i(e,v) =v(G(p.y5 ' y1-pl)
v(G(y2 - p,y1-pl)
=v(G(y2- p.pl) +v(G(p,y1- pl)
v(G(p,yy " - pl) +v(G(p.yr " - p),
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soi(e,v) > v(G(y2- p, p),v(G(p,y1- p),v(G(p, ;" - p) and v(G(p.y1 " - p)).
Since 71 (P) C I'' is a free group of rank 2 generated by y; and y,, no two distinct
elements of the form

8 8
yilysl Ly st yE

are conjugate, where ¢€;,9; = +1.
€, .8

By Lemma 4.4, we have that for any f = [y<'yS! ...y ySty2] € €6(S7),

. ) §
i(f,v) <v(G,yi'vs' - vy va v - pl)

<v(G(p, v - p]) + v(G(E - pyetyat - pl) + -

€1,,01 € .,0 €1,,61 €.,0:.2

R i (VLR 2SR o P R S VA DL s e 1)

=v(G(p,yi' - pl) + v(G(p, )/gl -p]) + -+ v(G(p, ygt - pl)
+2v(G(p, 1 - pl)

< (2t + 2)i(e,v)

< 8(t + 1)Ky(S).

This means that

iyl € [T\ tid3] = i ([y].v) < T}

) 8 ) _
EH[VIEIVZI coystystyilelm (PYN\{idY] €, 8 €{—1, 1} and ¢ < TG 1}‘
> gl s 1
S0 ]’lv(S,) > log(2) -

4K, (S")"

Now, we finish the proof of Theorem 1.4 by proving the second inequality.

Lemma 7.4. There is a constant C € R™ which depends only on the topology of S’,
so that for any period minimizing v € €(S), we have

h(8)Ku(8) = € - (Tog®) + 1 +log (1 + L))

X0

Ku (S _

)
where X is the unique positive solution to the equation (1 + x)( Ly(S") }x =],

Proof. Simplify notation by denoting K, (S’) and L,(S’) defined in the statement
of Theorem 6.8 simply by K and L respectively. Choose a v-minimal pants
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decomposition P, (S"). By Theorem 6.8 and Proposition 5.7, we have

[{c e €G(S") i(c,v) < T}|<[{c e €g(S") :b(c)- K +wi(c)- L <T}
|{o eV :B(o) K+ W) L=<T}
el

; ‘{a eV : B(o) =i, Wi(0) < LT_ Kim.

l\J |

i

(See Definition 5.6 for the definition of W'.)
If o = {(u;,vi,w;, T;, 1;)}1 . let o’ be the cyclic sequence

o' = {(ui,vi, wi, T}y

For any e € @, let ¢’, ¢” € @ be the geodesics so that {e,e’,e”} = @; for some .
If v; = e, then there are four possibilities for (u;, v;, w;, T;), namely

(e,e,e”,8), (e e, e 2), (" e, S) (" ec 7).
Since |{e € Q@ : e C S’}| = 6g — 6 + 3n, we see from the definition of W’ that

(24g — 24 + 12n) - 47!

/. / o
|{U.GE\D,B(0)—l}|S ;

Hence,

HG:B(U):;',WI(U)S[

I ]

TKiJ}<(24g24+12n)-4"1.(LT i £ N )
= < :

which implies that for 7" > K,

=~

L

1 | 14 Q
< 5 (@4g —24+12n)- glxl-1.

1
2

J i— TKI
e ce8(S")  itew) < T} < (24g — 24—|—12n) 4i—1 (L J+z)

1

Q

where Q = O(T, K, L)€{0,..., I_TT('J} is the integer so that for all i €{0, .. ., L%J},

1 s [
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As a consequence, we have

T-KQ
hy(S) - K < log(4) + limsup — 7 log (I* I+ Q)

T—o00 Q
1
< log(4) + 1 + log (1 + —)
Xo

where the last inequality is a computation that we do in Appendix B (see Proposi-

- : _ K, (87
tion B.1). Since K = joo=5"37756 We have proven the lemma. L]

7.2. Corollaries of the systolic inequality. Theorem 1.4 has several interesting cor-
ollaries, which we will now explain. The firstis a slight simplification of the inequality
in Theorem 1.4 from which we can deduce all our other corollaries.

Corollary 7.5. There is a constant C € R which depends only on the topology
of S’, so that for any period minimizing v € €(S), we have

V541 Kv(S’)))

%log(2) < hy(S)Ku(S") < C - (10g(4) +1 +log (1 T L)

Proof. Leta := |_ IL(” (g,g — 1_| and consider the function f;: [0, c0) — R defined by
fa(x)=(14x)%x. Observe that faisincreasing, f,(0) =0, and limy_.o fa(x)=o0c.
Also, let xo = x¢(a) be the unique point in [0, 1) so that f;(x¢) = 1. It is sufficient
to show that for all ¢ > 0,

I _V5+1 Ku(S)
xo(a) = 2 Ly(S")

First, consider the case when a = 0. Then f”gg = 1 and x¢(0) = 1. We see

immediately that in this case, the required inequality holds.
Next, consider the case when a > 1. The equation f;(x¢) = 1 can be rearranged
as

.. _ Xo log(xo)
log(1 + xq)
Since the function g: (0, 1) — R given by g(x) = al()fg]&g_(kxx)) is positive and strictly

decreasing, we see that a-xo(a) is minimized overalla > 1 when x¢(a) is maximized.
From the definition of f,, itis clear that x¢(a) is strictly decreasing with a, so a-x¢(a)

is minimized over all @« > 1 when a = 1. It is easy to compute that x¢(1) = ‘/S;fl "

soa-xgla) > @ forall a > 1. Hence,

I _ 541 [K(S) 1<\/§+1 K, (S")
Xola) = 2 ILU(SO_L 2 LS
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Using Corollary 7.5, we have the following universal upper bound on the systole
length renormalized by the entropy.

Corollary 7.6. There is a constant C € R™ which depends only on the topology
of S’, so that for any period minimizing v € €(S), we have

hy(S"YLy(S') < C.

Proof. By Corollary 7.5, we see that there is a constant C’ depending only on the
topology of S’, so that for any period minimizing v € €(S),

hy(S)Ly(S")

K,(S) " Ky(S) 2 L,(S)
«/§+1):: c
2

<G ((]0g(4) +1)- L. (5 + Lu(S) -log (1 + Bk K,,(S’)))

<C’- (log(4) +1+

where the last inequality holds because x log(1+ %) <kforallx > 0Oandk > 0. []

Corollary 7.6 together with Theorem 1.1 proves Corollary 1.5. Also, given any
negatively curved Riemannian metric m’ on S’ with geodesic boundary, one can
always find a negatively curved Riemannian metric 7 on S whose restriction to S’
is m’. It is then known (see Otal [29, Proposition 3]) that the Lebesgue—Liouville
current vy, of m has the property that i (v, ¢) = £, (c), where £,,: €9(S) — R is
the length function induced by m. This fact combined with Corollary 7.6 then gives
us Corollary 1.6.

Corollary 7.5 also gives us a criterion that determines when the topological
entropy of a sequence of geodesic currents in the “e-thick” part of €(S) converges
to 0. Before we state the corollary, we first define what the “e-thick”™ part of € (.5) is.

Definition 7.7. Let €(S)™" C €(S) be the set of period minimizing geodesic
currents and let € > 0. Define

CSHM =y eC(S)™ : Ly(S) = €}

€

and M(S")e := €(S)M/MCG(S).
Observe that if ¢, v € €(S’)™™" lie in the same equivalence class in M(S”), then
h, (S") = hy,(S’). Thus, we can think of A_(S’) as a function from M(S")c to R.

Corollary 7.8. Let € be any positive number and let {[vg]}72 | be a sequence
in M(S")e. Then limg_so0 by, (S) = O if and only if the following condition holds:
for each k, there is a (possibly empty) collection Dy of pairwise non-intersecting
simple closed geodesics in S’ so that

e supmax{i(c,vg):c € Dy} < o0, and
k
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. klim min{i(c,vg) : ¢ € €G(S’\ Dy) is non-peripheral} = co.
—o00

Proof. Let us choose an appropriate collection Dj of closed geodesics. For
each vg, let P, (S) = {c14,..-,¢3g-3+2n.k} be a minimal pants decomposition,
where ¢, ..., C3g_34n k are non-peripheral and enumerated so that i (c; x, vg) <
i(cjy1,kvk). Let jo € {0,...,3g —3 + n} be the number so that

o limsupy_, o, i(cjk.vk) <ooforall j < j,
e limsupy_, . i(cjk,vk) =ooforall j € {jo+1,...,3¢g —3 +n}.

(We use the convention jo = Oiflimsup;_, o, i(ci1 k. vk) =ocand jo =3g—3+n
if lim Supy_, o0 i(C3g—3+n k> Vi) < 00.) Let

Dy — {Cl,k %% .,Cj()’k} ifj() > 0,
) if jo = 0.

First, we show that if the condition does not hold, then lim supy_, . A,, (S”) > 0.
Since the condition does not hold, there is a constant C so that for each &, there
is a component S]’C’ of 8"\ O and a non-peripheral primitive closed geodesic
di € €4(S)) satisfying i(dy,vr) < C. Notice that when jo = 3g — 3 + n,
S}, is a pair of pants which implies that dy is primitive and non-simple. Likewise,
if jo < 3g — 3 + n, for sufficiently large k, dy is primitive and non-simple because
limg o0 i(Cj k> Vi) = oo forall j > jo. In either case, K, (S}) < i(dg.vx) <C
for all k. Thus, A, (S}) > "f(cz) by Corollary 7.5. Since hy, (S") > hy, (S})), we
see that lim supy_, o, hy, (S") > 0.

Next, we suppose that the condition holds and we prove that limg . /4, (S') =0.
Observe that for k big enough, the curves in Oy are part of a minimal pants decom-
position P, (S”). Let dy € €% (S’) be a closed geodesic that is not a multiple of an
element in &Py, (S”) so that i (dx, vk) = K,, (S’). By Corollary 7.5, it is sufficient to
show that limy_, o I (d, Vi) = 0o. Choose a hyperbolic structure X on S, set

A := sup max {i(c, Vg):ic € fl)k},
k

and set
Bi :=min {i(c,v) : ¢ € €G(S"\ D) is non-peripheral}.

Since the condition holds, 0 < A < oo and limy _, o, By = oc.
If di € €§(S’\ D), then it is non-peripheral, so

i(dk,vik) > Bg.

On the other hand, if dj does not lie in €§(S" \ Dy), let S}/ be a component of
S"\ Di that intersects dy. Let yx € T be the group element so that [yx] = di
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and let L,, be the axis of y; in S’. Choose distinct points pg,qr € Ly, so that
N(pi), Mgx) € 0S5/ and T (r) ¢ 05}/ for all r € [py, qi). 1tis clear that

V(G (i, grl). v(G gk Pil) < i(di, vie).-

Let g, tc € m1(S})) be the group elements so that [ ]|, [tx ] € g, and py and gy
lie in the axes of n; and 7 respectively. Observe that i ([ng], vk). i ([t ], vi) < A.
Hence, by Lemma 4.4,

i(leemi]s vie) < (Gt - pres e - (o' - o))
< ve(Gni ' - prs pi)) + vie(G(pr. qi]) + vie (G (g, T - qx])
+ v (G (tk - g, % - Pk)
= i ([nk], vie) + i ([zx]s vie) + vie(G(pr. gi]) + vie(Glpkc. qx))
<2A 4 2i(dg,vg).

Similarly, i ([7; ' n]. vie) < 24+ 2i(di, vi). Since [renk]l, [z, 'nic] € €F(SY)
cannot both be peripheral, either i ([tg i ], vi) > By ori ([t ' ni]. vi) = B. Thus,

1
i(di,vi) = 5B — A.

This implies that limy o0 I (dg, Vi) > %]imk_+OO B — A = oc. ]

Consider the case when S’ = S. In the above theorem, each Dy can be completed
to a pants decomposition of S. Since there are only finitely many mapping class group
orbits of pants decompositions of S, we can apply Corollary 7.8 and Theorem 1.1 to
deduce Corollary 1.7.

A. From positive cross ratios to geodesic currents

In this appendix, we give a proof Theorem 2.10 (which was previously observed by
Hamenstiddt [15]) for the convenience of the reader. Recall that an algebra 4 on a
set X is a family of subsets of X so that

(1) for all 4 in A, the complement A€ of A is in A,
(2) forall A, Ay € A, the union A1 U A, € A.

Also, a premeasure v on A is a function
v:A — [0, o]

such that
(1) v(@) =0;
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(2) if {A;}ien is a countable family of pairwise disjoint sets in #4 whose union lies

in 4, then
v( g A,-) =Y v(d).
ieN ieN

Choose an orientation on dI". For the rest of this appendix, we will assume that
all intervals in oI are of the form [x, y), (see Notation 2.26) unless otherwise stated,
where x, y, z lie in dT" in the order specified by the orientation. We will start by
defining a particular algebra in £(S).
Definition A.1. Let £ = {{I1, J1}, {12, J2}, ..., {14, Ju}} be a finite list of pairs of
proper subintervals of dT".
o £ is an admissible list if for all k = 1,...,n, either Iy = Ji or I} and Ji are

disjoint.
 For any admissible list &£, let ¢ denote the set of geodesics {a, b} € 5(S) such

that there exists a k € {1,...,n} with I and J; each containing one endpoint

of {a, b}.

For the rest of this appendix, let A4 := {§¢ : £ is an admissible list}. Note that
every §¢ € + can be written as a finite disjoint union

n
92 = | i
k=1

Lemma A.2. A is an algebra.

Proof. For all §¢,9¢ € A, note that §¢ U G¢r = Gyug’ € #A. To prove closure
under complements, it is sufficient to show that ﬁ{cl, n € Aand Gy, 1,3NG,, 7,3 € A
because of De Morgan’s laws.

First, we will show that ﬁ{cl’ 5 € . If I and J have disjoint interiors, let x, y
be the endpoints of / and z, w be the endpoints of J. Also, let K := [y, z), and
L := [w, x),, and observe that 0" = K U L U [ U J is a disjoint union. It is then

easy to see that (§y7 7;)¢ = F¢, where
L:=Y{I,1},{1,K},{I, L}, {K, K}, {K,J},{K,L},{J,J},{J,L},{L,L}}.

On the other hand, if / = J, let K := dI' — I. Then (57, 5,)° = §¢, where
£ :={{I,K},{K,K}}.
Next, we will show that 7, 1,3 N Gy, 0,3 € A. Let Kjj1,..., Ky ; be

intervals so that I; N J; = Uzzjl K, jk is a disjoint union. (Note that ¢; ; is either
0, 1 or 2.) Then observe that G;;, 1,y N Gy, 7,3 = G2, where

€= {Ki1 K221 AK 1100 K228 (K111 K220 0 K110 K220
(K121, K211 3 AK 1 2.0 20 K211 (K12, K210 5 AK 1 2,00 20 K2,10, 3}
L]
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Next, we will use the positive cross ratio B to define a premeasure on 4. Let
vg: A — [0, 00] be a function defined as follows:

(1) vp(9) = 0.
(2) vp(8;1,73) = ocowhen ] = J or I and J share a common endpoint.

(3) If the intervals I and J are non-empty and have disjoint closures, let x and y be
the endpoints of / and z and w the endpoints of J, so that x, y, z, w lie in this
cyclic order along dI". Then define

ve(F,n) == B(x,y,z,w).
4) If §¢ = Uy—1 1,7, is a disjoint union, define

UB(gif) = Z UB(g{Ik,Jk})'

1<k<n

Since B(x,y,z,w) = B(z,w, x,y), vg(9y, ;) is well-defined. Also, if

n m
g = U Sy = U g{l’,J;Q}
k=1 k=1

are two ways to write ¢ as disjoint unions, then by taking intersections, we can
write ¢ as the disjoint union

l
g«f — U g{lli/,_];c/}

k=1
sothatforallk =1,...,1, g{lfc"%’} is a connected component of Gy sy NGy j1y
for some s € {1,...,n}and ¢t € {1,...,m}. By the additive property of the cross

ratio, if Iy, I, I, J are subintervals of dI" so that /1 U [, = I, then

v (&, ) + v, ) = ve(§r,0y).

This implies that

n ) m
Y veGu.n) = ) veGaran) = Y vaGu ),
k=1

so vg is well-defined.
It is also clear from the definition that vz is finitely additive, i.e. if G¢,...., 9¢
are pairwise disjoint, then

n

VB ( U gx,-) = ZVB(g.f,-)-
=1

i=1

Furthermore, the positivity of B, ensures that vg takes values in [0, oo].
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Proposition A.3. For any positive cross ratio B, vp is a premeasure on A.

Proof. Set v := vp to simplify the notation. By definition, v(@) = 0, so we need

only to prove countable additivity. Let {§¢, }7° | be a family of disjoint sets in + with

U=, ¢, = 9« for some admissible list £. Up to repartitioning and renumbering,

we can assume the following:

* Forall k, £ = {Ii, J} for some intervals Iy, Jy,

» There is some admissible list {{/{, J{}, ..., {I/, J/}} sothat §¢ = | J_, Giran
is a disjoint union.

By finite additivity, we have that foralln € Z™,

v(8g) = U( O ﬁxk) + U(ﬁsﬁ \ O ﬁxk)

k=1 k=1
> ( U 5:£k) = 3 (S,
k=1 k=1

Thus, v(F¢) > > pry v(Fe, ).

To finish the proof, we need to show that v(§¢) < > 2, v(Fg, ). First consider
the case where v(§¢) < oo, then v(§yy; ), v(8g,) < oo foralls = 1,...,¢,
k € Z*. Since B is continuous, for any ¢ > O and any s = 1,...,¢, we can find
compact subintervals /' C I and J;' C J{ such that

£
v (Gt a) = vy o) < < (A1)

Similarly, for any kK € N we can find open intervals 1 D I and J;* D Ji such that
g
v&raey) —vEe) < o (A.2)

Observe that the open sets {; I, J:}},‘f’zl is an open cover of the compact set

U:=1 Gy, y3y- S0 it has a finite subcover {ﬁ{lg",;}},?’:l. By using inequalities (A.1)
and (A.2), we have

t N
v(G¢) <&+ v( U ﬁ{l‘y,ﬂf}) =8+ Z V(g{l,j,J,j})

=1 k=
NS & 1 00
<ot ) (v + z—k) <26+ Y v(F,).
k=1 k=1

Since & was arbitrary, this proves that v(§g) < > - ; v(Fg, ) when v(Fg) < .
Next, consider the case where v(§¢) = oo. This means that v (&, jl‘go}) =

for some 5o = 1,...,1, so either /¢ and J{ are disjoint and share an endpoint,

’
S0’
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or Ig, = Jg. . In either case, we can find subintervals I C I, and JC J, that are

disjoint and share an endpoint. Let p be the common endpomt of I and J, let pjbe
the endpoint of J that is not p, and for any ¢ € J let J4 be the subinterval of J with
endpoints g and p 7. Since

lim v(%;;,) =0, limv(g;;,) =00
q—=pj ( {I’J"}) qg—p ( {I’J"})

we know that for every 1 € R, there exists ¢g; in the interior of J such that
”(g{i,f(,,}) = t. Using the previous case, we know that for all ¢ € J,

[0,8)

V(G ) < D v(Fg,).

k=1
Thus, > pe; v(Fg,) = o0 = v(Fg). O

We will now recall a standard procedure to obtain a unique measure extending
a premeasure. See for example Chapter I of Folland [9] for more details. Given a
premeasure v on A and £ C §(S), define the outer measure

VNE) = inf; Y v(A):Ag €A, EC | Ak}.

k=1 k=1

A premeasure v: A — [0, o] is o -finite if X can be written as a union of countably
many sets with finite outer measure. The following theorem [9, Theorem 1.14] relates
o -finite premeasures and measures.

Theorem A.4. Let M be the o-algebra generated by A. Then, 1 1= UI is a measure
on M and the restriction of L to A is v. If v is o-finite, then [ is unique.

Lemma A.S. If B is a positive cross ratio, then the premeasure vg is o-finite.

Proof. Let A be a countable dense subset of 3I". Forany m € N and p € A, let I}
be the open interval in 91" centered at p of width 1/m. Define

A} = {(p.q) € A?: 1} and I have disjoint closures and p precedes g}.
Clearly
o0
5= U g A

m=1 (P,Q)eAm

Observe that the right hand side of Equation A.3 is a countable union of sets, each
with finite measure. L]
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Proof of Theorem 2.10. Since the premeasure vg is o-finite, Theorem A.4 ensures
that there is a unique measure pupg on the o-algebra M generated by 4. The
["-invariance of B ensures that wpg is also I'-invariant. It is easy to see that the
topology on 5(§) lies in M. Thus, pp is a geodesic current.

Next, we show that for all ¢ € €§(S), i(c,up) = £p(c). By (1) of Lemma 4 .4,
we know that

i(C, IJ’B) - l‘LB(g{[yJﬁ,y*)Z:[Z’y'z)V_})
= V(& + y)-lzy2)y})

=By ,y",y-z,2)
— ¢p(c). []

B. Computation for proof of Theorem 1.4

The goal of this appendix is to prove the following statement, which we need to finish
the proof of Theorem 1.4.

Proposition B.1. Let T, K, L be positive numbers so that K > L. Also, let Q =
OUT, K, L)€ {0 ¢ w05 L%J} be an integer so that for all i € {0,.. ., L%J}, we have

( %"-ZHQ) . (L%—";JH)_

K T—KQ |
limsup — log L 1+0 51—|—10g(1+——),
T—oo I Q X0

Then

K
where X is the unique positive solution to the equation (1 + x) [£-11x =1.

The proof of Proposition B.1 is a refinement of the argument given in Appendix B
of [36]. However, we will make this appendix self-contained for the convenience of
the reader. The main tool in this computation is an old result known as Stirling’s
formula, which we state here.

n!
Theorem B.2 (Stirling’s formula). lim ————= =1
n—00 (%) 2 n

In order to use Stirling’s formula, we need to prove the following lemma. For the

rest of this appendix, let

F=FTK,L):= {wJ

L
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Lemma B.3. Let K > L > 0 be fixed numbers, a := [% — 1] and b := L% — IJ.
Then the following hold:

(D 11m F =,

T—o0

o) im0 = o

T ¢ I ¢
(3) l§(1+1¥r_1>10rltf) -l;wl’rl)l;lof—.
Q

b
4 1= (1 + limsup%) - lim sup =

T—o0 T—o0

Proof. From the definition of Q, we see that

B} (LT‘TQ’;+Q)/(L%AI+Q+I)

_ (K (B o) (K r o+ @ + )

- ) (PG )
(B.1)
which can be rearranged to be
0+1 (== -0 -2 (52 + )
P T o o) (G o)

Similarly, the definition of Q also tells us that

IZ(L%—J]*‘Q )/(LL‘%"QHQ)

(T 4 0 - 1)(|TGE | 1 0 9)-- (| T 4 0 + 1)
i | TG0K | (| Tg=0K | ) ([ I52K] 11)

(B.3)
which implies
0 (ITGE) - (|T2K 4 2)
Frl™ ((F2K v o-1). (|52 ]+ 0 +1)

(1) Suppose for contradiction that liminf F < co. By the definition of F', we see

< 1. (B.4)

T—o0
that lim sup Q = oc. Thus,
T—o00
lim sup = 00,
T—ooo F +1

which contradicts (B.4).
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(2) Suppose again for contradiction that limint Q < co. By taking an appropriate

T—o0
subsequence, we can assume that lim @ < co. Hence, lim F = oo, so we have
T—o0 T—o0
. F
lim —— = oo
T—oo Q + 1
On the other hand, if lim Q < oo and lim F = oo, then the right hand side of
T —o0 T—o0
the inequality (B.2) converges to 1 as T" — oo, which implies that
1
lim Q+ > 1.
T —o0

This is a contradiction.

(3) Since (1) and (2) hold, taking the limit infimum of (B.1) as 7" — oo gives

o Q Q
I < llmmf(] + _7)(1 + f—)
oo | =25 | =] -1

1
(1 + T—(Q+%K ) ’ T—(QQ+;‘)_K
|—5 = |+3/ | +1

a
< (l + liminfg) -liminfg.
T—oo F

T—o00

(4) Similarly, by taking limit supremum of (B.3) as T — oo, we get
lzhmsup(lJrT— 1+
—(@-1DK T—(2-1DK
T—00 A =1

(1 s @—1 ) ; 0
[ 2/ [+
b
> (1 + lim sup %) -limsup%. U

T —o00 T—o0

By (3) and (4) of Lemma B.3, we see that lim sup g is a positive real number,
T—o00
which we will denote by D in the sequel. We now use (3) of Lemma B.3 to find an

inequality relating D to a := [% — ﬂ.

Lemma B.4. For any positive numbers K > L > 0, leta := f% — 1-|. Then

D<—,

X0

where x is the unique positive solution to the equation (1 + x)%x = 1.
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Proof. Consider the function f;:[0,00) — R defined by f,(x) = (I + x)¢ - x
and observe that f, is increasing, f,(0) = 0, and lim,_,, f(x) = oco. By (3) of
Lemma B.3, we know that f, () > 1,50 & > f;7'(1) = x,. O

With Lemma B.3 and Lemma B.4, we are now ready to prove Proposition B.1.

Proof of Proposition B.1. Since (1) and (2) of Lemma B.3 hold, we can apply
Stirling’s formula to obtain

’ ( F+0 2xQF ( Q )Q ( F )F ) ]
im . . . —
T —o0 0] F+Q0 \F+0Q F+Q
Taking the logarithm and multiplying by then gives an expression that can be
rearranged to yield

i K. (F+0
im sup — log
T—o00 T Q
= Ij K, (l +1)+1' KO, (1+F)
= l1imsup — 10 r— mmsup — 10 —
Tss 2T NG F2 psm T Sk T @
KQ F 0 K 1
+ limsup — - — lo (1+—)+hmsu —lo ( ) B.5
imsup —= - 5 log F) Tlimsup 2 log () (B.5)

KQ F KQ F 0
= limsup — lo (1+— + limsup — - —lo (1+—).
T—>oop T e Q) T—>oop T Q - ¥

By the definition of F', we have

: Q 1

limsup = = — limsup

T—o00 T—o00 “@ - l

which implies that
K - limsup %
lim sup = I <1
Tooo I L+ K -limsup
T—o00

Applying this to the inequality (B.5) then gives

K F F F
limsup? log ( ; Q) < lim sup log (l + E) + limsupglog (1 + %)

T —o00 T —o00 T —o00
<log(l+ D)+ 1
1
§log(l +—)+1,
X0

where the second inequality is a consequence of the fact that x log(1 + %) <1 for
all x > 0, and the final inequality is Lemma B.4. L]
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