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Statistical distribution of the Stern sequence

Sandro Bettin, Sary Drappeau and Lukas Spiegelhofer

Abstract. We prove that the Stern diatomic sequence is asymptotically distributed according to

a normal law, on a logarithmic scale. This is obtained by studying complex moments, and the

analytic properties of a transfer operator.
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1. Introduction

The Stern diatomic sequence [451 is the sequence defined by the particularly simple
recurrence relation

,s(0) 0, s(l) 1, s(2n) s(n), s{2n + 1) s(n) + s(n + 1) (1.1)

for all n > 1. The first few terms are

(s(n))„>o (0,1,1,2, 1,3,2,3,1,4,3,5,2,5,3,4,1,...).

It is an example of a 2-regular sequence [1, Chapter 16, Exercise 32], and enjoys
various connections with mathematical objects. As important examples, the Stern

sequence is related to the Stern-Brocot and the Calkin-Wilf tree.

Starting from the set F0 {y, j}, for each N G N>o,let /qv+1 be built from Fn
by inserting, between any two consecutive fractions | and its median

We may present the resulting construction as an infinite "tree", labelled by
rationals in [0,1], which is known as the Stern-Brocot tree1: see for instance

Chapter 4.5 of [19] or Section 1.5.1 of [26], The numerators and denominators

appearing in Fn, ordered by size of the fraction, are respectively the values of s (in
and s(m + 2N), for m G [0,2^].

Let d/v Z n \2n,2N+l). In this paper, we will study properties of the
values s(n) for n G Sn- as we mentioned above, these are the denominators of

Classical constructions start from {y, ^}, which makes little difference for our purposes.
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Figure 1. The first four rows of the Stern-Brocol tree.

the elements of the /V-th row of the Farey tree described above. Several properties
of (s(n))nejN were recorded by Stern [451 and Lehmer [31 J. There has been much
interest in understanding the structure of the largest values of s(n) [9,10,12,30,38J :

as Lehmer showed, we have max„e,y v s(n) Fn+2, where Fr)r is the Fibonacci

sequence. Recently, Paulin [38] gave a complete description of the \_N/2J largest
values taken by (s(n))nejN- they are given by various combinations of Fibonacci
numbers.

Another interpretation of the Stern sequence can be obtained from the Calkin-
Wilf tree [11]: it is the infinite binary tree, labelled by positive rationals in reduced

form, starting from and where each node | has children and Each

positive rational appears exactly once. In this case the denominators appearing at

level N are the values of s(m + 2N) for m e [0, 2N).

Figure 2. First four rows of the Calkin-Will' tree.
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In the present paper, we are interested in the question of the statistical distribution
of values of s(n). A relevant setting consists in endowing, for each N > 0, the

finite set Z fl [2N, 2N+l) with the uniform probability measure; let be the

random variable
Sjv s(n)

where n is taken uniformly randomly in Another way to look at this is the

following: start from the root of the Calkin-Wilf, and follow a walk of N steps down
the tree, choosing the left or right child with equal probability. Then the random
variable Sn is the denominator of the fraction eventually encountered.

Our main result is the following effective central limit theorem for log Syy.

Theorem 1.1. For some Constantsa, a> 0, as N tends to infinity, the values (log s(n))
are asymptotically distributed according to a Gaussian law, with mean aN and
variance a2N: for t G R satisfying t ()(N '/6), we have

r log Sat — aN 1 [' e~v2/1 dv /(I + f2)e"'2/2\
Pjv V- =/ 7^~ + 0\ 7=f • (1-2)

L a-\//v J J-oo \/2tt V c/v /
Moreover, for some (vj, V2) £ M2 and 9 [0, 1), we have

EN[\ogSN] aN + Vl + 0(9N), ([21) (1.3)

VjvflogSiv] + v2 + 0(N9n).

Remark 1.2. - This answers a question posed in [30]; the error term in (1.2) is

relevant and optimal in the whole central limit range t 0(N1^6).

- The constants a and rr are numerically close to

a « 0.396212..., a sy 0.148905

Both constants admit expressions as integrals of elementary functions with respect
to a certain singular measure, the Minkowski measure (see formulas (2.4) and (2.7)).
They are studied in more detail in Section 2.1 below.

- Formula (1.3) was proved very recently by Bacher [2, Theorem 12.1 ] with a strong
quantitative error term 0(2~N). The approach used there does not require complex
analysis, but is ineffective for other moments than the first.

We will in fact prove that small complex moments of Syv admit a quasi-

powers expansion in the sense of Hwang [21,22], meaning that Eat[(S;v)t]
behaves asymptotically as A(r)N B(x), for some holomorphic functions A, B in
the neighborhood of the origin.
Theorem 1.3. Forsomer] > OandO [0,1), there exist holomorphicfunctions U, V

on the disc {tgC: |r|<?y} such that

Eat[(Sw)t] exp {NU(t) + F(r)}(l + 0(9N)), (1.4)

uniformly in N > 1 and |r| < rj. Moreover, U"(0) f 0.
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This kind of estimate gives rise to the asymptotic normal law described in
Theorem 1.1, with speed of convergence, but also to bounds on probabilities of large
deviations, and asymptotic formulae for E [(log S#)], with error term Ok(Nk~x9N
for any fixed k > 1. We refer to the above-quoted papers of Hwang [21,22], and to

Chapter IX.5 of [17], for more explanations.
In principle, explicit estimates for 9 could be obtained numerically. Experiments

seem to suggest that any fixed 9 > 1/2 is admissible, at the cost of reducing the value

of rj accordingly.

2. Overview

To place Theorem 1.1 into context, we quote from [ 111 the fact that (s(n + 1 )/.v(/7))„e,yv
is the AMh row of the Calkin-Wilf tree (Figure 2). It is easy to deduce from this the

expression

where n 2N + Sj2J, sj e {0,1}, A0 (o 1) and Ai (}?).
Picking ne Jjy at random means choosing sj e {0, 1} independently with equal

probability. This is an instance of a problem about random products of matrices,
which is a vast and active area of research; we quote the seminal papers [4,18], and

we direct to the recent monograph [6] for more references. A general result such as

Theorem 1.1 of [5] would indeed yield a slightly weaker version of our estimate (1.2).
We also refer to [ 15] for a recent work concerned with a related situation (a "law of
large numbers" for measures satisfying a recurrence relation similar to 1.1

In order to obtain our precise statements, in particular Theorem 1.3, we rely
on similar pools of ideas; however we will take a different approach, and cast the

arguments in a more direct form, by exploiting a connection between the Stern

sequence and the Minkowski question-mark function [33, Fig. 7], As we will see

shortly, this function arises naturally in our problem as a conjugacy between the two
dynamical systems underlying the recursion formulas (1.1): the binary map and the

Farey map, describing respectively the transformation rules of n and s(n). Fet us first
describe it following [13], as the function mapping an irrational number x e (0, 1] to

00 e_n«+1 1

?(x) := ————, if x [0;öi,ö2, • • •] ,— • (2.2)
2Lj2«i+•+«« t i 2 j +_l^« 1 a2 + 4

This function is extended as a strictly increasing, continuous bijection from [0, 1] to
itself. Let us define for notational convenience

vfi(x):=?(x), O(x) := ?"1(x).
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/

Figure 3a. Graph of the Minkowski func
tion 4>(x) ?(x).

Figure 3b. Graph of Conway's box func
tion 4>(x) ?_1(x).

These functions are drawn in Figures 3a and 3b.

The question-mark function was introduced by Minkowski for its properties of
mapping rational and quadratic irrational numbers into, respectively, dyadic and

non-dyadic rational numbers. By construction it is increasing and continuous, but

it is not absolutely continuous with respect to the Lebesgue measure, and in fact it
is singular [44]: it has zero derivative for Lebesgue-almost every x e [0, 1], It is

however Holder continuous with Lipschitz exponent

An important property for us is the fact that the Minkowski function is a

topological conjugation between two maps from [0, 1] to itself, the Farey map and

the binary map, which are implicitly at play in the recurrence relation (1.1). We will
detail this further below in Section 2.2; a very practical form of this fact is given by
the identity [2, Proposition 2.1 ]

valid for all N > 0 and m e {0,1 2N}. This formula will be our starting point:
it provides a fast algorithm to express s(n) for n e J-n in terms of product of values

of 4). and brings the problem into the framework of dynamical analysis of Euclidean

algorithms [8,46],
In the rest of this section, we will first gather some facts about the mean-value a

(Section 2.1), then we provide a naive heuristic towards Theorem 1.1 (Section 2.2),
and finally we outline our proof (Section 2.3).

2.1. The mean-value a and the variance a2. The constants a and a appearing in
the mean-value estimate (1.3) admit explicit expressions in terms of the Minkowski
function. Let /i denote the Minkowski measure on the interval [0,1],

dn(x) dvp(x) d(4>-1 (x)). (2.3)
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Then the constant a is given by

1 f1
a -- I (log x) dfi(x). (2.4)

- Jo

The next theorem records and links several different expressions of the constant a
and a.

Theorem 2.1. (i) Let mk := xk d/i(x). Then

OO

0-5)
k=1

this agrees with the definition given in [2, Théorème 12.1 ].

(ii) We have

a log(l + x)d/x(x);

therefore the /i-almost-sure Lipschitz exponent ß of x i-> Uffx), given in 125],

is related to a by ß

(iii) Consider the system ([0,1], 3*, pf given by the Farey map f (x) minly^-, }•

Then we have

2a f log |^"'(jc)| d/x(x);
Jo

(2.6)

in this form the constant 2a has an interpretation as a relative metric entropy.

(iv) The constant a is the maximal Lyapunov exponent A i of the measure i~i

on GL2(R) defined by rj |Sa0 + ^8a1, where (ô t an(J ^t î t )•

An ^-stationary measure £ on P(M2) M U {oo} is given by

df(x) \pt + \T*p (T(x) 1/x),

where p. is extended trivially to a measure on M U {oo} with support in [0,1].

(v) The variance a2 can be expressed as

a2 X- f (logx+a|_vJ +[ 'og f 1,+ 'V^rM tl/r(y)) d/x(x). (2.7)

Remark 2.2. The above facts and comments are detailed and proven in Section 7,

where we will also show that the results of [25] can be easily deduced from
Theorem 1.1. The main point in (iv) is the explicit expression for the stationary
measure, which allows one to compute a using a formula of Furstenberg.

Bacher [2] showed that the moments mk can be computed very accurately,

allowing him to obtain a 50-digits approximation for a.
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0 / m \ s(m) / m r ,\(2^) s(m +2NY (2" £ [°' 1])- (2'8)

2.2. Iterates of the binary map, and a heuristic toward Theorem 1.1. In this
section we derive a formula for s(n) in terms of the function 0, and then state a naive
heuristic towards the fact that V-1 log Sjv ^ a in law as N -> 00.

Consider the function 0 dehned on the dyadic rationals of [0.1] by the formula

s(m) m

s (m. +2N)'
As we have mentioned earlier, the function <ï> is given by the inversion bijection
of Minkowski's function; but let us ignore this for a moment. The recurrence
relations (1.1) are equivalent to the facts that:

(1) The definition (2.8) is well-posed, i.e. it genuinely only depends on the

ratio m/2N,

(2) Whenever N > 0 and 0 < m < 2N, we have

0
/1 / m m + 1 \\ s(m) + s(m + 1)

\2 V2^ 2N s (in + 2N) + s(m + 1 + 2N)
' '

Additionally, we recall the fact that the Farey tree described in Figure 2 enumerates
all rational numbers on [0,1], Since, by (2.9), the function <t> is increasing,
and (O(O), 0(1)) (0,1), we obtain that 0 may be extended to a homeomorphism
from [0,1] to itself. By these facts, a result of Panti [37, Proposition 1.1] guarantees
that 0 must be the inverse of the Minkowski function.

We now iterate the relation (2.8), in order to express s(2N + m) in terms of
values of 0. Given 1 < m < 2N, there is a unique N' G N>o, with N' < N, such

that 2n' < m < 2N'+1. Write m 2N'+1 —m', so that 1 < m' < 2N'. It was noted

by Stern [2] (see [31] for an account) that s (in) s(2N'+1 — m') s(2N' + in').
Therefore, by (2.8), we deduce

s(2n + in) 0(^)~^v(2N' + m'). (2.10)

It is easily checked that the map £>:m/2N \-+ m'/2N is given by

(2 — 2kx for x G [2~k. 2~k+l), k > 1,
S>(x)= " (2.11)

|0 for x G {0,1}.

This map is shown on the right, in Figure 4b. It is the jump transformation of the

binary (or "tent") map <S(x) 2min(x, 1 — x) on the interval [|, 1] (see [26, Fig. 1.8,

p. 46]). The map IB is shown in Figure 4a.

Therefore, for any dyadic number m/2N G (0,1], if we denote by K
K(m/2N) > 0 the least integer such that IB^(m/2N 1, then by iterating (2.10),
we obtain

s<2A'+m)=(4,(^)®(S>(^))...4.(fl^-(^))) <2.12,
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Figure 4a. Graph of the binary map x i > Figure 4b. Graph of the jump transformais

(.r). tion x r-> <S>(x).

The formula (2.12) has the advantage that the points m/2N are easily described,
however, the right-hand side involves the function $>. At this point we may use the

property that the function <ï> conjugates the binary map with another simple map: by

Proposition 1.1 of [37], we have the conjugacy relation

s r1ojo<t
between the binary map iB, which we have already mentioned, and the Farey map on
the interval [0, 1], defined by

5r(x) min( Y (2.13)
V1 — x x >

By induction, we obtain the relation

J8> O"1 o F* o d> (2.14)

between the map defined at (2.11), and the "jump transformation" of the Farey

map on the interval [^, 1], which is known (see e.g. [23,40]) to be precisely the Gauss

map

km-*M-.-\1'x" fo"ei4î4)."£i.
(0 for x e {0,1}.

We mention at this point that the Lebesgue measure is invariant for the binary

maps S and jB>. Upon conjugating, we deduce that the Minkowski measure /i is

invariant for the Farey and the Gauss maps; this fact will be used repeatedly in our
arguments. Moreover, the measure p, has maximal entropy fog 2 for the Farey map;
by contrast, the Farey map also admits dx/x as a unique invariant measure absolutely
continuous with respect to the Lebesgue measure, but it is not finite, and has entropy
zero. We refer to [29] and to Chapter 1.2 of [26] for more details.
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Hi i i i616 5 4 3

Figure 5a. Graph of the Farey map x i->-

F(x).
Figure 5b. Graph of the Gauss map x i—>

S(x) F>(x).

By (2.14), relation (2.12) becomes the following.

Proposition 2.3. Let N > 0, 1 < m <2N and denote by K K(m/2N) > 0 the

least integer such that (~§K o <$>)(m/2N 1. Then•>Ns _

C+»>=K£)'K
-1

(2.15)

Equivalently, we have

K(m/2N)-l
log.y(2^ + m) - loë ((^' ° 0)(^))

(=0

Our situation at this point is formally similar to the work of Baladi and Vallée [8],
concerned with statistical properties of orbits of rationals under the Gauss map. Our
"cost function" here isx h- - logx. This analogy provides a heuristic explanation
for Theorem 1.1 as follows.

It is easily seen that for r >0and V > 0, \ {m e {1,..., 2^} : K(^f) /"}| ('Nr).

It follows that, as N —> oo, we have

K(m/2n)
N

for a proportion 1 + o(l) of integers m e {1,... ,2 } as N —> oo (which we
abbreviate by "generic m").

On the other hand, by Theorem 5.12 of [35], we have that for a generic
m e {1,..., 2^}, the pre-images ($! (fk))iL0 t'y the binary map will equidistribute
as N —>• oo according to the Lebesgue measure on [0,1], We may then

guess that the same is true for the pre-images (^(^-))^^2 ^

by the jump
transformation S>. After conjugation by O, the Lebesgue measure is sent to
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the Minkowski measure p, d(<t>
1

): in particular, we are led to expect that for
generic m e {1 2N}, we have

K(m/2N)-l

and therefore for generic m e {1,..., 2N},

\ogs(2N + m) ~ f logxd/i(x).
2 Jo

This is indeed a consequence of Theorem 1.1 by our definition (2.4).
This guess, which might seem naive at this stage, echoes a similar phenomenon

for real, resp. rational trajectories under the Gauss map [8,20]: see in particular the

parallel between Theorems 1 and 3 of [8], and the factorization "p-(c) p x /2(c)"
stated there on page 350. For us, "fi" plays the role the typical ratio of the length of
rational trajectories K(m/2N) by N; and "/2(c)" is the generic average of the cost
function over real trajectories.

2.3. Outline of the proof. Having at hand the expression (2.3) for the Stern sequence
in terms of iterates of the Gauss map, the first step towards the proof of Theorem 1.3

is to construct a generating series for the moment on the left-hand side of (1.4). The

precise form has to be amenable to analytic tools. For (r, z) e C2 of small enough
moduli, let

St(z) £(2z)*EN [(S^)"r] (2.16)
tv>o

E E »<»)-'•
TV>0 neSN

The framework of analytic combinatorics [ 17] relates the properties of ST(z) (analytic
continuation, meromorphy, location of poles, spectral gap) with the asymptotic
behavior of Ejv[(Sjv)-T].

The next step is to obtain the analytic information required on ST(z). To this end,

we adapt methods of "dynamical analysis", introduced by Vallée and described for
instance in [8,46]. The main point, which is behind the choice of the generating
function St(z), is the expression

Sr(z) T^E(Ht[l])(l)- <2-17)
^ k>0

This involves the iterates of an operator HT;Z, which acts on bounded functions

/: [0,1] C by

Hv[/]:^ErT^/(47)'
~^o^n + t) V»+?/
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The operator HTjZ is a particular case of a weighted Ruelle Perron Frobcnius transfer

operator [3,42]. Our situation is similar to the work of Baladi-Vallée [8] on the

Gaussian behavior of Euclidean algorithms. The pole of smallest modulus of ST(z)
will occur at a point z p(r), where HTjZ has dominant eigenvalue 1, and the Cauchy
formula transfers this information into the estimate 1.4) with U(z) — log(2p( r)).

The deduction of Theorem 1.1 from Theorem 1.3, which is standard in probability
theory, will be made by appealing to Hwang's Quasi-Powers theorem [21 ]. We remark
that the uniformity of Theorem 1.3 is crucial in this deduction.

As in [34], we have chosen to include details of the arguments from spectral

theory, rather than quote them as a black box, so that readers unacquainted with these

topics, but who are still interested in the arithmetic application, may follow through.

The plan is the following: In Section 3, we derive the expression (2.17). In
Section 4, we study the operator Mt,z, with a particular emphasis on the reference

pair (r, z) (0, |). In Section 5, we carry out the analysis of ST (z). In Section 6,

we complete the proof of Theorems 1.1 and 1.3. Finally in Section 7, we return to
the mean-value a and the variance a2, and prove Theorem 2.1.

3. Expressing the moment-generating function

In this section we express the moment-generating function on the left-hand side

of (1.4) in terms of a weighted transfer operator for the Gauss map, continuing the

arguments of Section 2.2.

We recall Proposition 2.3. Note that the Gauss map has the property that S'(x)
— 1/x2 for x > 0. It is therefore very convenient to use it in conjunction with (2.15)
to obtain the "product of cocycles"

.s-(2*+m)2= [] |r|o^(cI>Q))
i= o (3.1)

K^'l (.(£))•
The inverse branches of the Gauss map S form the set

M {hn, n > 1}, hn(x) (x e [0, 1]).
n + x

For any given K e N>0, the set JfK of inverse branches of the function V K
: [0, 1] —^

[0, 1] are then given by

{/?„, o-.-o h„K : tij > 1},

where it is understood that JC° {id}. The decomposition h — hri] o • • • o h„K is

unique, therefore, it makes sense to define

w(h) := ni -I 1- hk-



252 S. Bettin, S. Drappeau and L. Spicgelhofer CMH

An immediate verification shows that

f m_
(2N{jk I 0 < m < 2N, m odd} S"W({1})

and thus, letting JC* Uj<>03{k,

I 0 < m < 2n, m odd} F"W({1})

{h( 1) | he J(*, w(h) N}.

Gathering the above, we obtain

2n

st(z) EE 's(m + 2A,)_T

N> 0 m 1

<3.2)

£ £«(-» + 2')-'
N>0 0<r<N m=1

m odd

-rrc£--'£ £ —r/2
1 — Z

r>0 ^>0 heMK
vj(h)=r

J2 zw(h)\h'(\)\T/2, (3.3)
1 ~Z heM*

where we have extracted the largest power of 2 dividing m in the first line; the third
line used (3.1) and (3.2), and the last line followed by the derivative formula for the

inverse.

The sum over h G M* is now recognized as a sum of iterates of a

"density transformer", or transfer operator, also called Ruelle-Perron-Frobenius

operator. These objects, and their spectral properties, have a long history and

have been extensively studied, notably in connection with continued fraction, and

thermodynamic formalism. We refer to the surveys [42], the lecture notes [32] and

the monographs [3,43]. More explanations and references relevant to our case are

found in Section 2.2 of [8], For all (r, z) G C2 with |z| < 1, let the operator HTiZ

act on continuous functions / G £?([0, 1]) by

,z[/Ko xyiA'o\ri2(f°h)(t)

E—^ (n + ty \n + t/
(3.4)

(n + t
Ï7>1

Then from formula (2.7) of [8], we have that for all K > 0

Et/Ko= E ^wiA'(or/2(/oA)(o. (3.5)

heXK
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Let now
TV {(r,z) G C2 : |z| < min(l, 2"ReT)}. (3.6)

By Equations (3.3), (3.4) and (3.5) above, we conclude the following.

Proposition 3.1. For (r, z) G 'W, we have

Sr(z) -î- £H*z[I](D J-ad-H^r^iKi).
I — z — I — z

k> 0

4. Properties of the transfer operator

As we have mentioned, spectral properties of transfer operators have been extensively
studied; we refer again to the lecture notes [32, Sections 7.1 and 7.4], and the
references therein. The actual operator HriZ has been defined and studied at many
occurrences in the literature: see [40, Formula (10)], [14], [23, Formula (3.39)].
Indeed, many of the forthcoming properties of HT,Z for real z can be found in [40].
Nonetheless, to make the arguments as clear as possible for readers unacquainted
with these topics, we will provide full proofs, following the presentation of [34],
apart from perturbation theory of operators, which we will quote from [24].

4.1. Definitions. A critical first step is to define an appropriate functional space
in which to study HT;Z. For our arithmetic application, two constraints must be

satisfied: the interval [0, 1] should be contained in their domain, and it must include
the constant function 1 and all its iterates under HT,Z for all (r, z) in a neighborhood
of the origin.

Consider the domain D {t G C : 1}, and the set of functions

//°°(D) {/:D->-C:/is holomorphic and bounded}.

For (r, z) G TT and / G //°°(D), we define HTjZ as in (3.4), taking the principal
determination of the logarithm.

For T an operator, we denote by srd(T) the spectral radius of T. We further
recall the definition of the Gauss map and its inverse branches,

». *^,1), _ _1_
x G {0, 1}, n + x

4.2. Decomposition of the transfer operator. In this section, we obtain the basic

properties of the operator Hr,z. The arguments involved have a long history [32J;

we will mostly follow the presentation found in [34], which is well adapted to our
setting. We are interested in the behavior of Ejv[(Sat)t] when r is in a neighborhood
of r 0. At this value the power series ST has radius of convergence 1-, and thus
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of particular importance for us is the value (r, z) (0, ^), around which HT!Z will
have 1 as an eigenvalue. We denote

H := HL j_
U,2

We will first focus on H, then on the case r 0, |z| 4, and finally we study

arbitrary (r, z) using the theory of analytic perturbation (as in 124, Chapter IV]).

Proposition 4.1. (i) For |z| < 1 and r C C, the operator HT>Z is compact and
depends holomorphically on (r, z) in the sense of [24, p. 366].

(ii) The eigenmeasure of the adjoint operator H* is p, that is, for all f e Ll (jt) we
have H[/] G Ll(p) and

jm[f]dfi f/dp. (4.1)

Moreover, the operator H has a simple isolated eigenvalue equal to \; the

corresponding eigenspace is generated by the constant function 1. Finally, this

eigenvalue is the only element ofmodulus 1 in the spectrum ofH.

Furthermore, for all small enough 8\ > 0, we may find 82 > 0 and 9 G [0, 1) such

that, writing

Vj := {(t,z) G C2 : |r| <81, |z-±| <^},
V2 := {(r.z) G C2 : |r| < S2, |z| < \ + 82, |z - \\ > 81},

the following holds.

(iii) For (r, z) G Vi, HT,Z has a simple and isolated dominant eigenvalue at
A(r, z) G C with eigenfunction /TjZ G H°°(D) \ {0}; also, A(0, ^) 1 and

f 1 1. In particular, we have the decomposition
»,2

HTjZ A(r, z)PT,z + Nt,z, (4.2)

with Pr,z and NTjZ two compact operators on H°°(D). Moreover, the image

of PT,z is one-dimensional: ImPr,z /TjZC and /T;Z PrjZ[l], Finally, we

have srd(NTvZ) < 9 and Pr,zNt,z Nr,zPT,z 0.

(iv) For (t, z) G Vi, /t z and A(t, z) depend holomorphically on both variables.

(v) For (r, z) G V2, we have srd(Hr;Z) < 9.

Proof, (i) Let D := {t G C : \t — || < ||}. We have that hn maps O into D for
all n > 1. In particular, all the elements of the sets

S:={fohn\feH°°m, ll/lloo < 1}
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can be extended to functions in the unit disk of H°°(]D>). By Montel's theorem the

set obtained by these extended functions is pre-compact with respect to the compact-
open topology on //°°(D) and thus S is pre-compact with respect to the uniform
topology of Af°°(ID>). In particular, the operator / i->- f o hn on //°°(B) is compact
and thus f"is also compact (and holomorphic in (r, z)). The same then holds for HTjZ since its

defining series converges locally uniformly in (r, z).

(ii) One has that H[/](x) U[/ o <J>](<I>_1(x)), where U is the Ruelle operator
relative to the binary map defined at (2.11); since the Lebesgue measure is an

eigenmeasure for U* [26, Prop. 2.3.21] with eigenvalue 1, it follows that /x is an

eigenmeasure for H* with the same eigenvalue. One could also verify this directly
from the definition (2.2). Indeed, since A>(hn(x)) 2~n{2 — 4*(x)) for all n c N*
then one has

11(A) 2~n fi(h~l (A))

for any interval A [jppy, with x e [0, 1]. By the monotone class lemma one
also has

P-04 n «0 2^h~l(A))
for all //-measurable set A, and finally

[ (/ °K) d/x f
•Ao,n J h. / d/x
'[0,1] J[l/(n + 1), 1/n]

for all / e Ll(ii). Summing over n > 1 yields (4.1).
Since H is a compact operator, the non-zero elements of its spectrum are isolated

eigenvalues of finite multiplicity; also, notice that H[l] 1. Let / e H°°(D) be an

eigenfunction with eigenvalue A normalized so that max(C[0,i \f(t)\ |/('o)l 1

for some t0 e [0, 1]. Then, by the definition of H[ /'] and the triangle inequality we
have

|A| |H[/](fo)| I E2~"/(—^ E2~" L
'»>1 „>!

Thus, IAI < 1. Also, if IAI 1 then the equality holds everywhere and so there exists

c G C of modulus 1 such that /(^^) c for all n > 1. Since / is holomorphic
and has 0 e D as an accumulation point, we must have / cl. Thus, A 1

is the only eigenvalue of modulus 1 and ker(H — Id) is 1-dimensional. Moreover, if
(H — Id)2[/] 0 then (H — Id)[/] is an eigenfunction of H with eigenvalue 1 and

so (H — Id) [/] cl for some ce C. Integrating this equation with respect to d/x

by (4.1 we find c 0. Thus, f is itself a multiple of 1 and so 1 is a simple isolated

eigenvalue of H.
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(iii) Now, let C be a small circle centered at 1 which doesn't enclose any other

eigenvalue of H and assume (r,z) G Vj. If <$i is small enough, then by [24,
Thm. IV.3.16| we have that C doesn't intersect the spectrum of srd(HTiZ). It follows
that we can write HT!Z as a sum of compact operators HTvZ PT)Z + NT,Z with

Pr,zNr,z Nr,zPt,z 0 and P2Z PTjZ, where Pr,z is the Riesz projection
associated to C [24, Thm. III.647]. Moreover, since 1 is a simple eigenvalue, the

image of PQ i is one dimensional [24, pp. 180-181J and thus the same holds for PT,Z

if SI is small enough [24, Thm. IV.3.16]. Also, the spectrum of HT;Z restricted

to the image of PTjZ consists of a unique eigenvalue A(z,z), with A(0, 1,

corresponding to the eigenfunction fT>z := PT,Z1, whereas the spectrum of NTjZ

consists of that of HT,Z with A(r, z) removed [24, Thm. IV.3.16]. Tn particular since

srd(N0 i) < 9' < 1 for some 9' G [0, 1), then by the upper-semicontinuity of the

spectral radius [24, Thm. IV.3.16] there exists 9 G [0,1) such that srd(NTiZ) < 9 for
all (r, z) e Vj with small enough.

(iv) By [24, Thm. VII. 1.7] PT,Z and Nr z depend homomorphically on (r, z) and

thus so does /T;Z Pr,z[l]. Moreover, since P0 ^ [1] (0) 1 we have /TjZ(0) / 0

for (r, z) G Vi and 8\ small enough. Thus the holomorphicity of A(r, z) follows
since PTjZ[/T,z](0) A(r, z)/T,z(0).

(v) First, consider the case x 0 and z ie2jr"^ with cj) G [0,1). By the triangle
inequality we have

II H0,z[/]||oo< ll/lloo

for all f G H°°(D); in particular srd(H0,z) < 1 for |z| Suppose

now (p 7^ 0. Then since H0,z is compact, it has an eigenfunction f G H°°(D)
with eigenvalue A of maximum modulus srd(Ho,z). Up to re-scaling /, we can

assume maXf6[o,i] 1/(01 l/Oo)l 1 for some t0 G [0, 1], whence

I A I iH0,z[/](to)i J I < E2
^ il T toy

n>1 u «>1

1.

If we had |A | 1, then this would mean equality holds everywhere. This implies
that all the summands in the first series have the same argument and the n-summand
has modulus 2~n, that is

'f(——
V n -1- t(\ /

ç2nin(j> r _____ j ^2nia
n + t0 '

forsomea G [0, 1). Letting n oo, we deduce e2x""l> /(0), which implies (j) 0.

We conclude that srd(Ho ,z) < 1 whenever |z| \ and z / Then, by the upper

semi-continuity of srd(HTiZ) [24, Thm. IV.3.16], we have that there exists 0 < 82 < \
such that for r, z satisfying

\ - S2 < |z| < \ + 82, |z-||>à'i, |r| < 82
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we also have srd(HT,z) < 6 < 1. Finally, assume |z| < \ — S2 and |r| <82 <
—4 log2(l — 282). Then, by the triangle inequality for any / G //°°(D), we have

ii H^miioo <11/11«, \z\n(n + DS2.

n> 1

Since n + 1 < 2", computing the series proves that srd(Hr,z) < 1. In particular,
srd(HT;Z) < 1 for all (r, z) G V2 and (iv) follows.

4.3. Specific properties at (r, z) (0, |). We have the following properties linking

H and /x. We recall that the value A(0, 4) 1 was proved at Proposition 4.1 .(ii).

Proposition 4.2. (i) We have P0 [/] (f f d/x)l for all f G H°°(B).

(ii) The derivatives of A satisfy

^A(0,!)=/ log d/x, ^A(0,I) 4.
•x [0,1]

Proof, (i) First we recall that /0 i land thus Im P0 i C 1. Given / g //°°(D),
we have / G L1 (/x) and so, by (4.1),

/ /d/x / Hfc[/] d/x

for all A G N. Letting A —oo, from the decomposition (4.2) we have

Hfc[/] P0 i [./] uniformly on [0,1], and so

J Hfc[/] d/x -> f P0ii[/] d/x.

Since P0 i [/] G C 1 is constant, this proves our claim.

(ii) We have, following the notations of Proposition 4.1, A(r, z)/T,z HTiZ[/TjZ]
for (r, z) in a neighborhood of (0, ~). By uniform convergence of the series

defining !IIlr.z, we may differentiate term-wise and obtain

^A(r,z)/r,z + A(r, z)^/T,z Hx,z [fz,z log +^./r,z],

^A(r,z)/r,z + A(r,z)^fz,z ^ /r,z ° + Hr,z [^/r,z]-
n>l '

We evaluate each line at (r, z) (0, |) and apply the operator P0 i, which amounts

to integrating against d/x by point (i). We obtain the claimed identities

£A(0,£) /togd/x and ^A(0'a) I]= 4- D
«>i
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4.4. The quasi-inverse (Id — Hr>z)_1. We conclude the section by deducing the

main properties of the quasi-inverse (Id — HTiZ)_1.

Proposition 4.3. For 8\ > 0 small enough there exist 82 > 0, 0 < 0 < 1 such that,

for V), V2 as in Proposition 4.1, one has that:

(i) The operator (Id - illr,z) ' can he analytically continued to (r, z) G 'fo,
A(r, z) ^ 1, via the identity

(Id - H,,)-1 A(r'z)
Pt,z + (Id —Nrz)_1. (4.3)

(1 - A(r,z))

Moreover, (Id—Nr,z)_1 is holomorphic for (r, z) G V\.

(ii) (Id — HITiZ)_1 is holomorphic for (r, z) G "\>2.

Proof. We start with (ii). For (r, z) G 'V2, by Proposition 4.1 (v) we have srd(HT ,z) <
0 < 1. Therefore, for such (r, z) and all f G //°°(D) the series

OO

EHt[/] (Id-Hr,z)-1[/]
£=0

converges uniformly and defines an analytic function which depends on (r, z) G V2

holomorphically.
To prove (i) hrst we notice that by Proposition 4.2 we can find a non-empty open

set Kef7! such that |A(r, z)| < 1 for all (r, z) G U. Then, for (r, z) G K by

Proposition 4.1 (iii) one has

OO

J*
^r,z

k=0 &=1 â:=0

(Id - H^)"1 J2 Kz I] A(r- + J] N
k=0

+ (Id —NT;Z)
A(r, z) m | /tj

(1 - A(r,z))

Moreover, PT;Z and (Id NIjZ)
1

are holomorphic for (r, z) G V\ and depend

analytically on r, z. By Proposition 4.2 (ii) the set {(r, z) G V\ \ A(r, z) 1}

is connected and so we can conclude by the identity principle.

5. The meromorphic continuation for ST (z)

In this section we study the meromorphic continuation for 5,r(z), using Propositions

3.1 and 4.3. As can be guessed from Proposition 3.1, the function ST(z) will
have a pole whenever HrjZ has 1 as an eigenvalue. Therefore an important role is

played by the quantity p(r), defined by the implicit relation A(r, p(r)) 1. As will
appear clearly in Section 6, this produces a pole of Sr(z) at z p(r) which will
eventually give the dominant contribution in the estimate (1.4).
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5.1. Continuation and poles. We start with the continuation and location of poles
of St(z).

Proposition 5.1. Given t] > 0 sufficiently small, there exists 0 < c < ~ such

that ST(z) is meromorphic for

(r,z) e {(r,z) e C2 | |r| <r\, \z\ < \ + c}.

with a simple pole at z p(r) only, where p is an analytic function in |r| < rj such

that A(t, p(r)) 1 and p(0) Finally, for |r| < p we have

p ç r-t —
[1](0

Resz=p(r) ST(z) —
(1 -p(V»9jA(r,p(T))

Proof. The well-definedness and holomorphicity of p in a neighborhood of r 0

follows from the implicit function theorem since A is holomorphic on T)
and g^A(0, |) / 0. Since A(0, 2) 1, this also yields p(0) The

rest of the statement is then an immediate consequence of Proposition 3.1 and

Proposition 4.3.

5.2. The derivatives of log(p(r)). We now derive additional informations on the

first two derivatives of r i-» p(r) at r 0. This will lead to the expression (2.4) for
the mean-value a in Theorem 1.1, and to positivity of the variance.

Proposition 5.2. We have

log(2p(0)) 0, a := (logp)'(O) —^ f logdp, (logp)"(0) < 0. (5.1)
2 A(o,i]

More precisely, we have

(logp)"(0) - ^J (logx +a[±\)2 dp,(x)

+ f f (logx + ofLjJ) logO + xy)dfi(x)dfi(y)
Jo Jo

41 (l0«i + adJ +1'o^TTtr)
(5.2)

The fact that (log p)"(0) < 0 is essential and it is equivalent to the non-degeneracy
of the Gaussian law in Theorem 1.1. The proof of this fact is not straightforward. As

explained in [8, Lemma 7] (see also the proof of (6b), page 343 there), it corresponds
to a general result about convexity of pressure functions [42, Section 4.6]. The

existence of the explicit expression (5.2) contrasts with the context of statistics of
continued fractions coefficients [8], where no explicit expression for the variance is

known in general. The underlying construction is due to Benoist and Quint [5].
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For the proof of Proposition 5.2, we mostly follow [34, Proposition 3.3]. As
in [8, Lemma 7], the argument is mainly adapted from [7]; additionally, we will
provide a simpler way to obtain non-positivity (see (5.9) below).

We will use repeatedly the following lemma.

Lemma 5.3. For fg G F1 (p.), we have H((/ o 8) x g) / x (Hg) almost-

everywhere.

Proof. For all x G [0, 1] and n > 1, we have 8(hn(x)) — x, and so

((/ o ^) x g) o hn f x (g o h„).

Summing over n > 1 against 2~n yields the claimed equality.

ProofofProposition 5.2. In Proposition 5.1 we showed p(0) whereas the

value (logp')(0) is easily obtained by differentiating A(r, p(x)) at r 0 and using
the values given in Proposition 4.2.(ii).

We now wish to study the second derivative (log p)"(0), with the goal of proving
that it is negative. For this purpose, it is convenient to consider a univariate function
in place of A(r, z). Let

l(u>) := X(a~lw.

which is constructed in such a way that it is defined and analytic in a neighborhood
of w 0, and also t'(0) 0. There is a simple relationship between f"(0) and the

besought quantity (logp)"(0): differentiating twice the relation A(r, elogp^) 1

and evaluating at r 0, we obtain

lint'w"l'l)/:l0j£; 1.10.1) - (a2p(0)XA(0. i) + Gl Oi. I)
+ «frP<.».ï) + <TW»°X)) (53)

-a2C(0).

Therefore, our task is to prove that l"(0) > 0. To obtain this, we write the eigenvalue

equation relative to £(w). with the aim of differentiating twice, while gathering
information along the way.

For in in a neighborhood of 0 we let Çw fw ip,„ with the notation of
a ' 2e

Proposition 4.1. Recall that fo 1- Then, the eigenvalue equation is

l(w)Çw Hfe"^],
of ' 2 L

where

I / \ \\MX\ + logW (o < x < l),
l/r(x) <

(0 (x 0).

For future reference, we notice that <// e P2(p).
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By local uniform convergence, we may differentiate the above with respect to w,
obtaining

H [ew*(^w + 3^^)]. (5.4)

Let x '= [j^%w]w=o G Evaluating (5.4) at tu 0 and using ((0) 1,

I'(0) 0 and £o 1 yields

X H[V + /]• (5.5)

Before continuing the analysis, we focus on the function / In [51, formula (1.8),
an explicit expression for solutions to cohomological equations related to (5.5) is

obtained. Their construction is effectuated in our case as follows. Define

x i-> xtW := -«_1 / l°g(I + xy)dß(y).
Jo

It is obvious that xi belongs to H°°(D) and is real-valued. For all x G [0, 1], we
have

r1
BI[/i](x) -a~1 ^22~n l°g(l 5 ~~ )d/r(y)

Jo V x + n/

-a~l f 22 2~" loê(A' + y + n) dfj-(y) + or1 22 2" '°g(x + ")
7° n> 1 n> 1

-a"1 log(x + l/y)dfi(y) - HfaT1 log](x)
Jo

*tO) - 2 - H [a-1 log](x).

Since H[x m>- [1 /xj](x) 2, we obtain that xi satisfies (5.5) on [0, 1], hence on D
by analytic continuation. In particular, we have (x — Xi) H(Z ~ Zi)> an(l so' by

Proposition 4.1.(ii),

X-XiGCl. (5.6)

We may now continue our analysis. Differentiating again (5.4) with respect to w,
we obtain

e"(w)Çw + 2£'(w)&çw + i(w)^w H [ew*{f2Çw + 2f^w + £zÇw)\.

Evaluating at iu 0 yields

+ [~ijj2%w]w=o H [v^2 + 2fX + (ä|^^)„,=0]- (5-7)

Here, note that the function \j/2 + 2i/// + (^j^w)w=o is in /^([O, l],/x). We
r)2

integrate both sides of (5.7) against d/z, in order to eliminate the terms 2j2^w
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Since /[0 j] H[/] d/x /|0 jj / d/x for any / G we arrive at

*"(0) [ (f2 + 21///) d/x
2 [o,H

L (i/f2 + 2f/,)d/x (5.8)
[0,1]

where we have used (5.6) together with the value f (// d/x 0. Dehne now (// :

t+/i —/i ; this dehnition is motivated by analogy with the proofof Proposition 3.3

of [34], Note that is real-valued. Using Lemma 5.3, we have

f Xj o $ d/x f xi - M[l] d/x f rfd/x,
J [o, l ] J[o,iJ 4 [0,1]

it + /i)(/i °^)d/x [ U[xß + X\]X\ d/x f Xi d/x.
J[0,1] 4 [0,1] d[0,l]

In the last step, we used the fact that equation (5.5) holds with / replaced by Xi We

deduce

[ (f)2dn= f (\fr + /i)2d/x-2 f (f + /x)(/i o S) d/x
d[o,i] ,x[o,i] d[o,t]

+ f (Xi °^)2d/x
d[o,i]

/ (iA + /i)2d/x- / X?d/x
2[o,i] d[o,t]

f"(0). (5.9)

Now, we note that iß(x) [1 /x\ + a
1

log(.v) tends to +oo as x —> 0,

whereas xi £ //°°(1D>) is a bounded function. We may therefore lind ß > 0 such

that |iAOO| > 1 for all x £ (0, ß). We deduce that

r (0) f (h2 d/x > m((o, /?)) nß) > «
4[o,i]

as required.
Since, by (5.3), we have (logp)"(0) — ^a2l"(0), the explicit formula (5.2)

follows from (5.8) and (5.9).

6. Proof of Theorem 1.3

By the definitions (2.16) and Cauchy's formula, for |r| <77 with r) sufficiently small

we have

2yvE7V[(SyVrT] ^-(f) z~NSr(z) —
2ni J|z|=i z
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where the circle is oriented counter-clockwise. By Proposition (5.1) and the residue
theorem for some 0 < c < \ we have

2"E„((S„)-) z-"S,(z)-,
p(t)n 2ni J\z\=i,+c z

where the circle is oriented counter-clockwise and

P,,p(T) WO
R(r)

p(r)(l -p(r))^A(r,p(r))

Note that R(x) is analytic for | t | <77 and R(0) 1. We bound the integral trivially

-L <f> z~N ST{z) — « (I + CyN « 2*(1 + 2c)~N,
2tci J\z\=i+c z

uniformly for |r| < 77. At the possible cost of reducing rj, we may write R(r)
exp{F(r)}, and similarly 2p(r) exp{—f/(r)}, for two functions U and V which
are holomorphic for |r| < rj. By Proposition 5.2 we also have

17(0) F(0) 0, U'(0) - f log dp., U"(0) > 0.
2 7(o,i]

In the same range of r, we conclude that

Ew((S7v)"r) exp(AC/(r) + K(r)){l + 0((1 + 2^)}
for some c > 0. This is the statement of Theorem 1.3, up to changing r to —r.
Theorem 1.1 follows at once using Hwang's quasi-power theorem, for which we refer
to [ 17, Lemma IX. 1 ] and to the papers [21,22]. We note for future reference that the

variance is related to p by
a2 -(logp)"(0). (6.1)

Remark 6.1. - The foregoing computations may be seen as a materialization of the

link between the spectra of transfer operators associated with the Farey and Gauss

map. There have been many works on this topic: see e.g. [23,39,40], and also [16] for
works on the numerical aspect. Another useful reference is the introduction of [14].

In the above, by using the Cauchy formula on the generating series (2.16), we
have avoided completely discussing the Farey map and its associated tranfer operator

+ 1 / 2 Vx -I-

whose functional analysis is made difficult by the fixed point with derivative 1 (neutral
fixed point) of the Farey map at 0. Instead, we extracted the precise information we
needed, which is the exponential convergence for iterates of the function 1.
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7. The mean-value a

CMH

In this section, we detail and prove Theorem 2.1.

7.1. Variants of the integral expression.

Lemma 7.1. For the quantity a defined in (5.1), we have a I log(l+x)d/x(x).
Jo

Proof. We remark that

log(l + x) + H [t h> log( 1 + Ol(x) log( 1 + x) + 2~" log
1 + " + A

' v n + x /«>1

Y2 2~n log(n + x)
n>\

— H[log](x)

by splitting the logarithm into a difference. Integrating against d/i(x) and using (4.1

yields the claimed equality in the form

2 J log(l + x) d/x(x) — J logd/z.

We can now justify assertion (i). Using Lemma 7.1, we see that

a [ log(l +x)d/x(x) [ log(2 —x)d/x(x) log2+ [ log(l - f)d/x(x)
Jo Jo Jo

where we have used the symmetry d/x(l — x) ^d/x(x). Expanding the logarithm
into a power series, we recover the definition (2.5) used in [2].

Note that Conjectures 8.1 and 8.2 of |2J, which are concerned with similar
identities, can be proven along the same lines.

7.2. Lipschitz points of In the paper [25J, Kinney studies the set of Lipschitz
points of the Minkowski function 4>. There has been many consecutive works on this

topic, see e.g. [27,28,361.
Theorem 1 of [25] states that there exists a set V C [0,1] with /x(V) 1 and

Hausdorff dimension ß on which the Lipschitz exponent of 4> is ß. The value of ß
is recognized, using Lemma 7.1, to be precisely

l0§2
^

2a

Theorem 1.1 may be used to recover Kinney's result. We first give the following
lemma, which is easily proved by induction.
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Lemma 7.2. For all N > 0 and m e {0 2N — 1}, we have

s(m + 1) s(m) 1

s(2N + m + 1) s(2N + m) s(2N + m)s(2N + m + 1)

By equations (7.1), (2.8), and Theorem 1.1 with t ± log N (say), we obtain

<m + 1

(7.1)

log - °(5")| ~2Na + <>(</NlogN) (7.2)

for all m in a set Rn C {0,..., 2N — 1} of cardinality \Rn\ >2n — 0(2n/N2).
We then define

Ur-s ii r m m + 1 "I

n u [vf^w\
N0>ON>N0 \<m<2N-I

XN

Smce^2N>0(\ — \RN\/2N) < oo, the set U has Lebesgue measure 1. Nowletx e U

and e > 0 be fixed. Let N0 No (e) > 1 /e3 be an integer, such that

X nN>N0 U(m-l,m,m+l)6i?3
m m + 1

l2N' 2N -

Then for 0 < h < 2~N°, whenever 2~l~N < h < 2~N, we have

m m + 1

[ 2iv+t ' 2n+
j-J C [x — h, x + h] C

m' — 1 m' + 2"

2n ' 2N -

for some integers (m,m') satisfying m' e Rn+i and (m — l,m,m + 1) Rjy.
From (7.2), we deduce

e-N(2a+0(s)) < + h^_ <p(x _h)\< 2,&-N(2a-0(8))

Since both the left-hand side and the right-hand side are of the order h2<*P°ê2+o(e)^

we conclude that the Lipschitz exponent of <f> at any x G U is equal to 2a/ log 2.

Additionally, <f> and T are inverse bijections, therefore the Lipschitz exponent of T at

any x e V := <î>(t/) is log2/(2a). Because /i(L) is equal to the Lebesgue measure
of (7, which is 1, we obtain that on V the Lipschitz exponent of T is [i.

Finally, one has

"= u n u
No>0N>No \<m<2N

s(m + 1) s{m)
s(2N + m + 1

' s(2N + m)
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and, for any fixed u > 0

1)

2^(1 + 0{N~2))e"2uNa+o{N)

ç(\Qg2—2uoi)N+o(N)

by (7.2). The fact that V has Hausdorff dimension < ß then follows

immediately. To prove the opposite inequality, we proceed as in [25] and observe that
since has Lipschitz exponent ß, then for all £ > 0 there exist h > 0 and a subset

V c V with fi(V') > say, such that

tf(x + h', x — h') fi([x — h\ x + h']) < (2h')^~e (7.3)

for all x e V and all 0 < h' < h. Now let {/, | i e /} be a cover of V with intervals/,
satisfying |/,| < h. Then, taking x,- e V fl /, we have/, ç /.' ;= [x,—|/,],x,- + |/,[]
and I//| < 21 /j I. In particular, by (7.3),

2
< < E^7/) < EWi/-8 < EWO^-

~~ is/ ie/ is/
This implies that the Hausdorff dimension of F' (and henceforth that of F) is > ß—s.
Since s is arbitrary, the result follows.

7.3. The constant 2a as a metric entropy. We now explain how one may interpret
formula (1.3) as the computation of a certain partition entropy. This may be used to
derive another expression for a.

Recall that the Farey map !F was defined at (2.13) (see Figure 5a). Also, in
this section only, we denote by v the Lebesgue measure on [0, 1], We start with the

partition
N 2N — \

[0,1) V F"*[0,1) U Jm,N,
k=0 m—0

where Jm^ are consecutive segments; explicitly, we have Jm,N ))•

By (7.1) we have

v{Jm,N) ,„N wtTv I I TT' 2
s (2 + m)s{2N + m + 1)

Since s(lN+{) ,v(2'v), we deduce

J2N2 2N-l

- 2 E ^Jm,N)\ogv(Jm,N) E 1°gK2iV +m). (7.4)
m=0 m—0

E s(m) s(m + 1

l<m<2 v —1

(m—l,m,m+l)e/?^

.v(2^ + m) .v(2^ + m +
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The left-hand side can be seen as a relative entropy with respect to the

partition (Jm^)m• As N tends to infinity, we can adapt the proof of Rokhlin's
formula [41, Theorem 12.10] to show that

2^ — 1 1

] z * r 1

- Y log v(Jm,N)—» / log \!F'(x)\ d/x(x). (7.5)
N

m=0 Jo

To see this, note first that the Rényi condition [41, formula (12.2)] holds in our case
in the weaker form

sup
(x,v)e[0,l]2

f'(x) < N o( 1)

f'(y)
for any inverse branch x/r of !FN; the steps (i) and (ii) on page 133 of [41] are easily
carried out and yield (7.5).

For the equations (1.3), (7.4) and (7.5) to agree, the equality (2.6) must hold.
Indeed, since log |,F'(x)| —21og(max{x, 1 — x}) and d/x(l — x) — d/z(x), we
deduce

f log 13r'(x)\ d/z(x) —4 f (logx)d/x(x) 2 f log(l + x)d/x(x)
Jo J1/2 Jo

where we have used the equality H[f i-> lr>i/2 logf](x) — |log(l + x). By
Lemma 7.1, the claimed equality (2.6) follows.

7.4. The constant a as a Lyapunov exponent. We have already noted in (2.1

that the quantity log S^v may be expressed as a random product in the following way:
define, as earlier, the measure r] on GL2(M) by rj ^<?u0 + > where Ao — J }

and Ai J Ç). Let also v J and /(x) x • (^). Then

log S AT log I f(gN " ' £l t) I

where gj e G/.2(M) are taken independently at random according to rj (which simply
means gj A0 or A\ with equal probability). Then, by definition, the mean-value a
of logS/v should coincide with the first Lyapunov exponent X\ of r/; by a formula
due to Furstenberg [18, Theorem 8.5], we have

h f •ogy77^dr7(g)d^(u) (7.6)
7GL2(M)xP(R2) |./(W)|

for any measure £ on P(M2) with rj * Ç ç. Let us now explain how this expression

may be used to recover the formula (2.4), which amounts to finding an admissible

measure £. Paramatrizing P(R2) IU {oo}, consider the Minkowski measure /x
as being defined on all M U {oo} but supported on [0, 1], Let T (j x); note
that 774! A()T. Moreover, the Minkowski measure satisfies

li \{Aïn + (AiT)*ii).
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Indeed, we have H* // /i, but from the definition of H,

H*/z J22~n(TAo)y \{MT)*li + AA*U* n
n> 1

since TA'^ A\TA^ 1. Define £ as

£ 1^ + 1(7».
A small computation, using A0 TA\T and A0T 7711, yields

t, * Ç \{A^ + {AxT)*ii + (!TAXT)V + (TAtfii)
t

so the conditions for the integral (7.6) to hold are met. The integral on the right-hand
side of (7.6) then reads

which evaluates to a by (2.4) and Lemma 7.1.

7.5. Explicit expression for the variance. We recall that the variance in Theorem

1.1 is related to r i-> p(r) by formula (6.1). The expression stated in
Theorem 2.1.(v) immediately follows using formula (5.2). Note that the alternative

expression

is particularly well-suited for numerical computation on the lines of [2].
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