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Statistical distribution of the Stern sequence

Sandro Bettin, Sary Drappeau and Lukas Spiegelhofer

Abstract. We prove that the Stern diatomic sequence is asymptotically distributed according to
a normal law, on a logarithmic scale. This is obtained by studying complex moments, and the
analytic properties of a transfer operator.
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1. Introduction

The Stern diatomic sequence [45] is the sequence defined by the particularly simple
recurrence relation

s(0) =0, s(I)=1, s2n)=s(n), sCn+1)=sn)+sn+1) (1.1)
for all n > 1. The first few terms are
sl ey = 005 0,1, 251,352, 3, 14, 3.5,2, 5, 8,4 Lsaa i )

It is an example of a 2-regular sequence [1, Chapter 16, Exercise 32], and enjoys
various connections with mathematical objects. As important examples, the Stern
sequence is related to the Stern—Brocot and the Calkin—Wilf tree.

Starting from the set Fy = {%, %}, foreach N € Nx, let Fy 4 be built from Fy
by inserting, between any two consecutive fractions 7 and 7, its median g_";g.

We may present the resulting construction as an infinite “tree”, labelled by
rationals in [0, 1], which is known as the Stern—Brocot tree': see for instance
Chapter 4.5 of [19] or Section 1.5.1 of [26]. The numerators and denominators
appearing in Fy, ordered by size of the fraction, are respectively the values of s(m)
and s(m + 2V), for m € [0, 2V].

Let Jy = Z N [2V,2¥*+1) 1In this paper, we will study properties of the
values s(n) for n € Jdy: as we mentioned above, these are the denominators of

IClassical constructions start from {?, (')}, which makes little difference for our purposes.
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Figure 1. The first four rows of the Stern—Brocot tree.
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the elements of the N -th row of the Farey tree described above. Several properties
of (s(n))neq, were recorded by Stern [45] and Lehmer [31]. There has been much
interest in understanding the structure of the largest values of s(n) [9,10,12,30,38]:
as Lehmer showed, we have max,egq, s(n) = Fni2, where (F,), is the Fibonacci
sequence. Recently, Paulin [38] gave a complete description of the | N/2| largest
values taken by (s(n)),eyg,: they are given by various combinations of Fibonacci
numbers.

Another interpretation of the Stern sequence can be obtained from the Calkin—
Wilf tree [11]: it is the infinite binary tree, labelled by positive rationals in reduced
form, starting from 1 T and where each node < has children # and 4 +b Each
positive rational appears exactly once. In thls case the denominators appearing at
level N are the values of s(m + 2V) for m € [0,2V).

1
1

/\ /\
SN SN SN SN

Figure 2. First four rows of the Calkin—Wilf tree.
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In the present paper, we are interested in the question of the statistical distribution
of values of s(n). A relevant setting consists in endowing, for each N > 0, the
finite set d;y = Z N [2¥, 2V 1) with the uniform probability measure; let Sy be the
random variable

Sy = s(n)
where n is taken uniformly randomly in £». Another way to look at this is the
following: start from the root of the Calkin—Wilf, and follow a walk of N steps down
the tree, choosing the left or right child with equal probability. Then the random
variable Sy is the denominator of the fraction eventually encountered.

Our main result is the following effective central limit theorem for log Sy .

Theorem 1.1. Forsome constants o, o >0, as N tends to infinity, the values (log s(n))
are asymptotically distributed according to a Gaussian law, with mean aN and
variance o2 N : fort € R satisfying t = O(NV/9), we have

l S . N t —v2/2d 1 t2 —1‘2/2
PN{MSI}: e_—v+0(( t17)e ) (1.2)
ovN oo 27 VN
Moreover, for some (vy,v;) € R2 and 0 € [0, 1), we have
En[logSnx] = aN +v; + 06"), (12]) (1.3)

Vn[logSn| = 0>N + vz + O(NOM).

Remark 1.2. — This answers a question posed in [30]; the error term in (1.2) is
relevant and optimal in the whole central limit range t = O(N /).

— The constants @ and o are numerically close to
a ~ 0.396212..., o0 ~0.148905...

Both constants admit expressions as integrals of elementary functions with respect
to a certain singular measure, the Minkowski measure (see formulas (2.4) and (2.7)).
They are studied in more detail in Section 2.1 below.

— Formula (1.3) was proved very recently by Bacher [2, Theorem 12.1] with a strong
quantitative error term O(2~"). The approach used there does not require complex
analysis, but is ineffective for other moments than the first.

We will in fact prove that small complex moments of Sy admit a quasi-
powers expansion in the sense of Hwang [21,22], meaning that Ey[(Sy)7]
behaves asymptotically as A(t)" B(t), for some holomorphic functions A4, B in
the neighborhood of the origin.

Theorem 1.3. Forsomen > 0and 6 € [0, 1), there exist holomorphic functions U, V
on the disc {t € C : |t| < n} such that

En[(Sn)7] = exp {NU(z) + V(D) }(1 + 0(8™)), (1.4)
uniformly in N > 1 and |t| < n. Moreover, U"(0) # 0.
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This kind of estimate gives rise to the asymptotic normal law described in
Theorem 1.1, with speed of convergence, but also to bounds on probabilities of large
deviations, and asymptotic formulae for E[(log S & )], with error term O (N¥~18V),
for any fixed k > 1. We refer to the above-quoted papers of Hwang [21,22], and to
Chapter IX.5 of [17], for more explanations.

In principle, explicit estimates for 6 could be obtained numerically. Experiments
seem to suggest that any fixed 6 > 1/2 is admissible, at the cost of reducing the value
of n accordingly.

2. Overview

To place Theorem 1.1 into context, we quote from [ 11] the fact that (s(n +1)/5(1n))neg
is the N-th row of the Calkin—Wilf tree (Figure 2). It is easy to deduce from this the

expression
s(n+1) 1
(“h ) = A encs () e

where n = 2V + Z?’:_Ol £;2/, ej € {0,1}, Ap = (§1) and 4, = (19).
Picking n € J y at random means choosing ¢; € {0, 1} independently with equal
probability. This is an instance of a problem about random products of matrices,
which is a vast and active area of research; we quote the seminal papers [4, 18], and
we direct to the recent monograph [6] for more references. A general result such as
Theorem 1.1 of [5] would indeed yield a slightly weaker version of our estimate (1.2).
We also refer to | 15] for a recent work concerned with a related situation (a “law of
large numbers” for measures satisfying a recurrence relation similar to (1.1)).

In order to obtain our precise statements, in particular Theorem 1.3, we rely
on similar pools of ideas; however we will take a different approach, and cast the
arguments in a more direct form, by exploiting a connection between the Stern
sequence and the Minkowski question-mark function [33, Fig.7]. As we will see
shortly, this function arises naturally in our problem as a conjugacy between the two
dynamical systems underlying the recursion formulas (1.1): the binary map and the
Farey map, describing respectively the transformation rules of n and s(n). Let us first
describe it following [13], as the function mapping an irrational number x € (0, 1] to

S (_])n—l—l B 1
?(JC) :Zm, 1fx:[0,a1,a2,]=a—l (22)

n=1

This function is extended as a strictly increasing, continuous bijection from [0, 1] to
itself. Let us define for notational convenience

W(x) = 2x), &x):=21x).
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Figure 3a. Graph of the Minkowski func- Figure 3b. Graph of Conway’s box func-
tion ¥(x) = 7(x). tion d(x) = 71 (x).

These functions are drawn in Figures 3a and 3b.

The question-mark function was introduced by Minkowski for its properties of
mapping rational and quadratic irrational numbers into, respectively, dyadic and
non-dyadic rational numbers. By construction it is increasing and continuous, but
it is not absolutely continuous with respect to the Lebesgue measure, and in fact it
is singular [44]: it has zero derivative for Lebesgue-almost every x € [0, 1]. It is

however Holder continuous with Lipschitz exponent %.

An important property for us is the fact that the Minkowski function is a
topological conjugation between two maps from [0, 1] to itself, the Farey map and
the binary map, which are implicitly at play in the recurrence relation (1.1). We will
detail this further below in Section 2.2; a very practical form of this fact is given by
the identity [2, Proposition 2.1]

s(m)
S(ZZVH—,; m) - q)(ZEN)

valid forall N > 0and m € {0, 1,... ,2N}. This formula will be our starting point:
it provides a fast algorithm to express s(n) for n € d in terms of product of values
of @, and brings the problem into the framework of dynamical analysis of Euclidean
algorithms [8,46].

In the rest of this section, we will first gather some facts about the mean-value o
(Section 2.1), then we provide a naive heuristic towards Theorem 1.1 (Section 2.2),
and finally we outline our proof (Section 2.3).

2.1. The mean-value « and the variance 0 2. The constants o and o appearing in
the mean-value estimate (1.3) admit explicit expressions in terms of the Minkowski
function. Let i denote the Minkowski measure on the interval [0, 1],

dp(x) = dW(x) = d(®1(x)). (2.3)
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Then the constant « is given by

1
0= —lf (log x) du(x). (2.4)
2 Jo

The next theorem records and links several different expressions of the constant «
and o.

Theorem 2.1. (i) Let my := [, x¥ du(x). Then

(e ¢]
my

this agrees with the definition given in [2, Théoreme 12.1].

(ii) We have
1
o= f log(l + %) dpu(x);
0

therefore the |L-almost-sure Lipschitz exponent 8 of x + W(x), given in [25],

is related to a by f = ";i ]

(iii) Consider the system ([0, 1], ¥, u) given by the Farey map ¥ (x) = min{ >, lx;x}.
Then we have

1
2 :[ log | F'(x)| du(x); (2.6)
0

in this form the constant 2a has an interpretation as a relative metric entropy.

(iv) The constant « is the maximal Lyapunov exponent Ay of the measure n
on GL(R) defined by n = 284, + 284, where Ag = (§ 1) and Ay = (19).
An n-stationary measure £ on P(R?) = R U {oo} is given by

d5(0) = bp+ 4T (T(x) = 1/x),

where ju is extended trivially to a measure on R U {oco} with support in [0, 1].

2

(v) The variance o~ can be expressed as

e ! 1+ y{3 ?
o2 = Ej(; (logx—}—aL%J —|—f0 log (—%ﬁi) du(y)) du(x). 2.7)

Remark 2.2. The above facts and comments are detailed and proven in Section 7,
where we will also show that the results of [25] can be easily deduced from
Theorem 1.1. The main point in (iv) is the explicit expression for the stationary
measure, which allows one to compute « using a formula of Furstenberg.

Bacher [2] showed that the moments mj; can be computed very accurately,
allowing him to obtain a 50-digits approximation for «.
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2.2. Iterates of the binary map, and a heuristic toward Theorem 1.1. In this
section we derive a formula for s(n) in terms of the function &, and then state a naive
heuristic towards the fact that N ™! logSy — « inlaw as N — oo.

Consider the function @ defined on the dyadic rationals of [0, 1] by the formula

m s(m) m
o)== (M), 28
2N s(m + 2N) 2 19,1] (2.8)
As we have mentioned earlier, the function @ is given by the inversion bijection

of Minkowski’s function; but let us ignore this for a moment. The recurrence
relations (1.1) are equivalent to the facts that:

(1) The definition (2.8) is well-posed, i.e. it genuinely only depends on the
ratio m /2%,
(2) Whenever N > 0and 0 < m < 2V, we have

2N+ N

fb(l ( m m+ l)) s(m) 4+ s(m + 1) 2.9)

g T s(m +2N) L s(m 4+ 1+ 2N)

Additionally, we recall the fact that the Farey tree described in Figure 2 enumerates
all rational numbers on [0, 1]. Since, by (2.9), the function ® is increasing,
and (®(0), ®(1)) = (0, 1), we obtain that ® may be extended to a homeomorphism
from [0, 1] to itself. By these facts, a result of Panti [37, Proposition 1.1] guarantees
that ® must be the inverse of the Minkowski function.

We now iterate the relation (2.8), in order to express s(2¥ + m) in terms of
values of ®. Given 1 < m < 2V, there is a unique N’ € N, with N’ < N, such
that 2V < m < 2N+ Write m = 2V *1 — i/, sothat 1 < m’ < 2V’ 1t was noted
by Stern [2] (see [31] for an account) that s(m) = sVt —m") = sV + m").
Therefore, by (2.8), we deduce

-1 "
s@N +m) = CD(%) s+ m). (2.10)
It is easily checked that the map B,:m /2N +— m’/2N" is given by
2-2kx forx e 27k 27k k> 1,
By (x) = ) .Orx [ k= (2.11)
0 for x € {0, 1}.

This map is shown on the right, in Figure 4b. It is the jump transformation of the
binary (or “tent”) map B8(x) = 2 min(x, 1 —x) on the interval [%, 1] (see [26, Fig. 1.8,
p.46]). The map B is shown in Figure 4a.

Therefore, for any dyadic number m/2¥ € (0,1], if we denote by K =
K(m/2") > 0 the least integer such that 8K (m/2V) = 1, then by iterating (2.10),
we obtain

e om (s(Z)o(m(5) o (5) e
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Figure 4a. Graph of the binary map x > Figure 4b. Graph of the jump transforma-
B(x). tion x > By (x).

The formula (2.12) has the advantage that the points m /2" are easily described,
however, the right-hand side involves the function ®. At this point we may use the
property that the function ® conjugates the binary map with another simple map: by
Proposition 1.1 of [37], we have the conjugacy relation

B=0loFod

between the binary map 8, which we have already mentioned, and the Farey map on
the interval [0, 1], defined by

?(x):min(lfx,l;x). (2.13)

By induction, we obtain the relation
B, =0 'oFod (2.14)

between the map B,., defined at (2.11), and the “jump transformation” of the Farey
map on the interval [%, 1], which is known (see e.g. [23,40]) to be precisely the Gauss
map

I/x—n forxe [ﬁ,

0 for x € {0, 1}.

1
=)= 1,

Folx) = 8(x) :=

We mention at this point that the Lebesgue measure is invariant for the binary
maps B and B,.. Upon conjugating, we deduce that the Minkowski measure p is
invariant for the Farey and the Gauss maps; this fact will be used repeatedly in our
arguments. Moreover, the measure p has maximal entropy log 2 for the Farey map;
by contrast, the Farey map also admits dx/x as a unique invariant measure absolutely
continuous with respect to the Lebesgue measure, but it is not finite, and has entropy
zero. We refer to [29] and to Chapter 1.2 of [26] for more details.
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Figure 5a. Graph of the Farey map x — Figure 5b. Graph of the Gauss map x +—
F(x). g (x) = Fu(x).

By (2.14), relation (2.12) becomes the following.

Proposition 2.3. Let N > 0, | < m < 2V and denote by K = K(m/2V) > 0 the
least integer such that (&K o ®)(m /2NY = 1. Then

e = (o) (o) o (o(3%))) - @

Equivalently, we have

K(m/2N)—1

logs(2Y +m) = — Z log ((gi © (D)(zﬂN))

i=0

Our situation at this point is formally similar to the work of Baladi and Vallée [8],
concerned with statistical properties of orbits of rationals under the Gauss map. Our
“cost function” here is x — —log x. This analogy provides a heuristic explanation
for Theorem 1.1 as follows.

Itiseasily seenthatforr >0and N >0,
It follows that, as N — oo, we have

fme{l,....2N} : K(Z) = ri|=()).

K(m/2%) ~ =

for a proportion 1 + o(1) of integers m € {I,...,2Y} as N — oo (which we
abbreviate by “generic m”).

On the other hand, by Theorem 5.12 of [35], we have that for a generic
m e {l,...,2"V}, the pre-images (£i(2%))f‘[:0 by the binary map will equidistribute
as N — oo according to the Lebesgue measure on [0,1]. We may then
guess that the same is true for the pre-images (.5!3’@(2%));2(81/ 2") by the jump
transformation B.. After conjugation by &, the Lebesgue measure is sent to
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the Minkowski measure p = d(®~!): in particular, we are led to expect that for
generic m € {1,...,2"}, we have

K(m/2N)—1

1 i m :
L log ( (9" q:(—))~f1 dp(x),
X/ ; og (8" 0 ®)( 25 | logx du(x)
and therefore for generic m € {1,...,2NV},

N 1
logs(2N + m) ~ —?f log x dju(x).
0

This is indeed a consequence of Theorem 1.1 by our definition (2.4).

This guess, which might seem naive at this stage, echoes a similar phenomenon
for real, resp. rational trajectories under the Gauss map [8,20]: see in particular the
parallel between Theorems 1 and 3 of [8], and the factorization “w(c) = u x fi(c)”
stated there on page 350. For us, “u” plays the role the typical ratio of the length of
rational trajectories K(m/2V) by N; and “fi(c)” is the generic average of the cost

function over real trajectories.

2.3. Outline of the proof. Having at hand the expression (2.3) for the Stern sequence
in terms of iterates of the Gauss map, the first step towards the proof of Theorem 1.3
is to construct a generating series for the moment on the left-hand side of (1.4). The
precise form has to be amenable to analytic tools. For (z,z) € C? of small enough
moduli, let

Se(z) = ) 22)VEn [(Sn) 7] (2.16)
N=0
= Z 2 Z s(n)~".
N=>=0 nedy
The framework of analytic combinatorics [ 17] relates the properties of Sy (z) (analytic
continuation, meromorphy, location of poles, spectral gap) with the asymptotic
behavior of Ex[(Sy) 7]

The next step is to obtain the analytic information required on S;(z). To this end,
we adapt methods of “dynamical analysis”, introduced by Vallée and described for
instance in [8,46]. The main point, which is behind the choice of the generating
function S7(2), is the expression

1
Se(2) = ;— > (W [)(1). (2.17)

k>0

This involves the iterates of an operator H, ,, which acts on bounded functions
f:]0,1] = C by

" 1
Hr,z[.f]:t = ,Z(:) (n + t)ff(n, + l‘).
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The operator H,  is a particular case of a weighted Ruelle—Perron—Frobenius transfer
operator [3,42]. Our situation is similar to the work of Baladi—Vallée [8] on the
Gaussian behavior of Euclidean algorithms. The pole of smallest modulus of S;(z)
will occur at a point z = p(7), where H; ; has dominant eigenvalue 1, and the Cauchy
formula transfers this information into the estimate (1.4) with U(7) = —log(2p(—1)).

The deduction of Theorem 1.1 from Theorem 1.3, which is standard in probability
theory, will be made by appealing to Hwang’s Quasi-Powers theorem [21]. We remark
that the uniformity of Theorem 1.3 is crucial in this deduction.

As in [34], we have chosen to include details of the arguments from spectral
theory, rather than quote them as a black box, so that readers unacquainted with these
topics, but who are still interested in the arithmetic application, may follow through.

The plan is the following: In Section 3, we derive the expression (2.17). In
Section 4, we study the operator H; ;, with a particular emphasis on the reference
pair (t,z) = (0, %). In Section 5, we carry out the analysis of S;(z). In Section 6,
we complete the proof of Theorems 1.1 and 1.3. Finally in Section 7, we return to
the mean-value « and the variance o2, and prove Theorem 2.1.

3. Expressing the moment-generating function

In this section we express the moment-generating function on the left-hand side
of (1.4) in terms of a weighted transfer operator for the Gauss map, continuing the
arguments of Section 2.2.

We recall Proposition 2.3. Note that the Gauss map has the property that §'(x) =
—1/x2 for x > 0. It is therefore very convenient to use it in conjunction with (2.15)
to obtain the “product of cocycles”

s@N £ m)? = ﬁ 19 |08 (cb(%))

- (o( )

The inverse branches of the Gauss map § form the set

3.1)

=y n =) () = —— (x € [0, 1]).

n+x

For any given K € Ny, the set #X of inverse branches of the function gk, [0,1] —
[0, 1] are then given by

JfK:{hnl Beretfly . § By = 1)

where it is understood that #° = {id}. The decomposition h = h,, o ---0 hy, is
unique, therefore, it makes sense to define

w(h) :=ny +---+ng.
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An immediate verification shows that
{2 10<m =<2 modd} = 87V ({1})
and thus, letting #* = UKZ()JL”K,

{@(Z) 10=m <2V modd} = F N ({1})

= {h(1) | h € #*, w(h) = N}. S

Gathering the above, we obtain

2N
Sl = Z il Z s(m +2V)7"

N>0 m=1

2}"
= Z zN Z Z s(m +27)7°F

N=>0 0<r<N m=1
m odd

= LYY Y 1 ek

1 —2z
r=0 K>0 pege K
w(h)=r

1
= — > 2@y, (3.3)
hedt*

where we have extracted the largest power of 2 dividing m in the first line; the third
line used (3.1) and (3.2), and the last line followed by the derivative formula for the
inverse.

The sum over A € JH* is now recognized as a sum of iterates of a
“density transformer”, or transfer operator, also called Ruelle-Perron—-Frobenius
operator. These objects, and their spectral properties, have a long history and
have been extensively studied, notably in connection with continued fraction, and
thermodynamic formalism. We refer to the surveys [42], the lecture notes [32] and
the monographs [3,43]. More explanations and references relevant to our case are
found in Section 2.2 of [8]. For all (z,z) € C? with |z| < 1, let the operator H .
act on continuous functions f* € €(]0, 1]) by

He[£10) = D 2" [W@O(f o h)(2)

heJt
_y n ( 1 ) (3.4)
= (n+r)ff n+t/
Then from formula (2.7) of [8], we have that for all K > 0
HE 10 = Y 2@ 0 72(f o b)) (3.5)

hex K
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Let now
W={(r,z) € C*: |z| < min(1,27%T)}. (3.6)

By Equations (3.3), (3.4) and (3.5) above, we conclude the following.

Proposition 3.1. For (t,z) € ‘W, we have

Se(2) = = S HE, (1) = —— (14— H2) ™ (1),
k>0

4. Properties of the transfer operator

As we have mentioned, spectral properties of transfer operators have been extensively
studied; we refer again to the lecture notes [32, Sections 7.1 and 7.4], and the
references therein. The actual operator H; ; has been defined and studied at many
occurrences in the literature: see [40, Formula (10)], [14], [23, Formula (3.39)].
Indeed, many of the forthcoming properties of H , for real z can be found in [40].
Nonetheless, to make the arguments as clear as possible for readers unacquainted
with these topics, we will provide full proofs, following the presentation of [34],
apart from perturbation theory of operators, which we will quote from [24].

4.1. Definitions. A critical first step is to define an appropriate functional space
in which to study H, .. For our arithmetic application, two constraints must be
satisfied: the interval [0, 1] should be contained in their domain, and it must include
the constant function 1 and all its iterates under H; , for all (z, z) in a neighborhood
of the origin.

Consider the domain D = {f € C : |t — %| < 1}, and the set of functions

H*®D) = {f:D — C : f is holomorphic and bounded}.

For (z,z) € Wand f € H*(DD), we define H; , as in (3.4), taking the principal
determination of the logarithm.

For T an operator, we denote by srd(l') the spectral radius of T. We further
recall the definition of the Gauss map and its inverse branches,

1 1
/% =8 %€ [z 7D () 1= 1 .
0, x €10, 1}, n+x

g(x) 1=

4.2. Decomposition of the transfer operator. In this section, we obtain the basic
properties of the operator I, ;. The arguments involved have a long history [32];
we will mostly follow the presentation found in [34], which is well adapted to our
setting. We are interested in the behavior of IE 5 [(Sx)*] when 7 is in a neighborhood

of T = 0. At this value the power series S; has radius of convergence % and thus
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of particular importance for us is the value (t,z) = (0, %), around which H, ; will
have 1 as an eigenvalue. We denote

H 5= Ho,

=

We will first focus on Hl, then on the case t = 0, |z]| = % and finally we study
arbitrary (7, z) using the theory of analytic perturbation (as in [24, Chapter IV]).

Proposition 4.1. (i) For |z| < 1 and © € C, the operator Hy ; is compact and
depends holomorphically on (t, z) in the sense of |24, p.366].

(ii) The eigenmeasure of the adjoint operator * is ., that is, for all € L'(u) we
have H[ f] € L'(n) and

[EGE R .0

Moreover, the operator H has a simple isolated eigenvalue equal to 1; the
corresponding eigenspace is generated by the constant function 1. Finally, this
eigenvalue is the only element of modulus 1 in the spectrum of H.

Furthermore, for all small enough §; > 0, we may find §, > 0 and 6 € [0, 1) such
that, writing

VY, = {(r,z)eC2:|r[§51, z—%ls&},
YV, 1= {(r,z)€C2:|‘£| <47, |Z| S%—I-Sz, |Z—%| 251}7

the following holds.

(iii) For (tr,z) € Vi, Hy; has a simple and isolated dominant eigenvalue at
A(t,z) € C with eigenfunction f, € H>®(D) ~ {0}, also, A0, %) = 1 and
fo L = 1. In particular, we have the decomposition

Hye,, = Az, Z)Pr,z + Ny z, 4.2)

with Py ; and Ny ; two compact operators on H*>°(ID). Moreover, the image
of Py, is one-dimensional: ImP;, = f;.C and f;; = P -[1]. Finally, we
have strd(N; ;) < 0 and Py ;N; ; = N ;P = 0.

(iv) For (t,z) € Vi, fr.z and A(t, z) depend holomorphically on both variables.
(v) For (t,z) € Vi, we have std(Hl; ;) < 0.

Proof. (i) LetD := { e C : |t — %—| < %}. We have that s, maps D into D for
all n > 1. In particular, all the elements of the sets

S:={foh,|feH®D),

| flloo < 1}
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can be extended to functions in the unit disk of H °°(I[3). By Montel’s theorem the

set obtained by these extended functions is pre-compact with respect to the compact-

open topology on H(ID) and thus S is pre-compact with respect to the uniform

topology of H°°(ID). In particular, the operator f +> [ oh, on H*°(ID) is compact
zh 1

and thus
~ (n+-)* f(n -+ )

is also compact (and holomorphic in (7, z)). The same then holds for H , since its
defining series converges locally uniformly in (7, z).

(ii) One has that H[ ](x) = U[f o ®](®~!(x)), where U is the Ruelle operator
relative to the binary map B, defined at (2.11); since the Lebesgue measure is an
eigenmeasure for U* [26, Prop.2.3.21] with eigenvalue 1, it follows that g is an
eigenmeasure for H* with the same eigenvalue. One could also verify this directly
from the definition (2.2). Indeed, since W (h,(x)) = 27"(2 — W(x)) for alln € N*
then one has

f

pw(A) =27"u(h, ' (A))

; L], with x € [0, 1]. By the monotone class lemma one

n+1’ n+x

(AN s 31) = 27wy (4)

for all ;u-measurable set A, and finally

2 / (F o) i = j # g
[0,1] [1/(n+1).,1/Rr]

forall f € L'(x). Summing over n > 1 yields (4.1).

Since M is a compact operator, the non-zero elements of its spectrum are isolated
eigenvalues of finite multiplicity; also, notice that H[1] = 1. Let /' € H°°(ID) be an
eigenfunction with eigenvalue A normalized so that max;c[o,11| /()| = | f(t0)| =1
for some ty € [0, 1]. Then, by the definition of H[ f] and the triangle inequality we
have

for any interval A = |
also has

A = Ul = |2 s () < 2 =
nx=1 n>1

Thus, |A| < 1. Also, if [A| = 1 then the equality holds everywhere and so there exists

¢ € C of modulus 1 such that f(n_|l_t0) = ¢ forall n > 1. Since f is holomorphic
1

and my has 0 € D as an accumulation point, we must have f = ¢1. Thus, A = 1
is the only eigenvalue of modulus 1 and ker(IH — Id) is 1-dimensional. Moreover, if
(H —Id)?[ f] = 0 then (I —Id)[ /] is an eigenfunction of H with eigenvalue 1 and
so (H—1Id)[f] = c1 for some ¢ € C. Integrating this equation with respect to du
by (4.1) we find ¢ = 0. Thus, f is itself a multiple of 1 and so 1 is a simple isolated
eigenvalue of H.




256 S. Bettin, S. Drappeau and L. Spiegelhofer CMH

(iii) Now, let C be a small circle centered at 1 which doesn’t enclose any other
eigenvalue of H and assume (t,z) € V;. If §; is small enough, then by [24,
Thm.IV.3.16] we have that C doesn’t intersect the spectrum of srd(IH; ;). It follows
that we can write I, as a sum of compact operators H;, = P, + N;, with
P: Ny = NyplPrr = 0and ]P’IZ’Z = IP; ., where P, is the Riesz projection
associated to C [24, Thm.II1.6.17]. Moreover, since 1 is a simple eigenvalue, the
image of IP’O, ! is one dimensional [24, pp. 180—181] and thus the same holds for P, ,
if 87 is small enough [24, Thm.IV.3.16]. Also, the spectrum of H , restricted
to the image of [P, , consists of a unique eigenvalue A(t,z), with A(0, %) = 1,
corresponding to the eigenfunction f;, := [P, .1, whereas the spectrum of N,
consists of that of H; , with A(z, z) removed [24, Thm.IV.3.16]. In particular since
srd(N,, ! ) < 60" < 1 for some 6" € [0, 1), then by the upper-semicontinuity of the
spectral radius [24, Thm.IV.3.16] there exists € € [0, 1) such that srd(N; ;) < 6 for
all (z,z) € Vy with §; small enough.

(iv) By [24, Thm. VIL.1.7] P, , and N;, depend homomorphically on (r,z) and
thus so does f;, = IP; ;[1]. Moreover, since P, 1 [1](0) = 1 we have f7.(0) # 0

for (z,z) € V; and §; small enough. Thus the holomorphicity of A(z, z) follows
since ]P)r,z [fr,z](o) = A(z, Z)fr,z (0).

(v) First, consider the case T = 0 and z = 1e?™% with ¢ € [0, 1). By the triangle
2
inequality we have

I Ho,z [/ Moo =< [1f lo

for all f € H°(D); in particular srd(Hp ) < 1 for |z| = % Suppose

now ¢ # 0. Then since Hy , is compact, it has an eigenfunction f € H*>(D)
with eigenvalue A of maximum modulus srd(Hy,;). Up to re-scaling f, we can

assume max,cfo,11 | f(¢)| = | f(to)| = 1 for some ¢y € [0, 1], whence
: 1
. _ —n 2wing —-n
A= [Ho /1) = | o2 me i ()| < o =,
n>1 n>1
If we had |A| = 1, then this would mean equality holds everywhere. This implies

that all the summands in the first series have the same argument and the n-summand
has modulus 27", that is

1
n—+ty

eZnind)f( ) _ eZnia

for some & € [0, 1). Letting n — oo, we deduce e>*"? — £(0), which implies ¢ = 0.
We conclude that std(H ;) < 1 whenever |z| = % and z # % Then, by the upper
semi-continuity of srd(H ;) [24, Thm. IV.3.16], we have that there exists 0 < §, < %
such that for 7, z satisfying

3-8 <25 +8, |z-3128&, [1<&
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we also have srd(H, ;) < 6 < 1. Finally, assume |z| < % — 3y and |7| < 8, <
—% log, (1 — 285). Then, by the triangle inequality for any f € H°°(ID), we have

I Hez[fTloo < 1 lloo ) l21"(n + 1.
n>1
Since n + 1 < 2", computing the series proves that srd(IH; ;) < 1. In particular,

srd(H; ;) < 1 for all (z,z) € V, and (iv) follows. ]

4.3. Specific properties at (7, z) = (0, %). We have the following properties link-
ing H and . We recall that the value A (0, %) = 1 was proved at Proposition 4.1.(ii).

Proposition 4.2. (i) We have ]P’O)%[f] = (f fdwlforall f € H®(D).
(ii) The derivatives of A satisfy

2.0, %):fm l]logd,u, 22001y =4.

Proof. (i) Firstwerecall that _f(),% = 1and thus Im IP’O’% = C 1. Given f € H*® (D),
we have f € L!(u) and so, by (4.1),

[ ran= [ 10

for all k € N. Letting k — oo, from the decomposition (4.2) we have
Hk[f] — ]P’O’% [ f] uniformly on [0, 1], and so

[ w10~ [y yau.
ince RS is constant, this proves our claim.
S ]P’O’2 fleC1 hi lai

(ii) We have, following the notations of Proposition 4.1, A(z,z) fr = He [ f7.2]
for (r,z) in a neighborhood of (0, %) By uniform convergence of the series
defining H, ,, we may differentiate term-wise and obtain

ix(T z) fr,z + Mz, 2)% Jrz = Hz, [frleg ‘E‘a%-fr,z]s

Zh= 1

M5, 2) frr FA@ DL frz = Z Gy fee o hn + He [ fr.c].

We evaluate each line at (z, z) = (0, %) and apply the operator I, 1 which amounts
to integrating against du by point (i). We obtain the claimed identities

L2(0,1) = /]ogdu and 2A(0,1) = ZnZI*" = 4. O

n>1
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4.4. The quasi-inverse (Id — ]HIT’Z)_I. We conclude the section by deducing the
main properties of the quasi-inverse (Id — H, ).
Proposition 4.3. For §; > 0 small enough there exist o > 0, 0 < 0 < 1 such that,
Jor V1,V> as in Proposition 4.1, one has that:
(i) The operator (Id—H, )™ can be analytically continued to (t,z) € Vi,
AT, z) # 1, via the identity

_ AT, 2) _
d-H,,) ' = —"—P Id—N. )" 43
( t.z) (1 — Az, 2)) rz 1 ( 7,z) (4.3)
Moreover, (Id —N¢ ;)™ is holomorphic for (z,z) € V.

(i) (Id—Hy )~ is holomorphic for (t,z) € V.

Proof. We start with (ii). For (z, z) € V,, by Proposition 4.1 (v) we have srd(H; ;) <
0 < 1. Therefore, for such (t,z) and all f € H° (D) the series

S HEL[f] = (14— He2) "' [/]
k=0

converges uniformly and defines an analytic function which depends on (z,z) € V,
holomorphically.

To prove (i) first we notice that by Proposition 4.2 we can find a non-empty open
set U C Vp such that |A(t,z)| < 1 for all (r,z) € U. Then, for (z,z) € U by
Proposition 4.1 (iii) one has

[e ) o0 oo
(d—Hg )™ =) HE, =3 MA@ 2P + ) NE,

_ Ax,2)
(1 —A(1,2)
Moreover, P, , and (Id —N,;)~! are holomorphic for (r,z) € V; and depend

analytically on z,z. By Proposition 4.2 (ii) the set {(z,z) € V| | A(r,z) # 1}
is connected and so we can conclude by the identity principle. ]

JP)'C,Z + (Id *Nf,z)_l.

5. The meromorphic continuation for S; (z)

In this section we study the meromorphic continuation for S;(z), using Proposi-
tions 3.1 and 4.3. As can be guessed from Proposition 3.1, the function S;(z) will
have a pole whenever H; ; has 1 as an eigenvalue. Therefore an important role is
played by the quantity p(t), defined by the implicit relation A(z, p(r)) = 1. As will
appear clearly in Section 6, this produces a pole of S;(z) at z = p(r) which will
eventually give the dominant contribution in the estimate (1.4).
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5.1. Continuation and poles. We start with the continuation and location of poles
of S;(z2).

Proposition 5.1. Given n > 0 sufficiently small, there exists 0 < ¢ <
that S;(z) is meromorphic for

)
= such

(t,z) € {(r.2) € C* | |t| <, |z| < 5 + ¢}

with a simple pole at z = p(t) only, where p is an analytic function in |t| < 1 such
that A(z, p(t)) = 1 and p(0) = % Finally, for |t| < n we have

]P)r,p(r) [1](] ) .
(1 — p() LAz, p(2))

Proof. The well-definedness and holomorphicity of p in a neighborhood of t =0
follows from the implicit function theorem since A is holomorphic on V;
and a%A(O, %) # 0. Since A(O, %) = 1, this also yields p(0) = % The
rest of the statement is then an immediate consequence of Proposition 3.1 and
Proposition 4.3. L

Resz:p(r) St (Z) =

5.2. The derivatives of log(p(z)). We now derive additional informations on the
first two derivatives of T + p(7) at t = 0. This will lead to the expression (2.4) for
the mean-value o in Theorem 1.1, and to positivity of the variance.

Proposition 5.2. We have

1
log(2p(0)) =0, «a := (logp)'(0) = 5 /;0 . logdp, (logp)’(0) <0. (5.1)

More precisely, we have
" 1 ! 11\2
(log p)"(0) = — 2 i (logx + a3 ])" du(x)

1 1
+ f f (Togx + a1 ])log(l + xy) du(x) du(y)
0 0

1

- / (logx+all]+ [ 1o (]%ﬁ}) an ()’ du(x),
(5.2)

The fact that (log p)”(0) < 0is essential and it is equivalent to the non-degeneracy
of the Gaussian law in Theorem 1.1. The proof of this fact is not straightforward. As
explained in [8, Lemma 7] (see also the proof of (6b), page 343 there), it corresponds
to a general result about convexity of pressure functions [42, Section 4.6]. The
existence of the explicit expression (5.2) contrasts with the context of statistics of
continued fractions coeflicients [8], where no explicit expression for the variance is
known in general. The underlying construction is due to Benoist and Quint [5].
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For the proof of Proposition 5.2, we mostly follow [34, Proposition 3.3]. As
in |8, Lemma 7], the argument is mainly adapted from [7]; additionally, we will
provide a simpler way to obtain non-positivity (see (5.9) below).

We will use repeatedly the following lemma.

Lemma 5.3. For f,g € L'(u), we have H((f o §) x g) = [ x (H g) almost-
everywhere.

Proof. Forall x € [0,1] and n > 1, we have §(h,(x)) = x, and so

((foF)xg)ohy= [ x(gohy).

Summing over n > | against 27" yields the claimed equality. []

Proof of Proposition 5.2. In Proposition 5.1 we showed p(0) = % whereas the
value (log p")(0) is easily obtained by differentiating A(z, p(t)) at t = 0 and using
the values given in Proposition 4.2.(ii).

We now wish to study the second derivative (log p)”(0), with the goal of proving
that it is negative. For this purpose, it is convenient to consider a univariate function
in place of A(z, z). Let

tw) := A w, 1e¥),

which is constructed in such a way that it is defined and analytic in a neighborhood
of w = 0, and also £'(0) = 0. There is a simple relationship between £¢”(0) and the
besought quantity (log p)”(0): differentiating twice the relation A(z,e%¢P(™) = |
and evaluating at T = 0, we obtain

(log )" (0)p(0) 45 A(0, 3) = — (¢?p(0) 2 A(0, 1) + 2520, })
+ a2 A (0, 2) +22301) 63
= —a20"(0).
Therefore, our task is to prove that £”(0) > 0. To obtain this, we write the eigenvalue
equation relative to £(w), with the aim of differentiating twice, while gathering

information along the way.
For w in a neighborhood of 0 we let &, = fu Lew with the notation of
a’

Proposition 4.1. Recall that £y = 1. Then, the eigenvalue equation is
t(w)éy = H'&J,%ew [Ew] =H [ewwéw]’

where
|_1/xJ +atlog(x) (0<x<1),

Yi(x) = (x = 0).

For future reference, we notice that ¥ € L2(u).



Vol. 94 (2019) Statistical distribution of the Stern sequence 261

By local uniform convergence, we may differentiate the above with respect to w,
obtaining

W)y + L)ty = H[e¥Y (VEw + 2ow)] (5.4)

Let y := [%Ew]wzo € H*>®(D). Evaluating (5.4) at w = 0 and using £(0) = 1,
¢/(0) = 0 and & = 1 yields

2 =H[y + 7. (5.5)

Before continuing the analysis, we focus on the function y. In [5], formula (1.8),
an explicit expression for solutions to cohomological equations related to (5.5) is
obtained. Their construction is effectuated in our case as follows. Define

1
x> qi(x) = —a! fo log(1 + xy) du(y).

It is obvious that y; belongs to H°°(ID) and is real-valued. For all x € [0, 1], we
have

1
Hinle) =~ [ Y2 og (14 =) duty)

n>1

1
= —q ! [ ZZ_” log(x +y +n)du(y) + o ! ZZa” log(x + n)
0

n>1 n>1
1
— ! f log(x + 1/y) du(y) — He ™" log] (x)
= y1(x) — 2 — Ho " log](x).

Since H[x +— |1/x]](x) = 2, we obtain that y; satisfies (5.5) on [0, 1], hence on D
by analytic continuation. In particular, we have (y — y1) = H(y — x1), and so, by
Proposition 4.1.(ii),

x—x1 € C1, (5.6)

We may now continue our analysis. Differentiating again (5.4) with respect to w,
we obtain

' (W)Ew + 20/ (W) b + W)zt = H [V (V26w + 20 2 bu + sistw) ]
Evaluating at w = 0 yields
EH(O)I + [8?1)—22";:‘”]11):0 = H [wz T ZWX iy (afu—zzgw)w:O]' (57)

Here, note that the function ¥2 + 2yry + ({j‘;’ﬂ—zz‘gw)w:() is in L1([0, 1], ). We

2
integrate both sides of (5.7) against du, in order to eliminate the terms £U—2§w.
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Since Jio g H[f1dp = fg1y f dpe forany f € L'(1), we arrive at
£'(0) = f (W2 + 297) du
[0.1]
- f (W2 + 29 71) de (5.8)
[0,1]

where we have used (5.6) together with the value f ¥ du = 0. Define now w} =
T+ y1—x10%; this definition is motivated by analogy with the proof of Proposition 3.3
of [34]. Note that ¢ is real-valued. Using Lemma 5.3, we have

f x?oﬁdﬂt:] x?-H[llduzf x1dpu,
[0,1] [0,1] [0,1]

f[o 1](1/f+11)(xl o§)du = H[W+X1]xldu:f xidu.

[0,1] [0,1]

In the last step, we used the fact that equation (5.5) holds with y replaced by y;. We
deduce

f (1/7>2du=] (w+xl)2du—2[ W + 1)t 0 6) dps
[0,1] [0,1] [0,1]

+[ (x1 01-9)2(1#
[0,1]

:[ (11/+xl)’“du—f Xidp
[0,1] [0,1]
= £"(0). (5.9)

Now, we note that ¥ (x) = |1/x] + a log(x) tends to +00 as x — 0,
whereas y; € H(ID) is a bounded function. We may therefore find § > 0 such
that |y (x)| > 1 for all x € (0, ). We deduce that

£(0) = f @) die = (0. B)) = W(B) > 0
[0,1]

as required.
Since, by (5.3), we have (log p)”(0) = ~%a22”(0), the explicit formula (5.2)
follows from (5.8) and (5.9). L]

6. Proof of Theorem 1.3

By the definitions (2.16) and Cauchy’s formula, for |t| < n with 7 sufficiently small

we have l 4
WEN[EN) ] == VS
Z

2mwi lz|=1
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where the circle is oriented counter-clockwise. By Proposition (5.1) and the residue

theorem for some 0 < ¢ < % we have

.. R@® 1 ) d
2NEN((SN) ) - p(_E;N + 2T §Z|=l—|—cz NST(Z);a

where the circle is oriented counter-clockwise and

_ ]Ps,p(r)[l](l) .
p(0)(1 = p(x)) 2 A(x. p(7))

Note that R(t) is analytic for |t| < nand R(0) = 1. We bound the integral trivially

R(7)

1

dz
— NS () — < G+ <2V 42077,
21 |Z|=%+c z

uniformly for || < n. At the possible cost of reducing 1, we may write R(t) =
exp{V ()}, and similarly 2p(t) = exp{—U(t)}, for two functions U and V' which
are holomorphic for |z| < 5. By Proposition 5.2 we also have

1
U@©) = V(0) =0, U'(0) = 5[ logdp, U"(0) > 0.
©0,1]

In the same range of 7, we conclude that
En((Sn)™%) = exp (NU(z) + V(0)){1 + O((1 +2¢)")}

for some ¢ > 0. This is the statement of Theorem 1.3, up to changing 7 to —r.
Theorem 1.1 follows at once using Hwang’s quasi-power theorem, for which we refer
to [17, Lemma IX.1] and to the papers [21,22]. We note for future reference that the
variance is related to p by

0? = —(log p)"(0). (6.1)

Remark 6.1. — The foregoing computations may be seen as a materialization of the
link between the spectra of transfer operators associated with the Farey and Gauss
map. There have been many works on this topic: see e.g. [23,39,40], and also [16] for
works on the numerical aspect. Another useful reference is the introduction of [14].

In the above, by using the Cauchy formula on the generating series (2.16), we
have avoided completely discussing the Farey map and its associated tranfer operator

1 1 1 X
L@ =3/ (575) + 5/ (57)
1@ =3/ (7) + 57 (55
whose functional analysis is made difficult by the fixed point with derivative 1 (neutral
fixed point) of the Farey map at 0. Instead, we extracted the precise information we
needed, which is the exponential convergence for iterates of the function 1.
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7. The mean-value o

In this section, we detail and prove Theorem 2.1.

7.1. Variants of the integral expression.
1
Lemma 7.1. For the quantity « defined in (5.1), we have a = f log(1 + x) dpu(x).
0

Proof. We remark that

log(1 4 x) + H [ = log(1 + £)]|(x) = log(1 + x) + Zz—n I (%)
n>1
— Z 27" log(n + x)
n>1
= — Hlog](x)

by splitting the logarithm into a difference. Integrating against du(x) and using (4.1)
yields the claimed equality in the form

1
2] log(1 4+ x)du(x) = —flogd;u,. ]
0

We can now justify assertion (i). Using Lemma 7.1, we see that

1 1 1
o= f log(1 + x)du(x) = [ log(2—x)du(x) = log2—|—f log(1 — %) dp(x)
0 0 0

where we have used the symmetry du(1 — x) = —du(x). Expanding the logarithm
into a power series, we recover the definition (2.5) used in [2].

Note that Conjectures 8.1 and 8.2 of [2], which are concerned with similar
identities, can be proven along the same lines.

7.2. Lipschitz points of ¥. In the paper [25], Kinney studies the set of Lipschitz
points of the Minkowski function W. There has been many consecutive works on this
topic, see e.g. [27,28,36].

Theorem 1 of [25] states that there exists a set V' C [0, 1] with (V) = 1 and
Hausdorff dimension B on which the Lipschitz exponent of W is f. The value of
is recognized, using Lemma 7.1, to be precisely

log 2
p= 200

Theorem 1.1 may be used to recover Kinney’s result. We first give the following
lemma, which is easily proved by induction.
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Lemma 7.2. Forall N > 0andm €40, ...,2Y — 1}, we have

s(m+1) s(m) 1
sV +m4+1)  s@¥ +m) sV +m)sQ¥ +m+ 1)

(7.1)

By equations (7.1), (2.8), and Theorem 1.1 witht = +1log N (say), we obtain

log |c1>(m2; ]) - @(ZEN)‘ — —2Na + O(v/N log N) (7.2)

for all m in a set Ry C {0,...,2Y — 1} of cardinality |Ry| > 2V — 02V /N?).
We then define

m m+1
v="U N U [277]
No=0 N=No  1<m=<2M -1
(m—l,m,m—!—l)eRifv

Since Y y-o(1—|Ry|/2¥) < oo, the set U has Lebesgue measure 1. Now letx € U
and & > 0 be fixed. Let Ny = Ny(g) > 1/&> be an integer, such that

m m-+1
X € ﬂNZNO U(mﬁl,m,m-H)ER?v |:2—N’ 72N il

Then for 0 < h < 27No_whenever 2717 < 1 <27V we have

[m m-+1

m—1 m +2
IN+1’ oN+1 ]

| —hox e[S 5
for some integers (m,m’) satisfying m’ € Ry and (m — 1,m,m + 1) € R3.
From (7.2), we deduce

e—N(ZoH—O(s)) < |d>(x + h) . <1>(x . h)| < 3e—N(20£—0(6)).

Since both the left-hand side and the right-hand side are of the order h20/log2+0(e)
we conclude that the Lipschitz exponent of @ at any x € U is equal to 2/ log 2.
Additionally, ® and W are inverse bijections, therefore the Lipschitz exponent of W at
any x € V := ®(U) is log2/(2«). Because (V') is equal to the Lebesgue measure
of U, which is 1, we obtain that on V' the Lipschitz exponent of W is S.

Finally, one has

s(m+1) s(m) }
V= [ |
Ngﬂ N(jNo ISmg’V—l sV +m+ 1) s@N +m)
(m—1,m,m+1)eR3,
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and, for any fixed u > 0

2.

l<m<2N —1
3
(m—1,m,m+1)ERy,

u

s(m) s(m—+1)
sV +m) s@N 4+m+1)

— 2N(1 + O(N~2))e~2uN(x+o(N)
- e(l()g2—2ua)N+0(N)

by (7.2). The fact that V has Hausdorff dimension < B = l‘égaz then follows
immediately. To prove the opposite inequality, we proceed as in [25] and observe that
since W has Lipschitz exponent B, then for all ¢ > 0 there exist # > 0 and a subset

V' C V with u(V’) > 5, say, such that
W(x + h’, x—h)=p(x —H, x+ 1) < @h)P* (7.3)
forallx € VandallO < A" < h. Nowlet{l; | i € I}beacoverof V' withintervals /;

satisfying |/;| < h. Then, taking x; € V'N1I; wehave I; C I := [x; —[I;|, x; +|1;|]
and |I/| < 2|/;|. In particular, by (7.3),

1
S = a0 = Yy < 3T < Y @)
iel iel iel

This implies that the Hausdorff dimension of V' (and henceforth that of V) is > f —e.
Since ¢ is arbitrary, the result follows.

7.3. The constant 2« as a metric entropy. We now explain how one may interpret
formula (1.3) as the computation of a certain partition entropy. This may be used to
derive another expression for «.

Recall that the Farey map ¥ was defined at (2.13) (see Figure 5a). Also, in
this section only, we denote by v the Lebesgue measure on [0, 1]. We start with the
partition

[0,1) = \/ F*0,1) = U i,

k=0

where J,, n are consecutive segments; explicitly, we have J,,, y = [(D( 2 <I>(m+1))_
By (7.1) we have

1

Fam) = : T ) =2 N
v(Jim,N) s(2N +m)s(2N Tm+1) w(Jm,N)
Since s(2V 1) = s(2V), we deduce
) 2N -1 5 2N —1
=5 2 wUmn)logvUmn) =55 ) logs@¥ +m). (74)
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The left-hand side can be seen as a relative entropy with respect to the
partition (J,, n)m. As N tends to infinity, we can adapt the proof of Rokhlin’s
formula [41, Theorem 12.10] to show that

2N _1

1 1
-3 2 anmogvlny) — [ loglF @ldpe. @9
m=0

To see this, note first that the Rényi condition [41, formula (12.2)] holds in our case
in the weaker form ,
V| _ yom
vl
for any inverse branch v of ¥ the steps (i) and (ii) on page 133 of [41] are easily
carried out and yield (7.5).

For the equations (1.3), (7.4) and (7.5) to agree, the equality (2.6) must hold.
Indeed, since log | F/(x)| = —2log(max{x, 1 — x}) and du(l — x) = —du(x), we
deduce

sup
(x,»)€l0,1]2

1 1 1
f log |F'(x)| dp(x) = —4 f (logx)du(x) =2 f log(1 + x) du(x)
0 1/2 0

where we have used the equality H[t — 1,51/2logt](x) = —% log(1 + x). By
LLemma 7.1, the claimed equality (2.6) follows.

7.4. The constant « as a Lyapunov exponent. We have already noted in (2.1)
that the quantity log Sy may be expressed as a random product in the following way:
define, as earlier, the measure non GL,(R) by n = %5,10 - %5A1 ,where Ag = (1)
and Ay = (19). Letalsov = (1), and f(x) = x-(9). Then

logSy =log|f(gn ---g1v)]

where g; € GL,(R) are taken independently at random according to 7 (which simply
means g; = Ag or Ay with equal probability). Then, by definition, the mean-value «
of log Sy should coincide with the first Lyapunov exponent A; of n; by a formula
due to Furstenberg [ 18, Theorem 8.5], we have

| f(gv)]
| f(v)]

for any measure & on P (R?) with n * £ = £. Let us now explain how this expression
may be used to recover the formula (2.4), which amounts to finding an admissible
measure £. Paramatrizing P(R?) = R U {oo}, consider the Minkowski measure 1
as being defined on all R U {oo} but supported on [0,1]. Let 7 = (, 1); note
that TA; = Ao T. Moreover, the Minkowski measure satisfies

= 2ATu + (A TY ).

Aj =

log dn(g) d&(v) (7.6)

~/GL2(R)XP(R2)
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Indeed, we have H* ;o = p, but from the definition of H,

H* u = Zz—"(mg)*u =1 T)'u+ A H p

n>1
since TAS = A TAR™!. Define £ as
£=su+5(T"w).
A small computation, using A9 = TA;T and AgT = TA;, yields
nxé=1(ATn+ (A7) '+ (TAT) 4+ (TA)* 1)
=S+ T =¢

so the conditions for the integral (7.6) to hold are met. The integral on the right-hand
side of (7.6) then reads

AI:jR Ulog | f(Ao($)) £(A1(5))] dE(x)
+

l o0
= 5[0 log(1 + x)d&(x)

1

= % (log(1 4+ x) + log(1 + x 1)) du(x),
0

which evaluates to o by (2.4) and Lemma 7.1.

7.5. Explicit expression for the variance. We recall that the variance in Theo-
rem 1.1 is related to t +— p(r) by formula (6.1). The expression stated in
Theorem 2.1.(v) immediately follows using formula (5.2). Note that the alternative
expression

1
o? = %[0 (logx —|—a[%])2 dp(x)

1 pl
[ oz al 1) tog1 4 x3) du() )
o Jo
is particularly well-suited for numerical computation on the lines of [2].
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