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A lower bound for the rank of a universal quadratic form
with integer coefficients in a totally real number field

Pavlo Yatsyna

Abstract. We show that if A' is a monogenic, primitive, totally real number held, that contains
units of every signature, then there exists a lower bound for the rank of integer universal

quadratic forms defined over K. In particular, we extend the work of Blomer and Kala, to show

that there exist infinitely many totally real cubic number fields that do not have a universal

quadratic form of a given rank defined over them. For the real quadratic number fields with
a unit of negative norm, we show that the minimal rank of a universal quadratic form goes
to infinity as the discriminant of the number held grows. These results follow from the study
of interlacing polynomials. Specifically, we show that there are only Hnitely many irreducible
monic polynomials related to primitive number helds of a given degree, that have a bounded
number of interlacing polynomials.

Mathematics Subject Classification (2010). 11 El2, 11H06, 11R80.

Keywords. Universal quadratic forms, totally real number helds, ideal lattices, interlacing
polynomials.

1. Introduction

Theorem 290 [5] tells us when a given positive definite quadratic form over
rational integers represents all natural numbers. Relatively little is known about
universal quadratic forms with coefficients in the ring of integers R of a totally
real number field K. Götzky [14], Maass [22] and Siegel [27] showed that if
all of the totally positive integers in K can be represented as the sum of squares,
then K Q or Q(x/5)- Chan, Kim, and Raghavan [7] proved that one finds
universal ternary quadratic forms only over Q(V2), Q(\/3) and Q(V5). On
another hand, B. M. Kim [20] gave an explicit construction of an octonary diagonal
universal quadratic form for infinitely many real quadratic number fields. Blomer
and Kala in [6] (and Kala in |18]) proved that for a given m there are infinitely
many real quadratic number fields that do not admit universal quadratic forms with m
coefficients. This result was extended to multiquadratic fields by Kala and Svoboda

in [19], For a totally real number field K of an odd degree, it was shown in [10], by
Earnest and Khosravani, that there are at most finitely many inequivalent quaternary



222 P. Yatsyna CMH

universal quadratic forms over K. Kitaoka suggested [21] that there may only exist

finitely many totally real number fields over which there exists a universal ternary
quadratic form.

In this paper, we investigate universal quadratic forms defined over the ring of
integers R of a totally real number field K by studying interlacing polynomials.
Specifically, we establish a correspondence between elements of the codifièrent of R

over K and interlacing polynomials. For primitive extensions we prove the following
result:

Theorem 1.1. Let d, r e N. Up to Z-equivalence, there are only finitely many
irreducible monic polynomials f G Z[x\ of degree d such that Q[*]/(/) is a

primitive field and f is interlaced by at most r monic integer polynomials.

We show that there exists an infinite family of non-interlacing polynomials:

Theorem 1.2. Let d G N suchthat d is square-free, d is nota prime number or twice

a prime number, d > 20 and d f- 30. Then the minimal polynomial of
1

is

non-interlacing.

But, such polynomials do not exist for the first few degrees:

Theorem 1.3. There does not exist a non-interlacing irreducible integer polynomial
ofdegree 2, 3, 4, 5, or 7.

Let us say that a totally real number field satisfies Condition (A) if it is monogenic
and has units of every signature. In the spirit of the work of Blomer and Kala, for
primitive number fields we show:

Theorem 1.4. Let d,r G N. There are only finitely many totally real primitive
number fields of degree d that satisfy Condition (A) and have an integer universal

quadratic form of rank r defined over them.

As an application of the theorem above, we have:

Theorem 1.5. For any given r G Z, there exist infinitely many totally real quadratic
and cubic numberfields that do not have a universal quadraticform ofrank r defined
over them.

We also show that the minimal rank of a universal quadratic form over quadratic
fields grows at the order of the fourth root of the discriminant (Corollary 5.5). This
was previously shown in [6, Prop. 5] conditionally on the Riemann hypothesis.

The basic idea of this paper stems from the observation that if the codifièrent
of R is a principal ideal generated by a totally positive number, i.e. Rv yR,
then a universal quadratic form Q over R can be scaled to represent all the totally
positive elements in the codifièrent. Furthermore, trk/q(yQ) becomes a quadratic
form over Z, where all the minimal vectors of tr^/Q(yQ) relate to the totally positive
numbers of the minimal trace in the codifièrent represented by yQ. On the other hand,

totally positive elements of trace one correspond to lattice points in certain convex
sets, and in particular, to interlacing polynomials. By showing that the number of
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interlacing polynomials grows to infinity for a given degree, we are able to show that
the rank of universal quadratic forms over R has to grow also, else we would have

quadratic forms with the number of minimal vectors surpassing the kissing number,
which is impossible.

In the first section, after the preliminaries, we focus on the interlacing polynomials
and show the correspondence between lattice points in certain convex sets and totally
positive elements of trace one in the codifièrent of R. Theorem 1.1 appears in this
section. In the following section, we tackle Theorems 1.2 and 1.3 and look at some
of the examples of non-interlacing polynomials. Finally, the last section consists

of results relating to universal quadratic forms. Appropriately, it contains proofs of
Theorem 1.4 and Theorem 1.5.

Acknowledgements. I would like to thank James McKee for his valuable comments
on the first manuscript, and the anonymous referee for careful revisions and many
helpful suggestions. This research was supported through the programme "Ober-
wolfach Leibniz Fellows" by the Mathematisches Forschungsinstitut Oberwolfach
in 2017.

2. Preliminaries

Throughout the paper, A' is a totally real number field with the ring of integers R. A
number field is monogenic if its ring of integers has integer power basis, i.e. R Z[a\.
We say that K is primitive if there is no proper subfield of K other than Q. We

let ni Od to be the distinct embedding of K into M. For a G K, we write

Na7q(o0 nf=i °i(a) ancl trA7Q(a) Zlf=i °i(a0- For an ideal 1 in NCO
is the absolute norm of /. We assume that all the polynomials are integer, monic,
separable, and have only real roots unless stated otherwise. Let / G Z[x\ be an

irreducible polynomial such that A' Q[x]/(/). Leta G M be a root of/, then Z [a]
is an order in K. We denote the dual of it by Z [a]v {ß G K \ \iK/Q(ßZ[ot]) C Z}.
For the ring of integers R of K, its dual is the codifferent ideal, Rv. An element

a G A' is totally positive, and denoted by a 0, if ol (a) > 0 for all the embedding
of K in M. For the set of all the totally positive numbers and integers, we write K+
and R+, respectively. We denote by Disc(/) the discriminant of a polynomial /, and

by Disc(A') the discriminant of a number field K. Let g G M[x], we write Res(/ g)
for the resultant of / and g.

Definition 2.1. Let / Ilf=i(x — )> S Flf=i1 (x ~ ßi) e Z[x], where d > 2.

Then g interlaces /, or / is interlaced (by g), if

ai < ßi < a2 < < o/d-i < ßd-1 < cid-
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Let us denote by

Span(a) max |a,- — a; |

Uj

the span of a totally real algebraic number a, where a aq aci are all of
the conjugates of a. Note that Span(m) 0 if and only if m G Q. And
Span(a) Span(a + k) for all k g Z. We say that f g G Z[x] are Z-equivalent if
/(x) g(x + n) for ne Z.

We say that a quadratic form Q(vi vr) Yh<i<j<r aijvivj is integral
(or over R) if a-,j e R for all i, j. Furthermore, those integral quadratic forms that
have a,j G 2R whenever i ^ j are called classical. If Q(v) 0 for all v G Rr.
v 0, then Q is said to be totally positive definite. An ß-lattice (L. Bq) is a pair,
where L is a free /^-module of finite rank, with a non-degenerate symmetric bilinear
form Bq.LxL —> R and the associated quadratic form Q(v) Bq(v.v) foru G L.
Thus, an ^-lattice naturally corresponds to a classical quadratic form over R. An
/^-lattice (L. Bq) is positive definite if and only if Q is positive definite. Of special

importance to us will be ideal lattices, i.e. those lattices that can be represented in
the form (/, trKiQ(yxy)), where / is a fractional ideal in K and y e K (see [3,4]).

We say that a quadratic form Q over R represents a if there exits v G Rr such

that Q(v) a. A totally positive definite quadratic form is universal over R if it
represents all elements in R+. As a convention, we always assume that the universal

quadratic form is totally positive definite. We say that a lattice is universal if the

corresponding quadratic form is universal. For a positive definite Z-lattice L, we

write
min(L, Bq) min {Q(v) \ v G L)

for the minimum of L, and

M(L, Bq) {u G L I Q(v) min(L, Bq)}

for the set of the minimal vectors of L (we may write M(L) if the bilinear form is

clear from the context). Let us write

xd max \M(L,Bq)\
(L.Bq)

for the kissing number for lattices in dimension d, where L ranges through all the

positive definite Z-lattices of rank d. We shall write

M(K) {a G R+ I tr^/Q^) min tr^/Q^)}.
yeR\

For lattices L\ and L2 we write L L\ _L L2, if L L\ © L2 and Bq(Ii, l2) 0

for all l\ G Li, /2 G L2. For a G A", we define a symmetric bilinear form scaled

by a
Bq(v. v) c(Bq(v, v)
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and a quadratic form scaled by a

Qa(v) aQ(v).

The following identity clearly holds Bq Bq<*

Let Mat(cL K) denote the set ofall square dxd matrices, and diagfo i «^)isa
d xd diagonal matrix with elements r/(- on the diagonal. Foramatrix A e Mat (d, K),
A' and det(T) denotes its transpose and determinant, respectively. For a given set S,

we write |S| for the cardinality of S.

Definition 2.2. Let (L, Bq) be an Z-lattice in Rd, and let C c be a convex set.

Then the width of C is

w(C, L) min { max Bq(v. w) — min Bq(v, w) | v e L \ {0}},
weC weC

where Bq is defined on L x L, extended to L x Irf.
Finally, convj/q,... ,bk) denotes the convex hull of elements h\ /q elf

3. Interlacing polynomials

Our definition of interlacing (see Definition 2.1) requires that both polynomials
are integer, and throughout the paper, the term interlaced will refer to integer
polynomials unless stated otherwise. However, interlacing is defined analogously
for real polynomials, and for interlacing with real polynomials we have:

Proposition 3.1 ([16]). The set of all the polynomials g M[.v] that interlace

f ]~[f=i (x ~ forms a convex set with vertices Y\']yi (x ~ aj)for i \,... ,d.

We can associate any monic polynomial g of degree d — 1 with a vector in 9Jl as

follows:
{£R[jc]|degGr) d-l}—

d~\ (ijxd^1 + i-^ (\,a\,... ,ad-i)'
i i

Thus finding interlacing polynomials of / is equivalent to finding integer points in
the convex set

JC(f) conv{(l, h[l\ ,6^11)r I i 1 d},

where ~ aj) x<i~X + Y?j=\ )xd~1~j.

Lemma 3.2. Let A Ax(f) ^ Mat(<f,R), such that its columns are the vertices

ofJC(f). Then
n—j

l aiAT,i1 '
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Proof. By a direct computation it follows that

CMH

l d-k
f'(ai) ^01'

k=1 1<B| <-<mk-\<d
m, +j

d d~k

For X( f) c we define the set

AK(f) A e
u

eZd. £a,- '}•
i=1

Clearly, X(f) C\Zd f 0 if and only if A jf(/) ^ 0- And for any polynomial, JC(/)
being compact implies that |<7C(/) D Zrf| is a finite set.

Proposition 3.3. Let f e Z[x] and X e f^x(f)' and let g e Z[x] be the polynomial
that interlaces f corresponding to X. Then

I!1'
i 1

Res(/, g)
Disc(/)

Proof Let A Ax(f) be the matrix as defined in the lemma above, and let A e Ax(f)-
Now,

AX b (l,èx bd-i)' e Zd,

and

d-2
g xd~' + YJbiXd-l~i

i=i

EA( Y[(x~ai)
i=1 j£i
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interlaces /. As A A~lb, by applying Lemma 3.2 it follows that

227

*«• J2AuhJ
7 1

1
d

~ f'lrvA ^ d—j I

ai J

7 1

Therefore,

and

/'(«,)
S (ai)
/'(««)'

rf d

n- ii;:;,
Resfe, /)

(2)

(=i z — 1

i l
as was required to show.

Definition 3.4. Let

fd-

Disc(/)

> md

(rd~x,..., r, 1)'

define a curve in dimension d. For n real numbers r\ > r2 > > rn we define the

cyclic polytope 'C(r\, r„) to be the convex hull of those points on the curve t//j
corresponding to the r;, i.e.

^tei rn) conv{fd(n) I i 1 n}.

Let / J~[f=i(-X — ai)' we write 'C(f) "C(cei,... ,ad) C for a cyclic
polytope of the roots of / in dimension d. The associated matrix is Axpf), where

(A-e(f))ij otd~'. It is known that det(Ae(/)) fli<i<j<d(a' ~ aj) t25> P- 1 H-

Furthermore, from the proof of Proposition 3.3, we deduce that

DAI (3)^tc(/) - "n-e(fy
where D diag(/'tei )_1 /'(aj)-1). For an irreducible polynomial / we
have

^e(/)^e(/) (ir^/QeMat(d,Z).
In particular, for any ß e let B diagfoite)...., <7d(ß))- Then

(\xKiQ(ßa2d 1 /)) G Matte,Z). (4)
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Proposition 3.5. Let f £ Z[x] be an irreducible polynomial, and let a £ M be a

root of f. Then there exists a one-to-one correspondence between the interlacing
polynomials off and elements in {y £ Z[a]v | y 0, tr^-/Q(y) 1}.

Proof Let us consider an injective homomorphism

j:Z[a]v ^Rd
y h» (ai(y),...,crd(y)y.

Given that Z[a]v j7j^jZ[a] [25, Prop. 2.2J, we have (by Lemma 3.2) a one-to-one

map defined by A^K-y.
J\Zd —> j{Z[a]v). (5)

By Proposition 3.1, a polynomial g Z[x] interlaces / if and only if there exists

Aj Arf e E_|_ such that J] A, Land# Yli=i \Xj=£i(x~ai )• Themap(l)
associates such a polynomial g with the vector b £ Zd such that Ax(f)^. b.

Therefore J(b) £ j(Z[a]w) corresponds to a totally positive element of trace one
in Z[a]v, as was required to show.

Let us notice that if we remove the trace requirement, then we would need to
allow for non-monic polynomials that interlace /. Thus counting elements of trace t
is equivalent to counting integral points in tJC(f).

Before we move in to counting the interlacing polynomials, let us list some of the

properties of sets "{/) and JC(/).

Corollary 3.6. Let f £ Z[x\ be a separable polynomial ofdegree d such that all its

roots are real. Then |Aç(/)| |"G(f) n Zd\.

Proof. We have r £ Zd D U(/) if and only if there exists A £ A-e(f) such that

A^(/)A r. Therefore it suffices to show that there cannot exist p £ such

that /t / A and A-p(f)p r. Given that / is a separable polynomial implies
that A-c(f) is an invertible matrix, the corollary follows.

Proposition 3.7. For a separable f e Z[x] we have A jc(f) ^C(/)-

Proof. Let A £ Ax(/)- Using identity (3) we have from Ax(/)A h that

A DA'^^b
A-e(f) A At(f)DA^{nb,

where both b and A~e(f)DA'^^ are integral (see (4)), thus A £ Ae(/). The reverse
inclusion is analogous.

Corollary 3.8. Let f £ Z [x] be a separable monic polynomial such that all its roots

are real. Then \{f) D Zd | |Jf (/) fl Zd\.
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Example 3.9. Let / x2 — D, where DeN. Then

JC(f) {(1,AVd -(1 -A)v7))' I A [0,1]}

{(1, (2A - ljVT))' | A G [0,1]}

{(1,A'sföf I A' g [-1,1]}.

Therefore all the integer points in JC(/) correspond to integers in the interval
[—\f~D, y/~D], and from equation (2), the elements of Ag(/) correspond to

/ — *J~~D + r y/~D + r \ '

V -2sfD ' 2y/D

for r G [—-s/7), s/~D] IT Z. In particular,

IX{f) n Z2| 2[\/dJ + 1 rj VDisc(/). (6)

A similar result holds for quadratic polynomials of the form x2 — x — D.

Corollary 3.10. The number of interlacing polynomials ofan irreducible quadratic
polynomial goes to infinity with the discriminant of the polynomial.

We would like to replicate the above result for polynomials of higher degrees.
More generally, we wish to determine the conditions under which a given polynomial
is interlaced, and count the interlacing polynomials. We cannot apply Minkowski's
First Theorem [25], as the associated convex set to a polynomial is not symmetric
and generally, it does not contain the origin. We shall use the following variant of
the Flatness Theorem:

Theorem 3.11 ([ 1, Remark 2.7]). Let S be a simplex in Then

w(S,Zd) < cd(1 +log(d) + \s nzd\1/d).

where c is a universal constant.

Observe that £(/) (and X(f)) can be projected onto a simplex S in
In particular, if ¥?(/) conv(&i,..., bj), then S com(b[...., b'd), where

(b-)j (bi)j for 1 < j < d — 1. Therefore, without loss of generality, we can
consider 'C( f) (and X(f)) as a simplex.

Proposition 3.12. Let f G Z[.v] be a monic irreducible polynomial such that totally
real algebraic integer a is a root of f. Then

wÇ(f), Zd) min {Span(y) | y G Z[a] \ Z}.

Proof Let (Zd, denote the integer lattice of rank d, where is the usual

inner product, i.e. {v,w) Y1a=i viwi f°r v>w G M6'. Let A be the associated
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matrix of £(/). Thus every element y G £?(/) may be written as y AX, where
A G A [6 G Rd+ I Ef=, Oj 1}. Let v G Zrf, then

max (v,w) maxv*AX.
we-C(f) AsA

As t/v4 (Ef=i viai~l Ef=r viad"')• h follows that

d

max (v.w) max

i=l
Similarly we have that

d

min (u,u;) min> v;ad~l.
we-e(f)' j J

1 1

For v Zd let g G Z[x] such that g Ef=i ViXd~l. Therefore

max (v,w)— min (u, w) Span(y),
u;eC(/) tDC(/)

where y g(a) G Z[a], By the definition of the width the proposition follows.

For a totally real algebraic integer ß G M there can exist infinitely many (up to

equivalence) totally real algebraic integers a of a bounded degree such that ß G Z[a].
For example, consider the family of polynomials

{x4 — 2ax2 + a2 — 2 G Z[x] | a > 2}.

The roots of these polynomials are ± y/a ± \/2. Thus for each of the corresponding
simplices, the width is bounded above by 2\/2. More generally, it suffices to consider
number fields of bounded degree that contain Q[ß] as a subfield.

Theorem 1.1. Let d,r G N. Up to Z-equivalence, there are only finitely many
irreducible monic polynomials f G Z[x] of degree d such that Q[x]/(/) is a

primitive field and f is interlaced by at most r monic integer polynomials.

Proof. First, we claim that, up to Z-equivalence, there are only finitely many g G Z [x]
of degree d of bounded span. Without loss of generality, we assume that all
roots of g are positive, and at least one of the roots is less than one. Given that

|{£ (-_o UiX1 I \uj \ < M}\ is a finite set, our claim follows.
Let / G Z[x] such that K Q[x]/(/) is a primitive field, and a G M such that

f(a) 0. If ß G {y G Z[a] \ span(y) min^gz^j span(<)')}, then there are only
finitely many algebraic integers y G K (up to Z-equivalence) such that ß G Z[y] 111,

Corollary 6.2.2], From Proposition 3.12, it follows that up to Z-equivalence, there

are only finitely many such f with bounded width, and in the light of Theorem 3.11,
follows the theorem.
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4. Non-interlacing polynomials

Here we demonstrate that there exist irreducible polynomials that are non-interlacing,
but, not for degrees 2, 3, 4, 5, and 7. The following proposition was proved by
Dobrowolski for minimal polynomials of integer symmetric matrices. We shall

reprove it, using the results from the previous section:

Proposition4.1([8,Lemmal]). Let f G Z[x] be a monic and irreducible polynomial
ofdegree d. Iff is interlaced then |Disc(/)| > dd.

Proof Let / fjf=1(x — a;) gZ[x] be interlacedby g. Then there exists À C A^(/j
such that g Ya=\ h FIy// (x — Uj G Z[x]. By Proposition 3.3 it follows that

Res(/, g)
Disc(/)

and so

nx
i 1

1
d

I 1

\ddRes(f g)| < |Disc(/)|.

As f,g G Z[x] are monic polynomials, we conclude that Res(f,g) & Z \ {0},
and the proposition follows.

There exist polynomials that satisfy the hypothesis of the theorem above, but
have the discriminant smaller than dd [29], The smallest such example known
has degree 2880. We shall show that the smallest degree for which there exists an

irreducible non-interlacing polynomial is 6. We begin by characterising an infinite
family of non-interlacing polynomials. For this we need to use the following result:

Lemma 4.2. Let M ,] such that d is square-free, d is not a prime number

or twice a prime number, d > 20 and d f 30. Let S be the ring of integers in M.
Let K be the maximal totally real subfield of M, i.e. K wdh its ring
of integers R. Then the minimum ofany ideal R-lattice is at least 2.

Proof. Let I be an ideal in R, and let y G AT such that (/, tr^/Q(yxy)) is an ideal
lattice. Let m mm{I,\xK/Q{yxy)) and z G M(I,trK/Q(yxy)). We extend this
lattice to S, let

Ie aibi I a.j e I, bi e S),

and trMz/Ktr^/QCyxy)) trM/Q(yxy). Clearly (Ie, trM/Q(yxy)) is an ideal
,S*-lattice. Given that z G Ie, we have that the minimum of ti'M/Q(yxy) is smaller
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than trm/q(Yz2)- Thus

P. Yatsyna CMH

trM/o(y^2) trM/K(m)
2m

> 4,

the last inequality follows from [2, Lemma 1.4 and Corollary 2.2], thus m > 2.

From the lemma above and Proposition 3.5 follows:

Theorem 1.2. Let d G N such that d is square-free, d is nota prime number or twice
a prime number; d > 20 am/ d f 30. Then the minimal polynomial offd + is

non-interlacing.

An example of such polynomial of smallest degree is the minimal polynomial of

(7)

^21 + £2/'
x6 — x5 — 6x4 + 6x3 + 8x2 — 8x + I.

It is known that for primes p larger than 5, the minimal polynomial of to + KpX

is always interlaced ([ 13J). A classification of interlacing minimal polynomials
of Çd \- 'Çd

1 in relation to integer symmetric matrices can be found in [24].
Let us define nr{l) N(J)r. where / is an ideal of R. Furthermore, let

sf(m) am_1((y)(Äv)"1),
yeRl

uk/q (y)=l

where (/?v)-1 is the different ideal.

Theorem 4.3 ([28,31]). Let K be a totally real algebraic number field of degree
d > 1 and let Çg be its Dedekind zeta function. Let h 2dm, where m G N. Then

r
ÇK( 1 - 2m) 2d y^bj(h)sf(2m) G Q \ {()}.

l=i

The numbers r > 1, b\ (h),... ,br (h) are rational and they only depend on h, where

ifh 2 (mod 12),

+ 1, ifh ff 2 (mod 12).

Theorem 1.3. There does not exist a non-interlacing irreducible integer polynomial
ofdegree 2, 3, 4, 5, or 1.

'
h

-12-r — <

h

-12-
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Proof. Let / G Z[x\ be an irreducible polynomial of degree 2, 3, 4, 5, or 7, such

that K QM/(/) with the ring of integers R, and a G E be a root of /. Given
that Z[a] ç R implies that Rv ç Z[a]v. From the theorem above it follows that for
d 2, 3, 4, 5, or 7, we have

£*(-l) 2%(/0 £ a^yX/O"1).
yeRf

tr/r/Q(y)=i

As 1) X 0, therefore there exists at least one y G ç Z[x]v such that

lrK/0(y 1. By Proposition 3.5 follows the proof.

The requirement for irreducibility is necessary. For example, (x — l)(x — 2) is

non-interlacing.

Theorem 4.4 ([12]). Let K be a totally real algebraic numberfield ofdegree d and
let R be its ring of integers. For 1 < d <7, if K satisfies Condition (A), then there

always exists an element a. G R)'v such that trK/Q(°t) b

Proof. Let / be the minimal polynomial ofa such that R Z[a]. From Theorem 1.3

it follows that for d 2, 3, 4, 5, and 7, polynomial / is interlacing. This leaves us

to prove the theorem for sextic number fields. Given that there exist units of every
signature in K, implies that the codifièrent is narrowly equivalent to a square of an

ideal in K [15, Theorem 176], i.e. there exists a fractional ideal I in K, such that

yI2 Rv, where y G K and y » 0. Therefore, (I ,trK/Q(yxy)) is a positive
definite unimodular Z-lattice. From the classification of unimodular quadratic forms
[26, 106:13] it follows that there exists an element of trace one in R^_.

The number field Q(£2i + ^X1) 's monogenic (see [30, Prop. 2.16]), and given
that the polynomial (7) is non-interlacing, this implies that there cannot exist units of
every signature in Z[£21 + ].

5. Universal quadratic forms

For a quadratic form Q of rank r over R, in what follows, we shall write L for Rr.
We begin by proving the following useful proposition:

Proposition 5.1. Let K be a totally real algebraic number field satisfying
Condition (A), and let R be its ring of integers. Let Q be a universal quadratic form
over R. Then there exists 8 G K+ and a positive definite Z-lattice (L. tr^/rnTPq))
such that

\M(L,trK/Q(BsQ))\>2\M(K)\. (8)
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Proof. Given that K satisfies Condition (A), implies that there exists 5 K+
such that Rv SR. Therefore, Qs represents all the elements in R]j\ Let us

consider a Z-lattice (L,ük/q(Bq)) (replacing 8 by 28 if necessary). We note that

min(L, trj^/Qfßg)) is equal to minygRv trx/Qiv) (or twice as much). Thus

\M(LArK/Q(BsQ))\ >2\M(K)\,

where a factor of two on the right follows from the fact that Q(±v) a for all a e R+.

Example 5.2. Let Q be a quadratic form

x2 + 2y2 + 2yz + (2 + e)z2

over Z[1+2^]- where e 1+2^- From Theorem 1.1 in [7] we know that Q
is a universal quadratic form. Given that e is a unit of negative norm implies
that Q(\/5) satisfies Condition (A), and thus fulfils the hypothesis of the above

proposition. The minimal polynomial of 1+2"^ is / x2 — x — 1. It is

interlaced only by two polynomials, x and x — 1. By Proposition 3.5, it follows
that \M(L, trQ(^/5)/Q(ßg))| > 4 (note that this bound will hold for all the lattices

over Z[1+^], invariant of Q). On the other hand, let

r, f f T 2

" T7^) " ~5~'
and by computing the minimal vectors of the Z-lattice we conclude that (8) is an

equality in this case. However, we can have a strict inequality also. Let us consider

an another universal quadratic form Q' over Z[1 ]:

2 2,2jr + y + zG

In this case \M(L, trQ(^/g)/Q(ßg/))| 12.

Corollary 5.3. Let K be a totally real algebraic numberfield ofdegree d satisfying
Condition (A), and let R be its ring of integers. Let r be the rank of a universal

quadratic form over R. Then

log (2\M(K)\)
' ~ 0.401 J( 1 + o(l)) log(2)

Proof. As in Proposition 5.1, a given quadratic form of rank r over the ring of
integers of K can be lifted to a rational integer lattice of rank dr. From the bound

on the kissing number < 2°-401<:fr^1+o(1^ 117] and inequality (8) follows the

corollary.
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This bound can be improved to

^ 2\M(K)\
f >

-cd

for universal diagonal forms. As a special case, we have the following theorem:

Theorem 5.4. Let K be a totally real algebraic number field ofdegree d satisfying
Condition (A), and let R be its ring of integers. If there exists an element a e R+
such that tr^/qjla) 1, then the rank of a universal quadratic form Q over R is

larger than

\M(K)\
d

1 + y/\ +4\M(K)\
2d

\M{K)\
15d

if Q is a classical quadratic form.

ifd > 5,

otherwise.

Proof. Observe that for a classical quadratic form if min^g^L, Bq) 1, then

L < 1 >_L L'. Therefore, if L is a Z-lattice, then the rank of L is larger or equal
to \M(L)\/2. Consider a Z-lattice (L.ük/q{Bq)) as in Proposition 5.1, where Q
is a classical quadratic form of rank r, and thus the rank of L over Z is dr. By
Proposition 5.1 we have

> \m(K)I

dr > \M(K)\

r>X-\M{K)\.

On the other hand, if Q is an integral quadratic form, then 2Q is a classical quadratic
form. The minimum of Z-lattice (L, ük/q(B^)) is 2. Let M be a lattice generated
by the minimum vectors of L. It follows that M is a direct sum of root lattices (see
Theorem 4.10.6 in [23]) and \M(M)\ \M(L)\. Considering root lattices An, £>„

and Es, we observe that \M(An)\ < \M(Dn)\ for n > 5 (see Table 4.10.13 in [23]).
Given that \M(Dn)\ 2n(n — 1) and \M(E%)\ 240, if dr > 16, we can bound
the number of minimal vectors in L by 2dr(dr — 1). For the case when dr < 16,

we can bound the number of minimal vectors by 30dr. Given that there cannot exist
a positive definite binary universal quadratic form, we assume that r > 3. The rest
of the proof follows as for the classical quadratic form.

Corollary 5.5. The minimal rank ofa universal quadraticform over quadratic fields
that contains a unit of negative norm grows at the order of the fourth root of the

discriminant.
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Proof This follows from the theorem above and equation (6).

The above result appeared previously as Proposition 5 in [61, however, here it is

independent of the Riemann hypothesis. In the light of Theorem 1.1 we have:

Theorem 1.4. Let d,r N. There are only finitely many totally real primitive
number fields of degree d that satisfy Condition (A) and have an integer universal
quadraticform of rank r defined over them.

Proof. Let / be the minimal polynomial of a such that R Z[a]. From the proof
of Theorem I. I, we know that there are only finitely many fields for which there are
at most r interlacing polynomials. Therefore, the number of interlacing polynomials
grows, and from Proposition 3.5, we deduce that the right side of inequality (8)

grows also. Given that the maximal number of the minimal vectors is bounded by the

kissing number, follows that the rank of a universal quadratic form over such number
fields should grow also, as was required to show.

Quadratic number fields are always monogenic, thus the main difficulty in

satisfying Condition (A) is to show that there exists a unit of negative norm. For
number fields of higher degrees, along with proving that the field has units of every
signature, we will have to prove that the field is monogenic. In general, it is unclear
how to meet those two conditions. But, for a given field of low degree, it can be

readily checked. Let us consider an example:

Example5.6. Let / x5—2x4—9x3+4x2+15x+3. It is an irreducible polynomial
with only real roots. Let K be the number field generated by the root of /, let R

be its ring of integers. We note that Discf/) 3 x 61 x 241 x 547, therefore K
is monogenic, in particular, R Z[a], where a is a root of /. Furthermore, the

narrow class number of R is 1, thus we have units of every signature, and therefore,
K satisfies Condition (A). We computed that / has 218 interlacing polynomials, thus

if there exists a classical universal quadratic form over K, then it has to be at least of
rank 44.

Dummit and Kisilevsky, in [9], studied a parametric family of cubic polynomials

fk x3 + x2 — (3k2 + k T 2)x — (2k3 + 2k2 + 2k + 1),

related to the cubic subfield of Q(£d). They proved that for infinitely many k, a root
of fk forms a power integer basis of the ring of integers.

Theorem 1.5. For any given re Z, there exist infinitely many totally real quadratic
and cubic number fields that do not have a universal quadraticform of rank r defined
over them.

Proof. This clearly holds for real quadratic number fields, as it a classical result about

Pell equations that there are infinitely many real quadratic number fields that have a

unit of negative norm.
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For cubic number fields, let a e R be a root of fk, let K QM/(A) be a

number field with the roots of integers R. As for infinitely many k, the ring K is

monogenic [9, Theorem 3], it suffices to show that a proportion of them has units of
every signature. This will give us Condition (A), and the proof of this theorem will
follow from Theorem 1.4.

Both a + k and a + k + 1 are units in R, as fk(—k) —1 and fk{—k — 1) 1.

We claim that a -\ k,a-\ k I 1 and—1 generate units of every signature. This follows
from the fact that the N^/q (a + k) 1 and Nk/q (a+k +1) — 1, thus a+k is not

totally positive. Letting e\ a+k ande2 a+k + l,then{±l, ±elt ±e2, ±^1^2}
contains a unit of every possible signature, as was claimed.
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