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Locally compact groups acting on trees, the type I conjecture
and non-amenable von Neumann algebras

Cyril Houdayer* and Sven Raum**

Abstract. We address the problem to characterise closed type I subgroups of the automorphism

group of a tree. Even in the well-studied case of Burger-Mozes' universal groups, non-type I
criteria were unknown. We prove that a huge class of groups acting properly on trees are not
of type I. In the case of Burger-Mozes groups, this yields a complete classification of type I
groups among them. Our key novelty is the use of von Neumann algebraic techniques to prove
the stronger statement that the group von Neumann algebra of the groups under consideration
is non-amenable.

Mathematics Subject Classification (2010). 20E08; 22D10, 46L45.

Keywords. Groups acting on trees, type I groups, free product von Neumann algebras.

1. Introduction

In discrete and topological group theory, groups acting on trees are important
examples thanks to Bass-Serre theory [35]. In particular, the discovery of
Bruhat-Tits theory [6,35] describing rank one reductive algebraic groups over non-
Archimedean fields as groups acting on semi-regular trees provides strong motivation
to study general closed subgroups of Aut(T), the automorphism group of a tree. In
contrast to Bruhat-Tits buildings of higher rank [46], semi-regular trees host a bigger
variety of interesting groups, some of whose basic properties are not yet understood.

An intriguing problem asking us to prove surprising parallels between reductive

algebraic groups and closed subgroups of Aut(T') is posed by the type I conjecture.

Conjecture. Let T be a locally finite tree and assume that G <c Aut( T is a closed

subgroup acting transitively on the boundary dT. Then G is a type I group.

Here, a locally compact group G is called a type I group if every unitary
representation of G generates a type I von Neumann algebra. This is one equivalent

* Cyril Houdayer's research was supported by ERC Starting Grant GAN 637601.
**Sven Raum's research leading to these results has received funding from the People Programme

(Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement n°|6223221.
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definition of type I groups provided by [20, Theorem 2, page 592]. Bernstein and

Kirillov termed "tame" those algebraic groups and Lie groups that are type I — in

contrast to "wild" groups. In this context, type I or tameness results are derived
from a positive solution to the admissibility conjecture. The notion of type I groups
bears its relevance from representation theory. Loosely speaking, type I groups are

precisely those locally compact groups all of whose unitary representations can be

written as a unique direct integral of irreducible representations, thus reducing the

study of arbitrary unitary representations to considerations about irreducible unitary
representations. Prominent examples of type I groups are provided by reductive

algebraic groups over non-Archimedean fields [3,22] (see also the introduction of [4]),
adelic reductive groups 112|, semisimple connected Lie groups [24, Theorem 8.1]
and nilpotent connected Lie groups 116, Théorème 1 ]. However, only very few results

confirming the type I conjecture beyond rank one algebraic groups are known, all
of them being based on combinatorial considerations for the special class of groups
satisfying Tits' independence property [40], See 11,10,29,30].

From the theory of algebraic groups, natural examples of non type I groups,
such as most adelic nilpotent groups are known [27]. For groups acting on trees

the situation looks worse, since tools from Lie theory and from algebraic groups are

not available in the generality of groups acting on trees. There is one small class of
groups for which non-type I results are known and it lies at the far opposite end of
boundary transitive groups. Already in the 60's Thoma proved in 139] that virtually
abelian groups are the only discrete groups of type I, which completely clarifies

type I questions for discrete groups acting on trees. In the rich spectrum between

discrete groups and boundary transitive groups acting on trees, however, up to now

very little is known about representation theory. This is despite the fact that this
class contains very natural examples, such as Burger-Mozes groups associated with
non 2-transitive permutation groups |7|. Astonishingly, up to now there is no result
available that provides examples of non-discrete non-type I groups acting on trees.

Recent attempts to approach this problem by classical methods [11] did not yield the

desired conclusion even for the best understood examples of Burger-Mozes groups.
In this article, we take a new point of view and employ operator algebraic methods,

proving that a huge class of groups acting on trees is not of type I.

Theorem A. Let T be a locally finite tree and G <c Aut(7') a closed non-amenable

subgroup acting minimally on T. If G does not act locally 2-transitive, then G is a

not a type I group.

An action of a group G on a tree T is called minimal, if T is the smallest non-empty
G-invariant subtree of T. The action G r\ T of a group on a tree is called locally
2-transitive, if for every vertex v e V(7') the action of the point stabiliser Gv on

adjacent geometric edges of v is 2-transitive. See Section 2.3 for more explanations.
The fact that we are able to prove a non-type I result in the generality of Theorem A,
insinuates the possibility of characterising those groups acting on trees that are of
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type I. In fact, a non-compact closed subgroup G <c Aut(T) is boundary transitive

if and only if it is «-locally transitive for every n in the sense of [7]: for every
vertex v of T and every « the stabiliser Gv acts transitively on spheres of radius «

around v. Since G is locally 2-transitive if and only if it is 2-locally transitive, this

notion provides a clear transition between groups acting not locally 2-transitively and

boundary transitive groups. We hence pose the following problem, going beyond the

type I conjecture.

Problem 1. Among closed subgroups of Aut(7'j, characterise those which are of
type I.

G <c Aut(7) is Statement Expectation/Result

boundary transitive

(« — l)-locally transitive,
but not «-locally transitive

not 2-locally transitive

Type I conjecture

open

Theorem A

G is type I

G is not type I

G is not type I

Problem 1. non-amenable groups acting minimally on T.

The operator algebraic perspective introduced in this article reduces the problem
to extend Theorem A to general non-boundary transitive groups to considerations in
representation theory.

Burger-Mozes groups [7], also known as universal groups acting on trees, form a

particularly interesting class of examples of closed subgroups ofAut(T). After choice

of a permutation group F < S„, Burger-Mozes construct groups U(F) and index

two subgroups U(F)+ acting on the «-regular tree in such a way that their local action
around vertices is prescribed by F. These groups U( /•")+ attract particular interest of
the totally disconnected group community, since they provide concrete examples of
abstractly simple and compactly generated non-discrete groups [2,8,9,36], Applying
Theorem A and combining it with known type I results [1,10], we give a complete
characterisation of type I groups in this important class of examples.

Theorem B. LetT be a locallyfinite tree and G <t Aut(T) a closed vertex transitive
subgroup with Tits' independence property acting minimally on 977 Then G is a

type I group ifand only if G is locally 2-transitive.
In particular, if F < S„ is a permutation group, then the Burger-Mozes groups

U(F) and\J(F)+ are type I groups ifand only if F is 2-transitive.

We prove Theorem A with operator algebraic methods. The possibility to apply

operator algebraic methods to study totally disconnected groups in general and groups
acting on trees in particular has been previously suggested by the second author.
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Positive results exploiting the additional flexibility provided by this idea can be found
in [32] and [33], A locally compact group is of type I if and only if its maximal group
C*-algebra C*ax(G) is a type I C*-algebra in the sense of [20]. Further, it is a well-
known fact for operator algebraists that every type I C*-algebra is amenable. This
line of thoughts suggests to study non-amenability of operator algebras associated

with groups acting on trees. Since amenability of C*ax(G) implies amenability of
the group von Neumann algebra L(G), Theorem A is an immediate consequence of
the following operator algebraic result, which is the main result of the present article.
Its proof is based on the possibility to reduce considerations about amalgamated free

products of groups to plain free products of von Neumann algebras, for which clear

non-amenability criteria are available.

Theorem C. Let T be a locally finite tree and G <c Aut(T) a closed non-amenable

subgroup acting minimally on T. If G does not act locally 2-transitive, then L(G) is

non-amenable.

Although we want the type I conjecture to be understood as the main motivation
for our present work, our von Neumann algebraic techniques allow us to prove other

non-amenability criteria. We single out the class of groups acting properly and

not edge-transitively on a tree T, but which not necessarily embed as subgroups
of Aut(T). If G ry T, we denote by G+ < G the subgroup of type-preserving
elements, which has at most index two.

Theorem D. Let T be a tree and G r> T a proper action ofa locally compact group.
Let X G + \T be the quotient graph and note that rt\{X) is a free group. Under
either of the following sets ofassumptions, L(G) is non-amenable.

• rank7ri(A) > 2.

• rank jï\ (X) 1 and G is non-amenable.

• Ji \ X 0, is thick, X is finite but not an edge and G is non-amenable.

A tree is called thick, if each of its vertices has valency at least three.

While in the case of a discrete group T, the group von Neumann algebra L(T) is

amenable if and only if T is amenable, it is even an open problem to provide general

non-amenability criteria for the maximal group C* -algebra of a non-discrete group. A
result demonstrating the surprising difficulty of this problem is provided by Connes

[13, Corollary 7], who shows that the maximal group C*-algebra of a connected

locally compact separable group is amenable. Only Lau-Paterson were able to
provide a non-amenability criterion of general nature, although their assumption of
inner amenability is very strong [25], Our work contributes to the understanding of
further non-amenability criteria.

Theorem E. Let T be a locally finite tree and G <c Aut(T) a closed non-amenable

subgroup acting minimally on T. IfG does not act locally 2-transitive, then C*ax(G)
is not nuclear.
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In line with the previous explanations and the success of operator algebraic
methods applied to groups acting on trees, it is natural to pose the following problem,
parallel to Problem 1.

Problem 2. Characterise closed subgroups G <c Aut(T) for which I AG) is amenable.

For which groups among these is C*ax(G) amenable?

Acknowledgements. The authors thank the Mittag-Leffler Institute and the organisers

of the workshop "Classihcation and dynamical systems II: Von Neumann

Algebras" as well as the Mathematisches Forschungsinstitut Oberwolfach and the

organisers of the workshop "C*-algebras" for providing excellent working conditions.
Part of our work on this project was completed during these workshops. The second

author thanks the University of Münster for the excellent working conditions during
the return phase of his Marie Curie Fellowship, when big parts of this work were
done.

2. Preliminaries

In the proceeding extensive preliminaries we provide readers with either operator
algebraic or group theoretic background with the necessary background to follow the

main Sections 3, 4, 5, and 6.

2.1. Locally compact groups. In this article we are working in the setting of
topological groups and their morphisms. This means that a homomorphism between

topological groups is understood to be continuous and isomorphisms of topological

groups are continuous bijective group homomorphisms with a continous inverse.

If G is a locally compact group, we write JG f(x)dx for integration against a

left Haar measure. Here, the function / on G can take values in any Banach space,
thanks to the theory of Pettis integrals. We refer the reader to [15] for these and other
basics about locally compact groups.

The following theorem characterises totally disconnected locally compact groups.
It is well-known to people working in group theory, but we give a short proof for the

convenience of the reader.

Theorem 2.1 (TG 39 in [44]). Let G be a locally compact group. Then G is totally
disconnected if and only if its identity admits a basis of neighbourhoods consisting

ofcompact open subgroups.

Proof. If G admits a basis of neighbourhoods consisting of compact open subgroups,
then it is clear that the connected component of e is {<?}. So G is totally disconnected.

Assume that G is totally disconnected and let G c G be a compact open
neighbourhood of the identity. We will find a compact open subgroup of U. Let
m:GxG -> G be the multiplication map. Since {e}xU c m_1 (G), lor every g e G
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there is a neighbourhood VgxUg c m_1(C/) of (e, g). Since U is compact, we hence

find identity neighbourhoods V\,..., Vn c G and open sets U\,..., Un C G such

that VjUl c U for all i e {1,...,«} and U \(/;. Putting V := n
we obtain a non-empty open symmetric set V C U such that VU C U. We conclude
that the group K (J/teN C G is a compact open subgroup of G lying in U.

The unimodular part. We denote the modular function of a locally compact group G

by Ag - G —r M>o- The modular function of totally disconnected groups is nicely
behaved. If A" < G is a compact open subgroup of a locally compact group, then

Ag\k A k 1, shows that the kernel of Ag is open. In this case, we write
G0 := ker A g tor the unimodular part of G.

2.2. Permutation groups. An action of a topological group on a set is called a

permutation action. A permutation group is a group G with a fixed faithful permutation
action G ry X. We usually write G < Sym(X) for a permutation group.

If G r> X is a permutation action and S C X, we denote by

FixG(S) G G I V.v G 5 : g.v ,v}

the pointwise stabiliser of S. In case S {,v} is a one-element set, we also write
FixG (5) Gs.

Definition 2.2. Let G r> A be a permutation action. We say that G acts 2-transitively,
if Gx r> X \ {x} is transitive for every x G X.

Remark 2.3. The notion of 2-transitivity for G r> A slightly defers from the usual

definition. If | A| > 3, then it is equivalent to the assumption that for each pairs

x\ x2 and y\ ^ y2 in A there is some g G G such that gx, y; for i G {1,2}.
Only in case |A| 2, our definition says that the trivial action is 2-transitive, while
it does not satisfy the usual definition.

We chose to adopt our notion of 2-transitivity to obtain clean formulations of all
theorems about groups acting on trees, for which otherwise the vertices of degree

two need a cumbersome separate treatment, complicating the theorems' statements.

For an arbitrary topological group G and an open subgroup H < G, the action
G r\ G/H is a permutation action. The next lemma is a reformulation of the

well-known fact that a 2-transitive permutation group is primitive.

Lemma 2.4. Let H <G he an open subgroup ofa topological group. If \ H\G/H\<2,
then H < G is a maximal subgroup.

Proof. Assume that there is a proper inclusion of open subgroups H < H < G of
the topological group G. Then H C G is a //-biinvariant set, so that H\G/H
(H\H /H)U (H\(G\H)/H). Since H < H is a proper inclusion, \H\H/H\ > 2

and\H\G/H\ > 3 follows. This proves the lemma. D
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2.3. Groups acting on trees. We follow Serre's formalism of undirected trees [35].
A graph X is a set of vertices V(X) with a set of (directed) edges E(A) as well as

maps o, t: E(X) V(V) and a involutive operation taking opposite edges e i-> ê
such that ë ^ e, o(ë) t(e) and t(ë) o(e) for all e G E(A). If X, Y are

graphs, a graph homomorphism cp: X -> Y is a pair of maps (p\\ V(V) -> V(T) and

<pE: E(2f) —> E(T) such that ty o cpE otx and Oy o <pE <pv o oy.

Segments and paths. The standard segment of length n is written [0, n\. Its set of
vertices is

V([(),«]) {0,

and its edges are pairs

E([0, «]) {(;,/ + 1) I / G {0, n — 1}} U {(/,/ — 1) | i e {1,..., «}}

with 0(1,7) /, t(/, /) j and (1,7) (7,/) for all (i,j) G E([0, «]). A path in a

graph X is graph homomorphism [0, n] -» X. We set o(.s) ,v(0) and t(.v) s(n)
for a path s : [0, n] —> X.
Trees. A graph X is connected if there is a path between pairs of vertices in X. A
circuit in X is the image of an injective path s: [0, n] -> X with o(,v) t(.v) for some
n > 1. A tree is a connected non-empty graph without circuits. Let T be a tree.
For v G V(r) we write

E(u) {e G E(T) I o(e) u}

for the neighbouring edges of v. We call T locally finite if E(u) is finite for all
v G V(T). We call T thick if E(v) contains at least three elements for all v e V(T).
Automorphisms ofa tree. The group Aut(T) of graph automorphisms of a tree T
naturally identifies with the subgroup

Aut(T) {g G Sym(V(T)) | v ~ w 4» g(v) ~ g(w)}

and thus inherits a totally disconnected group topology, which is uniquely defined by
declaring vertex stabilisers open subgroups of Aut(T). An action of a topological
group G on a tree T is a continuous group homomorphism G -> Aut(T). If T is

locally finite, then vertex stabilisers are compact in Aut(7'). If T is a tree and G r\ T
is an action, then the following statements are equivalent.

• Gv < G is compact for all v G V(T).
• G r> T is proper.

If further, G < Aut(T) embeds as a subgroup, then both previous statements are

equivalent to G < Aut(T) being closed.

Locally 2-transitive actions. A group action G r> T on a tree is called locally
2-transitive if for every vertex v G V(7 the natural action Gv r> E(v) is 2-transitive.
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Type-preserving automorphisms. An element g e Aut(T) is called type-preserving
if 2 I d(gu, v) for all v e V(T). Denote by Aut(r)+ < Aut(r) the group of type-
preserving automorphisms. Partitioning V(7) is two classes by v ~ w if and only
if 2 I d(v, w), we obtain a quotient map W(T) i-> {(), 1}. Since Aut(7) preserves this

partition, we obtain a map Aut(7') m>- S2, whose kernel is Aut(7)+. This shows that

Aut(T)+ < Aut(7) is an open subgroup of index at most two. If G T is a group
action on a tree, we denote by G + the inverse image of Aut(T)+ under the action

map G -> Aut(T) and call G ry T type-preserving if G G +

Note that if G ry T is proper, then also the type-preserving part G+ < G acts

properly, because the restriction of a proper action to a closed subgroup remains

proper.

Minimal actions on trees. A group action G ry T on a tree is called minimal, if T
is the smallest non-empty G-invariant subtree of T.

Ends ofa tree. The standard ray [0, oo) is a tree with vertices V([0, oo)) N and

edges

E([(), oo)) {(/,/ + 1) I i G N} U {(i, i — 1) I i e N>i}

with o(i,j) i, t(i,j) j and (/, j) (j,i) for all (/, ./) e E([0, oo)). A
geodesic ray in a tree T is an injective graph homomorphism [0, oo) —> T. Two

geodesic rays are called equivalent, if after shifting they eventually agree. Formally,
£ ~ £' if there are no e N and m e Z such that f (n + m) £'(«) for all n > n0.
An end of T is an equivalence class of geodesic rays in T.

Hyperbolic elements. The standard two-sided geodesic (—oo, oo) is a tree with
vertices

V((—oo, oo)) Z

and edges

E((—oo, oo)) {(/, i + 1) I i 6 Z} U {(i, i — 1) | i G Z}.

The origin and target functions are o(i, j) i and t(i, j) j. The opposite edge

of (i, j) e E((—oo, oo)) is (/', /') (/, i). A (two-sided) geodesic in a tree T is an

injective graph homomorphism {—oo, oo) -> T. An element g G Aut(T) is called

hyperbolic if it neither fixes a vertex nor an edge (formally: a set {e, ë} C E(T)). For

every hyperbolic element g e Aut(T) there is a unique two-sided geodesic Ç in 7
which is setwise fixed. The unique t e N such that goÇ(n) f (n +1) for all n G Z
is called the translation length of g.

The following result characterises amenable groups acting on trees.

Theorem 2.5 (Theorem 1 in [28J). Let T be a locally finite tree and G <c Aut(T') a

closed subgroup. Then G is amenable ifand only ifone of the following statements
holds

• G fixes a vertex.
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• G stabilises an edge.

• G fixes a point in dT.

• G stabilises a pair ofpoints in dT.

2.4. Bass-Serre theory. Bass-Serre theory as described in [35] (see in particular
Section 5 in there) provides a natural way to study groups acting on trees G T
by means of the quotient graph G\T together with vertex and edge stabilisers. The

general fundamental assumption ofBass-Serre theory is that G r> T must act without
inversions, i.e. if g G fixes a geometric edge of T, then it fixes both its ends. It
follows from the definition that every type-preserving action satisfies this assumption.
Bass-Serre theory was originally built for discrete groups, not taking into account

topologies. Its extension to topological groups however is straight forward, as we
will clarify at the end of this section.

Graphs ofgroups. A graph of groups is a graph X with vertex groups (Gv)vey(x)
and edge group (Ge)eeE(x) as well as inclusions Ge r—> Gt(e) such that Ge Gg.

We denote this graph of groups by (G, X) for short.

Fundamental group of a graph ofgroups. If (G, X) is a graph of groups, then Bass-
Serre theory provides a tree T — called universal covering of (G, X) — with an

action of a group tï\{G,X) on T, such that X rt\{G, X)\T and (G, X) is

obtained by considering vertex and edge stabilisers of lifted edges from X to T. This
construction provides a one-to-one correspondence between isomorphism classes of
graphs of groups and groups acting on trees. See Theorem 13 in [35], If G r\ T is

a group acting on a tree with quotient graph X G\T, we will use the convenient
notation (G, X) for the graph of groups obtained from this action.

Contractions ofsubtrees. See [35, pp. 46ffJ. If (G, X) is a graph of groups and

(G, V) is a subgraph, then tti(G, Y) can be naturally identified with a subgroup
of jti(G,X). Contracting Y < X to a vertex, we obtain a graph X/Y. The
contraction can be naturally turned in a graph of groups such that the vertex group
of the contracted vertex Y e V(X/Y) is irfG. Y We denote this graph of
groups by (G, X/ Y). Now we have the identity of fundamental groups ji\(G, X)
n\(G, X/Y) extending uniquely the natural inclusion of vertex and edge stabilisers
of (G, X) into m(G,X/Y).
Semi-direct product decomposition. See [35, p. 45, exercise]. If (G, X) is a graph
of groups, then the universal cover T of X in the usual sense can be naturally turned
into a tree of groups whose vertex and edge groups are isomorphic to vertex and edge

groups of X. We denote this tree of groups by (G, T) and call it the covering tree

of groups of (G, X). If F tti (X) is the usual fundamental group of the graph X,
then the action of T by Deck transformations on 7 induces an action on jt\ (G, T)
and we obtain a natural isomorphism it\ (G, X) s (G, 7") x T.
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Graphs of topological groups. If T is a tree and G T an action (which is
understood to be continuous) of a topological group, then Bass-Serre theory naturally
applies and is compatible with the topology of G. Denote by X G\T the quotient
graph and by (G, X) the associated graph of groups. In this context, vertex and

edge stabilisers of G T are topological groups and inclusion homomorphisms are

continuous and open. Since G as a topological group is uniquely determined by the

abstract group G together with the topology on vertex stabilisers, it makes sense to

speak about graphs of topological groups.

Definition 2.6. A graph of topological groups is a graph of groups (G, X) with the

structure of a topological group on each vertex and edge stabiliser such that inclusion
homomorphisms are continuous and open.

Based on Bass-Serre theory and Serre's "dévissage" it is not difficult to prove
that the fundamental group of a graph of topological groups carries a unique

group topology turning the inclusion of vertex groups into continuous and open
homomorphisms. All previously mentioned constructions and statements remain
valid in the topological setting. For later use, we remark in particular that the

semi-direct product decomposition tï\(G, X) n\(G, T) xi Jt\(X) for a graph of
topological groups (G, X) and the covering tree of groups (G, 7 of (G, X) gives
rise to an embedding of n\(G, T) as an open subgroup of it\(G,x). We fix the

following notation: a locally compact amalgamated free product is an amalgamated
free product with an open locally compact amalgam. As previously discussed a

locally compact amalgamated free product is naturally a locally compact group.

2.5. Yon Neumann algebras. Let H be a complex Hilbert space and 33(H) the

*-algebra of all bounded linear operators on H. The topology of pointwise
convergence on 33(H) is called the strong operator topology.

Definition 2.7. A von Neumann algebra is a unital strongly closed *-subalgebra
of 33(H) for some Hilbert space H.

The or-weak topology. Since the norm topology on 33(H) is finer than the strong
operator topology, every von Neumann algebra is naturally a Banach space. By a

result of Sakai [34], a von Neumann algebra admits a unique isometric predual M*,
that is a Banach space satisfying (AT*)* M isometrically. The weak-*-topology
on M is called the a-weak topology. A positive linear map (in particular a

*-homomorphism) (p: M —> N between von Neumann algebras is called normal

if it is CT-weakly continuous.

Traces andfinite von Neumann algebras. A positive functional r: M —> C on a von
Neumann algebra is called a trace if r(xy) r(yx) for all x,y e M. A von
Neumann algebra is called finite if it admits a faithful family of normal traces, that is

a family (rof normal traces such that t,- (x*x) 0 for all i implies x 0.
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Factors. A factor is a von Neumann algebra M with trivial centre Z(M) :=M C) M'
CI. If M is an infinite dimensional factor with a non-zero trace, then M is called
a Hi factor. The non-zero trace on a Iii factor is unique up to normalisation.

Positive elements. We denote by M+ {x*x \ x G M} the set of all positive
elements in a von Neumann algebra M. A linear map tp: M -» N between von
Neumann algebras is called positive if tp(M +) c yv+.

Conditional expectations. If N C M is an inclusion of von Neumann algebras, a

conditional expectation E: M -> N is a projection of norm one. It is called normal

if it is a-weakly continuous. It satisfies E(n\mn2) n\E(m)n2 for all n\.n2 G N
and all m e M.

Weights. A weight on a von Neumann algebra M is an additive and positive
homogeneous map q>:M + -> R>o U {oo}. We say that <p is faithful, if
tp(x) 0 implies x 0 for every x G M+. The weight p is called normal if
sup,- <p(xi) (pl'sup, Xi) for every bounded ascending net (x,-) of positive elements

in A4. Here sup,- x,- denotes the smallest upper bound for the net (x,),-. One calls

xiv {x G A4 I £>(x*x) < oo} the set of 2-integrable elements. If q> is a normal

weight and n<p C M is a-weakly dense, then cp is called semifinite. A normal faithful
semifinite weight is abbreviated to an nfsf weight.

Modular automorphism group. If <p is an nfsf weight on a von Neumann algebra M,
the set xiy with the scalar product (x, y) := (p(y*x) can be completed to a Hilbert
space L2(M, <p) on which M is faithfully represented via left multiplication. The map
S: x I—>- x* on x\ç D n* C L2(M, (p) defines a conjugate linear closable unbounded

operator, whose polar decomposition is denoted by S J A1/2. For every te 1,
the operator A" is a well-defined unitary on I?(A4, <p). Tomita-Takesaki theory [381

says that the conjugation (Ad A" ),6r defines a one-parameter automorphism group
of S(L2(A4, (p)) that preserves M. Its restriction to M is denoted by (of and it is

called the modular automorphism group of tp.

2.6. Group von Neumann algebras. We refer the reader to [ 15] for an introduction
to locally compact groups, their representations and convolution algebras. Let G be

a locally compact group and Xg- G — U(l?(G)) its left-regular representation. It
satisfies (Ac(g)/)(x) /(g_1x) for all / G Cc(G) and g, x eG. The group von
Neumann algebra of G is by definition

L(G) := (Ag Or) I g e G}" c S(L2(G)).

We usually write ug Ao(g) for the canonical unitaries in L(G). They span an

isomorphic copy of CG, to which we refer without explicitly mentioning Xg Von
Neumann's bicommutant theorem says that L(G) is the strong and the a-weak closure
of the set CG. After choice of a left Haar measure on G, the Pettis integral provides
a natural *-homomorphism L1 (G) L(G): / \-x- fG f (g)Xc(g) dg, which we will
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also denote by Xq. If no confusion is possible, we write L1 (G) c L(G) instead of
XgCL1(G)) C L(G).

The convolution algebra Cc(G) is a left Hilbert algebra in the sense of [38,
Chapter VI. 1 ]. After choice of a left Haar measure it defines a nfsf weight <p on

L(G) that satisfies <p(f f(e) for all / e Cc(G) C L(G). This weight is

called a (left) Plancherel weight of L(G). It satisfies cp(g* * /) (f,g) for all

fg e Cc(G) C L(G) n L2(G). The modular autormorphism group of q> satisfies

o?(ug) Ac(g)ug for all g e G. If G is a discrete group, the Plancherel

weight associated with the counting measure extends to the natural normal trace

t:L(G) —» C satisfying r(ug) <5e,g for all g s G.

The next proposition is well-known and clarifies the relation between the group
von Neumann algebras of a locally compact group and its closed subgroups. It can
be found for example as Theorem A of [23].

Proposition 2.8. Let H < G be a closed subgroup ofa locally compact group. Then

the group homomorphism H 3 h Xq (h) e U(L(G)) extends to a unique infective
normal *-homomorphism L(H) -3- L(G).

Proof. Denote by A(G) Eymard's Fourier algebra [ 19, Chapitre 3], which is a Banach

algebra densely spanned by continuous positive type functions with compact support
inG. By Theorem 3.10 of [ 191 we have L(G)* A(G),i.e. there is an isomorphism
L(G) ^ A(G)* carrying the a-weak topology onto the weak-*-topology. This

isomorphism identifies ug e L(G) with the evaluation functional evg A(G)* for
all g G G.

Since H <c G is a closed subgroup, every compactly supported function of
positive type on G restricts to a compactly supported function of positive type
on H. So Proposition 3.4 in [19] shows that the restriction gives rise to well-defined

map A(G) -> A(H). By Theorems la and lb of [23] (see also Theorem 4.21

of [26|), every element of A(H) can be extended to an element of A(G). This shows

surjectivity of the restriction map A(G) -> A(//). It follows that the dual map

A(//)* —> A(G)* is injective. In view of the first paragraph this finishes the proof
of the proposition.

Averaging projections. Applied to a compact subgroup K < G of a locally compact

group, the previous proposition shows that the Pettis integral pk'-= (X dke L(G
defines a projection. Here we integrate against the Haar probability of K. It is the

image of 1 k £ Cc(AT) C L(AT) C L(G). This projection is called averaging
projection associated with K < G.

If H <o G is an open subgroup, the inclusion L(H) C L(G) from Proposition 2.8

admits a natural conditional expectation. Also this fact is well known. It follows
from Theorem 3.1(a) in [21 [ in the special case M Cl and <p 1h. We give a

short proof only for the readers convenience.
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Proposition 2.9. Let H < G be an open subgroup ofa locally compact group. Then

the embedding H < G extends to a unique injective normal *-homomorphism
L(H) C L(G). Further, there is a unique normal conditional expectation
E:L(G) —s>- E(H) satisfying E(ug) 1 n(jf)ug for all g e G.

Proof The fact that h r-> àg (h) extends to a unique embedding L(H) L (G) is

the content of Proposition 2.8. Let us construct E. Denote by <p\L(G)+ -> [0, +oc]
a Plancherei weight on L(G). The dense subalgebra CC(G) c L(G) consists of
(/3-integrable elements and <p(f) f{e) for all / Cc(G). Since H < G is open,
we have Cc(H) c Cc(G). Further, Cc(// C L(H) is a cr-weakly dense subalgebra,

implying that <p is semifinite on L(//). Further, L(//) is a11"-invariant. By Takesaki's
theorem [37] there is a unique normal conditional expectation E: L(G) —» L(//)
satisfying <p(E(x)) cp(x) for all x G m</5. For / G CC(H) c Cc(G) we have

E(/) /. For / e Cc(G \ H) and g G CC(H), we have g * f G Cc(G \ H) and

(p(gE(f)) <p(gf) 0. So E(/) 0. This shows that E|Cc(g) is the restriction

map Cc(G) —> Cc(H). If g e G \ H, then ug is a a-weak limit of elements in
Cc(G \ //), so that E(uk) 0 follows. This proves existence of E. Uniqueness
follows from the fact that CG C L(G) is a-weakly dense.

In case K < G is a compact subgroup of a locally compact group, the group von
Neumann algebras L(G) and L(G/ A") can also be compared in a natural way. This
is the content of the next well-known proposition.

Proposition 2.10. Let G be a locally compact group and K <1 G a compact normal
subgroup. Then the averaging projection p associated with K defines a central
projection in L(G) such that pE(G) L(G/K). In particular, L(G) is non-
amenable, if L(G/ K) is non-amenable.

Proof. Recall that we can write p fK u^dk as a Pettis integral against the Haar

probability measure of K. We have

for all g G G and Ç. r) G L2(G). The third equality follows from the fact
that the Haar measure on K is invariant under the conjugation action of G. So

p G L(G) n CG' Z(L(G)).
Note that (pÇ)(g) fK ^(kg)dk for all Ç G Cc(G) C L2(G), so that

plf(G) — L2(G)K follows. Consider the map K:L2(G/A') -> L2(G) defined



198 C. Houdayer and S. Raum CMH

by (Vf )(g) f(gK) for / G Cc(G/K). Since K < G is compact and normal,
V is well-defined and isometric. A short calculation shows that V\f(G/K)
\}{G)k ph2(G), meaning that VV* p. So V:L2(G/K) -> L2(G)K is a

unitary. Denoting the canonical unitaries in L(G/K) by vgK, gK G G/K, another
calculation on the dense subset Cc(G/K) verifies that pugV VvgK for every
g G G. This shows V*pL(G)pV L(G/K).

Since x px is a conditional expectation (even a *-homomorphism) from
L(G) onto p\ .(G) L(G/A"), it follows from Proposition 2.15 that non-amenability
of L(G/K) implies non-amenability of L(G).

2.6.1. Hecke (von Neumann) algebras. On the level of group algebras, there is a

replacement tor the quotient G/K of a locally compact group G by a compact normal

subgroup K <3 G, even if we drop the assumption of normality. This replacement is

provided by Hecke algebras.

Definition 2.11. Let G be a totally disconnected group and K < G a compact

open subgroup. Then (G, K) is called a Hecke pair. Let p p% g Cc(G) be the

averaging projection associated with K. Then Cc(G, K) := pCc(G)p is called the

Hecke algebra of the pair (G, K) and L(G, K) := pL(G)p is called the Hecke von
Neumann algebra of the pair (G, K).

Remark 2.12. By a result of Tzanev [41J our definition of a Hecke algebra and a

Hecke von Neumann algebra agree with the usual definitions. That is, Cc(G, K) is

the set of all compactly supported ÄT-biinvariant functions in Cc(G) and L(G, K)
is the von Neumann algebra closure of Cc(G, K) in its representation on i2(K\G).

We will need the following formula for the dimension of a Hecke algebra in later

applications.

Proposition 2.13. Let (G, K) he a Hecke pair. Then dimCc(G, K) \K\G/K|.

Proof. We write p Ijç- G Cc(G) for the averaging projection associated with
K < G. If KgK G K\G/K, then pugp txgK £ CC(G, K). Further, it is clear
that these elements generate Cc(G, K) as a linear space. Let (p: Cc(G) C be (the
linear extension of) a Plancherel weight on Cc(G) C L(G). For KgK f KhK,
we have (p((pugp)*pupp) — (l/r * tgK * 0» since e / KgKh~x K.
This shows that the elements pugp are pairwise orthogonal in L2(G) D Cc(G). In

particular, (pugp)xgKeK\G/K is a linearly independent family in Cc(G, K). This
shows dimCc(G, K) \K\G/K\.

2.6.2. Group factors. The following criterion describes discrete groups whose

group von Neumann algebra is a factor. In the well-known proof, we make use of
the right-regular representation po' G ti(I?(G)) of a locally compact group G,
which satisfies (pG(kr)/)(x) ,fixs) f°r a" / Cc(G) and g,x e G.
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Proposition 2.14. Let Y be a discrete group. Then L(r) is a factor if and only if
every non-trivial conjugacy class in P is infinite. If P is non-trivial, then L(P) is

a Hi factor.

Proof. If T has a non-trivial finite conjugacy class c c P, then x := Ylg&c ug
satisfies ugxu* x for all g e T. So x e Z(F(G)) is a witnesses that L(T) is not
a factor.

Assume that every conjugacy class of T is infinite. The map L(r) xSe

£2(r) is faithful, since xSg pg-\ xSe tor all g e P and the vectors Sg, g e P are a

basis of l2(Y). So if x e Z(F(G)), it suffices to show that x8e e C8e. We have

(x8e)(ghg~l) {x8e,8ghg-1)

{x8e,XG(g)pG(g)8h)

(XG(g)*pG(g)*x8e,8h)

(x\G(gypG(g)*8e,8h)
(x8e, 8h

(x8e)(h),

for all g, he T. Hence x8e is constant on conjugacy classes. Since x8e is also

2-summable and every non-trivial conjugacy class of T is infinite, it follows that

x8e e C8e indeed.

If T is a non-trivial icc group, then it is infinite. So L(T) is an infinite dimensional
factor. Since P is discrete, there is the natural trace on L(r) showing that it is a II]
factor.

2.6.3. Amenable von Neumann algebras. A von Neumann algebra M c (B(H)
is called injective, if there is some (not necessarily normal) conditional expectation
E: !B(H) —> M. Following the suggestion of Connes [14J, we refer to this class of
von Neumann algebras as amenable von Neumann algebras.

Proposition 2.15. If N C M is an inclusion of von Neumann algebras with
conditional expectation and M is amenable, then N is amenable. In particular,

if M is an amenable and finite von Neumann algebra, then every von Neumann

subalgebra of M is amenable.

Proof. From the definitions, the first part of the proposition follows on the nose.
We only have to prove that every von Neumann subalgebra of a finite von Neumann

algebra admits a conditional expectation. This follows from Takesaki's theorem [37]
and the fact that the modular automorphism group of a trace is trivial.

We fix the following important consequence of Proposition 2.15.

Proposition 2.16. Let H < G be an open subgroup of a locally compact group. If
L(//) is non-amenable, then also L(G) is non-amenable.
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Proof. Assume that L(H) is non-amenable. Proposition 2.9 tells us that there is a

natural embedding L(H) L(G) with a normal conditional expectation L(G) ->
L(H). We can apply Proposition 2.15, in order to conclude that L(G) is non-
amenable.

Let M be a Hi factor, k e N>o p e M^(C) ® M a non-zero projection. Then

/>(M^(C) ® M)p is called an amplification of M. Its isomophism class depends

only on t := (Tr ® r)(p), where Tr denotes the non-normalised trace of Mfc(C)
and r is the unique trace of M. Hence, we write M' for this amplification.

We also need the following simple stability result for amenable IIj factors.

Proposition 2.17. Let M be a II i factor and t > 0. Then M is amenable ifand only

if M1 is amenable.

Proof. Fix an amenable von Neumann algebra M c 33(H) and a conditional

expectation E: 33(H) —» M. Then id <g> E: 33(K)®33(H) -> 33(K)®M is

a conditional expectation witnessing amenability of 33(K)®M. If p M is

a non-zero projection and p1- — 1 — p is its orthogonal complement, then

M 3 x m» pxp pMp © C p1- is a conditional expectation. So Proposition 2.15

implies amenability of pMp © Cp1- and hence of pMp These arguments show

that every amplification of M is amenable. Further, M (Mt)1^', so that the

proposition follows.

The next theorem is classic and a proof can be found in Theorem 2.5.8 of [5 j.

Theorem 2.18. Let F be a discrete group. Then L(r) is amenable ifand only if Y

is amenable.

2.6.4. Free group factors and non-amenable free products of von Neumann
algebras. Let M\, M2 be von Neumann algebras with fixed faithful normal states

<Pi e M*. The free product von Neumann algebra (Mi, (pi) * (M2,(p2) is described
in Chapters 1.6 and 2.5 of [45]. It is the unique von Neumann algebra M generated

by isomorphic copies of M\ and M2 together with a normal state (p on M satisfying
the freeness condition <p(x 1 • • • xn) 0 for all X\,..., xn Mi U M2 satisfying
Xi Mjr (pji(xi) 0 with ji ^ ji+i for i e {1,... ,n — 1}. If no confusion is

possible, we write M M\ * M2 for the free product von Neumann algebra.
In this section, we briefly explain the following result due to Dykema.

Theorem 2.19 (See Theorem 4.6 of [17]). Let M,N be hyperfinite tracial von

Neumann algebras such that dim M, dim N > 2 and dim M + dim N > 5. Then

M * N is a non-amenable von Neumann algebra.

Let F„ denote some non-abelian free group. Then L(F„) is called a free group
factor. For any k e N>0 and any non-zero projection p G IVfo(C) <g> L(F„), the

compression /?(M,fc(C) <g> L(F„))p is called an interpolated free group factor. These

von Neumann algebras were introduced independently in [ 18] and [31], where among
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other things it was proven that the isomorphism class of /?(M^(C) <8> L(F„))p only
depends on / := (Tr®7)(j>)2 ^ ' ' where Tr denotes the non-normalised trace on M& (C)
and r is the canonical trace on L(F„). We hence write L(F,) for this von Neumann

algebra.

Proposition 2.20. Interpolated free group factors L(F?), t > 1 are non-amenable.

Proof. Let t > 1 be real. By Proposition 2.14 and Theorem 2.18 we know that L(F„)
is a non-amenable IIj factor. So Proposition 2.17 shows that L(Ff) L(F2)v/1//^-1^
is non-amenable.

Now Theorem 2.19 is a consequence of the following result, which is stated

explicitly in the literature.

Theorem 2.21 (See Theorem 4.6 of [17 J). Let M,N be hyperfinite tracial von
Neumann algebras such that dim M, dim N > 2 and dim M + dim N > 5. Then

there is a direct summand of M * N that is isomorphic to some interpolated free
group factor.

2.6.5. Amalgamated free product von Neumann algebras. If N C M is an

inclusion of von Neumann algebras with a normal faithful conditional expectation
E: M -> N, we write M © N {x e M | E(x) 0}. Given two von Neumann

algebras M\, M2 with a common von Neumann subalgebra N and normal faithful
conditional expectations E;-: M, —> N, there is an amalgamated free product von
Neumann algebra (Mi, Ej) */v (M2, E2) described in Chapter 3.8 of [45]. It is the

unique von Neumann algebra M generated by isomorphic copies of Mi and M2
such that Mi fl M2 A in M as well as a normal conditional expectation
E: M -> N obeying the freeness condition E(xi •xn) 0 for all elements

xi,... ,x„ Mi U M2 with Xi e Mjt © N and /,• f+1 for alii e {1,..., n — 1}.

Compare with Proposition 2.5 in [42].

Proposition 2.22. Let G Gi *h G2 be a locally compact amalgamated free
product. Then the inclusions L(Gi),L(G2) C L(G) induce an isomorphism L(G)
L(Gi) *L(//) L(G2) where the amalgamatedfree product is taken with respect to the

natural conditional expectations.

Proof. Denote by E:L(G) —s- L(H) the normal conditional expectation associated

by Proposition 2.9 with the open subgroup H < G. It satisfies E(ug ^H(g)ug
for all g e G. Denote by E; : L(G) L(GV) the natural conditional expectations
for j 6 {1,2}.

We want to apply Proposition 2.5 of [42] to conclude the proof. In order to do

so we only need to verify the freeness condition for L(Gj) c L(G) with respect
to E. Note that if gj gn e Gi U G2 with gi e Gji \ H and /, f ji+i for all

i e {ji jn—i}, then gi gn £ G \ H. This implies E(wgl • • • ugn 0.
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Let xi,...,xn G L(G!) U L(G2) with x,- L(G7i) © L(//) and ji ^ yj+i
for all i G {1,— 1}. Since CGy c L(Gy) is strongly dense for / G {1,2},
Kaplansky's density theorem provides us with bounded nets (xa,i)a in CGy(. for all

(y—>-qq
i G {1,...,«} such that xaj -> x,- strongly. Write xaj Ej?eG cg,a,ifg-ij
Since Eyf(x,-) 0, we have ya>i := xaj - EJ: (xaJ) -> x,- strongly. Since (yaj)a
is a bounded net, we also obtain yaj ya>n —> xj • • • xn strongly and hence also

rr-weakly. We have ya>i E^eGy. \h cg,*,iug> so that E(ya,i • • • ya,n) 0 for all a
by our initial remark on E. It follows that E(xi • • • xn) 0 by normality of E.

3. Basic non-amenability results for group von Neumann algebras

In this section we provide the basic non-amenability results for group von Neumann

algebras, which are going to be used in Section 4. By means of Bass-Serre theory,
all non-amenability questions we face, can be answered with the next Lemmas 3.1

and 3.3.

Lemma 3.1. Let K <G,H be two locally compact groups with a common compact
open subgroup. If\K\G/K\ > 3 and K < H is a proper subgroup, thenL(G H)
is non-amenable.

Proof. Since K is a compact open subgroup of G and H, we have K < G0, H0.
So Go *k Ho < G *k H is an open subgroup. So by Proposition 2.16 it suffices

to prove that L(G<) *k Ho) is non-amenable. If |/f\G0/A"| < 2, then G0 follows

compact. Hence Go < G is a compact open normal subgroup, showing that G Go

is unimodular. So also |AT\G//f| < 2, which is a contradiction. We conclude that

|AT\Go/^| > 3. Similarly, if K H0 then H contains a compact open normal
subgroup, and hence H H$ is unimodular. So K H, which is a contradiction.
This shows that K < H0 is a proper inclusion.

From now on assume that G, H are unimodular groups satisfying the assumptions
of the lemma. By Proposition 2.22, there is a natural isomorphism L(G * k H
L(G) *L(jf) L(//) =: M. Write p pK e L(/f) for the averaging projection
over K. Let cp be the Plancherel weight on M normalised to satisfy <p(p) 1. Then

pMp D pL(G)p *pUK)p pHH)p pL(G)p *Cp pHH)p

We have dim pL(G)p > \K\G/K\ > 3 by Proposition 2.13 and ph(H)p <Cp,

since dim pL(H)p > \K\H/K\ > 2. Since G, H are unimodular, pL(G)p and

pL(H)p are tracial von Neumann algebras. We can find unital hyperfinite von
Neumann subalgebras Ng C pL(G)p and Nh C ph(H)p such that dim No > 3

and Nh 7^ <Cp. So Dykema's Theorem 2.19 applies to show that Nq *Cp Nh is

non-amenable. Since No *Cp Hh is a non-amenable von Neumann subalgebra of
the finite von Neumann algebra /?L(G) L(//)p, Proposition 2.15 says that also
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the latter is a non-amenable von Neumann algebra. We conclude that a corner of M
is non-amenable, and hence M is non-amenable by the same proposition.

Remark 3.2. Lemma 3.1 can be alternatively proved without reducing to the

unimodular setting, if we employ Ueda's [43]. We prefer however to present a

proof of Lemma 3.1 based on more classical theorems on free product von Neumann

algebras.

Lemma 3.3. Let G be the fundamental group ofone of the following graphs ofgroups
(G,X).
(1) X • • • with compact edge groups and all inclusions proper, except

forpossibly one inclusion into the vertex group of the middle vertex.

(2) X a graph with at least three terminal edges e, f g and terminal vertices

x — t(e), y t(/), z t(g) such that Ge,Gf,Gg are compact and the

inclusions Ge Gx, G y '-c Gy and Gg Gz are proper.

Then L(G) is non-amenable.

Proof. Consider case I first. The statement that L(G is non-amenable is equivalent
to showing that L(K, *L[ K2 *l2 Kf) 's non-amenable if K\, K2, K3 are locally
compact groups, L, < K,, K2 is a proper compact open subgroup, L2 < K2 is some

compact open subgroup and L2 < K, is a proper compact open subgroup. We have

UK, *Ll K2 *l2 K3) s {UK,) *L(Ll) UK2)) *L(L2) L(K3),

by Proposition 2.22. Since L\ < K\, K2 is proper, the group K, K2 is non-

compact. So|L2\(ATi *L\ K2)/L2\ oo. SincealsoL2 < K3 is a proper inclusion,
Lemma 3.1 applies to show that L(G) is non-amenable.

We consider case (2). Let Y C X be the graph formed by removing the vertices

x,y,z and the edges e, f g from X. Let H rt,(G ,Y). Then G is the fundamental

group of the contraction (G, Z) given as

*GZ

If one of the inclusions Ge H, Gf H or Gg H is proper, the first

part of the lemma applies to show that the group von Neumann algebra of an open
subgroup of G is non-amenable. Indeed, by symmetry we may assume that Ge ^ H
is proper. Since Ge > Gx and G/ r-^ G v are proper inclusions by assumption,
case (1) applies to Gx *oe * H *g Gv, which is an open subgroup of G. It follows
that L(G) is non-amenable using Proposition 2.16.
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If Ge Gf Gg H, then H is compact and G Gx *h Gy *h Gz follows
from Serre's dévissage. The inclusions H ^ Gx,Gy,Gz are all proper, so that (1)

applies to show that L(G) is non-amenable.

4. Groups acting properly on trees

In this section we consider several criteria for non-amenability of L(G) for locally
compact groups acting properly on trees. In case G < Aut(T) is a subgroup of the

automophisms of a locally finite tree, properness of the action is easily seen to be

equivalent to closedness G <c Aut(T). Our non-amenability criteria for L(G) are

organised according to the rank of the free group Jti(G\T). An increasing number

of extra assumptions for ii\ (G\T) of lower rank is required. For the rest of this

section, we fix the setting of a proper action G r\T of a locally compact group on a

tree.

Naturally, L(G) is non-amenable, if jt\ (G\T) is a non-abelian free group.

Proposition 4.1. Let T be a tree and G r\ T a proper action of a locally compact

group. If rank m (G+\T) > 2, thenh(G) is non-amenable.

Proof. Since G+ < G is an open subgroup of index at most two, it suffices by

Proposition 2.16 to show that L(G+) is non-amenable. We may hence from now on

assume that the action of G on T is type-preserving.
We write A G\T. Let S C A be a maximal subtree of X. Denote by

(G, T) the contraction of (G, X) along S and denote the unique vertex of Y by y.
Then rt\ (T) Jt\(A) is a non-abelian free group by assumption. Let (G, V) be the

covering tree of groups of Y. Then

G jti (G, A) 7t\ (G, Y) it\ (G, T) xi n\(T),

as described in Section 2.4. We identify G tti(G, T) xi jti(T) via this natural

isomorphism.
First assume that Jti (G, T) is compact. We denote it by A. Let p pk £ L(G)

be the averaging projection associated with p. We have ph(G)p s L(G/A) by

Proposition 2.10. Further, G/K 7T| (T) is a discrete non-amenable group, so that
Theorem 2.18 shows that L(G/A) is non-amenable. So L(G) has a non-amenable

corner, implying that it is non-amenable itself.
Now we assume that 7ri(G, T) is non-compact. In this case we denote it by H.

Since edge stabilisers of (G, T) are compact and H is non-compact, there is some

proper inclusion of an edge group into a vertex group of (G, T). Since (G, T) arises

from the universal covering T of Y, there is also some edge e e E(T) such that the

inclusion Ge < Gy is non-trivial. Since rt\(T) has rank at least two, there is another

edge / e E(T) such that e, ë, f f are pairwise different edges in Y. The subgraph
of Y having the vertex y and the set of edges {e, ë, f. /} lifts to a 4-regular subtree R
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of T in which all lifts e of e with target y define proper inclusions Gg < G jr. We

consider the following subgraph Z of R, where the lifts of e in Z as well as their

target vertices are marked in grey.

We obtain an open subgroup 7Ti (G, Z) C it\ (G, T), to which Lemma 3.3 (2) applies.
So L(tti(G,Z)) is non-amenable, implying that also L(G) is non-amenable by

Proposition 2.16.

Also if jtj (G\T) is a non-trivial group, we obtain a convincing criteria for non-

amenability of L(G). In fact, non-amenability of G and L(G) are equivalent in this

case.

Proposition 4.2. Let T be a tree and G ry T a proper action of a non-amenable

locally compact group, // rank n\ (G + \T) 1, that is ii\ (G + \T) Z, thenL(G)
is non-amenable.

Proof. Since G+ < G is an open subgroup of index at most two, it suffices by

Proposition 2.16 to show that L(G+) is non-amenable. We may hence from now on

assume that the action of G on T is type-preserving.
Write X G\T. We distinguish several cases.

Case 1. Assume that X has no vertex of degree 1. Then A is a circuit. Let T be

the covering tree of X. It can be identified with the Cayley graph Cay(Z, {—1, 1})-
Since (G, T) is the covering tree of a circuit, there is p N such that for all n e N

(G(n,n +1) < Gn) (G(n+P,n + x+p) < Gn+p),

(G(n,n + 1) — G„ + i) (G(n+p^n + \ _|_p) < Gn + \+p)

If G„ G(„;„_|_i) for all ne Z or Gn+\ G(„;„+1) for all n e Z, then n\(G, T)
lim Gn is an inductive limit of compact groups. Since G ^ 7Ti(G, T) xi Z is non-
amenable, this is a contradiction. So there are m,n e Z such that G(mpn+i) < Gm

and G(„!H+1) < G„+i are proper inclusions. Shifting indices by p, we may find
m < n < o e Z such that

G(m,m+1) — Gm

G(n,n +1) < Gn +1

G(0,o+1) 5 G0+1

is proper,

is proper,

is proper.
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Fixing m,n £ Z with such properties, we can assume o > n to be minimal with
these properties. Let

H — Gm+li Gm+2> • • Gn, G(«,n + 1)} •

Further note that (G(«_i-i,«+2)> Gn_|_2> Gn_|_3,..., Ga, G(0j0-|_i)) G(n+itn+2) by

minimality of o. We obtain that

(Gm, Gm+\,..., G0-i-i)

Gm *G(„,.„,+,) Gm +1 *G(m+1,m+2) *G(0>0+d G0+1

Gm *G(m,m+1) H *G(„.„+1) G„+1 *G(„+1,„+2) *G(0-o+D G0+I

Gm *G(m>m+i) H *G(„,„+1) G„+i *G(0,0+1) G0+1

This is an open subgroup of G. If either f/ ^ G(n,n+1) or H ^ G(m;m+1),
then Lemma 3.1 applies to Gm *G(mm+1) H *G(nn+1) G„+i and shows that its

group von Neumann algebra is non-amenable. So also L(G) is non-amenable by

Proposition 2.16. In case G(„,„+i) H G(„!;/n+1), we have

Gm *G(m,m+1) *G ('!.«+O Gn+I *G(„,„+1) G„+1 Gm *H Gn+1 *G(o 0+D 00+1

and // < Gm,Gn+\ as well as G(Oj0+i) < G0+1 are proper inclusions.
So Lemma 3.3 (1) applies to show that the group von Neumann algebra of
Gm *h G„+1 *G(0,0+i) G„+i is non-amenable.

Ca,vc 2. Assume that X has some vertex of degree 1. Let v e V( A have degree 1

and let e e E(3f) be the unique edge satisfying t(e) v. If Ge Gv, then any
lift of v to T is a terminal vertex. We may hence remove v and e from X without
changing G. This either reduces to Case 1, or it provides us with a vertex v e V(X)
of degree 1 and an edge e £ E(3f) with t(e) v such that Ge < Gv is a proper
inclusion. Let (G, T) be the covering tree of groups of (G, X). Then (G, T) takes

the form

•x
f

>y

where x, y,z £ V(T) are lifts of v and /, g, h £ E(T) are lifts of e. The inclusions

G/ < Gx, Gg < Gy and Gg < Gz are proper, since they are isomorphic with
Ge < Gv. So Lemma 3.1 (2) applies and says that 7Ti(G, T) has a non-amenable

group von Neumann algebra. Since 7ri(G,T) < n\(G,T) xi Z ^ G is an open
subgroup, Proposition 2.16 implies that L(G) is non-amenable.

As can be expected, the case n\{G\T) — 0 becomes the most subtle. This is

due to the fact that there are many edge transitive closed type I subgroups of Aut(T).
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Their group von Neumann algebras are in particular amenable. We obtain a non-

amenability result in this case, which is sufficient for all applications presented in

this article.

Proposition 4.3. LetT be a thick tree and G r\ T a proper action ofanon-amenable

locally compact group such that G + \T is finite and satisfies Jti(G+\T) 0. If
G+\T is not an edge, then L(G) is non-amenable.

Proof. Since G+ < G is an open subgroup of index at most two, it suffices by

Proposition 2.16 to show that L(G+) is non-amenable. We may hence from now on

assume that the action of G on T is type-preserving.
We write X G\T. Let v G V(V) be a terminal vertex of X and v e X(T) a lift

of v. lie e E(V) is the unique edge satisfying t(e) v, then |G„/Ge| |E(t5)| > 3,

since T is thick. In particular Ge < Gv is a proper inclusion. So if X has at least

three terminal edges, then Lemma 3.3 (2) applies to show that G Jt\ (G, X) has a

non-amenable group von Neumann algebra. Otherwise, X is a finite segment, which

we can identify with the standard segment [0, n] for some n e N>0. Since G does

not act edge transitively, we have n >2. We distinguish different cases.

Case I. We have a proper inclusion G(oj) < Gi orG(„_i.„) < G„_i. By symmetry
we may assume that G< Gn-\ is a proper inclusion. Put

H Gl *G(1,2) ••• *G(„_2.,,-n Gn~i

Then G G0 *G(o,n H *G(„_1,„) G„ with G(0,i), G(n-i,n) compact and with proper
inclusions G(0,i) < G0 and G(n_ltB) < H as well as G(„_i.„) 5 Gn. So Lemma 3.3

(1) applies to show that L(G) is non-amenable.

Case 2. We have G(0,i) G\ or G(„_i.„) Gn-\. By symmetry we may assume
that G(0,i) Gi. Let k e N be maximal with the property that

Go > G(o,i) Gi > G(i)2) G2 > ••• > G(fc_i^) Gfc

We know that G(„_i;„) < Gn is a proper inclusion, implying that k < n — 1. So

G G0 *0(0.,) Gi *G(1,2) ••• Gn

(Go *G{k,k+o Gk + i) *G(k+uk+2) ••• *G(„_1.„) G„

We will show that the open subgroup G0 *g(A k+u Gk+1 < G has a non-amenable

group von Neumann algebra. Thanks to Proposition 2.16, this will finish the proof.
Let i {1 k}. If v e V(T) is a lift of / e V([0, «]) and e, f G E(w) are lifts

of (z — 1, z), (z, z + 1) 6 E(z'), respectively, then

E(w) Gv/Ge U Gv/Gf {Ge} U Gv/Gf
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Since |E(u)| > 3, it follows that |G;-/G(jii+1)| |G„/G/1 > 2. So G, > G(,;l+1)
is a proper inclusion for all i G {1,...,/:}. Since also G0 > G(0,i) is a proper
inclusion, we have the chain of proper inclusions

Go $: G(0,i) Gi > G(Ij2) •

This shows that G^^+i) < G0 is not a maximal subgroup. So Lemma 2.4 shows

that |G(fe ^+i)\Go/G(yt,fe+i)| > 3. We checked all conditions to apply Lemma 3.1

to Go *G(k 4+D G(t+1, finishing the proof of the proposition.

We end this section, by a non-amenability result for edge transitive groups G ryT.
A condition on the local action of G ry T around a vertex ensures non-amenability
ofL(G).

Proposition 4.4. Let T be a thick tree and G ry T a proper action of a locally
compact group. Assume that G is edge transitive hut not locally 2-transitive.
Then L(G) is non-amenable.

Proof. Consider the open subgroup G+ < G of index at most two. Note that
G+ r> T is still edge transitive, since any for any g e G and any e G E(T) such that

ge is adjacent to e, it follows that g e G+. Further, G+ is not locally 2-transitive,
since G ryT is not locally 2-transitive. By Proposition 2.16 it hence suffices to show

that L(G+) is non-amenable. We may hence from now on assume that the action
of G on T is type-preserving and G\T is an edge.

Since G is not locally 2-transitive, there is some v G V(T) such that Gv ry E(u)
is not 2-transitive. Let e G E(u) and w t(e). Bass-Serre theory says
that G Gv Gw, since G is edge transitive and type-preserving. Since

Gv ry E(u) is transitive, we have a G„ equivariant identification E(u) ^ Gv/Ge.
Since Gv ry E(u) is not 2-transitive, we further have

\Ge\Gv/Ge\ |Ge\E(v)| 1 + \Ge\(E(v) \ {e})\ > 3.

Note also that Ge < Gw is a proper inclusion, since \GW/Ge\ |E(u>)| > 3. Now
Lemma 3.1 applies to show that L(G) is non-amenable.

5. Proof of Theorems C and D

To start this section let us note that Theorem D simply summarises Propositions 4.1,
4.2 and 4.3. We will thus devote the rest of this section to the proof of Theorem C.

Lemma 5.1. Let T he a locally finite tree such that Aut(7") is not virtually abelian
and acts minimally on T. Then T has infinitely many ends.
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Proof. We assume that T has only finitely many ends and deduce a contradiction.

If T has no end, then it is finite and Aut(T) is a finite group, hence virtually abelian.
So T has at least one end. If T has exactly one end, then it contains a unique maximal

geodesic ray. This ray is pointwise fixed by Aut(T'), which contradicts minimality
of Aut(T) r\ T. If T has exactly 2 ends, then Aut(T) setwise fixes the unique
two-sided infinite geodesic of T. By minimality of Aut(T) ry T, it follows that

T ssCay(Z,{-l,l}).

Then Aut(T) s Doo is a dihedral group, which is virtually abelian. This shows

that T has at least 3 ends. Let

F {(je, y) fi (y, z) D (z, x) \ x,y,z pairwise different ends of 7"}.

Since T has only finitely many ends, F is finite. Further, its definition makes it clear
that F is Aut(T)-invariant, contradicting minimality of Aut(T) ry T. This finishes
the proof of the lemma.

Lemma 5.2. Let T be a tree with at least some vertex of degree 3 and such that

Aut(Y') acts minimally on T. Then there is a thick tree S such that

• V(S) C V(T),
• V(S) is Aut(T)-invariant, and

• the restriction map Aut(7') —» Sym(V (S)) induces an isomorphism oftopological
groups Aut(7") ^ Aut(S).

Further,

• if G <c Aut(7') is a closed subgroup acting minimally on T, then also G ry S is

minimal, and

• G acts locally 2-transitively on T ifand only if it acts locally 2-transitively on S.

Proof We dehne

V(S) {v e V^) I deg(u) > 3}

and E(S) {5 : [0, n] ^ T \ n > 1, deg(.y(0)), deg(.v(n)) > 3,

Vf {1,...,« — 1} : deg(.v(f)) 2},

with origin 0(5) s(0) and target t(.v) ,v(«). It is clear that S is a non-empty
graph.

We first show that S is a tree. To this end we prove that S is connected and that

every circuit in S has backtracking. Let v, w V(.S'). There is some injective path

s: [0, n] <—>• T such that ,v(0) v and s(n) w. Let

B {i e {1,— 1} I deg(.v(f > 3}.
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If B 0, then s G E(S) is an edge between v and w. Otherwise let i\ < • • • < ik
be an enumeration of B. Put i0 := 0 and ik+\ := "• Set Sj := for

j {() k). Then Sj G E(S) (after identifying [ij, ij+\ } [0 ij+1 - ij ]) tor
all j G {0,, k}. We have

o(.v0) .s'o(0) .v(0) v,
tCvfc) sk(n) s(n) w, and

t(.vy) Xj(ij+1) s(ij+1) Sj+1(ij+i) o(sj+l), for all j G {0,..., k - 1}.

This shows that Ao,..., sk define a chain of edges connecting v and w in S. So S is

connected.
Let now so,...,sk G E(S), Sj: [ij, ij+\] T define a circuit in S. Define

s: [0, ik+i] —> T as the path that agrees with Sj on [ij, iy+i]. Then .v is a circuit in T
since,

o(.v) i'o(0) o(a'o) t(sk) sk{ik+1) t(.v).

Since T is a tree, there is some / G [0, ik+] — 2] such that s((l,l + 1))

s((l + 1, / + 2)). Since Sj is an injective path tor all j G {(),..., k}, we must have

I ij — 1 for some j G {1,..., /c). This means that Sj and ,v7 + i are injective paths
in T all of whose non-terminal vertices have degree 2 and such that the last edge of Ay-

is the conjugate of the first edge of .v7+] (i.e. Sj ((ij — 1, ij)) Sj + \{{ij,ij + 1))).
This implies Sj Sj+i. So ,v0,..., sk has backtracking and we conclude that S is a

tree.

If g G Aut(T), v G VOT), then deg(gv) deg(w), so that gV(5) V(S)
follows. Denote by Res: Aut(T) -» Sym(V(S)) the restriction homomorphism.
We show that Res(Aut(T)) C Aut(S). Assume v,w G V(S) are adjacent in S.

Then there is s G E(S), a: [0, n] °h>- T such that a(0) v, s(n) w. Since

gs G E(S), with (gA)(0) g(A(0)) gv and (gs)(n) g(s(n)) gw, we also
have gv ~ gw in S. This shows that Res(g) is a bijective graph homomorphism.
Since Res(g_1) Res(g)-1, it follows that Res(g) G Aut(S).

We show that Res is injective. Assume that Res(g) ids for some g G Aut(T).
Then g|v(S) idv(S)- Since V(S) is Aut(r)-invariant and Aut(7) r> T is minimal
by assumption, T is the convex closure of V(S). So g id^.

We show that Res is surjective. Let h e Aut(S). We want to define ß(h)(s(i)) :=
(hs)(i) for all a g E(S), a: [0, n] T and i G {0,..., n). We first prove that this

gives rise to a well-defined map ß(h):V(T) -> V(T). If v G V(S) C V(T) and

a G E(,S), a: [0, /7] T satisfies s(i) v for some / G {0,1,..., n}, then / G {0,«}.
We obtain

(hs)(0) o(hs) h(o(s)) hv or

(hs)(n) t(/?A) h(t(.v)) hv respectively.

So the image ß(h)v hv is independent of the choice of a. If v G V(T) \ V(S),
then there is some a g E(5) containing v, that is, writing a: [0, n\ "=->• T, there is
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some i e {1,— 1} such that v s(i). This follows from the fact that the

convex closure of V(5) is T. If s, s' e E(5) both contain v, then s' s or s' ~s.

Take 5 e E(5), s: [0, n] °-> T and i 6 {1, n — 1} such that s(i) v. Then

(hs)(n — i) (hs)(n — i) (hs)(i)

showing that ß(h)v is well-defined. Note that ß(h~x) ß(h)~x, so that we obtain
a map ß: Aut(S) -» Sym(V(T)). Also note that ß is a group homomorphism. If
h e Aut(S) and v, w V(T) are adjacent, then there is s e E(S), s: [0, n] ^ T and

i {0,— 1} such that s(i) v, s(i + 1) w. Then

ß(h)v (hs)(i) ~ (hs)(i + 1) ß(h)w.

This shows that ß(h) is a graph homomorphism. Since also ß(h)~x ß(h~x)
is a graph homomorphism, we find that /EAut(S) -> Aut(T). It is clear that

ß(h)\v(S) h for all h e Aut(S), which shows that Resoß idAul(5). So Res is

surjective.
By construction Res is a continuous map. Also ß is continuous as it can be

easily checked on a neighbourhood basis of the identity in Aut(S). So Res is an

isomorphism of topological group.
Now assume that G <c Aut(T) is a group acting minimally on T. We will

show that G r\ S is also minimal. To this end, take v e V(S) and g e G.
Then Res(^)u gv. Further, the construction of S shows that [a, gv]r D V(S)
[v, nV(S). So a vertex of V(S) is in the convex closure of Gv inside T if and

only if it is in the convex closure of Res(G)w inside S. This suffices to conclude that
G r> S is minimal.

Now let us consider local 2-transitivity of G r> T and G S. For every
v e V(S) the map Es(v) 3 s „v((0, 1)) e Ey(î;) is a bijection. Let us denote
its inverse by Res,/E^u) -> Es(i;). Then Res(^)Res„(e) Res^„(ge) for
all g Aut(T), v e V(T) and e 6 E7-(u). Together with the observation that

Res(G)„ Res(G„), this directly implies that G r\ T is locally 2-transitive if and

only if G r> S is locally 2-transitive. This finishes the proof of the lemma.

The following lemma is well known. Its proof can be found for example as

Lemma 2.4 in [9],

Lemma 5.3. Let T be a locally finite tree and let G <c AutfT) be a closed subgroup
acting minimally on T. Then G is compactly generated if and only if G acts
cocompactly on T.

We now come to the major reduction result necessary to apply results from
Section 4 in the proof of Theorem C.

Proposition 5.4. Let T be a locally finite tree with infinitely many ends. Let
G <c Aut(T) be a closed non-amenable subgroup acting minimally on T. Then
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there is an open non-amenable subgroup H < G, a compact normal subgroup
K < H and a locally finite thick tree S such that H/ K <c Aut(,S") acts minimally,
cocompactly and in a type-preserving way on S.

If G ry T is not locally 2-transitive, then also H/K ry S can be chosen to be

not locally 2-transitive.

Proof. Since T is a locally finite tree with infinitely many ends and G <c Aut(T) is

a non-amenable subgroup acting minimally on T, it contains a hyperbolic element
and T is the convex closure of all translation axes of hyperbolic elements in G. Let
H < G be an open non-amenable compactly generated subgroup. In case G ry T
is not locally 2-transitive, there is v e V(T) with deg(v) > 3 and Gv r> E(w) is

not 2-transitive. Since G ry T is minimal, the convex closure of translation axes

of hyperbolic elements in G equals T. Adding finitely many elements to a compact
generating set of H, we may hence assume that E(u) lies in the convex closure T' of
all translation axes of hyperbolic elements in H. Note that H ry T' is minimal by
construction. The fix group K ¥\\g(T')C\H is compact and normal in H. It is the
kernel of the map H -> Aut(r'). We obtain the closed subgroup H/ K <c Aut(T').
Since Gv ry E(u) is not 2-transitive, also Hv r> E(u) is not 2-transitive. Further, this
action factors through (H/K)v, since E(u) c E(T'). We thus find that H/K ry T'
is not locally 2-transitive in case G ry T is not locally 2-transitive.

We apply Lemma 5.2 to T' to obtain a thick tree S such that

• V(S) {»E V(7") I deg(u) > 3},

• V(S) is Aut(r')-invariant,

• the restriction map Res:Aut(r') —» Sym(V(S')) induces an isomorphism of
topological groups Aut(T') s Aut(S).

Further, Lemma 5.2 says that since H/K ry T' acts minimally, H/K ry S has the

same property. Also if H/K ry T' is not locally 2-transitive, then H/K ry S has

the same property. Lemma 5.3 applies to show that H/K acts cocompactly on S.

If H/ K S is not type-preserving, we may replace H by an index two subgroup
of itself in order to guarantee also this property. Note in particular, that H/ K ry S

remains minimal, since squares of hyperbolic elements are type-preserving. This
finishes the proof of the proposition.

We are now ready to combine our results from Section 4 with Proposition 5.4 in
order to prove our main theorem of this article.

Proofof Theorem C. Let T be a locally finite tree and G <c Aut(T) a closed non-
amenable subgroup acting minimally on T. Assume that G does not act locally
2-transitively on T. Since G is not amenable, Aut(r) is not virtually abelian. So

Lemma5.1 implies that T has infinitely many ends. Applying Proposition 5.4, we find
an non-amenable open subgroup H < G a compact normal subgroup K < H and a

thicktreeS suchthat H/ K <c Aut(S) acts minimally cocompactly type-preservingly
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and not locally 2-transitively on S. In particular, H/K is non-amenable. Further

H/K ry S is proper, since H/K <c Aut(5) is closed. So the results of Section 4

apply to show that L( H/ K) is non-amenable. Since Proposition 2.10 says that

L(H/K) is a corner of L(//), also the latter von Neumann algebra is non-amenable.
Since H < G is open, also L(G) follows non-amenable by Proposition 2.16. This
finishes the proof of the theorem.

6. Applications to type I groups and to Burger-Mozes groups

In this section we will prove Theorems A and B.

6.1. Type I groups.
Definition 6.1. Let M be a von Neumann algebra. We say that M is a type I von
Neumann algebra if for every projection p e M there is some q < p (i.e. pq q)
such that qMq is abelian.

A locally compact group G is called a type I group, if every unitary representation
of G generates a type I von Neumann algebra.

The following description of type I von Neumann algebras is well-known and

provides the reader unfamiliar with this von Neumann algebraic notions with some
orientation.

Proposition 6.2. A von Neumann algebra M is of type I if and only if there
is a cardinal k and (possibly empty) measure spaces X0J, m < k such that
M ©a,<K L°° Xa> 0 ,S(H0f), where H(0 is a Hilbert space with an orthonormal
basis ofcardinality où.

With this characterisation at hand, we see that every type I von Neumann algebra
is amenable.

Corollary 6.3. Every type I von Neumann algebra is amenable.

We can now proceed to the proof of our main theorem's first application.

Proofof Theorem A. This follows immediately from Theorem C and Corollary 6.3.

6.2. Applications to Burger-Mozes groups. The following property is the foundation

of combinatorial considerations about type I groups acting on trees.

Definition 6.4. Let T be a locally finite tree. If e e B(7') is an edge in T, then
the graph T without e is a disjoint union of two trees, which we call the half trees

emerging from e.

A closed subgroup G <c Aut(T) has Tits' independence property if tor all

edges e e E(T) with half trees hi, 1)2 emerging from e there is a decomposition
Fixc(e) FixG(hi) x FixG(h2)-
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An important class of examples enjoying Tits' independence property are Burger-
Mozes groups.

Definition 6.5 (Burger-Mozes [7]). Let n > 3 and T be the «-regular tree. A legal
colouring of T is a map /: E(T) —> {1, n} such that 1(e) 1(e) for all e e E(T)
and /1 e(u) is a bijection for every v V(T). Given a legal colouring I of T, we define
the local action of g e Aut(T) at v e Aut(T) by

a(g,v) := I o g ol\~lv) e Sym ({1,...,«}) S„

If F < S„ is given, we define the Burger-Mozes groups by

U(F) := {g 6 Aut(r) I Vu e V(T) : o(g, v) 6 F}

and their type-preserving subgroups

U(E)+ := U(F) D Aut(T)+

Note that the definition of U(E) and U(F)+ a priori depends on the choice of a

legal colouring. However, the fact that a legal colouring is unique up precomposition
with a tree automorphism shows that U(F) and U(/r)+ are independent of this choice

up to conjugation by a tree automorphism. Since Aut(T)+ < Aut(T) has index 2,

also U(E)+ < U(E) has index 2. In this context, note that our definition of U(E)+
as type-preserving part of U(L') in general differs from the subgroup VeeE(T) E'( F)e
from BM, which could be trivial. However, these two definitions agree in case F is

transitive and generated by point-stabilisers.
Thanks to Tits' independence property, U(F)+ is abstractly simple, if F is

transitive and generated by point-stabilisers. Burger-Mozes groups are an important
class of examples in the theory of totally disconnected groups.

Actually Burger-Mozes groups account for a large class of groups having Tits'
independence property, as it is demonstrated by the following theorem. Its statement
did not yet appear in the literature, and we add it for the reader's convenience. The

proof combines known results from Burger-Mozes |7] and Bank-Elder-Willis [2].

Theorem 6.6. Let T be a locally finite tree and, G <c Aut(T) a closed vertex and
edge transitive group with Tits' independence property. Let F < S„ be permutation
isomorphic with the image of Gv in Sym(E(u)). Then G U(F) for a suitable

colouring ofT.

Proof Since G is edge transitive, it is locally transitive. So Proposition 3.2.2 of [7J

applies to show that there is a suitable legal colouring of T for which the inclusion
G < U(F) holds. Theorem 5.4 of [2] says that

G {ge Aut(T) I Vu e V(T)3h e G : g|Bl(ü) A|Bl(u)} U(F).

This finishes the proof.
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The following result says that the type I conjecture holds for vertex transitive

groups with Tits' independence property. Note that non-compact boundary transitive

groups are edge transitive. So the previous theorem shows that Theorem 6.7 applies
exactly to Burger-Mozes groups.

Theorem 6.7 (Olshanskii [30], Amann [1], Ciobotaru [10, Theorem 3.5]). Let T
be a locally finite tree and G <c Aut(T) a closed subgroup acting transitively on
vertices of T. Assume that G has Tits' independence property. IfG acts transitively
on the boundary 3T, then G is a type I group.

In order to formulate a converse to this theorem, which is the content of our
Theorem B, we need to characterise boundary transitivity of groups with Tits'
independence property. The next lemma is essentially contained in the ideas of
Burger-Mozes' 17, Lemma 3.1.1]. It also appeared as Proposition 15 in [1], We

claim no originality, but give a full proof for the convenience of the reader.

Lemma 6.8 (Compare with Burger-Mozes [7], See also Proposition 15 in [1]).
Let T be a locally finite tree that is not a line nor a vertex and let G <c Aut(7') be a
closed vertex transitive group with Tits' independence property. Then G is boundary
transitive ifand only if G is locally 2-transitive.

Proof. Since G is vertex transitive, it is non-compact. So Lemma 3.1.1 in [7] shows

that if G is transitive on the boundary, then G is locally 2-transitive.
In order to prove the converse we appeal to Lemma 3.1.1 |7| again and have

to show that for every v e V(T) and every n G N the action of Gv on 9B„(u)
is transitive. Since G ry T is vertex transitive, T is a homogeneous tree and its

degree is at least three, since T is not a line nor a vertex. Let x, y G 9B„(u) and let

r: [0, n\ -> T, s: [0, «] -y T be the unique geodesies satisfying o(r) o(.v) v,
t(r) x and t(.v) y. We inductively show the existence of gi,...,gn £ Gv
such that (gir)(i) — s(i) for all i G {1,...,«}. Since G is locally 2-transitive
and T is homogeneous of degree at least three, G also acts locally transitively. So

there is some g\ G Gv such that gir(l) .v(l). Assume that g\,...,gi have

been constructed for i < n. Let hi, 1)2 be the two half-trees emerging from the

edge e := (s(i — 1), s(i)). The notation can be fixed by assuming s(i — 1) G hi and

s(i) G hi- Then 1)2 contains all vertices adjacent to s (z) that have distance + 1 to v. In

particular, s(i + 1), gtr(i +1) G 1)2- Since G is locally 2-transitive and |E(.v(z))| > 3,

there is h e Ge satisfying h(gir(i + 1)) s(i + 1). Because G has the independence
property, we obtain the product decomposition Ge Fixe (hi) x FAgOl) and can
write h {h\,hf) with h\ G Fixc(hi) and A2 £ Fixcfe)- Then h\gir{i + 1)

hflhgir(i + 1) hfls(i + 1) s(i + 1). Further, h\v v, since v G V(hi). We

put g,+i := higi and finish the induction. Now the existence of gn with gnv v
and gnx gnr{n) s{n) y finishes the proof of the lemma.
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Let us reformulate Lemma 6.8 in terms of Burger-Mozes groups.

Lemma 6.9 (Burger-Mozes |7, Section 3]). Let F < S„ for n > 3 be given. Then

the following statements are equivalent.

• U(F) is boundary transitive,

• U(F) is locally 2-transitive,

• F is 2-transitive.

Combining Theorem 6.7, Lemma 6.8 and Theorem A, we obtain the characterisation

of vertex transitive type I groups with the independence property, stated as

Theorem B.

Proofof Theorem B. All statements of the theorem are obvious in case T is a line or
n 2.

Let T be a locally finite tree and G <c Aut(T) a closed vertex transitive subgroup
with Tits' independence property. If G is locally 2-transitive, then G is boundary
transitive by Lemma 6.8. So Theorem 6.7 says that G is a type 1 group. If G is not

locally 2-transitive, then T has at least one vertex of degree 3. So T is not a line and

it follows from vertex transitivity, minimality of G r> <)T and Proposition 2.5 that G

is not amenable. So Theorem A applies to show that G is not a type I group.
It remains to prove the statement about Burger-Mozes groups. Since for every

F < S„ the closed subgroup U(F)+ < U(F) has index 2, it suffices to characterise
when U(F) is a type I group. Now U(F) is vertex transitive and has Tits'
independence property. So the first part of the statement says that U(F) is a type 1

group if and only if it acts locally 2-transitively. Now Lemma 6.9 finishes the proof
of the theorem.
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