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Locally compact groups acting on trees, the type I conjecture
and non-amenable von Neumann algebras

Cyril Houdayer* and Sven Raum™**

Abstract. We address the problem to characterise closed type I subgroups of the automorphism
group of a tree. Even in the well-studied case of Burger-Mozes’ universal groups, non-type I
criteria were unknown. We prove that a huge class of groups acting properly on trees are not
of type 1. In the case of Burger—-Mozes groups, this yields a complete classification of type I
groups among them. Our key novelty is the use of von Neumann algebraic techniques to prove
the stronger statement that the group von Neumann algebra of the groups under consideration
is non-amenable.

Mathematics Subject Classification (2010). 20E08; 22D10, 46L45.

Keywords. Groups acting on trees, type I groups, free product von Neumann algebras.

1. Introduction

In discrete and topological group theory, groups acting on trees are important
examples thanks to Bass—Serre theory [35]. In particular, the discovery of
Bruhat-Tits theory [6,35] describing rank one reductive algebraic groups over non-
Archimedean fields as groups acting on semi-regular trees provides strong motivation
to study general closed subgroups of Aut(7"), the automorphism group of a tree. In
contrast to Bruhat-Tits buildings of higher rank [46], semi-regular trees host a bigger
variety of interesting groups, some of whose basic properties are not yet understood.
An intriguing problem asking us to prove surprising parallels between reductive
algebraic groups and closed subgroups of Aut(7") is posed by the type I conjecture.

Conjecture. Let T be a locally finite tree and assume that G <, Aut(T') is a closed
subgroup acting transitively on the boundary 0T . Then G is a type 1 group.

Here, a locally compact group G is called a type I group if every unitary
representation of G generates a type I von Neumann algebra. This is one equivalent

*Cyril Houdayer’s research was supported by ERC Starting Grant GAN 637601.
**Sven Raum’s research leading to these results has received funding from the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under
REA grant agreement n°[622322].
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definition of type I groups provided by [20, Theorem 2, page 592]. Bernstein and
Kirillov termed “tame” those algebraic groups and Lie groups that are type I — in
contrast to “wild” groups. In this context, type I or tameness results are derived
from a positive solution to the admissibility conjecture. The notion of type I groups
bears its relevance from representation theory. Loosely speaking, type I groups are
precisely those locally compact groups all of whose unitary representations can be
written as a unique direct integral of irreducible representations, thus reducing the
study of arbitrary unitary representations to considerations about irreducible unitary
representations. Prominent examples of type I groups are provided by reductive
algebraic groups over non-Archimedean fields [3,22] (see also the introduction of [4]),
adelic reductive groups [12], semisimple connected Lie groups [24, Theorem 8.1]
and nilpotent connected Lie groups [ 16, Théoréme 1]. However, only very few results
confirming the type I conjecture beyond rank one algebraic groups are known, all
of them being based on combinatorial considerations for the special class of groups
satisfying Tits” independence property [40]. See [1, 10,29, 30].

From the theory of algebraic groups, natural examples of non type I groups,
such as most adelic nilpotent groups are known [27]. For groups acting on trees
the situation looks worse, since tools from Lie theory and from algebraic groups are
not available in the generality of groups acting on trees. There is one small class of
groups for which non-type I results are known and it lies at the far opposite end of
boundary transitive groups. Already in the 60’s Thoma proved in [39] that virtually
abelian groups are the only discrete groups of type I, which completely clarifies
type 1 questions for discrete groups acting on trees. In the rich spectrum between
discrete groups and boundary transitive groups acting on trees, however, up to now
very little is known about representation theory. This is despite the fact that this
class contains very natural examples, such as Burger-Mozes groups associated with
non 2-transitive permutation groups |7]. Astonishingly, up to now there is no result
available that provides examples of non-discrete non-type I groups acting on trees.
Recent attempts to approach this problem by classical methods [11] did not yield the
desired conclusion even for the best understood examples of Burger—Mozes groups.
In this article, we take a new point of view and employ operator algebraic methods,
proving that a huge class of groups acting on trees is not of type 1.

Theorem A. Let T be a locally finite tree and G <. Aut(T) a closed non-amenable
subgroup acting minimally on T. If G does not act locally 2-transitive, then G is a
not a type 1 group.

Anactionofagroup G onatree T is called minimal, if 7" is the smallest non-empty
G -invariant subtree of 7. The action G ~, T of a group on a tree is called locally
2-transitive, if for every vertex v € V(T') the action of the point stabiliser G, on
adjacent geometric edges of v is 2-transitive. See Section 2.3 for more explanations.
The fact that we are able to prove a non-type I result in the generality of Theorem A,
insinuates the possibility of characterising those groups acting on trees that are of
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type L. In fact, a non-compact closed subgroup G <, Aut(7") is boundary transitive
if and only if it is n-locally transitive for every » in the sense of [7]: for every
vertex v of T and every n the stabiliser G, acts transitively on spheres of radius n
around v. Since G is locally 2-transitive if and only if it is 2-locally transitive, this
notion provides a clear transition between groups acting not locally 2-transitively and
boundary transitive groups. We hence pose the following problem, going beyond the
type I conjecture.

Problem 1. Among closed subgroups of Aut(T), characterise those which are of
type L

G <. Au(T)is ... Statement Expectation/Result

boundary transitive Type I conjecture G is type 1

(n — 1)-locally transitive,

but not n-locally transitive open G is not type 1

not 2-locally transitive Theorem A G is not type I

Problem 1. non-amenable groups acting minimally on 7.

The operator algebraic perspective introduced in this article reduces the problem
to extend Theorem A to general non-boundary transitive groups to considerations in
representation theory.

Burger-Mozes groups [7], also known as universal groups acting on trees, form a
particularly interesting class of examples of closed subgroups of Aut(T"). After choice
of a permutation group F < S,, Burger—Mozes construct groups U(F) and index
two subgroups U(F) ™ acting on the n-regular tree in such a way that their local action
around vertices is prescribed by F. These groups U(F)™ attract particular interest of
the totally disconnected group community, since they provide concrete examples of
abstractly simple and compactly generated non-discrete groups [2,8,9,36]. Applying
Theorem A and combining it with known type I results [1, 10], we give a complete
characterisation of type I groups in this important class of examples.

Theorem B. Let T be a locally finite tree and G <. Aut(T') a closed vertex transitive
subgroup with Tits” independence property acting minimally on 0T. Then G is a
type 1 group if and only if G is locally 2-transitive.

In particular, if F < S, is a permutation group, then the Burger—Mozes groups
U(F) and U(F)™" are type 1 groups if and only if F is 2-transitive.

We prove Theorem A with operator algebraic methods. The possibility to apply
operator algebraic methods to study totally disconnected groups in general and groups
acting on trees in particular has been previously suggested by the second author.
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Positive results exploiting the additional flexibility provided by this idea can be found
in [32] and [33]. A locally compact group is of type I if and only if its maximal group
C*-algebra C> (G) is a type I C*-algebra in the sense of [20]. Further, it is a well-
known fact for operator algebraists that every type I C*-algebra is amenable. This
line of thoughts suggests to study non-amenability of operator algebras associated
with groups acting on trees. Since amenability of C3 . (G) implies amenability of
the group von Neumann algebra L(G), Theorem A is an immediate consequence of
the following operator algebraic result, which is the main result of the present article.
Its proof is based on the possibility to reduce considerations about amalgamated free
products of groups to plain free products of von Neumann algebras, for which clear

non-amenability criteria are available.

Theorem C. Let T be a locally finite tree and G <, Aut(T') a closed non-amenable
subgroup acting minimally on T. If G does not act locally 2-transitive, then 1.(G) is
non-amenable.

Although we want the type I conjecture to be understood as the main motivation
for our present work, our von Neumann algebraic techniques allow us to prove other
non-amenability criteria. We single out the class of groups acting properly and
not edge-transitively on a tree 7', but which not necessarily embed as subgroups
of Au(T). If G ~, T, we denote by Gt < G the subgroup of type-preserving
elements, which has at most index two.

Theorem D. Let T be atree and G ~, T a proper action of a locally compact group.
Let X = GT\T be the quotient graph and note that m1(X) is a free group. Under
either of the following sets of assumptions, 1.(G) is non-amenable.

e rank my(X) > 2.
e rank w1 (X) = 1 and G is non-amenable.
e m1(X) =0, T is thick, X is finite but not an edge and G is non-amenable.

A tree is called thick, if each of its vertices has valency at least three.

While in the case of a discrete group T, the group von Neumann algebra L(I") is
amenable if and only if I" is amenable, it is even an open problem to provide general
non-amenability criteria for the maximal group C*-algebra of a non-discrete group. A
result demonstrating the surprising difficulty of this problem is provided by Connes
[13, Corollary 7], who shows that the maximal group C*-algebra of a connected
locally compact separable group is amenable. Only Lau-Paterson were able to
provide a non-amenability criterion of general nature, although their assumption of
inner amenability is very strong [25]. Our work contributes to the understanding of
further non-amenability criteria.

Theorem E. Let T be a locally finite tree and G <. Aut(T') a closed non-amenable
subgroup acting minimally on T. If G does not act locally 2-transitive, then C}, (G)
is not nuclear.
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In line with the previous explanations and the success of operator algebraic
methods applied to groups acting on trees, it is natural to pose the following problem,
parallel to Problem 1.

Problem 2. Characterise closed subgroups G <. Aut(T) for which 1.(G) is amen-
able. For which groups among these is Cy, (G) amenable?

Acknowledgements. The authors thank the Mittag-Lefller Institute and the organ-
isers of the workshop “Classification and dynamical systems II: Von Neumann
Algebras” as well as the Mathematisches Forschungsinstitut Oberwolfach and the
organisers of the workshop “C*-algebras” for providing excellent working conditions.
Part of our work on this project was completed during these workshops. The second
author thanks the University of Miinster for the excellent working conditions during
the return phase of his Marie Curie Fellowship, when big parts of this work were
done.

2. Preliminaries

In the proceeding extensive preliminaries we provide readers with either operator
algebraic or group theoretic background with the necessary background to follow the
main Sections 3, 4, 5, and 6.

2.1. Locally compact groups. In this article we are working in the setting of
topological groups and their morphisms. This means that a homomorphism between
topological groups is understood to be continuous and isomorphisms of topological
groups are continuous bijective group homomorphisms with a continous inverse.

If G is a locally compact group, we write [G f(x)dx for integration against a
left Haar measure. Here, the function f on G can take values in any Banach space,
thanks to the theory of Pettis integrals. We refer the reader to [15] for these and other
basics about locally compact groups.

The following theorem characterises totally disconnected locally compact groups.
It is well-known to people working in group theory, but we give a short proof for the
convenience of the reader.

Theorem 2.1 (TG 39 in [44]). Let G be a locally compact group. Then G is totally
disconnected if and only if its identity admits a basis of neighbourhoods consisting
of compact open subgroups.

Proof. If G admits a basis of neighbourhoods consisting of compact open subgroups,
then it is clear that the connected component of e is {e¢}. So G is totally disconnected.

Assume that G is totally disconnected and let U C G be a compact open
neighbourhood of the identity. We will find a compact open subgroup of U. Let
m: G xG — G be the multiplication map. Since {e}xU C m~}(U),forevery g € U
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there is a neighbourhood V, xU, € m~1(U) of (e, g). Since U is compact, we hence
find identity neighbourhoods V7, ..., V, C G and open sets Uy, ..., U, C G such
that V;U; C U foralli € {1,...,n}and U = |J; U;. Putting V := (";(V; N V.71,
we obtain a non-empty open symmetric set V' C U such that VU C U. We conclude
that the group K = (i en V% C U is acompact open subgroup of G lyinginU. [

The unimodular part. We denote the modular function of a locally compact group G
by Ag: G — R.(. The modular function of totally disconnected groups is nicely
behaved. If K < G is a compact open subgroup of a locally compact group, then
Aglk = Ak = 1, shows that the kernel of Ag is open. In this case, we write
G := ker Ag for the unimodular part of G.

2.2. Permutation groups. An action of atopological group on a setis called a perm-
utation action. A permutation group is a group G with a fixed faithful permutation
action G ~, X. We usually write G < Sym(X) for a permutation group.

If G ~ X is a permutation action and S C X, we denote by

Fixg(S) ={g€G|VseS:gs=ys}

the pointwise stabiliser of S. In case S = {s} is a one-element set, we also write

Definition 2.2. Let G ~ X be apermutation action. We say that G acts 2-transitively,
if Gy ~ X \ {x} is transitive for every x € X.

Remark 2.3. The notion of 2-transitivity for G ~ X slightly defers from the usual
definition. If |X| > 3, then it is equivalent to the assumption that for each pairs
x1 # xp and y; # y» in X there is some g € G such that gx; = y; fori € {1,2}.
Only in case | X | = 2, our definition says that the trivial action is 2-transitive, while
it does not satisfy the usual definition.

We chose to adopt our notion of 2-transitivity to obtain clean formulations of all
theorems about groups acting on trees, for which otherwise the vertices of degree
two need a cumbersome separate treatment, complicating the theorems’ statements.

For an arbitrary topological group G and an open subgroup H < G, the action
G ~ G/H is a permutation action. The next lemma is a reformulation of the
well-known fact that a 2-transitive permutation group is primitive.

Lemma 2.4. Let H < G be anopen subgroup of atopological group. If |H\G/H | <2,
then H < G is a maximal subgroup.

Proof. Assume that there is a proper inclusion of open subgroups H < H <G of
the topological group G. Then H C G is a H-biinvariant set, so that H\G/H =
(H\H /H)YU(H\(G\ H)/H). Since H < H is a proper inclusion, | H\ [ /H| > 2
and |H\G/H| = 3 follows. This proves the lemma. ]
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2.3. Groups acting on trees. We follow Serre’s formalism of undirected trees [35].
A graph X is a set of vertices V(X)) with a set of (directed) edges E(X) as well as
maps o, t: E(X) — V(X) and a involutive operation taking opposite edges ¢ > e
such that ¢ # e, o(e) = t(e) and t(e) = o(e) for all e € E(X). If X,Y are
graphs, a graph homomorphism ¢: X — Y is a pair of maps ¢v: V(X) — V(Y) and
¢e: E(X) — E(Y) such that ty o g = ¢y oty and oy o g = @y o 0y.

Segments and paths. The standard segment of length n is written [0, n]. Its set of

vertices is
V([0,n]) = {0,...,n}

and its edges are pairs
E([0,n]) ={G,i + D) |i €{0,n—1}}U{G,i—1)|i€{l,...,n}}

with o(i, j) = i,t(i, j) = j and (i, j) = (j,i) forall (i, j) € E([0,n]). A pathina
graph X is graph homomorphism [0, n] — X. We set o(s) = s(0) and t(s) = s(n)
for a path 5: [0,n] — X.

Trees. A graph X is connected if there is a path between pairs of vertices in X. A
circuit in X is the image of an injective path s: [0, n] — X with o(s) = t(s) for some
n > 1. A tree is a connected non-empty graph without circuits. Let 7 be a tree.
For v € V(T') we write

E(v) = {e € E(T) | o(e) = v}
for the neighbouring edges of v. We call T locally finite if E(v) is finite for all
v € V(T). We call T thick if E(v) contains at least three elements for all v € V(T).

Automorphisms of a tree. The group Aut(7") of graph automorphisms of a tree 7’
naturally identifies with the subgroup

AWt(T) = {g € Sym(V(T)) | v ~ w ¢ g(v) ~ g(w)}

and thus inherits a totally disconnected group topology, which is uniquely defined by
declaring vertex stabilisers open subgroups of Aut(7"). An action of a topological
group G on atree 7" is a continuous group homomorphism G — Aut(7"). If T is
locally finite, then vertex stabilisers are compact in Aut(7). If T isatreeand G ~ T
is an action, then the following statements are equivalent.

* Gy < G is compact for all v € V(T').
e G ~y T is proper.

If further, G < Aut(7") embeds as a subgroup, then both previous statements are
equivalent to G < Aut(7") being closed.

Locally 2-transitive actions. A group action G ~, T on a tree is called locally
2-transitive if for every vertex v € V(T) the natural action G, ~ E(v) is 2-transitive.
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Type-preserving automorphisms. An element g € Aut(T') is called type-preserving
if 2| d(gv,v) for all v € V(T). Denote by Aut(7T)* < Aut(T) the group of type-
preserving automorphisms. Partitioning V(7') is two classes by v ~ w if and only
if 2| d(v, w), we obtain a quotient map V(7') > {0, 1}. Since Aut(7T") preserves this
partition, we obtain a map Aut(7") — S5, whose kernel is Aut(7")*. This shows that
Aut(T)™ < Aut(T) is an open subgroup of index at most two. If G ~, T is a group
action on a tree, we denote by G the inverse image of Aut(7')* under the action
map G — Aut(T) and call G ~, T type-preserving if G = G ™.

Note that if G ~, T is proper, then also the type-preserving part G < G acts
properly, because the restriction of a proper action to a closed subgroup remains
proper.

Minimal actions on trees. A group action G ~, T on a tree is called minimal, if 7'
is the smallest non-empty G-invariant subtree of 7.

Ends of a tree. The standard ray [0, oo) is a tree with vertices V ([0, c0)) = N and
edges
E([0,00)) = {Gi,i + 1) |i e N}U{(i,i —1) | i € Ny}

with o(i, j) = i, t(i,j) = j and (i, j) = (j,i) for all (i, j) € E([0,00)). A
geodesic ray in a tree T is an injective graph homomorphism [0,00) — T. Two
geodesic rays are called equivalent, if after shifting they eventually agree. Formally,
g ~ E'if there are ng € N and m € Z such that £(n + m) = &'(n) for all n > n,.
An end of T is an equivalence class of geodesic rays in 7.

Hyperbolic elements. The standard two-sided geodesic (—o0,00) is a tree with
vertices
V((—oo, oo)) =

and edges
E((—o00,00)) = {(i,i + 1) | i € ZYyU{(i,i — 1) | i € Z}.

The origin and target functions are o(i, j) = i and t(i, j) = j. The opposite edge
of (i, j) € E((—o00,00)) is (i, j) = (j,i). A (two-sided) geodesic in a tree 7" is an
injective graph homomorphism (—co0,00) — T. An element g € Aut(T) is called
hyperbolic if it neither fixes a vertex nor an edge (formally: a set {e, e} C E(T)). For
every hyperbolic element g € Aut(7") there is a unique two-sided geodesic & in T
which is setwise fixed. The unique £ € N suchthat go&(n) = &(n+€) foralln € Z
is called the translation length of g.

The following result characterises amenable groups acting on trees.

Theorem 2.5 (Theorem 1 in [28]). Let T be a locally finite tree and G <. Aut(T) a
closed subgroup. Then G is amenable if and only if one of the following statements
holds

* G fixes a vertex.
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* (G stabilises an edge.
* G fixes a point in 0T .

* G stabilises a pair of points in 0T .

2.4. Bass—Serre theory. Bass—Serre theory as described in [35] (see in particular
Section 5 in there) provides a natural way to study groups acting on trees G ~ T
by means of the quotient graph G\7 together with vertex and edge stabilisers. The
general fundamental assumption of Bass—Serre theory is that G ~, 7" mustact without
inversions, i.e. if g € G fixes a geometric edge of T, then it fixes both its ends. It
follows from the definition that every type-preserving action satisfies this assumption.
Bass—Serre theory was originally built for discrete groups, not taking into account
topologies. Its extension to topological groups however is straight forward, as we
will clarify at the end of this section.

Graphs of groups. A graph of groups is a graph X with vertex groups (Gv)veV(X)
and edge group (Ge)eeg(x) as well as inclusions G, < Gy such that G, = Gg.
We denote this graph of groups by (G, X) for short.

Fundamental group of a graph of groups. If (G, X) is a graph of groups, then Bass—
Serre theory provides a tree 7" — called universal covering of (G, X)) — with an
action of a group m1(G, X) on T, such that X = (G, X)\T and (G, X) is
obtained by considering vertex and edge stabilisers of lifted edges from X to 7. This
construction provides a one-to-one correspondence between isomorphism classes of
graphs of groups and groups acting on trees. See Theorem 13 in [35]. If G ~ T is
a group acting on a tree with quotient graph X = G\T, we will use the convenient
notation (G, X) for the graph of groups obtained from this action.

Contractions of subtrees. See [35, pp.46ff]. If (G, X) is a graph of groups and
(G,Y) is a subgraph, then 71(G,Y) can be naturally identified with a subgroup
of m1(G, X). Contracting ¥ < X to a vertex, we obtain a graph X/Y. The
contraction can be naturally turned in a graph of groups such that the vertex group
of the contracted vertex ¥ € V(X/Y) is 71(G,Y). We denote this graph of
groups by (G, X/Y). Now we have the identity of fundamental groups 71(G, X) =
m1(G, X/ Y) extending uniquely the natural inclusion of vertex and edge stabilisers
of (G, X) into m1(G, X/Y).

Semi-direct product decomposition. See [35, p.45, exercise]. If (G, X) is a graph
of groups, then the universal cover 7' of X in the usual sense can be naturally turned
into a tree of groups whose vertex and edge groups are isomorphic to vertex and edge
groups of X. We denote this tree of groups by (G, T) and call it the covering tree
of groups of (G, X). If I' = 71 (X) is the usual fundamental group of the graph X,
then the action of I by Deck transformations on T induces an action on 7 (G, T)
and we obtain a natural isomorphism 71(G, X) = m1(G, T)xT.



194 C. Houdayer and S. Raum CMH

Graphs of topological groups. If T is a tree and G ~ T an action (which is
understood to be continuous) of a topological group, then Bass—Serre theory naturally
applies and is compatible with the topology of G. Denote by X = G\T the quotient
graph and by (G, X) the associated graph of groups. In this context, vertex and
edge stabilisers of G ~ T are topological groups and inclusion homomorphisms are
continuous and open. Since G as a topological group is uniquely determined by the
abstract group G together with the topology on vertex stabilisers, it makes sense to
speak about graphs of topological groups.

Definition 2.6. A graph of topological groups is a graph of groups (G, X') with the
structure of a topological group on each vertex and edge stabiliser such that inclusion
homomorphisms are continuous and open.

Based on Bass—Serre theory and Serre’s “dévissage” it is not difficult to prove
that the fundamental group of a graph of topological groups carries a unique
group topology turning the inclusion of vertex groups into continuous and open
homomorphisms. All previously mentioned constructions and statements remain
valid in the topological setting. For later use, we remark in particular that the
semi-direct product decomposition 71 (G, X) = m;(G, T) x 771(X) for a graph of
topological groups (G, X) and the covering tree of groups (G, T) of (G, X) gives
rise to an embedding of (G, f) as an open subgroup of m1(G, x). We fix the
following notation: a locally compact amalgamated free product is an amalgamated
free product with an open locally compact amalgam. As previously discussed a
locally compact amalgamated free product is naturally a locally compact group.

2.5. Von Neumann algebras. Let H be a complex Hilbert space and 8 (H) the
*-algebra of all bounded linear operators on H. The topology of pointwise
convergence on B(H) is called the strong operator topology.

Definition 2.7. A von Neumann algebra is a unital strongly closed *-subalgebra
of 8(H) for some Hilbert space H .

The o -weak topology. Since the norm topology on B(H) is finer than the strong
operator topology, every von Neumann algebra is naturally a Banach space. By a
result of Sakai [34], a von Neumann algebra admits a unique isometric predual M,
that is a Banach space satisfying (M,)* =~ M isometrically. The weak-*-topology
on M is called the o-weak topology. A positive linear map (in particular a
*-homomorphism) ¢: M — N between von Neumann algebras is called normal
if it is o-weakly continuous.

Traces and finite von Neumann algebras. A positive functional 7: M — C on a von
Neumann algebra is called a trace if 7(xy) = t(yx) forall x,y € M. A von
Neumann algebra is called finite if it admits a faithful family of normal traces, that is
a family (7;); of normal traces such that z; (x*x) = 0 for all ; implies x = 0.
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Factors. Afactorisavon Neumann algebra M with trivial centre Z(M ):=M NM' =
C1. If M is an infinite dimensional factor with a non-zero trace, then M is called
a Il; factor. The non-zero trace on a II; factor is unique up to normalisation.

Positive elements. We denote by M+ = {x*x | x € M} the set of all positive
elements in a von Neumann algebra M. A linear map ¢: M — N between von
Neumann algebras is called positive if (M) C N7T.

Conditional expectations. If N C M 1is an inclusion of von Neumann algebras, a
conditional expectation E: M — N is a projection of norm one. It is called normal
if it is o-weakly continuous. It satisfies E(nymn,) = n1E(m)n, for all ny,n, € N
andallm e M.

Weights. A weight on a von Neumann algebra M is an additive and positive
homogeneous map ¢: Mt — Rsg U {o0}. We say that ¢ is faithful, if
¢(x) = 0 implies x = 0 for every x € M. The weight ¢ is called normal if
sup; ¢(x;) = @(sup; x;) for every bounded ascending net (x;) of positive elements
in M. Here sup; x; denotes the smallest upper bound for the net (x;);. One calls
n, = {x € M | p(x*x) < oo} the set of 2-integrable elements. If ¢ is a normal
weight and n, C M is o-weakly dense, then ¢ is called semifinite. A normal faithful
semifinite weight is abbreviated to an nfsf weight.

Modular automorphism group. 1If ¢ is an nfsf weight on a von Neumann algebra M,
the set n, with the scalar product (x, y) := ¢(y*x) can be completed to a Hilbert
space I2(M, @) on which M is faithfully represented via left multiplication. The map
Six = x*onny, Nng C 12(M, ¢) defines a conjugate linear closable unbounded

operator, whose polar decomposition is denoted by S = JAY2, For every t € R,
the operator A’ is a well-defined unitary on 12 (M, ¢). Tomita—Takesaki theory [38]
says that the conjugation (Ad A’’),cg defines a one-parameter automorphism group
of B(12(M, ¢)) that preserves M. Its restriction to M is denoted by (o), and it is
called the modular automorphism group of ¢.

2.6. Group von Neumann algebras. We refer the reader to [ 15] for an introduction
to locally compact groups, their representations and convolution algebras. Let G be
a locally compact group and Ag: G — U(L2(G)) its left-regular representation. It
satisfies (Ag () f)(x) = f(g 'x) forall f € C.(G) and g, x € G. The group von
Neumann algebra of G is by definition

L(G) := {Ac(g) | g € G} C B(I*(G)).

We usually write ug = Ag(g) for the canonical unitaries in L(G). They span an
isomorphic copy of CG, to which we refer without explicitly mentioning Ag. Von
Neumann’s bicommutant theorem says that L(G ) is the strong and the o-weak closure
of the set CG. After choice of a left Haar measure on G, the Pettis integral provides
a natural *-homomorphism L'(G) — L(G): f [ f(©)Ag(g)dg, which we will
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also denote by Ag. If no confusion is possible, we write L! (G) C L(G) instead of
e (LHG)) C L(G).

The convolution algebra C.(G) is a left Hilbert algebra in the sense of |38,
Chapter VI.1]. After choice of a left Haar measure it defines a nfsf weight ¢ on
L(G) that satisfies @(f) = f(e) for all f € C.(G) C L(G). This weight is
called a (left) Plancherel weight of L.(G). It satisfies @(g* * ) = (f, g) for all
f.g € Co(G) C L(G) N12(G). The modular autormorphism group of ¢ satisfies
af () = A‘é(g)ug forall g € G. If G is a discrete group, the Plancherel
weight associated with the counting measure extends to the natural normal trace
7:L(G) — C satisfying t(ug) = 8¢, forall g € G.

The next proposition is well-known and clarifies the relation between the group
von Neumann algebras of a locally compact group and its closed subgroups. It can
be found for example as Theorem A of [23].

Proposition 2.8. Let H < G be a closed subgroup of a locally compact group. Then
the group homomorphism H > h — Ag(h) € U(L(G)) extends to a unique injective
normal *-homomorphism L(H) — L(G).

Proof. Denote by A(G) Eymard’s Fourier algebra [ 19, Chapitre 3], which is a Banach
algebra densely spanned by continuous positive type functions with compact support
in G. By Theorem 3.10 of [19] we have L(G ). = A(G), i.e. there is an isomorphism
L(G) =~ A(G)™* carrying the o-weak topology onto the weak-*-topology. This
isomorphism identifies #, € L(G) with the evaluation functional evy, € A(G)* for
all g € G.

Since H <. G is a closed subgroup, every compactly supported function of
positive type on G restricts to a compactly supported function of positive type
on H. So Proposition 3.4 in [19] shows that the restriction gives rise to well-defined
map A(G) — A(H). By Theorems la and 1b of [23] (see also Theorem 4.21
of [26]), every element of A(H ) can be extended to an element of A(G). This shows
surjectivity of the restriction map A(G) — A(H). It follows that the dual map
A(H)* — A(G)* is injective. In view of the first paragraph this finishes the proof
of the proposition. O

Averaging projections. Applied to a compact subgroup K < G of a locally compact
group, the previous proposition shows that the Pettis integral pg:= [ Ag (k) dke L(G)
defines a projection. Here we integrate against the Haar probability of K. It is the
image of 1x € C.(K) C L(K) C L(G). This projection is called averaging
projection associated with K < G.

If H <, G is anopen subgroup, the inclusion L(H) C L(G) from Proposition 2.8
admits a natural conditional expectation. Also this fact is well known. It follows
from Theorem 3.1(a) in [21] in the special case M = C1 and ¢ = 1. We give a
short proof only for the readers convenience.
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Proposition 2.9. Let H < G be an open subgroup of a locally compact group. Then
the embedding H < G extends to a unique injective normal *-homomorphism
L(H) C L(G). Further, there is a unique normal conditional expectation
E:L(G) — L(H) satisfying E(ug) = 1u(g)ug forall g € G.

Proof. The fact that & > Ag (h) extends to a unique embedding L(H) «— L(G) is
the content of Proposition 2.8. Let us construct E. Denote by ¢: L(G)" — [0, +0o¢]
a Plancherel weight on L(G). The dense subalgebra C.(G) C L(G) consists of
p-integrable elements and ¢( f) = f(e) for all f € C.(G). Since H < G is open,
we have C.(H) C C.(G). Further, C.(H) C L(H) is a o-weakly dense subalgebra,
implying that ¢ is semifinite on L(H). Further, L(H) is 6®-invariant. By Takesaki’s
theorem [37] there is a unique normal conditional expectation E:L(G) — L(H)
satisfying ¢(E(x)) = ¢(x) for all x € m,. For f € C.(H) C C.(G) we have
E(f)= f.For f e C.(G\ H)and g € C.(H),wehave g x f € C.(G \ H) and
e(gE(f)) = ¢(gf) = 0. So E(f) = 0. This shows that E|¢ () is the restriction
map C.(G) — C.(H). If g € G\ H, then u, is a o-weak limit of elements in
Cc(G \ H), so that E(ug) = 0 follows. This proves existence of E. Uniqueness
follows from the fact that CG C L(G) is o-weakly dense. ]

In case K < G is a compact subgroup of a locally compact group, the group von
Neumann algebras L.(G) and L(G/K) can also be compared in a natural way. This
is the content of the next well-known proposition.

Proposition 2.10. Let G be a locally compact group and K <\ G a compact normal
subgroup. Then the averaging projection p associated with K defines a central
projection in 1(G) such that pl.(G) = L(G/K). In particular, L(G) is non-
amenable, if 1L(G/K) is non-amenable.

Proof. Recall that we can write p = | x Urdk as a Pettis integral against the Haar
probability measure of K. We have

(g Pt m) = fK (gngtfr7) dk
= / (u k. m) dk
K
- [ (ué. ) dk
K

={p&. ),

for all g € G and &, n € 12(G). The third equality follows from the fact
that the Haar measure on K is invariant under the conjugation action of G. So
p e L(G)NCG = Z(L(G)).

Note that (p§)(g) = [x &(kg)dk for all § € C(G) C I*(G), so that
pl2(G) = I12(G)X follows. Consider the map V:12(G/K) — 12(G) defined
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by (V/)(g) = f(gK) for f € C.(G/K). Since K <0 G is compact and normal,
V is well-defined and isometric. A short calculation shows that VI?(G/K) =
12(G)X = pl2(G), meaning that VV* = p. So V:I>(G/K) — 12(G)X is a
unitary. Denoting the canonical unitaries in L(G/K) by vgx, gK € G/K, another
calculation on the dense subset C.(G/K) verifies that puy,V = Vwvgg for every
¢ € G. This shows V*pL(G)pV = L(G/K).

Since x — px is a conditional expectation (even a *-homomorphism) from
L(G) onto pL(G) == L(G/K), it follows from Proposition 2.15 that non-amenability
of L(G/ K) implies non-amenability of L(G). []

2.6.1. Hecke (von Neumann) algebras. On the level of group algebras, there is a
replacement for the quotient G/ K of a locally compact group G by a compact normal
subgroup K <1 G, even if we drop the assumption of normality. This replacement is
provided by Hecke algebras.

Definition 2.11. Let G be a totally disconnected group and K < G a compact
open subgroup. Then (G, K) is called a Hecke pair. Let p = pgx € C.(G) be the
averaging projection associated with K. Then C.(G, K) := pC.(G)p is called the
Hecke algebra of the pair (G, K) and L(G, K) := pL(G)p is called the Hecke von
Neumann algebra of the pair (G, K).

Remark 2.12. By a result of Tzanev [41] our definition of a Hecke algebra and a
Hecke von Neumann algebra agree with the usual definitions. That is, C.(G, K) is
the set of all compactly supported K-biinvariant functions in C.(G) and L(G, K)
is the von Neumann algebra closure of C.(G, K) in its representation on £2(K\G).

We will need the following formula for the dimension of a Hecke algebra in later
applications.

Proposition 2.13. Let (G, K) be a Hecke pair. Then dim C (G, K) = |K\G/K|.

Proof. We write p = lg € C.(G) for the averaging projection associated with
K <G. If KgK € K\G/K, then pugp = lgex € C.(G, K). Further, it is clear
that these elements generate C.(G, K) as a linear space. Let ¢: C.(G) — C be (the
linear extension of) a Plancherel weight on C.(G) C L(G). For KgK # KhK,
we have @((pug p)* pupp) = (lg * lgx * 1,-15)(e) = 0, since e ¢ KgKh™'K.
This shows that the elements pu, p are pairwise orthogonal in I*(G) D C¢(G). In
particular, (pug p)kekek\G/k is a linearly independent family in C.(G, K). This
shows dim C.(G, K) = |K\G/K|. Ol

2.6.2. Group factors. The following criterion describes discrete groups whose
group von Neumann algebra is a factor. In the well-known proof, we make use of
the right-regular representation pg: G — U(12(G)) of a locally compact group G,
which satisfies (pg(g) f)(x) = f(xg) forall f € C.(G)and g,x € G.
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Proposition 2.14. Let I be a discrete group. Then L(T') is a factor if and only if
every non-trivial conjugacy class in T is infinite. If I is non-trivial, then 1L(I") is
a lly factor.

Proof. If I" has a non-trivial finite conjugacy class ¢ C I', then x := dec Ug
satisfies ugxu, = x forall g € I'. So x € Z(L(G)) is a witnesses that L(I') is not
a factor.

Assume that every conjugacy class of I" is infinite. The map L(I") 3 x — x4, €
£2(T) is faithful, since x8, = pg—1x0, forall g € ' and the vectors 3, g € I" are a
basis of £2(I"). Soif x € Z(L(G)), it suffices to show that xé, € C3,. We have

(x8e)(ghg™") = (x8e, Sgpg—1)

(x8e, Ac (8)pG (8)8h)
(Ac(£) PG (g)" x8e, 8p)
(xAG(g)" PG (g)" e, On)
(x8e, 0p)

(x8e)(h),

for all g,h € I'. Hence x§, is constant on conjugacy classes. Since xd, is also
2-summable and every non-trivial conjugacy class of I' is infinite, it follows that
x8, € C4, indeed.

If I is a non-trivial icc group, then it is infinite. So L(I") is an infinite dimensional
factor. Since I' is discrete, there is the natural trace on L(I") showing that it is a II;
factor. [

2.6.3. Amenable von Neumann algebras. A von Neumann algebra M C B(H)
is called injective, if there is some (not necessarily normal) conditional expectation
E: 8(H) — M. Following the suggestion of Connes [14], we refer to this class of
von Neumann algebras as amenable von Neumann algebras.

Proposition 2.15. If N C M is an inclusion of von Neumann algebras with
conditional expectation and M is amenable, then N is amenable. In particular,
if M is an amenable and finite von Neumann algebra, then every von Neumann
subalgebra of M is amenable.

Proof. From the definitions, the first part of the proposition follows on the nose.
We only have to prove that every von Neumann subalgebra of a finite von Neumann
algebra admits a conditional expectation. This follows from Takesaki’s theorem [37]
and the fact that the modular automorphism group of a trace is trivial. L]

We fix the following important consequence of Proposition 2.15.

Proposition 2.16. Let H < G be an open subgroup of a locally compact group. If
L(H) is non-amenable, then also L.(G) is non-amenable.
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Proof. Assume that L.(H) is non-amenable. Proposition 2.9 tells us that there is a
natural embedding L(H ) < L(G) with a normal conditional expectation L(G) —
LL(H). We can apply Proposition 2.15, in order to conclude that L(G) is non-
amenable. ]

Let M be a Il; factor, k € N5y p € Mg (C) ® M a non-zero projection. Then
p(M(C) ® M) p is called an amplification of M. Its isomophism class depends
only on t := (Tr ® 7)(p), where Tr denotes the non-normalised trace of My (C)
and 7 is the unique trace of M. Hence, we write M* for this amplification.

We also need the following simple stability result for amenable II; factors.

Proposition 2.17. Let M be a 11, factor andt > 0. Then M is amenable if and only
if M" is amenable.

Proof. Fix an amenable von Neumann algebra M C B(H) and a conditional
expectation E: 8(H) — M. Then id ® E: B(K)QB(H) — B(K)QM is
a conditional expectation witnessing amenability of B(K)@M. If p € M is
a non-zero projection and pt = 1 — p is its orthogonal complement, then
M > x +— pxp € pMp @ C p* is a conditional expectation. So Proposition 2.15
implies amenability of pMp @ C p* and hence of pMp . These arguments show
that every amplification of M is amenable. Further, M = (M*)!/%, so that the
proposition follows. L]

The next theorem is classic and a proof can be found in Theorem 2.5.8 of [5].

Theorem 2.18. Let " be a discrete group. Then L(I") is amenable if and only if T’
is amenable.

2.6.4. Free group factors and non-amenable free products of von Neumann
algebras. Let M, M, be von Neumann algebras with fixed faithful normal states
@i € M. The free product von Neumann algebra (M1, ¢1) * (M2, ;) is described
in Chapters 1.6 and 2.5 of [45]. It is the unique von Neumann algebra M generated
by isomorphic copies of M1 and M, together with a normal state ¢ on M satistying
the freeness condition ¢(xy---x,) = 0 for all x1,...,x, € M; U M, satisfying
xi € Mj,, ¢;,(x;) = 0with j; # jiiqfori € {1,...,n— 1}. If no confusion is
possible, we write M = M * M for the free product von Neumann algebra.
In this section, we briefly explain the following result due to Dykema.

Theorem 2.19 (See Theorem 4.6 of [17]). Let M, N be hyperfinite tracial von
Neumann algebras such that dim M, dim N > 2 and dim M 4+ dim N > 5. Then
M x N is a non-amenable von Neumann algebra.

Let IF,, denote some non-abelian free group. Then L(IF,) is called a free group
factor. For any k € N and any non-zero projection p € Mg (C) ® L(IF,), the
compression p(Mg(C) ® L(IF,)) p is called an interpolated free group factor. These
von Neumann algebras were introduced independently in [ 18] and [31], where among
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other things it was proven that the isomorphism class of p(Mg(C) ® L(IF,))p only
dependsont := m{% + 1, where Tr denotes the non-normalised trace on M (C)
and t is the canonical trace on L(IF,;). We hence write L(IF;) for this von Neumann

algebra.

Proposition 2.20. Interpolated free group factors L(IF;), t > 1 are non-amenable.

Proof. Lett > 1 bereal. By Proposition 2.14 and Theorem 2.18 we know that L(IF,,)
is a non-amenable II; factor. So Proposition 2.17 shows that L(IF,) = L(IF';)V 1/G-1)
is non-amenable. L]

Now Theorem 2.19 is a consequence of the following result, which is stated
explicitly in the literature.

Theorem 2.21 (See Theorem 4.6 of [17]). Let M, N be hyperfinite tracial von
Neumann algebras such that dim M, dim N > 2 and dimM 4 dim N > 5. Then
there is a direct summand of M x N that is isomorphic to some interpolated free
group factor.

2.6.5. Amalgamated free product von Neumann algebras. If N C M isan
inclusion of von Neumann algebras with a normal faithful conditional expectation
E:M — N, wewrite M & N = {x € M | E(x) = 0}. Given two von Neumann
algebras M, M, with a common von Neumann subalgebra N and normal faithful
conditional expectations E;: M; — N, there is an amalgamated free product von
Neumann algebra (M1,E;) %5 (M>, E;) described in Chapter 3.8 of [45]. It is the
unique von Neumann algebra M generated by isomorphic copies of My and M,
such that My N M, = N in M as well as a normal conditional expectation
E:M — N obeying the freeness condition E(xy---x,) = 0 for all elements
X1,..., %X, € My UM, withx; € Mj; ©N and j; # ji4qforalli €{1,...,n—1}.
Compare with Proposition 2.5 in [42].

Proposition 2.22. Let G = Gy g Gy be a locally compact amalgamated free
product. Then the inclusions L(G1), L(G2) C L(G) induce an isomorphism L(G) =
L(G1) *La) L(G2) where the amalgamated free product is taken with respect to the
natural conditional expectations.

Proof. Denote by E: L(G) — L(H) the normal conditional expectation associated
by Proposition 2.9 with the open subgroup H < G. It satisfies BE(ug) = 1g(g)ug
for all g € G. Denote by E;:L(G) — L(Gj) the natural conditional expectations
for j € {1,2}.

We want to apply Proposition 2.5 of [42] to conclude the proof. In order to do
so we only need to verify the freeness condition for L(G;) C L(G) with respect
to E. Note thatif g1,...,8, € G1 U G, with g; € G, \ H and j; # j; 1 for all
i €{j1,-.., jn-1}.then gy ---g, € G \ H. This implies E(ug, ---ug,) = 0.
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Let X1,...,Xn € L(G1) U L(Gy) with x; € L(G;) © L(H) and j; # jit
foralli € {1,...,n—1}. Since CG; C L(Gj) is strongly dense for j € {1,2},
Kaplansky’s density theorem provides us with bounded nets (xg,i)e in CG; for all

. a—>00 .

i € {l,...,n} such that xo; — x; strongly. Write xo; = deG,.j Coa,ilg.
Since Ej; (x;) = 0, we have yq,i := X¢,i — Ej;(xa,i) — x; strongly. Since (¥4,i)a
is a bounded net, we also obtain yy |-+ yon —> X1 ---x, strongly and hence also

o-weakly. We have yy ; = deG,_\H Coaithg, SO that E(yg,1 - Ya,n) = Oforall o
by our initial remark on E. It follows that E(x; - - x,) = 0 by normality of E. ]

3. Basic non-amenability results for group von Neumann algebras

In this section we provide the basic non-amenability results for group von Neumann
algebras, which are going to be used in Section 4. By means of Bass—Serre theory,
all non-amenability questions we face, can be answered with the next Lemmas 3.1
and 3.3.

Lemma 3.1. Let K < G, H be two locally compact groups with a common compact
open subgroup. If | K\G/K| > 3 and K < H is a proper subgroup, then L(G xg H)
is non-amenable.

Proof. Since K is a compact open subgroup of G and H, we have K < Gy, Hy.
So Go ¥k Hy < G xx H is an open subgroup. So by Proposition 2.16 it suffices
to prove that L(Gg *xg Hp) is non-amenable. If |K\G(/K| < 2, then G follows
compact. Hence Gy < G is a compact open normal subgroup, showing that G = G
is unimodular. So also |K\G/K| < 2, which is a contradiction. We conclude that
|K\Go/K| = 3. Similarly, if K = H, then H contains a compact open normal
subgroup, and hence H = Hj is unimodular. So K = H, which is a contradiction.
This shows that K < Hj is a proper inclusion.

From now on assume that G, H are unimodular groups satisfying the assumptions
of the lemma. By Proposition 2.22, there is a natural isomorphism L(G xx H) =~
L(G) * k) L(H) =: M. Write p = pg € L(K) for the averaging projection
over K. Let ¢ be the Plancherel weight on M normalised to satisfy ¢(p) = 1. Then

pMp D pL(G)p *piik)p PL(H)p = pL(G)p *cp pL(H)p.

We have dim pL.(G)p > |K\G/K| > 3 by Proposition 2.13 and pL(H)p # Cp,
since dim pL(H)p > |K\H/K| > 2. Since G, H are unimodular, pL(G)p and
pL(H)p are tracial von Neumann algebras. We can find unital hyperfinite von
Neumann subalgebras Ng C pL.(G)p and Ny C pL(H)p such that dim Ng > 3
and Ng # Cp. So Dykema’s Theorem 2.19 applies to show that Ng *c, Ny is
non-amenable. Since Ng *c, Ny is a non-amenable von Neumann subalgebra of
the finite von Neumann algebra pL.(G) * (k) L(H ) p, Proposition 2.15 says that also
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the latter is a non-amenable von Neumann algebra. We conclude that a corner of M
is non-amenable, and hence M is non-amenable by the same proposition. []

Remark 3.2. Lemma 3.1 can be alternatively proved without reducing to the
unimodular setting, if we employ Ueda’s [43]. We prefer however to present a
proof of Lemma 3.1 based on more classical theorems on free product von Neumann
algebras.

Lemma 3.3. Let G be the fundamental group of one of the following graphs of groups

(G, X).

(1) X = e——o——ewithcompact edge groups and all inclusions proper, except
Jor possibly one inclusion into the vertex group of the middle vertex.

(2) X a graph with at least three terminal edges e, f, g and terminal vertices
x=tle), y = t(f) z = t(g) such that G.,G r, Gg are compact and the
inclusions G, > Gy, Gy — Gy and Gy — G are proper.

Then L(G) is non-amenable.

Proof. Consider case (1) first. The statement that L.(G ) is non-amenable is equivalent
to showing that L(Ky *7, K3 *7, K3) is non-amenable if K1, K>, K3 are locally
compact groups, L1 < K, K, is a proper compact open subgroup, L, < K» is some
compact open subgroup and L, < K3 is a proper compact open subgroup. We have

L(K1 *1, K2 *1, K3) = (L(K1) *1(1,) L(K2)) *1(1,) L(K3),

by Proposition 2.22. Since L; < K1, K> is proper, the group Ky *,, K> is non-
compact. So |L,\(K; *1, K2)/L2| = co. Sincealso L, < K3 isaproperinclusion,
Lemma 3.1 applies to show that L.(G) is non-amenable.

We consider case (2). Let Y C X be the graph formed by removing the vertices
x,y,zand theedges e, f, g from X. Let H = (G, Y). Then G is the fundamental
group of the contraction (G, Z) given as

Gx Gf Gy
G, I

G,

If one of the inclusions G, <~ H, Gy < H or G, — H is proper, the first
part of the lemma applies to show that the group von Neumann algebra of an open
subgroup of G is non-amenable. Indeed, by symmetry we may assume that G, — H
is proper. Since G, <> G, and Gy < G are proper inclusions by assumption,
case (1) applies to Gx *g, *H *G , Gy, which is an open subgroup of G. It follows
that L(G) is non-amenable using Proposition 2.16.
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IfG. =Gy =Gy = H,then H is compactand G = Gy xg G, * g G, follows
from Serre’s dévissage. The inclusions 1 < G, G, G, are all proper, so that (1)
applies to show that 1.(G) is non-amenable. ]

4. Groups acting properly on trees

In this section we consider several criteria for non-amenability of L(G) for locally
compact groups acting properly on trees. In case G < Aut(7') is a subgroup of the
automophisms of a locally finite tree, properness of the action is easily seen to be
equivalent to closedness G <. Aut(7"). Our non-amenability criteria for L(G) are
organised according to the rank of the free group 71 (G\T). An increasing number
of extra assumptions for 71 (G\7T) of lower rank is required. For the rest of this
section, we fix the setting of a proper action G ~, T of a locally compact group on a
tree.
Naturally, L(G) is non-amenable, if 771 (G\T') is a non-abelian free group.

Proposition 4.1. Let T be a tree and G ~, T a proper action of a locally compact
group. If rank w1 (GT\T) > 2, then 1.(G) is non-amenable.

Proof. Since Gt < G is an open subgroup of index at most two, it suffices by
Proposition 2.16 to show that L(G 1) is non-amenable. We may hence from now on
assume that the action of G on T is type-preserving.

We write X = G\7T. Let S C X be a maximal subtree of X. Denote by
(G, Y) the contraction of (G, X) along S and denote the unique vertex of Y by y.
Then 71 (Y) == m1(X) is a non-abelian free group by assumption. Let (G, f) be the
covering tree of groups of Y. Then

G = 1 (G, X) = mi(G,Y) = m (G, T) um(Y),

as described in Section 2.4. We identify G = 7,(G, T) x 7y (Y) via this natural
isomorphism.

First assume that 7y (G, T) is compact. We denote itby K. Let p = pg € L(G)
be the averaging projection associated with p. We have pL(G)p = L(G/K) by
Proposition 2.10. Further, G/ K == w1 (Y') is a discrete non-amenable group, so that
Theorem 2.18 shows that L.(G/K) is non-amenable. So L(G) has a non-amenable
corner, implying that it is non-amenable itself.

Now we assume that 71 (G, T) is non-compact. In this case we denote it by H.
Since edge stabilisers of (G, T) are compact and H is non-compact, there is some
proper inclusion of an edge group into a vertex group of (G, T). Since (G, T) arises
from the universal covering TofY , there is also some edge ¢ € E(Y) such that the
inclusion G, < G, is non-trivial. Since 7;(Y') has rank at least two, there is another
edge f € E(Y) such that e, e, f, f are pairwise different edges in Y. The subgraph
of ¥ having the vertex y and the set of edges {e, e, f, f } lifts to a 4-regular subtree R
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of T in which all lifts & of e with target y define proper inclusions Gz < G5. We
consider the following subgraph Z of R, where the lifts of e in Z as well as their
target vertices are marked in grey.

We obtain an open subgroup 71 (G, Z) C 71(G, T), to which Lemma 3.3 (2) applies.
So L(m1(G, Z)) is non-amenable, implying that also L.(G) is non-amenable by
Proposition 2.16. (]

Also if 71(G\T) is a non-trivial group, we obtain a convincing criteria for non-
amenability of L(G). In fact, non-amenability of G and L(G) are equivalent in this
case.

Proposition 4.2. Let T be a tree and G ~ T a proper action of a non-amenable
locally compact group. If rank m (G T\T) = 1, that is 71 (GT\T) = Z, then L(G)
is non-amenable.

Proof. Since Gt < G is an open subgroup of index at most two, it suffices by
Proposition 2.16 to show that L(G 1) is non-amenable. We may hence from now on
assume that the action of G on T is type-preserving.

Write X = G\T. We distinguish several cases.

Case 1. Assume that X has no vertex of degree 1. Then X is a circuit. Let T be
the covering tree of X. It can be identified with the Cayley graph Cay(Z, {—1, 1}).
Since (G, T') is the covering tree of a circuit, there is p € N such that foralln € N

(G(n,n—f-l) <Gy) = (G(n+p,n+1+p) = Gn—!—p)a
(G(n,n+l) < Gn-l—l) = (G(n+p,n+1+p) < Gn+1—|—p)-

If Gy, = Guuqnyforalln € Zor Gpyy = G pyry forall n € Z, then (G, f) =
lim G, is an inductive limit of compact groups. Since G = 71(G,T) % Z is non-
amenable, this is a contradiction. So there are m,n € Z such that G, m+1) < Gpm
and G py1) < Gpy1 are proper inclusions. Shifting indices by p, we may find
m < n < o € 7 such that

Gmm+1) < Gm is proper,
Gmnt1) < Gup+1  is proper,
G(o,04+1) < Go+1 is proper.
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Fixing m,n € 7 with such properties, we can assume o > n to be minimal with
these properties. Let

H .= (G(m,m+1)a Gm+1a Gm+2» o5 wn Dys G(n,n—l-])) .

Further note that (G(n—l—],n—|—2)a Gn+2, Gn_|_3, . o iy Go, G(0’0+1)) == G(n+1,n+2) by
minimality of 0. We obtain that

(GmsGm+la---aGo+l)

= Gm >I<G(m.m+l) Gm+1 >kG(m—{—l.m—I—Z) U >kG(o,rH—l) G()+1
= Gm >I<G(m.m-l—l) H >E<G(n,n+1) G’H‘] *G(n+l,n+2) >i<G(n.n-l—l) G0+1

= Gm *Gomm+1) H *Ginnt1) Gt *Go.0+1) Got1 -

This is an open subgroup of G. If either H # G pt1) of H # Ginm+1),
then Lemma 3.1 applies to Gm *G,,, i1y H *G(, up1) Gn+1 and shows that its
group von Neumann algebra is non-amenable. So also L.(G) is non-amenable by
Proposition 2.16. In case G(,,n+1) = H = Gn,m+1), we have

Gm >l<G(m.erI) H *G(ﬂ.l1+” G”+1 >i<G((),()—I—l) G‘H'l = Gm EH Gn+1 *G(().()—H) Go+l

and H < Gp,Guyy as well as G 1) < Goy1 are proper inclusions.
So Lemma 3.3 (1) applies to show that the group von Neumann algebra of
Gm *H Gnt1 *G, 41y Go+1 18 nON-amenable.

Case 2. Assume that X has some vertex of degree 1. Let v € V(X) have degree 1
and let e € E(X) be the unique edge satisfying t(e) = v. If G, = G,, then any
lift of v to T is a terminal vertex. We may hence remove v and ¢ from X without
changing G. This either reduces to Case 1, or it provides us with a vertex v € V(X))
of degree | and an edge ¢ € E(X) with t(¢) = v such that G, < G, is a proper
inclusion. Let (G, 7’) be the covering tree of groups of (G, X). Then (G, f) takes
the form

where x, y,z € V(f) are lifts of vand f, g, h € E(T) are lifts of e. The inclusions
Gy < Gy, Gg < Gy and Gy < G are proper, since they are isomorphic with
G, < G,. So Lemma 3.1 (2) applies and says that 71 (G, f) has a non-amenable
group von Neumann algebra. Since 7y (G, 7:) < (G, 7:) x Z = G is an open
subgroup, Proposition 2.16 implies that L(G) is non-amenable. ]

As can be expected, the case 7;(G\7T) = 0 becomes the most subtle. This is
due to the fact that there are many edge transitive closed type I subgroups of Aut(7).
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Their group von Neumann algebras are in particular amenable. We obtain a non-
amenability result in this case, which is sufficient for all applications presented in
this article.

Proposition 4.3. Let T be a thick tree and G ~, T a proper action of a non-amenable
locally compact group such that GT\T is finite and satisfies T (GT\T) = 0. If
GT\T is not an edge, then 1.(G) is non-amenable.

Proof. Since Gt < G is an open subgroup of index at most two, it suffices by
Proposition 2.16 to show that L(G T) is non-amenable. We may hence from now on
assume that the action of G on T is type-preserving.

We write X = G\T. Letv € V(X) be aterminal vertex of X and v € V(T') alift
of v. If ¢ € E(X) is the unique edge satisfying t(e) = v, then |G, /G.| = |E(v)| > 3,
since T is thick. In particular G, < G, is a proper inclusion. So if X has at least
three terminal edges, then Lemma 3.3 (2) applies to show that G = 71(G, X) has a
non-amenable group von Neumann algebra. Otherwise, X is a finite segment, which
we can identify with the standard segment [0, n] for some n € N-. Since G does

not act edge transitively, we have n > 2. We distinguish different cases.
Case 1. We have a proper inclusion G(g,1) < G1 0r G(,—1,n) < Gp—1. By symmetry
we may assume that G, ») < Gn—1 is a proper inclusion. Put

H = Gy *Ga.2) " *G—2.0—1) Gp-1.

Then G = Gy *G .1y H *Gin_in Gn with G(g,1), G (n—1,,) compact and with proper
inclusions Gg,1) < Go and G(,—1,,) < H aswell as G, —1 ) < Gp. So Lemma 3.3
(1) applies to show that L(G) is non-amenable.

Case 2. We have Gy 1) = G1 or Gz—1,,) = Gp—1. By symmetry we may assume
that Go,1) = G1. Let k € N be maximal with the property that

G() > G((),l) — Gl > G(l,Z) — Gz > > G(k—l,k) — Gk )
We know that G(,—1 ») < G, is a proper inclusion, implying that k <n — 1. So

G = Go %G1y G1 ¥Go) " *¥Gu1my G
= (Go *Gy k1) Gk+1) ¥Gqr ks =" *Giurmy O -
We will show that the open subgroup Gg *G ., Gk+1 < G has a non-amenable
group von Neumann algebra. Thanks to Proposition 2.16, this will finish the proof.

Leti € {1,...,k}. IfveV(T)isaliftofi € V([0,n]) and e, f € E(v) are lifts
of 1 —1,i),(i,i + 1) € E(i), respectively, then

E() = Gy/Ge UGy/Gs ={Ge} UGy/G .
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Since |[E(v)| > 3, it follows that |G; /G i+1)| = |Gy/Gs| = 2. S0 G; = G it1)
is a proper inclusion for all i € {1,...,k}. Since also Gy > Gq,1) is a proper
inclusion, we have the chain of proper inclusions

Go Z G, =612 G-
This shows that Gk x+1) < Gy is not a maximal subgroup. So Lemma 2.4 shows

that |Gk,x+1)\Go/Gk.k+1)| = 3. We checked all conditions to apply Lemma 3.1
to Go *G 441y Gk+1, finishing the proof of the proposition. L]

We end this section, by a non-amenability result for edge transitive groups G ~, T.
A condition on the local action of G ~, T around a vertex ensures non-amenability
of L(G).

Proposition 4.4. Let T be a thick tree and G ~ T a proper action of a locally
compact group. Assume that G is edge transitive but not locally 2-transitive.
Then L(G) is non-amenable.

Proof. Consider the open subgroup G < G of index at most two. Note that
G™T ~ T is still edge transitive, since any for any ¢ € G and any e € E(T') such that
ge is adjacent to e, it follows that g € GT. Further, G is not locally 2-transitive,
since G ~, T is not locally 2-transitive. By Proposition 2.16 it hence suffices to show
that L(G ™) is non-amenable. We may hence from now on assume that the action
of G on T is type-preserving and G\T is an edge.

Since G is not locally 2-transitive, there is some v € V(T') such that G, ~ E(v)
is not 2-transitive. Let ¢ € E(v) and w = t(e). Bass—Serre theory says
that G = G, *g, Gy, since G is edge transitive and type-preserving. Since
G, ~ E(v) is transitive, we have a G, equivariant identification E(v) = G,/G,.
Since G, ~ E(v) is not 2-transitive, we further have

|Ge\Gu/Ge| = |G \E()| = 1 + |G\ (E(v) \ {e})| = 3.

Note also that G, < Gy, is a proper inclusion, since |G, /G.| = |E(w)| > 3. Now
Lemma 3.1 applies to show that L(G) is non-amenable. ]

5. Proof of Theorems C and D
To start this section let us note that Theorem D simply summarises Propositions 4.1,
4.2 and 4.3. We will thus devote the rest of this section to the proof of Theorem C.

Lemma 5.1. Let T be a locally finite tree such that Aut(T') is not virtually abelian
and acts minimally on T. Then T has infinitely many ends.
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Proof. We assume that 7' has only finitely many ends and deduce a contradiction.
If T has no end, then it is finite and Aut(7) is a finite group, hence virtually abelian.
So T has at least one end. If 7" has exactly one end, then it contains a unique maximal
geodesic ray. This ray is pointwise fixed by Aut(7"), which contradicts minimality
of Aut(T) ~ T. If T has exactly 2 ends, then Aut(7") setwise fixes the unique
two-sided infinite geodesic of 7. By minimality of Aut(7") ~ T, it follows that

T =~ Cay(Z,{—1,1}).

Then Aut(7T) = Dy is a dihedral group, which is virtually abelian. This shows
that 7" has at least 3 ends. Let

F={x,y)N(y,z) N(z,x) | x,y, z pairwise different ends of T'}.

Since T has only finitely many ends, F is finite. Further, its definition makes it clear
that F is Aut(7')-invariant, contradicting minimality of Aut(7") ~ 7. This finishes
the proof of the lemma. |

Lemma 5.2. Let T be a tree with at least some vertex of degree 3 and such that
Aut(T') acts minimally on T. Then there is a thick tree S such that

* V(S) C V(T),

* V(S) is Aut(T)-invariant, and

* the restriction map Aut(T) — Sym(V(S)) induces an isomorphism of topological
groups Aut(T) = Aut(S).

Further,

* ifG <. Aul(T) is a closed subgroup acting minimally on T, then also G ~, S is
minimal, and

* G acts locally 2-transitively on T if and only if it acts locally 2-transitively on S.
Proof. We define

V(S) = {v € V(T) | deg(v) = 3}
and E(S)={s:[0,n] — T | n > 1, deg(s(0)), deg(s(n)) > 3,
Vie{l,...,n—1}:deg(s()) = 2},

with origin o(s) = s(0) and target t(s) = s(n). It is clear that S is a non-empty
graph.

We first show that § is a tree. To this end we prove that S is connected and that
every circuit in S has backtracking. Let v, w € V(S). There is some injective path
5:[0,n] < T such that s(0) = v and s(n) = w. Let

B={ie{l,...,n—1}|deg(s(i)) > 3}.
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If B = @, then s € E(S) is an edge between v and w. Otherwise let i} < -+ < i
be an enumeration of B. Put iy := 0 and ix4; := n. Sets; := x|[,-j,,-j+!] for
J €1{0,...,k}. Then s; € E(S) (after identifying [ij,i;41] = [0,ij41 —i;]) for
all j €{0,...,k}. We have

0(s0) = $0(0) = s(0) = v,
t(sg) = s (n) =s(n) = w, and
t(A‘j) = .\‘j(ij_|_]) = .\‘([j_|_1) = Sj_|_1(ij+1) = ()(Sj_H), forall j € {0,...,k —1}.

This shows that s¢, .. ., s; define a chain of edges connecting v and w in . So § is
connected.

Let now sg,...,s¢ € E(S), sj:lij,ij+1] <> T define a circuit in S. Define
8:[0,ig1] — T as the path that agrees with s; on [i;,i;4]. Then s is a circuitin T
since,

o(s) = 50(0) = o(s0) = tlsk) = sk (ik+1) = t(s).

Since T is a tree, there is some [/ € [0,ix4+q — 2] such that s((/,] + 1)) =
s((! + 1,1 + 2)). Since s; is an injective path for all j € {0, ...k}, we must have
[ =i; —1forsome j € {l,...,k}. This means that s; and s; 1 are injective paths
in 7" all of whose non-terminal vertices have degree 2 and such that the last edge of s ;
is the conjugate of the first edge of 541 (i.e. 5;((i; —1,i;)) = s;41((;,i; + 1))).
This implies s; = 5;571. So 89, ..., sg has backtracking and we conclude that § is a
tree.

If ¢ € Aut(T), v € V(T), then deg(gv) = deg(v), so that gV(S§) = V(S)
follows. Denote by Res: Aut(7') — Sym(V(S)) the restriction homomorphism.
We show that Res(Aut(7")) C Aut(S). Assume v,w € V(S) are adjacent in S.
Then there is s € E(S), s:[0,n] — T such that s(0) = v, s(n) = w. Since
gs € E(S), with (g5)(0) = g(s(0)) = gv and (gs)(n) = g(s(n)) = gw, we also
have gv ~ gw in S. This shows that Res(g) is a bijective graph homomorphism.
Since Res(g™!) = Res(g) ™!, it follows that Res(g) € Aut(S).

We show that Res is injective. Assume that Res(g) = idg for some g € Aut(7).
Then gly(s) = idy(s). Since V(S) is Aut(T')-invariant and Aut(7") ~ T is minimal
by assumption, T is the convex closure of V(S). So g = idr.

We show that Res is surjective. Let 2 € Aut(S). We want to define 8(h)(s(i)) :=
(hs)(@) for all s € E(S), s:[0,n] — T and i € {0,...,n}. We first prove that this
gives rise to a well-defined map B(h): V(T) — V(T). If v € V(§) C V(T) and
s € E(S), s:[0,n] — T satisfies s(i) = vforsomei € {0, 1,...,n},theni € {0, n}.
We obtain

(hs)(0) = o(hs) = h(o(s)) = hv or
(hs)(n) = t(hs) = h(t(s)) = hv, respectively.

So the image B(h)v = hv is independent of the choice of s. If v € V(T') \ V(S),
then there is some s € E(S) containing v, that is, writing s:[0,n] < T, there is
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some i € {1,...,n — 1} such that v = s(i). This follows from the fact that the
convex closure of V(S) is T. If s,s" € E(S) both contain v, then s’ = s or s’ = ¥.
Take s € E(S), s:[0,n] < T andi € {1,...,n — 1} such that s(i) = v. Then

(h5)(n — i) = (hs)(n — i) = (hs)(0)

showing that B(h)v is well-defined. Note that B(h~') = B(h)~!, so that we obtain
a map f: Aut(S) — Sym(V(T)). Also note that 8 is a group homomorphism. If
h € Aut(S) and v, w € V(T) are adjacent, then there is s € E(S), s:[0,n] < T and
i €{0,...,n—1}suchthats(i) = v,s(i + 1) = w. Then

B(hyv = (hs)(i) ~ (hs)(i + 1) = p(h)w.

This shows that B(k) is a graph homomorphism. Since also f(h)™' = B(h™1)
is a graph homomorphism, we find that 8: Aut(S) — Aut(7). It is clear that
B(h)|v(sy = h for all h € Aut(S), which shows that Resoff = idau(s). So Res is
surjective.

By construction Res is a continuous map. Also 8 is continuous as it can be
easily checked on a neighbourhood basis of the identity in Aut(S). So Res is an
isomorphism of topological group.

Now assume that G <. Aut(7") is a group acting minimally on 7. We will
show that G ~ § is also minimal. To this end, take v € V(S§) and g € G.
Then Res(g)v = gwv. Further, the construction of S shows that [v, gv]7r N V(S) =
[v, gv]s NV(S). So a vertex of V(S) is in the convex closure of Gv inside 7" if and
only if it is in the convex closure of Res(G)v inside S. This suffices to conclude that
G ~ S is minimal.

Now let us consider local 2-transitivity of G ~ T and G ~ S. For every
v € V(S) the map Eg(v) > s +— s((0,1)) € Er(v) is a bijection. Let us denote
its inverse by Res,:Er(v) — Eg(v). Then Res(g)Resy(e) = Resgy(ge) for
all g € Aut(T'), v € V(T) and ¢ € Er(v). Together with the observation that
Res(G)y = Res(Gy), this directly implies that G ~, T is locally 2-transitive if and
only if G ~y § is locally 2-transitive. This finishes the proof of the lemma. U

The following lemma is well known. Its proof can be found for example as
Lemma 2.4 in [9].

Lemma 5.3. Let T be a locally finite tree and let G <. Aut(T) be a closed subgroup
acting minimally on T. Then G is compactly generated if and only if G acts
cocompactly on T.

We now come to the major reduction result necessary to apply results from
Section 4 in the proof of Theorem C.

Proposition 54. Let T be a locally finite tree with infinitely many ends. Let
G <. Aut(T) be a closed non-amenable subgroup acting minimally on T. Then
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there is an open non-amenable subgroup H < G, a compact normal subgroup
K < H and a locally finite thick tree S such that H/ K <. Aut(S) acts minimally,
cocompactly and in a type-preserving way on S.

If G ~ T is not locally 2-transitive, then also H/K ~, S can be chosen to be
not locally 2-transitive.

Proof. Since T is a locally finite tree with infinitely many ends and G <, Aut(7’) is
a non-amenable subgroup acting minimally on 7', it contains a hyperbolic element
and 7" is the convex closure of all translation axes of hyperbolic elements in G. Let
H < G be an open non-amenable compactly generated subgroup. Incase G ~ T
is not locally 2-transitive, there is v € V(T') with deg(v) > 3 and G, ~ E(v) is
not 2-transitive. Since G ~ T is minimal, the convex closure of translation axes
of hyperbolic elements in G equals 7. Adding finitely many elements to a compact
generating set of H, we may hence assume that E(v) lies in the convex closure 77 of
all translation axes of hyperbolic elements in /. Note that H ~ T’ is minimal by
construction. The fix group K = Fixg(T")N H is compact and normal in H . Itis the
kernel of the map H — Aut(7”). We obtain the closed subgroup H/K <. Aut(7").
Since G, ~ E(v) is not 2-transitive, also H, ~ E(v) is not 2-transitive. Further, this
action factors through (H/K)y, since E(v) C E(T”). We thus find that H/K ~ T’
is not locally 2-transitive in case G ~ T is not locally 2-transitive.
We apply Lemma 5.2 to 7’ to obtain a thick tree S such that

* V(S) = {v € V(T") | deg(v) = 3},
e V(S) is Aut(7’)-invariant,

o the restriction map Res: Aut(7’) — Sym(V(S)) induces an isomorphism of
topological groups Aut(7”) = Aut(S).

Further, Lemma 5.2 says that since H/K ~, T’ acts minimally, H/K ~, S has the
same property. Also if H/K ~ T’ is not locally 2-transitive, then H/K ~ S has
the same property. Lemma 5.3 applies to show that H/K acts cocompactly on S.
If H/K ~ S is not type-preserving, we may replace H by an index two subgroup
of itself in order to guarantee also this property. Note in particular, that H/K ~ S
remains minimal, since squares of hyperbolic elements are type-preserving. This
finishes the proof of the proposition. (]

We are now ready to combine our results from Section 4 with Proposition 5.4 in
order to prove our main theorem of this article.

Proof of Theorem C. Let T be a locally finite tree and G <. Aut(7') a closed non-
amenable subgroup acting minimally on 7. Assume that G does not act locally
2-transitively on 7. Since G is not amenable, Aut(7") is not virtually abelian. So
Lemma5.1 implies that 7" has infinitely many ends. Applying Proposition 5.4, we find
an non-amenable open subgroup // < G a compact normal subgroup K < H and a
thick tree S such that H/ K <. Aut(S) acts minimally cocompactly type-preservingly
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and not locally 2-transitively on S. In particular, H/K is non-amenable. Further
H/K ~ S is proper, since H/K <. Aut(S) is closed. So the results of Section 4
apply to show that L(H/K) is non-amenable. Since Proposition 2.10 says that
L(H/K) is a corner of L.(H ), also the latter von Neumann algebra is non-amenable.
Since H < G is open, also L(G) follows non-amenable by Proposition 2.16. This
finishes the proof of the theorem. ]

6. Applications to type I groups and to Burger—-Mozes groups

In this section we will prove Theorems A and B.

6.1. Type I groups.

Definition 6.1. Let M be a von Neumann algebra. We say that M is a type I von
Neumann algebra if for every projection p € M there is some g < p (i.e. pg = q)
such that ¢ M g is abelian.

A locally compact group G is called a type I group, if every unitary representation
of G generates a type I von Neumann algebra.

The following description of type I von Neumann algebras is well-known and

provides the reader unfamiliar with this von Neumann algebraic notions with some
orientation.
Proposition 6.2. A von Neumann algebra M is of type 1 if and only if there
is a cardinal k and (possibly empty) measure spaces X,, @ < & such that
M =P, LX) ® B(Hy), where H, is a Hilbert space with an orthonormal
basis of cardinality w.

With this characterisation at hand, we see that every type I von Neumann algebra
is amenable.

Corollary 6.3. Every type | von Neumann algebra is amenable.

We can now proceed to the proof of our main theorem’s first application.

Proof of Theorem A. This follows immediately from Theorem C and Corollary 6.3.
]

6.2. Applications to Burger—-Mozes groups. The following property is the found-
ation of combinatorial considerations about type I groups acting on trees.

Definition 6.4. Let T be a locally finite tree. If ¢ € E(T) is an edge in 7', then
the graph T without e is a disjoint union of two trees, which we call the half trees
emerging from e.

A closed subgroup G <. Aut(7T’) has Tits’ independence property if for all
edges ¢ € E(T) with half trees b, b2 emerging from e there is a decomposition
Fixg (e¢) = Fixg (h1) x Fixg (h2).
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An important class of examples enjoying Tits’ independence property are Burger—
Mozes groups.

Definition 6.5 (Burger—Mozes [7]). Let n > 3 and T be the n-regular tree. A legal
colouring of T"isamap [: E(T) — {1,...,n} such that/(e) = [(e) for all e € E(T')
and /|g(y) is a bijection for every v € V(7). Given a legal colouring / of 7', we define
the local action of g € Aut(T') at v € Aut(7’) by

o(g,v) =1 ogol|g(lv) eSym({l,...,n}) =S,.
If F < S, is given, we define the Burger—Mozes groups by
U(F):={geAu(T) |Yve V(T): o(g,v) € F}
and their type-preserving subgroups
UF)" :=U(F) N Auw(T)".

Note that the definition of U(F) and U(F)* a priori depends on the choice of a
legal colouring. However, the fact that a legal colouring is unique up precomposition
with a tree automorphism shows that U(F) and U(F)™ are independent of this choice
up to conjugation by a tree automorphism. Since Aut(7)*t < Aut(7’) has index 2,
also U(F)* < U(F) has index 2. In this context, note that our definition of U(F)*
as type-preserving part of U(F') in general differs from the subgroup \/, eer) U(F)e
from BM, which could be trivial. However, these two definitions agree in case F is
transitive and generated by point-stabilisers.

Thanks to Tits’ independence property, U(F)™ is abstractly simple, if F is
transitive and generated by point-stabilisers. Burger—Mozes groups are an important
class of examples in the theory of totally disconnected groups.

Actually Burger—-Mozes groups account for a large class of groups having Tits’
independence property, as it is demonstrated by the following theorem. Its statement
did not yet appear in the literature, and we add it for the reader’s convenience. The
proof combines known results from Burger—Mozes [7] and Bank-Elder-Willis [2].

Theorem 6.6. Let T be a locally finite tree and G <. Aut(T') a closed vertex and
edge transitive group with Tits’ independence property. Let F < S, be permutation
isomorphic with the image of G, in Sym(E(v)). Then G = U(F) for a suitable
colouring of T.

Proof. Since G is edge transitive, it is locally transitive. So Proposition 3.2.2 of |7]
applies to show that there is a suitable legal colouring of 7" for which the inclusion
G < U(F) holds. Theorem 5.4 of [2] says that

G={gcAu(T) |YveV(T)3heG: glp,) = hlp,w)} = U(F).

This finishes the proof. ]
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The following result says that the type I conjecture holds for vertex transitive
groups with Tits’ independence property. Note that non-compact boundary transitive
groups are edge transitive. So the previous theorem shows that Theorem 6.7 applies
exactly to Burger—Mozes groups.

Theorem 6.7 (Olshanskii [30], Amann [1], Ciobotaru [10, Theorem 3.5]). Ler T
be a locally finite tree and G <. Aut(T) a closed subgroup acting transitively on
vertices of T. Assume that G has Tits’ independence property. If G acts transitively
on the boundary 0T, then G is a type 1 group.

In order to formulate a converse to this theorem, which is the content of our
Theorem B, we need to characterise boundary transitivity of groups with Tits’
independence property. The next lemma is essentially contained in the ideas of
Burger-Mozes’ |7, Lemma 3.1.1]. It also appeared as Proposition 15 in [1]. We
claim no originality, but give a full proof for the convenience of the reader.

Lemma 6.8 (Compare with Burger—-Mozes [7]. See also Proposition 15 in [1]).
Let T be a locally finite tree that is not a line nor a vertex and let G <. Aut(T) be a
closed vertex transitive group with Tits’ independence property. Then G is boundary
transitive if and only if G is locally 2-transitive.

Proof. Since G is vertex transitive, it is non-compact. So Lemma 3.1.1 in [7] shows
that if G is transitive on the boundary, then G is locally 2-transitive.

In order to prove the converse we appeal to Lemma 3.1.1 [7] again and have
to show that for every v € V(T') and every n € N the action of G, on 9B, (v)
is transitive. Since G ~, T is vertex transitive, 7' is a homogeneous tree and its
degree is at least three, since T is not a line nor a vertex. Let x, y € dB,(v) and let
r:[0,n] — T, 5:[0,n] — T be the unique geodesics satisfying o(r) = o(s) = v,
t(r) = x and t(s) = y. We inductively show the existence of g1,...,2, € G,
such that (g;r)(i) = s(i) forall i € {l,...,n}. Since G is locally 2-transitive
and T is homogeneous of degree at least three, G also acts locally transitively. So
there is some g1 € G, such that gir(1) = s(1). Assume that g,...,g; have
been constructed for i < n. Let by, by be the two half-trees emerging from the
edge e := (s(i — 1), s(i)). The notation can be fixed by assuming s(i — 1) € by and
s(Z7) € bo. Then b, contains all vertices adjacent to s (7 ) that have distance i +1 tov. In
particular, s(i +1), g;r(i +1) € b,. Since G is locally 2-transitive and |E(s(i))| > 3,
thereis h € G, satisfying h(g;r(i +1)) = s(i +1). Because G has the independence
property, we obtain the product decomposition G, = Fixg(h1) x Fixg(h2) and can
write i = (hy, hy) with h; € Fixg(h1) and 4, € Fixg(h2). Then hygir(i + 1) =
hy'hgir(i +1) = hyls(i +1) = s(i + 1). Further, hjv = v, since v € V(h;). We
put gi+1 := hyg; and finish the induction. Now the existence of g, with g,v = v
and g,x = g,r(n) = s(n) = y finishes the proof of the lemma. ]
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Let us reformulate Lemma 6.8 in terms of Burger-Mozes groups.

Lemma 6.9 (Burger—Mozes [7, Section 3]). Let F < S, for n > 3 be given. Then
the following statements are equivalent.

e U(F) is boundary transitive,
e U(F) is locally 2-transitive,
e F is 2-transitive.

Combining Theorem 6.7, Lemma 6.8 and Theorem A, we obtain the character-
isation of vertex transitive type I groups with the independence property, stated as
Theorem B.

Proof of Theorem B. All statements of the theorem are obvious in case 7 is a line or
B =2

Let T be a locally finite tree and G <. Aut(7') a closed vertex transitive subgroup
with Tits” independence property. If G is locally 2-transitive, then G is boundary
transitive by Lemma 6.8. So Theorem 6.7 says that G is a type I group. If G is not
locally 2-transitive, then 7" has at least one vertex of degree 3. So T is not a line and
it follows from vertex transitivity, minimality of G ~, dT and Proposition 2.5 that G
is not amenable. So Theorem A applies to show that G is not a type I group.

It remains to prove the statement about Burger—Mozes groups. Since for every
F < S, the closed subgroup U(F)* < U(F) has index 2, it suffices to characterise
when U(F) is a type I group. Now U(F) is vertex transitive and has Tits’
independence property. So the first part of the statement says that U(F') is a type 1
group if and only if it acts locally 2-transitively. Now Lemma 6.9 finishes the proof
of the theorem. O
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