
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 94 (2019)

Heft: 1

Artikel: A Poincaré-Bendixson theorem for translation lines and applications to
prime ends

Autor: Koropecki, Andres / Passeggi, Alejandro

DOI: https://doi.org/10.5169/seals-823094

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-823094
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 94 (2019), 141-183
DO I 10.4171/CMH/457

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

A Poincaré-Bendixson theorem for translation lines
and applications to prime ends

Andres Koropecki* and Alejandro Passeggi**

Abstract. For an orientation-preserving homeomorphism of the sphere, we prove that if a

translation line does not accumulate in a fixed point, then it necessarily spirals towards a

topological attractor. This is in analogy with the description of flow lines given by Poincaré-
Bendixson theorem. We then apply this result to the study of invariant continua without fixed

points, in particular to circloids and boundaries of simply connected open sets. Among the

applications, we show that if the prime ends rotation number of such an open set U vanishes,
then either there is a fixed point i n the boundary, or the boundary of U is contained in the basin of a

finite family of topological "rotational" attractors. This description strongly improves a previous
result by Cartwright and Littlewood, by passing from the prime ends compactification to the
ambient space. Moreover, the dynamics in a neighborhood of the boundary is semiconjugate to a

very simple model dynamics on a planar graph. Other applications involve the dccomposabilily
of invariant continua, and realization of rotation numbers by periodic points on circloids.

Mathematics Subject Classification (2010). 37E30, 37B45, 37E45, 54H20.

Keywords. Prime ends, surface dynamics.

1. Introduction

1.1. A Poincaré-Bendixson theorem for translation lines. The Poincaré-
Bendixson theorem states that the «-limit of a regular orbit T of a flow in S2 either
contains a fixed point or is a closed orbit which is attracting from the side that is

accumulated by the given orbit. One of our main results states that a similar property
holds if T is only assumed to be a translation line, i.e. the image of an injective
continuous map y : R -> S2 such that f(F) T and T has no fixed points (which
implies that /jp is topologically conjugate to the translation x h> x + 1 of M

if T is endowed with the linear topology induced by y). We always assume that y
is parametrized so that the orientation matches the one induced by the dynamics.
Translation lines appear naturally in the basins of connected topological attractors or
repellors, or as stable and unstable branches of hyperbolic saddles.

*Thc first author was partially supported by FAPERJ-Brasil and CNPq-Brasil.
**Thc second author was supported by the group "Sistemas dinâmicos", No 618, C.S.I.C. UdclaR.
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The a)-limit of T is defined as ft>(T) f\>o FÜL °°))> an(J ^ F is disjoint
from û)(T) its filled co-limit o)(Y) is the complement of the connected component
of M2 \ (t>(T) which contains T. The set <5(T) is a non-separating continuum, and

we say that it is a rotational attractor if it is a topological attractor and its external

prime ends rotation number is nonzero (see §2.10 for details).

Theorem 1. Suppose that T is an translation line for an orientation-preserving
homeomorphism of S2. Then to F either contains a fixed point, or T is a
topologically embedded line and ft5(T) is a rotational attractor disjointfrom T.

In the case that 5(T) is a rotational attractor, one can show that <w(F) has

exactly two invariant complementary components (see Corollary 5.3), which allow
us to define two "sides" of ft>(r). The theorem implies that cu(r) is topologically
attracting from the side that is accumulated by T, and T "spirals" towards a>(T);
see Figure 1. This is exactly what happens in the setting of the classical Poincaré-
Bendixson theorem for flows. The usual proof of the Poincaré-Bendixson theorem
is not easily adapted to this setting, due to the absence of flow-boxes. In fact, we

emphasize that the line T could accumulate (or self-accumulate) in a very intricate

way. For instance, V could be a branch of the unstable manifold of a hyperbolic saddle

point with a homoclinic intersection (see Figure 1). Even when F is emebedded, its
cu-limit could be a wada lakes continuum (a continuum with three complementary
components and which is equal to the boundary of each component).

Figure 1. A rotational attractor, and a complicated translation line.

Let us give a simple application. We say that a fixed point p of a

homeomorphism / is a saddle if f is locally conjugate to (x, y) (Aix, À2}')
at p, where 0 < Ai < 1 < A2 (which is for instance the case whenever p is a fixed

point of diffeomorphism / such that Df(p) has eigenvalues A1, A2). An unstable
branch of p is a connected component of Wu(p) \ \p\.
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Corollary 2. IfF is an unstable branch ofa saddlefixedpoint of the homeomorphism

/: S2 -> §2, then either the co-limit ofT contains a fixed point or its filled co-limit is

a rotational attractor disjoint from F.

A similar statement can be made for stable branches, using f~x instead of /.
1.2. Invariant disks and prime ends. Fix an orientation-preserving homeomorphism

/:S2 -> S2. If U is an open invariant topological disk, the Carathéodory
prime ends compactification provides a way of regularizing the boundary of U by

embedding U in a closed unit disk, so that its boundary becomes a circle. This "ideal"
circle is called the circle of prime ends of U. The map / induces a homeomorphism f
of the circle of prime ends, and understanding its relation with the dynamics of / in
the real boundary of U is a subtle problem that has been studied in a number of works

(for example, [1,3,4,9,11,16,20]). The rotation number of f is called the prime ends

rotation number of / in U, denoted p(f, U), and one particularly relevant question
is to what extent the Poincaré theory for circle homeomorphisms extends to this new
invariant: what can one say about the dynamics of / in 3 U, knowing its rotation
number?

Unlike the classical case of the circle, it is possible to have p(f U) 0 but no
hxed point in 3 U (see Figure 2); however, the known examples where no such point
exist are very particular. There are several known restrictions that such a map must

satisfy (1,4,11]; for instance it cannot be area-preserving. In fact, it is known that any
such example must have a very specific dynamics in the prime ends compactifications:
namely, in a neighborhood of the circle of prime ends, it consists of the basins of a

finite number of attracting and repelling prime ends (4,14]. Although this provides
relevant information about the dynamics of f\u near the 3 U, it gives no information
about the dynamics outside of U (in particular, in 3 U). From our main results we

are able to provide a description of the dynamics in an actual neighborhood of 3 U
in S2:

To give a precise statement, let us say that a translation strip T is the image of a

continuous injective map fix [0, 1] —» S2 such that <p~l f<p(x, y) (x + 1, y).
One may define the limit sets of translation strips and the notion of "spiraling"
similarly to how it is done with translation lines (see Sections 2.3 and 2.6 for details).

Theorem 3. Suppose that U C S2 is an open invariant topological disk such that
its prime ends rotation number is 0 but there are no fixed points in dU. Then 3 U is

contained in the union of the basins ofa finite family ofpairwise disjoint rotational
attractors and repellors (at least one of each), disjoint from U and with boundary
in 3 U.

More precisely, there exists k > 0 such that the fixed point index of f in U
is —k and finite families A, ,R, T of rotational attractors, rotational repellors, and
translation strips respectively) such that elements ofA FfRFT are pairwise disjoint
and:

• Each element of A U IR is disjoint from U and has boundary in 3 U ;
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• Both A and IR are nonempty and have at most k + 1 elements;

• 7 is nonempty and has at least k + 1 and at most 2k 4- 2 elements;

• Each element of 7 spirals from an element of R to an element of A, and every
element of A U .R appears in this way;

• The interiors of elements of 7 cover the set 9 U \ U A'e.Au.« ^ •

Moreover, the boundaries ofelements ofAölR are the principal sets offixed prime
ends ofU.

See Figure 2 for two examples of possible situations where k 1.

The proof relies in a more local version of this result, which states that if an

invariant open topological disk has a fixed prime end p, then either there is a fixed

point in the impression of p, or the principal set of p is the boundary of a rotational
attractor or repellor disjoint from U (see Section 2.5 for precise definitions and

Theorem 5.2 for a statement of the result).

The condition of having a rotation number 0 in Theorem 3 may be replaced by
the equivalent condition of the disk having a fixed point index different from 1 (see

Corollary 2.8). Moreover, in that case the index is nonpositive.
One of the implications of the previous result is that the dynamics in 9 U is

topologically semi-conjugate to a very simple dynamics in an invariant graph: one

may collapse the attractors/repellors to points (see Figure 11 ahead) and the translation

strips to translation lines, obtaining a finite simple graph where every point flows

along an edge from a repellor to an attractor. This is detailed in Section 5.5.

As a simple application, noting that the basin of an attractor or repellor cannot
intersect the chain recurrent set, Theorem 3 implies the following:

Theorem 4. Ifan in variant continuum in the chain recurrent set of f has no fixed
points, then its complement has exactly two invariant connected components, each

with fixed point index 1.

Figure 2. Two disks as described in Theorem 3.
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This improves the main result of [14], which states that a minimal continuum
on the sphere has exactly two invariant complementary components. Note that in
the particular case that / has no periodic points, one may conclude that every non-
invariant connected component in the complement of the continuum is wandering.

We also note that Theorem 3 can be used to describe the dynamics of
arbitrary invariant continua without fixed points by studying the invariant connected

components of its complement. To avoid more technical statements we will not
further pursue this matter.

1.3. Fixed and periodic points on circloids. If /: A T1 x R ->• A is a homeo-

morphism isotopic to the identity and K c A is an essential invariant continuum, one

may define the rotation number of a point z e K associated to a lift f: A ~ M2 -* A

of / as p(/,z) lim„_>oû(/"(z) — z)\/n, where z jr_1(z), if the limit exists.
The rotation interval of K is

P<J, K) [ inf p(/,z), sup p(/,z)].
Z&K zeK

A natural question, inspired by the Poincaré-Birkhoff theorem, is whether 0 being
in the rotation interval implies that / has a fixed point. This is generally not the

case, as simple examples with K equal to a closed annulus show. However, the

answer is positive if one adds some dynamical restriction (like area-preservation,
or a curve intersection property); see for instance [7]. A different approach is to
add a topological restriction on K that guarantees a positive answer; tor instance

Barge and Gillette showed that the result holds if A is a cofrontier (i.e. it separates
the annulus into exactly two components and K is the common boundary of these

components) [3]. This was generalized in [12] to the case where A is a circloid,
which means that K is annular and essential (i.e. it is essential in A and A \ K has

exactly two components) and no proper subcontinuum of K shares the same property.
Unlike cofrontiers, circloids may have nonempty interior. For example, the boundary
of the grey disk on the left side of Figure 2, together with the disks A\, A2, R i, R2 is

a circloid with nonempty interior (we may remove a point form the grey disk so that
the example lies in the annulus); however the boundary of the disk on the right side

(joined with the three disks A\, R\, R2) is not a circloid.
Circloids are particularly relevant because any annular continuum contains a

circloid (and an invariant one if the given continuum is invariant). An arbitrary
essential continuum needs not contain a circloid, but it always contains the boundary
of a circloid. Hence it is relevant to know whether, given an invariant circloid K which
contains 0 in its rotation interval, there exists a fixed point in the boundary of K. The

answer is generally no; for instance this is what happens on the left side of Figure 2).
However, using our main results we can show that the only counterexamples are

essentially as the aforementioned one:
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Theorem 5. Suppose that K C A is an f -invariant circloid with a fixed point. If
there is no fixed point in 3 K, then there exists k > 1 such that there are k rotational
attractors and k rotational repellors in K which are pairwise disjoint and whose

basins cover a neighborhood of K. Moreover, f \ k is topological^ semiconjugate to

a Morse-Smale dynamics in the circle in thefollowing way: there exists a monotone1

map h:S2 —> S2 and a homeomorphism F: S2 —S2 such that hf Fh and h(K)
is an F-invariant circle consisting ofk attracting and k repelling in S2) fixedpoints.

In fact, as in Theorem 3, one may show that K is contained in the union of the
rotational attractors and repellors together with 2k translation strips, each of which

spirals from a repel lor to an attractor.

It is known that if the rotation set of a circloid has more than one element, then
the boundary of the circloid is indecomposable [10] (see also [31). In contrast, the

previous theorem implies the following:

Corollary 6. If a circloid with indecomposable boundary has a fixed point in its

interior, then its boundary has a fixed point.

We recall that for a rational p/q in the rotation interval of / is realized by
a periodic point if there exists x e M 2 such that fq{x) x + (p, 0) (which
implies that x projects to a period q periodic point with rotation number p/q). As a

consequence of the previous result and the main result of [ 10] we obtain the following:

Theorem 7. If the rotation interval of an invariant circloid is nonsingular, then

every rational element of the rotation interval is realized by a periodic point in the

boundary of the circloid.

The result above is used in [18] in the proof that an attracting circloid with a

nontrivial rotation interval has positive topological entropy.

2. Notation and preliminaries

Throughout this section /: S2 S2 will always denote an orientation-preserving
homeomorphism of the sphere.

2.1. Disks, continua. An open (closed) topological disk is a set homeomorphic to
the open unit disk D (closed unit disk ID)) of R2. Any connected and simply connected

open set in a surface is an open topological disk. A continuum is a compact connected

set. A cellular continuum is a continuum K for which there exists a sequence of
closed topological disks (A)ieN such that D,+t C int D, and K In
the sphere S2 or the plane M2, cellular continua are precisely the non-separating
continua. A continuum K is said to be decomposable if it can be written as the union
of two proper nonempty subcontinua.

1 i.e. prcimages of points are connected; in fact in this case they are non-separating continua.
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2.2. Lines, rays, limit sets. An (oriented) line on a surface S is the image F of a

continuous injective map y: M -> S, with the orientation induced by y. Its m-limit
set is û)(T) PlreM y([L °°))> its «-limit set is a(T) f\eR y((~°°< /)• ü F
is disjoint from tw(r), we say that F is positively embedded. Similarly, if P is disjoint
from a(F) we say that F is negatively embedded. An embedded line is one which
is both positively and negatively embedded (which is equivalent to saying that the

map y is an embedding).
A ray is a simple arc F which is the image of a continuous injective map

y: [0, oo) —> S. The point y(0) is called the initial point T. The m-limit set

of T is the set co(r) f\>o P((F °°))- Note ^at <^(0 is always a continuum if S

is compact (or if F is bounded). If F is disjoint from oj(F), then T is an embedded

ray, and in this case one has m(r) F \ T.

If T is an embedded ray in S2, we may define its filled m-limit as the set ô>(P)

which is the complement of the connected component of S2 \ o>(r) containing P.

Note that 5(T) is a cellular continuum and &>(r) 3m(r). If T is an embedded

line in S2, we may define the filled m-limit and a-limit sets 55(r) and ä(r) similarly.

2.3. Translation lines, rays and strips. We say that a ray P is a translation ray
for / if /(r) c T and there are no fixed points in P. Note that this implies that

a>0 /"(F) 0, so every x G T satisfies co(x, f) C cw(r). Similarly, a negative
translation ray is a translation ray for f~l. Note that <w(r) is /-invariant, and so

is &5(r) if T is embedded.

A translation line is an oriented line P such that f(F) F and there are no fixed

points in T. This is equivalent to saying that the dynamics induced by / on T is

topologically conjugate to a translation x h-> x + 1 of R (using in P the topology
induced by the immersion of R). A fundamental domain of the translation line P is a

simple subarc ToofT joining a point x e F to f(x). This implies that /( r0) n T0

{/(x)}and fk(F0) n T0 0 if Ä: > 1. Moreover, F {JkeZ fk(ro)-
Given a reference point x G P, there are two rays and P/ with initial

point x such that P+ is a positive translation ray, T" is a negative translation ray,
P T~ U r/ and F~ Pi r+ {xo}- We define the cu-limit set of the translation
line T as cu(r) m(T/), and the a-limit set as a(T) co(F~). This does not

depend of the choice of x. If T is disjoint from rn(r) (or a(T)), we may also define
the filled co-limit (or a-limit) set â>(r) 5(r+) (or a(T) &>(r-)).

The translation line F is embedded if and only if it is disjoint from coi V) U a(r).
Note however that translation lines need not be embedded in general; for instance
consider a branch of the stable manifold of a hyperbolic saddle exhibiting a transverse

homoclinic intersection.
A parametrized strip in a surface S is a continuous injective mapr/;: Mx[0. I] S.

Two parametrized strips (j). <// are equivalent if (p / ° h tor some homeomorphism

/i:lx[0,l]->lx [0,1] preserving topological ends. An (oriented) strip T is an

equivalence class of parametrized strips. We abuse the notation and use T to refer to
both a strip and its image (i.e. the image of any parametrization of T).
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We say that T is an embedded strip if some parametrization of T is a topological
embedding. The a> and a limits of T are defined as

o(T) H <P{[t, oo) x [0, 1]), a{T) P| </>((-oo, r]) x [0, 1]).
*eM (sM

Note that if T is embedded in S2, then it is disjoint from a(T) and w{T), and we

may define the filled a> and a limit sets co(T) and a(T) as it was done with lines.

Finally, we say that T is a (closed) translation strip for f if T is /-invariant
and admits a parametrization f such that f<p(x, y) (x + \, y) for all

(x,y) R x [0, 1],

2.4. Fixed point index. Let us recall some facts about the fixed point index. See [5]
for more details. If V C R2 is an open set, h: V —> M2 is an orientation-preserving
homeomorphism, and D C V is aclosed topological disk such that 3 DnFix(h) 0,
the fixed point index i {h, D) is the degree of the map

(h-ld)\aD:dD -^R2\{0},

where 3 D is positively oriented. Note that if D' C F is another closed topological
disk whose boundary is homotopic to 3 D in V \ Fix(/z), then i(h, D) i(h, D').
If p is an isolated fixed point of h, its index i(f p) is defined as iff, D) where D is

a sufficiently small disk containing p.
If D c S2 isaclosed topological disk such thati) DnFix(/) 0and/(D)UD ^

S2, we may define its fixed point index by choosing a point oo 6 S2 \ (D U /(D)) and

letting i (/, D) be the fixed point index of D c S2 \ {oo} for f\ d : D —> S2 \ {oo} ~ R2.

If V C S2 is an open set such that Fix( /j p) is compact, the fixed point index

i(/, V) is defined as follows: let £>i,..., be pairwise disjoint closed topological
disks contained in V such that 9 £>,• n Fix(/) 0, /(D,) U Di S2, and

Fix(./>) C Uf=i Di. Then

k

i(fv) j^i(fDi)-
i=i

This is independent of the choice of the disks £), If K C S2 is a compact set which
has some neighborhood V such that Fix(/|/f) Fix(/|k), we may define its fixed

point index as i (/, K) i f V), which is independent of the choice of V.
The fixed point index is additive in the following sense: if kj, V2 are open subsets

of §2 and Fix(/|v,) n Fix(/|^2) 0, then i(f V, U V2) i(f, Vf) + i(f V2). A
similar property holds for pairwise disjoint compact invariant sets.

We will use frequently the Lefschetz-Hopf theorem, which tells us that i (f S2) 2

(recalling that / preserves orientation).
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2.5. Prime ends. We briefly introduce some notions about prime ends. For further
details, see LU, 13]. Let S be a surface and U C S an relatively compact open
topological disk. A cross-cut of U is an arc y C U joining two different points
of 3 U (but not including them). In this case U \ y consists of exactly two connected

components, called cross-sections of U. A chain of U is a sequence Xi (y( )ieN of
cross-cuts of U such that y,+i separates y, from yi+2 in U for all i G N. We say that

a cross-cut p divides the chain 'C if there exists io such that the cross-cuts {y, : i > i0}
all belong to the same connected component of U \ p. A chain t' (y'OysN divides
the chain ' if yj divides L for each j G N. The two chains L" and 'C are said to
be equivalent if L? divides L" and vice-versa. This is an equivalence relation in the

family of all chains of U.
We say that the chain "C is a prime chain if whenever a chain L?' divides if one also

has that L divides *'. The family of all prime chains of U modulo equivalence is

denoted by bg(I/) and its elements are called prime ends of U. The set U U bg(t/) is

denoted by eg (t/) and one may topologize it so that cg(L') becomes homeomorphic
to the closed unit disk D, by means of the topology generated by open subsets of U
together with subsets of eg (£/) consisting of all prime chains divided by a given
cross-cut (modulo equivalence). The space cg((7) ~ D is called the prime ends

compactification of U and bg((/) ~ S is the circle ofprime ends.

Every prime end p e bg(£/) can be represented by some chain (y,)ieN such

that diam(yi) —> 0 as / oo. A principal point of p, is a point x e S for which
there exists such a representative chain with the property that y; —>• x in S (i.e. y,-

is contained in any neighborhood of x if i is large enough). The set of all principal
points is the principal set of p, denoted by n (p).

The impression of p the set â (p) of all points of S which are accumulated by some

sequence of points (jq jieN of U such that v,; -» p in cg(f/) as i -> oo. If (y, ),-6N is

any prime chain representing p and D,- denotes the component of U \ y, containing y7
for all j > i, then one has d?(p) fj/eN ^j 9 3L- The following result will be

useful (see [ 13]):

Proposition 2.1. IfF C U is a ray whose co-limit incg(U) consists ofa single prime
end p <e bg(f/ then

n(p) C ©(H C J(p),

where 0)( F) denotes the co-limit in S of F. Moreover, there exists one such ray for
which n(p) co( F), and another one for which J (p) oj(F In particular, the

principal set and the impression of every prime end are subcontinua ofdU.
Note that this means that the principal set is the smallest possible co-limit of such

a ray T, and the impression is the largest one.
Let us also state a result for future reference:

Lemma 2.2. IfU C S2 is an open topological disk E is a ray in U which accumulates
in every prime end in cg((/), then it accumulates in every point of 3 U in S2,

i.e. d(U) C ©(E).
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Proof. It suffices to note that such a ray S must intersect every cross-cut of U
whose diameter is small enough, and as one may easily verify every point of 3 U is

accumulated by cross-cuts of arbitrarily small diameter.

2.6. Spiraling lines and strips. We say that a ray T C S2 .spirals towards a continuum

K if K has more than one point, V is disjoint from K and the following property
holds: if U is the connected component of S2 \ K containing T, identifying its prime
ends compactification eg(£/) with D by a homeomorphism c/>:cg(t/) —> D, and

letting t i—> (r(t), 6{t)) represent a parametrization of F in polar coordinates, one
has

(9(f) -> oo or — oo, and r(t) —> 1

as t —> oo. In other words, T spirals towards the circle of prime ends in U.
When this happens, T is necessarily an embedded line, and it is easy to show that

&>(F) 3 U. Indeed, the definition implies that T intersects every cross-cut of U,
from which one deduces that T accumulates in every point of 3 U (for instance using
the fact that accessible points are dense in 3 U; see [13]).

As a consequence, if F spirals towards K, then F also spirals towards co(r), hence

saying that the ray T disjoint from K spirals towards a continuum K is equivalent to

saying that T spirals towards its own ru-limit and <w(r) C K C <3(r).
We remark that two rays converging towards a single point are topologically

indistinguishable (i.e. there is a global homeomorphism mapping the closure of one
to the closure of the other), which is why the definition of spiraling is only meaningful
if the ru-limit of the ray has more than one point.

Finally, similar definitions can be made for strips. We say that the strip T
disjoint from the continuum K spirals towards K if K has more than one

point and the following property holds: letting U be the connected component
of S2 \ K containing T, given a parametrization [0, oo) x [0, 1] D, (x,y) H*

(r(x, y), 6(x, y)) of T in polar coordinates, one has

9(x, y) -> oo or — oo, and r{x, y) -> 0 as x -* oo

uniformly on y. When this happens, one may verify that the cu-limit and filled cu-limit
of T coincide with corresponding limits of its two boundary lines (and of any other
line properly embedded in T).

The following simple lemmas will be useful in our proofs.

Lemma 2.3. If F is an embedded ray that spirals towards «(F) and V is a ray
disjoint from T U m{V) such that 0)(V') fl o> Fj f 0, then w(T) C <w(F')- If 'n
addition F' is embedded, then &5(F) c (w(F').

Proof. Iff/ S2\55(r), then T' is aray in U which has accumulation points in 3 U.
Considering T and T' as subsets of cg(t/), which we identify with D, we have that T'
has accumulation points in S1. Using the facts that F spirals towards S1 3 D
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and is disjoint from T', it is easy to verify that F' must accumulate in all of S1. We

conclude from Lemma 2.2 that, as a subset of S2, the ray T' accumulates in all of
3 U rn(r).

If T' is embedded, then since S2 \ <w(F') C S2 \ m(r) and U is a connected

component of the latter set containing T', the connected component of S2 \ 0)(V)
containing f is a subset of U. Thus S2 \ 5(r') c S2 \ 5(r) and our claim
follows.

Lemma 2.4. If Y is an embedded ray that spirals towards o>( T then:

(1) Every compact arc intersecting both S2 \ 5(r) and 5>(P) also intersects T;

(2) Ifan embedded ray T' is disjoint from T, then one of the following holds:

(a) P c <S(0 or F c 5(r');
(b) 5(T) is disjointfrom a>(T');

(c) 5(F) c 5(r') andm(Y) C m(T').

Proof. The first item is straightforward and is left to the reader. To prove (2), note
first that if T' intersects c5(F) then (1) implies F' c 5(r), so (a) holds. Thus

we may assume that T' is disjoint from 5(F), and therefore F' is disjoint from
T U &>(r). If cu(r') intersects cu(r), we conclude from Lemma 2.3 that (c) holds.

On the other hand if cu(F') is disjoint from ru(r), then 35(F) and 3 5(T') are two
disjoint connected sets, and this easily implies that either 3 5(r') C int5(T), or
35(r) c int5(r'), or 5(r) Fl 5(r') 0. The latter case means that (b) holds,
while the first case is not possible since it implies that F' intersects 5 (T) contradicting
our assumption. In the remaining case, 35(F) C int5(r'), noting that Y is disjoint
from 3 co(r') ufor') (due to our assumption that <w(r) H «(F') 0) we have that

ru35(r) rUm(F) is a continuum intersecting 5 (T/) and disjoint from 3 5(r');
therefore T U 35(r) C 5(r') and (a) holds.

2.7. Prime ends dynamics. If h: S -> S is an orientation-preserving homeo-

morphism and U is an open /y-invariant topological disk, then h\u extends to a

homeomorphism h: cs(U) —> eg(U). Identifying Cg(f7) with D =DuS1,we may
define the prime ends rotation number of h in U as

p(h,U) p(hy)eS\
which is the usual Poincaré rotation number of an orientation-preserving homeomorphism

of the circle.

If K C S2 is an /-invariant cellular continuum, then we define its (exterior)
prime ends rotation number as pe{h, K) p(h. §2 \ K), noting that S2 \ K is an

open topological disk.

Lemma 2.5. IfU C S2 is an open invariant topological disk and p(f U) / 0, then

the fixed point index of f in U is 1.
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Proof. We can embed the prime ends compactification of U into the closed unit
disk of M2. Since the map induced on the circle of prime ends by f\u has nonzero
rotation number, it has no fixed points, which implies that its degree is 1. From this

it follows easily that i(fU) \.

In general a fixed prime end does not necessarily correspond to a fixed point in
the boundary of U. However, the following result due to Cartwright and Littlewood
says that this can only happen if the prime end is attracting or repelling (in the whole
disk eg (£/)).

Lemma 2.6 ([4]). IfU is an f -invariant open topological disk and p bg(/) is a

fixed prime end whose impression does not contain a fixed point off, then p is either
attracting or repelling in cg(U).

As a consequence of this result one has the following (see 1141 for a direct proof):

Theorem 2.7. Suppose that U is an open invariant topological disk, p(f U)
and f has no fixed point in 3 U. Then i(f U) —k < 0, and the dynamics induced

by f on the circle ofprime ends has exactly 2k +2 fixed points, k + 1 of which are
attracting and k + 1 of which are repelling. Moreover each attracting prime end

is globally attracting in the prime ends compactification ofU, and similarly for the

repelling fixed poin ts.

We remark that the claim about the index of U is not explicitly stated in the

aforementioned articles, but it follows from Lemma 2.9 below.

From the previous theorem, and Lemma 2.5 we have:

Corollary 2.8. If U is an open invariant topological disk without fixed points in its

boundary, then the fixed point index in U is at most 1. Moreover, the index is 1 ifand

only ifplf U) ± 0.

2.8. Attractor-repellor graphs and index. We first state a simple result which will
often be used:

Lemma 2.9. Suppose U is an open invariant topological disk whose boundary
consists of a finite family F offixed points of f, each of which is either attracting
or repelling in U, together with a finite family F of (pairwise disjoint) translation
lines, each connecting two elements of F. Assume further that 3 U 3S2 \U.
Then i (fi U) 1 —m/2 < 0, where m is the number of elements of F (which is

necessarily even).

Proof. Note that a point of F may be the cu-limit (or «-limit) of more than two
elements of F (as in the disk on the right side in Figure 11 ahead). However, due to

the fact that 3 U is locally connected, one may identify eg (U) with the closed unit
disk D in such a way that there exists a continuous surjection fi: D -* U such that

every point of U has a unique preimage except perhaps the elements of F (see for
instance [17, Proposition 2.5]). Thus W 's a finite union of m



Vol. 94(2019) A Poincaré-Bcndixson theorem for translation lines 153

open intervals in S1, where m denotes the number of elements of 37. Moreover, it
is easy to see that F S1 \ W has empty interior (or see [2]), so it must consist
of finitely many points which are the endpoints of the intervals in IV, and F has

exactly m elements as well.

If / denotes the map induced on D by f\u, one easily verifies that each element
of F is either an attractor or a repellor in ID), and there are no other fixed points
in S1 (since each component of W is a translation interval). Note that m > 2 and

it must be even (since every attractor is followed by a repellor in the cyclic order
ofS1). A computation shows that/(/, U) z(/,D) 1 — m/2 < 0: one may glue
two copies of ID> by identifying their boundary circles to obtain a homeomorphism
of the sphere, where each fixed point of identified circles is either atracting or
repelling. Noting that attracting and repelling fixed points have index 1, one sees that
2/ (/, B) + m 2.

By a planar graph G in S2 we mean a finite set of vertices V{G) (points) and

edges E(G) (lines) each connecting two vertices, such that the edges are pairwise
disjoint and G V U E.

Let us say that a planar graph G C S2 is an attractor-repellor graph for a

homeomorphism F: S2 -» S2 if every vertex of G is an attracting or repelling
fixed point of F, every edge is a translation line joining a repellor to an attractor, and

in addition every vertex has even degree. Note that in particular a neighborhood of G

is contained in the union of the basins of the attracting and repelling fixed points.

Lemma 2.10. Ifevery vertex ofa planar graph G has even degree, then every edge

belongs to two differentfaces and in particular everyface D satisfies D 3 S2 \ D.

Proof. It suffices to prove the claim for each connected component of G, so we may
assume that G is connected. For a connected graph, by a well known theorem of
Euler, every edge has even degree if and only if there is an Eulerian cycle (a loop
in the graph going through all edges without repetition). The existence of such a

cycle implies that for any edge E, the graph G \ E is connected (recalling that we
do not include vertices in the edges). Thus the face of G \ E containing E is an

open topological disk D, and E separates D into two connected components D\, D2
which are two different faces of G containing E. This proves the lemma.

Lemma 2.11. Everyface ofan attractor-repellor graph G has nonpositivefixedpoint
index. More specifically, every face has index 2 — e/2 — c where e is the number of
edges of the face (necessarily even) and c is the number ofconnected components of
its boundary.

Proof. We first note that from the fact that every vertex has even degree, the previous
Lemma implies that if D is a face of G then 3D — dS2 \ D.

For simply connected faces (i.e. with c 1), Lemma 2.9 implies that the fixed

point index is 1 — e/2 and the claim follows. The case of multiple connected
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components is shown by induction: Assume the face D has n + 1 boundary
components, and let G\ be the connected component of G containing one of the

boundary components of D and G„ G \G\. Then G\ and Gn are also attractor-
repellor graphs. The face D\ of G\ containing D has index 1 — e\/2, where e\ is the

number of edges of G\, which means that S2\Di has index 2—(1 —e\/2) — 1 +e\/2.
On the other hand by induction, the face Dn of Gn containing D has index 2—en /2—n.
One easily verifies that D Dn n D\ Dn \ (S2 \ D\), which implies that the

index of D is 2 — en/2 — n — (1 + ei/2) 2 — e/2 — (n + 1), proving the induction
step.

2.9. Brouwer theory. We recall some classical results from Brouwer theory.

Lemma 2.12. Suppose h: R2 —» R2 is an orientation-preserving homeomorphism
withoutfixed points. IfK Cl2 is a compact connected set such that f(K) D K 0
then fn(K) Fl K & for all n f 0.

The previous lemma is a simple consequence of the next result about periodic
disk chains. A set is called free for a homeomorphism if it is disjoint from its

image by the homeomorphism. A.free disk chain for an orientation-preserving planar
homeomorphism h: M2 —> M2 is a family Do, Di,..., Dn-\ of pairwise disjoint
free topological disks such that for 0 < i < n — 1 there exists m, > 0 with

fmi(Di) fl flj + Kmod«) ^ 0-

Lemma 2.13 ([7]). Ifan orientation-preserving planar homeomorphism has a free
disk chain, then it has a fixed point.

As a well-known consequence of the previous result we have:

Corollary 2.14. If an orientation-preserving homeomorphism h : 1R2 —> M2 has a

nonwandering point, then it has a fixed point. In particular, if h has no fixed points,
then for any z M2 one has ||/zn(z)|| —> oo as n —> ±oo.

Note that in particular if h has a compact invariant set, then it has a nonwandering
point and therefore by the previous corollary it has a fixed point.

The next lemma says that if V is a translation line for an orientation-preserving
plane homeomorphism without fixed points and D is a free disk, every fundamental
domain of T between two points of F fl I) must also intersect D.

Lemma 2.15. Let h : R2 —> R2 he an orientation-preserving homeomorphism
without fixed points, and F a translation line for h. Let D he a closed disk such that

h(D) fl D 0. Let a he any compact subarc of F joining two points of D and only
intersecting D at its endpoints. Then h (a) Fl a 0.

Proof. Let x,y D be the endpoints of a, with y after x in the linear order of T.

Suppose for a contradiction that h (a) Fl a f 0, and let a0 be the fundamental domain
between x and h(x). Note that a0 c a. Let k be the unique integer such that

h~k(y) ao \ ix}- Since T is a translation line, our choice of x implies that k > 0,
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and since h(x) / y (because D is disjoint from its own image), we have k > 1.

Let a be the compact subarc of a0 joining h~k(y) to h(x) (allowing a \h(x)\ in
the case that h~k (y) h(x)). Note that a is compact, disjoint from its own image,
and also disjoint from D since it does not contain i or v. We may thus choose

neighborhoods V0 of a and V\ of D which are disjoint open topological disks such

that h(Vi) fl Vi 0 for i e {0, 1} (see Figure 3). Moreover, hk(V0) H V, / 0 and

h(V\) n V(> / 0. This means that V0, V\ is a periodic disk chain (of period 2), which

by Lemma 2.13 is not possible since h has no fixed points. This contradiction proves
the lemma.

From the previous lemma one can deduce the following (see [8, Proposition 3.6]):

Corollary 2.16. Let h: R2 -> R2 be an orientation-preserving homeomorphism
without fixed points. Then every translation line for h is embedded.

2.10. Continua, attractors. A continuum is a compact connected set. A cellular
continuum is a proper subcontinuum of §2 which is non-separating in S2, which is

equivalent to saying that its complement is an open topological disk. As an alternative

(but equivalent) definition, a cellular continuum is the intersection of a decreasing
chain of closed topological disks D();sn such that /l, + i C int /), for all i 6 N. By
a theorem of Cartwright and Littlewood, every /'-invariant cellular continuum has a

fixed point |4].

If K c S2 is an /-invariant cellular continuum, S2 \ K is an invariant open
topological disk. We define the external prime ends rotation number of K as

pe(f, K) ~p(f §2 \ K) (the chain of sign is to preserve the notion that a positive
rotation number corresponds to a counter-clockwise rotation). To avoid confusion,
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note that the change of sign is not the antipodal map, but the inversion in the lie

group T1 ; so if p( f S2 \ K) r + Z e J1 then pe(/, K) —r + Z.
A trapping region is an open set V such that f(V) C V. The maximal invariant

set A in a trapping region V is called an attractor. Note that A HneN /"(F), and zl

is necessarily compact. Note that given any neighborhood V() of the attractor A, we

can always find a trapping region for A contained in F0. The basin of the attractor A

is the set (JneN /~"(F), which is the set of all x e S2 such that co(x, f) c A.

A repellor R is an attractor for /-1, and the basin of a repellor is defined as the
basin of R as an attractor of f~x, i.e. the set of all rtS2 such that a(x, /) c R.

If AT c S2 is a cellular continuum, we say that A" is a rotational attractor (or
repellor) if it is an attractor (or repellor) and its external prime ends rotation number

pe(f K) is nonzero.
The following lemma is useful to find attractors; see [19, Lemma 2.9]:

Lemma 2.17. If K is a compact invariant set such that K f\>o fk (U) for some

open neighborhood LI of K, then K is an attractor of f.
The following simple facts will be useful in our proofs:

Lemma 2.18. Let Y be a translation line. If co(Y) n/i/ & for some repellor R,

then m/i/0. Similarly ifa (V) D A f Id for some attractor A, then T n A / 0.

Proof. It suffices to prove the first claim. Suppose for a contradiction that there is a

repellor R such that&>(F) (~l R / 0 and T Fl R 0. Given a fundamental domain To

of T, since T0 is compact and disjoint from R we may choose a trapping region
V C S2 for R (i.e. f~\V) C F and R fj„>0 such that V n T0 0.

But since cu(T) intersects R, there exists n > 0 such that /"(r0) fl V f 0. This

implies that 0^ T0n f~n(V) C T0 n V, contradicting our choice of V.

3. Preliminary lemmas

In this section we prove some general lemmas which are helpful in the proof of
the main theorems. We fix, as before, an orientation-preserving homeomorphism

/: S2 S2.

3.1. 4-Branches lemma. If the cu-limit (or a-limit) set of a translation line T

consists of a single (fixed) point p, we say that T is a stable (or unstable) branch

of p. If Ti,..., Tyk are disjoint stable branches of a fixed point p, there is a well-
defined cyclic order defined by choosing a positively oriented simple loop a around p
intersecting all branches and considering considering the first intersection of each

branch with a (starting from p). This is independent of the choice of a.

Lemma 3.1 (4-branches lemma). Suppose that Y [, are two stable branches of a

fixed point p, F", F" are two unstable branches of p, thefour branches are pairwise
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disjoint and they alternate in the cyclic order around p (in the sense that no two stable

or unstable branches are consecutive). Then any open topological disk intersecting
all four branches intersects its own image by f.
Corollary 3.2. Under the hypothesis of the previous lemma, any point accumulated

by allfour branches is fixed by f.
ProofofLemma 3.1. Suppose that D is a closed topological disk intersecting all
four branches. If D contains p then the result holds trivially, so we may assume that

p <f D. Let yj and y) be the sub-arcs of Fi, V2 from p to the first intersection of
the corresponding branch with D, and define y", y" similarly. Let a c D be an arc

joining the endpoint of yj to the endpoint of y) and otherwise contained in the interior
of D. Because of the alternating cyclic order of the branches, the loop a formed by

yj U a U y| U {p} separates y" from y" (see Figure 4. This implies that f~l(D)
intersects the two connected components of S2 \ a, and so it intersects a. On the

other hand /_1(D) is disjoint from yj and y| (otherwise one of these arcs would
intersect D other than at its endpoint). Thus f~1(D) intersects o, and it follows
that f(D) intersects D.

3.2. Stable and unstable branches of disks. Suppose that U is an open invariant
topological disk of nonpositive index and f\au has no fixed points. We know from

Corollary 2.8 that p(f U) 0 and therefore by Theorem 2.7 the extension of f\xj
to cg(C7) has a Morse-Smale dynamics in a neighborhood of bg(t/), with exactly k
attractors and k repellors alternating in the cyclic order of bg (U) (where 1 — k is the

index of U).
We say that T is an unstable branch of U (for the map /) if T is a translation

line for / contained in U and <w(T) n U 0. If / denotes the cu-limit in eg(U)
of T, then I consists of a single attracting prime end. Indeed, / is a connected
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subset of bg((7) and cannot contain a point in the basin of a repelling fixed prime
end. This is because any point of U close enough to a point of bg(G) in the

basin of a repelling fixed prime end has a pre-orbit contained in an arbitrarily small

neighborhood of bg(t/), whereas any point of T has a pre-orbit in some fundamental
domain T0 C U of T. Thus T has a unique cu-limit point in eg(U) which is some

attracting prime end. Thus an unstable branch of U can be seen as a stable branch of
some attracting fixed prime end of U. See Figure 5.

Figure 5. A stable and unstable branch of U.

A stable branch V of U is an unstable branch of U for the map /_1, or
equivalently F is a translation line for / in U with its a-limit set disjoint form U.
This implies that the a-limit of T in eg (U) consists of a single repelling fixed prime
end, and we may regard F as an unstable branch for this prime end.

We have therefore:

Proposition 3.3. If F is a stable/unstable branch of an open invariant topological
disk U ofnonpositive index without fixed points in d U, then V is an unstable/stable
branch ofsome repelling/attracting fixed prime end ofU.

3.3. A simplification for invariant disks. In the setting of Theorem 2.7, it will be

useful to simplify the dynamics in U by modifying our map in a compact subset of U

(thus leaving the boundary dynamics unmodified). This will help us, for instance,
to apply Lemma 3.1 to topological disks. For this, we first introduce some "model"

maps.
Fix an orientation-preserving homeomorphism Go:® —> 10 with exactly two

fixed points, both in S1, one of which is attracting and the other repelling, and such

that every other point is in the basin of both the attractor and the repellor. For instance,
Go could be chosen to be a hyperbolic map of the Poincaré disk. Clearly any pair of
homeomorphisms of this type are topologically conjugate.

For each k > 1, we fix a "model" orientation-preserving homeomorphism
G^: B —B with the following properties:
• Gfc |gi has exactly 2k + 2 fixed points, uq, a^ and r0,..., r^, where each a,- is

an attractor in B and r, is a repellor in B (and they alternate in the cyclic ordering
of S1);
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• Gk |d has exactly one fixed point p with exactly k + 1 stable branches, Tq,
and k + 1 unstable branches F(",..., T£, and all these branches are pairwise
disjoint;

• a>(Tf) a(rp {p},a(r?) {r,}, and (ofTf) up

• every connected component S of B \ (Uf=o '7 u T) is contained in the basins

of both the attractor and the repellor that lie in the boundary of S.

Such a map can be chosen as the time-1 map of a flow. See Figure 6.

We have the following:

Lemma 3.4, Let g: D —» B he an orientation-preserving homeomorphism such

that gjflD has exactly 2k fixed points, k of which are attracting in B> and k repelling
in O, where k > 1. Then there exists a homeomorphism g'\ B —> B which coincides
with g in a neighborhood ofd B such that g' is topologically conjugate to Gk-\-

Proof. We only sketch the proof since it uses routine arguments. First note that it
suffices to find a homeomorphism which is topologically conjugate to g and which
coincides with G^-i in a neighborhood of 3 B. Indeed, if h\ B -» B is a

homeomorphism and hgh~l coincides with G^-i in a neighborhood of 3 B, then

g' — h~lGjc-ih has the required properties.
The general idea of the proof is to first make a conjugation of g to obtain a

map which coincides with G^-1 in a neighborhood E of S1 \ Fix(g|si) bounded

by translation lines which connect repellors to attractors cyclically (as the greyed out
area in Figure 8). The region E is not yet a neighborhood of 3 B as it misses the fixed

points, but then we make additional conjugations supported in a neighborhood of each

fixed point if g|si to make g coincide with G^-i (while keeping g equal to G^-i
in E). With this argument we obtain a (orientation-preserving) homeomorphism
/î:B B such that hgh~x coincides with G^-i in a neighborhood of 3B as

required.
We provide the details for the case k 1 to avoid cumbersome notation, but

the general case follows the same steps. Let p+ and p~ denote the attracting and

repelling fixed points in S1. One may choose a neighborhood V~ of p~ in B
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contained in the basin of p~, bounded by a simple arc y~ (which joins two different

points of S1 \ {p~,p+}) and such that the closure of is contained in V~.
Note that S1 \ {p+, p~} consists of two lines L\ and L2 contained in the intersection
of the basins of p+ and p~. Let Xi be the endpoint of y~ in Li, and let /, be

the compact subarc of L,- joining x,- to g(xi). Since Ii is in the basins of p±, so

is some neighborhood W of Ii (in B). One may choose an arc a,- contained in

s(V~) \ V~ except for its endpoints yi e y_ and g(y,) g(y~). Choosing a,
close enough to Ii we may guarantee that, if a,- denotes the subarc of y_ from x-t

to yi, the compact region R, bounded by Ii, ai, a~ and h(a^) is entirely contained

in W. The set D,- IJnez Sn(^i) thus a strip bounded by the translation line
X; U«ez 8n(ai) an^ ^ Li See Figure 7. We may assume that oq is disjoint
from a2, and by our construction this implies Si n S2 0.

The previous construction may be repeated identically with the map Go, obtaining
sets R\, R'2, D[ and D'2 analogous to the previous ones. This allows us to
define a map ho'- D\ U D2 ->• D[ U D'2 which conjugates g|o,ud2 t0 Go\d\ud'2-
Indeed, one first defines A0: 9 Rt -> 9 R\ such that h0 maps ar, /, and a; to the

corresponding arcs a'f, // and a[ arbitrarily (but with the adequate orientation),
and ho\g(pr) G0ho\af- By Schönflies' theorem, /?0 can be extended to a

homeomorphism Ri R'r Then we may extend ho to D/, for any ne Z, using
the equation h G,"/?og~". The initial choice of ho guarantees that this is again a

homeomorphism from £>, to D(' (and since D\ and D2 are disjoint, may define h0

in £>1 U D2 in the obvious way.

The map ho can be extended arbitrarily to a homeomorphism from D to D
fixing p+ and p~. Thus, the map g0 hogh^1 is topologically conjugate to g
and coincides with Go in D[ U D2. From now on we will assume that g G0

in D1 U D2, since we can replace g with go-

Figure 7. Construction in the proof of Lemma 3.4.
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We now claim that given any neighborhood W- of p in D there exists a

homeomorphism hi: D -> D and a neighborhood W'_ c W- of p~ such that h\ is

the identity in Di U D2 U(D\ W-), andhighf1 coincides with Go in D\ U Z)2U W'_.

In other words, we may find a homeomorphism which is topologically conjugate to g
and which coincides with g outside a small neighborhood of p- and with G0 inside

a smaller neighborhood of p- and in D\ U D2).
To prove our claim, note that if U D \ (D1 UD2U {p~, p+}), then U is a

closed topological disk such that g G0 in 3 G and its boundary has exactly two
fixed points /?_,/?+, one attracting and one repelling in U. As before we may choose

a neighborhood I0 C W- of p- in U, contained in the basin of /?_, such that its

boundary in U is an arc y0 joining a point of Si to a point of S2 and the closure

of g_1(Vo) is contained in ko- If 6' denotes the closure of g(F0) \ V0, then S is

bounded by y0, g(yo), a subarc a[ of Si and a subarc a2 of S2. We may then

choose an arc y'0 in U joining the two endpoints of yo such that Go(yo) is disjoint
from y'Q, and define h \ on 3 S so that it is the identity on oj U o'2, h \ (y0) y('( and

h\\g(Yo) 11 y0 - By Schonflies'theorem we may extend/z 1 to a homeomorphism
mapping S to the region S' in U bounded by y^, Go(yo), ct[ and a'2. Finally we

may extend h\ to If by the equation h 1 G(j~"h 1 g" for n > 0. Note that the map
thus defined maps V{) to a subset K0' of U which is a neighborhood of p- in G0 and

whose boundary in U is the arc y'0 (minus its endpoints). We also define hi as the

identity in D\ U D2, so we have h\ defined in F0 U 3i U l)2 If Vo was chosen small

enough, we have that the closures of g(V0) and Go(F0') are contained in IV and we

may then extend hi to D in such a way that hi is the identity outside W- (this can be

done using Schonflies' theorem again).
Note that gi /zig/zj"1 coincides with G0 in V0 U Di U D2, which is a

neighborhood of p- in D. Thus we may choose a neighborhood W'_ c W- of p-
in D such that g\ G0 in W'_. Moreover, gi g outside W-, so the required
properties hold.

An analogous argument can be done with g 1 using the attracting fixed point p+
instead of p-, to obtain a homeomorphism h2: D —>• D such that g2 h2gih2l
coincides with gi outside a small neighborhood of p+ and with G0 in a smaller

neighborhood of p+ and in D1 U D2. In particular, g2 coincides with G0 in a

neighborhood of S1 in D and is topologically conjugate to g as we wanted.

The following is a direct consequence of the previous lemma and Theorem 2.7:

Lemma 3.5. Suppose that U is an open invariant topological disk of index —k < 0

and /|a u has no fixed points. Then there exists a map f which coincides with f
outside a compact subset ofU, such that the map induced by f on the prime ends

compactification eg ((/) is topologically conjugate to 6/. In particular, f is locally
conjugate to G/ in a neighborhood of the circle ofprime ends, and there exist 2k

pairwise disjoint translation lines To, Ti,..., r2£-i embedded in U such that:

• The co-limit of 1 j in eg (II) is an attracting prime end the a-limit is a repelling
prime end, and they are consecutive in the cyclic ordering ofbg (U);
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• For each i, F, and T, +1 have the same co-limit in bg (U ifi is even and the same
OL-limit ifi is odd where the suhindices are modulo 2k );

* Uf=o ' ' ' bounds an open topological disk Uo C U such that each component
of F \ U0 is foliated hy translation lines (joining the same two prime ends);

Figure 8. The situation described in Lemma 3.5.

Remark 3.6. Note from Lemma 3.5 that every attracting/repelling fixed prime end

has some stable/unstable branch (in fact, the lines F, in Lemma 3.5 are at the same

time stable and unstable branches of U).

The following corollary of Lemma 3.1 will be useful in the proof of Theorem 1

(but it will turn out to be vacuously true as a consequence of the theorem).

Corollary 3.7. If U is an f -invariant open topological disk without fixed points in
its boundary, with non-positive index, and with the property that oj(F") 3 U for
every unstable branch F" ofU and a(rä) 3 U for every stable branch rs ofU,
then the index of U is 0.

Proof. Suppose on the contrary that the index of U is negative. Then by Lemma 3.5,

modifying / in a compact subset of U we may assume that the map induced by /
in the prime ends compactification eg((/) is topologically conjugate to G£ for some
k > 1. In particular there is a fixed point p in U with at least two stable and two
unstable branches which converge in cg(C) different repelling/attracting prime ends

alternating in the cyclic ordering. These branches are also stable/unstable branches

of U, and so by our hypothesis they accumulate in all of 3 U, which has no fixed

points. This contradicts Corollary 3.2.
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Finally, we state a special case of Lemma 3.4 for the case where there are no fixed

points.

Lemma 3.8. Suppose that g: D —» D is an orientation-preserving homeomorphism
with exactly two fixed points p+ and p~, both in d D, such that p+ is attracting
and p~ is repelling. Then g is topologically conjugate to Go.

Proof. As in the proof of Lemma 3.4, we may choose disjoint neighborhoods V±
of contained in the basin of p± and bounded by simple arcs y± joining two

points of 3D, such that ^±1(F±) C V±.
Let K± — fjnez \ Note that K± is a decreasing intersection of

compact connected sets, hence compact and connected, and K± n d D {pTj. We

claim that K~ {/?+}. Indeed, suppose on the contrary that K~ {p+}\ then K~
cannot be contained in V+ (since K is invariant and V+ is in the basin of p+),
and since it is compact and invariant K~ is not contained in [J/lcZ g"{V+). This

implies that K~ intersects K+, and since K+ and K~ are both compact and invariant
and K± n 3D {/?T}, it follows that K K+ fl K~ is compact, invariant and

contained in D. Since g has no fixed points in B>, this contradicts Corollary 2.14.
Thus K~ {/>+}. This implies IJnez Sn(V~) O \ {p+}, so that the region D
bounded by y~ and g(y~) satisfies UneZ gn(D) D \ {p~, p+}. Using D as a

fundamental domain, one may construct a topological conjugation between g and G0

as in the end of the proof of Lemma 3.4.

3.4. Rotational attractor lemma. Most of the difficulty in the proof of Theorem 1

is related to the possibility of the tu-limit of a translation line T to be topologically
complicated. However, when T is embedded, the very particular case where the

co-limit is a circle is easier, since one may essentially replicate the proof used for
flows.

Lemma 3.9 (Rotational attractor lemma). Let T be a positively embedded translation
line such that o>(V) has more than one point and pe(f, 55(F)) is nonzero. Then rô F

is a rotational attractor. Similarly if Y is negatively embedded and pe(f,ct{Y)) is

nonzero, then a( Y) is a rotational repellor.

Proof. Suppose T is a positively embedded translation line, and let U S2 \5(T).
The map f\u extends to a homeomorphism f of the closed disk cg(U) zz O such

that the rotation number of f\be(U) is nonzero. This implies that / has some fixed

point pq e U. Let H {(jc, _y) R2 : y < 0}, and let n\ H -* bg(U) \ {p0} —
O \ {(0,0)} be the universal covering map such that T:(x,y) i-> (x + \,y) is

a generator of the group of deck transformations. Let S C H be a lift of T,
and choose a lift F: H H of f such that F(E) c S, so S is a translation
line for H. Since F has no fixed points in the line 9 H M x {0}, the first
coordinate (F(x, 0) — (x,0))i is different from 0 for all x G M. We may assume
without loss of generality that (F(x, 0) — (x, 0)) > 0 for all x e M. Since the
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latter map is periodic (because F commutes with T) there exists c > 0 such that

(F(x, 0) — (x, 0))i > c for all x e M. Moreover, if e > 0 is chosen small enough,
we have {F(z) — z)\ > cforallz Rx[—e,0]. Let?y:M -> H be a parametrization
of E, and denote E, ij([t, oo)). Note that for all 5 > 0 there exists t such that

SjCKx [—5,0). Let to be such that Ef0 c M x (—e, 0), and let rr T,to \ FÇEto),
so E<0 Un>o It follows that S is a closed subset of H. In fact, for

each M > 0 there exists m such that Fk(a) c [M, oo) x (—e, 0) for all k > m, and

this implies that C [M, oo) x {—, 0) iff is large enough.

Fix M > 0 such that a n [M, oo) x (—e, 0) 0, and let t\ > to be such that

Ef, C [M, oo) x (—e, 0). Let (a, b0) be the initial point of E?l, and let zo (a,b)
be the last intersection point of E(() with the segment {a x (—e, 0). Let f2 be such

that z0 is the initial point of Sf9. Note that z0 ^ o, so SÏ2 is disjoint from a. Denote

by a the line segment {a} x (b, 0). Then a U U [a, oo) x {0} is a simple arc

bounding an open simply connected set D in H (which is the connected component
of int H \ (a U Et2) bounded to the left). Since F(a) e (a + c,oo) x (—e,0),
it follows that F(a) n a 0. Moreover, F (a) intersects D (because one of its

endpoints is contained in {a + c, oo) x {0}). See Figure 9.

Note that a is disjoint from D. Indeed, d D c | M, oo)x(—e, 0) and D is bounded

to the left, while a c (—oo, M) x (—e, 0). We now claim that F(D) (T 3 D 0.

If F(D) n 3D ^ 0 then F(D) intersects either Y,t2 or a. Suppose hrst that

F(D) fltt/0. Note that F(D) is disjoint from (—oo,a] x {0}, so F(D) does

not contain a entirely. Thus 3 F(D) fla / 0. But F(a) IT a 0, so F(St2)
intersects a. This is impossible since F{S?2) C S?2 C Efo which is disjoint
from a by construction. Now assume that F(D) IT E,2 ^ 0. This implies that

D IT F_1(E?2) 0. Since D is disjoint from S?2, it follows that D intersects
F~l (Sf2) \ Y,t2. The latter set is contained in Eto \ S<2, which is an arc containing a.
Since a D D 0, it follows that 3 D intersects Sf0 \ But since a is disjoint
from Ef(), this is impossible.

(a, 0) (a + c,0)

>F(a)

R x {—e}

Figure 9. Proof of Lemma 3.9
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Thus, F(D) fl3 D 0, and since F(D) intersects D, we conclude that F(D) c D.
To finish the proof, let us show that for each 8 > 0 there exists n0 such that Fn(D) C
M x (—(5,0] whenever n > n0. To show this, we may assume that 8 < e. Note
that Fk(D) c [a + kc, oo) x (—e, 0). Let t$ > 0 be such that Sf3 c M x (—8, 0).
Let «o be such that £to \ St3 is disjoint from [a + noc, oo) x (—e, 0). If n > n0
and (x,y) Fn(D), then —e < y < 0 and x > a + n0c. The line segment joining
(x, —e) to (x, y) must have a first intersection point (x, y') with 3 D, and clearly
(x,yr) S(2. Moreover, since £*0 \ S,, is disjoint from [a + iioc,oo) x (—e,0)
and x > a + noc, it follows that (x,yr) e Sf3. Thus (x,y') G M x (—3,0], and

since y' > y we also have (x, y) G M x (S, 0], as claimed.

Finally, note that W n(D) U 5(T) is a neighborhood of o>(T), and from the

previous paragraph we have that /(IT) C W and for each 8 > 0 there is n0 such that

/"(IT) is contained in the 5-neighborhood of 5(T) whenever n > n0. This implies
that <y(T) n„>0 fn(W), hence we conclude from Lemma 2.17 that ft5(F) is an

attractor, as we wanted.

The next fact is essentially contained in the proof of Lemma 3.9 (combining it
with Lemma 2.2).

Lemma 3.10. If F is a translation ray in the has in of a rotational attractor A and
T fi A 0 then ®(F) A and F spirals towards A.

4. A Poincaré-Bendixson theorem for translation lines

This section is devoted to the proof of Theorem 1. For the remainder of this section

/: S2 -> S2 will denote a homeomorphism homotopic to the identity. We recall that

if a translation line is disjoint from a rotational attractor A but contained in its basin,
then it spirals towards A (see Lemma 3.10).

4.1. A result in the fixed point free case in the annulus. Denote by A T1 x M

the open annulus and by jt: M2 —> A its universal covering map suchthat T:(x, y)
(x + 1, y) generates its group of deck transformations.

Lemma 4.1. Let S he an arc that projects injectively into A, and let B C M2 be

a closed topological disk also projecting injectively into A (so B D Tl B 0 and
S Fl T'Yj 0/or all i / 0). IfT, intersects both T' B and TJ B for i, j G Z, then S
also intersects Tk B whenever i < k < j.

Proof. We may assume that S is compact, replacing it by a sufficiently large subarc.

Suppose for a contradiction that there exists k with i < k < j such that S is disjoint
from Tk B. By translating everything with T~k we may assume that i < 0 < j
and S is disjoint from B.
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Let y be the subarc of E joining the last intersection of E with (J/<0 Tl B to the

first intersection of E with (J/>0 Tl B. Let x0 e Ta B and x\ e Tb B be the two
endpoints of y, so a < 0 and h > 0. Then K — y U Tb B is a compact connected

set, and using the fact that y f) Tl B — 0 for a < I < b and the hypotheses on E
and B one easily verifies that TK fl K 0. By Lemma 2.12 applied to h — T, it
follows that V' K n K 0 for all i ± 0. Since Th~a K n K ± 0 and b - a > 2, we
have the required contradiction.

Lemma 4.2. Leth: A —> A be a homeomorphism isotopic to the identity withoutfixed
points and, T C A a translation line such that V is compact. Then cr(T) fl o>(V) 0.

Proof. Let S be a lift of T to R2, and let H:R2 R2 be a lift of h such that
H (Y,) E, so S is a translation line of H. Note that, since h is isotopic to the identity,
TH HT. Fix x0 e £ and let S0 be the compact subarc of E from xo to H(xo).
Let £+ U„>o Hn(EQ) and S" U„<0 H"(E0), so E E~ U S0 U £+.

Suppose that o>(r) D «(F) is nonempty. Then it is a compact invariant set, so

it contains some bi-recurrent point z (i.e. both the forward and backwards orbit of z
accumulate in z). We may assume z f T0 := nr(S0) (replacing it by some iteration
by h if necessary). Let B e A be a small enough closed topological disk containing z
in its interior, disjoint from F0 and such that h(B) Fl B 0. Let fB Cl2 be a lift
of B, and z the element of n~l (z) in J8. Let

/±(S) {( eZ:E±n 7"'S ^ 0}.

Since tx(IB) intersects both ft)(T) and «(F), the two sets / + (.S) and 7~(i8) are

nonempty. Note that Lemma 4.1 applied to E± implies that /:I:( S) is an interval of
integers (i.e. if a, h e / + (S) then c I+{£) whenever a < c < b, and similarly
for /_(i8)).

We claim that I 1

(-IB) Fl l~ (.S) 0. Suppose on the contrary that there exists i
such that both S+ and IT intersect fB. Let a be the subarc of S joining the last

point of E~ H T' !B to the first point of E+ fl T' fB (in the linear order of £). Then,

a intersects T1 S only at its endpoints. Since Tl IB is disjoint from H(T' 33) and H
has no fixed points, Lemma 2.15 implies that H (a) Fl a 0. But this contradicts
the fact that S0 C a. Thus I~(33) Fl I + (33) 0.

In addition, note that Lemma 4.1 applied to E implies that / + (i8)U I~(33) is also

an interval of integers. Choose i± / ±(FS) and assume without loss of generality
that H < i+ (the case i~ > i+ is analogous). Then, from the previous facts we
deduce that k := max /_(<S) is finite, Hie I + (33), and I~{33) C (—oo,k]
while / + C [k + 1, oo).

If B0 c B is a smaller closed topological disk containing z in its interior and .So

is the lift of B0 in S, then again /±(So) is nonempty and / + (So) U /_(So) is an

interval of integers. Moreover, it is clear that/± (So) C /±(S). From these facts we
deduce that k e /_(S0) and k + le / + (S0). In other words, E~~ intersects TfcS0
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and X+ intersects T +1 ,S0. Since .So can be chosen arbitrarily small, we deduce

that Tkz e XT and Tk+1z G X+.
On the other hand, recall that z is a bi-recurrent point, so we can choose n such that

hn(z) G B, and we may choose n to be positive or negative as we wish. Note that z
could belong to jt(X+) or jr(X~), but it is always the case that either z ^ tt(X_)
or z ^ ?r(X+).

Assume first that z ^ jr(IT), so Tkz £ X~. Since Tkz is accumulated by XT,
this means that Tkz G a(X). Since 7/(X+) C X+, by choosing n positive we may
guarantee that //"(X+) C X+. Note that Hn(z) e TPS for some j, and since

0and H has no fixed points, Lemma 2.12 implies that j y^O. Moreover,
since Hn(a{X)) a(X) and HnÇL+) C X+, we deduce that Tk+Jz G a(X) and

jk+\+j~ e 2+ xhiS implies that k + j G I~(S) and k + j + 1 G / + (J3). But
this is a contradiction since j ^ 0, so either k + j > k or k + j + 1 < k (whereas

8) C (—oo,k] and 7 + (i8) C [k + l,oo)).
Similarly, if one assumes thatz ^7r(X+), one has Tk+lz ecoÇE) while Tkz G X-.

Using the fact that cu(X) and X- are forward invariant by h~l, one may repeat
the argument from the previous paragraph using n < 0, which leads to a similar
contradiction. This completes the proof.

4.2. A special case.

Lemma 4.3. Suppose that T is a translation line, ûj(T) has no fixed points, and every
invariant connected component of S2 \ (»(T) has nonnegative index. Then 55(r) is

a rotational attractor.

Proof. By Corollary 2.8 we know that every invariant connected component of
S2 \ o>(r) has index at most 1. Note that there are finitely many such components
containing fixed points, because Fix(/) D (S2\cu(T)) is compact. Moreover, since the

sum of their indices is 2, two of these components are invariant disks of index 1, and

all other components are invariant disks of index 0. Thus using Lemma 3.4 on each

component of index 0 we may modify / outside a neighborhood of «(T), to obtain a

map h having exactly two fixed points, both of index 1. We denote the two fixed points
by oo and —oo. Thus there are no fixed points in the annulus A S2 \ {—oo, oo}.
Let U0o and U-œ be the connected components of S2 \&j(L) containing oo and —oo,

respectively. Since the prime ends rotation numbers of / (hence of g) in
and U-oo are nonzero (by Lemma 2.5), by an additional modification of h (which we
still denote h) outside a neighborhood of co(T) we may assume that there exist two
invariant closed topological disks D+ C Uoo and D~' C U-oo such that ±oo G

(see [6, Proposition 5.11).

Note that the line T may fail to be /z-invariant, but since / coincides with h in
a neighborhood of co( T), there exists z G T such that the ray Vf starting at z and

following T positively is a positive translation ray for h and is disjoint from D + U D~.
Thus T' U«>o h~n(T^) is a translation line for h with the same tu-limit as T.
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Furthermore, since the annulus S2 \ (D+ U D~) is invariant, F C§2 \ (D+ U D~)
and in particular f c A := S2 \ {oo, —oo}. If we prove that ô>(r") is a rotational
attractor for h, it follows immediately that <3(r) is a rotational attractor and we are
done.

By Lemma 4.2 applied to the annulus A ~ A we know that cu(r') is disjoint
from ci;(r'). This implies that T" is an embedded line. Moreover, û5(r') and ä(T')
are two disjoint cellular continua in S2, and so each must contain a fixed point.
Since the only fixed points are ±00, one of these sets contains 00 and the other
contains —00. Since each of these points has index 1, we deduce that the invariant
disk S2 \ <3(r') has index 1. Thus by Corollary 2.8 p(h,w) is nonzero, and by
Lemma 3.9 we deduce that ù>(F') a rotational attractor, as we wanted.

4.3. The embedded case.

Lemma 4.4. The conclusion of Theorem I holds if F is an embedded line.

Proof Assume for a contradiction that ru(T) has no fixed points and 55(T) is

not a rotational attractor. By Lemma 3.9, we have pe(f S(T)) 0. Letting
U0 S2 \ w(F), we thus have p(f U0) 0. By Corollary 2.8, it follows that Uq

has nonpositive index. Note that 3 f/0 35(r) cu(T).
There exists an open topological disk U which is maximal with respect to the

following properties:

• t/o C C;

• U is invariant and has nonpositive index;

• dU C 3t/0.

The existence of U follows from a standard Zorn's lemma argument: if if is a

chain (with respect to inclusion) of invariant disks satisfying the three conditions
above, then V' UksC ^'s an °Pen invariant topological disk containing U0 and

3 V C 3 t/(). Since there are no fixed points in 3 U0, the set of fixed points in V'
is compact and therefore it is contained in some V if. Since V has nonpositive
index, it follows that V' has nonpositive index. This guarantees that we can apply
Zorn's lemma.

Let K 3 U. We claim that if T5 is any stable branch of U, then a(P) K.
First let us show that pe(f, ô?(T'ç)) 0. Indeed, if this is not the case then Lemma 3.9

implies that 5(TV) is a rotational repellor. However, a(Fs) c K C 3f/o «(F),
which implies that the co-limit of the translation line F intersects the repellor «(T5).
By Lemma 2.18 this means that rnä(rv) 7^ 0, contradicting the fact that F is disjoint
from K. This shows that pe(f,a{Fs)) 0. But then U' S2 \ ä(Ts) is an open
invariant topological disk of nonpositive index (due to Corollary 2.8) containing U,
and from the maximality of U we deduce that U' t/,soa(r,s) 3 U' dU — K
as claimed.
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Now we claim that any unstable branch Tu of U also satisfies ô)(F") K. The

proof is similar, except that to conclude pe(f m(T")) 0 we use the fact that there

exists an stable branch Fv of U such that 5(r,v) K (by the previous paragraph
and Remark 3.6) which implies that 5>(TU) cannot be a rotational attractor (using
Lemma 2.18 as in the previous paragraph).

From the previous claims and Corollary 3.7 we conclude that the index of U is 0.

Finally, we will show that if V is any invariant connected component of S2 \ K of
nonpositive index then V has the property that the co-limit of every unstable branch
and the a-limit of every stable branch of V are equal to 3 V. Note that this will also

imply that V has index 0.

Let T" be an unstable branch of V. We claim that U C â5(F"). Note that since U
is disjoint from co(ru) 3 5(r") C 3 V C K, it follows that either U C 55(r")
or U cS2\ <3(r"). Assume for a contradiction that U C S2 \ a>{Yu) and suppose
first that pdf 5(r")) ^ 0. Then Lemma 3.9 implies that <3(r") c 3 V is a

rotational attractor. But since U contains stable branch which accumulates in all

of K D 3ô)(r"), the a-limit of such a stable branch intersects the attractor œ(Tu)
which is not possible by Lemma 2.18. Now suppose that pe(f 5(T")) 0. Then
U' S2 \ <3(T") is an open invariant topological disk strictly containing U, and it
has nonpositive index due to Corollary 2.8. This contradicts the maximality of U,
completing the proof that U C <3(r").

We deduce that K 3 U c <3(F") as well, which implies that 3 V C co(T").
Since T" C V, this means that 3 V co(Fu). An analogous argument shows that
3 V a(T v) for any stable branch F,s of V. Thus every unstable branch of V has an

co-limit equal to 3 V and similarly every stable branch has a-limit 3 V, as we wanted

to show.

Summarizing, we have found an invariant disk U of index 0, and a continuum
K 3 U such that every invariant component of S2 \ K has index 0 or 1 (since the

components of positive index must have index 1 by Corollary 2.8). This implies that
there are exactly two components of index 1. Furthermore, we have shown that every
stable or unstable branch of U accumulates in all of K. In particular, an unstable
branch £' of U is an embedded translation line such that o>(r') 9 U K, which
has no fixed points. Clearly «(T') S2 \ U is not a rotational attractor (otherwise U
would have index 1 which contradicts Lemma 4.3. This completes the proof of the
lemma.

4.4. The general case. To complete the proof of Theorem 1, we need to consider the

case where T is not necessarily embedded. Assume for a contradiction that a>(r) is

not a rotational attractor and it contains no fixed points. In view of Lemma 4.3, we may
also assume that there exists some invariant connected component U0 of S2 \ ft>(F)
of negative index.

First note that by Lemma 3.5 we may choose an embedded translation line T' c Uq

such that, in the prime ends compactification of U0, the m-limit of F' is an attracting
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fixed prime end and its cr-limit is a repelling fixed prime end. Note that a(r') c
3 U0 C <w(r), which contains no fixed points of /. By Lemma 4.4 applied to T'
(using instead of /) we deduce that K := 5?(r") is a rotational repellor.

By Lemma 2.18, T intersects K. Clearly &>(r) is not contained in K,
because cu(r') is disjoint from K and contained in 3 Co C cu(r). Thus, for

any z G T, the subarc T+ starting at z and moving forward through F contains

points in K and points outside of K. Fix z' G F' and let F}7 be the ray starting at z'
and following F' negatively. Then F (7 spirals towards K, so by Lemma 2.4 we have

that T+ intersects T^7. Since is forward invariant, it follows that T+ intersects
the fundamental domain T,', defined between z' and /_1(z') in T^7- This holds
for all z G T, so we conclude that m(V) intersects F,j. But this is a contradiction,
since Fq c Uq which is disjoint from o>(V). This completes the proof of the

theorem.

5. Prime ends and fixed points: proof of Theorem 3

5.1. Spiraling lines and principal sets. We begin with a general topological result.
As before, /: S2—> §2 will always denote an orientation-preserving homeomorphism.

Lemma 5.1. If U is an open topological disk and T C U is an embedded line
which converges towards a prime end p in cg((7) and spirals towards cj(F) in §2.

Then ù>(T) coincides with the principal set ofp.

Proof. Let (/' §2\5(T), sothat3 U' &>(r). We first remark that U c []', since
otherwise T would not spiral toward <y( F) (recall the definition from Section 2.6).

By Proposition 2.1, the principal set n(p) is contained in «(T). Moreover, by
the same proposition we may assume there exists a ray T' in U converging towards p

in eg (£/) such that a)(F') FI(p) C n>(r). To complete the proof it suffices to show
that cu(r) cuCF').

We identify cg((7/) with D in a way that the origin does not belong to U (which
is possible since U c U'). Let A D \ {(0,0)} and let A denote its universal

covering, which we may identify with {(x,y) e M2 : y < 0}, with the translation
77 (x, y) i-> (x + 1, y) generating the group of deck transformations. Let F be a lift
of T to A, and fix yo < 0 such that f intersects the line L0 {(x, yo) : x G M}. Note
that if y: [0, oo) —> A is a parametrization of f, denoting by pr,- the projection onto
the t-th coordinate we have pr2(y(0) ^ 0 and pr^yjt)) -> cxd or —oo as t -» oo

(because F spirals towards S1 in D).
Thus there exists a last intersection of F with L0, i.e. there exists to such that

the image r((l of y|p0)Oo) intersects L0 only at its initial point y (to). Consider the

region D bounded by r?() and the half-line {(x,yo) : x > pr^yCto))}, which is a

topological disk whose projection pr, /)) is bounded from below (see Figure 10).
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The set D has the property that for every z e A with y0 < PL (z) < 0 there exists ;'o

such that T'z e D for all i > i'o.

We claim that T" also spirals towards S1 in B. Recall that P was chosen as

a ray in U such that 5(r') Fl(p) C û>(T) in S2. This implies that in B, the

«-limit of T' is contained in the boundary circle. In particular, removing an initial
segment of F' if necessary, we may assume that any lift F' is disjoint from the

projection of L0 to B (which is a circle). Let F' be a lift of T' to A, so by our
assumption pr2(r') c (yo- 0). We may choose the lift so that F' intersects D
(replacing r' with T1 F') for a large enough i In addition, we may assume that F'
is disjoint from since T' V intersects FU) for at most one value of i (as both sets

project into the simply connected subset U of B \ {(0,0)}).
Thus T" intersects D but not 3 D, which implies that F' c D. Moreover, if y' is

a parametrization of T', one has pr2(y'(?)) > 0 as i oc. This, together with the

fact that pr1(y(?)) -> oo as t -> oo, easily implies that prj(y'(0) oo. Thus, T'
spirals towards S1 in B, which means that, seen in S2, the ray T' spirals towards 3 U',
and in particular cu(F/) 3{/' ct>(F)aswe wanted to show.

5.2. Attractors and repellors of fixed prime ends. The previous lemma and Theorem

1 lead to the following:

Theorem 5.2. Suppose U is an f -invariant open topological disk and p is a fixed
prime end. If the impression of p has no fixed points, then:

(1) p is an attracting (or repelling) prime end;

(2) The principal set of p is the boundary of a rotational attractor (or repellor) K
disjoint from U ;

(3) Every translation ray (or negative translation ray) F in U converging towards p

in eg (17) spirals towards K in §2, and there exist such rays;

(4) The interior of K has a unique invariant connected component, offixed point
index 1.

Proof. By Lemma 2.6 we have that p is either attracting or repelling in eg (/;), so (1

holds. Assume that p is attracting (the repelling case is similar). Then there exists
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an embedded translation ray T in U whose m-limit in eg (p) is p. By Theorem 1,

either o>(Y) contains a fixed point or a>(r) is a rotational attractor. Since <w(T) is

contained in the impression of p (see Section 2.5), by our assumption it has no fixed

points, so K 0>(r) must be a rotational attractor and T spirals towards K. Since

cu(D C dU and T c U, the definition of filled tu-limit implies that K is disjoint
from U. From the previous lemma, we have that o>(Y) d K is the principal set

of p, proving (2). Since the same argument applies to any translation ray T c U
converging towards p in cg(C7), item (3) follows.

For the last item, first note that since A' is a rotational attractor, p(f S 2 \ K) fit)
and so by Lemma 2.5 the fixed point index of the disk S2 \ K is 1. Since 9 K c 3 U
has no fixed points, the sum of the indices of all invariant connected components of
S2 \ 3 K must be equal to 2. One of these components is 82 \ K, which has index 1,

and all other components are components of the interior of K. Therefore the sum of
the indices of invariant connected components of intf K must be equal to 1. FTence

to prove (4) it suffices to show that all invariant components of int(AT) have index

equal to 1.

Let U' be any invariant connected component of the interior of K, and assume
for a contraction that its fixed point index is not 1. Since 3 U' has no fixed points, its

index is at most 1 by Corollary 2.8, so it must be nonpositive. By Lemma 2.5 one
has p( f U') 0, and by Theorem 2.7 there exists at least one attracting and one

repelling fixed prime end of U'. By the previous items applied to U', there is at least

one rotational attractor A and a rotational repellor R, both disjoint from (/', such

that 9 A and 9 R are the principal sets of a fixed attracting and repelling prime end

of U', respectively. Moreover, as in (2) there exists a translation ray F in U spiraling
towards K To( L), and there exists a translation ray F' in U' spiraling towards

A m(T'). Since 9 R c 9 K &>(F), by Lemma 2.18 we have that V intersects
the repellor R. Since V is disjoint from 3 R c 3 U, it follows that T c R, thus
3 K co(F) c R. But then «(T') c 3 U' C 3 K C R, so again by Lemma 2.18

we have conclude that T' fl A ^ 0. This is a contradiction, since F' c U' which is

disjoint from R. This contradiction shows that the fixed point index of U' is 1 for

every invariant connected component of the interior of K, as we wanted.

We note that item (4) only uses the fact that AT is a rotational attractor or repellor
and has no fixed points. Thus we have the following:

Corollary 5.3. If K is a rotational attractor or repellor of f such that 3 K has no

fixed points, then the interior of K has a unique invariant connected component,
which has fixed point index 1.

5.3. The rotational attractors and repellors of a disk. Given an invariant open
topological disk U without fixed points in its boundary and with a vanishing prime end

rotation number (or equivalently, with nonpositive fixed point index), Theorem 5.2

allows us to define the families A>([/) and IRlU) of all rotational attractors and
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repellors (respectively) associated to fixed prime ends. Every element of A(U)
(or R(U)) is disjoint from U and its boundary is the principal set of an attracting
(repelling) prime end, so by Theorem 2.7 if the fixed point index in U is —k, there are

at most k + 1 elements in each set. We remark that by Theorem 5.2(4), the interior
of each element of A(U) U R(U) has exactly one invariant connected component,
of index 1.

Lemma 5.4. The elements ofA(U) U R(U) arepairwise disjoint cellular continua.

Proof. Let K and K' be two different elements of A(U) U fR(U Since they are

principal sets of different prime ends, by Theorem 5.2 there exist disjoint embedded

rays F and F' such that F spirals towards <w(F) K and F' spirals towards

m(r') K' (and each is either a positive or a negative translation ray). Assume for
a contradiction that K Fl K' 0. Since U is disjoint form K and K', it cannot be the

case that Tcff' or T' C K, so only the last item of Lemma 2.4(2) may hold. Thus

K C K', but interchanging F and T' we also conclude K' C K, a contradiction.

Lemma 5.5. Suppose that U and U' are disjoint invariant open topological disks

without fixed points in their boundaries and with vanishing prime ends rotation
number. If the basin of A e A(U) intersects U' then either U' C A, or A £ A(U').
A similar statement holds replacing A by R.

Proof. Let F be a translation ray in U spiraling towards A, which implies that

5(r) A. Assume U' is not contained in A. Then U' must be disjoint from A,
since otherwise it would contain an arc joining a point of S2 \ A to a point of A,
and therefore U' would intersect F (hence U) by Lemma 2.18. Since U' intersects
the basin of A and so does U, we may find a point x e U' arbitrarily close to
dU' in the basin of A. By Theorem 2.7, such x may be chosen in the basin of
some attracting prime end p of U', and therefore to some translation ray F' in U'
converging towards p in c g ({/') By Theorem 5.2, the set A' m(T') is an element

of A(U') and T' spirals towards A'. Note that since x belongs to the basin of A (but
not to A), one has 9 A Fl 3 A' ^ 0. Thus m(r) intersects co(T'), and noting that T'
is disjoint from «(T) U T we conclude from Lemma 2.4 that co(r) C cu(r') and

A &>(r) C S(r') A'.
We claim that U cannot be contained in A'. Indeed, by Theorem 5.2(4), the interior

of any element of A(U) or A(U') has a unique invariant connected component.
Since A Fl U 0, the unique invariant connected component V of the interior
of A is disjoint from U. Moreover, one has V c A' and d V c d A', since
A c A' and d A m(F) C u>(r') 3 A'. These facts imply that V is also

a connected component of the interior of A', and therefore it must be the unique
invariant connected component of the interior of A'. But if U C A1, then U is

contained in some invariant connected component of the interior of A', which means
that U C V, contradicting the fact that V is disjoint from U. Thus U (f A'.
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Hence, as in the beginning of the proof, Lemma 2.18 implies that U is disjoint
from A', and we may repeat the previous argument interchanging U with U' and A
with A' to conlcude that A' C A. Hence A A' e A{U').

5.4. Proof of Theorem 3. Suppose that U c S2 is an/-invariant open topological
disk such that p(f U) 0 but there are no fixed points in 3 U. As explained in
Section 5.3, there exist families A A(U) and R R(U) of rotational attractors
and repellors disjoint from U, each having at least one and at most k + 1 elements

(where —k is the fixed point index of (7), and elements of <4 U R are pairwise disjoint.
Moreover the boundary of any such element is the principal set of a fixed prime end

of (7.

Let L(i,U\,... ,Um be the connected components of S2 \ 3 U which have

nonpositive index and contain a fixed point, where (70 (7. Note that the nonpositive
index implies that each (7/ has vanishing prime ends rotation number, so we also have

families A(Ui), R(Ui) of the corresponding rotational attractors and repellors of (7,-.

Since 3 (/, C 3 U, we see that U intersects the basin of every element of -A(77, so

Lemma 5.5 implies that for any such element A, either (7 c A or A G A A(U).
However U C A is not possible, since it would imply that U is an invariant connected

component of the interior of A with nonpositive index, contradicting Theorem 5.2(4).
Thus we have A(Ui) C A, and a similar argument shows R(Ui) C R.

Let —ki < 0 denote the fixed point index of (/,-. By Lemma 3.5, for each i there

exists an open topological disk U[ C (7,- whose boundary in eg ((/,) is as in Figure 8,

i.e. it consists of 2ki + 2 fixed prime ends, A, 4- 1 repelling and A, + 1 attracting,
together with 2ki + 2 embedded translation lines, each connecting a repelling prime
end to an attracting prime end, and such that U' \ U has no fixed points. Let F
denote the family of all such translation lines, for all i G {(),..., m}. Note that all
elements of F are pairwise disjoint and disjoint from elements of A U ,R. Moreover,
by Theorem 5.2 every line in F spirals from an element of R to an element of A.

Since rotational attractors and repellors are cellular continua, we may collapse
each element of U R to a point; i.e. letting K be the union of all elements of
A U R, we may regard the set S2 \ K as S \ K, where S is a sphere and K is a finite
set of punctures, each induced from a corresponding element of U !R (S is the

Freudenthal compactification of S2 \ K The map / induces a homeomorphism /
of S, which coincides with / on S \ K S2 \ K and fixes elements of K pointwise.
Moreover, letting K^ and Kr denote the elements of K obtained from collapsing
elements of A or R, accordingly, each element of Ka is an attracting fixed point and

each element of Kr is a repelling fixed point for /. Each line T G F, seen as a

subset of S, connects a repelling fixed point from Kr to an attracting fixed point
from Ka- Consider the set E Ure^ T, and note that G — K U E is a bipartite

planar graph in S with vertices in K and edges in F, each joining a vertex in Kr to
a vertex in Ka- See Figure 11. Note that S \ G S2 \ (E U K), so each connected

component of S \ G is a connected component of S2 \ (E U K).
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Note that every connected component of S \ G is invariant, and moreover
Lemma 2.9 implies that any such component has nonpositive index.

We claim that the only connected components of S \ G which contain a fixed

point are the sets U-, for i {0,..., m}. Indeed, if D is such a component containing

a fixed point, regarding D as a subset of S2, we have that Fix(/) n I) is compact
(otherwise there would exist a sequence of fixed points in S2 \ K converging in S2

to a point of 3 K, contradicting the fact that 3 K has no fixed points). Hence

Fix(/) Fl D must be contained in a finite union of invariant connected components
of S2 \ 3 U, each containing at least one fixed point. Since the fixed point index in D
is nonpositive, some such component must have nonpositive index, which means
that it is equal to Uj for some j. Thus U\ fl D contains some fixed point p of /.
Moreover, U{ C L, is a connected component of S \ G, and p G U[ H D (since

(Jj \ U[ has no fixed points). Since D is also a connected component of S \ G and

intersects U[, we conclude that D (//, as we wanted.

Figure 11. An example before and after collapsing. The dotted lines are the elements of 3*.

For example, in Figure 11, the components of the complement of S U K are (7q,

together with four index 0 disks intersecting the boundary of U and two additional
disks D\, D2 disjoint from U (also of index 0 in this case). As we just showed, the

only components that could have fixed points are Uq and the components disjoint
from U (i.e. D^ and D2).

As we have shown, the only connected components of S \ G having fixed points
are Uq, U'm. Note that by definition none of the sets U[ intersects 3 U. Thus every
connected component D of S \ G S2 \ (K U E) intersecting 3 U \ K is fixed point
free, and therefore has index 0. By Lemma 2.9, the boundary of D in S consists of
exactly two elements of and two elements K (one in KA and one in A'«). Denoting
by T the closure of I) in S with the two fixed pointsjemoved, one deduces from
Lemma 3.8 that T is an embedded translation strip for /. But since T is also a subset

of S2, we see that T is an embedded translation strip for f as well. Moreover, the

boundary lines of T both spiral from some R e 31 to some A A, which implies
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that T has the same property. From these facts one concludes that the filled to-limit
of T is A and its filled a-limit is R.

Thus, denoting by T the family of all such translation strips (so that the interior
of every T £ T is a connected component of S \ G intersecting 9 U \ K), we have

that the interiors of elements of T cover dU \K, and in S2 each T £ T spirals from
an element of !R to an element of A. We claim that one of the boundary lines of T is

contained U. To see this, note that the interior of T intersects U (because it intersects
9 U \ K), and U cannot be entirely contained in int7" (since intT is disjoint from
the elements of !F, while U Uq contains 2 + 2k0 > 2 elements of !F). Thus U
intersects 9 T, which consists of the two boundary lines and a subset of K. Since U is

disjoint from K, it follows that U intersects some boundary line of T, which implies
that this line is contained in U (since every element of 3> is contained in some £/,).
We further claim that an element of E contained in U cannot be the boundary line of
two different strips T, T' £ T. Indeed, if this is the case then T U T' is a new strip,
and again its interior cannot contain U entirely since it only contains one element

of 5r, whereas U contains at least 2 + 2ka > 2. Thus the number of elements of T
is at most the number of elements of !F contained in U, which is 2 + 2ko- Some

elements of T could be bounded by two elements of E contained in U (for instance

if it contains the disk D\ in Figure 11), but we may also conclude that T has at least
1 + ko elements.

Finally, to see that every element A U IR is accumulated by some strip T e T,
let A £ A and note that there exists x £ dU \ K arbitrarily close to A, in particular
in the basin of A. If T 6 T is the element containing jc, since T must be entirely
contained in the basin of a unique element of A (which is the filled cu-limit of T), it
follows that A is this element and T spirals towards A. A similar argument applies
to elements of fft.

This completes the proof of Theorem 3.

Remark 5.6. One has the additional property that for every T £ T, the boundary
lines of T are separated by 9 U fl T in T. Indeed, if this is not the case then the two
boundary lines belong to the same connected component of S2 \ 9 U, which must be

U U0 since we already know that one of the two lines lies in U. In the prime ends

compactification of U, these two lines connect the same two fixed prime ends, so by
the description from Lemma 3.4 the interior of T must be Uwhich is not possible
since the interior of T intersects 9 U.

5.5. A monotone semiconjugation to a planar graph. Recall that by a planar
graph G in S2 we mean a finite set of vertices V(G) (points) and edges E{G)
(lines) each connecting two vertices, such that the edges are pairwise disjoint and

G VU E.
A planar graph G C S2 is an attractor-repellor graph for a homeomorphism

F: §2 -> S2 if every vertex of G is an attracting or repelling fixed point of F, every
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edge is a translation line joining a repellor to an attractor, and in addition every vertex
has even degree. Note that in particular a neighborhood of G is contained in the

union of the basins of the attracting and repelling fixed points.
Let us briefly explain how one may use the reduction from the previous proof to

obtain a monotone map h: S2 -» S2 which maps 3 U to an attractor-repellor graph G

of a homeomorphism F such that hf Fh.
To see this, let us first define a map ho'. S2 S which collapses the elements

of A U !R as done in the previous section. We identify S with 82 (by composing ho

with a homeomorphism). If K denotes the union of the images by ho of the attractors
and repellors (which are points), as we have seen, / induces a map /o such that
each element of K is an attracting or repelling fixed point. Moreover, ho(U) is an

invariant disk and the boundary of ho(U) is covered by the interiors of a finite family
of translation strips T, each connecting a repelling element of K to an attracting one.
For each T e T, there is a natural way of defining a monotone map that collapses it
into a line: one may find an invariant foliation of T by "transverse" arcs (by foliating a

fundamental domain first and then extending in the obvious way), and since any such

arc converges to a fixed point when iterated by fo (both in the future and in the past),

one may easily see that the map which collapses these arcs to points maps T to a line

connecting two points, which is a translation line for the map induced by /0. Since
the elements of T are pairwise disjoint, we may do this for each T e T obtaining a

monotone map h\ \ S2 S2 which maps each translation strip to a translation line
for an induced map F: S2 —> S2, satisfying Aj/o Fh\. Finally, letting h h\h0
we see that h and F have the required properties, where E {h(T) : T e T},
V {h{C) :C e AU IRj and G E U V.

Thus we have the following

Theorem 5.7. Under the hypotheses ofTheorem 3, there exists a monotone surjection
h : S2 —» S2, and an orientation-preserving homeomorphism F : S2 —> S2 such that:

• hf Fh;

• h is injective outside a neighborhood ofd U ;

• G h(d U) is an attractor-repellor graph for F.

Recall that each element of T spirals from some Rt e Si to some Aj e A. Let
us define

Kt (T n 3 U) U 3 At U 3 RT.

We claim that Kt is a continuum. Indeed, T is clearly compact, since T accumulates

only on 3 Rt and 3 At- If Kt is not connected, then we may write Kt C\ U C2

for two nonempty compact proper subsets C\, C2 of Kj such that C1 D C2 0.

But since T fl 3 U separates the two boundary components of T (see Remark 5.6,

some connected component C of T D 3 U must also separate the two boundary
components (see [15, Theorem 14.3]). The connected set C must be contained
in C1 or C2. Assume without loss of generality C C C\. Then the closure
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of C\ intersects both 3 At and 3 R-p, and since the latter sets are connected,
3 At U 3 Rj C C\. Hence C2 is disjoint from 3 Aj U 9 Rj (and therefore from

At U Rt)- But then C" C\ U 3 U \ intT is a compact nonempty proper subset

of 3 U such that C' U C2 3 U, contradicting the fact that 3 U is connected.

We define a basic block for / any continuum K which consists of the disjoint
union of the boundaries of a rotational repellor R(K), a rotational attractor A(K),
such that K \ (R(K) U A(K)) is contained in some translation line spiraling from

R(K) to A(K) (see Figure 12). We call A(K) and R(K) the attracting and repelling
nodes of K.

Figure 12. A basic block.

Note that, by construction of h, if T is an edge of G then h 1 (F) D 3 U is a basic

block. Hence we have:

Theorem 5.8. Under the hypotheses of Theorem 3, 3 U is the union ofat least k + 1

and at most 2k + 2 basic blocks, where —k i f U), such that any two basic
blocks intersect at most at their attracting or repelling nodes (in which case the

corresponding nodes coincide). Moreover, the map h from Theorem 3 maps each

basic block to a different edge of the graph G (including endpoints).

An application is the following result about indecomposable boundaries:

Corollary 5.9. If 3 U is an indecomposable continuum without fixed points, then the

fixed point index in U is either 0 or 1.

Proof If the index is not 1, then by Corollary 2.8 the prime ends rotation number
in 3 U is 0 and the fixed point index in U is nonpositive. By the previous theorem,

if i(fU) < 0 then there are at least 2 basic blocks in 3U, from which the

decomposability follows easily.

Note that in the previous corollary, if U has index 0 the only possibility is that 3 U
consists of a single basic block, as in Figure 12.
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5.6. Circloids: proofofTheorem 5 and Corollary 6. Recal 1 that a continuum C C A
is essential if its complement in A has two unbounded connected components, and

annular if these are the only connected components of its complement. Moreover,
an annular continuum C is a circloid if no proper essential subcontinuum is annular.

It is easy to verify that the latter condition is equivalent to saying that 3 C coincides

with the boundary of each of the two (unbounded) components of A \ C.
If C C A is an essential circloid invariant by a homeomorphism h: A A, we

may compactify A with two points to obtain a homeomorphism /: S2 -> S2 which
leaves C invariant and has two invariant disks U~ and U+ such that 3 U-= 3 U+= 3 C.

Assume as in the statement of Theorem 5 that C contains a fixed point but 3 C

does not. Then some connected component of S2 \ 3 C other than U- and U+ is

invariant and contains a fixed point. The number of components of S2 \ C containing
fixed points must be finite, otherwise there would exist a sequence of fixed points
accumulating in 3 C. Moreover, by Corollary 2.8 the index of any such component
is at most 1. Since the sum of their indices is 2 and there are more than two of
them, at least one of these components has nonpositive index. Let XL be the set of all

connected components of S2 \ 3 C which have nonpositive index and contain a fixed

point of /. For any U e XI, there are no fixed points in 3 U and since the fixed point
index is nonpositive, Corollary 2.8 implies that p(f U) 0. Thus, as in Section 5.3

we may define the sets A(U) and SX(U) for each U G XL. Let A Uce'ii A(U) and
SX. SX(U). From Theorem 5.2 we know that the interior of each element

of A U SX has a unique invariant connected component, of index 1. This implies
that elements of XL are disjoint from elements of A U SX, since elements of the latter
set are bounded by 3 C, so any U G XL intersecting some A G A would have to
be entirely contained in A, and moreover it would be a connected component of the

interior of A (and since U has nonpositive index, this is not possible).
In addition, if U, U' are two different elements of XL, then given any A G A(U)

and A! G A{U') one has that either A A' or A n A' 0. This follows from
Lemma 5.5, since as we just saw no element of XL can be contained in an element

of A A SX. Thus A U SX is a pairwise disjoint family and its elements are disjoint
from all elements of XI.

Moreover, U- and U+ are also disjoint from elements of A U SX. Indeed, as in
the previous paragraph if for instance U- intersects some A G A, then L C f; but
since 3 t/_ 3C it follows that 3C C A, and so the only connected component
of S2 \ 3 C disjoint from A has to be S2 \ A. But since there exists an element U e XI

such that A G A(U), and for such U there exists at least one element IX G SX(U)
which is disjoint from A (by Lemma 5.4), we arrive to a contradiction.

As in the proof of Theorem 3, we may choose for each J G XI an open topological
disk which we denote by U*, such that U \ U* has no fixed points and U* is

bounded in U by translation lines, each spiraling from an element of SX(U) to an

element of A(U) (as in Lemma 3.4); the number of such lines is 2 — 2k, where k
is the index of U. Let U* be the family of all such disks U*, and '.F the family of
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all boundary lines of such disks. Considering the sphere S obtained by collapsing
elements of A and Si to points, we have that the elements of 3> are the edges of a

planar graph G in S with vertices in the set K Ka U Kr, where Ka and Kr
are the points obtained from collapsing elements of A and Si, which are attracting
and repelling fixed points for the induced dynamics /, respectively. The graph G is

a (not necessarily connected) attractor-repellor graph for /. Note that all elements

of U* are faces of G, and each element of U contains one (and only one) such face.

Let C C S be the set obtained from C after collapsing the elements of -A U Si.
Note that C \ U_4e.Au/R A C \ K, and the connected components of S2 \ C not

contained in elements of A U Si are the connected components of S \ C, so elements

of U can be regarded as open topological disks both in S2 and in S. Note that the

elements of U* are faces of G (each contained in some element of K).

Claim 1. dg C is the common boundary ofU- and U+ in S, i.e.

dsU- dsC dsU+.

Proof. Letting h:S2 -> S be the (continuous) map collapsing elements of A U Si,
the preimage by h of a point x in the boundary of C always contains a point x'
in the boundary of C (since either h~l(x) contains an element of cA U Si, which
intersects 9 C, or it does not, in which case h~1(x) is a single point and h\h-\^ is

a local homeomorphism). Since x' must belong to the boundaries of t/_ and U+
in S2, and h is injective on f/_ and U+, it follows that x h(x') belongs to the

boundary of £/_ and U+ in S as well, proving our claim that <)<• C is the common

boundary of U- and U+ in S.

Claim 2. Every connected component of S \dg C that is not an element of XL is

entirely contained in some face ofG.

Proof. If U is any such component, since U f U it does not intersect any edge of G.
Since U does not contain any vertex of G either (as vertices belong to C) the claim
follows.

Claim 3. Both sets U- and U+ belong to XL

Proof. Suppose tor instance that t/_ f U. Then by the previous claim we have

that U- is contained in some face D- of G. The fixed point set in D- is nonempty
since it contains -ex/', and it may be covered by finitely many connected components
of V\,..., Vm of S \ dg C. None of the sets L, may belong to U, since otherwise V*
would be a face of G intersecting D_ (hence equal to £)_) which would imply that

U- C V* c Vi, a contradiction since both Vt and t/_ are connected components
of S\3gC.

Since each T) intersects D_ and is not in U, by the previous claim Vt c D-
for i {1 ,...,m}. Note that Vi may be regarded as a connected component



Vol. 94 (2019) A Poincarc-Bendixson theorem for translation lines 181

of S2 \ 3 C as well, and since V £ XL and Vt has a fixed point, the definition of U
implies that the fixed point index of Vi is positive. Thus the fixed point index of D_
is at least m, in particular positive, contradicting Lemma 2.11.

We have thus shown that U- and U+ belong to U, which means that they have

nonpositive index. By Theorem 3 applied to U- there is a finite family T of pairwise
disjoint translation strips which, seen in S, each joins a point of Kr to a point of KJ4,

and such that the interiors of elements of T cover 3jr U- \ K. Each T e T intersects

dg U— dgC dgU+, so it also intersects U+. On the other hand the two

boundary lines of T, together with two points of K, bound a loop, and one of the

boundary lines of T lies in U- which is disjoint from U+. Thus U+ must intersect
the remaining boundary line of T, and since this line is disjoint from 3^ C it must be

entirely contained in U+. In other words, each element of T has one boundary line
in U- and the other in U+. Moreover, the boundary lines in U- bound a region D_
in U- similar to the set U* used before (i.e. as in Lemma 3.4); this is clear from the

proof of Theorem 3. In particular, there are 2k + 2 such lines in (/_, where —k is

the fixed point index in t/_, and T has 2k + 2 elements.

If G' denotes the graph whose edges are boundary lines of elements of T (whose
vertices are in K), then D_ is a face of G' contained in U-. Moreover, there is a

face D+ of G' contained in U+ whose boundary edges are precisely the boundary
lines of elements of T in U+. For instance to see this note that for each T e T,
the set T D U+ is a cross-section of U+, together with the cross-cut defining it, and

any two such cross-sections are disjoint. The complement of all these cross-sections
in U+ is a topological disk D+ which is also a face of G' contained in U+ (note that
from these remarks one may deduce that the fixed point index of U+ is also —k).

Hence S \ (D_ U D+) is the union of all elements of T and K, which means that
S2 \ (D_ U D+) is the (disjoint) union of the elements of A, kR and T (note that
this set contains C). Moreover, the boundaries of D_ and D+ have 2k + 2 edges
each, and G' has 2k + 4 faces, so using Euler's formula we see that there are 2k + 2

vertices. Since the boundary of D_ is a bipartite graph with 2k + 2 edges and each

vertex of G' belongs to some such edge, it follows that Ka and Kr have k + 1

elements each and 3 D_ is a simple loop. Thus there are k + 1 elements in each

set A and ,R.

This proves the first part of Theorem 5. In fact, these arguments imply that the

elements of T are cyclically ordered; more precisely, each element of T joins an

element of to an element of !R and every element of A U !R is accumulated by

exactly two elements of T. From this observation and Theorem 5.7 we obtain the

second part of Theorem 5; namely, the attractor-repellor graph from Theorem 5.7

must map C to a cyclic graph, i.e. a circle with Morse-Smale dynamics.
Moreover, from Theorem 5.8 we see that C must is decomopsable, since there

are at least two basic blocks, so Corollary 6 is proved as well.
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